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Chapter 1

Introduction

1.1 Non-Equilibrium Dynamics of Quantum

Many Body systems

Since the experiment of Kinoshita et al. [1] in 2006, where the lack of thermal-
ization in a 1D Bose gas was clearly observed, the interest in non-equilibrium
dynamics of closed interacting quantum many body systems exploded in the
community of condensed matter physics. The impressive progress in realizing
experimental realizations of isolated, tunable quantum many body systems
with cold gases changed completely the way in which theory and experiments
look at each other. Prototypical models of theoretical physics, which pro-
vided in the last fifty years an effective low energy description of quantum
many body systems, are today realizable in experiments with cold atoms.
The Hubbard, Bose-Hubbard, Luttinger, Kondo, Ising model and many oth-
ers today are not anymore just textbooks hamiltonians but represent the
experimental playground to test many theoretical issues in a field essentially
unexplored: quantum non-equilibrium dynamics. The possibility of realiz-
ing isolated quantum systems decoupled from any source of decoherence,
dissipation and interaction with the environment calls for a theoretical inves-
tigation of quantum ergodicity, quantum thermalization and the mechanisms
behind relaxation, when the only driving force is quantum unitary dynamics.

Despite the countless number of possibilities for driving a system out-of-
equilibrium, the interest in the last few years focused on a class of physi-
cally interesting protocols, the so called quantum quenches, which consist in
preparing the system in the ground state of a given hamiltonian and to sud-
den change an internal parameter initiating the out-of-equilibrium dynamics.
Quantum quenches can be both studied theoretically and easily realized in
laboratory, displaying very rich physics, such as the interplay between di-
mensionality, integrability and thermalization or the emergence of long-lived
non-equilibrium quasi-stationary states, or the out-of-equilibrium dynamics
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CHAPTER 1. INTRODUCTION

arising from quenches between two quantum phases. Moreover, the tanta-
lizing possibility to study non-equilibrium dynamics generalizing the broad
range of tools, used for equilibrium physics, such as mean-field theory or the
renormalization group, is attracting the interest of many physicists in the
broad area of condensed matter and statistical physics.

The first studies of quantum quenches focused on the properties attained
by the asymptotic states attained at long times after a quench. If, on one
hand, the naive expectation that generic quantum many body systems ther-
malize at long time scales, has been confirmed by a series of pioneering works
in the field (see [2] for a review on the subject), on the other hand, the mecha-
nism behind quantum thermalization remains unknown, and a heated debate
on the origin of such quantum thermal behavior and on quatum ergodic-
ity, quantum chaos and their relationships with the corresponding classical
behavior, literally exploded. A notable exception are integrable quantum
many body systems, where the existence of many conserved charges highly
constrains the scattering processes which are expected to redistribute the en-
ergy among the elementary degrees of freedom and to cause thermalization;
indeed, in this case the system approaches an asymptotic non-thermal steady
state which bears strong memory of the initial state, the so called Generalized
Gibbs Ensemble (GGE). This is, roughly speaking, a sort of grandcanonical
ensemble accounting for all the conserved quantities of the theory. The GGE
has been tested and verified both numerically and analytically in a very broad
class of models and protocols [2].

The GGE and the thermal state usually are looked at as two mutual
exclusive possibilities. However in 2011, a new ground-breaking experiment
[3] changed the way in which people looked at the GGE and the thermal
state. J. Schmiedmayer’s group, in Vienna, investigated experimentally the
out-of-equilibrium dynamics of a coherent splitted one dimensional Bose gas,
finding clear evidence that for long intermediate times the system approaches
a non-thermal metastable state well described by a Generalized Gibbs en-
semble based on a Luttinger model. Only at later times, the system de-
parts from the pre-thermal state possibly towards true thermal equilibrium.
This phenomenology was already encountered ten years ago in the theoret-
ical study of non-equilibrium quantum field theories and discussed under
the name of pre-thermalization [4]. This experiment revived the interest of
theoretical physicists who developed a modern way to look at thermaliza-
tion dynamics in integrable models. A weakly non-integrable quantum many
body system driven away from equilibrium will first approach an interme-
diate quasi-steady state described by a GGE, built perturbatively starting
from the non-integrable hamiltonian, and only for longer times, when pertur-
bation theory breaks down and inelastic scattering processes become leading
in the dynamics of the system, a thermal behaviour will possibly occur [5].
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CHAPTER 1. INTRODUCTION

Pre-thermalization is the first step towards an unified description of out-
of-equilibrium dynamics, which aims at merging together our current under-
standing of relaxation dynamics in integrable and non-integrable systems.
This PhD Thesis is devoted to deepen our physical comprehension and phys-
ical intuition on pre-thermalization dynamics in quantum many body sys-
tems.

1.2 Thesis Abstract

The results presented in this PhD Thesis aim at understanding thermaliza-
tion dynamics and, strictly speaking, pre-thermalization in both open and
closed quantum spin chains driven out-of-equilibrium. In order to make an-
alytical progress, we consider perturbations of the Quantum Ising Chain
(QIC), one of the simplest integrable models, whose non-equilibrium dynam-
ics has been studied in great details in the last few years. In Chapter 2 we
introduce for the non-technical reader the main recent ideas behind quan-
tum thermalization and relaxation in integrable and non-integrable quantum
many body systems, while Chapter 3 contains an introduction to the current
understanding of pre-thermalization.

In Chapter 4 we start our study considering a QIC perturbed by a time-
dependent noise in the direction of the transverse magnetic field [6] [7]. We
generalize the concept of pre-thermalization to a noisy quantum many body
system driven away from equilibrium simultaneously by a quantum quench
of the transverse field and by the noise, highlighting the mechanism behind
pre-thermalization and the subsequent relaxation towards the thermal state
in a wide class of physically relevant observables. Our main achievement
is to show that pre-thermalization occurs quite generally up to time scales
where the noise is dominated by the non-equilibrium dynamics induced by
the quench of the transverse field, while for longer times pre-thermal plateaux
disappear and the noise leaves different signatures in different observables.

In Chapter 5 we consider the more challenging problem of pre-thermalizat-
-ion in a closed non-integrable quantum spin chain [8]. We show using a
mapping of a weakly non-integrable spin chain into a hard core boson model,
that pre-thermalization is successfully captured by a low-density description
of the theory, which results in a integrable, bosonic model, that constitutes
an excellent description for the out-of-equilibrium dynamics up to interme-
diate time scales. On the other hand, in order to investigate the late time
dynamics we resort to a diagrammatic approach, which serves for a two-fold
scope. First, we focus on the effect of the leading inelastic processes, real-
izing that they constitute only a sub-leading correction to the pre-thermal

9



CHAPTER 1. INTRODUCTION

plateau, found within the effective low-energy description; and secondly, we
show from a Quantum Boltzmann equation perspective how inelastic pro-
cesses are the fundamental ingredient in order to have thermalization in the
late time dynamics.

The main technical tool used to derive the results in Chapter 4 and 5 is
the Keldysh contour technique which is reviewed in the Appendix.

This PhD Thesis is based on the following works:

• J. Marino, A. Silva, Relaxation, pre-thermalization and diffusion in a
noisy Quantum Ising Chain, Phys. Rev. B 86, 060408 (Rapid Commu-

nications) (2012).

• M. Marcuzzi, J. Marino, A. Gambassi, A. Silva, Pre-thermalization in
a non-integrable quantum spin chain after a quench, arXiv:1307.3738
(2013) (submitted to Phys. Rev. Lett.).

• J. Marino, A. Silva, Non-Equilibrium Dynamics of a Noisy Quantum
Ising Chain: statistics of the work and prethermalization after a sudden
quench of the transverse field, arXiv:1309.7595 (2013) (submitted to
Phys. Rev. B).
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Chapter 2

Quenches and Thermalization

In this chapter we introduce in a non-technical fashion the physics of the
simplest protocol to study non-equilibrium dynamics of quantum many body
systems, the quantum quench, and we discuss the definition of equilibration
for a closed interacting quantum system. After a comprehensive summary of
groundbreaking experiments which in the last decade renewed the interest in
out-of-equilibrium dynamics of quantum many body systems, we review the
most popular proposals for the mechanism behind quantum thermalization.
In the last part of the chapter, we address, in particular, the case of relax-
ation dynamics in integrable models, highlighting, in particular, the quench
dynamics of the Transverse Field Quantum Ising Chain (QIC), which consti-
tutes the playground for our theoretical studies of pre-thermalization in this
PhD Thesis.

2.1 Quantum Quenches

As we stressed in the Introduction, quantum gases can exhibit an unprece-
dented degree of isolation from dissipation and environmental decoherence.
Therefore, to a very good approximation, their dynamics is unitary and quan-
tum many body coherence is preserved during the time scales of the ex-
periments. This remarkable fact stimulated the focus in out-of-equilibrium
dynamics of closed quantum many body systems. The simplest protocol
in this context is the so called quantum quench, which consists in prepar-
ing the system in the ground state of a quantum many body hamiltonian
H(g0), characterized by an internal parameter g0, and suddenly switch this
parameter to a different value g0 → g, letting the system evolve under the
new Hamiltonian H(g). The ground state of the pre-quench Hamiltonian,
|ψg0

0 〉, is in general not an eigenstate of the new Hamiltonian, and it will have
a finite overlap with all the new eigenstates (|ψg

n〉), making the subsequent
quantum evolution in general not trivial (see Fig. 2.1).

Quantum quenches became very popular in the last decade for the broad
range of possibilities they allow to explore; for instance, one may study the
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CHAPTER 2. QUENCHES AND THERMALIZATION

Figure 2.1: A schematic representation of the Hilbert space before and after
a quantum quench of the control parameter g. [Courtesy of A. Gambassi]

abrupt change of a control parameter across quantum phase transitions or
the sudden switching on of interactions, quenches can affect only a small sub-
region of the system (local quenches) or the whole system (global quenches),
moreover, they can be easily reproduced in cold atoms experiments, allowing
for a natural merging between theoretical and experimental studies.

Before reviewing the impressive experimental progress of the last ten years
in manipulating and controlling quantum gases, and consequently to explore
the out of equilibrium dynamics of quantum many body systems, let us
first clarify in which sense a quantum system can relax and - if the case -
thermalize.

2.2 Quantum Thermalization

The underlying concept behind classical thermalization is ergodicity, which
requires equivalence between the phase space average and the time average
for every almost initial condition of the dynamics, with fixed energy E.
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CHAPTER 2. QUENCHES AND THERMALIZATION

Generalizing the notion of ergodicity to the quantum realm is hard as it
was realized in the early days of quantum mechanics [9]. Let us see how a triv-
ial attempt in doing so would fail. Consider an Hamiltonian with eigenstates
|ψα〉 and energies Eα and let us organize the spectrum on energy shells of
width δE, sufficiently large to contain many states but small on macroscopic
scales and let us denote the set of eigenstates of the hamiltonian lying in the
energy window (E, E+δE) by H(E). A natural definition of microcanonical
density matrix in this case would be

ρmic(E) =
∑

α∈H(E)

1

N |ψα〉〈ψα|, (2.1)

where N is the total number of eigenstates in the microcanonical shell above
defined. In order to fullfill the ergodicity requirement, we should ask whether,
for a generic initial condition made out of states in a microcanonical shell
|ψ0〉 =

∑
α∈H(E) cα|ψα〉, the long-time average of the density matrix of the

system will equal the microcanonical density matrix. It is immediate to
realize that the time average

|ψ(t)〉〈ψ(t)| =
∑

α

|cα|2|ψα〉〈ψα| (2.2)

can be equal to the microcanonical average (2.1) only if |cα|2 = 1/N , which
is a very special condition, satisfied by a very restricted class of initial states.

Another simple argument, showing how a naive approach to quantum
thermalization is not enough to fully understand the problem, consists in
recalling the basic fact that the trace of the density matrix is constant during
unitary quantum evolution, hence, starting from a pure state, the system
will remain pure during the whole dynamics, Tr(ρ(t)2) = 1 for all times
t. On the other hand, if thermalization is expected to occur, the systems
should relax towards a Gibbs thermal ensemble ρcan(T ), characterized by a
temperature T , determined according to conservation of energy, but such
ensemble is a mixed state Tr(ρcan(T )2) < 1. In other words, imagine to
prepare the system in the ground state |ψ0〉 of a given hamiltonian H0 and
to sudden switch the hamiltonian into a new one H and let evolve the system,
|ψ(t)〉 = exp(−iHt)|ψ0〉. As we said before the system is in a pure state and it
will never approach neither the Gibbs ensemble neither any other asymptotic
stationary state, described by a mixed state. This can be easily realized
considering a simple example, which consists in studying the evolution of the
hermitian operators

O(m,n) = |n〉〈m| + |m〉〈n| (2.3)

built using the eigenstates |m〉 and |n〉 with energies Em and En of the post-
quench hamiltonian, H. The time-dependent expectation value

〈ψt|O(m,n)|ψt〉 = 〈ψ0|n〉〈m|ψ0〉ei(En−Em)t + h.c (2.4)
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CHAPTER 2. QUENCHES AND THERMALIZATION

is oscillating in time and will never become stationary.
These simple but important facts lead us to consider a more precise def-

inition of thermalization for quantum systems, which requires to focus on
reduced density matrices of a subsystem and local observables therein de-
fined [10], instead on quantum states.

Generally speaking, physical properties of quantum many body systems
are accessed through the experimental measurement of local observables,
hence an intuitive definition of thermalization would require to focus on local
properties of a given system in the thermodynamic limit, or, in other words,
to ask questions about thermalization only for observables defined in a finite
subsystem A. The crucial point in looking at a given subsystem A is that
the complement A can act as an effective bath and consequently the reduced
density matrix of A can be described by a mixed state. Given the density
matrix of the total system ρ(t) = |ψt〉〈ψt|, the reduced density matrix of A
can be easily defined as

ρA(t) = TrA[ρ(t)]. (2.5)

In this framework, the question about thermalization of quantum many body
systems can be rephrased in these terms, asking whether for any finite sub-
system A

lim
t→∞

ρA(t) =? ρstat,A ≡ TrA[ρstat], (2.6)

i.e. whether the long time limit of the reduced density matrix will approach in
the thermodynamic limit a time independent reduced density matrix defined
by the last equality of (2.6); Eq. (2.6) implies that for any local observable
OA, the asymptotic expectation value can be predicted by ρstat

lim
t→∞

〈ψt|OA|ψt〉 = Tr[ρstatOA]. (2.7)

In this sense it is meaningfull to say that a quantum many body system
driven out of equilibrium relaxes to a stationary distribution, given by the
density matrix ρstat.

The common and naive expectation that generic quantum many body
systems relax towards a canonical Gibbs ensemble can be violated in some
notable cases; for instance, when integrability plays a major role, the exis-
tence of many local integrals of motion In prevents relaxation towards the
thermal state, because an infinite amount of information about the initial
state is retained. Since the expectation values of the integrals of motion over
the initial state, 〈ψ0|In|ψ0〉, is conserved during the dynamics. In this case
the density matrix of the entire system is expected to be in the form of the
so called Generalized Gibbs Ensemble (GGE) [11]

ρstat = ρGGE =
1

Z
e−

P

n λnIn (2.8)

where Z = Tr[e−
P

n λnIn ] is a generalized partition function, and In are
the local conserved quantities of the integrable model, i.e. local operators
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CHAPTER 2. QUENCHES AND THERMALIZATION

satisfying
[In, Im] = 0 = [In, H]. (2.9)

The Lagrange multipliers are fixed by the requirements

〈ψ0|In|ψ0〉 = Tr[ρGGEIn], (2.10)

which account for the fact that the asymptotic steady state store an infinite
amount of information about the initial state. It is worthwhile to stress
at this point that the only assumption behind the GGE is the standard
prescription of statistical mechanics, requiring to maximize the many body
entropy subject to the constraints of the integrals of motion [12]. More about
the choice of the integrals of motion in (2.8) and the predictive power of the
GGE will come in a subsequent paragraph; let us now turn our attention
to the fascinating issue of the recent experimental progress in realizing in
laboratories the relaxation dynamics discussed in these first few paragraphs.

2.3 Thermalization and Dynamics in the Lab-

oratory

The theoretical interest in studying non-equilibrium dynamics of quantum
many body systems is mainly due to the recent outburst in the experimental
realization and manipulation of quantum many body hamiltonians with cold
gases [13]. First of all, the dilute nature of cold atoms and the extremely
low temperatures of the experiments allow for the observation of dynamical
effects which can last for very long times of the order of milliseconds; con-
sidering that the typical lifetime of ultracold systems is of the order of few
seconds, non-equilibrium dynamics and quantum many-body coherent effect
are fully accessible in this kind of experiments. In order to appreciate these
numbers, they should be compared with the typical time scales of equilibra-
tion in conventional solid state physics experiments, usually extremely fast,
of the order of picoseconds. Furthermore, all the usual mechanisms of relax-
ation for electrons in solid state physics are absent in the ultracold context:
there are no phonons that can transfer energy into the lattice, no impurities
to allow momentum to dissipate, and no spin-orbit interaction to mediate
spin relaxation. This is precisely the desired scenario for studying coherent
non-equilibrium dynamics as it was brilliantly demonstrated in the observa-
tion of collapse and revival of the quantum many body wave function after a
quench across a superfluid-to-Mott insulator quantum phase transition [14]
and in the study of the formation of topological defects during a quench of
trapped spinor Bose gases through a critical point [15].

Another remarkable feature in cold atoms experiments consists in the
possibility of tuning the internal parameters governing hamiltonian dynamics
with an unprecedented control and accuracy via Feshbach resonance [16] and

15



CHAPTER 2. QUENCHES AND THERMALIZATION

Figure 2.2: Basic two-channel model for a Feshbach resonance. (Taken from
[13].)

realizing a large class of prototypical non-equilibrium protocols, like quantum
quenches.

Feshbach resonances are quantum mechanical scattering resonances, which
occur at very low scattering energies in the domain of ultracold gases. This
resonance takes place when the state of two free colliding atoms couples to a
molecular bound state, and it can be induced by an external magnetic field,
easily tunable in the laboratory. The physics behind Feshbach resonance
can be understood looking at the picture 2.2. We consider two molecular
potential curves Vbg(R) and Vc(R); for large intermolecular distances R, the
background potential Vbg(R) asymptotically connects two free atoms in the
ultracold gas, while Vc(R) can support a bound state. If a given low energy
collision state (∼ E), having the Vbg potential as open channel, approaches
the bound molecular state in the closed channel of Vc(R), a Feshbach reso-
nance occurs with a strong mixing between the two states, even if the coupling
is weak. Empirically this resonant effect can be quantified by this simple ex-
pression for the s-wave scattering length

a(B) = abg

(
1 − ∆

B −B0

)
, (2.11)

where the back-ground scattering length abg represents the off-resonant value,
and B0 is the location of the resonance position, where the scattering length
diverges a→ ∞, with a resonance width parametrized by ∆.
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CHAPTER 2. QUENCHES AND THERMALIZATION

Last but not least, many archetypical models of theoretical condensed
matter physics, which in the past were only textbooks hamiltonians, can be
realized experimentally through cold gases, allowing the possibility to explore
the interplay of dimensionality, interactions, fluctuations during the quantum
coherent dynamics, as it will be elucidated in the forthcoming examples. Be-
fore reviewing and citing the most relevant experiments for realization and
control of quantum many body dynamics out-of-equilibrium, it could be use-
ful to summarize the simple but striking physical idea behind the realization
of quantum hamiltonians with cold atoms, as it was first conceived in the
pioneering paper by Jaksch et al. [17]. The authors of [17] essentially re-
alized that a quantum many body hamiltonian of bosons in optical lattices
interacting via a delta-potential characterized by an s-wave scattering length
a and trapped in an external potential, can be mapped into a Bose-Hubbard
model, where the ratio between the hopping and on-site repulsion of two
atoms can be controlled by the scattering length a and the energy offset of
each lattice site can be tuned via the external trapping potential, e.g. a mag-
netic trap. This seminal paper has been considered the cornerstone for more
sophisticated realizations in laboratory of quantum many body hamiltonians
using cold atoms [13].

Let us now review the most relevant experiments of the last ten years,
which shed new light on the realization of quantum non-equilibrium dynam-
ics and which rise the problem of quantum thermalization at the edge of
experimental interest.

The first ground-breaking experiments which initiated the theoretical
quest for relation between thermalization in isolated quantum systems and
quantum integrability are the pioneering studies on thermalization in 1D
Bose gases.

In the experiment by Kinoshita et al. [1], arrays of tightly confined tubes
of ultracold 87Rb atoms were prepared in a superposition of states of oppo-
site momentum. The imparted kinetic energy was small compared to the
energy required to excite the atoms to the higher transverse states and the
gases remained effectively one dimensional along the z direction. The system
was then allowed to evolve for variable durations before the momentum dis-
tribution was sampled. The initial momentum distributions exhibited some
dephasing due to trap anharmonicities, but, even after thousands of colli-
sions, the dephased distribution remained non-Gaussian, signaling that the
non-equilibrium Bose gas did not equilibrate on the time scales of the exper-
iment (see Fig. 2.3).

The popular explanation of this experiment refers to the fact that the
experimental realization of this system is close to the Lieb-Liniger gas with
pointlike collisional interactions [18], which is a notable example of integrable
quantum many body system. This experiment revived the theoretical interest
on the effects of dimensionality and integrability in the relaxation dynamics of
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Figure 2.3: Absorption image in the first oscillation cycle in the experiment
of Kinoshita et al., showing the absence of relaxation towards a steady state.
(Taken from [1].)

quantum many body systems, highlighting the role of non-trivial conservation
laws in preventing relaxation towards the usual canonical Gibbs ensemble
and triggering the interest of theoreticians on asymptotic non-thermal steady
states approached after a quantum quench.

Another representative experiment addressing the issue of quantum quen-
-ches in many-body systems was performed the last year and focuses on the
spreading of quantum correlations after a sudden quench of a one-dimensional
quantum gas in an optical lattice [19]. The mechanism of spreading of cor-
relations in a quantum many body systems driven out of equilibrium is of
paramount importance. Since the early days of quantum quenches the sem-
inal work by Calabrese and Cardy on quenches in Conformal Field Theories
showed that correlations spread at finite velocity, given by the Lieb-Robinson
velocity [20], which had already found a number of applications in condensed
matter theory in the past. More specifically, Calabrese and Cardy [21] ar-
gued that quantum-entangled quasiparticles emerge from the initially highly
excited state and propagate ballistically, carrying correlations across the sys-
tem, as we are going to discuss better in the following sections. Even if
the existence of such a ’speed of light’ in solid state physics has profound
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CHAPTER 2. QUENCHES AND THERMALIZATION

A

B

Figure 2.4: A: Quench protocol realized in the experiment [19]: red balls
are doublons, blue balls are holons. The picture shows the propagation in
opposite direction of the holon/doublon pairs, created after the quench, with
velocity v. B: Time evolution of the two-point parity correlations for a quench
from effective effective interaction strength U/J = 40 to U/J = 9 (with the
geometry realized in the experiment the critical point of the transition is
located at (U/J)c ≃ 3.4.) (Taken from [19].)

theoretical implications, it had never been observed experimentally. The
experimental setup of [19] consists in preparing an ultracold bosonic gas
of rubidium in an optical lattice deep in the Mott regime and to sudden
quench the interaction strength to a final value closer to the critical point
of the Bose-Hubbard model. The system is described by the hamiltonian
H = −J∑〈i,j〉 b

†
ibj + b†jbi +

U
2

∑
i ni(ni −1), and the initial many body sate is

an highly excited respect to the new hamiltonian. Right after the quench, it
acts as a source of quasiparticles; more precisely, it can be written as a sum
of entangled quasiparticles pairs of a doublon with momentum k and energy
ǫdk and a holon with momentum −k and energy ǫh−k propagating in opposites
directions

|ψ(t)〉 ≃ |ψ0〉 + i
√

8
J

U

∑

k

sin(ka)
[
1 − e−i[ǫd

k+ǫh
−k]t/~

]
d†kh

†
−k|ψ0〉. (2.12)

The propagation of quasi-particle pairs is reflected in the two point parity
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correlation functions for sites separated by a distance d

Cd(t) = 〈sj(t)sj+d(t)〉 − 〈sj(t)〉〈sj+d(t)〉, (2.13)

where sj(t) = eiπ[nj(t)−n] measures the parity of the occupation number nj(t).
The main result of the experiment can be summarized in Fig.2.4 and it shows
clearly a positive correlation signal between pairs separated by a distance d
and propagating with velocity v, spreading with increasing time to larger
distances.

Another recent interesting experiment, [22], concerning the time scales of
relaxation in quenched quantum many body systems concerns the direct ob-
servation of the relaxation dynamics of a Bose-Hubbard model using ultracold
atoms in an optical lattice. The experiment can be summarized in three steps:
(1) at t = 0 the system is initiated in the state |ψ(t = 0)〉 = |..., 1, 0, 1, 0, 1, ...〉
such that only lattice sites with an even site index are occupied and no tunnel
coupling is present along the chain; (2) the quench dynamics is initiated by
the sudden variation of a distinct set of parameters J and U and the system
follows the non-equilibrium dynamics according to the Bose-Hubbard model;
(3) finally, the tunnel coupling is suppressed again and the properties of the
evolved state are read out. The result for the odd-site density are reported
in Fig. 2.5, where it can be clearly seen an approach towards the equilibrium
value which follows a power law decay, as discussed by the authors in their
work [22].

Finally, while the relevance of this experiment and of the previous one
lies on the possibility of a detailed experimental study of the time scales of
equilibration and of the dynamical mechanism behind thermalization, let us
now focus on experiments connected more directly to this Thesis, in partic-
ular on experimental realizations of Quantum Ising Chains.

The experimental group in Innsbruck [23] as well as the Greiner’s group
in Harvard [24], using a titled Bose-Hubbard model H = −J∑〈i,j〉 b

†
ibj +

b†jbi +
U
2

∑
i ni(ni−1)+E

∑
i ini +

∑
i ǫini, where the linear energy shift from

site to site is denoted by E, and ǫi accounts for a weak external confinement,
have been able to simulate the QIC paramagnetic/ferromagnetic transition,
controlling the tilt E. For sufficiently small tilt (E ≪ U) and sufficiently
strong interactions (U ≫ J) the ground state of the system is a Mott insu-
lator with exactly one atom per site. When the tilt is ramped adiabatically
from E < U to E > U across E ≃ U at finite J , the system establishes
a regular periodic pattern of dipole states, showing double occupied states
with empty states in between (see 2.6). This system can be mapped onto
an effective Ising spin model [24] [25], where the two distinct ground states,
(with PM (paramagnetic) and AFM (anti-ferromagnetic) order respectively)
are connected via a quantum phase transition at the quantum critical point
Ec = U + 1.85J . Quench dynamics of the QIC can be simulated, ramping
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A

B

Figure 2.5: The upper pictures summarize the quench protocol performed in
experiment [22]. The (d) plot shows the relaxation dynamics of the odd-site
density versus time. (Taken from [22].)

suddenly the tilt towards the critical point and measuring the doublons pro-
duced as a function of time. In Fig. 2.7 it is shown how a quench close to
the transition (blue line) displays strong oscillations, which damp out to an
equilibrium value over time scales of the order of milliseconds.

2.4 A mechanism for Quantum Thermaliza-

tion?

As we anticipated in the section 2.2. it is not obvious what feature of many-
body quantum mechanics makes quantum thermalization possible in a sense
analogous to the way in which dynamical chaos makes classical thermaliza-
tion possible. The quest for a mechanism underlying quantum thermalization
is one of the most debated issues of the last years in the domain of quantum
quenches [2]. At the present time, one of the most celebrated conjectures
regarding the approach towards a thermal state in generic isolated quantum
systems is the Eigenstate Thermalization Hypothesis (ETH). In a nutshell,
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A

Figure 2.6: The number of doublons Nd (circles) and the number of singly
occupied sites Ns(triangles) are plotted versus the tilt at the end of the
ramp. The insets show a schematic of the Ising phase transition for a 1D
Mott-insulator chain from the PM (left) to the AFM (right) ground state.
(Taken from [23].)

thermalization should happen at the level of individual eigenstates and time
evolution plays just a mere auxiliary role, with the consequence that to com-
pute thermal averages it is enough to average over a single many-body eigen-
state in the microcanonical energy window.

The pillar of ETH is the Berry conjecture, as it was firstly shown by Sred-
nicki in ’94 [26]. For a system of N hard spheres, each of radius a, the energy
eigenfunctions of this quantum many body systems can be decomposed in
plane waves in the usual way

ψα(X) = Nα

∫
d3NPAα(P)δ(P2 − 2mUα) exp[iP · X/~]. (2.14)

The Berry conjecture assumes that the coefficients Aα(P) are random gaus-
sian variables with a delta correlated two point function in α and in P. If
we consider an eigenstate of the energy and compute the fraction of atoms
with momentum in a range d3p around p (fQM(p, t)d3p), i.e. the momentum
distribution function, this is expected to reproduce the Maxwell-Boltzmann
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Figure 2.7: Dynamic response for a quench to the resonance point E ≃ U
with U = 1.019kHz, for E = 1.038 (blue line), E = 0.973 (red line), E =
0.865kHz (green line). (Taken from [23].)

distribution at a temperature Tα, after averaging over the distribution func-
tion of the coefficients Aα [26]. Moreover, fluctuations around this distribu-
tion are negligible: an eigenstate which satisfies Berry’s conjecture predicts
a thermal distribution for the momentum distribution function of a single
constituent particle. Besides the specific example of this quantum gas, the
conjecture has been shown to hold for integrable hamiltonian weakly per-
turbed by a single matrix taken from a random gaussian ensemble [27] and
for quantum systems, which have a chaotic classical counterpart [26]. In gen-
eral, it is expected to hold for generic non-integrable quantum many body
systems as it was reported in a celebrated numerical work by Rigol et al. [28].

Considering that ETH is the only hypothesis for quantum thermalization
tested for a broad class of systems (for a comprehensive review on this subject
see [2]), we are going now to discuss in more detail how it is expected to
work. Let us prepare the gas of N hard spheres in an initial state, given
by the superposition of the many body eigenfunctions, ψ̃α(P), in momentum
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representation (P = {p1,p2, ...,pN}), with certain coefficients, Cα,

ψ̃(P, 0) =
∑

α

Cαψ̃α(P), (2.15)

and consider the subsequent unitary evolution

ψ̃(P, t) =
∑

α

Cα exp(−iUαt/~)ψ̃α(P). (2.16)

The momentum distribution function is given at time t by the following
expression

fQM(p1, t) =

∫
d3p2...d

3pN |ψ̃(P, t)|2 =
∑

α,β

C∗
αCβe

i(Uα−Uβ)t/~Φαβ(p1),

(2.17)
where Cα are the coefficients set by the initial condition and

Φαβ(p1) =

∫
d3p2...d

3pN ψ̃∗
α(P)ψ̃∗

β(P) (2.18)

is the overlap between the many-body eigenstates α and β.
If the system is prepared in a non thermal initial state, nonthermal fea-

tures will dephase after a time t≫ ~/∆ and we get

〈fQM(p1, t)〉 =
∑

α

|Cα|2〈Φαα(p1)〉, (2.19)

where the average is intended over the gaussian ensemble postulated in
Berry’s conjecture and ∆ is the uncertainty in the energy

∆2 =
∑

α

|Cα|2(Uα − U)2. (2.20)

If the initial condition is sufficiently narrow in the microcanonical energy
shell, the average energy U can replace all the Uα under the hypothesis ∆ ≪
U and we can extract 〈Φαα(p1)〉 from (2.19), ending up with 〈fQM(p1, t)〉 ≃
〈Φαα(p1)〉. 〈Φαα(p1)〉 can be shown to be equal to fMB(p1, T ), which is the
Maxwell-Boltzmann distribution, using Berry’s conjecture (2.14) and after
some simple algebra (see for details Eq. (3.8)-(3.11) of [26]).

In a nutshell the importance of ETH lies in the fact that states very differ-
ent in structure but narrow in energy give all the same thermal expectation
value, if they have the shape predicted by Berry conjecture; moreover, the
role of time evolution is just to dephase and kill off-diagonal matrix elements,
leaving behind only the diagonal ones, which already contain the expected
thermal behaviour.
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Even if the ETH works in many cases, the actual explanation of quantum
thermalization could be more involved, as some interesting works suggest.
For instance, a seminal work on quench dynamics of the Bose-Hubbard model
showed that for large values of the final interaction strength the system ap-
proached a nonequilibrium steady state with strong memory of the initial
conditions, and only when the post-quench interaction strength was com-
parable to the hopping, thermal correlations were restored in the long time
limit [29]. The explanation behind this counter-intuitive behavior was given
in terms of the ineffectiveness of quasi-particles interactions deep in the Mott
regime, with a suppression of thermalization, because of the impossibility of
redistributing the non-equilibrium quasiparticle distribution imposed on the
system by the initial conditions. Moreover, strict dependence on the initial
state was observed in a numerical study of integrability breaking in a one
dimensional quantum Ising chain [30]

H = −
∑

i

σx
i σ

x
i+1 − g

∑

i

σz
i −B

∑

i

σx
i (2.21)

Numerical results for the three-sites reduced density matrix available for this
system show that if the initial state has all spins aligned along the positive y
direction, then the reduced density matrix approaches the thermal canonical
ensemble, while for states pointing along the positive z direction persistent
oscillations occur at large times with a very slow diffusive relaxation towards
the thermal state, requiring to time average in order to see the appearance
of a canonical distribution. Remarkably, for initial states pointing along the
x direction relaxation is fast, but the distance between the evolved state and
the thermal one is remarkably different from zero even in the long time limit.

This large variety of possible scenarios calls for a deeper understanding
of the mechanism behind quantum thermalization. Though subject is cur-
rently a matter of active research a complementary point of view to ETH is
provided by the connection between quantum thermalization and the many-
body localization transition. This direction received some recent interest in
the comunity of quantum quenches [31] [32], but it remains essentially un-
explored and calls for a more sophisticated understanding. The idea can be
summarized noticing that the quasi-particle space can be thought as a mul-
tidimensional lattice where each point is identified by the occupations n(k)
of the various quasiparticle modes |ψα〉 = |nα(k)〉. As long as states are lo-
calized in quasi-particle space, the system behaves as integrable: any initial
condition spreads into few sites, maintaining strong memory of the initial
state, and the system will not thermalize, because the basic requirement of
ergodicity cannot be satisfied. On the other hand, when a strong enough
integrability-breaking perturbation hybridizing the various states |nα(k)〉 is
applied, the consequent delocalization in quasi-particle space will lead to
thermalization (see fig. 2.8). The operatorial nature of the integrability-
breaking term can lead to different de-localized phases: if the initial state is
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Figure 2.8: An integrability breaking perturbation introduces hopping matrix
elements V̂ among different sites, which hybridize, and for enough strong
perturbations this may lead to de-localization of wave functions among all
points in quasiparticle space in a microcanonical energy shell, leading to
thermalization. (Taken from [31].)

allowed to diffuse into all states in a micro-canonical energy shell generating a
cascade of all possible lower energy excitations, then real thermalization will
occur; on the other hand, if an homogeneous redistribution of energy among
the states |nα(k)〉 is prevented by selection rules, a delocalized non-ergodic
phase can emerge, inhibiting full thermalization.

2.5 Quenches in Integrable Models: the GGE

Before discussing the state of art concerning quantum quenches in integrable
models, it should be clarified which is the exact notion of quantum integrabil-

ity. In classical mechanics a system with n degrees of freedom is integrable
if possesses n independent integrals of motion in involution, i.e. Poisson-
commuting. Integrability means in this case that the differential equations
describing time evolution can be explicitly integrated by the use of action-
angle variables. The relevance for such definition in the classical domain lies
in the fact that solutions of equations of motion in the integrable case display
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only periodic motion on tori in the phase space (or loosely speaking the tra-
jectory covers only a small portion of the phase space), while non-integrable
models explore the phase space densely in the course of dynamics.

Pitfalls are encountered when this definition is naively extendend to the
quantum realm. For instance, it is not clear what is the number of degrees of
freedom in a system with a finite dimensional Hilbert space, like a quantum
spin chain, whether the number of spins, which is proportional to the size of
the system, L, or instead the dimension of the Hilbert space which scale ex-
ponentially with L. Moreover, the criterion of a maximal independent set of
commuting operators is too naive in the quantum domain, since, for instance,
the projectors on the eigenstates diagonalizing the haimiltonian would fullfill
formally this requirement, but it would not discriminate among the various
possible hamiltonians. The quest for a proper definition of quantum inte-
grability is still going on, and the interested reader could find a complete
review on the subject in [33]; in the following we will adopt the definition
given by Sutherland in [34] which seems at the present time the most suited
and which is stimulating promising lines of research in establishing a rela-
tion between integrability and thermalization [35]. In a nutshell, a quantum
system is said integrable if any multi-body scattering process can be decom-
posed in a sequence of binary collisions, which in 1+1 dimensions would not
allow for redistribution of energy and momentum (in the absence of internal
quasi-particle indices), hence, loosely speaking, the required condition is that
the potential supports only elastic scattering among its elementary excita-
tions. This is a very special condition which finds its formal encoding in
the Yang-Baxter equation of integrable field theories, where it can be proved
that the existence of many integrals of motion prevent dissipation or pro-
duction of particles during interactions, with the consequence that particles
maintain their identity upon scattering [36]. As a matter of fact, the Bethe
ansatz solution is exactly the non-diffractive expression for the N particle
wavefunction and for this precise reason it constitutes the foundation for the
study of integrable systems in one dimension.

As briefly anticipated in Section 2.2, relaxation dynamics in integrable
systems should lead to an asymptotic steady state, called the GGE (Gener-
alized Gibbs Ensemble), as conjectured by Rigol et al. [11], which is a sort of
grand-canonical ensemble accounting for all the conserved quantities of the
theory, in the form

ρG =
e−

P

α λαIα

Z
, (2.22)

where Iα are the mutually commuting integrals of motion of the theory. In
statistical physics the ordinary Gibbs ensemble emerges for small subsystems
from the assumption of statistical independence between sufficiently big sub-
systems, this requires that the Iα in the GGE should be local integrals of
motion in terms of the basic degrees of freedom of the theory.
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Let us start considering a simple example, the quench dynamics of the
Quantum Ising Chain

H = −
∑

i

σx
i σ

x
i+1 + gσz

i , (2.23)

which can be diagonalized after a Jordan Wigner transformation and a Bo-
golyubov rotation into a sum of free fermionic modes, H =

∑
k ǫkγ

†
kγk, where

ǫk is the quasi-particle energy. It has been shown [37] that the proper inte-
grals of motion for the GGE are the fermonic occupation numbers Ik = γ†kγk

diagonalizing the theory; the same authors showed in [38] that the GGE
density matrix can be also expressed in terms of a family of local integrals of
motion, {In}, involving only spins on ∼ n neighboring sites. The two formu-
lations are equivalent since the Ik can be expressed as a linear combination of
the {In}. Concerning the important question about the connection between
locality of conservation laws and its relevance for a GGE description of the
asymptotic steady state, the authors of [38] showed that in order to obtain
a good description of the stationary state reduced-density-matrix of a sub-
system of size l, we need to retain all local conservation laws, {In}, whose
densities involve at most l + n0 neighboring spins, where n0 is a constant
depending on the pre-quench and post-quench values of the transverse field.
Leaving out highly local conservation laws generally provides a very poor
description of the stationary state.

On the other hand, in continuum integrable systems, like integrable field
theories, it is natural to associate the Iα to the occupation numbers of the
quasiparticles diagonalizing the theory A(θ), where θ is the rapidity. Fioretto
and Mussardo [39] conjectured that for a specific class of translationally
invariant initial states

|ψ0〉 ∼ e−
R

dθK(θ)A†(θ)A†(−θ)|0〉 (2.24)

(which naturally emerge in the quench of the transverse field of the QIC or in
the coherent split of 1d-quasi-condensates), the long-time limit of the average
of local operators can be predicted by a continuum version of the GGE

ρGGE =
e−

R

dθλ(θ)A†(θ)A(θ)

Z
. (2.25)

The GGE conjecture [11] has been tested in a broad range of quench
protocols, ranging from the seminal work by Cazalilla [40] on the study of
correlation functions in the Luttinger Model after a sudden switch-on of inter-
actions to the recent studies of quench dynamics in the XXZ chain [41], and
it has been rigorously proved by Barthel and Schollwock [42] for quadratic
hamiltonians of fermions or bosons, highlighting remarkably that the mecha-
nism of relaxation in integrable systems is usually an algebraic decay arising
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from inhomogeneous dephasing of the off-diagonal elements of the reduced
density matrix, when they are employed to evaluate expectation values of
physical observables.

All the analytical evidence for a GGE description of quenches in inte-
grable models is based on free theories in which the pre- and post- quench
eigenmodes are linearly related, usually by a Bogolyubov transformation.
Very recently Kormos et al. [45] have considered the interesting experimen-
tal situation (see [1]) where a one-dimensional Bose gas is quenched from
zero to infinite interaction. In a nutshell, they considered the Lieb-Liniger

(LL) model on a ring H =
∫ L

0
dx
[
∂xφ(x)†∂φ(x) + cφ(x)†φ(x)†φ(x)φ(x)

]
and

prepared the many-body system in the ground state with c = 0, letting it
evolve under the LL hamiltonian with infinite interaction (c = ∞), equiva-
lent to a system of free hard-core bosons. Although this is a quench among
free theories, the pre- and post- quench eigenmodes are not linearly related,
and remarkably the GGE still characterizes the asymptotic steady state of
the system, predicting the stationary value of the dynamical density-density
correlation function for instance.

Before concluding this section, it is important to stress that at the current
level of understanding the GGE lacks of predictive power in some peculiar but
physically relevant situations. For instance, in the QIC correlation functions
of different eigenmodes are predicted to be zero by the GGE, 〈nkn

′
k〉 = 0,

or correlators of the type 〈γ†k(t)γ−k(t)〉 are expected to be zero as well; these
statements are not true for initial states where translational invariance is bro-
ken, which violates the above mentioned conditions already at the level of the
initial state [43]. Moreover, expectation values of global operators, like the
global transverse magnetization, M z =

∑
i σ

z
i , in the QIC, are not correctly

predicted by the GGE, because in the thermodynamic limit correlations be-
tween k and −k modes, 〈nkn−k〉 6= 0, which are present for translationally
invariant states like (2.24), are not negligible, as instead happens for expec-
tation values of local operators after a quantum quench [44].

2.5.1 Quench Dynamics of the Quantum Ising Chain

Finally, we would like to briefly review in a bit more of detail the quench
dynamics in a transverse field Quantum Ising Chain (QIC), which has been
studied in detail as a benchmark for many interesting ideas concerning the
GGE and relaxation dynamics in integrable models in the last few years [46]
[37] [47], and which will be our starting point for studying pre-thermalization
in this PhD Thesis.

The Quantum Ising Chain (QIC) is described by the hamiltonian

H = −J
∑

i

σx
i σ

x
i+1 + gσz

i (2.26)
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where σ̂x,z
i are the longitudinal and transverse spin operators at site i and

g is the strength of the transverse field. The Quantum Ising Chain (QIC)
is among the simplest, yet non-trivial integrable many-body system, whose
static properties [48] are to a great extent known. The QIC is characterized
by two dual gapped phases, a quantum paramagnetic (g > 1) and ferromag-
netic one (g < 1) separated by a quantum critical point located at g = 1.

The spin hamiltonian is unitarily equivalent to spinless fermions, as can
be shown performing the Jordan-Wigner transformation [48], introducing ci,
through the relation σ̂z

i = 1 − 2c†ici and σ̂+
i = −∏j<i(1 − 2c†jcj)c

†
i . The

Hamiltonian takes in Fourier space, ck =
∑

j cje
ikj, the simple form

H = 2
∑

k>0

ψ̂†
kĤkψ̂k (2.27)

where

Ĥk = (g − cos k)σz − (sin k)σy (2.28)

and ψ̂k is the Nambu spinor
( ck

c†
−k

)
and σy, σz are the Pauli matrices in the

2×2 Nambu space. The diagonal form H =
∑

k>0Ek(γ
†
kγk − γ−kγ

†
−k), with

energies Ek =
√

(g − cos k)2 + sin2 k, is achieved after a Bogoliubov rotation
ck = uk(g)γk − ivk(g)γ

†
−k and c†−k = uk(g)γ

†
−k − ivk(g)γk; the coefficients are

given by

uk(g) = cos(θk(g)) vk(g) = sin(θk(g)) (2.29)

where tan(2θk(g)) = sin(k)/(g− cos(k)), which shows that the QIC is equiv-
alent to free fermions, whose mass is the gap of the theory ∆ = |g − 1|
[48].

The canonical quench protocol for the QIC consists in preparing the sys-
tem in the ground state of H(g0), to sudden switch the transverse field to
a different value g and to study the subsequent time evolution. This initial
state, expressed in terms of Bogolyubov fermions diagonalizing the post-
quench hamiltonian, has a similar form to the initial state of the experiment
by Cheneau [19] (see for instance (2.12)) and it has also the same form of
the so-called integrable boundary states in statistical field theory [49],

|ψ(g0)〉GS ∼ exp
[∑

k>0

i tan(∆θk)γ
†
k(g)γ

†
−k(g)

]
|ψ(g)〉GS, (2.30)

where ∆θk = θk(g) − θk(g0) is the difference of the Bogolyubov angle before
and after the quench.

The quench dynamics of the QIC will be reviewed in this Section, distin-
guishing between local and non-local operators in terms of the Jordan-Wigner
fermions. As it should be clear from the previous introduction to the QIC,
1pt or 2pt functions of the transverse magnetization are local operators in
the fermionic degrees of freedom and their out-of-equilibrium dynamics after
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a quench can be easily evaluated with a trivial computation, for instance,
the expectation value of the on-site transverse magnetization

〈σz
l 〉 = −

∫ π

0

dk

π

(
cos θk cos ∆θk + sin θk sin ∆θk cos(2ǫkt)

)
(2.31)

displays a constant term, which is the asymptotic value described by the
GGE, and an oscillating term, describing the coherent evolution due to pairs
of quasiparticles propagating after the quench from the initial state (2.30),
decaying to zero in the long time limit Jt≫ 1, as a power law 1/(Jt)3/2. This
is consistent with the general argument provided by Barthel and Schollowock
[42] for the relaxation dynamics of observables in integrable models occurring
through inhomogeneous dephasing, i.e. the sum of many oscillating factors
with slightly different phases, like in Eq. (2.31).

The notion that the GGE predicts the asymptotic value of observables
in the QIC can be understood better looking at the infinite limit of the
connected transverse magnetization two points function

ρzz
c (l,∞) = −

∫ π

−π

dk

2π
eilkeiθk cos ∆θk

∫ π

−π

dp

2π
eilpe−iθp cos ∆θp; (2.32)

this result resembles the finite temperature correlation function

ρzz
c (l,∞) = −

∫ π

−π

dk

2π
eilkeiθk tanh

(βǫk
2

)∫ dp

2π
eilpe−iθp tanh

(βǫp
2

)
, (2.33)

where the temperature β can be replaced by a mode-dependent inverse tem-
perature, defined by

βǫk → βkǫk = 2 tanh−1
(

cos(∆θk)
)

(2.34)

and derived assuming that the Lagrange multipliers, βk, of the GGE

ρ ∼ e−
P

k βkǫkγ†
kγk (2.35)

are fixed by the initial condition

Tr[ρGGEnk] = 〈ψ0|nk|ψ0〉. (2.36)

The emergence of mode-dependent temperatures from the GGE are a conse-
quence of integrability, since in this case the elementary degrees of freedom
do not interact among them, and so each single Bogolyubov fermion will
thermalize at its own temperature, imposed by the energy injected with the
initial quench. The asymptotic value of ρzz(l,∞) is in general exponential
in space separation ∼ e−l/ξ (for quenches not ending into the critical point),
with a correlation length ξ dependent from the initial and final value of the
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quench protocol; this value is approached following a power law, which im-
mediately implies that in order to see the stationary value predicted by the
GGE it is required a time exponentially large in the separation l.

Computations involving the order parameter are more difficult, since it
is a non-local observable in the fermionic representation. In general, they
require the re-summation of infrared divergences in a form-factor expan-
sion or the evaluation of the determinant representation of correlation func-
tions characteristic of a free-fermionic theory [37]. For instance, for quenches
within the ferromagnetic phase, the order parameter relaxes towards zero
exponentially

〈σx
l (t)〉 ∝ exp

[
t

∫ π

0

dk

π
ǫ′k log(cos ∆θk)

]
, (2.37)

where ǫ′k = d
dk
ǫk, while the two-point functions exhibit decay both in time

and space

ρxx(l, t) ∝ exp
[
l

∫ π

0

dk

π
θ(2ǫ′kt− l) log | cos ∆θk|

]
×

× exp
[
2t

∫ π

0

dk

π
θ(l − 2ǫ′kt)ǫ

′
k log | cos ∆θk|

] (2.38)

with a correlation length

ξ−1 =

∫ π

−π

dk

2π
ξ−1(k) = −

∫ π

−π

dk

2π
log | cos ∆θk| (2.39)

which can be predicted again in a GGE framework, as a thermal correlation
length with a mode-dependent temperature βk, as discussed above. It is im-
portant to stress at this point that for small quenches (up to second order in
(g − g0)

2) the GGE correlation length and a true thermal correlation length
coincide, making difficult to distinguish, for this observable, the GGE pre-
diction from the thermal expectation value. Concerning relaxation dynamics
of observables, it should be observed that the two-points correlation function
can be expressed as

ρxx(l, t)
(
ρx(t)

)2 ∼ exp
[ ∫ π

0

dk

π

[ l

ξ(k)
− 2t

τ(k)

]
θ(2ǫ′kt− l)

]
(2.40)

where τ(k) = ξk/ǫ
′
k, is the average mode-dependent decay time obtained by

multiplying the mode-dependent inverse correlation length by the velocity.
The theta function expresses the fact that a given mode contributes to the
relaxation dynamics if the distance, l, lies within its forward light cone,
indicating that quasiparticles injected by the initial quench propagate in the
system ballistically, as discussed in experiment [65] of Section 2.3.
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Chapter 3

Pre-Thermalization

Pre-thermalization is the present way to understand the Generalized Gibbs
Ensemble. The word pre-thermalization, generally speaking, refers to the
possibility for a system driven out-of-equilibrium to approach an intermediate
quasi-steady state, before drifting towards the final stationary state of the
dynamics. This word has been employed in a variety of contexts ranging
from condensed matter physics to elementary particle physics; the aim of this
introductory paragraph is to explain the way in which pre-thermalization has
been introduced in the context of quantum quenches, how it is shaping our
understanding of non-equilibrium dynamics and how it makes possible to
merge in the same context both the GGE and the thermal Gibbs ensemble.

The idea is mainly due to Kollar et al. and it emerged from combined
numerical and analytical evidences coming from a series of works on the sub-
ject, summarized in Ref. [5]. A quantum many body system prepared in
the ground state of an integrable hamiltonian and weakly quenched away
from the integrable point would first approach a intermediate quasi-steady
state predicted by a GGE, built perturbatively from the pre-quench hamil-
tonian, and only later on, when inelastic scattering becomes relevant, the
system will depart from the GGE plateau approaching eventually the ther-
mal state, which is the true final asymptotic steady state of the system. In
this sense, the GGE expectation value of observables after a quench in an
integrable systems is just a close relative to this pre-thermal plateau found
in thermalization dynamics of weakly non-integrable quantum many body
systems. This idea is extremely appealing from the point of view of exper-
iments, since a realization of integrable systems in laboratory is always an
approximation, and for longer times deviation from an experimental integral
setup could arise, leading in principle to thermalization. This last point will
be addressed in the last section of this Chapter; let us now go into the details
of Kollar et al..

As it is clear from Fig. 3.1 thermalization dynamics in an integrable model
ends in a GGE, which is immortal for long times, on the other hand, a small
interaction quench in a non-integrable system results in a more sophisticated
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Figure 3.1: The plot shows the time evolution of the momentum occupa-
tion distribution function nkσ for small interaction quenches in the Falicov-
Kimball model, H =

∑
ij Vijc

†
icj +Ef

∑
i f

†
i fi+U

∑
i f

†
i fic

†
ici, which is a close

relative to the Hubbard model except from the fact that only the itinerant
electrons ci can hop between lattice sites while the fi electrons are fixed [in-
tegrable case] (a) and in the Hubbard model (d > 1) [non-integrable case]
(b). (Taken from [5].)

thermalization scenario: first observables approach a pre-thermal plateau,
which is a strong relative of the GGE, but this state is just a metastable
state of the dynamics because at later times inelastic processes drift the ex-
pectation value of observables towards the real thermal value.

The argument of [5] considers as a starting point an integrable hamil-
tonian H0(t = 0) =

∑
α ǫαIα, and to sudden turn on a small integrability

breaking term H(t > 0) = H0 + gH1, g ≪ 1. The basic concept is to obtain
perturbed constants of motion, Ĩα, starting from the set Iα; these new con-
stants of motion are derived in perturbation theory and are approximately
conserved in the sense that they commute among them and with the total
hamiltonian up to a given order in perturbation theory. To be more specific,
the authors of [5] employ a unitary transformation to cast the hamiltonian
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in the following form

H =
∑

α

ǫαĨα +
∑

ñ

|ñ〉(gE(1)
n + g2E(2)

n )〈ñ| +O(g3) (3.1)

where Ĩα are the approximated constants of motion which commute among
them and with the full hamiltonian up to the second order, while |ñ〉, E(1,2)

n

are the the perturbed eigenvectors and eigenvalues in the sense of Rayleigh-
Schrodinger. Kollar et al. show that the pre-thermalization plateau can be
predicted by a GGE, which includes the Ĩα as constants of motion, disre-
garding the projectors appearing in (3.1), which in general are not linear
combinations of the Ĩα. In other words, non-thermal steady states can be
understood as pre-thermal states that never decay, and in turn pre-thermal
states in non-integrable systems can be put in the form of a Generalized
Gibbs Ensemble, closely related to the GGE of the underlying integrable
hamiltonian by perturbation theory. The prediction of [5] is clearly expected
to hold for intermediate time scales 1/g ≪ t≪ 1/g2, as a natural limitation
coming from perturbative computations, and so the pre-thermal metastable
state is expected to be-long lived as much as the integrable point is weakly
perturbed. If real thermalization occurs, it is expected on time scales of the
order 1/g3 and in general triggered by inelastic processes.

There are many open issues in this scenario. First of all, it is not clear
which are the time scales of pre-thermalization and for thermalization, which
are the physical mechanisms which govern pre-thermalization, and which is
the role of the initial state: for instance it would be interesting to under-
stand what happens in the case of composite quenches, i.e. simultaneous
switching on of integrable and non-integrable perturbations. In particular, it
is not clear at all whether pre-thermalization will always occur; following the
above lines of reasoning, pre-thermalization is expected to occur for small
perturbations, but how small it should be it is not clear at all. Analogously,
understanding how much integrability should be broken in the thermody-
namic limit to have real thermalization, i.e. a quantum version of the KAM
theorem, is another extremely interesting question to investigate.

In the following, we are going to review the present understanding of
the problem and its experimental realizations, highlighting the features rele-
vant to address the original results of this PhD Thesis contained in the next
chapters.
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3.1 Pre-Thermalization and Non-Equilibrium

Dynamics

In order to understand more quantitatively the emergence of pre-thermalizati-

-on in the non-equilibrium dynamics of quenched quantum many body sys-
tems we are going to review in this Section two paradigmatic systems that
at the present level of understanding constitute the only two cases where
pre-thermalization has been explored thoroughly. First of all, we are going
to present the quench dynamics of the Hubbard model which has been ex-
plored in numerical and analytical detail by Kehrein, Eckstein, Kollar and
co-workers, and in the second part of this Section we are going to address
pre-thermalization in non-equilibrium quantum field theories starting from
the pioneering works by Berges and Wetterich.
The non-equilibrium dynamics of fermionic Hubbard model in d > 1 dimen-
sions at half-filling (Fermi energy ǫF = 0), following a sudden quench of
the interactions (Θ(t) is the Heaviside Theta and it accounts for the sudden
switch-on of interactions)

H =
∑

k,σ=±
ǫk : c†kσckσ : +Θ(t)

∑

i

(
ni,+ − 1

2

)
(ni,− − 1

2

)
(3.2)

has been studied analytically by Kehrein and Moeckel [50] using the flow-
equation method. This method consists in solving the Heisenberg equations
of motion for the operators that one is interested in by performing a unitary
transformation to an approximate eigenbasis of the interacting Hamiltonian
at a given order in the interaction strength, in this way it is easy to work
out the time evolution and then transform back to the original basis. The
authors of [50] implement the above diagonalizing transformation by the flow
equation method [51]: one uses a continuous sequence of infinitesimal unitary
transformations parametrized by a parameter B , that connects the eigenba-
sis of the free Hamiltonian (B = 0) with the energy diagonal basis of the inter-
acting Hamiltonian (B = ∞). Each infinitesimal step of the unitary transfor-
mation is defined by the canonical generator η(B) = [H0(B), Hint(B)], where
H0(B) is the free and Hint(B) the interacting part of the Hamiltonian. This
generator η(B) has the required property of making H(B) increasingly en-
ergy diagonal for B → ∞ [51]. All operators O(B) will flow according to the
differential equation ∂O(B)/∂B = [η(B), O(B)]. Making a suitable ansatz
the authors are able to derive and solve flow equations for the momentum
distribution function in the limit of infinite dimensions for computational
convenience. Three distinct stages of the non-equilibrium dynamics emerge:

• Initial buildup of correlations for times1 0 < t ≃ ρ−1
F U−2: a fast reduc-

tion of the Fermi-surface discontinuity induced by the initial condition

1ρF denotes the density of states at the Fermi level.
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is observed, with oscillations decaying as 1/t in the momentum distri-
bution function. This short-time regime is interpreted by the authors
as the formation of quasi-particles from the free electrons of the initial
state.

• Pre-Thermalization: for times t >∼ ρ−1
F U−2 there are no further changes

in the momentum distribution function, which is that of a zero temper-
ature Fermi Liquid with a Z factor (the quasi-particle residue) smaller
than in equilibrium 1−ZNEQ = 2(1−ZEQU). If this system was inte-
grable, this regime of dynamics would become stable, but the inelastic
processes at later times drives this metastable state towards the true
equilibrium distribution function.

• Thermalization The two previous regimes have been derived within
the flow equation approach including all the contributions up to times
smaller than ρ−3

F U−4. A Boltzmann equation description is expected
to hold in the late stages of the dynamics, and imposing this condition
the authors of [50] are able to show that starting from the pre-thermal
state, the system will approach a Fermi-Dirac distribution function
with a temperature T ∼ U .

Very recently Kollar et al. [52] have shown that the full kinetic equation of
a quenched Hubbard model can be derived from first principles, i.e. the evo-
lution of the density matrix. It contains both the prethermalization regime
and the Quantum Boltzmann equation and moreover it is able to describe
the cross-over between these two time scales, employing a numerical solution
based on dynamical mean field theory (DMFT) which becomes exact in the
limit of infinite dimensions.

Full numerical support to the results of [50] has been provided by Eckstein
et al. [53] studying the small (U ≪ V ) and large quench (U ≫ V ) regime of
the Hubbard model, looking at the time evolution of the double occupation
D(t) = 〈ni,+(t)ni,−(t)〉 and the discontinuity ∆n(t) = n(0−, t) − n(0+, t) of
the momentum distribution function at the Fermi energy ǫ = 0 (remember
that the initial condition is the ground state of a non-interacting fermionic
system, so n(ǫ, t) is a sharp function, which marks the Fermi surface in the
initial state). For small quenches, while the discontinuity remains finite in
the pre-thermal regime, some observables, like the double occupation attain
their thermal value, even if the system has not reached thermal equilibrium;
on the other hand, in the large interaction quench limit collapse-revival os-
cillations around a quasi-stationary value are observed for both these two
quantities, decaying on a time scale proportional to the inverse of the hop-
ping amplitude of the fermions, while thermalization is expected to occur
on longer time scales. This suggests a second pre-thermal regime also for
large interactions, that can be understood thinking to the potential as the
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free part of the hamiltonian and to the hopping as the the perturbation that
drives the system eventually towards the equilibrium state. The tantalizing
possibility of speculating about a dynamical phase transition in this model
is suggested by the fact that at a certain critical interaction thermalization
occurs fast both in the momentum distribution function and in the double
occupation, without the appearance of a pre-thermal regime which instead
delays relaxation in the weak and strong coupling limit, as discussed previ-
ously.

An interesting feature stressed by Kehrein [50] concerns re-distribution
of energy among elementary degrees of freedom during non-equilibrium dy-
namics. The initial state is an excited state for the post-quench hamiltonian
and its energy in general will be redistributed by the scattering mechanism
among the degrees of freedom of the model, keeping constant the total en-
ergy of the system. It turns out remarkably that in the pre-thermal stage of
dynamics the interaction energy and the kinetic energy already reach their
asymptotic value and, even more remarkably, for this kind of system the ex-
citation energy of the initial quantum state with respect to the equilibrium
ground state of the quenched hamiltonian is stored into the pre-thermal ki-
netic energy; hence, the subsequent thermalization dynamics consists in re-
distributing this excess energy injected through the quench in a such a way
that different momenta reach a Fermi-Dirac distribution function, starting
from the non-equilibrium pre-thermal state.

This peculiar property of the quenched Hubbard model studied in Ref.
[50] strongly resembles to the study of Non-Equilibrium Quantum Field The-
ories by Berges and collaborators (for a comprehensive review on this subject
see [54]). Their approach consists in re-summing numerically all the relevant
diagrams contributing to out-of-equilibrium self energies, using the Keldysh
formalism for Green’s functions out-of-equilibrium. Their main results [4]
are similar to the thermalization dynamics scenario discussed by Kehrein
[50]. A dephasing mechanism due to the sum over oscillating functions with
a sufficiently dense frequency spectrum spectrum leads to the equipartition
between kinetic energy and potential energy and to the establishment of a
time-independent equation of state relating pressure and density p = p(ǫ),
even if the system is still very far from equilibrium. This dephasing phe-
nomenon is very quick and independent from the scattering processes leading
to true thermalization; this first stage of thermalization dynamics is called
by Berges pre-thermalization. It should be noted at this point how this
closely resembles the scenario depicted by Kollar et al. [5], where first a
relaxation towards a perturbative GGE occurs which should be governed by
the same dephasing mechanism leading to relaxation in integrable systems,
and in principle weakly influenced by non-integrable scattering processes.
The second stage of thermalization dynamics for Berges occurs at a damping
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time, tdamp, controlled by inelastic collisions, and characterized by a relax-
ation of the mode occupation numbers, np(t); information about the initial
stage has been lost at this intermediate stage of dynamics, but the momen-
tum distribution function still does not look thermal. Only at later stages,
true thermal equilibrium set up with an equilibration time t ≃ teq, which
describes the universal rate of approach to the equilibrium values of all the
relevant correlation functions.

Instances of pre-thermalization have been also argued to occur in systems
of quenched spinor condensates [55] and in the quench dynamics of a quan-
tum sine-Gordon model with the cosine potential representing the underlying
commensurate lattice or periodic potential [56].

The challenge for theory is to merge in a unified scenario these results
belonging to two very different domains of physics, taking into account also
the experimental findings on pre-thermalization in cold atoms systems, which
we are going to report now in the last section of this Chapter.

3.2 Pre-Thermalization in the Laboratory

Pre-Thermalization has been successfully observed in experiments involving
quasi-1D Bose gases by Jorg Schimedmayer’s group in Vienna. The exper-
iment [3] considers a single 1D Bose gas of 2 − 3 × 103 87Rb atoms in the
quasi-condensate regime, where many longitudinal modes are populated with
a consequent rich spatial structure and dynamics of their local phase, in con-
trast with 3D condensates where the existence of a long-range order allows
the characterization of the state with a single global phase. In the experiment
a single 1D Bose gas is prepared using standard evaporative cooling in a mag-
netic microtrap on an atom chip; the strong magnetic field, generated by the
current flowing in the atom chip wire, results in a tight longitudinal confine-
ment, forbidding excitations to radial modes (typically kBT, µ ≪ ~ω, where
ω is the typical radial trapping). The non-equilibrium protocol is realized
deforming in a controllable way the harmonic confinement into a double-well
potential by applying radio-frequency radiation via additional wires on the
atom chip; the initial state is prepared splitting rapidly and coherently the
single 1D gas into two uncoupled 1D Bose gases in the double well potential.

After the splitting, the two gases have almost identical longitudinal phase
profile, which reflects the memory that they originally come from a single
quasi-condensate, in sharp contrast to two independent 1D Bose gases, which
display in general uncorrelated phase profiles.

A good theoretical description for the model is given by two uncoupled
Luttinger liquids [57], characterized by the two scalar fields φi=1,2(r, t); the
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splitting process decouples the phase difference φs = φ1(r, t) − φ2(r, t) from
the sum of the phases φc = φ1(r, t)+φ2(r, t). The evolution of φs is described
by the Hamiltonian

H =
~cs
2

∫ [Ks

π
(∇φs(r))

2 +
π

Ks

n2
s(r)

]
dr, (3.3)

where cs is the sound velocity and Ks is the so called Luttinger parameter
which reflects the strength of interactions and correlations. The second-
quantization version of this hamiltonian is

Hs =
∑

k 6=0

~cs|k|b†s,kbs,k +
~πcs
2Ks

n2
s,k=0, (3.4)

where a collective mode or sound wave with momentum k modulates the
phase difference φs(r) with length scale 1/k and time scale of the inverse of the
excitation energy 1/cs~|k|. The initial state can be written as the coherent
superposition of modes propagating with opposite momentum (apart from a
normalization),

|ψ0〉 ≃
∏

k 6=0

(exp(Wkb
†
s,kb

†
s,−k))|0〉 ⊗ |ψs,k=0〉, (3.5)

where 2Wk = 1−αk

1+αk
(with αk = |k|Ks

πρ
) and 〈ns,0|ψs,k=0〉 = exp

(
− 1

2ρ
n2

s,0

)

(where the state |ns,k=0〉 is the normalized eigenstate of the operator n̂s,k=0

with eigenvalue ns,k=0). The fast splitting leads to a strong suppression of
fluctuations in the relative phase φs,k with a consequent equipartition of en-
ergy among each k-mode; for this reason the system looks like thermal at a
given temperature kBTeff = gρ/2, where g is proportional to the scattering
length and the transverse confinement ω, while ρ is the density of each half
of the system.

The experiment studies how the memory of the initial state evolves and
decay in time and whether true thermal equilibrium corresponding to two
uncorrelated condensates is reached asymptotically. The protocol consists
in letting evolve the system in the double well for some time, and then
release the two gases and look at the interference pattern, quantified by the
integrated interference contrast

C2(L) =
1

L

∣∣∣
∫ L/2

−L/2

dzeiφs(z,t)
∣∣∣
2

, (3.6)

which measures the local phase difference along the longitudinal direction.
For the initial state this quantity is large, because there is essentially no
difference in the phase profile of the two condensates, later on - taking into
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account the integrable nature of the Luttinger Liquid model- only dephasing
occurs which in turns modifies the relative phase profile resulting in a de-
creasing C(L) in time. For instance, it is possible to extract the mean squared
contrast 〈C(L)2〉 which is a direct measure of the integrated two points cor-
relation function to infer that, after an initial rapid decay on a time scales of
the order of 10ms due to the dephasing mechanism described above, a quasi-
steady state emerges that evolves further only on a much longer time scale
(see Fig. 3.3). This intermediate steady state has an effective temperature of
about 14 nK which turns out to be in strong agreement with the theoretical
estimate based on the Luttinger model paradigm, and it is roughly a factor
five lower than the initial temperature of the unsplit system (T ≃ 78nK),
hence the observed steady state cannot be the true thermal equilibrium of
the system. Simple estimates provided by the authors show that thermaliza-
tion could occur in this system on time scales ranging from 200 ms to 4 s,
and it may be induced by anharmonic terms which spoil the Luttinger liquid
description, namely three body collisions connected with higher radial exci-
tations. Such processes are expected since the experimental realization of a
1D Integrable system is always an approximation, so on longer time scales
high body scattering could occur, revealing the non-integrable nature of the
gas. The mismatch between the observed temperature and the initial tem-
perature can be understood, noticing that the initial thermal energy remains
stored in the common mode fluctuations, φc(r), of the two halves of the sys-
tem, which are not probed by the interference pattern in the experiment.
The emergence of an intermediate steady state different from the thermal
equilibrium one is at the present time considered the clearest evidence of a
pre-thermalized state. Before concluding, we would like to mention that the
light cone effect discussed in the previous sections has been detected also in
the out-of-equilibrium dynamics of the coherent split of 1D Bose gases [66]:
thermal correlations of a pre-thermalized state emerge locally in their final
form and propagate through the system in a light-cone fashion, exactly in
the same way discussed for the experiment involving a quench of the Bose
Hubbard model in [22].
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Figure 3.2: Non-equilibrium dynamics of a coherently split 1D Bose gas.
In (a) the splitting process and the subsequent evolution are schematically
portrayed; in (b) the corresponding patter of the interference contrast is
shown. (Taken from [3].)
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Figure 3.3: Decay of the squared interference contrast versus time. After an
initial dephasing (I), the system approach a quasi-steady state (II), and only
on much longer time scales the system starts departing from this plateau
(III). In the inset the probability density of the normalized square contrast
for various system sizes is shown. The same phenomenon can be seen in the
main picture from a complementary point of view: the distribution function
approaches for long intermediate times a quasi-stationary value and only
later it departs towards the eventual thermal state. (Taken from [3].)
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Chapter 4

Pre-Thermalization in a Noisy

Quantum Ising Chain

In this Chapter we start our study of pre-thermalization in quantum many
body systems, considering a Quantum Ising Chain (QIC) perturbed by a
time-dependent delta correlated noise in the transverse field direction, and
driven out of equilibrium also by a quench of the static component of the
transverse field. This system allows for analytic solution of its non-equilibrium
dynamics and we elucidate the signature of pre-thermalization and thermal-
ization in observables of physical interest. We find remarkably that pre-
thermalization occurs also in noisy quantum many body systems driven out
of equilibrium. The work discussed in this Chapter is based on the Rapid

Communication [6] and on the paper [7].

4.1 The model, the out of equilibrium proto-

col and the initial state

The focus of this Chapter is in the out of equilibrium dynamics of a perturbed
QIC, described by the hamiltonian

H =H0 + V (t),

H0 = − J
∑

i

σx
i σ

x
i+1 + gσz

i ,

V =
∑

i

δg(t)σz
i ,

(4.1)

where H0 describes the Integrable Quantum Ising Chain and V (t) is a time-
dependent gaussian white noise, with zero average and amplitude Γ,

〈δg(t)〉 = 0,

〈δg(t)δg(t′)〉 =
Γ

2
δ(t− t′).

(4.2)
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Here σ̂x,z
i are the longitudinal and transverse spin operators at site i and

g is the strength of the transverse field. The QIC is among the simplest,
yet non-trivial integrable many-body system, whose static properties and
quench dynamics are to a great extent known. It is characterized by two
dual gapped phases, a quantum paramagnetic (g > 1) and ferromagnetic
one (g < 1) separated by a quantum critical point located at g = 1. In the
following we assume J = 1 and we restore it in the computations only when
it is necessary.

We will consider the dynamics for the following out of equilibrium pro-
tocol: at time t < 0 the system is prepared in the ground state of H0 with
a certain value of the transverse field g0, |ψ0〉 = |ψ(g0)〉GS, and δg(t) = 0.
At later time, t > 0 the system is evolved according to the full hamiltonian
H (see (4.1)) with a different value of the transverse field g, as portrayed in
Fig. 4.1.

Figure 4.1: Out of equilibrium protocol studied in this paper for the QIC:
the system is prepared in the ground state of the Ising chain with g0 > 1
and is evolved according to the Ising Hamiltonian with a different value of
the transverse field g > 1, plus a gaussian delta-correlated noise on top of it.
For simplicity, both g0 and g are chosen within the paramagnetic phase.

A sudden quench of the transverse field populates all excited states of
the system, injecting an extensive ammount of energy; this is easy to under-
stand by looking at the populations and the coherences immediately after
the quench. In the basis of the Bogolyubov fermions diagonalizing H(g):

〈ψ0|γ†k(g)γk(g)|ψ0〉 = sin2(θk − θ0
k)

〈ψ0|γ†k(g)γ†−k(g)|ψ0〉 = −isin 2(θk − θ0
k)

2

〈ψ0|γ−k(g)γk(g)|ψ0〉 = i
sin 2(θk − θ0

k)

2

〈ψ0|γ−k(g)γ
†
−k(g)|ψ0〉 = cos2(θk − θ0

k),

(4.3)
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where θk ≡ θk(g) and θ0
k ≡ θk(g0). Moreover, the initial state can be written

as a coherent superposition of pairs of quasiparticles created on the vacuum
of the theory after the quench (H(g)):

|ψ(g0)〉GS = N
∏

k>0

(
1 + i tan(∆θk)γ

†
k(g)γ

†
−k(g)

)
|ψ(g)〉GS, (4.4)

where

∆θk = θk − θ0
k,

N = exp
[
− 1

2

∑

k>0

log(1 + tan2 ∆θk)
]
.

(4.5)

Below we will focus on the interplay between the effect of a sudden quench
of g and the time dependent noise driving the dynamics of the system.

4.2 Statistics of the work P (w)

Let us start our analysis by considering the statistic of the work done on a
quantum many body system after a quantum quench, P (w) characterized by
a generic non-equilibrium protocol g(t). This quantity requires two energy
measurements: one at the initial time, t = τ0, and one at the final time t = τ
(for a comprehensive review on the subject see [58]). We assume that the
final energy is measured with respect to the final hamiltonian, Hτ , and that
for each realization of the out-of-equilibrium protocol the work w is given as
a difference of the outcomes of the two measures of the energy at initial and
final time. The statistics of the work is then defined as

P (w) =
∑

n,m

δ(w − (En(τ) − Em(τ0)))p(n|m, τ)pm, (4.6)

with p(n|m, τ) ≡ |〈ψn(τ)|U(τ, τ0)|ψm(τ0)〉|2, and pm ≡ |〈ψm(τ0)|φ(τ0)〉|, where
|φ(τ0)〉 is the initial state of the system, U(τ, τ0) is the evolution operator
from τ0 to τ , and |ψi(τ)〉 are the instantaneous wave-functions, computed
from the equation Ht|ψi(t)〉 = Ei(t)|ψi(t)〉. In Ref. [58], it has been shown
that the characteristic function G(u) =

∫
dweiuwP (w) contains full informa-

tion about the statistics of the work w and can be written as a two time
correlation function

G(u) = 〈eiuHH
τ,τ0e−iuHτ0 〉, (4.7)

where HH
τ,τ0

= U †(τ, τ0)Hτ,τ0U(τ, τ0) is the final Hamiltonian used in the
final measurement in the Heisenberg picture. For a sudden quench it follows
immediately that

G(u) = 〈eiH(g1)ue−iH(g0)u〉, (4.8)

where H(g0) and H(g1) are the initial and final hamiltonian respectively.
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One may compute exactly the statistics of the work for a generic time
variation of the transverse field in the QIC (see the Appendix of this Chapter
and Ref. [60]). For a sudden quench of the transverse field in the QIC, one
obtains for P (w), at low w, a peak located at ∆E0, i.e. the difference in the
ground states energies before and after the quench, plus a continuum starting
above 2∆, describing pairs of quasi-particles. This continuum displays an
edge singularity with universal features [59, 60]. For sudden quenches within
the paramagnetic phase, one may obtain

P (ω) ∝ δ(ω) +

√
π

4

Θ(ω − 2∆)

δ
ρ2
−

√
ω − 2∆

∆
, (4.9)

where δ = 4π/L is the two-particle level spacing, ω = w−∆E0, ρ− = ∆0−∆1

∆0

and Θ is the Heaviside step function [59].
Since the exponents of these singularities are expected to be universal

[59] it is natural to start our study of the effect of the noise by clarifying its
role on the universal low-energy behaviour of the statistics of the work. We
separate two effects: first we consider a quench with a final random value of
the transverse field drawn from a gaussian distribution function and then a
gaussian time-dependent delta correlated noise acting on the system during
its time evolution till the measurement time t = τ .

As a warm up, let us start with the first case, a quench of the QIC with a
final value of the transverse field drawn from a gaussian distribution function,
corresponding to a value of the final mass, centered in ∆ and with variance
γ:

p(∆) =
1

γ
√

2π
e
− (∆−∆)2

2γ2 . (4.10)

We now want to compute P (ω) averaged over this probability distribu-
tion. The average energy injected into the system through this quench is
equal to the energy injected in a sudden protocol

∆Einjected ≡ 〈ψ(g0)|(H(g + η) −H(g0))|ψ(g0) =

= ∆EQuench ≡ 〈ψ(g0)|(H(g) −H(g0))|ψ(g0)〉,
(4.11)

meaning that the noise affects the statistic of the work, P (ω), starting from
the second and higher order moments. Nevertheless, as shown below, the
probability distribution (averaged over disorder) is reshaped in the energy
window of interest. We can study the statistics of the work by taking the
average of (4.9) over the gaussian distribution (4.10) and assuming γ

∆
≪ 1,

γ

|∆−∆0|
≪ 1, i.e. the fluctuations of the noise are small compared to the final

gap and the amplitude of the quench.
First of all, it is important to notice that the energy difference of the

ground states ∆Enoise
0 , can be expressed as the difference in the ground states
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one would have without noise ∆E0, plus an extensive correction proportional
to the fluctuations η = ∆ − ∆:

∆Enoise
0 = EGS(g + η) − EGS(g0) ⋍ ∆E0 − f(g)η,

∆E0 = −
(g + 1

π
E
( 4g

(1 + g)2

)
− g0 + 1

π
E
( 4g0

(1 + g0)2

)) (4.12)

where we retained only the first order term of the expansion 1 and E is
a complete elliptic function. The function f(g) 2 can be expressed as a
combination in the following way

f(g) =
L

π

[ 1

π
E
( 4g

(1 + g)2

)
+

g − 1

2(g + 1)2
×2 F1

(1

2
,
3

2
, 2,

4g

(g + 1)2

)]
≡ LΞ(g).

(4.13)

where 2F1 is an hypergeometric function.

Below we focus on the average statistics of the work

P (ω) ∝
∫ ∞

−∞
dη
e
− η2

2γ2

√
2πγ

[
δ(ω + f(g)η) + +

√
π

4

Θ(ω + f(g)η − 2∆ − 2η)

δ
×

×
(∆0 − ∆ − η

∆0

)2

√
ω + f(g)η − 2∆ − 2η

∆ + η

]
≃ e

− ω2

2(γf(g))2

√
2πγf(g)

+

+

∫ ∞

−∞
dη
e
− η2

2γ2

√
2πγ

√
π

4

Θ(ω + f(g)η − 2∆ − 2η)

δ
ρ2
−

√
ω + f(g)η − 2∆ − 2η

∆
(4.14)

where in the second line we assumed γ

∆
≪ 1 and γ

|∆−∆0|
≪ 1. This formula

contains two physical effects, the first one is a global fluctuation involving the
shift of the ground state energy (see Eq. (4.12)). This effect is proportional to
the system size L and affects in the same way both the delta peak singularity
and the continuum starting at ω = 2∆. The second effect is associated to
the fluctuations affecting the masses of the quasi-particles emitted after the
quench and it does not scale with the size of the system. If one is interested
in measuring the work with reference to ∆E0 in an energy window close to
∆E0 + 2∆, the first type of fluctuations are obviously dominant and most
importantly detrimental. Indeed, the last integral in Eq. (4.14) can be

1Expansion (4.12) can be truncated at the first order provided that Γ ≪ 2
∣∣∣∂gEGS(g)
∂2

gEGS(g)

∣∣∣ ≡
F(g). F(g) is an increasing positive monotonic function that never vanishes in the para-
magnetic phase (g > 1).

2The function Ξ(g) is a monotomic function within the paramagnetic phase (g > 1),
0.45 . Ξ(g) . 0.50.
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cast in the following form A
√
γ′
∫∞
−c
dye−y2/2√y + c (where A = 1

4
√

2
1
δ

ρ2
−√
∆

,

γ′ = γ(f(g) − 2) and c = ω−2∆
γ′ ). At energies around 2∆ one would observe

P (ω) ≃ 1√
2πγ′

+ C
ρ2
−
δ

√
γ′

∆

( 1

Γ(5
4
)

+

√
2

Γ(3
4
)

ω − 2∆

γ′
+ ...

)
(4.15)

where C is a numerical prefactor and Γ is the Euler Gamma function.

It could be interesting to subtract these fluctuations by some means. In
order to to so there are in principle two possibilities: the first one is to
measure for each realization only the energy differences with respect to the
threshold, subtracting the extensive shift of the ground state energy due
to the noise (see Eq.(4.12)); the second one consists in rescaling the noise
amplitude by the system size, γ → γ

L
. In both ways Eq. (4.14) can be

properly averaged in the energy range of interest. For ω − 2∆ ≫ γ′

P (ω) ∝ Pquench(ω)
(
1 +O

( γΞ(g)

(ω − 2∆)

)2)
, (4.16)

which essentially means that well above the energy threshold for the produc-
tion of pairs of quasi-particles in a sudden quench, the statistics of the work
is left unchanged. On the other hand, for ω ≪ 2∆ − γ′, the statistics of the
work displays a gaussian tail controlled by the renormalized noise amplitude
γ′,

P (ω) ∝ ρ2
−
δ

√
γ′

∆

( γ′

|ω − 2∆|
)3/2

e
− (ω−2∆)2

2γ′2 . (4.17)

Let us now proceed our analysis considering more complicated effects. We
prepare the system in the ground state of the Ising chain in the paramagnetic
phase, with g0 > 1 and we let evolve the system under the generic time-
dependent hamiltonian H0 + V (t). In the following we assume that we have
subtracted the shift of the ground state energy and that the amplitude of the
noise has been rescaled.

It is a remarkable fact that for each realization of the noise the square
root singularity at the lower energy threshold is independent from the out-of
equilibrium protocol performed on the QIC [60]; what changes is the spectral
weight of the singularity in P (w), which in general will depend on the details
of the time dependent quench, as discussed in the Appendix of this Chapter.
The expression of the statistics of the work in this case is

P (ω, τ) ≃ δ(ω) +

√
π

4

Θ(ω − 2∆(τ))

δ
|ρ(τ)|2

√
ω − 2∆(τ)

∆(τ)
, (4.18)
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where

|ρ(τ)|2 ≡ ∆2(τ)
∣∣∣ρ−

∫ τ

0

e2i
R t
0 dt′∆(t′)

∆(t)2
∆̇(t)dt

∣∣∣
2

= ∆2
(
ρ2 − 2ρRe

[ ∫ τ

0

e2i
R t
0 dt′∆(t′)

∆(t)2
∆̇(t)dt

]
+

+
∣∣∣
∫ τ

0

e2i
R t
0 dt′∆(t′)

∆(t)2
∆̇(t)dt

∣∣∣
2)

(4.19)

and ρ = ∆0−∆(0)
∆0∆(0)

, where in general ∆(0) is different from ∆0.

The derivation of Eq. (4.18) is postponed in the Appendix of this Chapter.
Using integration by parts, it is easy to show that

∫ τ

0

e2i
R t
0 dt′∆(t′)

∆(t)2
∆̇(t)dt =

1

∆(0)
− 1

∆(τ)
e2i

R τ
0 dt′∆(t′) + 2i

∫ τ

0

dte2i
R t
0 dt′∆(t′),

(4.20)
When taking the noise average of these expressions there are going to be

two separate effects. The first will consist in fluctuations of ∆ at the initial
and final point of the trajectory which will produce consequences similar to
the ones discussed above in the static case. If we think to the statistics of
∆(t) as being Gaussian with:

〈∆(t)∆(t′)〉 ≃ Γ

2
δτc(t− t′), (4.21)

where τc is a correlation time 3, the fluctuations at the endpoints have ampli-

tude γ =
√

Γ
τc

. Now in the limit, γ
∆

, γ
|∆−∆0| ≪ 1 we argue that to the leading

order the various terms in Eq. (4.18) can be averaged separately:

P (ω, τ) ≃ δ(ω) +

√
π

4

Θ(ω − 2∆(τ))

δ
|ρ(τ)|2

√
ω − 2∆(τ)

∆(τ)
. (4.22)

While the average of the square root singularity will produce the smearing
of the singularity described above, the average of the spectral weight will
produce a time dependent prefactor that appears to describe the heating of
the system under the influence of the noise. In order to average |ρ(τ)|2, we
first notice that for γ

∆
, Γ

∆
≪ 1, we have

1

∆(τ)
e2i

R τ
0 dt′∆(t′) ≃ 1

∆(τ)
e2i

R τ
0 dt′∆(t′) ≃ 1

∆
e−Γτe2i∆τ , (4.23)

3This can be easily seen introducing a finite correlation time τc, 〈η(t)η(t′)〉 =

Γ
2

1√
2πτ2

c

e
−

(t−t′)2

2τ2
c ; taking the limit t → t′, from the two-time correlation function we need

to recover 〈η2(t)〉 ∼ γ2, and so γ ∼
√

Γ
τc

. If the condition τ ≫ τc is properly taken into

account, a gaussian correlated noise gives the same result of a delta correlated noise.
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where crossed correlations with the boundary term proportional to ∆(τ) can
be neglected. Indeed, expanding in Taylor series the left hand side, we get

e2i∆τ

∆

(
1−η(τ)

∆
+
η(τ)2

∆2
+...
)(

1+2i

∫ τ

0

dt′η(t′)+
1

2
(2i)2

∫ τ

0

dt′dt′′η(t′)η(t′′)+...
)

(4.24)
and, taking the average over the noise, we finally have

e2i∆τ

∆
e−Γτ

(
1 − i

Γ

∆
+
( γ

∆

)2

−
( Γ

∆

)2

− i
( γ

∆

)2 Γ

∆
+ i
( Γ

∆

)3

+ ...
)

(4.25)

It should be clear that in the limit γ
∆

≪ 1, Γ
∆

≪ 1, only the first term can
be kept in the right hand side of (4.25).

Using Eq. (4.20), Eq. (4.21), and neglecting correlations coming from
boundary terms, it is now straightforward to average over the noise; for
instance, for the second term in Eq. (4.19) we get

Re
[ ∫ τ

0

e2i
R t
0 dt′∆(t′)

∆(t)2
˙∆(t)dt

]
=

1

∆

(
1 − e−2Γτ cos(2∆τ)

)
+

+
1

∆2 + Γ2

[
∆
(
e−2Γτ cos(2∆τ) − 1

)
+ Γe−2Γτ sin(2∆τ)

]
≃

≃
Γ
∆
≪1

Γ

∆2
e−2Γτ sin(2∆τ).

(4.26)

which is of order Γ
∆

when reinserted in (4.19).

The third contribution can be written as

∣∣∣
∫ τ

0

e2i
R t
0 dt′∆(t′)

∆(t)2
∆̇(t)dt

∣∣∣
2

≡
( 1

∆(0)
− 1

∆(τ)
e2i

R τ
0 dt′∆(t′) + 2i

∫ τ

0

dte2i
R t
0 dt′∆(t′)

)
×

×
( 1

∆(0)
− 1

∆(τ)
e−2i

R τ
0 dt′∆(t′) − 2i

∫ τ

0

dte−2i
R t
0 dt′∆(t′)

)
=

=
∣∣∣ 1

∆(0)
− 1

∆(τ)
e2i

R τ
0 dt′∆(t′)

∣∣∣
2

+ 2Re
[
2i
( 1

∆(0)
− 1

∆(τ)
e−2i

R τ
0 dt′∆(t′)

)
×

×
∫ τ

0

dte2i
R t
0 dt′∆(t′)

]
+ 4

∫ τ

0

dte2i
R t
0 dt′∆(t′) ×

∫ τ

0

dte−2i
R t
0 dt′∆(t′).

(4.27)

Under the same approximations stated above and using again (4.20), it is
possible to average (4.27) over the time-dependent noise (4.21), disregarding
noise fluctuations in the boundary terms proportional to ∆(0) and ∆(τ). To
compute the average of (4.27), we need to average products of two noise
dependent quantities; for instance, it is easy to derive

4

∫ τ

0

dte2i
R t
0 dt′∆(t′) ×

∫ τ

0

dte2i
R t
0 dt′∆(t′) ≃

Γ
∆
≪1

4
Γτ

∆2
+O

( Γ

∆

)
(4.28)
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while all the other terms in (4.27) are subleading in the limit Γ
∆

≪ 1 and
γ
∆
≪ 1.

Hence, our result on the statistics of the work, P (ω, τ), can be summarized
in the following expression which contains a transparent physical meaning

P (ω, τ) ≃ δ(ω) + (ρ2
− + 4Γτ)Q(ω) (4.29)

where

Q(ω) =

√
π

4

Θ(ω − 2∆)

δ

√
ω − 2∆

∆
. (4.30)

The long time growth of the spectral weight appears to indicate the con-
tinuous heating of the system (it resembles the time dependence of the en-
ergy absorbed by the system at the early stages of the dynamics, as it will be
clear from Eq.(4.52)). Notice indeed that the energy absorbed by the system
during the time-dependent protocol g(t) is non zero, in sharp contrast to the
static case, as we will show in the next Section. In the following we will study
in more sophisticated quantities the interplay between dynamical noise and
coherent effects due to a quantum quench of the Ising Chain.

4.3 Kinetic equations

In this section we are going to study the kinetics of local observables and their
correlation functions in the QIC. In order to accomplish this task, we are in-
terested in deriving a kinetic equation for the equal time non-equilibrium
Green’s function for the protocol discussed in the previous Section. We will
do so by deriving a master equation, using the Keldysh contour technique,
in order to obtain analytically an expression for the 2-point functions of Bo-
golyubov fermions at equal time. These equations will then be used to com-
pute all the observables of interest and their the out-of-equilibrium dynamics.

We start recalling the definition of the statistical Green function on the
Keldysh contour [62]

Gc = −i〈Tcψki(τ)ψ
†
kj(τ

′)〉, (4.31)

where Tc is the time ordering operator on the Keldysh contour, τ and i and
j are indices in the Nambu space; we define the lesser Green function as

G<(t, t′) =
[
G<

k (t, t′)
]

i,j
= i〈ψ†

k,j(t
′)ψk,i(t)〉, (4.32)

which is a matrix in the Nambu space (here t and t′ are real times).
Using the standard approach [62], we first write the equation for the statisti-
cal Green function with the noise as a perturbation and we resum the Dyson
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series (Fig. 4.2)

Gc
τ,τ ′ = Gc

0τ,τ ′
+Gc

0τ,τ ′′
⊗ Σc

τ ′′,τ ′′′ ⊗Gc
τ ′′′,τ ′ (4.33)

where Gc
0τ,τ ′

is the unperturbed Green function and Σc
τ,τ ′ is the self energy;

in right hand side the symbol ⊗ is understood as a convolution product, all
the quantities are evaluated along the Keldysh contour.

In the following we will neglect noise crossed diagrams, computing the
self-energy within the so called self-consistent Born approximation [62], con-
trolled by the small parameter Γ

∆
, as illustrated in Fig. 4.2.

!

Figure 4.2: A diagraatic representation of the Dyson series (4.33). Crossed
dyagrams are neglected according to the self-consistent Born approximation.

The Dyson equation for the statistical Green function is then

i∂tG
<(t, t′) =HkG

<(t, t′) +

∫
dt′′[Σ<(t, t′′)Ga(t′′, t′)+

+ Σr(t, t′′)G<(t′′, t′)],

−i∂t′G
<(t, t′) =G<(t, t′)Hk +

∫
dt′′[Gr(t, t′′)Σ<(t′′, t′)+

+G<(t, t′′)Σa(t′′, t′)].

(4.34)

Within the self consistent Born approximation, we obtain for the self energies
in (4.34):

Σ<
t,t′ =

Γ

2
δ(t− t′)σzG

<
t,t′σz

Σr,a
t,t′ = ∓iΓ

4
δ(t− t′).

(4.35)

We substitute (4.35) in (4.34), subtract the two resulting equations and take
the limit t→ t′; defining the density matrix

ρk(t) = −iG<
k (t, t) (4.36)

we finally obtain the master equation

δtρk = −i[Hk, ρk] +
Γ

2
(σzρkσz − ρk), (4.37)

where [Hk, ρk] is responsible for the free dynamics and the second term on the
right hand side contain information about the dissipation due to the noise.
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We now apply to (4.37) a Bogolyubov rotation U(θk) = exp(−iθkσx) with
θk = 1/2 arctan[(sin k)/(g−cos k)], which diagonalizes the Ising model in the
basis of the Bogoliubov fermions γk. We get

∂tρk = −i[H̃k, ρk] +
Γ

2
(σ′ρkσ

′ − ρk), (4.38)

where σ′ = U †(θk)σzU(θk) = cos 2θkσz + sin 2θkσy and the density matrix is
expressed in the basis of the Bogoliubov fermions.

Before solving Eq. (4.38), let us comment on the properties of the noise.
In the base diagonalizing the final hamiltonian, Hk appears as

Hk =Ekσz + δg(t)(σz cos 2θk + σy sin 2θk) =

Ekσz + δgz
k(t)σz + δgy

k(t)σy,
(4.39)

where δgz
k(t) and δgy

k(t) statisfy

〈δgz
k(t)δg

z
k(t

′)〉 =
Γ

2
(cos 2θk)

2δ(t− t′),

〈δgy
k(t)δg

y
k(t

′)〉 =
Γ

2
(sin 2θk)

2δ(t− t′),

(4.40)

where it should be easy to see that our model is equivalent to the QIC per-
turbed by two k-dependent delta correlated noises, one along the z direction
and the other one along y. Moreover the noise along the y direction is corre-
lated to the noise along the z direction

〈δgz
k(t)δg

y
k(t

′)〉 =
Γ

2
sin 2θk cos 2θkδ(t− t′). (4.41)

The usual way to solve a master equation like (4.38) is to decompose the
density matrix in the basis of the Pauli matrices

ρk =
1

2
1 + δfkσz + xkσx + ykσy. (4.42)

Plugging this decomposition in the master equation (4.38) we end up with
a system of differential equations for the coefficients of the density matrix
(4.42)

∂t(δfk) = −Γ sin2 2θkδfk +
Γ

2
yk sin 4θk

∂txk = −Γxk − 2Ekyk

∂tyk =
Γ

2
sin 4θkδfK + 2Ekxk − Γ cos2 2θkyk.

(4.43)

We will in the following solve this system of equations in the limit Γ
∆

≪
1, which allows to neglect y-z correlations; we checked this approximation
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numerically for different values of k in the Brillouin zone. Taking into account
the different initial conditions (4.3), corresponding to an extensive amount
of energy injected in the system by the quench of the transverse field, we
immediately obtain

δfk(t) = (sin2(∆θk) − 1/2)e−Γt sin2 2θk . (4.44)

For the coherences zk = xk − iyk we instead obtain

∂tzk = (2Eki− Γ)zk +
Γ

2
(1 − cos2(2θk))

zk − zk∗
2

; (4.45)

from this equation we see that the coherences decay exponentially fast as
Γt≫ 1, as one can see close to k ≃ 0, π:

zk ≃ z0
ke

2iEkte−Γt. (4.46)

On the other hand, from equation (4.44), we see that while most of the
modes relax fast to their thermal occupation (nk ≃ 1/2) on time scales of
the order of 1/Γ, the relaxation rates tend to vanish close to the band edges
(k = 0,±π) (see Fig. 4.3).

We give the expression for δfk and zk for k ≃ 0, as they will be useful to
compute the leading behaviour of physical observables during thermalization
dynamics, as it will be more clear in the next sections:

〈γ†kγk〉 =
1

2
+

1

2

( k2

2∆2
ρ2
− − 1

)
e

−Γk2t

∆2

〈γ†kγ†−k〉 = − ik

2∆
ρ−e

−αt−iβt,

(4.47)

where ρ− ≡ ∆0−∆
∆0

and

α =Γ
(
1 − 1

2

( k
∆

)2)

β =2∆
(
1 +

1

2

( k
∆

)2)
.

(4.48)

4.4 Thermalization Dynamics of Observables

Let us start now the study of the interplay between quench and noise in
the time evolution of observables of interest, studying their dynamics from
the intial state towards the asymptotic steady state, which is the infinite
temperature state, where all fermion modes are equally occupied, nk = 1/2,
for all k in the Brillouin zone. We shall start computing the energy absorbed
by the system. We will then be concerned with the study of thermalization
dynamics of the transverse magnetization correlator and, finally, we are going
to look for signatures of the noise in the time evolution of the order parameter
correlations.
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Figure 4.3: Populations, nk = 〈γ†kγk〉 vs wave vector k at different times:
from bottom to up, Γt = 0.1, 1, 10, 102, 103, 104 (g0 = 2, g = 4).

4.4.1 Energy absorbed by the QIC

Let us start considering the energy absorbed by the system during the noisy
protocol:

E(t) = 〈ψ(t)|H(g(t))|ψ(t)〉, (4.49)

where |ψ(t)〉 is the state at time t. Substituting the expression for the hamil-
tonian (2.28), we get

E(t) =〈ψ(t)|
(
H0(g) + δg(t)

∑

i

σz
i

)
|ψ(t)〉 =

=〈ψ(t)|H0(g)|ψ(t)〉 + δg(t)〈ψ(t)|
∑

i

σz
i |ψ(t)〉.

(4.50)

Let us now assume that at the time τ and onwards the noise is turned off.
Therefore the total energy acquired at time τ by the system is

E(τ) = N

∫ π

0

dk

2π
Ek(g)(〈γ†k(τ)γk(τ)〉 − 〈γ−k(τ)γ

†
−k(τ)〉). (4.51)

We can now use the expectation values for the two-point functions of the
Bogolyubov fermions derived in the previous section to evaluate this expres-
sion as a function of τ . For times Γτ ≪ 1, the energy is equal to the energy
injected in an ordinary quench EQuench plus small corrections

E(τ) = EQuench +N

∫ π

0

dk

2π
ǫk cos(2∆θk) sin2(2θk)Γτ, (4.52)

where EQuench = − N
2π

∫ π

0
dkǫk cos(2∆θk) is the energy injected in the system

by a sudden quench.
At longer times, Γt ≫ 1, the energy saturates towards its asympotic

limit, zero with our choice of the vacuum energy, with an asymptotic power
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law behaviour 1√
Γt

, which is the signature of the slow relaxation of k ≃ 0, π

modes 4. In particular, (4.51) can be written as

E(t) =
N

2π

∫ π

0

2Ekδfk =

= −N

2π

∫ π

0

dkEk cos 2∆θke
−Γt sin2 2θk

(4.53)

and for Γt≫ 1 this quantity is dominated by the modes with smallest relax-
ation rate, k ≃ 0, π, with the final result

E(t) ≃
Γt≫1

− N

2
√
π

g2 + 1√
Γt

. (4.54)

4.4.2 Evolution of the number of kinks

Let us now turn our attention to a more interesting quantity to highlight the
dynamics of thermalization: the density of the number of kinks, defined as

nkink ≡ 1

2N

∑

i

〈(1 − σx
i σ

x
i+1)〉. (4.55)

Simple algebraic manipulations yield

nkink(t) =
1

2N

∑

k

(1 + 2〈γ†k(g = 0)γk(g = 0)〉) =

=
1

2N

∑

k

(
2 + 2δfk(t) cos 2∆α∗

k + 2yk(t) sin 2∆α∗
k

)
.

(4.56)

This result has been obtained by expressing Bogoliubov fermions at g = 0
in terms of fermions diagonalizing the chain at finite g, consequently ∆α∗

k =
θk(g = 0) − θk(g) is the difference between the two angles. It is clear from
this expression that the number of kinks can be written as the sum of two
terms, nkink(t) ≡ ndrift(t)+∆n(t), the first due to populations (plus the con-
stant term) and describing the heating of the system towards the asymptotic
steady state and the second one responsible for dephasing and exclusively
due to coherences, which is at the origin of an intermediate stage of the dy-
namics of nkink, which we shall relate to prethermalization.
Thermalization dynamics of nkink(t) can be divided in three stages as sum-
marized in Fig. 4.4:

1. first of all, the system relaxes towards the asymptotic steady state of
the QIC after a quench of the transverse field without noise, which is

4The saddle-point method efficiently approximates the value of the integral in the
Γt ≫ 1 limit, if Γt ≫ (g + 1)2.
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Figure 4.4: The density of kinks vs. time for a quench with Γ = 0.01,
g0 = 1.1, g = 4. While the red line shows the value attained by nkink without
perturbation and predicted by the GGE, the full time evolution (blue line)
shows first a saturation towards the GGE value and later a runaway towards
the infinite temperature state.

the GGE of the QIC, accounting for the conserved quantities of the
theory, i.e. the occupation number of the fermions nk = γ†kγk. This
happens through the usual inhomogeneous dephasing [47], arising from
the overlap of a continuum of frequencies in (4.56) and leading to a

1
(Jt)3/2 decay in the Jt ≫ 1 limit. This result can be easily derived ap-

plying a stationary phase argument to Eq.(4.56) in the Jt≫ 1 limit and
in the temporal frame when the noise is not effective Γt ≪ 1. Though
the term prethermalization has been introduced for closed quantum
many body systems driven out of equilibrium, the appearance of an in-
termediate stage of the dynamics observed here is very similar to what
have been found in closed systems [5], suggesting to use this term also
in this context.

2. The second stage consists in a noise induced dephasing, where coher-
ences are suppressed exponentially by the noise for Γt ≫ 1, as the
leading e−Γt behaviour discussed before suggests.

3. The third stage corresponds to populations heating up. This drives the
number of kinks towards the final stage of the dynamics, i.e an infinite
temperature state. This happens following the same 1√

Γt
behaviour of

the energy, and it is due again to the presence of slow relaxing modes
dominating thermalization dynamics.

This scenario can be better understood by looking separately at ndrift and
∆nkink. In Fig. 4.5, ndrift is plotted as a function of time (red line), show-
ing that this term is responsible for the deviation of nkink from the GGE
expectation value (blue line), while ∆nkink, plotted in Fig. 4.6, first decays
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following a power law, while for times Γt≫ 1 it starts decaying exponentially
fast, departing clearly from the values attained in the usual sudden quench
protocol (blue line).

As a last remark in this Section, it should be noticed that the appearance
of prethermalization stage strictly depends on the different behaviour of the
populations and coherences during the dynamics. This implies that whether
an observable will show prethermalization or not will depend crucially on its
expression in the Bogolyubov basis. This is the reason beneath the absence
of a similar behaviour in the dynamics of E(t).

4.4.3 On-site transverse magnetization

A pre-thermal plateau would be also observed in the thermalization dynam-
ics of the on-site transverse magnetization, 〈σz

i (t)〉, which posses a similar
expression to (4.56) in the Bogolyubov basis

mz ≡ 〈σz
i 〉 =

∫ π

0

dk
2

π

(
δfk(t) cos 2θk − sin 2θkyk(t)

)
. (4.57)

The pre-thermal plateau is in correspondence of the expectation value of σz
i

evaluated in the GGE of the QIC without noise

〈σz
i 〉GGE ≃ −

∫ π

0

dk
1

π
cos 2∆θk cos 2θk (4.58)

and it is approached with a power law, 1
(Jt)3/2 , in the limit Jt ≫ 1, as in a

quenched QIC [37]. On the other hand, the on-site transverse magnetization
will approach its infinite temperature expectation value (〈σz

i 〉T=∞ = 0) as
a power law, 1

Γt
, for Γt ≫ 1, when quantum coherent effects have been

already exponentially suppressed by the noise. Hence the non-equilibrium
dynamics of this observable is exactly the same observed for the number of
kinks. In the next section we are going to consider two-points functions of
the transverse magnetization looking for new physics behind the interplay of
noise and quench.

4.4.4 Transverse magnetization correlator

A similar scenario can be also observed in the equal-time transverse mag-
netization correlation function, computed at different spin sites ρzz(r, t) =
〈σz

i+r(t)σ
z
i (t)〉. Similarly to what we have done for nkink, the expression for

ρzz(r, t) can be written as a sum of three terms

ρzz(r, t) = 〈σr(t)σ0(t)〉pop. + 〈σr(t)σ0(t)〉coh. + 〈σr(t)σ0(t)〉mix. (4.59)
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Figure 4.5: Red line: populations contribution, ndrift, for the case of a quan-
tum quench (Γ = 0). Blue line: populations contribution in the case of a
quench with noise (Γ = 0.01). g0 = 1.1, g = 4.
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Figure 4.6: Red line: coherences contribution, ∆nkink, for the case of a
quantum quench (Γ = 0). Blue line: coherences contribution in the case of
a quench with noise (Γ = 0.01). g0 = 1.1, g = 4.
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where

〈σr(t)σ0(t)〉pop. = 4

∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k′)r×

×
[
sin 2θk sin 2θk′δfk(t)δfk′(t)+

+
(1

2
+ cos 2θk′δfk′(t)

)(1

2
− cos 2θkδfk(t)

)]
,

(4.60)

〈σr(t)σ0(t)〉coh. = 4

∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k′)r×

×
[
− sin 2θk sin 2θk′yk(t)yk′(t) + (xk(t) + iyk(t) cos 2θk)×

× (xk′(t) − iyk′(t) cos 2θk′)
]
,

(4.61)

〈σr(t)σ0(t)〉mix. = 4

∫ π

−π

dk

2π

∫ π

−π

dk′

2π
ei(k−k′)r×

×
[
iδfk(t) sin 2θk(xk′(t) − yk′(t) cos 2θk′)+

− iδfk′(t) sin 2θk′(xk(t) + yk(t) cos 2θk)+

+ sin 2θkδfk′(t)yk(t) cos 2θk′ + sin 2θk′δfk(t)yk′(t) cos 2θk

]
.

(4.62)

Looking the expression of the coherences (4.45), it should be clear that we
can extract from the integrals in (4.61) and (4.62) a purely time dependent
exponential decay prefactor, which allow us to neglect these terms in the
Γt≫ 1 limit

〈σr(t)σ0(t)〉coh. ∝ e−2Γt

〈σr(t)σ0(t)〉mix. ∝ e−Γt.
(4.63)

In order to discriminate the separate physical associated to noise and to
the ordinary quench dynamics, we start our analysis considering the case in
which the QIC is driven out of equilibrium only by the noise, g0 = g, and
later we will consider the more involved case of the interplay between quench
and noise. out of equilibrium only by the noise, g0 = g, and later we will
consider the more involved case of the interplay between quench and noise.

Noise without quench

Let us assume to be in the long time limit Γt ≫ 1, and let us restrict our
attention to a protocol without quench (g0 = g).

The dynamics is dominated by modes near to k = 0,±π which have the
slowest relaxation. We can thus at long times evaluate the correlator ρzz as

ρzz ≃ ρzz
0 + ρzz

π + ρzz
−π (4.64)
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where the first contribution (which is also the only one that would survive in
the scaling limit if taken from the outset) comes from modes close to k ∼ 0,
the second and the third one come from modes close to k ∼ ±π. Let us then
consider first ρzz

0 .
Equation (4.60) for large enough times Γt≫ 1 becomes

ρzz
0 (r, t) ≃ 4

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dk′

2π
ei(k−k′)r

(1

4
+

k

Ek

δfk(t)
k′

E ′
k

δfk′(t) − ∆2

EkEk′

δfk(t)δfk′(t)
)
,

(4.65)

where the time dependence of ρzz
0 (r, t) is going to be fully determined by

the slowest mode k ≃ 0, and where the small k behaviour of δfk is taken

δfk(t) =
k≃0

− 1

2
e−Γt k2

∆2 . (4.66)

The correlator can thus be derived by computing the following integral

I =

∫ ∞

−∞

dk

2π

eikr

Ek

e−Γt k2

∆2 . (4.67)

First of all, we make the substitution k = ∆q

I =

∫ ∞

−∞

dq

2π

eiq∆r

√
q2 + 1

e−Γtq2

. (4.68)

From Eq. (4.68) it is clear that the exponential decay induced by the noise
gives a natural cut-off which enforces the convergence of the integral; in
particular, it is clear that the largest contribution to the integral comes from
the modes q ≪ 1√

Γt
; in other words, recalling that Γt ≫ 1, we can expand

the denominator of the integrand for small q. To first order we get

I =

∫ ∞

−∞
dqeiq∆re−Γtq2

(1 − 1

2
q2 + ...) =

=

√
π

Γt
e−

(∆r)2

4Γt +O
(∆r

Γt

) (4.69)

and so, substituing in (4.65), for the transverse magnetization correlator we
get

ρzz
0 (r, t) = − 1

π

∆2

4

1

Γt
e−

(∆r)2

2Γt (4.70)

Concerning the computation in the ∆r ≫ Γt regime, we observe first of
all that
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1

(q2 + 1)1/2
=

1

Γ(1
2
)

∫ ∞

0

daa−1/2e−a(q2+1) (4.71)

where Γ(1
2
) is the Euler Gamma function. Inserting (4.71) in (4.68), we have

∫ ∞

−∞
dq
eiq∆r−Γtq2

√
q2 + 1

=

∫ ∞

−∞
dq

∫ ∞

0

da

Γ(1/2)
a−1/2e−iqmr−Γtq2−a(q2+1) =

∫ ∞

0

daa−1/2e−
m2r2

4(a+Γt)
−a 1√

a+ Γt
=

a+Γt≡b

∫ ∞

Γt

db√
b− Γt

e−
m2r2

4b
−b+Γt

√
b

=
b≡mr

2
c

= eΓt

∫ ∞

2 Γt
mr

dc

√
mr
2√

mrc
2

− Γt

1√
c
e−mr(c+ 1

c
) = 2eα2β

∫ ∞

α

dx
1√

x2 − α2
e
−β

(
x2+ 1

x2

)

(4.72)

where in the last equality we defined c = x2, α2 = 2Γt
∆r

and β = ∆r
2

. The
last integral in Eq. (4.72) can be evaluated with a saddle point approximation
around x ≃ 1, in the limit α≪ 1, β ≫ 1

2eα2β

∫ ∞

α

dx
1√

x2 − α2
e
−β

(
x2+ 1

x2

)
≃ 2eα2β e−2β

√
1 − α2

∫ ∞

0

dxe−4β(x−1)2 ≃
β≫1

≃ 2eα2β−2β

√
1 − α2

√
π

2
√
β

=

√
2π

∆r

e−∆r+Γt

√
1 − 2Γt

∆r

∝
∆r
Γt

≫1

e−∆r

√
∆r

.

(4.73)

where we kept the gaussian fluctuations around the saddle point x ≃ 1.

This expression allows to find the correlation function in the ∆r ≫ Γt
limit, after some straightforward algebra on Eq.(4.65)

ρzz
0 (r, t) ≃ e−2∆r

2πr2
. (4.74)

It should be clear from these expressions that the diffusive behaviour
found for the correlator (4.70) in the ∆r ≪ Γt limit and indicating the con-
tinuous heating of the system towards the infinite temperature state, travels
with a wavefront speed γ = Γ

∆
, which means that points with ∆r ≫ Γt do

not present any signature of the noise and their correlation function is the
same of σz

i in the QIC without noise and quench (see eq. (4.74) and for
comparison [48]).

Before considering the combined signature of the noise and the quench
on the on-site magnetization correlation function, let us restore lattice cor-
rections originating from k ≃ ±π modes in Eq. (4.60); for ρzz(r, t), in the
∆r
Γt

≪ 1 limit, we get (assuming the lattice spacing a = 1)

ρzz(r, t) = − 1

π

∆2

4

1

Γt
e−

(∆r)2

2Γt

(
1 +

g + 1

g − 1
cos(πr)e−

gr2

Γt

)2

. (4.75)
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In the space-time region defined by
√

Γt
g
≪ r ≪ Γt

∆
, lattice corrections are

completely negligible, on the other hand, in the limit r ≪
√

Γt
g

the signature

of the noise is still diffusive. Therefore, we can conclude that the qualitative
behaviour of the on-site magnetization correlation function is diffusive.

Effect of the quench

Now we are interested in studying the interplay between quench and noise in
the spreading of quantum correlations in ρzz(r, t). We use the expressions for
populations and coherences, (4.44), (4.45), and look for the different spatio-
temporal regimes emerging during the time evolution of this observable.

The dynamics is characterized by the propagation of two “wave” fronts:
at earlier times, Γt ≪ 1, a first front appears at r ≃ Jt, controlled by the
velocity of quasiparticles emitted after a quench (v ≃ J), which separates
unconnected space-time regions, r ≫ Jt, where σz

i correlations behave as
in the QIC without quench, from a region of space-time connected points
r ≪ t, where the stationary correlation function is the same of a quenched
QIC [37]. This is consistent with the Lieb-Robinson limit [63], as already
found for other systems [64] and by many authors for the sudden quench of
the QIC [46, 37, 47]. The effects of the noise are hardly relevant at early
times as observed for the evolution of nkink.

On the other side, taking the long time limit, Γt ≫ 1, for ∆r ≪ Γt
we find again a diffusive spreading of correlations, while for unconnected
spacetime points (∆r ≫ Γt) the stationary correlation function crosses over
to the asymptotic expression of the correlation function in a quenched QIC
without noise [37].

This scenario can be summarized in the following expressions for the
correlation function

ρzz(r, t) ≃Γt≪1





1
2πr2 exp[−2∆0r] r ≫ vt

1
rα exp[−r/ξz] r ≪ vt

(4.76)

where ξz is the correlation length associated to a simple quantum quench of
the transverse field and α a constant, computed in [37]. In the large-times
regime, Γt≫ 1, the noise becomes relevant and the second crossover, between
quenched QIC correlation functions and diffusive behavior emerges

ρzz(r, t) ≃Γt≫1





1
rα exp[−r/ξz] γt≪ r ≪ vt

− 1
π

∆2

4
1
Γt

exp
[
− (∆r)2

2Γt

]
r ≪ γt

(4.77)

where γ = Γ
∆

is the small parameter, which controls the self-consistent Born
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approximation used to resum the Dyson series 5.

!
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!

Figure 4.7: The spreading of quantum and thermal correlations in the noisy
Quantum Ising Model (J = 1): the transverse field correlator has a first
crossover when ballistic quasi-particles, carrying quantum correlations, prop-
agate at the distance r. Thermal correlations propagate at a second stage,
leading to a crossover to a diffusive form, consistent with thermal dynamics.

This type of light-cone spreading of correlations has been observed ex-
perimentally (without noise) in the quench dynamics of the Bose-Hubbard
model [65] and in the coherent split of 1D Bose gases, characterizing the wave
front associated to the pre-thermal state [66].

4.4.5 Order Parameter correlations

This last subsection is devoted to study whether the diffusive behaviour ob-
served before is a general signature of the effect of the noise in correlation
functions; in order to answer to this question, it is sufficient to compute the
equal-time order parameter correlation functions, ρxx

lm for a QIC perturbed
by the noise without adding the effect of a quench in the transverse field.

The usual way to perform this computation in the ground as in a thermal
state is to recast ρxx

lm in a Toepltiz determinant form and to evaluate the large-
spin separation limit l −m = n → ∞, using Fisher-Hartwig conjecture [68].

5For Γ/∆ ≪ 1 vertex corrections entering the self energies as well as the correlation
functions can be neglected.
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For a quantum quench the situation is in general much more complicated [37].
Hence, we will therefore restrict our attention to the dynamics in the presence
of the noise at long-times where the coherences have been suppressed and
only populations evolve. In this case we may proceed with standard methods.

Let introduce the operators

Ai ≡ c†i + ci Bi ≡ c†i − ci (4.78)

where ci is the Jordan-Wigner fermion on the lattice; from (4.78) it follows
[67] that

ρx
ml = 〈σx

mσ
x
l 〉 = 〈BlAl+1Bl+1...Am−1Bm−1Am〉 (4.79)

We can factorize this expression, using Wick theorem, and, noticing that
〈AlAm〉 = 0 and 〈BlBm〉 = 0, we only need to compute 〈BlAm〉:

〈BlAm〉 =

∫ π

−π

dk

2π
e−ikRei2θk2δfk ≡ s(R) (4.80)

where R = l −m and δfk = −1
2
e−Γ sin2 2θ1t.

It is possible to show [67] that the order parameter correlator can be cast
in the form of a n+ 1 × n+ 1 Toeplitz determinant

det(Tn) = det|s(j − k)|nj,k=0 = Dn[f ] (4.81)

where Tn is a Toeplitz matrix

Tn =




s(0) s(−1) s(−2) ... s(−n)
s(1) s(0) s(−1) ... s(1 − n)
s(2) s(1) s(0) ... s(2 − n)
... ... ... ... ...
s(n) s(n− 1) s(n− 2) ... s(0)




(4.82)

It is convenient to write

s(R) =

∫ π

−π

dk

2π
e−iRkf(k) (4.83)

where f(k) is a periodic complex function f(k) = f(k + 2π), called the gen-

erating function.

Let us now compute the order parameter correlator (Eq. (4.79)) in the
large R limit, using the large n expansion of a Toeplitz determinant (Eq.
(4.81)) which can be extracted using the Fisher-Hartwig conjecture [68]. The
latter states that, if f(k) can be cast in the form

f(k) = f0(k)
∏

r

exp [ibr(k − kr − πsign(k − kr))](2 − 2 cos (k − kr))
ar

(4.84)
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where k ∈ (0, 2π), kr are singularities (jumps, zeros or poles) of f(k), f0(k)
is an infinitely differentiable function in k ∈ (0, 2π) and ar, br are two complex
numbers, then the asymptotic expansion of the Toeplitz determinant, for
large n, is

Tn ∼
n→∞

el0nn
P

r(a2
r−b2r), (4.85)

where l0 =
∫ π

−π
dk
2π

log f0(k).

First of all, we are briefly going to set the notation, computing the order
parameter correlator of the QIC at equilibrium, and then we will move to
the case of interest for this Section.

Order Parameter Correlations in the QIC

Consider the Quantum Ising Model

H0 = −
∑

i

σx
i σ

x
i+1 + gσz

i (4.86)

in the paramagnetic phase g > 1.

In this case (see note 6)

〈BlAm〉 = s(R) =

=

∫ π

−π

dk

2π
eikRe−ik cos k − g + i sin k√

(cos k − g)2 + sin2 k

(4.87)

and f(k) can be rewritten, making the change of variable z = eik, as a
function in the complex plane (λ ≡ 1/g)

f(z) = z−1/2 (z − g)1/2

(zg − 1)1/2
= z−1 (λz − 1)1/2

(λz−1 − 1)1/2
, (4.88)

which has four branch points z = 0, 1/g, g, ∞. We choose the two branch
cuts in the following way: the first linking z = 0 with z = 1/g, and the
second one linking z = g with z = ∞.

It is not immediate to apply the Fisher-Hartwig conjecture on Eq.(4.88);
in this case, some additional manipulations on the generating function are
required, following Ref. [69], we note that

1

2π

∫ π

−π

dkf(k)e−ikR =

∫

C

f(z)z−R dz

2πiz
(4.89)

6In order to make ρxx(R) identically equal to the Toeplitz determinant, Tn, it is nec-
essary to shift ρxx(R) from R to R + 1 and this causes the appearance of a factor e−ik in
the expression of s(R).

68



CHAPTER 4. PRE-THERMALIZATION IN A NOISY QUANTUM

ISING CHAIN

where C is a closed contour encircling the origin in the aulus 1/g < |z| < g,
where f(z) is analytic with our choices of branch cuts. The integral involed
in the Toeplitz Determinant is defined over a circle of radius 1, encircling the
origin, (4.89), but applying Cauhy’s theorem inside the anulus 1/g < |z| < g
we can move the integration from the circle of radius 1 to the circle of radius
g = 1/λ; this is equivalent to make the substituion z → z/λ in (4.89), and to
keep the integration over the circle |z| = 1, as shown in [69] (for a technical
remark on this point see 7).

Following this procedure it is possible to rewrite Eq. (4.88) in this form

f(z) =
λ

z

(1 − z)1/2

(
1 − λ2

z

)1/2
, (4.90)

where the Fisher-Hartwig formula can be immediately applied; re-substituting
again z = eik, we get the following Fisher-Hartwig decomposition (4.84)

f(k) ∼ f0(k)e
− 3

4
ik(1 − cos k)1/4, (4.91)

where

f0(k) =
λ

(1 − λ2e−ik)1/2
. (4.92)

It is now easy to show that

l0 =

∫ π

−π

dk

2π
log

λ

(1 − λ2e−ik)1/2
= log λ, (4.93)

which gives for the correlation function ρxx(R), according to (4.85), the fol-
lowing result

ρxx(R) ∼
R→∞R

−1/2e−R/ξeq (4.94)

where ξeq = (log g)−1.

Order Parameter correlations in a noisy QIC

We are now ready to derive the main result of this section, adding to the
QIC the usual noisy time dependent perturbation. Recalling (4.80), we get
in this case for the generating function f(k)

f(k) = e−Γt sin2 2θkf eq(k), (4.95)

7Changing the integration circle from unitary radius to radius 1/λ, we get cp =∫ π

−π
dθ
2π f(θ)e−ipθ = λp

∫ π

−π
f( eiθ

λ )e−ipθ dθ
2π . For the asymptotics of the Toeplitz deter-

minant, we are interested in lp =
∫ π

−π
log f(θ)e−ipθ dθ

2π =
∮
|z|=1

log f(z)z−p dz
2πiz =

∮
|z|=1/λ

log f(z)z−p dz
2πiz

=
z′=zλ

∮
|z′|=1

log f
(

z′

λ

)
z′−p

λ−p
dz′

2πiz′
=
∫ π

−π
log
(

eiθ

λ

)
e−ipθ

λ−p
dθ
2π , where in

the last passage we used z′ = eiθ and so l0 =
∫ π

−π
log eiθ

λ
dθ
2π (see also [69]).
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where f eq(k) is the static generating function for the Toeplitz determinant in
the QIC at equilibrium, presented in the previous subsection. The function
e−Γt sin2 2θk is non zero and smooth in (0, 2π), so our only task is to make
the change of variable in the complex plane z → z/λ as before, necessary to
apply the Fisher Hartwig conjecture.

The correlation function, using Fisher-Hartwig conjecture, takes the form

ρxx(R, t) ∼
R→∞R

−1/2e−R/ξ(t), (4.96)

where
1

ξ(t)
=

1

ξeq.

+
1

ξ(t)noise

(4.97)

and
1

ξ(t)noise

= Γt

∫ π

−π

dk

2π
a(k); (4.98)

ξeq. is the exponent coming from the regular part of the generating function
at equilibrium (see Eq. (4.94)), while a(k) has the following form

a(k) ≡ sin2 2θk =
(eik − e−ik)2

(eik − e−ik)2 − (2g − eik − e−ik)2
. (4.99)

The integral ∫ π

−π

dk

2π
a(k) (4.100)

can be written in the complex plane (z = eik) as

∮

|z|=1

dz

2πiz
a(z), (4.101)

where

a(z) ≡ 1

1 −
( (z−1−

q

1− 1
g2 )(z−1+

q

1+ 1
g2 )

(z− 1
g
)(z+ 1

g
)

)2
(4.102)

has poles in z = 0, 1
g2 , 1.

Considering we move from the circle of radius 1 to the one of radius 1
λ
,

where feq(k) has a branch cut, we need to regularize the integral (4.101),
deforming the integration contour from inside in order to avoid z = 1; in
other words, we consider the circle of radius 1 − ǫ, taking the limit ǫ→ 0+.

Applying the residue theorem to (4.101) we get

1

ξ(t)noise

=
Γt

2g2
(4.103)

This result can be checked numerically, studying the asymptotic be-
haviour of a Toeplitz determinant, whose entries are generated by (4.95).
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For a quench without dissipation the stationary correlation function has
in general an exponential form ρxx(R, t) ∼ exp[−R/ξ], with a correlation
length ξ dictated by the non-thermal distribution function of quasi-particles
and predicted by the Generalized Gibbs ensemble [37]. Turning on the noise,
the signatures of the crossover observed for the transverse magnetization
are expected in this case to be different; indeed, the same exponential form
persists and the spreading of quantum and thermal correlations will not result
in a diffusive form, but rather modify just the specifics of the correlation
length which at later times shrinks as 1/Γt for large times.

The different signatures observed in the transverse and longitudinal mag-
netization are consistent with analogous phenomenology observed elsewhere
for quenches in the QIC [46].

4.5 Appendix: Time-dependent Bogolyubov

transformation and Statistics of the Work

In this Appendix we derive a formula for the characteristic function, G(u),
introduced in Eq. (4.7). We use a generalization of Bogolyubov transfor-
mations for time-dependent protocols, and then in Section 4.2 we specialize
these results for a time-dependent noisy perturbation.

We consider a QIC in the transverse field g0 and we prepare the system
in the ground state of the paramagnetic phase, |ψ(g0)〉; we perform a generic
time-dependent protocol, g(t), with these boundary conditions: g(t = 0) =
gi > 1 and g(t = τ) = gf > 1, in general gi, gf 6= g0. For instance, the sudden
quench case is recovered from our expressions when ġ(t) = 0, hence gi = gf .

Our goal is to compute

G(u) = 〈ψ(g0)|eiuHH
τ,τ0 |ψ(g0)〉, (4.104)

where HH
τ,τ0

= U †(τ, τ0)Hτ,τ0U(τ, τ0) denotes the Hamiltonian used in the
measurement process; the superscript H indicates that operators are taken
in the Heisenberg picture. In Eq. (4.104) we dropped the inessential global
phase prefactor present in Eq. (4.7). We can rewrite G(u) in Schrodinger
representation, absorbing the evolution in the wavefunction

|ψ(τ)〉 = U(τ, τ0)|ψ(g0)〉, (4.105)

we get

G(u) = 〈ψ(τ)|eiuHτ |ψ(τ)〉. (4.106)

In order to compute this quantity, we make the central ansatz of our method,
that consists in introducing an operator γ̃k(t), which annihilates the state at
time t

γ̃k(t)|ψ(t)〉 = 0, (4.107)
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which means that |ψ(t)〉 is a Bogolyubov vacuum at each time, for a certain
operator, γ̃k(t). The choice of the initial state implies γ̃k(0) = γk(g0). From
our ansatz, it follows that

0 = i
d

dt
(γ̃k(t)|ψ(t)〉) =

(
i
∂

∂t
γ̃k(t)

)
|ψ(t)〉 + γ̃k(t)

(
i
∂

∂t
|ψ(t)〉

)
=

=
(
i
∂

∂t
γ̃k(t) + γ̃k(t)H(t) −H(t)γ̃k(t)

)
|ψ(t)〉

(4.108)

and this implies

i
∂

∂t
γ̃k(t) = −[γ̃k(t), H(t)]. (4.109)

At a certain time t, H(t) is diagonalized by a set of Bogolyubov operators
γk(t), which are related in the usual way to the Jordan-Wigner fermions,
ck = uk(t)γk(t) − ivk(t)γ

†
−k(t), where uk(t) = cos θk(t), vk(t) = sin θk(t); the

Bogolyubov angle, θk(t), depends on the time protocol g(t) and the Hamil-
tonian is diagonalized as usual,

H(t) =
∑

k>0

Ek(t)(γ
†
k(t)γk(t) − γ−k(t)γ

†
−k(t)). (4.110)

Now, we looks for two time-dependent coefficients ak(t) and bk(t), which
unitarly relate γ̃k(t) to γk(t), through the following rotation

γ̃k(t) = ak(t)γk(t) − ibk(t)
∗γ†−k(t). (4.111)

At t = 0 this equation becomes with our boundary conditions

γ̃k(g0) = ak(t = 0)γk(gi) − ibk(t = 0)∗γ−k(gi)
†, (4.112)

which is the usual Bogolyubov rotation in the case of a sudden quench in the
QIC (see, for instance, [59]), with initial conditions, ak(t = 0) = cos ∆θk and
bk(t = 0) = sin ∆θk. We are now ready to substitute (4.110) and (4.111) in
(4.109), where we need u̇k = −vk(t)θ̇k(t) and v̇k = uk(t)θ̇k(t); after straight-
forward algebra we get two coupled first order differential equations for ak(t)
and bk(t)

iȧk = −Ek(t)ak − ib∗kθ̇k(t)

iḃ∗k = iθ̇k(t)ak + b∗kEk(t).
(4.113)

Defining qk(t) ≡ b∗k(t)

ak(t)
, it is possible to write the following differential equation

iq̇k = iθ̇k(t) + 2qkEk(t) + iq2
kθ̇k(t). (4.114)

In the following we will need the small k expansion of qk, so we solve (4.114),
expanding qk in series, qk(t) =

∑∞
n=0 cn(t)kn.
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The zeroth order solution is null

iċ0 = 2c0∆(t)

c0(t = 0) = 0,
(4.115)

because qk(t = 0) = tan ∆θk ∼k∼0
1
2
k∆0−∆i

∆0∆i
has a vanishing zero order in the

k expansion.
For the first order solution we have

iċ1(t) = − i

2∆(t)2
ġ(t) + 2∆(t)c1(t)

c1(t = 0) =
1

2
k
∆0 − ∆i

∆0∆i

.

(4.116)

Using the method of separation of arbitrary constants and taking into account
that c0(t) = 0, ∀t, we find

c1(t) = e−2i
R t
0 ∆(t′)dt′

(
c1(0) −

∫ t

0

e2i
R t′

0 ∆(t′′)dt′′

2∆(t′)2
∆̇(t′)dt′

)
(4.117)

If we now come back to the original problem, we see that (4.111) and
the ansatz γ̃k(t)|ψ(t)〉 = 0 allows us to write the state at time t = τ as a
BCS-state, similarly to what is usually done for a sudden quench in the QIC
(see for instance [46, 37, 59] or Eq. (4.4)):

|ψ(τ)〉 = exp
[
i
∑

k>0

bk(τ)
∗

ak(τ)
γ†k(τ)γ

†
−k(τ)

]
|0〉τ , (4.118)

where |0〉τ is the vacuum of the QIC at time τ and γ†k(τ), the Bogolyubov
operators diagonalizing the Hamiltonian at time t = τ . Following the same
procedure of [59], it is possible to write the characteristic function, G(u), of
the statistics of the work as

G(u) ∼
exp

(
N
∫ π

0
dp
π

log(1 + |qp(τ)|2e2iuEp(gf ))
)

exp
(
N
∫ π

0
dp
π

log(1 + |qp(τ)|2)
) (4.119)

where gf = g(t = τ).

Considering that G(u) is the Fourier transform of P (ω), and since we are
interested in the low energy behaviour of P (ω), it is sufficient to compute
G(u) for large values of u. In the limit Ju ≫ 1 we can use a stationary
phase argument and consider only the small p contribution of |qp(τ)|2 to the
integrals in Eq. (4.119). The small p expansion of |qp(τ)|2 can be straight-
forwardly computed from Eq. (4.117). This computation differs from the
sudden quench case [59] only in the expression of qp(τ); while in the latter
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qp(τ) is time-independent, in this case it is a complicated expression de-
pending on the details of the protocol. On the other hand, the square-root
singularity at 2∆f is left unchanged. Apart from this important difference,
the computation of P (ω) follows a standard procedure, see for instance [59].
We mention that a similar technique has been developed in [60] to compute
the statistics of the work done by globally changing in time the mass in
a free bosonic field theory with relativistic dispersion and for generic time
variations of the transverse field in a Quantum Ising Chain.

74



Chapter 5

Pre-Thermalization in a

Non-Integrable Spin Chain

In the previous chapter we have shown that pre-thermalization can emerge
in a simple quantum many body system when the combined effect of a time-
dependent noise and an integrable quantum quench are considered.

Making progress in the original framework where pre-thermalization has
been introduced, i.e. closed non-integrable quantum many body systems
is not a trivial task. By definition it is impossible to solve a non-integrable
system, hence in order to deepen our physical insight into pre-thermalization,
it could be useful to resort to some non-perturbative techniques which allow
to study -under certain approximations- the out-of-equilibrium dynamics of
a closed system, at least up to time scales where pre-thermal effects may
emerge.

In [8], we introduce a simple, prototypical model for studying thermaliza-
tion and pre-thermalization: a quantum Ising chain (QIC) perturbed away
from integrability by a long-range spin-spin interaction. Even if many of
the conservation laws of the QIC are violated by this long-range interac-
tion, we show that the model maps into one of hard-core bosons hopping
on a lattice. Within the latter, pre-thermalization occurs naturally for small
quenches: as long as the quasi-particle density remains sufficiently low, the
hard-core constraint is not effective and the model can be solved numerically
up to quite a large size, distinctively showing pre-thermal plateaux in the
dynamics of physically relevant observables. The associated quasi-stationary
values are typically approached algebraically in time. At longer times, the
hard-core constraint generates inelastic scattering processes, which, leading
the dynamics away from this substantially integrable scenario, are expected
to cause the asymptotic thermalization of the system. In order to study the
late dynamics of the model, where the above mentioned effective low density
description breaks down, we resort to a diagrammatic study of the quench
dynamics. We disregard tadpoles diagrams, which are expected to give just a
renormalization of the free theory (as shown by Cardy in [71]), and we focus
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on the effects of the sunset diagrams on the non-equilibrium dynamics of the
system. We first study their contribution to the life-time of a quasi-particle
injected by the initial quench at the perturbative level and then we show
how the inelastic processes described by the sunsets are necessary in order to
have thermalization in this model. Within this diagrammatic approach, the
expected long-time behavior of the model is investigated via a self-consistent
re-summation of self-energy diagrams.

5.1 The model

We consider the effect of an integrability-breaking perturbation on the dy-
namics of the QIC,

H0(g) = −
N∑

i=1

(σx
i σ

x
i+1 + gσz

i ), (5.1)

where σ(x,y,z) are Pauli matrices, N is the total number of spins, and g the
strength of the transverse field. This model, which undergoes a prototypical
quantum phase transition between a paramagnetic (g > 1) and a ferromag-
netic (g < 1) phase, has been extensively studied both in and out of equi-
librium, taking advantage of its integrability as we discussed in Section 2.5.
After a Jordan-Wigner transformation followed by a Bogolyubov rotation,

H0 becomes H0 =
∑

k>0 ǫkψ
†
kσ

zψk in terms of spinors ψk ≡
( γk

γ†
−k

)
where γk

are fermionic operators, and ǫk ≡
√

1 + g2 − 2g cos k is the energy of the
quasi-particles. The dynamics after a quench of the transverse field g0 → g
has been thoroughly investigated both numerically and analytically as we
discussed in the previous chapters.

Focusing for simplicity on quenches within the same phase (say g0, g >
1), the integrability of H0 makes the dynamics trivial in the quasi-particle
representation: the ground state |0〉g0 of H0(g0), in fact, can be represented

as a BCS state |0〉g0 ∝ exp{−∑k Bg0→g(k)b
†
k}|0〉g, in terms of the ground

state |0〉g of H0(g) and of the pair operators b†k = γ†kγ
†
−k of its quasi-particles

γk, as we discussed in the introductory paragraphs. The initial distribution of
these zero-momentum fermionic pairs, determined by Bg0→g is not modified
by the time evolution and therefore it affects the asymptotic values of local
observables, described consequently by a GGE.

The peculiar structure of the initial state and of the subsequent dynamics
is generically spoiled by breaking the integrability of the model, which is
expected to cause scattering not only of pairs, but also of individual quasi-
particle modes γk; as a consequence, the energy initially injected into the
system gets redistributed among the various modes, eventually leading to
thermalization. In order to make progress in understanding thermalization
and pre-thermalization it is particularly valuable to have at hand a simple
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enough model in which the breaking of integrability is amenable to both
analytic and numerical analysis in a controlled and physically transparent
way. Such an instance is provided by a quantum chain with Hamiltonian
H0 + V , where H0 is given by Eq.(5.1) and the interaction

V =
λ

N

(∑

i

σz
i

)2

(5.2)

is proportional to the squared global transverse magnetization. Instead of
(5.2), in the following we are going to study H0 perturbed by

V =
λ

N
(Mz −Mz)

2, (5.3)

where Mz =
∑

i σ
z
i is the global transverse magnetization and Mz its long-

time temporal average (as an operator) in the absence of perturbation λ = 0.
This subtraction eliminates the constants of motion n̂k = γ†kγk present in
the definition of Mz (see Eq.(5.6) below) and is made in order to recover the
cluster property of transverse magnetization’s expectations in the long-time
limit. In order to clarify better this point, consider a quenched (g0 → g)
QIC (λ = 0) and let us compute the two-times correlation function of Mz.
In the long-time limit, the stationary properties of the connected correlation
function are not recovered, since

lim
t→∞

(
〈Mz(t+ τ)Mz(t)〉 − 〈Mz(t+ τ)〉〈Mz(t)〉

)
(5.4)

contains a constant term (apart from stationary oscillating terms)

C =
∑

kk′

cos 2θk cos 2θk′〈0|(γ†kγk − γ−kγ
†
−k)(γ

†
k′γk′ − γ−k′γ†−k′)|0〉+

−
∑

kk′

cos 2θk cos 2θk′〈0|(γ†kγk − γ−kγ
†
−k)|0〉〈0|(γ†k′γk′ − γ−k′γ†−k′)|0〉

(5.5)

which spoils the time clustering property (the second term in (5.5) stands
for the subtraction of the unconnected component of the stationary corre-
lation function and |0〉 is the pre-quench ground state). This constant is
of order ∼ L and it is non zero because of pre-existent correlation between
modes of opposite momenta, 〈γ†kγ†−k〉 6= 0 and 〈γ−kγk〉 6= 0, in the initial
state. This term is also present in correlation functions of local operators,
like the on-site transverse magnetization, σz

i , but in that case it is suppressed
in the the thermodynamic limit, since it is of order ∝ O( 1

L
). For this reason,

we subtract ab initio the stationary value of the global transverse magne-
tization Mz, intended as an operator, which cancels out these pathological
terms due to the global nature of the interaction. It should be stressed that
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without this subtraction the diagrammatic treatment of this model would
suffer some unpleasant pathologies, coming from the inclusion in the pertur-
bative expansion of a macroscopic number, O(L), of terms in the interaction
which are essentially integrable; for instance, they would be at the origin of
a bunch of delta singularities in the perturbative treatment of the model. To
summarize the out-of-equilibrium protocol considered, we quench H0(g0) to
H ≡ H0(g) + V at t > 0; V effectively breaks the integrability of H0(g) in
terms of its Bogolyubov fermions γk and introduces scattering among zero-

momentum pairs in the fermionic representation.

5.2 The mapping

The spin chain described by H can be conveniently mapped onto a quadratic
(yet non-diagonal) Hamiltonian of hardcore bosons, as we show here. First
of all, we take advantage of the fermionic representation of H0(g0) in order
to understand better the effect of breaking the integrability. In fact, in terms
of γk, V becomes

V =
λ

N

[∑

k>0

sin(2θk) ψ
†
kσ

yψk

]2
, (5.6)

where θk(g) is the Bogolyubov angle with tan(2θk) = (sin k)/(g − cos k).
Note that Ik = n̂k − n̂−k commutes with H0(g) for all k > 0 and therefore
{Ik}k is a set of N/2 constants of motion [44]. The eigenvalues of Ik are 0
and ±1, corresponding to states in which two quasi-particles with momenta
±k are either simultaneously present or absent, and to states in which only
one of the two is present, respectively. Accordingly, the configuration space
is split in eigensectors characterized by the string of the N/2 possible eigen-
values of {Ik}k, with dimension 2N0 , N0 being the number of 0s present in
the corresponding string. These sectors are closed under the action of two-
fermion operators such as the number operator n̂k, and the pair creation b†k
and annihilation bk operators, in terms of which H becomes

H =
∑

l,k>0

[
ǫk − (λ/N) sin2(2θk)

] (
I2
k − 1

)
+H ′,

H ′ =
∑

l,k>0

[
2βkqb

†
kbq − αkq(b

†
kb

†
q + bkbq)

]
,

(5.7)

where αkq = (λ/N)(1 − δkq) sin(2θk) sin(2θq) and βkq = ǫkδkq + αkq. The

Hamiltonian can be written as BiMijBj, where ~B = (b1, b2, . . . , b
†
1, b

†
2, . . .)

are generalized vectors and Mij is a symmetric matrix which is expressed
in terms of the matrices αi,j and βi,j appearing above. Mij contains the
whole information on the one-particle spectrum of the theory and it can be
diagonalized by numerical methods. The “b” operators commute at different
momenta and anti-commute at equal ones, except for {bk, b†k} = 1 − I2

k , and
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thus they behave almost as hard-core bosons. On the other hand, it is useful
to notice that, in a sector with Ik = ±1, both bk and b†k act as the null
operator and can be effectively expunged from H ′, leaving behind only those
corresponding to momenta q for which Iq = 0, which can be treated instead
as bona-fide hard-core bosons. Summarizing, within a sector characterized
by having N/2 −N0 unpaired quasi-particles, H describes a fully-connected
model of hard-core bosons on a lattice with N0 sites.

5.3 Prethermalization

The representation introduced in the previous section allows a consistent de-
scription of pre-thermalization and thermalization based on standard approx-
imations. Note that, although H ′ is quadratic in the pair operators, it cannot
be trivially integrated via a Jordan-Wigner transformation and/or a Bogoli-
ubov rotation, for that could not preserve the mixed (anti)commutation re-
lations. Some progress can be made, instead, by re-expressing H in terms
of bosonic operators ak with [ak, a

†
q] = δkq, via a Holstein-Primakoff trans-

formation [70] bk = (1 − a†kak)
1/2 ak, b

†
k = a†k(1 − a†kak)

1/2. Assuming a low
density of excitations (i.e., a small quench), one can expand the square roots
to lowest order bk ≃ ak, b

†
k ≃ a†k and H becomes a Hamiltonian of free bosons

(whose dynamics describes pre-thermalization), while higher-order terms in-
troduce the interactions which are expected to lead to thermalization. For
this approximation to be valid, the mean bosonic populations have to remain
small during the evolution. More precisely, b†kbk = 2a†kak−(a†kak)

2, but in the

sector of physical interest1, nk ≡ nkn−k , so considering that nkn−k = b†kbk,

we have nk ≡ 2Nk −N2
k = Nk, where Nk = a†kak. The heuristic condition of

validity for the truncation of Holstein-Primakoff transformation at the low-
est order is 〈Nk〉 ≪ 1, which implies 〈nk〉 ≪ 1. As heuristically expected,
this occurs the smaller the energy injected at t = 0 is, i.e., the smaller the
amplitude |g−g0| of the quench is and the further g is from the critical value
gc = 1. Actually, for small values of λ, this approximation turns out to be
rather accurate in a significantly wider range of parameters: for example, we
verified that the dynamics of nk=π/2 obtained from this method for λ = 0.1,
g0 = 8 and g = 1.01 agrees with the one obtained via an exact numerical
diagonalization of the fermionic model for N = 20 spins within 2% up to
time scales t ≃ 103. Beyond the time range of validity of the low-density
approximation, higher-order terms in the Holstein-Primakoff transformation
are eventually expected to make the system thermalize, analogously to what
is experimentally observed in bosons in 1D (see Fig. 5.1 and Fig. 5.2).

1Each state in the sector of physical interest can be expressed as a linear combination

of states |S(k)
n 〉, which do not contain the pair (k,−k) and |C(k)

n 〉, which contain the
pair (k,−k). The action of nk and nkn−k is the same on states given by such linear
combinations.
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Figure 5.1: Comparison between the fermionic model and the effective low-
density bosonic description (λ = 0.1, N = 20, g0 = 8, g = 3.5). The red
line (effective bosonic description) is indistinguishable from the black line
(fermionic model).
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Figure 5.2: Comparison between the fermionic model (black line) and the
effective bosonic description (red line), when the low density approximation
breaks, i.e. for quenches near to the critical point (λ = 0.1, N = 20, g0 = 8,
g = 1.5).
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Figure 5.3: Time evolution of the total number of quasi-particles Np(t) for
N = 100, g0 = 8, g = 3.5, and λ = 0.1. Np attains a quasi-stationary value
Np,qs before recurrence occurs at tR ≃ 25. We remark that for λ = 0 this
quantity would remain constant at the initial value Np(0) ≈ 1.68282. For
small enough λ, the difference Np,qs −Np(0) is proportional to λN , as is the
amplitude of the oscillations around Np,qs. The inset shows |Np(t)−Np,qs| in
double logarithmic scale and highlights the algebraic approach ∝ t−α of Np

to Np,qs; the straight line corresponds to α = 3.
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The main advantage of the mapping is that the diagonalization of H
within each sector is of polynomial complexity. Although the total number
of sectors grows exponentially with N , as long as one can restrict the analysis
to just a few of them, a numerical approach becomes effective for quite large
systems, and this is generically the case for our choice: the initial state
|0〉g0 , in fact, contains all possible pairs of Ising quasi-particles with opposite
momenta such that Ik = 0, ∀ k, and therefore N0 = N/2. Before going
on with our analysis, it should be stressed that the usual diagonalization
method, which consists in replacing bk with some new degrees of freedom
dk, related by a linear transformation (summation over repeated indices is
understood)

bk = Akqdq +Bkqd
†
q

b†k = A∗
kqd

†
q +B∗

kqdq

(5.8)

should be handled with care, since in order to ensure that the standard com-
mutation relation [dk, d

†
q] = 1 holds, the transformation must be simplectic

which requires the use of Williamson theorem.2 [73]
The evolution of any quantity which does not connect this particular sec-

tor with the others can be therefore computed quite easily. In particular, the
operators nk, bk and b†k can be expressed as sums of terms oscillating in time
with frequencies |En − Em| and En + Em (referred to as ”slow” and ”fast”,
respectively), where {En}n is the bosonic single-particle spectrum. For small
λ the spectrum of H0 is weakly perturbed, thus we can substitute En with
the energy 2ǫn, of a pair of quasi-particles; this implies that the slow frequen-
cies range approximately from 0 to 4, whereas the fast ones from 4(g− 1) to
4(g + 1), which justifies this notion for g > 2. Our numerical analysis shows
that the fermion numbers 〈n̂k〉 — which are also equal to the numbers of
pairs if Ik = 0 — display weak relaxation of the fast modes. It is therefore
more convenient to study, instead, an observable such as the total number of
quasi-particles Np(t) =

∑
k>0〈n̂k(t)〉 which displays a marked plateau as in

Fig. 5.3, as a consequence of an application of the stationary phase approx-
imation in the long time limit. The time evolution of this quantity can be
determined, recalling that nk ≡ 2Nk −N2

k and using the low density approxi-
mation, which allow to express 〈nk(t)〉 ≃ 〈a†k(t)ak(t)〉 ≃ 〈b†k(t)bk(t)〉, in terms

2
Williamson theorem. If V is a 2N dimensional real matrix, symmetric and positive

definite, then there exists a matrix S ∈ Sp(2N, R) which diagonalizes V : ST V S = D2 ≡
(d1, ..., dN , d1, ..., dN ) > 0. The proof shows how to explicitly construct S. First of all,

define M ≡ V −1/2JV −1/2, with J =
(

0 1N

−1N 0

)
, then it is possible to find a matrix

R ∈ O(2N, R) such that RT MR =
(

0 Ω
−Ω 0

)
, with Ω diagonal and positive; the matrix

S, diagonalizing V , is given by S ≡ V −1/2RD (for further details see the complete proof
of the theorem in [73]). Using S, it was possible to diagonalize numerically the effective
bosonic hamiltonian discussed in this Section.
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of the bosons. The expectation value of 〈b†k(t)bk(t)〉 can be easily expressed
in terms of the bosonic degrees of freedom, which diagonalize the theory

〈b†k(t)bk(t)〉 =
∑

q1q2

{A∗
kq1
Akq2〈d†q1

dq2〉ei(Eq1−Eq2 )t+

+ A∗
kq1
Bkq2〈d†q1

d†q2
〉ei(Eq1+Eq2 )t +B∗

kq1
Akq2〈dq1dq2〉e−i(Eq1+Eq2 )t+

+B∗
kq1
Bkq2〈dq1d

†
q2
〉ei(Eq2−Eq1 )t}

(5.9)

As mentioned above, however, the dynamics of observables such as Np is
characterized by a finite collection of frequencies; at any finite size N , the
system can count at most on the 2N2 different frequencies mentioned above
for the dynamics of quadratic operators. Consequently, its behavior is bound
to display quasi-periodic features. Furthermore, a destructive interference,
such as the one which brings forth the quasi-stationary behavior we have
found, cannot last forever. There must be a time at which the oscillations
amplitudes start growing again. We have called it recurrence time, tR, since
it is intimately related to the quasi-periodic nature of the system. Thus,
the destructive interference required to give rise to a plateau (such as the
one in Fig. 5.3) cannot last indefinitely at any finite size N and, in fact,
we have verified that oscillations start to grow again after a recurrence time
tR ≈ N/4, as can be see in Fig. 5.4.

The formalism developed here is therefore able to capture the relaxation
of Np towards a pre-thermal quasi-stationary state which, up to quantum
oscillations, is approached as ∝ t−α with α ≃ 3 (see the inset of Fig. 5.3).
This same algebraic relaxation has also been observed in the average of the
unperturbed hamiltonian 〈H0〉 and is actually expected to characterize ev-
ery generic observable which can be expressed as linear combinations of the
fermion numbers 〈n̂k〉 or of the number of pairs — with possible exceptions
depending on specific choices of the coefficients of these combinations. Fur-
thermore, it is independent of the specific values of N and λ, provided that
the former is large enough and the latter small enough. Finally, we have
been able to check that the amplitude of the oscillations grow as λN , as it
is shown in Fig. 5.4.

5.4 Diagrammatic approach

At long times higher-order terms will allow the redistribution of energy
among the degrees of freedom of this system leading to full thermalization. As
stated above, inelastic effects cannot be disregarded anymore in this regime,
which therefore cannot be captured by our numerical approach. Hence, in
this Section we switch to a complementary study of the mechanism leading
to relaxation and eventually to thermalization in the late dynamics of this
model. In order to see this it is convenient first to study pre-thermalization
within a diagrammatic, perturbative approach at the second order in λ. For
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Figure 5.4: This picture shows different plots of Np(t)/N for different sizes
of the system N = 60, 80, 90, 120 (g0 = 9, g = 4, λ = 0.1). The collapse of
the various curves for different values of N shows that oscillations are of the
order λN . A similar plot (not shown here) for fixed N and different values of
λ corroborates this fact. At longer times oscillations start again signaling the
recurrent nature of the dynamics at finite size; this recurrence time appears
earlier for smaller N .

84



CHAPTER 5. PRE-THERMALIZATION IN A NON-INTEGRABLE

SPIN CHAIN

Figure 5.5: The sunset diagram at the perturbative level (upper figure) and
in the self-consistent approximation (lower figure), see Section 5.5.

this purpose, we employ the Dyson equation for the Green function ordered
on the Keldysh contour [62]. In [71] a composite quench of mass and inter-
action in a φ4 model has been studied within a self-consistent diagrammatic
approach, which included only the tadpoles diagrams. Using this approxima-
tion the authors of [71] fond that the two point correlation function long after
the quench is of the same form as the free correlation function but with a
different renormalized mass that has to be determined self-consistently. This
means that nothing really changes in terms of the relaxation of the system,
since tadpoles ignore the effect of collisions between quasiparticles with dif-
ferent momenta that can induce a mixing of the different modes and possibly
thermalization. So in the remaining part of this Chapter we are going to
consider the first non-trivial diagram which can redistribute energy among
the elementary degrees of freedom of the model, i.e. the sunset diagram, and
in order to focus on its effects on the relaxation dynamics of the model, we
are going to assume that the self-energy is only due to sunsets (see 5.5).

Among the quantities one can study within this diagrammatic approach,
the simplest is the distribution of the quasi-stationary populations

nk = lim
T→∞

1

T

∫ T

0

dt〈n̂k(t)〉 =

∫ ∞

−∞

dω

2π
Fk(ω)Ak(ω), (5.10)

expressed in terms of the spectral density Ak(ω) and of the statistical func-
tion Fk(ω), where the limit is intended to hold up to the time scales of
validity of perturbation theory. For a quenched QIC (λ = 0, g 6= g0),
Ak(ω) = 2πiδ(ω − ǫk) whereas Fk corresponds to a Fermi-Dirac distribu-
tion function fGGE,k(ω) ≡ (eβkω +1)−1 for the GGE, with a mode-dependent
inverse temperature βk = 2 th−1(cos ∆θk)/ǫk, where ∆θk = 2[θk(g) − θk(g0)].
This clearly highlights the role of integrability: the absence of inelastic pro-
cesses prevents the QIC from redistributing the energy among the quasi-
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particles, and therefore thermalization as a whole.

In order to compute quantities like (5.10), we write down the Dyson
equation for the statistical Green function on the Keldysh contour (see [62]
or the Appendix)

Gc = −i〈Tcψki(τ)ψ
†
kj(τ

′)〉, (5.11)

where Tc is the time ordering operator on the Keldysh contour, τ and i and j

are indices in the Nambu space and ψ̂k is the Nambu spinor
( γk

γ†
−k

)
; we define

the lesser Green function as

G<(t, t′) =
[
G<

k (t, t′)
]

i,j
= i〈ψ†

k,j(t
′)ψk,i(t)〉, (5.12)

which is a matrix in the Nambu space (here t and t′ are real times).
For the unperturbed problem (λ = 0), the lesser Green’s function is

G<
0 (t, t′) =

(
sin2(∆θk)e

−iǫkτ i sin(2∆θk)
2

e−iǫkT

−i sin(2∆θk)
2

eiǫkT cos2(∆θk)e
iǫkτ

)
(5.13)

where τ = t − t′ and T = t+t′

2
. Using the standard approach [62], we first

write the equation for the statistical Green function with the self energy
computed at the perturbative level, i.e. replacing the full Green’s functions
by the unperturbed ones (see Fig. 5.6)

Gc
τ,τ ′ = Gc

0τ,τ ′
+Gc

0τ,τ ′′
⊗ Σc

0τ ′′,τ ′′′
⊗Gc

τ ′′′,τ ′ (5.14)

where Gc
0τ,τ ′

is the unperturbed Green function and Σc
0τ ′′,τ ′′′

is the self energy

evaluated at the second order in perturbation theory and including only the
sunset diagram; in right hand side the symbol ⊗ is understood as a convolu-
tion product, all the quantities are evaluated along the Keldysh contour.

The analytic expression for the self-energy is

Σk
t1,t2

= λ2σ̃zG
c
k(t1, t2)σ̃zΠ(t1, t2),

Π(t1, t2) =
∑

p>0

tr
{
Gc

p(t1, t2)σzG
c
p(t2, t1)σz

}
,

σ̃z = cos 2θkσz + sin 2θkσy.

(5.15)

It is easy to show that the lesser component of Π>
0 (t1, t2) (i.e. Π>(t1, t2) at the

perturbative level) is the two-times correlation function of the global trans-
verse magnetization of the QIC after a quench of the transverse field. Hence,
roughly speaking, the out-of-equilibrium dynamics of the model is initiated
by the out-of-equilibrium fluctuations of the global transverse magnetization
after a quench of the transverse field. Moreover, from (5.15) it should be easy
to realize that the system acts as its own bath: a single excitation carrying
momentum k, represented by the Green’s function Gk(t1, t2), can effectively

86



CHAPTER 5. PRE-THERMALIZATION IN A NON-INTEGRABLE

SPIN CHAIN

Figure 5.6: The perturbative Dyson equation at the second order in pertur-
bation theory. Full lines stand for the dressed Green’s function, while single
lines are the unperturbed ones.

Figure 5.7: The vertex contributing to the sunset diagram of Fig. 5.5; each
line conserves separately momentum.

exchange energy with the whole set of fermionic modes and this feature is en-
coded mathematically in Π(t1, t2). From Eq.(5.15) we can have even a more
clear insight into the collision processes responsible for relaxation; because
of the peculiar nature of the interaction, vertexes exchange only energy but
not momentum: momentum is super-conserved in each vertex, in the sense
that each line conserves separately momentum, as Fig. 5.7 should clarify.

When V is turned on, we expect that the single quasi-particle peak,
δ(ω − ǫk), in the spectral density, Ak will broaden into a Lorentzian with
a frequency-dependent inverse life time

Γk(ω) =
2λ2

N2
sin2(2θk)×

×
[
fGGE,k(ǫk)Π

>(ω + ǫk) + fGGE,k(−ǫk)Π>(−ω − ǫk)
]
.

(5.16)

which can be computed solving in second-order perturbation theory the re-
tarder Dyson equation. Π>(ω), calculated in second-order perturbation the-
ory, describes effective absorption and emission of a pair of fermions γk:
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Figure 5.8: The emission component of Π>(w) for g0 = 2, g = 3.
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Figure 5.9: The absorption component of Π>(w) for g0 = 2, g = 3.

Π>(ω) =
∑

k>0

sin2 2θk

(
δ(ω− 2ǫk)fGGE,k

(
− ω

2

)2

+ δ(ω+2ǫk)fGGE,k

(
− ω

2

)2)
.

(5.17)
The absorption processes occur for ω ∈ [2(g − 1), 2(g + 1)] (see 5.8), while
emission has support in [−2(g + 1),−2(g − 1)] (see 5.9), respectively; this is
easy to understand since the unperturbed spectrum ǫk of each fermion ranges
from g − 1 to g + 1.

Γk(ω) quantifies the spreading of the Ising quasi-particles over the new
interacting eigenmodes; close to the pronounced peak at ω = ǫk (energy
level shifts are disregarded here), Γk determines the effective width of the
Lorentzian, given by

Γk(ǫk) =
λ2

4Ng
sin3(2θk)fGGE,k(ǫk)fGGE,k(−ǫk). (5.18)

Analogously, the statistical distribution function Fk gets a correction to
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Figure 5.10: Distribution functions in the pre-thermal stage of dynamics,
with k = π/10, g0 = 2, and g = 3. The red dotted line corresponds to
the GGE distribution fk=π/10(ω) for λ = 0, while the blue solid line is the
corresponding distribution function Fk=π/10(ω) for λ 6= 0.

the aforementioned GGE distribution function fGGE,k(ω),

Fk(ω) = fGGE,k(ω) +
λ2

N2
sin2(2θk)×

× fGGE,k(−ǫk)fGGE,k(−ω)Π>(−ω − ǫk) − fGGE,k(ǫk)fGGE,k(ω)Π>(ω + ǫk)

2Γk(ω)
,

(5.19)

which is actually independent of λ [see Eq.(5.16)]. This computation can
be done solving at the perturbative level the Dyson equation for the lesser
Green’s function (this is the so called Keldysh equation, see Appendix for
more details). This distribution function is neither thermal nor GGE-like
[see Eq.(5.19)] and causes perturbative corrections — characteristic of a pre-

thermal state — to appear in the occupation number fk, upon integrating
Eq.(5.10) (see Fig. 5.10). The apparent puzzle of a perturbative correction
to observables, despite a pre-thermal distribution function independent of λ,
is resolved by realizing that Fk = fk for ω = ǫk, hence the first non-zero
correction is proportional to λ2/N .

Even if the sunset contribution to the pre-thermal plateau in Fig. 5.3
describes just higher order corrections, we expect it will be crucial at longer
times in order to capture full thermalization, since the sunset is the first dia-
gram contributing to the imaginary part of the self energy, which is necessary
in order to have relaxation and eventually thermalization.

5.5 Thermalization

First of all, we rewrite the Dyson equation in the form of the celebrated
Kadanov-Baym equation (disregarding terms which describe renormalization
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effects see [62])

i∂TG
<
k − [H0, G

<
k ] =

1

2
({Σ>

k , G
<
k } − {G>

k ,Σ
<
k }) (5.20)

where the products in the right hand side are intended as convolution prod-
ucts. Our aim in this section is to show that the thermal distribution is
the unique solution of this equation when the broadening which accounts for
inelastic scattering is taken into account. In order to do so, we shall assume
that G<

k is diagonal and that the matricial structure of G<
k is all encoded in

the spectral density, in the following way

G<
k (ω) = iFk(ω)Ak(ω) (5.21)

where Fk(ω) is the stationary distribution function attained in the long time
limit and Ak(ω) is a diagonal matrix whose entries are Lorentzian with a
frequency ω and wave-vector k dependent life-time Γk(ω). The diagonal ap-

proximation is valid in limit
λ2

N

∆
≪ 1, beacause the off-diagonal elements are

of order O(
λ4

N2

∆2 ), as we are going to show in the following.

Let us start with the more general form of the retarded self-energy

ΣR
k (ω) ≡

( −iΓk(ω) Nk(ω)
Nk(−ω)∗ − iΓk(−ω)

)
(5.22)

where we neglected the real part of the self energy since it is expected to shift
only the unperturbed eigenvalues and Nk(ω) are the off-diagonal matrix ele-
ments, which we would like to neglect in the small interaction limit.

Introducing an effective hamiltonian, ω − Heff ≡ (GR
0 )−1 − ΣR, and di-

agonalizing ω −Heff , we get for the eigenvalues

λeff =
2ω + i(Γk(ω) + Γk(−ω))

2
±
√(−2ǫk + i(Γk(ω) − Γk(−ω))

2

)2

+ I

(5.23)
where I ≡ Nk(ω)Nk(−ω)∗ and from which it is clear that, since Γk(ω), Nk(ω)
are of order ∼ λ2

N
, the second term in square root is subleading with respect

to the first one provided that
λ2

N

∆
≪ 1, where ∆ is the gap of the unperturbed

QIC.

Within the diagonal approximation, [H0, G
<
k ] = 0, since also H0 is di-

agonal, and the right hand side of the Kadanov-Baym is just given by the
so-called collision kernel. Recalling the expression for the self-energy (Eq.
(5.15)), and assuming it is given only by the dressed sunset diagrams (see
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Fig. 5.5), we find that

Σ<
k (ω) =

λ2

N2

∫
dω′dω′′

(2π)2
σ̃z

kG
<
k (ω − ω′ − ω′′)σ̃z

kΠ
<(ω′, ω′′)

Σ>
k (ω) =

λ2

N2

∫
dω′dω′′

(2π)2
σ̃z

kG
>
k (ω − ω′ − ω′′)σ̃z

kΠ
>(ω′, ω′′)

Π<(ω′, ω′′) =
∑

q

Tr{σ̃q
kG

<
q (ω′)σ̃q

kG
>
q (−ω′′)}

Π>(ω′, ω′′) =
∑

q

Tr{σ̃q
kG

>
q (ω′)σ̃q

kG
<
q (−ω′′)}.

(5.24)

Substituting these expressions in (5.20), we find for the collision kernel

{Σ>
k , G

<
k } − {G>

k ,Σ
<
k } =∫

dω′dω′′

(2π)2

∑

q

[
Fk(ω)Fk(−ω + ω′ + ω′′)Fq(−ω′)Fq(−ω′′)−

+Fk(−ω)Fk(ω − ω′ − ω′′)Fq(ω
′)Fq(ω

′′)
]
Dkq(ω, ω

′, ω′′),

(5.25)

where

Dkq(ω, ω
′, ω′′) = 2Tr{σ̃z

qAq(ω
′)σ̃z

qAq(−ω′′)}(σ̃z
kAk(ω − ω′ − ω′′)σ̃z

k)1,1Ak(ω)1,1

]
.

(5.26)

This expression for the collision kernel, even if quite involved is the core
of this Section. First of all, with a straightforward calculation it is easy to
show that if Ak(ω)(1,1) ∝ δ(ω − ǫk) (and Ak(ω)(2,2) ∝ δ(ω + ǫk)), then the
collision kernel identically vanishes for each fk(ω) satisfying the basic sym-
metries of the theory. When a broadening (Γk 6= 0) is generated by the the
inelastic collisions, the quantity in square bracket in Eq. (5.25) is zero only
for Fk(ω) = 1

eβω+1
, i.e. the Boltzmann distribution function. β is the inverse

temperature and it can be in principle determined by imposing the conser-
vation of energy during the time evolution 〈H〉 = Tr[ρthermal(β)H)].

Notice that a distribution function with frequency-dependent inverse tem-
perature βk, like the GGE distribution function, would not make the collision

kernel vanish, corroborating the idea that in the long-time limit the system
would reach a fully thermalized state. An approximate expression for the
broadening Γk(ω) can be determined solving self-consistently the retarded
Dyson equation; it is a long and cumbersome computation that will be re-
ported in an extended version [72] of [8]. We are currently carrying on a study
on the stability of the thermal solution, perturbing the thermal state with
a small displacement δfk(ω, T ) in order to have some conclusive statement
about the thermalization of this model.
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Chapter 6

Conclusions and future

perspectives

In this PhD Thesis we focused on Pre-Thermalization, an important topic
in the domain of non-equilibrium quantum many body physics. The appear-
ance of long-lived non-equilibrium quasi-steady states has been observed in
2011 in the coherent split of 1D Bose gases and their theoretical explanation
in terms of an effective integrable theory describing the intermediate states
of dynamics has been suggested in the same year (see Chapter 3). Despite
the few numerical and analytical cases studied, the problem is of paramount
importance, because it is a novel feature of quantum non-equilibrium dynam-
ics, the first step to understand how to solve the puzzle of thermalization in
a quantum many body system (see Chapter 2). For this reason, we decided
to study extensively pre-thermalization in the out-of-equilibrium dynamics
of a QIC perturbed by time dependent and time independent interactions,
benefiting of the full control achieved in the past years on quench dynamics
of the QIC, which is also the simplest exactly solvable model in condensed
matter physics. Our aim was two-fold: first, to generalize the notion of pre-
thermalization to open noisy quantum many body systems, and secondly, to
deepen our physical intuition of the mechanism governing pre-thermalization
and thermalization in closed non-integrable quantum many body systems,
which is the usual framework where these concepts have been developed first.

In Chapter 4 we showed as a QIC perturbed by a time dependent noise
displays pre-thermalization plateaux in a broad class of physically relevant
observables. We considered the combined effect of the noise and the usual
quench of the transverse field and we realized that noise and quench af-
fect differently populations and coherences of the underlying Bogolyubov
fermions, which diagonalize the Ising Chain. In particular, while coherences
are damped for intermediate time scales by the usual dephasing mechanism
peculiar of a quenched integrable model, at late times, when noise is rele-
vant, this first slow algebraic dephasing is suppressed in an exponential way,
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and at the same time populations start heating, leading the system towards
the final thermal state. This system is amenable to analytic computations
within the Keldysh technique, hence it could be very interesting to test in
this framework many tantalizing modern issues in the domain of quantum
quenches. The noise considered in our work is homogeneous in space; in order
to make progress in the analytical study of pre-thermalization in quantum
many body systems, an interesting generalization could consist in consider-
ing a lattice-site dependent noise, which closely resemble what happens in
the integrability breaking of a quantum spin chain, where the perturbation
in general affects in a different way each single site. It is conceivable to think
that pre-thermal plateaux will occur as well in this case, since they are es-
sentially determined by the underlying integrable model, while we expect a
different scenario for the departure from the pre-thermal state and the ap-
proach towards the new asymptotic steady state, attained in such a system.
Another possibility could be to study how fluctuation-dissipation relations
set up in a quenched system. While it is widely known that a system at
equilibrium satisfy the fluctuation-dissipation theorem, it is not clear how
these relations establish starting from a quantum out-of-equilibrium state.
A first step in this direction has been made the last year by F. Essler and
collaborators [76], showing that the GGE attained in the long-time dynam-
ics satisfy a generalized version of the fluctuation-dissipation relations with
the usual mode-dependent temperature, replacing the canonical temperature
of the canonical thermal state. In the noisy QIC it is possible to compute
unequal times correlation functions which are the essential tool to explore
such a problem and which could be extremely useful in order to approach
the tantalizing problem of universality out-of-equilibrium.

In Chapter 5 we considered a non-integrable version of the QIC subject
to a composite quench of mass and interactions. Using a mapping into an
effective bosonic theory valid in the limit of small quenches, we showed the
appearance of a pre-thermal behavior in a class of observables. We started to
study the interesting problem of how inelastic scattering affects thermaliza-
tion dynamics and leads to the asymptotic thermal state within a diagram-
matic approach. Focusing on the sunset diagrams, which are expected to give
the leading contribution towards thermalization, we derived some features of
the pre-thermal state, such as the effect of inelastic processes on the distribu-
tion function and on the imaginary part of the self energy, which governs the
spreading of the original eigenmodes on the new ones. The same features can
derived in a self-consistent formalism which is able to capture some properties
of the asymptotic steady state, showing that inelastic processes and a finite
life-time are essential in order to have a thermal distribution in the late time
dynamics. The approach developed in this Chapter opens many interesting
problems: first of all, the possibility to describe how and whether the system
departs from the pre-thermal state towards the thermal state using higher
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order corrections to the integrable effective bosonic description and/or the
diagrammatic framework. Another issue could consist in applying the ideas
developed in this Chapter to more experimentally relevant models, such as
out-of-equilibrium perturbations of the Luttinger Liquid model (see for a first
attempt in this direction the paper by Tavora and Mitra [75]).

A comprehensive understanding of pre-thermalization in quenched quan-
tum systems is the key to understand the mechanism behind quantum ther-
malization. At the core of this problem, there is the unsolved question of the
existence of a RG description of quantum dynamics, i.e. whether there exists
a finite threshold of the integrability breaking strength for pre-thermalization
to disappear, and to have, instead, a smooth decay towards the thermal
state, looking at pre-thermal and thermal states as basins of attraction of
the out-of-equilibrium dynamics, potentially influenced also by the choice of
the initial state. Pre-thermalization could become also an useful source for
quantum technology, since the possibility of trapping experimentally a sys-
tem in such an a-thermal quasi-steady state could be used to explore states
of matter with completely new and undiscovered features; for instance, pre-
thermalization could be used to realize non-ergodic quantum heat engines
able to exceed the equilibrium Carnot bound (see about this topic Ref. [77]).
Finally, the surprising emergence of pre-thermalization in a broad variety
of contexts, like cosmology, heavy ions collisions, coherently splitted one di-
mensional bose gases, and all the other models discussed in this PhD Thesis,
open the intriguing question of a unified an universal description of out-of-
equilibrium dynamics embracing all the domains of Physics.

We hope this PhD Thesis helped extending our current understanding of
pre-thermalization and to open new interesting questions in this fascinating
and modern research field.
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Chapter 7

Appendix: The Keldysh

Formalism

In this Appendix we summarize the basics of the Keldysh formalism, which
is the main analytical tool used in this PhD Thesis for the computations
outlined in Chapter 4 and 5.
The exposition closely follows Jahuo’s book [62] and the review by J. Maciejko
[74], to which we refer for further details.

7.1 Contour Ordered Green Functions

Let us consider a system described by the time-independent Hamiltonian:

H = H0 +HI , (7.1)

where H0 is the free part (usually exactly solvable) and HI the time indepen-
dent interaction term. We assume that the system is in thermal equilibrium
and so it is described by the thermodynamical equilibrium density matrix:

ρ(H) =
e−βH

Tr [e−βH ]
. (7.2)

At time t0 we perturb our system by adding a time dependent Hamiltonian
H ′(t). The total Hamiltonian is then:

H(t) = H0 +HI +H ′(t) (7.3)

where the operators are intended in Heisenberg picture and obey the evolu-
tion equation:

i
d

dt
OH(t) = [OH(t),H(t)] . (7.4)

Before we switch on the perturbation, H ′(t), our system is in thermal equi-
librium. If we assume that our observation times are much smaller than the
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time scales for the evolution of the thermodynamical degrees of freedom, we
can compute thermodynamical averages with (7.2): the thermodynamics is
frozen in the initial equilibrium state, while the dynamics is sensible to the
perturbation and evolve with the full Hamiltonian (7.3), hence

〈OH(t)〉 = Tr [ρ(H)OH(t)] . (7.5)

Let us now give some proper definition for the Green’s functions. The contour
ordered Green’s function is 1:

G(1, 2) = −i〈TC

(
ψH(1)ψ†

H(2)
)
〉 (7.6)

where ψH is a Bose or Fermi field in the Heisenberg picture. C is the contour
represented in Figure (7.1) in the complex plane that starts and ends at t0
(the time at which we turn on the perturbation): it runs along the real axis
and passes through t1 and t2 once. At a first look this choice can seem weird,
but it can be justified by the following argument. In conventional equilibrium
diagrammatic theory we adiabatically switch on and off the interaction and
consequently we can assume that the state in the asymptotic past and in the
asymptotic future differs only by a phase, as follows straightforwardly from
the adiabatic theorem. Such an argument is unjustified out-of-equilibrium,
since the final state will strongly differs from the initial one, hence it is
necessary to employ the Schwinger-Keldysh contour technique, in order to
avoid any reference to the state in the asymptotic future.

The contour ordering operator, TC , orders the operators according to the
position on the contour of their time arguments: the operators with time
labels that occur later on the contour have to stand left to operators with
earlier time labels,

TC

(
ψH(1)ψ†

H(2)
)

=

{
ψH(1)ψ†

H(2) if t1>
C
t2

±ψ†
H(2)ψH(1) if t1<

C
t2 ,

(7.7)

where the upper sign holds for boson and the lower for fermions. The contour
ordered Green’s function plays an analogous role in non equilibrium theory as
the time ordered Green’s function plays in equilibrium theory: as we will show
in this section, it possesses a perturbation theory based on Wick’s theorem.
However, since the time labels lie on the contour with two branches, we must
keep track of which branch we are considering. With two time labels, which
can be located on either of the two branches of the contour, there are four
distinct possibilities. If we call C1 the branch that starts in t0 and C2 the

1We use the abbreviation 1 = (t1,x1). x denotes the spatial variable, which can be
generalized to include spin and others degrees of freedom.
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Figure 7.1: The Schwinger-Keldysh contour starting at t0, ending at t2 and
passing through t1 just once.

branch that ends in t0, these possibilities are:

G(1, 2) =





GT (1, 2) t1, t2 ∈ C1

G>(1, 2) t1 ∈ C2, t2 ∈ C1

G<(1, 2) t1 ∈ C1, t2 ∈ C2

GT̃ (1, 2) t1, t2 ∈ C2

(7.8)

Here we have introduced the time ordered Green function GT :

GT (1, 2) = −i〈T (ψH(1)ψ†
H(2))〉, (7.9)

the greater Green function G> :

G>(1, 2) = −i < ψH(1)ψ†
H(2) >, (7.10)

the lesser Green function G< :

G<(1, 2) = ∓i < ψ†
H(1)ψH(2) >, (7.11)

and the anti-time ordered Green function GT̃ :

G
eT (1, 2) = −i〈T̃ψH(1)ψ†

H(2)〉. (7.12)

Since GT + GT̃ = G< + G> there are only three linearly independent func-
tions. This freedom of choice reflects itself in the literature, where a number
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of different conventions can be found. For our purposes the most suitable
functions are the greater and the lesser function G>,< , and the advanced
and the retarded functions defined as:

GA(1, 2) =iθ(t2 − t1) < [ψH(1), ψ†
H(2)]∓ >= (7.13)

=θ(t2 − t1) [G>(1, 2) −G<(1, 2)] (7.14)

and:

GR(1, 2) =−iθ(t1 − t2) < [ψH(1), ψ†
H(2)]∓ >= (7.15)

=θ(t1 − t2) [G>(1, 2) −G<(1, 2)] (7.16)

We also note that
GR −GA = G> −G< (7.17)

which is usually an helpful relation when computations are performed in
practice.
After all these definitions, we would like to comment on the physical mean-
ing of all these Green’s functions. Like in equilibrium, the retarded and the
advanced Green’s functions contain information about spectral properties
of the system, like the shift or the broadening of energy levels, while the
lesser and the greater Green’s functions usually enter in the computation of
observables like the occupation number of Ising quasiparticles or the corre-
lation functions of spins after a quench, just to mention some quantities we
computed in this PhD Thesis.

We now prove one of the main statement of this Appendix, i.e. the
perturbative expansion of the contour ordered Green function.
The first step is to switch from the Heisenberg to the interaction picture with
respect to H. We know that, for any operator

OH(t) = u†(t, t0)OH(t)u(t, t0), (7.18)

where

u(t, t0) = T exp

[
−i
∫ t

t0

dt′H ′
H(t′)

]
(7.19)

and H ′
H(t) represents the operator H ′(t) in the interaction picture with re-

spect to H. We can obviously re-express (7.18) as:

OH(t) = TCt

[
exp

[
−i
∫

Ct

dτH ′
H(τ)

]
OH(t)

]
, (7.20)

where the contour Ct runs from t0 to t and than back gain to t0.
Using this transformation we can write the contour ordered Green func-

tion in the interaction picture with respect to H as:

G(1, 2) = −i < TC

(
SH

C ψH(1)ψ†
H(2)

)
> (7.21)
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where:

SH
C = exp

[
−i
∫

C

dτH ′
H(τ)

]
. (7.22)

Since we would like to employ Wick’s theorem, we must transform to the
interaction picture with respect to the free-particle Hamiltonian H0, which
is quadratic in the field operators. Using the relation

exp(−βH) = exp(−βH0)v(t0 − iβ, t0), (7.23)

where

v(t, t0) = T exp

[
−i
∫ t

t0

dt′HI
H0

(t′)

]
(7.24)

with HI
H0

(t) being the operator HI in the interaction picture with respect to
the Hamiltonian H0, we finally obtain:

G(1, 2) = −i
T r
{
ρ0TCv

[
SI

Cv
S ′

CψH0(1)ψ†
H0

(2)
]}

Tr
{
ρ0TCv

[
SI

Cv
S ′

C

]} , (7.25)

where ρ0 is the free particle density matrix:

ρ0 =
e−βH0

Tr [e−βH0 ]
(7.26)

and:

S ′
C = exp

[
−i
∫

C

dτH ′
H0

(τ)

]
, (7.27)

SI
Cv

= exp

[
−i
∫

Cv

dτHI
H0

(τ)

]
. (7.28)

The contour Cv is shown in figure (7.2).
In equation (7.25) we can use Wick’s theorem to get a perturbative ex-

pansion for G. As in the equilibrium case, the denominator cancels the
contribution arising from the disconnected diagrams. The equilibrium and
the non equilibrium theory are structurally equivalent: the only difference is
the replacement of the real axis integrals by contour integrals. A simplifica-
tion occurs if we can set t0 → −∞. In fact, in this way the contribution from
the [t0, t0 − iβ] piece vanishes and the contour C and Cv are now identical:
they both start and end at −∞. It has been shown (see [62]) that discarding
this part of the contour corresponds to neglect initial correlations. It appears
plausible that in many physical situations, for example in the long time limit
after a quench, when the thermal state is approached, the initial correlations
have been washed out by the interactions.
From now on we will consider the limit t0 → −∞, and so we will use the
Keldysh contour represented in figure 7.3.
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Figure 7.2: The contour Cv

Figure 7.3: The Keldysh contour usually employed for an out-of-equilibrium
diagrammatic expansion.
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Figure 7.4: t1 is on the first branch of K while t2 is on the second one.

7.2 Langreth Theorem

The contour ordered Green’s functions are the building block of the theory,
since they possess a perturbative expansion in Feynman diagrams. However,
studying this expansion we will face time integral on the Keldysh contour K
(fig. 7.3) and we prefer to avoid integral in the complex plain. In this section
we will study an analytic continuation technique, the Langreth Theorem, that
will allow us to convert all the integral in the complex plane in integral on the
real axis. In doing so, we will have to convert the contour ordered Green’s
functions in the retarded, advanced and lesser ones: instead to calculate one
Green’s function we will have to calculate three of them.
Studying the perturbative expansion of the contour ordered Green’s function
we will face terms like

C(t1, t2) =

∫

K
dτA(t1, τ)B(τ, t2) (7.29)

and their generalizations. Now, for definiteness let us assume that t1 is on
the first branch of C and t2 is on the second one: we are thus analyzing a
lesser function (fig. 7.4).

Now, since we can deform the contour as we prefer. So we deform it as
in figure (7.5). Thus (7.29) becomes:

C<(t1, t2) =

∫

K1

dτA(t1, τ) B(τ, t2) +

∫

K2

dτA(t1, τ) B(τ, t2) (7.30)
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Figure 7.5: The deformation of the contour. K1 is the upper half, while K2

is the the lower half.

We notice that, as long as the integration variable τ is confined in the contour
K1, it is less (on the contour) than t2 and so B(τ, t2) = B<(τ, t2). In the
same way, when τ is on K2, t1 is greater than τ , so A(t1, τ) = A>(t1, τ). So,
we can rewrite (7.30) as:

C<(t1, t2) =

∫

K1

dτA(t1, τ)B
<(τ, t2) +

∫

K2

dτA<(t1, τ)B(τ, t2). (7.31)

Now, let us consider the first term of (7.31) :

∫

K1

dτA(t1, τ)B
<(τ, t2) =

=

∫ t1

−∞
dtA(t1, t)B

<(t, t2) +

∫ −∞

t1

dtA(t1, t)B
<(t, t2) =

=

∫ t1

−∞
dtA>(t1, t)B

<(t, t2) +

∫ −∞

t1

dtA<(t1, t)B
<(t, t2) =

=

∫ +∞

−∞
dtAR(t1, t)B

<(t, t2). (7.32)

In the last line we used the definition of retarded function (7.16). A similar
analysis can be applied to the second term involving contour K2, where the
advanced Green’s function appears. Putting the two terms together we have
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the first of the Langreth’s results:

C<(t1, t2) =

∫ +∞

−∞
dt
[
AR(t1, t)B

<(t, t2) + A<(t1, t)B
A(t, t2)

]
. (7.33)

The same results applies for the greater function: we have only to replace
all <’ with >’s. This result can also be straightforwardly generalized to the
integral of three functions (see Table below).
Often we need to evaluate the retarded or the advanced component of a
structure like (7.29). This can be done using the rules for the greater and
lesser functions we have just proved. So:

CR(t1, t2) = θ(t1 − t2) [C>(t1, t2) − C<(t1, t2)] =

= θ(t1 − t2)

∫ +∞

−∞
dt
{[
ARB> + A>BA

]
−
[
ARB< + A<BA

]}
=

= θ(t1 − t2)
[ ∫ t1

−∞
dt (A> − A<) (B> −B<) +

+

∫ t2

−∞
dt (A> − A<) (B< −B>))

]
=

=

∫ t1

t2

dtAR(t1 t)B
R(t, t2) (7.34)

We will not prove all the analytic continuation rules of the Langreth theorem
(their proofs are very similar to the previous one), we merely state them in
the following table.

Contour Real Axis

C=
∫
Ka
AB C< =

∫
[ARB< + A<BA]

CR =
∫
ARBR

D=
∫
Ka
ABC D< =

∫
ARBRC< + ARB<CA + A<BACA

DR =
∫
ARBRCR

C(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) C<(t, t′) = A<(t, t′)B<(t, t′)
CR(t, t′) = A<BR + ARB< + ARBR

D(τ, τ ′) = A(τ, τ ′)B(τ ′, τ) D<(t, t′) = A<(t, t′)B>(t′, t)
DR(t, t′) = A<BA + ARB<

Rules for greater Green function are equal to rules for the lesser one with all
<’s replaced with >’s and vice versa.
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7.3 Kinetic Equations

In this Section, we want to write the analogous of the Dyson equation for the
two-points out-of-equilibrium Green’s functions. Since the non-equilibrium
theory is structurally equivalent to the equilibrium one, we know that for
the contour ordered Green’s function holds the same Dyson equation that
holds for two- points equilibrium time ordered Green function, with contour
integral in place of real axis integral, i.e.:

G(1, 1′) = G0(1, 1
′) +

∫
d3x2

∫
d3x3

∫

K
dτ2

∫

K
dτ3G0(1, 2) Σ(2, 3)G(3, 1′),

(7.35)
where G0 is the free two-point Green function and Σ is the contour ordered
self-energy.
In this section it is convenient to use a notation where the product of two
terms is interpreted as a matrix product of the internal variables (space,
time2, spin, etc.) .
Applying Langreth theorem to Eq.(7.35), we can easily conclude that GR

and GA obey Dyson equation with the appropriate self energy, and so:

GR,A = GR,A
0 +GR,A

0 ΣR,AGR,A (7.36)

The equation for G< is a bit more complicated.
Applying the analytic continuation rules to (7.35) we obtain:

G< = G<
0 +GR

0 ΣRG< +GR
0 Σ<GA +G<

0 ΣAGA (7.37)

Now we proceed by iteration on G<. Iterating once we get:

G< =
(
1 +GR

0 ΣR
)
G<

0

(
1 + ΣAGA

)
+

+
(
GR

0 +GR
0 ΣRGR

0

)
Σ<GA +GR

0 ΣRGR
0 ΣRG<, (7.38)

and so, the infinite order iterate is :

G< =
(
1 +GRΣR

)
G<

0

(
1 +GAΣA

)
+GRΣ<GA (7.39)

which is the celebrated Keldysh equation.
Applying the resolvent G−1

0 to equation (7.35), with respect to t1 and t1′ , and
summing the two resulting equations, we get the Kadanov-Baym equation,
which is the integro-differential version of the Keldysh equation,

i∂TG
<(τ, T )− [H0, G

<]− [Re Σ, G<]− [Σ<,ReG] =
1

2
({Σ>, G<}−{G>,Σ<}),

(7.40)
where Re Σ = 1

2
(ΣR + ΣA) and ReG = 1

2
(GR +GA) are the so-called renor-

malization terms.

2Time integrals are over the real axis.
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