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Summary

This thesis reports the results obtained during my PhD research in the field of
out of equilibrium quantum many-body systems. Chapter 1 consists in a brief
introduction of the field and the introduction of concept that are useful for the

following chapters.

In Chapter 2 the statistics of the work as a tool for characterizing the dynamics
of many-body quantum systems is introduced its general features discussed.
Then, such a statistics is computed for generic time-dependent protocols (both
global and local) in the quantum Ising chain and in the Gaussian field theory,
showing, in particular, that in its low-energy part there are features that are

independent of the details of the specific chosen protocol.

Chapter 3 is devoted to the study of the dynamical phase transition in the O(N)
quantum vector model in the N — oo limit, whose critical properties in generic
dimensions are characterized. Moreover, a strong connection between such a
transition and the statistics of excitations produced in a double quench as a
function of the waiting time is showed. The chapter ends by studying the fate
of the dynamical transition and the its critical properties when a ramp of finite
duration 7 is applied to the system instead of a sudden quench. In particular, we
will show that when 7 — oo the critical point tends to the equilibrium critical
point (at zero temperature) in a power-law fashion and that for every finite 7
the critical properties are always the same (and different from the equilibrium
critical properties).

Finally in Chapter 4 we will discuss the emergence of a non adiabatic behavior

in the dynamics of the order parameter for a low dimensional quantum system



SUMMARY

driven within a gapped phase by considering in detail the case of a quantum Ising
chain subject to a linear variation in time of the transverse field, showing that,
no matter how slowly the ramp is performed, such a change leads eventually to
the disruption of the order.

The results of Chapter 2 are contained in two publications:
e P. Smacchia and A. Silva, Phys. Rev. Lett. 109, 037202 (2012)

e P. Smacchia and A. Silva, Phys. Rev. E 88, 042109 (2013)

The results presented in Chapter 3 will appear in two manuscript still in prepa-

ration, while the results of Chapter 4 are contained in

e A. Maraga, P. Smacchia, M. Fabrizio and A. Silva, arXiv:1402.2789, sub-
mitted to Phys. Rev. B



Chapter 1

Dynamics of Isolated Quantum

Systems

1.1 Experimental Motivations

The study of the out of equilibrium dynamics of isolated quantum many-body
systems is nowadays a very active and fascinating area of condensed matter
and statistical physics. Even tough the first studies in this context have been
made right after the birth of quantum mechanics [128], this topic has been
overlooked for a long time, with the exception of some works in the 1970s [5-7,
92]. At the same time unitary coherent dynamics nearly impossible to observe
experimentally, due to the fact that dissipative effects in ordinary condensed
matter systems take place on very short time scales (order of a picosecond).

The situation has been drastically changed by a series of experimental break-
throughs, especially in the context of the physics of cold atoms (for an extensive
review see [13]), which allow the realization of highly tunable artificial systems in
which decoherence and dissipative effects are strongly suppressed. The first im-
portant step in this direction was the experimental observation of Bose-Einstein
condensation in 1995 [2,14,32], made possible by the development of laser and
evaporative cooling techniques, which enable the reaching of temperatures of

the order of nano kelvin. This was later followed by the realization of a Fermi
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Figure 1.1: Schematic representation of (a) two- and (b) three- dimensional optical lattice.

In (a) the atoms are confined in a array of one-dimensional tubes. Taken from [13]

degenerate gas [35]. However, two crucial steps that have considerably enlarged
the range of experiments realizable with these systems: the development of Fes-
hbach resonance techniques [31,62] and of optical potentials [56]. Indeed, the
former allow to control and tune the inter-particle interaction by changing the
external magnetic field, while the latter, which exploit the dipolar interaction
between the atoms and laser light depending on the intensity of the laser beam,
can be made spatial dependent and, in particular, periodic, creating the so-
called optical lattices [54] by overlapping two counterpropagating beams. This
made also possible to control the dimensionality of the system, creating low-
dimensional configurations, as schematically shown in Fig. 1.1 for the case of

one dimensional system.

The great tunability of such systems has made it possible to construct experi-
mentally controllable systems that can accurately be described by simple mod-
els, which in the past were mainly used to describe the low energy physics of
complex systems. However, from the point of view of non equilibrium physics,
the possibility of changing the interaction and the external in time is a crucial

feature, which together with their weak coupling with the environment allows
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Figure 1.2: Time of flight measured interference pattern [55] for times t equal to (a) 0 s,
(b) 100us, (c) 150us, (d) 250us, (e) 350us, (f) 400us and (g) 500us.

the observation of the coherent dynamics of many-body quantum systems on
quite long time scales compared to traditional condensed matter systems. This
was clearly shown by a seminal experiment performed by Prof. Bloch’s group
in Munich in 2002 [55]. Here, they loaded ultracold bosonic atoms in a three
dimensional optical lattice, where they are known to undergo a superfluid-Mott
insulator transition as a function of the lattice depth [54], preparing the sys-
tem in a superfluid phase. Then, the depth of the optical lattice was rapidly
increased (in such a way lowering the hopping amplitude) up to a value that at
equilibrium would have corresponded to a Mott insulating state. Finally, the
system was let evolve for a variable time ¢ after which the momentum distribu-
tion was measured by time of flights measurements. As we can seen from Fig.
1.2 the initial state shows a distinct interference pattern, which clearly proves
the coherence of the the superfluid phase, then after a certain time (~ 250us)
such a pattern is completely destroyed, just to be restored some time later
(~ 500ps). Such a collapse and revival of the wave function is a clear proof of

the the fact that the system retains its coherence during the evolution.
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1.2 Different protocols and ”time universality”

Non equilibrium dynamics is potentially a vast field: there are many different
ways in which a system can be taken out of equilibrium and, in general, the
outcome is expected to be sensible to the particular choice made. For an isolated
system the most natural procedure is to vary in time (in a local or global way)
one or more parameters A of its Hamiltonian H[A]. In this setting there is still
a large amount of freedom in the choice of the way such parameters are changed
in time from their initial A; to their final values A;. For example one may still
choose the amount of time 7 in which the variation is performed, and the precise
functions A(t), whose extreme values are fixed, i.e. A(0) = A; and A(7) = Xf.

We will refer to different choices as different protocols.

The two extreme cases, already very rich, of a sudden change, the so-called
quantum quench [18], and a very slow, nearly adiabatic one (known under the
oxymoron “slow quench”), are the two most studied cases in the literature,
while more generic protocols are hardly addressed. There are, however, various
motivations for their study. Indeed, they can be important in the context of
quantum information and quantum optimization problems [21], in which one
usually looks for the best protocol to achieve a certain goal, usually described
as the minimization of a certain figure of merit (for example the fidelity for a
protocol crossing a quantum critical point [20]), or to deal with experimental
situations where a sudden or adiabatic variation can be difficult to implement
[37].

There are, also, more fundamental motivations. Indeed, for a systematic char-
acterization of nonequilibrium phenomena it is important to understand what
dynamical features (time dependence of observables, their fluctuations, etc...)
are robust (or partially robust) with respect to changes of the protocol. A typ-
ical example can be the independence on the duration of the protocol 7. This
feature would thus be independent on the exact detail of the protocol chosen,
depending only on some of its gross features, a situation that resembles the

usual concept of universality in equilibrium statistical physics, which denotes
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Figure 1.3: Absorption images in the first oscillation cycle clearly showing the lack of ther-
malization. Taken from [67]

independence of physical properties on the microscopic details of the systems,
allowing, for example, to describe phase transitions of real systems using simple
models with the same gross features, such as dimensionality and symmetry.

With this analogy in mind, we will refer to the independence on the detail of

the out of equilibrium protocol as “time universality”.

1.3 Stationary States

Among all the different fascinating questions that can be asked regarding the
evolution following a generic out of equilibrium protocol, an important issue is
the one of the stationary state attained after a very long time.

First of all one should ask if such a state exist, a question that has a definitely
negative answer in a finite system, due to quantum recurrence. However, in the
thermodynamic limit our intuition suggests that if one focuses the attention

to a small portion of the system, the rest will act as a bath and a stationary
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1. DYNAMICS OF ISOLATED QUANTUM SYSTEMS

state will be reached. Consequently one should investigate the nature of such
a state: can it be described by a thermal ensemble? Or in other words, does
the system thermalize at long time scales? Such an interesting study about the
thermalization, or lack of it, for quantum isolated systems has been boosted
by a ground-breaking experiment in a 1D Bose gas performed by Kinoshita
et al. in 2006 [67], also known as “the quantum Newton cradle”. There, an
array of tightly confined tubes of ultracold 3Rb atoms was created and put
in a superposition of states with opposite momenta. The system was then let
evolve for variable durations before the momentum distribution was measured.
The quite surprising result, shown in Fig. 1.3, was the observation of a non-
Gaussian distribution even after thousands of collisions, a clear signal of the lack
of thermalization on the experimental time scales. The fact that this system
was a very close experimental realization of Lieb-Liniger gas with point-like
interaction [77,78], an integrable system was suggested as the main reason for
such a strange behavior, and triggered the subsequent theoretical work on the
role of integrability and dimensionality in the dynamics of quantum many-body
systems, with a particular interest in their effects in the relaxation towards a

stationary state.

Before discussing in more details the nature of the stationary states that can be
attained and the differences in the dynamics of integrable and non integrable
system, let us clarify from a more formal point of view the issue of the relax-
ation towards a stationary state for an isolated quantum system. As we briefly
mentioned above, asking if the system thermalizes is meaningful only when local
degrees of freedom are taken into account. Indeed, the evolution of an isolated
quantum system is unitary, thus if we start from a pure state described by a
density matrix py, with the property Tr[pz] = 1, this can not relax towards
a thermal state described by a mixed density matrix rhoy, with the property
Tr [p?,] < 1. Indeed, no entropy can be produced during the evolution. Hence,
the correct point of view is to focus on the properties of a finite subsystem A
described by by the reduced density matrix pa(t) = Trz[p(t)], where A rep-

resents the complement of A, p(t) is the evolved density matrix describing the

8



1. DYNAMICS OF ISOLATED QUANTUM SYSTEMS

whole system and Tr; denotes a partial trace performed only over the degrees
of freedom of sub-system A [45]. The question of the existence of a stationary
state can be but put as the question of the existence for any finite subsystem
A of a time independent density matrix pgq: 4, obtained as psiar 4 = Tt 1 [Pstat],
such that

lim Tr [p(t)Oa] = Tr [pstat,aO4] , (1.1)

t—o00

for any local observables O 4, where the subscript A indicate that the observable

has support in the subsystem, A. Such a property is guaranteed if
Jim pa(t) = Pstat,A- (1.2)
In particular we will say that the system thermalizes if pgqr = pin, With

1
Pth = Ee_ﬁHa (1.3)

where Z = Tre #H | and the effective temperature is defined in such a way that

r [e=BH
E=Tr[p(t)H)] = w (1.4)

1.3.1 Thermalization in non integrable System

For a classical system the concept of thermalization is strictly connected to
the one of ergodicity. Let us consider a system of N particles in d dimension,
described by a point X in a (2dN) dimensional phase space. The system is
ergodic if, given an initial condition Xy = (po, ¢p), its trajectory in the phase
space covers uniformly the selected hypersurface of constant energy. If such a
condition is satisfied, one can replace time averages with phase space averages
weighted with the microcanonical ensemble, i.e.

(0) = Jim 7 [ aro(e).afb) -

T—o0

(1.5)
_ /dde d™qO(p, )0 [H(G,7) — H(Go, 7o) -

However, defining ergodicity for a quantum system is a non trivial task. Indeed,

let us consider a system described by an Hamiltonian with eigenstates |¢,) and

9



1. DYNAMICS OF ISOLATED QUANTUM SYSTEMS

eigenvalues F,. The microcanonical density matrix can then be defined by
coarse graining the spectrum on energy shells of width dF, large enough to
contain a large number of states, but small on a macroscopic scale. Denoting

with H (&) the set of states within a shell with energies (E, E 4 §F),

pucl) = Y 57 ) (. (16)

a€H(E)
where NV (F) is the total number of states contained in each shell.
Let us now take a generic initial state lying within a shell, i. e. [|iy) =
> acn () Ca |¥a), and let us consider what is the long time average of the density
matrix. Assuming that the eigenstates are not degenerate we have
T
fim 7 [ o) @O = Ylea 1) (Gl = paeys (1)

T—o0
0 a

where |1)(t)) is the time evolution of |¢)g) and pgia, is the density matrix describ-
ing the so-called diagonal ensemble. We immediately notice that the diagonal
ensemble coincides with the microcanonical one only if all |c,|? are equal, a very
special situation. Therefore, quantum ergodicity in the strict sense is almost
never realized. Our intuition tells us, however, that, unless some very special
conditions are met (e.g. integrability, as we will discuss in more detail in the
following) a generic quantum system should eventually thermalize, though the
mechanism behind such a process is still under debate [95].

A popular scenario at the present time is the so-called Eigenstate Thermaliza-
tion Hypothesis (ETH), put forward by Deutsch and Sdrenicki [36,119] in the
context of quantum chaotic systems. Their idea is that thermalization occurs
eigenstate by eigenstate, namely the expectation values of observables over the
eigenstates of the Hamiltonian, (1,|O |,), are smooth function over the En-
ergies F,, being essentially constant on each microcanonical energy shell. This
would ensure thermalization for all initial conditions sufficiently narrow in en-
ergy. This hypothesis as been recently put under intense scrutiny by different
groups in different system, such as hard-core bosons [61,69,99,100,103], spinless
fermions [103], the Bose-Hubbard model [11,72], the Hubbard model [40,41,70],
spin chains [11,39,120], etc.

10



1. DYNAMICS OF ISOLATED QUANTUM SYSTEMS

As pointed out in [12] there are two possible interpretation of the ETH: a
weak one, where the fraction of states with non-thermal averages goes to zero
in the thermodynamic limit, and a strong one, where such non-thermal states
completely disappear in the thermodynamic limit. In the weak version, not
every initial condition (even if narrow in energy) will thermalize, because these
non-thermal rare states might be heavily weighted. The issue of the rare states
and their role in the road towards thermalization has been debated in literature,
see for example [15,102,109, 110].

These rare states could play an important role in some known examples of non-
integrable model displaying lack of thermalization. For instance in [72] the au-
thors numerically found that the dynamics of the Bose-Hubbard model showed
an approach to a non-thermal steady state with strong memory of the initial
conditions for large values of the final interaction strength. Strict dependence on
the initial states was also observed in one dimensional Ising chain where integra-
bility was broken by applying a finite longitudinal magnetic field [4]. However,
in this case numerical results were limited to the case of three spins. An alterna-
tive explanation is that the numerical simulation only reach the prethermalized
regime, which we will discuss later in more details, and thermalization occurs

on much longer times scales.

1.3.2 Integrable Systems: GGE Ensemble

Integrable systems are known to lead to a non ergodic behavior, also in the case
of classical physics. The reason is the presence of too many integrable of motion
other than energy that do not allow a full exploration of the hypersurfaces of
constant energy. Even though the generalization of the concept of integrability
to the quantum realm is far from being trivial, see for example [24,121], a quan-
tum integrable system usually has an extensive number of local algebraically
independent integrals of motion I,,, which commute one with each other and

with the Hamiltonian H of the system, i.e.
I, I,) =0=[I,, H]. (1.8)

11
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For this reason, in the spirit of the works by Jaynes on the maximum entropy
ensemble [64], Rigol et al. proposed that the stationary state of the dynamics of
integrable systems should not be thermal, but rather described by the so-called
generalized Gibbs Ensemble (GGE) [101], whose density matrix is

1
PGGE = 26_ 2n Andn (1.9)

where Z = Tre~ Xn?nIn ig the generalized partition function, and the Lagrange

multipliers are fixed requiring

(thol I |tho) = Tr [pacpln] (1.10)

with [¢g) representing the initial state.

The definition of the GGE ensemble has also been generalized to the case of
integrable field theories by Fioretto and Mussardo [47]. Here there is a precise
notion of integrability that is based on the requirement that the system has well-
define quasiparticle, whose scattering is purely elastic, i.e. there is no particle
production or dissipation [86,121] Let us consider for simplicity a model with
only one type of quasiparticles of mass m described by the annihilation operator
A(0), satistying the algebra A(6;)A(0;) = S(8;—0;)A(0;)A(6;), where S is the S-
matrix of two-particle scattering, and 6 denotes the rapidity, which is related to
the energy and the momentum of the quasiparticle by the relations £ = m cosh 6
and p = msinh §. Then we have

o= [ dONO)AT(0)A(6)
PGGE = 7 : (1.11)

In [47] Fioretto and Mussardo were also able to prove that this density matrix
correctly describe the asymptotic value of one-point local observables if the
initial state belongs to the class of the so-called squeezed states, which have the

form
WO> _ NeffdeK(e)AT(Q)AT(fe). (1'12)

The validity of the GGE ensemble as a good description of the asymptotic state

reached by integrable systems has been heavily tested and established in the case

12
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of theories equivalent to free fermions of free bosons, e.g. [8,17,25,27,29,46,105].
However, the problem is still open in the case of truly interacting integrable
theories [53,82,97,130].

An interesting step in this direction has been recently done in [74], where the
authors considered a quench in the Lieb-Lininger model, described by the Hamil-

tonian

H— / 0z [0,6(2)10,0(x) + co(2) 6(z) é(x)b(x)] | (1.13)

where ¢(z) is a bosonic field satisfying [¢(z), ¢'(y)] = 6(z — y). They prepared
the system in the ground state of the theory for ¢ = 0 and then quench the
interaction to ¢ = oo, where the model can be described in terms of free fermions.
Even though the quench is still between two free theories, the relation between
the initial and final Hamiltonians is not linear, and remarkably the GGE still
describes the steady state of the system, being able to predict the stationary
value of the density density correlation function.

However, more recent works questioned the validity of the GGE in interacting
systems. Indeed, though a lot of works tackled the issue of the construction
of the GGE for generic integrable models and attempted a comparison with
numerical simulations concerning the time evolution of such systems [23, 44,
46, 75,87, 88,96, 118], in Refs. [97,130] quenches in the XX Z model from a
Majumdar-Ghosh dimer product or a Néel state, are such that the GGE fails

to predict the stationary values of certain correlation functions.

1.4 Prethermalization

Even when the system thermalizes, the dynamics of the thermalization can
be highly non-trivial, requiring, at least for certain initial conditions, a two
steps process, in which the system passes trough an intermediate state that
can be very different from the thermal one. This phenomenon is in general
called prethermalization. This idea was introduced in 2004 by Berges et al. in
the context of high energy physics [9], while for of out of equilibrium quantum

many-body systems it was first discussed by Moeckel and Kehrein some years

13
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later [84]: they considered a quench in the Hubbard model at half filling for
dimensions greater than one, in which the system started in the non-interacting

ground state and then a small interaction was switched on.

Focusing the attention on the momentum distribution functions, the authors
were able to identify three different regimes: a short-time regime, related to
the formation of quasi-particle, in which the discontinuity at the Fermi sur-
face is quickly reduced to a value smaller than one, an intermediate quasi-
stationary regime, whose lifetime is inversely proportional to the strength of the
final interaction, in which the momentum distribution function stops evolving
and stays similar to a Fermi liquid at zero temperature, and finally a long-
time thermalization regime. This prediction was later confirmed using dynam-
ical mean field theory (DMFT) numerical simulations by Eckstein, Kollar and
Werner [41], which also revealed the presence of a prethermalized regime for
large values of the final interaction, a behavior which can be understood con-
sidering the integrability of the model in the infinite interaction limit. After
that, prethermalization has been studied and discussed in a variety of different
models [43,68,80,83,90,126,129].

For the type of quenches considered above, in which the starting point is an
integrable Hamiltonian, and the integrability breaking terms in the final Hamil-
tonian has a small strength, the concept of prethermalization provides a link be-
tween the different stationary behavior of integrable and non-integrable systems
discussed in the previous section. Indeed, several groups (with some difference
between each other in the details of the construction) have pointed out that
the prethermalized regime can be described in terms of a “deformed” GGE, in
which the integral of motion are perturbatively constructed starting from the
ones possessed by the integrable Hamiltonian and are only approximately con-
served [43,57,71,90]. From this point of view, the stationary states reached
by integrable systems can be thought as prethermalization plateaus that never
decay. Also, a similar mechanism might be able to explain why the dynamics of
experimental systems, in which integrability is always only approximately valid,

can be described in terms of integrable model: what we observe is the prether-
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Figure 1.4: Mean square contrast versus time. After an initial decay a quasi-steady state is
approached, which slowly evolves. In the inset experimental full distribution of C?/{C?) are
shown, together with a theoretical equilibrium fit base on Eq. (1.14). Taken from [57].

malized regime, which is dominated be the physics of the integrable Hamiltonian

and non-integrable effects kicks in on much longer time scales.

This has also been partially confirmed by an experiment performed by Schmied-
mayer’s group in Wien [57,116]. Here, they started with a 1D Bose gas of 8"Rb
atoms in the quasi-condensate regime and then rapidly and coherently split it
forming two uncoupled 1D Bose gases in a double well potential with almost
identical longitudinal phase profiles, in contrast to what happens for two inde-
pendently created quasi-condensates. The systems was then let evolve for some
variable time, after which the gases were released and the interference pattern
studied.

Such a pattern is determined by the phase difference ¢(r) between the two quasi-

condensate, whose dynamics can be approximately described by the integrable
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Tomonaga-Luttinger Hamiltonian [68, 116],

o (L2 . T
H = %/L/Q dr [% (Vo(r))” + " (r)], (1.14)

where K = w&,p is the Luttinger parameter, ¢ is the speed of sound, &, the
healing length, p the atomic density and L is the length of the system.
The main quantity considered in the experiment to characterize the interference

pattern was the integrated interference contrast
L/2
’ / dre'®
L2

As shown in Fig. 1.4 its average value shows an initial rapid decay on a time

(1.15)

scale ~ 10 ms, followed by the emergence of a quasi-steady state slowly evolving
on a much slower scale. To probe the nature of such a steady-state the authors
analyzed the full distribution function P(C?), finding a remarkable agreement
with the theoretical equilibrium distribution after the initial decay (see the
inset of Fig. 1.4), i.e. t > 12ms, so that they were able to extract an effective
temperature, whose value was around 14 nK (slowly increasing in time due to the
heating of the atom trap), roughly a factor five lower than the temperature of the
unsplit system. Thus, the observed state could not be the thermal equilibrium
of the entire system.

Looking at the Hamiltonian (1.14) the decay towards a stationary state can be
understood as the result of the dephasing between the k£ modes in terms of which
the Hamiltonian is diagonal. By solving the model one finds a temperature that
is very close to experimental result. Thus, a prethermalized regime is observed
and such a prethermal state is well described as the stationary state of an
integrable Hamiltonian. The system is expected to eventually reach thermal
equilibrium trough processes not described by Eq. (1.14), such as, for example,
three-body scattering, but at time-scales much longer than the dephasing time-
scale.

To conclude, at the hearth of the two step thermalization scenario there is the

existence of a clear separation of time scales. The first stage is dominated by
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the dephasing time, whereas the second stage is dominated by inelastic scatter-
ing collisions. At least, this is the picture emerging in the case of the quench
starting from an integrable Hamiltonian. The phenomenon of prethermaliza-
tion, however, seems to be more general, as suggested by the original paper by
Berges et al. [9], where a low-energy quark-meson model was considered, or by
recent studies via DMFT of quenches between the antiferromagnetic and para-
magnetic phases of the Hubbard model [126,129] and we can fairly state that
comprehensive theory is still lacking. It is not clear, for example, what are in
general the scales regulating the prethermalization and thermalization stages,
and what are the condition for the prethermalization to happen. A possible
explanation could be that prethermalization occurs when the dynamics takes
the system close to a so-called non-thermal fixed point [10], which in the case of
the switching on of a non-integrable term in the Hamiltonian would be simply
given by the integrable part, but in general could also occur in non-integrable

models.

1.5 Dynamical Phase Transitions

The existence of prethermal states, different from their thermal counterpart,
opens the way to the possibility of observing new inherently out of equilibrium
critical properties, or dynamical phase transition, generalizing the equilibrium
ones between different dynamical regimes, or/and quasi-steady states of different
nature. This could in principle allow to observe universal (in the usual sense of
statistical mechanics) phenomena out of equilibrium.
The first example of this has been discovered in Ref. [41]. As discussed in the
previous section, the authors solve with DMFT the dynamics of the Hubbard
model at half-filling,

H(t)=> Vyc,c, + U (nT - %) (m - %) , (1.16)

ijo i

where the ¢; ,’s are fermionic operators satisfying {cw, c;{?U,} = 0,000/ {Cio, Cjo' } =

0, njy = cj’aci,g, and the hopping amplitudes V;; corresponding to a semielliptic
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Figure 1.5: Ewvolution of the double occupation d(t) and the Fermi surface discontinuity
An(t) for quenches with U < 3 (left panels) and U > 3.3 (right panels). Horizontal arrows

show the thermal values of the double occupation. Taken from [41].

density of states p(e) = /4V?2 — €2/(2xV) were chosen. The system was pre-
pared in the ground state of the noninteracting Hamiltonian U = 0 and then a
quench to a finite positive value of U was performed.

The existence of two different (prethermalized) regimes separated by a sharp
crossover at U, ~ 3.2V was established. This can be seen by studying the
evolution of the double occupation d(t) = (n;(t)n; ), and the discontinuity in
the momentum distribution function at the Fermi energy An(t). From Fig. 1.5
we can see that in the weak coupling regime, i.e. U < U, the double occupation
relaxes almost to its thermal value, which is indicated by an arrow, while An(t)
stays on a prethermal plateau (its thermal value would be zero) for a time that
is the longer the smaller is U and then slowly decays. For strong couplings,
instead, both quantities show oscillations, which are not centered around their
thermal values. These two different regimes are separated by a small region
3V < U < 3.3V in which fast thermalization is observed.

A confirmation of such a behavior was then found by Schiré and Fabrizio [111].
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Figure 1.6: u; y = U, ;/U., where U, equals the equilibrium critical point. (a) Left panel:
evolution of the double occupation D(t) and the quasiparticle residue Z(t) from quenches to
u; = 0.25 to uy = 0.35 (top panel) and uy = 1.25 (bottom panel). Right panel: period of
oscillations for finite doping §. Note that there is a logarithmic singularity only when 6 = 0.
(b) Average double occupation D and quasiparticle residue Z as a function of uy for fived
u; = 0.0,0.5 Full lines are zero doping results, while dashed lines are finite doping results.

The red points are zero temperature equilibrium results. Taken from [111]
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They considered the same Hubbard Hamiltonian (1.16) with nearest neighbors
hopping, and solve the dynamics following a quench of the interaction parameter
from U; to Uy > U; trough an out of equilibrium Gutzwiller ansatz, limiting
themselves to homogeneous paramagnetic wavefunction. Such an approximation
is valid in the limit of an infinite coordination lattice. Focusing on the evolution
of the double occupation (D(t) in their notation), and the quasiparticle residue
(Z(t) in their notation), they also find two different behavior. As shown in Fig.
1.6a for Uy < Uy, whose values depends on the initial interaction U;, both D(t)
and Z(t) displays small oscillations with amplitude and period increasing with
the amplitude of the quench (U; — U;), while for Uy > Uy, the oscillations of
Z(t) have a big amplitude with the minimum being equal to zero, and the period
and amplitude are now decreasing function of the quench amplitude. These two
regimes are separated by a critical point, where the dynamics shows exponential
relaxation, while the period of oscillations diverges logarithmically, as can be
seen in Fig. 1.6a. Moreover, they considered the long-time averages of both
quantities D and Z showing that they have a singular behavior, vanishing as
the inverse of a logarithm when the dynamical transition point is approached.
Their behavior is shown if Fig. 1.6b.

One should stress that, being the Gutzwiller ansatz a mean-field approach, no
true relaxation can be observed, so that, differently from the DMFT study
(which can treat all local fluctuations exactly), oscillations are never dumped,
and the transition occurs in the steady-state of the dynamics and not in the
prethermal regime. However, we can imagine that when quantum fluctuations
are taken into account true relaxation towards a thermal state will eventually

happen.

After these findings in the Hubbard model, such a dynamical transition has
been observed in a variety of mean-field models [49,81,112,113] and also in the
dynamics of the Hubbard model for quenches between the antiferromagnetic
and paramagnetic phase studied both by DMFT [126] and by the Gutzwiller
ansatz [108]. A full analysis and characterization, however is still lacking, as

well as a full understanding of its critical properties and the role of fluctuations.
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Figure 1.7: Long time average of the order parameter @/\/N, with N being the number
of components of the O(N) model, as a function of the relative distance from the dynamical
critical point (in %). Taken from [114].

A recent attempt to go beyond mean-field has been done by Sciolla and Biroli
[114]. They considered an O(N) model at the leading order in the 1/N expan-
sion (more detail on the model in chapter 3) and focused on quenches starting
from the broken symmetry phase. They found that the model displays true
relaxation towards a steady state, which, however, was not the thermal one,
because the model still possesses an infinite number of conservation laws that
prevents thermalization. They also observed the presence of a dynamical transi-
tion with a critical point that depends on the initial point, but is always within
the broken symmetry phase. Such a transition is signaled by the vanishing of
the asymptotic value (or equivalently of its long-time average) of the order pa-
rameter (¢) as shown in Fig. 1.7. Remarkably, the order parameter does not
vanish in a logarithmic fashion, as it is typical in mean field models, but with a
power law, i.e. ¢ ~ 1/AY* with A measuring the distance of the final param-
eter of the quench from the critical point. They also reported the existence of
a dynamical transition for quenches starting in the paramagnetic phase.

To conclude, we can say that the nature of this transition and the condition

for it to be present (e.g., is it necessary that the model as a finite temperature
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transition?) are still unclear. A possibility, as in the case of prethermalization,
to which it seem to be related, is that is connected to the physics of nonthermal
fixed points [10]. However, further studies are needed before anything can be

concluded.

1.6 This Thesis

This rest of the thesis is organized in the following way. In Chapter 2 we will
first introduce the statistics of the work as a tool to describe the dynamics
of quantum many-body systems and then study it for generic protocols in the
quantum Ising chain and in the Gaussian field theory. In particular, we will
show that its low-energy behavior shows features that are independent from the
details of the protocol, therefore “time universal”.

In Chapter 3 we will discuss the dynamical phase transition in the O(N) vector
model in the limit N — oo, characterizing its critical properties and showing
its strong connection with the statistics of the excitations produced in a double
quench studied as a function of the waiting time. Then, we will also study how
and if such critical properties are changed a linear ramp in time is performed
instead of a sudden quench.

Finally, in Chapter 4 we will discuss the emergence of a non adiabatic behavior
in the dynamics of the order parameter in a low-dimensional quantum many-
body system subject to a linear ramp of one of its parameter within a gapped
phase. This problem will be studied in details in the case of a quantum Ising

chain, where the transverse field is changed in time.
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Chapter 2

Work distribution for generic

protocols

2.1 Statistics of the work and its general fea-

tures

There are many different ways in which the dynamical response of an isolated
quantum many-body systems subject to a variation of one or more parameters of
its Hamiltonian according to a generic protocol A(t) can be probed (see section
1.2). From a fundamental point of view, however, every protocol can be thought
of as a thermodynamic transformation and can therefore be characterized by
the work done on a system [115], the entropy produced and the heat that has
been exchanged. Since we are dealing with isolated systems, we will focus on the
work W, which characterizes the energy spectrum of the excitations generated
during the dynamics and in generic out of equilibrium transformations will be

a fluctuating quantity characterized by a probability distribution P(W).

In order to describe such a distribution, we have to make more precise the notion
of work done on the system. In general, to determine the value of W in a closed
system is enough to measure the energy twice: at the initial time ¢ = 0 and at

the end of the protocol, i.e. at time ¢ = 7 (or any time afterwards, since the
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energy is conserved). The work will be then given by the difference between the
two results [19,123]. So, let us imagine that the systems is initially in a thermal
state pg = e PHil /7 and let us denote with |n), the instantaneous eigenvectors

of the Hamiltonian with eigenvalues FE, (), i.e.,
HIA(E)][n(t)) = En(t) [n), - (2.1)

Then, the probability of the work will in general have the following expression,

P(W) = Z §[W — En(7) = En(0)] Pajm Pon» (2.2)
where
p% = gme’*BE’"(O)/Z, (2.3)

with g, being the degeneracy of |n),, is the probability that the first measure-

0’
ment gives E,,(0) as a result, while

Prjm = Tt [IL,(7) pr (7)) (2.4)

is the probability that the second measurement gives FE,(7) as a result, con-
ditioned over the result of the first measure. Here I, (¢) is the projector on
the eigenvectors belonging to the eigenvalue FE,(t), while p,,(7) is the evolved
density matrix after the measurement at ¢t = 0, which is equal to U(7)p,,U(7)T,
with U(7) representing the evolution operators from time ¢t = 0 to time t = 7
and p,, = I1,,,(0) poIL,,(0). Such a definition can of course be easily generalized
to different initial states by changing the probability p® accordingly.

The probability distribution function (2.2) can be showed to obey a series of
fluctuations relations. The most notable example is the Tasaki-Crooks fluctua-
tion theorem [19,124]. This is a relation between the distribution of the work
performed starting from the thermal state corresponding to the initial Hamil-
tonian H[);] at inverse temperature 3, and the probability distribution P(W)
associated with the inverse protocol A(t) = A(7 — ¢) in which the initial state
is the thermal state corresponding to the final Hamiltonian H[Ay] at the same

inverse temperature. In particular, we have

P(W)

P(W) eB(W—AF) (25)

Y

24
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where AF = —flog Z(Af)/Z(A;) is the free energy difference between the two
equilibrium states.

By multiplying both sides of Eq. (2.5) by P(W)e "W and integrating over W,
it is possible to obtain the well-known Jarzynski equality [63],

(e7PWy = ¢ PAF, (2.6)

These two relations establish a connection between non-equilibrium and equi-
librium quantities. For example, Eq. (2.6) tells us that equilibrium free energies
can be derived by measuring the nonequilibrium work in many realization of the
same protocol, a property that has been used in real experiments [28, 38, 79].

In the following we will always assume that the system is initially prepared in
the ground state |0), of the initial Hamiltonian H[A;], so that p?, = dy,, and

expression (2.2) simplifies into

P(W) =Y §[W = Ey(7) + Eo(0)] [{n|U () |0}, (2.7)

It is apparent from this expression that the P(W) has a threshold value given
by Eo(7) — Eo(0), namely the difference between the final and initial ground
state energies. From now on we will consider the rescaled variable W — W —
Eo(7) + Ep(0), in such a way that W > 0.
An equivalent statistical description can be given in terms of the moment gen-
erating function G(s),

G(s) = ("), (2.8)

We can distinguish here between two classes of systems: a class A in which the
spectrum is bounded and the the work W for large but finite L can not exceed a
certain threshold value W, and a class B in which the spectrum in unbounded
and also for finite systems the work can assume arbitrarily large values. Then,
in the former class G(s) is defined for all s € R, with G(s) ~ e LWz for
s — —o0, whereas in the latter class G(s) is defined only for s > —5 < 0 with
a generic singularity in the derivative at —s. The quantum Ising chain and the
Gaussian field theory that we will consider in the following belong to class A

and B respectively.
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Using expression (2.7), we obtain that

G(s) = ((r)| e *ER (7)) (2.9)

where H[A;] = H[As] — Eo(7) is the rescaled final Hamiltonian and |4 (7)) =
U(7)10), is the evolution up to time 7 of the initial state.

Following Refs. [50] [51] we can use the quantum to classical correspondence
to interpret the function G(s) for s > 0 as the partition function in a d +
1 dimensional slab, of thickness s of a classical system, with transfer matrix
e~ and equal boundary conditions described by the state [¢(7)). If we now
introduce the cumulant generating function F'(s) = log G(s), we can interpret
it (up to a minus sign) as the free energy of such a system. Considering for the
moment the case of a global protocol, which in general will inject in the system
an extensive amount of energy, it is useful to consider the free-energy density
per unit area f(s) = —L"9F(s), which can be decomposed in decreasing powers

of s as
f(s) =2fs + fe(s). (2.10)

The bulk contribution, which would be proportional to s, is here absent because
of the rescaling of the variable W performed before, while f, is the surface free
energy associated to the two identical boundaries and f.(s) is the Casimir effect
contribution, describing the interaction between the two boundaries, which goes
to zero for large values of s.

We can now discuss some general features of the probability distribution P(W):
first of all in any system Eq. 2.7 implies that P(1V) has a peak at the origin,
with spectral weight Py = e 2%/s = |(4)(7)]0),|2. This is just the probability of
ending up in the ground state of the final Hamiltonian, a quantity also known as
fidelity. In order to exploit the quantum to classical correspondence it is useful
to introduce a quantity resembling the free energy, the normalized logarithmic

fidelity per unit volume, defined as

fo =m0y &L 211

where (2, is the solid angle in d dimensions.
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=l

Figure 2.1: Schematic representation of (a) f(s) and of the rate function I(w) for systems
in class A (blue) and class B (red). The grey area highlights the region where f(s) lacks a

thermodynamic interpretation. Taken from [51].

In addition to this peak, one expects some features starting at W = A, where
A represents the minimum energy gap of the final Hamiltonian. The behavior
close to this threshold will be determined by the behavior of f. for large val-
ues of s. In the case of sudden quenches ending in the vicinity of the critical
point this features turn out to be a power-law edge singularities related to the
so-called critical Casimir effect [76] and thus universal in the usual sense of
critical phenomena [50, 51], i.e., dependent only on the bulk universality class
of the model and on the characteristics of the initial (boundary) state. These
singularities, in the case of global protocols, are, however, relevant only in the
case of finite size systems, since their weight is exponentially suppressed by the

volume.

In order to better see this it is convenient to consider intensive quantities, such
as the work density w = W/L?, whose statistics we will denote as p(w). For
global protocols the work done on the system is a extensive quantity, therefore
as the size of the system increases p(w) will become strongly peaked around its
average value w, with fluctuations scaling as 1/ V'V, with V being the volume of

the system. Therefore in this case it is interesting to study what are the large
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fluctuation of p(w) with respect to the Gaussian distribution. The key quantity
to study in this context is the so-called rate function I(w), whose importance
is given by the fact that for L — oo, p(w) ~ exp[—L4I(w)] [125]. Since in the
limit of large L we can perform the inverse Laplace transform via a saddle-point
approximation, the rate function turns out to be given by the Legendre-Fenchel

transform of f(s),

I(w) = —infy[sw — f(s)], (2.12)

with the minimum taken on the region of definition of G(s). Some generic
feature of the distribution p(w) can then be inferred. First of all we note that
f(0) = 0 and f(0) = w and, most importantly f(s) is a concave function
of s [125], which approaches 2f; when s — oco. Fig. 2.1 shows a schematic
representation of f(s) and the corresponding I(w) for the the two classes of
systems introduced above. The behavior of I(w) near the threshold w = 0 is
determined by the one of f(s) for s — oo. In particular 1(0) = 2f,, while its
approach to this value is determined by f.(s).

Thanks to the quantum to classical correspondence the function f.(s) when the
final Hamiltonian is near to a critical point are take a universal scaling form,
due to the onset of the critical Casimir effect. Therefore, one can conclude that
the behavior of the rate function I(w) near the threshold w = 0 is universal,
so that universal effects can be seen in the large deviations below the average
density of the work w.

Increasing w further away from its average value, the value s*(w) at which
the minimum of Eq. (2.12) is attained decreasing and so thus the thickness
of the associated slab. Therefore, microscopic details are expected to play an
increasingly important role, implying a generic lack of universality. Correspond-
ingly also I(w) decreases because I'(w) = —s*(w). At the average value w = w,
s* = I(w) = 0, while increasing w the rate function grows again with s*(w) < 0.
Therefore, in the case of w > w the rate function is determined by the the
function f(s) for s < 0, where we can not use the quantum to classical corre-
spondence any more, so it seems that no universal behavior can appear. The

qualitative behavior of the rate function in this region depends crucially on
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the possibility that the spectrum of the system is bound (class A) or unbound
(class B). For systems in class A I(w) diverges approaching wy = Wy /L%, as
required by the fact that p(w) vanishes above this threshold, while in the case

B I(w — 00) ~ 5w and therefore
pw > w) ~ e L5 (2.13)

In Ref. [51] it was argued that for systems in the class B an unexpected universal
behavior may be possible also in this fully quantum regime. As we will explain
in more details later, they explicitly showed that for a quench in a free bosonic
theory when the initial mass mg approaches the critical point mgrightarrow0,
the statistics of the density of the work shows a behavior similar to the Bose-
Einstein condensation in the grancanonical canonical ensemble, displaying a
transition from an exponential to an algebraic behavior.

When local protocols are considered, instead, the situation is different as a result
of the fact that in this case the work done is not an extensive quantity. Local
quenches are nevertheless interesting to study in the case of gapless systems,
where even a local change of the Hamiltonian can have important effects. In
particular, if we exclude cyclic protocols, i.e. Ay = A;, we expect P(WW) not to
have a delta peak at origin, namely the probability to end up in the final ground
state will be zero, as consequence of a rather generic Anderson orthogonality
catastrophe [3]. In analogy to the turning on of a potential in a Fermi system,
we thus expect the presence of an edge singularity starting at W = 0 whose
specific form will be determined by the large s behavior of log G(s).

In the following we will compute the statistics of the work for generic protocols
and for global and local variations of the system parameters in a Gaussian
field theory and in the quantum Ising chain, showing how the general features
discussed above emerges in such simple systems. One of the main universal
features emerging for abrupt quantum quenches, a power law edge singularity
characterizing the low-energy part of P(W), is shown to be hardly sensitive
to the details of the protocol considered, being characterized by an exponent

that depends only on the initial and final values of the parameter being varied.
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Moreover we show that the above-mentioned condensation transition is robust

with respect to the choice of the protocol.

2.2 Global protocols in the Gaussian field the-

ory

Let us start by considering the case of a generic protocol in a boson system

diagonalizable in independent momentum modes,

Hg[m(t)] = l/ﬂ (7 + wi(t) 7] (2.14)
b 2 ) (2m)d Uk T RTRD '
where the integral runs over the first Brillouin |k| < 7, [¢g, x| = @0, and

we assume a relativistic dispersion relation wy(t) = \/m . This simple
model captures the physics of a number of physical systems, ranging from ideal
harmonic chains to the low-energy properties of interacting fermions and bosons
in one dimension [26] and split condensates [58,59,68]. We will considering the
case of a generic protocol starting from m(0) = m; and finishing at m(7) = my.
We notice that the case of a sudden quench has been solved in Ref. [117].

Since in the Hamiltonian (2.14) the single k£ modes are independent, the moment
generating function factorizes, i.e., G(s) = [ [, Gk(s), where G (s) represents the
moment generating function of single mode, which is nothing else than that of
an harmonic oscillator with a time-dependent frequency wy(t). Let us therefore
quickly consider the problem of computing the moment generating function in

such a simple system (see also Ref. [33] for an alternative derivation).

2.2.1 Single harmonic oscillator

Following the discussion above, we will now consider a single harmonic oscillator

with generic time-dependent frequency w(t), whose Hamiltonian reads

1 1
Ho(t) = 5]32 + §w2(t)$27 (215)
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with w(0) = w; and w(7) = wy. The operators x and p are the usual position and
momentum operators, satisfying the canonical commutation relation [z, p] = i.

At each time t we can diagonalize the instantaneous Hamiltonian introducing

the bosonic operators

(2.16)
ag= \|— |z — —=
t 2 w(t)p )
which obey the commutation relation [a;,a]] = 1. In terms of such operators

the Hamiltonian can be written as

Hxﬂ:w@(@%+%>. (2.17)

As already stated in section 2.1, we assume that the initial state is the ground
state of the initial Hamiltonian H,(0), denoted as |0), and defined by the prop-
erty ag |0), = 0.

In order to compute the moment generating function G,(s) using Eq. (2.9), it
is convenient to write the evolved state |¢)(7)) in terms of the operators al and
a, diagonalizing the final Hamiltonian H,(7). With this purpose in mind we
introduce a time-dependent operator a(t) annihilating the state evolved up to
to time t, i.e., |¢(t)) = U(t) |0),,

a(t) [¢(t)) = 0. (2.18)

The existence of such an operator is guaranteed because we are dealing with a
quadratic Hamiltonian, implying that Gaussian states retain their nature during
the evolution. Moreover, this operator is characterized by being constant in
the Heisenberg representation (as long as we confine ourselves in the subspace

spanned by |¢(t))). Indeed if we take the time derivative of Eq. (2.18) we get

9
0= (izalt)[y@) +alt), Ho(t) | [¥(t))
<& ) (2.19)

:Q%amwm+m@¢um)wm,
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where we used Eq. (2.18), which, in the subspace required, clearly implies

Ay
—a (1) = 2.2
il (1) = 0, (220)

where al (t) = UT(t)a(t)U(t) is the operator a(t) in Heisenberg representation
(the superscript H will be used in the following always to indicate the Heisenberg
evolution of an operator). We can thus drop the time dependence of such an
operator in the following.

Remembering that our goal is to write the evolved state [¢)(7)) in terms of the
operators a, and al we now try to find a relation between a(7), which annihilates
|4)(7)) and the operators a(t) and af(¢). Let us make the ansatz,

af (t) = a(t)a” + g*(t)a"", (2.21)

)

with « and S being generic complex functions. Let us now try to find an
equation determining the coefficients of Eq. (2.21).
In order to do so, we first derive the equation of motion for afl(t) and al-¥(t).

The first step is to use the single boson Bogoliubov transformation

) B

to rewrite the Hamiltonian (2.17)

w2 + w3(t 2(4) — W2
f ()CLTFCLT"FM() wy

H,(t) =
( ) 2(.{)]0 4(,«)f

(af + af) + const. (2.23)

We can now easily compute the commutator [a,, H,(t)], obtaining the desired
evolution equation
d wi tw(t)? ,

ZEGT (t) = TGT (t) +

CO=Tawr.
Wy

Now by putting these equations into Eq. (2.21) and using the condition (2.18)

we can find the desired evolution equation for the coefficients «(t) and [(t),

@-%a@) _wpte'(®) WAl —

alt) + —5 (), (2.25a)
wr

wa
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Wi +W2(t)6(t) N w? — w(t)

d
0= -5 o) (2.25b)

Since an obvious consequence of Eq. (2.20) is @ = @(0) = ao, the initial con-
ditions for the differential Eqs. (2.25) are given by the coefficients of the Bogoli-
ubov transformation connecting the operators that diagonalize the Hamiltonian
at final time ¢ = 7 and at the initial time ¢ = 0. These can be read from Eq.

(3.31), getting

a(0) = % <\/?+ \/:’:f) L B(0) = % (\/?— \/;":f) | (2.26)

We have now all the ingredients to write the evolved state [¢)(7)) in terms of
a, and al .Since this state is annihilated by a(7), whose relation with a, and af
can be read translating Eq. (2.21) at time 7 into the Schroedinger picture, that
is,

a; = a(r)a(r) + f*(r)a'(r), (2.27)
it must be quadratic in terms of a., therefore let us write it as [¢(7)) =
Cexp (p(al)?) |0),, with |0)_ representing the final ground state, i.e. a, |0). = 0.
The request a(7) |¢(7)) implies

C (a*(T)a, — B*()al) exp (p(al)?) 0), =

(2.28)
Cexp (p(al ) (200* (r)al — B*(r)al) [0), =0,

from which we can readily read p = 5*(7)/(2a*(7)). The value of C' is found

by requiring the normalization of the state. Indeed, one can easily find that

L= (W(T)[(r)) = |CFla(7)], (2.29)

implying C' = 1//|a(7)|. Putting all together, we find

T -t ex B(7) al)?
W) = o p( <T>)|0>T, (2.30)

’a 206*(7')

Since we have now expressed the evolved state in terms of the operators that

diagonalize the final Hamiltonian, we can readily compute G,(s) from Eq. (2.9).
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A method for doing so is using the coherent states [117]. Indeed we define the
states
|2) = e [0), . (2.31)

with z being a generic complex number, which are unnormalized eigenstates of

the operator a, with eigenvalue z and satisfy the closure relation

dedz .
/ 20 e ) (2] = 1L (2.32)

211

Then using the property e=*#e(7) |2) = |ze™“s) we get

dodz* .
Guls) = [T tw(le ) lor)e (2.33)
Finally, using
(o)) = — e (2.34)
(7))

and performing the gaussian integral, we obtain

1
eIV )Pe 7

with A(T) = 2, which is defined for s > =2,

Go(s)

(2.35)

o(7)

2.2.2 Full moment generating function

Using the result of the previous section and remembering that G(s) = [[, Gk(s),
with Gi(s) = G,(s), with the substitution w(t) — w(t), we can write down the
full cumulant generating function,

In G(s) __1/ dk I 1 — [ Ae(7) 2o 250k ()
(2m) 1= [Xe(7)? ’

74 = 3 (2.36)
where )\, is defined in the previous section for each mode £ and the function is

%. Following section 2.1, we can identify the two

contribution f.(s) = 3 [, In[1 — [Xe(7)*le 2+ and f, = —11.(0).

defined for s > 55 = sup,

We can immediately observe that the structure of the cumulant generating

function is always the same with all the dependence on the specific choice of the
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protocol encoded in the function Ax(7). For a truly adiabatic protocol, since the
final state is assumed to be the ground state of the final Hamiltonian, we would
have A\;(7) = 0 Vk, such a way that the function P(W) becomes a ¢ function
at the origin as expected. For the opposite limit of a sudden quench, since the
state does not change and remains in the initial ground state, we would have
Ae(7) = A(0), whose actual value can be read from Eq. (2.26) for each mode
k and is in agreement with previous results [51,117].

By using Eqgs. (2.25), we find that the function A\gx(7) can in general be deter-
mined by solving a parametric in k differential equation of the Riccati type,

determining in such a way the full distribution function. Indeed we have

d Wi (T) + wi(t) Wi (T) — wi(t)
— () = =L TR N (¢ K BT+ Nt 2.
i M (t) ) O e (237)
with initial condition A;(0) = 5’2—200)). When m; — 0 we have that wi(7) — k, so

the coefficients of Eq. (2.37) become divergent for & — 0. To avoid this it is

convenient to make the substitution

1 14 A(2)

t) = 2.38
) = O T () (2:38)
with the new variable satisfying the elegant Riccati-like equation
d
zaxk(t) = —wi(t)zi(t) + 1, (2.39)

with an initial condition, z;(0) = 1/wg(0), fully determined by the initial pa-
rameters.

Let us now compare different protocols starting by considering the behavior of
the normalized log-fidelity defined in Eq. (2.11). In particular we choose as

examples a linear, a logarithmic, a parabolic, and a quartic protocol, given by
t

min(t) = m; + (my —my)—, (2.40a)
T

In(1 +6t/7)

2.4
In7 ’ ( Ob)

mlog(t) =m; + (mf - mz)

) =+ Gy =) (1 =35, (2.400)
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Figure 2.2: Plot of the normalized log-fidelity fs [see Eq. (2.11) for the definition], for
different protocols as a function of the duration T, with m; = 0.5 and my = 5. The considered
protocols are defined in Eqs. (2.40) and shown in the inset. In particular the dotted (blue)
one is Miin, the dashed (red) one is miog, the dotted-dashed (purple) one is mpar and the solid

(green) one is Mquart -

4

Mauart () = m; + (my —mi) > pult/7)", (2.40d)

n=1
with p, in the last protocol chosen in such a way that the function has a
minimum with zero mass at t/7 = 1/3. The actual values of these constants
can be found in Appendix 2.B, while the various protocols in the case of m = 0.5
and m; = 5 are plotted in the inset of Fig. 2.2
The results for the normalized log-fidelity for the different protocols introduced
above are shown in Fig. 2.2 as a function of the total duration 7, taking m; = 0.1
and my = 5. From this figure we see that for the linear and logarithmic protocols
the log-fidelity is essentially an increasing function of 7 tending to zero (implying
a fidelity tending to one); for logarithmic protocols it is always lower than for
a linear one. In the parabolic case we see oscillations for small 7, when it is
possible to have a fidelity lower than in the sudden case, while in the quartic
case the fidelity decreases quite rapidly at the beginning, but then reaches a
plateau at a value different from zero. This is a consequence of this protocol
touching the critical point m = 0, where the system is gapless, making an
adiabatic behavior impossible even in the large 7 limit.

Let us now consider the behavior of the cumulants of the distribution P(WV).
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Figure 2.3: Plot of (a) () and (b) 62 [see the definition below Eq. (2.42)] for the different
protocols defined in Eqs. 2.40 as a function of the duration 7, with m; = 0.5 and my = 5.

They can be computed from Eq. (2.36) using the formula

n 0"
ky = (_1> @ lnG(8>|s:07 (241)

where k,, denotes the n-th cumulant. Explicit expression for the first cumulants

ky = (W) = L4 / (;ZW]; - |ik_(T|)A|k°<”f(;) , (2.42a)
— 2= d Ak 2)\(7)Pwi (T
ky=0"=1L / 20 1= (722 (2.42D)
" L2, (2.42¢)
_ d'k W (T)[[Ae(T)|* + [Ak(7) ]
=t [ (2424)
% ~ L2, (2.42¢)

The first thing we notice is that all the cumulants are extensive, i.e., propor-
tional to the volume L% which is a consequence of the function In G(s) itself
being extensive, as can be clearly seen from Eq. (2.36). For this reason, when
the size increases, it is more appropriate to study the probability distribution
of the work per unit volume [51] w = W/L? | which has as a moment generat-

ing function G(s) = G(s/L%), implying that the cumulants , of this intensive
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variable are l~cn = L4k From this we conclude that, in the limit of large L
the probability distribution of w will tend to become a Gaussian function with
average value k; and variance ky/ L? that tends to zero as L — oo.

In Fig. 2.3 we plot the behavior of the first two cumulants per unit volume
(normalized by a geometric factor) i.e., () = L‘d<w>% and 62 = L_da%
for the different protocols defined in (2.40), taking m; = 0.5 and my = 5. We
see that the qualitative behavior of the two cumulants is the same: in the case
of the linear and logarithmic protocols they are essentially decreasing functions
of 7 that tend to zero for 7 large and with the logarithmic cumulants always
bigger than the linear ones. This is expected, since the larger 7 is the more
adiabatic the protocol is and the less work is done on the system; in the case of
the parabolic protocol there are oscillations for small 7 that rapidly decrease in
amplitude so that the cumulants are larger than the sudden case only for small
duration. We notice also that the value of the cumulants for the parabolic
protocol is always larger than the linear and logarithmic ones. Finally, the
cumulants for the quartic protocol at the beginning decrease quite fast; then
in the case of the average there is essentially a plateau that seems to slightly
decrease for large values of 7, while for the variance the plateau is replaced by
an increase of the function. The last protocol, except for small 7, always has
larger values of both the cumulants. The different qualitative behavior of the
quartic protocol has again to be ascribed to the impossibility of achieving an
adiabatic behavior.

To end this section we will now turn our attention to the asymptotic behavior
of P(W) for small W and prove that (for ms # 0)

@)M Po(DFF W —2m) . (2.43)

PW) = e [5(W> 1 (3 2T (d)2) (W — 2m) 1472

As expected, apart from a J-function peak, there is an edge singularity, which
turns out to be fully determined by the asymptotics of f(s) for large s. Apart
from the term 2 f,, which determines an overall constant, this is given just by the
asymptotic behavior of f.(s). In particular, we will now show that the exponent

of this singularity is not affected by the choice of a specific protocol.
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The first step to obtain Eq. (2.43) is to expand the logarithm as

In [1 _ |)\ ( >|2 —2swy, ’T) Z 6—257’ka ’T)|)\ )|2n/n (244)

n=1

Then, since [A\x(7)|*> < 1, we can interchange the order of the integration and

the sum because of the convergence of the series. For m; # 0 we have

:__Z/ —osnun(r) AR ()" )

I |>\0(T)\2" ( my >d/2
~ Snmf
2 Ze n 47tsn ’

where the integrals have been evaluated in the stationary phase approxima-

|2n

(2.45)

tion. The full series can then be written as (Li denotes the polylogarithm or

Jonquiere’s function)

1 /m

/2
fuls) = =5 (EZ) Livyaza [e72™ | Ao()2] (2.46)

while the leading asymptotic behavior is given just by the first term

6723m m /2
fuls) = = () ot (2.47)

From this we can extract the form of the edge singularity at the threshold.
Indeed, we have that

G(s) ~ e 2L s

A7s

—2smy d/2
1+ L eT (ﬂ> |/\0(T)|2] , (2.48)

implying Eq. (2.43).

The most interesting feature is that the exponent of the edge singularity is
completely determined by the dimensionality, independently of the choice of
the protocol, which only affects the coefficient through the absolute value of
Ao(7). Thus, this is the first example of a quantity that is “universal” in time
(see section 1.2). Moreover, as we will show in more details in the next section,

in the case of a protocol starting from the critical point m; = 0 we have that
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|Ao(7)]> = 1 independently of the details of the protocol. We also observe
that the edge singularity becomes weaker and weaker as the dimensionality d
of the system is increased, turning from a divergence for d < 2 to a vanishing
distribution for d > 2.

In Fig. 2.4 we plot the value of |\o(7)|* for the protocols defined by Egs.
(2.40) as a function of 7. We see that for the linear, logarithmic, and parabolic
protocols it decreases to zero, with the latter showing oscillations for small 7; in
the case of the quartic protocol, after an initial decrease, it increases and seems
to reach a plateau. This is again a consequence of the fact that the protocol

touches the critical point m = 0, where the mode 0 is gapless.

When the final mass is zero, i.e., my = 0, we instead have

RS asnfi] AR (T) " Q1<
= - n ~ — — 24
2 ;/ke n a2 ; 23n (249)

where we used |\o(7)|* = 1, which is a simple consequence of Eq. (2.38). The

full series is now given by

oSy ['(d)
fc(5> - (27T)d (25)d€<d>7 (250)
with leading asymptotic behavior
oy 1 ['(d)
fe(s) = — 2r)12 (25)7 (2.51)

which, similarly to the previous case, gives for the distribution of the work the

result
(2m)d " 2d+1pyd—1

P(W) = e 2L [5(W) + 4o (2.52)

Thus, in this case the edge singularity is exactly at the origin, as expected from
the final Hamiltonian being gapless, and both the exponent and the coefficient
(apart from the overall factor) are independent of the choice of the protocol, so

again “time universal”.
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Figure 2.4: Plot of the coefficient of the edge singularity |\o(7)|? for the different protocols
defined in Egs. (2.40) with mg = 0.5 and m1 =5, as a function of 7.

2.2.3 Condensation transition

The Gaussian field theory we are considering clearly belongs to class B (see

section 2.1) and its function f(s) is defined for s > —5p, with
AR (2.53)

as already stated below Eq. (2.36). As we can see from Eq. (2.26), m; = 0
implies A7(0) = 1+ O(k); therefore, for a sudden quench sz = 0, implying that
I(w) = 0 for w > w (which is finite for d > 1). The vanishing of I(w) means
that the decay of p(w) becomes algebraic and as a result the cumulants with
n > d diverge [51].

We are now interested in understanding the fate of such a transition when a
generic protocol is performed. The transition is still present if 55 is still zero,
which, as can be read from Eq.(2.53), is equivalent to saying that [Ao(7)| = 1. In
order to address this question let us write \o(t) = p(t)e?® and use Eq. (2.78)

for k = 0 to derive the equations for the modulus and the phase. Doing so, we

get
%p(t) _ —%_fmf sin0(t) (p(t) — 1) (2.54a)
%9(1&) = ;7: ), m %27; M cosa(t) (ﬁ + p(t)) . (2.54D)
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We clearly see that p = 1 is a stationary solution. Therefore, for every protocol
starting from m; = 0, since the initial condition is p(0) = 1 we have that
Ao(7) = 1 and the transition is still present. We, thus, can conclude that is “time
universal”. We also notice that this transition is analogous to the Bose-Einstein
condensation of the ideal Bose gas in the grancanonical canonical ensemble,
and it is determined only by the low-energy part of the spectrum, thus being

universal in the usual sense of statistical mechanics.

2.3 Global protocols in the Ising model

Let us show that the features described above also pertain to the case of a

global protocol in a one-dimensional quantum Ising chain, described by the

Hamiltonian
1L
52 U U'L+1 +g ) z} ) (255)
=1
where of* represent the Pauli matrices satisfying the usual commutation rules

(0%, crf | =9 leaﬁ707 with €*#7 being the completely antisymmetric tensor and
we assume periodic boundary conditions 0%, ; = of. We assume that the trans-
verse field g(t) is changed from g¢(0) = ¢; to g(7) = g;. This model is a
prototypical, exactly solvable example of a quantum phase transition, whose
critical point is g. = 1, separating a quantum paramagnetic phase (¢ > 1) from
a quantum ferromagnetic one, where the order parameter (o*) is different from
zZero.

The Hamiltonian (2.55) can be rewritten in terms of spinless fermions, by per-

forming a Jordan-Wigner transformation,

of =[] - 2cle))ei, (2.56a)
j<i
z _ T
o; =1-2cc;, (2.56b)
with o = (06F + i0?)/2 and the introduced fermionic operators satisfy the
usual commutation relations {c;, ¢/} = d; and {¢c;,¢;} = 0, we can write the
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Hamiltonian as
Hilg(t)] = PTH/[g(t)| P + P~ H  [g(t)| P, (2.57)

where

1+ ]] a;f] (2.58)

are the projectors in the subspace with an even (+) or odd (—) number of

fermions and

L
1
(1) = — 53 [dlew + el +he+ g1 —2de)],  (259)
i=1
with the ¢;’s obeying antiperiodic boundary conditions ¢y, = —c; in the even

sector and periodic boundary conditions ¢y y; = ¢; in the odd one. Since the

ground state lies in the even sector for every finite value of L, we will concentrate

on the sector described by H;[g(t)]", omitting the superscript + in the following.
eim/4

We can now perform a Fourier transform ¢; = <=3, e*iéy, with k odd mul-

tiple of /L so to implement the antiperiodic boundary conditions, getting

Hilg®) =Y (e o) Hult) <+> (2.60)

k>0 C_k

where the matrix Hy, is given by
g t) —cosk  —sink
() = 90 o8 TE O (2.61)
—sink  cosk — g(t)

As in the case of the Gaussian field theory described before, we have reduced
the model to a sum over independent (now fermionic) k£ modes. Thus, also in
this case the moment generating function G(s) factorizes and we can first focus

on a single k£ mode.

2.3.1 Single fermionic mode

The procedure to compute the moment generating function for a single mode

in the fermionic case closely resemble what we have done in section 2.2.1 for
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a single harmonic oscillator. Thus, the first step is to find the operators that
diagonalize the instantaneous Hamiltonian, which we call 4} and (7£)". These

are connected to the Jordan-Wigner fermions by the well-known Bogoliubov

e\ uk(t) —vk(t) N
(éT_k> B (vk(t) ug(t) ) ((fyt_k)T) ? (2.62)

where u} (t) + vi(t) = 1.

transformation

T
The way to choose the coefficients of the transformation is asking that (uk(t) vk(t))

T .
and <_Uk(t) Uk:(t)> are the eigenvectors of Hj with eigenvalues € (t) and

—ex(t), where € (t) = \/1+ ¢g2(t) — 2g(t) cos k. Therefore, we have

—cosk
u(t \/ AU ALy (2.63a)

we(t) = f\/ _COSk. (2.63b)

After having performed the above transformatlon, the Hamiltonian for the single

mode assumes the following diagonal form

Hi(t) = () [(v0) "% + ()™, — 1] - (2.64)

We now define the operators J5(t) and 4_x(t), which are assumed to annihilate

the evolved state up to time t, i.e.,

Yk (t) [r(t)) = 0. (2.65)

Here we remind that |[¢(t)) = U(t)|0), and |0), is the initial ground state
defined by the condition 79, |0), = 0. As in the case of bosons the condition

(2.65) implies that
d
ZE’Yfk@) =0, (2.66)

in the subspace spanned by [ (t)). Therefore, also in this case we will omit
the time dependence for such operators.
We now look for the connection between 4 (¢) and 7, in terms of which the final

Hamiltonian is diagonal. The first step in this direction is to find the equation
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of motion for the Heisenberg operators ;" (t) and [y~ (t)]f, for which we need
to compute the commutators of these operators with the Hamiltonian Hy[g(t)].

Using the Bogoliubov transformation

Vi pe(t)  vi(t) ol
= 2.67
((Wtk)T> <_Vk(t) Mk(t)> <(77k)T> ( )

() = wg(7)ug(t) + ve(7) vk (%), (2.68a)

Vg (t) = uk(T)Uk (t) — vk(r)uk (t), (268b)

with

we are able to rewrite the Hamiltonian as

) = (00 ) (8 j’iZZ)) ((é)*)’ (2.60)

with the coefficients

g(t)gs — cosklg(t) + gs] + 1

ri(t) = () , (2.70a)
si(t) = snkly [ﬁk(( )) ] (2.70b)
With the Hamiltonian in this form it is easy to derive the required equations
of motion
d () re(t)  si(t) 7 ()
i— = : 2.7
dt ([’Vﬁ’f(ﬂ]*) <3k(t) —Tk(t)> <(Vif(t))T> 27
We now make the ansatz
< w0 > _ <ak<t> —b;(t)) ( w ) | (272
Yo @ br(t) ap(t) ) \7lx

in such a way that we transform the equations for the operators in equations

for the coefficients,

d
Zaak(t) = 1 (t)ar(t) + si(t)br(t), (2.73a)
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i%bk(t) = —11(t)bx(t) + sk(t)ax(t). (2.73b)

The initial conditions are given by the coefficients of the Bogoliubov transfor-
mation that connects the operators diagonalizing the Hamiltonian the initial
and final times, since an obvious consequence of Eq. (2.66) is that 7, = 79,.

Thus from from Eq. (2.67), we get

The last step is to write the evolved state [¢(7)) in terms of the operators
Vi Since such a state is annihilated by 4ix(7), which are linearly related
to the the operators diagonalizing the final Hamiltonian (see the translation
into Schroedinger picture of Eq. (2.72)), we know that it will have a quadratic
expression in 7,. By making the same step done in the bosonic case, we indeed
find

(7)) = [ai(r) + b(1) (V) (D) 10).. (2.75)

where 77, [0). = 0. At this point we can readily use Eq. (2.9) to obtain the

characteristic function

Gi(s) = la(T)]” (1 + [ya(r)[Pe™ D), (2.76)

with y,(7) = 2

2.3.2 Full moment generating function

Using the results of the previous section we are now able to write down the full

cumulant generating function for the Ising chain and for a generic protocol g(t),

T 2 ,—2s€(T)
In G(s) :/ dk 1n<1+!yk(7>\ e ) (2.77)
0

L 21 L+ |y (7)?

Following Sec. 2.1, we can identify the two contributions

fels) = = [ §eIn (L + |yx(r)]?e™>*T)) and f; = —1/2f.(0).
We notice that also in this case the general structure does not change by chang-

ing the protocols, which enters only in the function y(7). Also here if we
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Figure 2.5: Plot of f, [see Eq. (2.11)] for different protocols as a function of the duration
7. In (a) they start and end in the same phase, with g; = 1.1 and g5 = 5, while in (b) they
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start and end in different phases, with g; = 0.1 and g¢ = 2. . The considered protocols are
defined in FEq. (2.81) and shown in the inset. In particular the dotted (blue) one is gin, the

dashed (red) one is gpar and the solid (green) one is gquart-

assume an adiabatic protocol, so that the evolved state is the ground state of
the final Hamiltonian, we would have y(7) = 0, implying that P(W') consists in
a single d-function peak at the origin, as expected. If, instead, a sudden quench
is performed on the system, then the state does not evolve and yi(7) = yx(0),
which can be read off from Eq. (2.68) [51].

In the case of a generic protocol yi(7) can be found, determining in such a way
the full distribution functi