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circles indicating the entries that have been switched (0 <+ 1) by the 2-opt move.
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1.4  Comparison between optimal linear-schedule Classical (CA) and Quantum Anneal-
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Introduction

The idea of Quantum Annealing (QA) is a recent offspring of the celebrated simulated
thermal annealing by Kirkpatrick et al. [1]. In simulated annealing, the problem
of minimizing a certain cost (or energy) function in a large configuration space is
tackled by the introduction of a fictitious temperature, which is slowly lowered in the
course of a Monte Carlo or Molecular Dynamics simulation [1]. This device allows
an exploration of the configuration space of the problem at hand, effectively avoiding
trapping at unfavorable local minima through thermal hopping above energy barriers.
It makes for a very robust and effective minimization tool, often much more effective
than standard, gradient-based, minimization methods.

An elegant and fascinating alternative to such a Classical (simulated) Annealing
(CA) consists in helping the system escape the local minima through quantum me-
chanics, by tunneling through the barriers rather than thermally overcoming them
[2, 3]. Experimental evidence in disordered Ising ferromagnets subject to transverse
magnetic fields showed that this strategy is not only feasible but presumably winning
in certain cases [4]. In essence, in quantum annealing one supplements the classi-
cal energy (or cost) function, let us denote it by H;, with a suitable time-dependent
quantum kinetic term, Hyy;, (t), which is initially very large, for ¢ < 0, then gradually
reduced to zero in a given annealing time 7. The quantum state of the system |¥(t)),
initially prepared in the fully quantum ground state |Wg) of H (¢t = 0) = Hy+ Hyin (0),

evolves according to the time-dependent Schrodinger equation

i L W(0) = [y + e (0] 9(0) 1)

to reach a final state |U(¢ = 7)). A crucial basic question is then how the residual

energy
€res (7-) = Efm(T) - Eopt s (2)
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decreases for increasing annealing time 7. Here E,, is the absolute minimum of H,,

and E;,(7) is the average energy attained by the system after evolving for a time 7,

(W(r)|He|¥(T))
(@ (r)[¥(r))

Generally speaking, this question has to do with the adiabaticity of the quantum evo-

Efm(T) =

3)

lution, i.e., whether the system is able, for sufficiently slow annealing (sufficiently
long 7), to follow the instantaneous ground state of H(t) = H, + Hy;,(t), for a ju-
diciously chosen Hy;,(t). The fictitious kinetic energy Hy;,(t) can be chosen quite
freely, with the only requirement of being reasonably easy to implement. For this
reason, this approach has also been called Quantum Adiabatic Evolution [5].

At the level of practical implementations on an ordinary (classical) computer, the
task of following the time-dependent Schrodinger evolution in Eq. 1 is clearly fea-
sible only for toy models with a sufficiently manageable Hilbert space [3, 5]. More
interesting problems — like kinetically constrained systems of small Lennard-Jones
clusters — may become affordable by employing a semi-classical approximation [6]
or an effective Gaussian wave-packet dynamics [7].

However, the most challenging optimization problems remain beyond the grasp
of a direct Schrodinger annealing dynamics. Indeed, optimization problems of prac-
tical interest usually involve astronomically large Hilbert spaces, a fact that calls for
alternative stochastic approaches: Quantum Monte Carlo (QMC). These QMC tech-
niques, in turn, are usually suitable to using imaginary time quantum evolution, where
the 7 i 0, in Eq. 1 is replaced by —# 0;.

Alternatively, a number of recent theoretical papers have applied Path-Integral
Monte Carlo (PIMC) strategies to QA. A certain success has been obtained in sev-
eral optimization problems, such as the folding of off-lattice polymer models [8, 9],
the random Ising model ground state problem [10, 11], Lennard-Jones clusters opti-
mization [12], and the Traveling Salesman Problem [13]. A PIMC-based QA strategy
has proved to be a quite flexible and simple tool, providing often quantitatively better
results than plain CA, for comparable computational cost.

Despite these practical successes, there is no general theory predicting the per-
formance of a QA algorithm, in particular correlating it with the energy landscape of
the given optimization problem, about which very little is known in many practical
interesting cases [14]. The success, in turn, crucially depends on the type and effec-
tiveness of the chosen kinetic energy Hy;,, which in some way strongly influences
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the effective energy landscape. This is a quite unpleasant situation, in view of the fact
that it is a priori not obvious or guaranteed that a QA approach should do better than,
for instance, CA. Indeed, for the interesting case of Boolean Satisfiability problems
[15] — more precisely, a prototypical NP-complete problem such as 3-SAT — a recent
study has shown that PIMC-QA performs definitely worse than simple CA [16]. A
summary of the results of recent applications of PIMC-QA on different optimization
problems is given in Chapter 1.

In order to gain understanding on these problems, we have moved one step back,
and concentrated attention on the simplest textbook problems where the energy land-
scape is well under control: essentially, one-dimensional potentials, starting from a
double-well potential, the simplest form of barrier. On these well controlled land-
scapes we have carried out a detailed and exhaustive comparison between quantum
adiabatic Schrédinger evolution, both in real and in imaginary time, and its classi-
cal deterministic counterpart, i.e., Fokker-Planck evolution [17]. This work will be
illustrated in Chapter 2.

On the same double well-potential, we have also studied the performance of differ-
ent stochastic annealing approaches, both classical Monte Carlo annealing and PIMC-
QA. The CA work is illustrated in Chapter 3, where we analyze the different anneal-
ing behaviors of three possible types of Monte Carlo moves (with Box, Gaussian, and
Lorentzian distributions) in a numerical and analytical way. The PIMC-QA work is
illustrated in Chapter 4, were we show the difficulties that a state-of-the-art PIMC-
QA algorithm can encounter in describing tunneling even in a simple landscape, and
we also investigate the role of the kinetic energy choice, by comparing the standard
non-relativistic dispersion, Hy;, = I'(¢)p?, with a relativistic one, Hy;, = T'(¢)|pl,
which turns out to be definitely more effective.

In view of the difficulties encountered by PIMC-QA even in a simple double-well
potential, we finally explored the capabilities of another well established QMC tech-
nique, the Green’s Function Monte Carlo (GFMC), as a base for a QA algorithm.
This time, we concentrated our attention on a very studied and challenging optimiza-
tion problem, the random Ising model ground state search, for which both CA and
PIMC-QA data are available [10, 11].

A more detailed summary of the results and achievements described in this Thesis,
and a discussion of open issues, is contained in the final section ‘Conclusions and
Perspectives’.
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Finally, in order to keep this Thesis as self-contained as possible, we include in

the appendices a large amount of supplemental material.



Chapter 1

Previous Quantum Annealing studies
on combinatorial optimization
problems

In a quite general way, one could define a combinatorial optimization problem as the
algorithmic task of minimizing a given cost function which depends on the configu-
ration of variables assuming discrete values [18]: it is generally simple to map such
problems on the problem of searching for the ground state of an appropriate Hamilto-
nian depending on Potts (or Ising) spin degrees of freedom [15, 19]. This is the case,
for instance, of the Traveling Salesman Problem [20, 21, 22, 23], Number Partition-
ing [24], Boolean Satisfiability [25, 26], Vertex Covering [27], Graph Coloring [28],

and many others.

Random instances of the problem — i.e., specific realizations of a given problem
with random ingredients — are of particular interest, because they can be investigated
by resorting to powerful techniques developed in the context of disordered statisti-
cal mechanics systems [29]. This physically oriented approach has often provided
insight on the typical-case complexity of problem solving, in contrast with the more
rigorous, but less informative, worst-case complexity theory, which constitutes one of
the corner-stones of theoretical computer science [30]. The basic distinction between
the P and NP complexity classes (that is, in essence, between problems for which a
polynomial algorithm which is able to solve the worst-case instances is known, and
those for which no polynomial algorithm is known) can sometimes be misleading.
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Easy instances of NP-complete problems — the hardest of all the NP problems [31] —,
can easily be found (see, e.g., Ref. [32]), while, sometimes, instances of P problems
can take an exponential time, if local search techniques are used (see, e.g., Ref. [33]).

In the following, we shall briefly illustrate the results obtained by using a Quantum
Annealing (QA) scheme based on Path-Integral Monte Carlo (PIMC) on three repre-
sentative combinatorial optimization problems: searching for the ground state of a
classical Random Ising Model (Sec. 1.1), the Traveling Salesman Problem (Sec. 1.2),
a random Boolean Satisfiability problem (Sec. 1.3). The main idea behind the Path-
Integral — see Sec. 4.1 for a brief introduction to the method, and Ref. [11] or App. C
for a more detailed presentation — is to reduce the quantum partition function Z =
Tre 7 to a classical partition function involving P interacting replicas — known as
the number of Trotter’s slices — of the original system. This is possible by means of

the so-called Trotter theorem:

Tr e AHatHkin) — lim Ty (e_%H”’e_gH’“'"> " )
P—oo
where H,; and Hy,, are, respectively, the classical potential energy one aims at min-
imizing, and the kinetic term providing the quantum fluctuations. In practical appli-
cations, a possibly large but finite P is always considered (which leads therefore to
an approximation of the actual partition function), and the resulting classical partition
function is sampled in a rather straightforward way, using, for instance, a Metropolis
Monte Carlo algorithm.

1.1 Ising Spin Glass

This section summarizes the results obtained in Refs. [10, 11]. Determining the
ground state of an Ising Spin Glass can be an extraordinarily difficult task. To get
an idea of the difficulty, it is enough to think that the number of possible configura-
tions of a very small 32x 32 square-lattice Ising model is of the order of 103%, while
the number of electrons in the universe is “just” of the order 10%°! It can be rigorously
shown that, for a three-dimensional (3D) lattice case, the Random Ising model ground
state determination belongs to the NP-complete complexity class [34], but here re-
sults on the simpler two-dimensional (2D) lattice case are reported, where the ground
state energy E;g can be calculated up to sufficiently large sizes (see Ref. [35], and
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Figure 1.1: Residual energy per site for an 80 x 80 disordered 2D Ising model after CA and QA. QA
data for the (optimal) value of PT' = 1 are shown, with T' = 0.05 and P = 20 Trotter replicas. The
actual inverse annealing rate 7 used in the QA has been rescaled (multiplied by P) for fair comparison
with CA. Still, QA is faster than CA. (Taken from Ref. [10]).

www.informatik.uni-koeln.de/ls_juenger/projects/sgs.html).

The Hamiltonian of the Random Ising model in a transverse field is given by:

H=-) Jijoi0; =T Y of = Hy+ Hpin , (1.1)
(,4) i

where J; ; are random Ising couplings between nearest-neighbor sites (i, ), of and o7

are Pauli matrices for the spin at site %, and I is the transverse field inducing quantum

fluctuations.

For a given 2D lattice size L x L, (L up to 80) and for various quenched real-
izations of the random couplings J; ;, drawn from a flat distribution in the interval
(—2,2), several repeated classical and quantum annealings were carried out and pre-
sented in Refs. [10, 11]. At the end of both QA and CA, the system remains generally
trapped at energy Efina = Egs + Népes, N = L?, and the efficiency of each pro-
tocol is monitored by considering the average residual energy per spin, €,.5(T), as
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a function of the annealing time 7. The annealing parameters — the temperature 7’
(CA) or the transverse field I' (QA) — were decreased linearly from the initial value of
Ty = 3 or 'y = 2.5 down to zero, in a given total number total of 7 Monte Carlo steps
(MCS) (i.e., complete sweeps of the whole lattice). Fig. 1.1, containing the results
of a single L = 80 instance, shows that QA is quantitatively superior to CA in the
Ising spin glass case. This numerical evidence is in agreement with the experimental
observation of significantly faster frequency-dependent relaxation rates during QA of
the disordered Ising ferromagnet LiHog 44 Yo.56F4 [4].

1.2 Traveling Salesman Problem

This section summarizes the results obtained in Ref. [13] for the Traveling Salesman
Problem (TSP). Given NV cities and their tabulated inter-distances d; ;, the TSP con-
sists in finding the shortest path connecting them, visiting each city only once and
returning to the starting point. An account of the vast literature about algorithms for
TSP can be found e.g. in Ref. [36], while three classical papers analyzing physics
approaches to the problem are Refs. [21, 22, 23].

As a fist step to a QA optimization, one has to chose a representation for the
classical potential energy H.; of a given configuration (in our case, the length of a
tour), and, most crucially, a suitable source of quantum fluctuations Hy;,. TSP was
mapped [13] to a highly constrained Ising-like model — in a way similar to Refs. [3,
20] — in which each configuration of the system (a valid tour) is associated toa N x N
0/1-matrix 7". For every ordered sequence of cities, TZ] = 1 if the tour visits city
1 immediately after city j, and T” = 0 otherwise. For the symmetric TSP problem
considered in Ref. [13] (a TSP with symmetric distance matrix d;; = d;;), the directed
tour represented by a T, and the reversed tour, represented by the transposed matrix
T*, have exactly the same length. It is then convenient to introduce the symmetric
matrix U = T + T* as representative of undirected tours. The length of a tour can
now be written: .

Hyo(U) = 5 > diUiy =Y diUiy (1.2)

(49) (i)
where (ij) signifies counting each link only once. Hy;, should be chosen in order to
induce fluctuations generating the important elementary “moves” of the problem. De-
ciding which configurations are to become direct neighbors of a given configuration
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Figure 1.2: Left: Representation of an 8-city tour, with the corresponding matrix Tin and []’in =
Tin + Tfn Right: The final tour obtained when a 2-opt move is performed, with a whole section
reversed (dotted line). The matrices Tﬁn and 0ﬁn are shown, the circles indicating the entries that have
been switched (0 <+ 1) by the 2-opt move. The dotted circles in Tﬁn are entries related to the trivial
reversal of a section of the tour. (Taken from Ref. [13]).
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Figure 1.3: Average residual excess length found after CA and QA for a total annealing time 7 (in
MC steps), for the N = 1002 instance pr1002 of the TSPLIB. QA is once again faster than CA.
(Takef from Ref. [13]).
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is indeed a crucial step, because it determines the problem’s effective landscape [37].
A very important move that is often used in heuristic TSP algorithms is the so-called
2-opt move, which consists in eliminating two links in the current tour, (¢; — ¢g)
and (cyy — cy), and rebuilding a new tour in which the connections are exchanged,
(¢t — cp)and (c2 — co) (see Fig. 1.2). Associating a spin variable +1 (—1)
to each entry 1 (0), the whole 2-opt move, when working with U matrices, can be
represented by just four spin-flip operators:

<+01u01) (J;Q,,@) (;2a61)5(221,011) ’
where, by definition, each S ﬂlpS an Ising spin variable (defined as S (QU .
1) = £1) at position (i, j) and at the symmetric position (7, 7), i.e., Sf, = Sijf,
However, this kinetic Hamiltonian does not allow for an obvious Trotter discretization
of the Path-Integral (see discussion in Sec. 4.1), and the PIMC scheme cannot deal
with it (for this purpose, Green’s Function MC methods, that do not use a Trotter
break-up, should be in principle more effective, see Chapter 5). One introduces then
a drastic simplification to the kinetic energy term, by replacing it altogether with a

standard transverse-field Ising form, arriving finally at the Hamiltonian:

HTSP—ZdZ]( ) Z[S +Hcl, (1.3)

This simplified form of kinetic energy no longer fulfills the constraint to take a valid
tour to another valid tour, but this problem is avoided by proposing exclusively 2-opt
moves in the PIMC algorithm [13].

The PIMC-QA algorithm has been tested against standard CA [13] on a bench-
mark TSP problem, namely the printed circuit board instance pr1 002 of the TSPLIB
! This is a structured TSP problem with N = 1002 cities whose optimal tour length
Loy is known exactly. For CA, one can choose an optimal initial temperature T by
first performing several CA with various short cooling times 7 and starting from suffi-
ciently high temperatures. The point where the cooling curves for different 7’s start to
differ identifies an approximate “dynamical temperature” T},,,. For pr1002, T4y, ~
100 was obtained. As expected [36], the optimal 7 for CA approximately coincides
with T},,,. Not surprisingly, for QA the same choice PT" ~ T, yields the optimal

ISee http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB9S
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results, together with the choice I'y = 300. Fig. 1.3 shows the results obtained [13]
for the average percentage best-tour excess length €.pc(7) = (Lpest(T) — Lopt)/ Lopts
both with CA (filled squares) and with QA (open circles). As a reference, the best
out of 1000 runs of the Lin-Kernighan algorithm (one of the standard local-search
algorithms for TSP [36]) is also plotted (dashed line in Fig. 1.3). The results show
that, once again, QA anneals more efficiently, even accounting for the extra factor P
in the total CPU time (rightmost open circles), reducing the error at a much steeper
rate than CA.

1.3 Random Boolean Satisfiability

This final section summarized the results obtained in Ref. [16] for the 3-SAT problem.
In order to state the problem, consider a set of N boolean variables z1, - - - , 25, where
z; = 1 or 0 CTrue’ or 'False’). Denoting by (; the variable z; or its negation Z;, one
then considers the disjunction (logical OR) of 3 variables C' = ((; V (; V (i), which is
called a 3- clause. The random 3-SAT problem consists in deciding if the conjunction
(logical AND) of M different clauses C; ACy - - - AC'y — each clause being formed by
3 variables extracted at random among the /V available, and appearing negated or not
with uniform probability — can be simultaneously satisfied by a truth value assignment
{z;}. If one associates an Ising spin variable S; = (—1)* to each Boolean variable
zi, one can assign to any clause C, involving three variables z;, z;, 2 an energy E,

given by:

where the coupling J,; assumes the value -1 if the variable z; appears negated in

clause a, +1 otherwise. Evidently, £, = 0 if the corresponding clause is satisfied,
E, = 1 otherwise.

As in the case of TSP, archives of hard structured instances exist 2. In addition,
statistical mechanics techniques can be used to determine the phase diagram of the
Random 3-SAT problem [15, 25, 26]. The main parameter determining the hard-
ness of a formula is the ratio « = M /N between the number, M, of clauses and the
number, N, of variables. For o < «, ~ 4.26 it is typically possible to find satis-
fying assignments, but instances particularly hard to solve are expected to be found

2See http://www.intellektik.informatik.tu-darmstadt.de/SATLIB
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Figure 1.4: Comparison between optimal linear-schedule Classical (CA) and Quantum Annealing
(QA) for a 3-SAT problem with N = 10* and @« = M/N = 4.24. CA always performs better than
QA simulated with P = 50 Trotter replicas. The average performance of linear QA is worse than that
of CA, even if an improvement in the results can be obtained by introducing global moves (G) and by
increasing P (in the inset the final average energy found by QA after 2000 iterations for increasing P
is plotted and compared with the average result of a CA of the same length, dashed line). The solid
triangles are the data obtained by the field-cycling QA hybrid strategy discussed in Ref. [16]. (Taken
from Ref. [16]).

if @ > ag ~ 4.15 [38]. It is expected that, due to the proliferation of an exponen-
tial number of metastable states acting as dynamical traps, local search algorithms
get trapped at an energy close to some finite threshold level, lower bounded by the
so-called Gardner energy [39]. The trapping effect induced by the threshold states
cannot be neglected when the instance-size is large (/N > 10000) and large statistical
fluctuations become sufficiently rare [38]. Smaller random formulas are, on the other
hand, often easily solvable by classical simulated annealing and cannot be used as
significant benchmarks.

A set of annealings was performed over a single hard 3-SAT random instance with
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N = 10* and o = 4.24 and presented in Ref. [16]. The kinetic term was chosen to be
a simple transverse field inducing single-spin-flip fluctuations, like in the Ising case,
since no clever sets of moves are known for 3-SAT, unlike TSP [40]. Using an efficient
ad-hoc algorithm (that is presented in Ref. [38]), the chosen formula was tested to be
actually satisfiable, as expected from theory for o < .. As in the case of the TSP
optimization, both 7} for CA and PT for QA have been set equal to T, = 0.3. The
optimal field-ramp range was found to be between I'p = 0.7 and T'; ~ 1073.

A comparison between the performance of the optimal CA and the optimal QA
at P = 50, both with and without global moves (i.e., all sf, k =1--.P are flipped)
[16], is shown in Fig. 1.4. For each point, an average was taken over 50 different real-
izations of the same experiment; in the case of QA, a second average was performed
among the energies of the P replicas, which are in general different. It can be seen
that the linear-schedule CA always performs better than the linear-schedule QA. No
further improvement can be obtained for P > 100, see inset of Fig. 1.4, but P = 50
was chosen in order to extend as much as possible the simulation time. The asymp-
totic slope of the linear-schedule QA curves seems indeed to be definitely less steep
than that of CA, independently of the number of replicas involved in the simulation

and of the use of global moves.



Chapter 2

Annealing by Schrodinger and
Fokker-Planck dynamics

As discussed in the Introduction, a simulated annealing (both thermal or quantum)
takes advantage of a fictitious dynamics in order to find the global minimum of a
multidimensional (discrete or continuous) energy surface (the energy landscape of
the problem). One can introduce such a dynamics in many ways, but a natural choice
is to employ a time-dependent Fokker-Planck equation in the classical thermal case

(see below), and a time-dependent Schrodinger’s equation in the quantum case.

In order to keep the energy landscape of the problem well under control, we con-
centrated our attention on simple one-dimensional potential energies, starting with
the simplest case of a barrier, the double-well potential. This simple example will
be highly instructive in showing the dramatic differences occurring between the two
types of annealing dynamics: essentially, the height of the barrier controls the classi-
cal annealing in a standard Arrhenius activated way, while a Landau-Zener avoided-
crossing tunneling transition controls the adiabaticiy loss responsible for the quantum

annealing behavior.

In the rest of this chapter we shall, first, define in a more precise way the problem
we want to tackle, i.e., comparing Fokker-Planck classical annealing to Schrodinger
quantum annealing. Then, we shall present in detail the annealing results, both classi-
cal and quantum, for the simplest case of a potential with a barrier, a one-dimensional
double-well. We shall then move to a rather amusing case of a one-dimensional po-

tential with many minima, but no disorder, where the behavior of classical and quan-
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tum annealing turns out to be remarkably different (logarithmically slow, the former,
power-law fast, the latter). Finally, the crucial role played by disorder is discussed,
with the example of the one-dimensional random Ising ferromagnet. Details of the

calculations are contained in App. A.

2.1 Schrodinger versus Fokker-Planck annealing: State-

ment of the problem

Suppose we are given a potential V (z), (with x a Cartesian vector of arbitrary dimen-
sion), of which we need to determine the absolute minimum (2 opt, Eopr = V (Zopt))-
Assume generally a situation in which a steepest-descent approach, i.e., the strategy
of following the gradient of V', would lead to trapping into one of the many local
minima of V', and would thus not work. Classically, as an obvious generalization of
a steepest-descent approach, one could imagine of performing a stochastic (Markov)

dynamics in x-space according to a Langevin equation

1

n(T)VV(a:) +&(t) , (2.1)

7=
where the strength of the noise term £ is controlled by the squared correlations m =
2D(T)6;;6(t — t'), with € = 0. Both D(T') and n(T") — with dimensions of a diffu-
sion constant and of a friction coefficient and related, respectively, to fluctuations and
dissipation in the system — are temperature dependent quantities which can be cho-
sen, for the present optimization purpose, with a certain freedom. The only obvious
constraint is in fact that the correct thermodynamical averages should be recovered
from the Langevin dynamics only if n(T)D(T) = kgT, an equality known as Ein-
stein’s relation. ! Physically, D(T') should be an increasing function of 7', so as to
lead to increasing random forces as T increases, with D(T = 0) = 0, since noise
is turned off at 7" = 0. Classical annealing could be in principle performed through
this Langevin dynamics, by slowly decreasing the temperature 7'(¢) as a function of

time, from some initially large value T, down to zero. Instead of working with the

Nt is easy to see, by direct substitution in Eq. 2.2, that, at constant T, the Boltzmann distribution
e~ V(@)/kBT ig a stationary solution of the Fokker-Planck equation only if 77 and D satisfy the Einstein’s
relation, n(T)D(T) = kpT.
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Langevin equation — a stochastic differential equation — one might equivalently ad-
dress the problem by studying the probability density P(z,t) of finding a particle at
position z at time ¢. The P(z, t) is well known to obey a deterministic time-evolution
equation given by the Fokker-Planck (FP) equation [41]:

0 1
o = @)

o div (PVV) + D(T)V?P. (2.2)
Here, the second term in the right-hand side represents the well known diffusion term,

proportional to the diffusion coefficient D(T'), whereas the first term represents the
effect of the drift force —VV, inversely proportional to the friction coefficient n(T") =
kgT/D(T). Annealing can now be performed by keeping the system for a long
enough equilibration time at a large temperature 7j, and then gradually decreasing
T to zero as a function of time, 7(¢), in a given annealing time 7. We can model this
by assuming

T(t)=Tof(t/T),

where f(y) is some assigned monotonically decreasing function for y € [0, 1], with
fly <0) =1and f(1) = 0. In this manner the diffusion constant D in Eq. 2.2
becomes a time-dependent quantity, D; = D(T'(t)). The resulting time-dependent
FP equation should then be solved with an initial condition given by the equilib-
rium Boltzmann distribution at temperature 7'(t = 0) = Ty, i.e., P(z,t = 0) =
e~V(@)/ksTo The final average potential energy after annealing, in excess of the true

minimum value, will then be simply given by:
€res(T) = /dx V(z) P(z,t =T) — Eppt > 0, (2.3)

where E,,; is the actual absolute minimum of the potential V.
In a completely analogous manner, we can conceive using a Schrodinger’s dy-
namics to perform a deterministic quantum annealing (QA) evolution of the system,

by studying:
Eh (o 1) = [TV + V(@) b(r.1)

where £ = 1 for a real-time (RT) evolution, while ¢ = —1 for an imaginary-time (IT)
evolution. Here I'(t) = h?/2m; will be our annealing parameter, playing the role that
the temperature 7'(¢) had in classical annealing. Once again, we may take I'(¢) vary-
ing from some large value 'y at t < 0 — corresponding to a small mass of the particle,
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hence to large quantum fluctuations — down to I'(¢ = 7) = 0, corresponding to a
particle of infinite mass, hence without quantum fluctuations. Again, we can model
this with I'(¢) = I'y f(¢/7), where f is a preassigned monotonically decreasing func-
tion. A convenient initial condition here will be 1 (x,t = 0) = 9y(z), where 1y () is
the ground state of the system at t < 0, corresponding to the large value ['(t) = T’y
and hence to large quantum fluctuations. (For such a large I', the ground state will be
often separated by a large energy gap from all excited states.) The residual energy af-
ter annealing will be similarly given by Eq. 2.3, where now, however, the probability
P(z,t = 1) should be interpreted as

_ )P
P = Taw o, oF

In general, the residual energy will be different for a RT or an IT Schrodinger evolu-
tion. We will discuss in some detail RT versus IT Schrédinger evolution in Sec. 2.2.1.

The basic question we pose is which annealing scheme is eventually more ef-
fective, leading to the smallest final residual energies €,s(7). This might seem an
ill-posed question, because the time scales involved in the classical and in the quan-
tum evolution are different, and also because, practically, the two approaches might
involve different computational costs which would imply different CPU time scales.
In other words, it might seem that it only makes sense to ask how well an annealing
scheme performs in a given CPU-time T¢py, with all the unavoidable uncertainty
associated to a CPU-time-related answer (involving, among other things, the pro-
grammer’s skills, the algorithmic choices, and the computer architecture). We will
show, however, that the behavior of €,¢,(7) can be so vastly different for the different
schemes, obviously in strict relation with the form of the potential, that such time

scale concerns are often practically irrelevant. *

2.1.1 The harmonic potential: a warm-up exercise

Preliminary to any further treatment of a potential with barriers, and as a warm-up

exercise which will be useful later on, we start here with the simple case of a parabolic

21f, for instance, €,.;(7) behaves in one scheme as a power-law, 1/7%, and in another as a slowly
decreasing logarithm, 1/ log 7, then the first scheme will be sooner or later more convenient indepen-
dently of most details.
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potential in one dimension, V (z) = kx?/2, which has a trivial minimum in z = 0,
with F,,; = 0, and no barriers whatsoever.

Let us consider classical FP annealing first. As detailed in the App. A.1, itis a
matter of simple algebra to show that, for the harmonic potential, one can write a
simple closed linear differential equation [42, 43] for the average potential energy
€pot(t), which has the form:

%epot(t) — kD, |1 - k}}%(t)epot(t) | 2.4)
the initial condition being simply given by the equipartition value €y (t = 0) =
kgTy/2. As with every one-dimensional linear differential equation, Eq. 2.4 can be
solved by quadrature for any choice of 7'(¢) and D; = D(T(t)). Assuming the an-
nealing schedule to be parameterized by an exponent ar > 0, T'(t) = To(1 — t/7)°7,
7 being the annealing time, and the diffusion constant D(7T’) to behave as a power
law of temperature, D(T') = Dy(T/T,)*P with ap > 0, we can easily extract from
the analytical solution for €, (%) the large 7 asymptotic behavior of the final residual
energy €..s(7) = €pot(t = 7). That turns out to be:
ar

ar(ap—1)+1"

Trivial as it is, annealing proceeds here extremely fast, with a power-law exponent

€res(T) = 7764 with Qg = (2.5)

Q¢4 that can increase without bounds (for instance if ap = 1) upon increasing the
exponent cip of the annealing schedule.

Consider now the Schrédinger evolution problem for this potential,

f%w(x,t) = [—P(t)VQ + gﬁ] Y(z,t)
Y(z,t =0) = 1hy(x) , (2.6)

where ¥g(x) o exp (—Byx?/2) is the ground state Gaussian wavefunction corre-
sponding to the initial value of the Laplacian coefficient I'(¢ = 0) = 'y, and £ = ik
or ¢ = —h for a real time (RT) or an imaginary time (IT) evolution, respectively.
This problem is studied in detail in the App. A.1, where we show that a Gaussian
Ansatz for (x, t), of the form (x, t) o< exp (—Byx?/2) with Real(B;) > 0, satisfies
the time-dependent Schrédinger equation as long as the inverse variance B; of the

Gaussian satisfies the following ordinary non-linear first-order differential equation:

—¢éB, = k—2I'(t)B?
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[k
B,y = By= T 2.7)

Contrary to the classical case, there is no simple way of recasting the annealing prob-

lem in terms of a closed linear differential equation for the average potential energy
€pot(t). The final residual energy €,es(7) = €pot(t = 7) is still expressed in terms of
B, (or better, of its real part R(B;)),

oy LAV @t =nE
S FE NS AR

but the behavior of B; must be extracted from the study of the non-linear Eq. 2.7. The
properties of the solutions of Eq. 2.7 are studied in detail in the App. A.1, where we
show that:

i) €.¢5(7) cannot decrease faster than 1/7, for large 7, i.e., a power-law exponent

€res (7-) ~ 774 is bound to be QQA <1.

ii) Adopting a power-law annealing schedule I'(¢) = I'y(1 — ¢/7)°T, the exponent
Qa4 for the IT case is
ar
ar + 2 ’

Qou = (2.8)

increasing toward the upper bound 1 as ar is increased toward co.

iii) RT quantum annealing proceeds with exactly the same exponent {2g4 as IT

quantum annealing — although 2L (7) > €/ (7) in general —, except that the

limit o — oo (abrupt switch-off of the Laplacian coefficient) is singular in the

RT case.

Summarizing, we have learned that, for a single parabolic valley in configuration
space, both CA and QA proceed with power-laws, but CA can be much more efficient
than QA, with an arbitrarily larger power-law exponent. We underline however that
this is merely an academic matter at this point, steepest descent being much more
efficient than both CA and QA in such a simple case. The power of QA shows up
only when potentials with barriers are considered.
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2.2 The simplest barrier: a double-well potential

Let us take now the classical potential to be optimized as a simple double-well poten-
tial in one-dimension

Veym(2) = %(7 + oz, (2.9)

with Vj, a, and § real constants. In absence of the linear term (6 = 0), the potential has
two degenerate minima located at +a, and separated by a barrier of height ;. When a
small linear term § > 0 is introduced , with da << V4, the two degenerate minima are
split by a quantity Ay & 2da, the minimum at x & —a becoming slightly favored. For
reasons that will be clear in a moment, it is useful to slightly generalize the previous
potential to a less symmetric situation, where the two wells possess definitely distinct
curvatures at the minimum (i.e, their widths differ substantially). This is realized

easily, with a potential of the form:

Voﬁ;Cﬁ + 6z forz >0
Vasym(z) = (27 a2)? : (2.10)
Vo—r— + 0z forz <0

with a; # a_, both positive. (The discontinuity in the second derivative at the origin
is of no consequence in our discussion.) To linear order in the small parameter ¢, the
two minima are now located at x4 = +ay — da3 /(8V}), the splitting between the two
minima is given by Ay = §(ay + a_), while the second derivative of the potential at
the two minima, to lowest order in ¢, is given by:

8o
V”(l' = .’IT:E) = — -
az
Obviously, Vsym 1s recovered if we set ay = a_ = a in Vygym.

We now present the results obtained by the annealing schemes introduced in
Sec. 2.1 above. The Fokker-Planck and the Schrodinger equation (both in RT and
in IT) were integrated numerically using a fourth-order Runge-Kutta method, after
discretizing the z variable in a sufficiently fine real space grid. * (See App. A.3.)
For the FP classical annealing, the results shown are obtained with a linear tempera-
ture schedule, 7'(t) = Ty(1 — t/7) (i.e., ar = 1), and a diffusion coefficient simply

3Typically, we restrict the variable z in the interval [—3, 3], beyond which the potential is too large
and P(z,t) is negligible, and use a grid of up to 1000 points, checking for convergence of the results.
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proportional to T'(t), D; = Dy(1 — t/7) (i.e., ap = 1). Consequently, the friction
coefficient is kept constant in t, n, = kgT'(t)/D; = kgTy/D,. Similarly, for the
Schrodinger quantum annealing we show results obtained with a coefficient of the
Laplacian I'(¢) vanishing linearly in a time 7, I'(t) = To(1 — ¢/7) (i.e., ar = 1).

Fig. 2.1 shows the results obtained for the final annealed probability distribution
P(z,t = 1) at different values of 7, for both the Fokker-Planck (CA, panel (a)) and
the Schrodinger imaginary-time case (IT, panel (b)), for a symmetric double well
potential Vi, (), with V5 = 1 (our unit of energy), ¢ = a4 = a— = 1 (unit of
length), 6 = 0.1. Fig. 2.1(c) summarizes the results obtained for the residual energy
€res(T). Fig. 2.2(a,b,c) shows the corresponding results for an asymmetric double well
potential, Eq. 2.10, witha, = 1.25,a_ = 0.75, and 6 = 0.1.

We notice immediately that QA wins, in both cases, over CA for large enough
value of 7. The RT-QA behaves as its IT counterpart for the symmetric double well,
while it shows a different behavior in the asymmetric case (see below for comments).
To go deeper into the details of the different evolutions, let us begin discussing the
CA data (panel (a) and (c) of Figs. 2.1 and 2.2), which show similar behaviors for
both choices of the potential. Starting from an initially broad Boltzmann distribution
at a high T = Ty, = V4, P(z,t = 0) (solid lines), the system quickly sharpens the
distribution P(z, t) into two well-defined and quite narrow peaks located around the
two minima x of the potential. This agrees very well with expectations based on
the CA in a harmonic potential, which showed that the width of the Gaussian should
decrease linearly in 7 (2c4 = 1 for oy = ap = 1), as is indeed found in our double
well case too. If we denote by p. the integral of each of the two narrow peaks, with
p_ + py = 1, it is clear that the problem has effectively been reduced to a discrete
two-level system problem. The time evolution p. therefore obeys a discrete Master
equation which involves the thermal promotion of particles over the barrier 1}, of the
form:

d Ay +B o B
_1% — [1 —p.|.(t)]€ kBYT(t) _p_l_(t)e kpT() (2.11)

where 7 is an attempt frequency, while B = Vy—V (z) and B+Ay = V-V (z_) are
the potential barriers seen from a particle in the metastable minimum, z ., and in the
true minimum, z_, respectively. Eq. 2.11 was studied by Huse and Fisher in Ref. [44],
where they showed that the asymptotic value of the residual energy €,.s(7) = Ap, (7)
is given by:

A Ay

€res(T) ~ const (77)77‘/ (InA7)° % | (2.12)
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Figure 2.1: (a,b): The annealed final probability distribution P(z,t = 7) at different values of the
annealing time 7, for both the Fokker-Planck classical annealing (CA, panel (a)), and the Imaginary
Time Schrodinger quantum annealing (IT-QA, panel (b)). (c) Final residual energy €,.s(7) versus
annealing time 7 for quantum annealing in Real Time (RT) and Imaginary Time (IT) compared to the
Fokker-Planck classical annealing (CA). The solid line in (c) is a fit of the CA data. The double well
potential (dashed line in (a,b), inset of (¢)) is here given by Eq. 2.10 withay = a_ = a = 1.
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Figure 2.2: Same as Fig. 2.1, for the asymmetric potential in Eq. 2.10 with a;. = 1.25,a_ = 0.75
(dashed line in (a,b), inset of (c)). Notice the different behavior of RT and IT, in the present case.
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Figure 2.3: Instantaneous eigenvalues (a) and ground state wavefunctions (b) of the Schrodinger

problem Hy = Exp for different values of I, for the symmetric potential in Eq. 2.10 withay = a_ =
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Figure 2.4: Same as Fig. 2.3, for the asymmetric potential in Eq. 2.10 with ay = 1.25,a_ = 0.75.
Notice the clear Landau-Zener avoided crossing in (a), indicated by the arrow and magnified in the

inset.
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where 7 is a constant. So, apart from logarithmic corrections, the leading power-

law behavior is of the form €,o; ~ 772v/B

, where the exponent is controlled by the
ratio Ay /B between the energy splitting of the two minima Ay and the barrier B.
As shown in Figs. 2.1(c) and 2.2(c) (solid lines through solid circles), the asymptotic
behavior anticipated by Eq. 2.12 fits nicely our CA residual energy data (solid circles),
as long as the logarithmic corrections are accounted for in the fitting procedure. *
Obviously, we can make the exponent as small as we wish by reducing the linear
term coefficient ¢, and hence the ratio Ay /B, leading to an exceedingly slow classical
annealing.

The behavior of the QA evolution is remarkably different. Starting from Fig. 2.1,
we notice that IT and RT evolutions give very similar residual energies, definitely
faster decaying than the CA data, while the corresponding final wavefunction only
slowly narrows around the minimum of the potential. Notice also the asymptotic

behavior of the residual energy, €,.,(7) o 771/3

, indicated by the dashed line in
Fig. 2.1(c): this rather strange exponent is simply the appropriate one for the Schrodinger
annealing with a linear schedule within an harmonic potential (the lower minimum
valley, see Sec. 2.1.1). The asymmetric potential results, shown in Fig. 2.2, are even
more instructive. The initial wavefunction squared |¢)(z,t = 0)|? corresponds to a
quite small mass (a large I'y = 0.5), and is broad and delocalized over both minima
(solid line). As we start annealing, and if the annealing time 7 is relatively short — that
is, if 7 < 7, with a characteristic time 7, which depends on which kind of anneal-
ing, RT or IT, we perform — the final wavefunction becomes mostly concentrated on
the wrong minimum, roughly corresponding to the ground state with a still relatively
large ['y < I'y (see Fig. 2.4). The larger width of the wrong valley is crucial, giving
a smaller quantum kinetic energy contribution, so that tunneling to the other (deeper)
minimum does not yet occur. By increasing 7, there is a crossover: the system finally
recognizes the presence of the other minimum, and effectively tunnels into it, with a
residual energy that, once again, decays asymptotically as €,.,(7) oc 7-'/3 (dashed
line in Fig. 2.2(c)). There is a characteristic annealing time 7, — different in the two
Schrodinger cases, RT and IT — above which tunneling occurs, and this shows up

as the clear crossover in the residual energy behavior of both IT and RT, shown in

“This is generally speaking a difficult fit: The estimated value of A/B is between 0.14 and 0.22,
depending on the inclusion of sub-leading corrections, to be compared with the theoretical value of
0.22. Neglecting the log-corrections leads to a wrong estimate of the power-law exponent.
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Fig. 2.2(¢c).

These findings can be quite easily rationalized by looking at the instantaneous
(adiabatic) eigenvalues and eigenstates of the associated time-independent Schrodinger
problem, which we show in Fig. 2.4(a,b). Looking at the instantaneous eigenvalues
shown in Fig. 2.4(a) we note a clear avoided-crossing occurring at I' = 'z =~ 0.038,
corresponding to a resonance condition between the states in the two different valleys
of the potential. For I' > I';, 7 the ground state wavefunction is predominantly concen-
trated in the wider but metastable valley, while for I' < I'j,» it is mostly concentrated
on the deeper and narrower global minimum valley. In the full time-dependent RT
evolution, transfer to the lower valley is a Landau-Zener problem [45, 46]: the char-
acteristic time 7, for the tunneling event is given by 77, = hal'y/27A?, where « is
the relative slope of of the two crossing branches as a function of I, 2A is the gap at
the avoided-crossing point, and I is the initial value of the annealing parameter. (For
the case shown in Fig. 2.4, we have 2A = 0.0062, o = 2.3, hence 71,z =~ 18980, see
rightmost arrow in Fig. 2.2(c).) The Landau-Zener probability of jumping, during the
evolution, from the ground state onto the “wrong” (excited) state upon fast approach-
ing of the avoided level crossing is P., = e~"/™% so that adiabaticity applies only if
the annealing is slow enough, 7 > 7.. The IT characteristic time is smaller, in the
present case, than the RT one. We will comment further on this point in Sec. 2.2.1. In
a nutshell, the reason for this is the following. After the system has jumped into the
excited state, which occurs with a probability P,, = e 7/727 the residual IT evolution
will filter out the excited state; this relaxation toward the ground state is controlled by
the annealing rate as well as by the average gap seen during the residual evolution.
Numerically, the characteristic time 7, seen during the IT evolution is of the order of
h/(2A), see leftmost arrow in Fig. 2.2(c), rather than being proportional to 1/A? as
71,z would imply.

Obviously, instantaneous eigenvalues/eigenvectors can be studied for the Fokker-
Planck equation as well; their properties, however, are remarkably different from the
Landau-Zener scenario just described for the Schrodinger case. Fig. 2.5(c) shows the
first four low-lying eigenvalues of the FP equation as a function of 7" (for a symmet-
ric choice of the potential), while Fig. 2.5(a,b) show the corresponding eigenstates
for two value of the temperature, 7/Vy = 1 and T'/V,y = 0.1. (The asymmetric po-
tential cases are virtually identical, and are not shown). The lowest eigenvalue of the
FP operator is identically 0 and the corresponding eigenvector [41] is the Boltzmann
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distribution e~V (@)/ksT

, with roughly symmetric maxima on the two valleys. The first
excited state correspond to distribution peaked on the two valley but with a node at
the origin, and is separated from the ground state by an exponential small Arrhenius-

like gap e B/ksT

Higher excited states are separated by a very large gap, so that,
effectively, only the two lowest lying states dominate the dynamics at small tempera-
ture. The reduction of a continuum double-well FP classical dynamics onto a discrete
effectively quantum two-level system, previously noticed, is quite evident from this
form of the spectrum. On the contrary, the true quantum case never allowed for a dis-
crete two-level system description whatsoever, except perhaps for large I'. For small
enough I' < 'z, in particular, the tower of oscillator states within the valley at z_
is always very close in energy to the actual ground state, and the quantum annealing
evolution reduces effectively to a particle in a single harmonic well. This explains the
rather large width of the final distributions P(z, 7) observed in the quantum case.
Summarizing, we have found that QA and CA proceed in a remarkably different
way. CA is sensitive to the height of the barrier, more precisely to the ratio Ay /B
between the energy offset Ay of the two minima, and the barrier height B. On the
contrary, QA crucially depends on the tunneling probability between the two valleys,
which is reflected in a Landau-Zener (avoided crossing) gap: a wide tunneling barrier
is obviously bad for QA. Finally, we noticed that RT and IT proceed with somewhat

different characteristic times: we discuss this issue a bit more in the following section.

2.2.1 Real- versus imaginary-time Schrodinger evolution

A Schrodinger dynamics in imaginary-time (IT) is clearly much more convenient than
that in real-time (RT) for simulations on current classical computers, but it makes a
difference in the final results? The answer to this question is, we believe: no, it does
not make a difference, in essence, although IT does give quantitatively better results.

To qualify this statement, let us denote by |¥(€)(#)) the solution of the Schrodinger
equation

ELIO(0) = [+ Huanl)] #O (1)
() = [w0)

where we assume that |¥,) is the ground state of the initial Hamiltonian at time ¢,
H, + Hyin(to), while ¢ = ih for RT or £ = —1A for IT. By definition, the final
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Figure 2.5: Instantaneous Fokker-Planck eigenvalues (panel (c)) as a function of temperature T,
and the corresponding eigenstates for two values of T' (panels (a) and (b)). The potential is here the
symmetric one, Viym in Eq. 2.9 with Vg = 1,a = 1, § = 0.1. Similar results (not shown) are obtained
for the asymmetric double well potential Vygym.
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residual energy after annealing up to time ¢y = ¢, + 7, where the kinetic energy is

finally turned off, is given by:

(OO (to + 7)|Ha | 9O (to + 7))

€3} — _
“esT) = GO Gy 1 OO £ 1))

res

We conjecture that the residual energies for the two alternative way of doing a Schrodinger
evolution verify the following: i) the IT residual energy is not larger then the RT one,
that is

I (7)) < B (1) |

res res

and ii) in many problems, the leading asymptotic behavior, for 7 — oo, might be
identical for b2’ (1) and LB (7).

Expectation (1) seems very reasonable: it is simply inspired by the time-independent
case, where it is well known that the IT Schrodinger dynamics tends to “filter the
ground state” out of the initial trial wave function, as long as the gap between the
GS and the first excited state is non-zero. However, we have here a time-dependent
situation, and the result is a priori not guaranteed. We do not have a proof of this
statement, but we have verified it in all the cases where an explicit integration of the
Schrodinger equation has been possible (see, for instance, the results of the previous
section). (Needless to say, we have no proof of (ii) either, but, again, it never failed in
all our tests.)

The simplest time-dependent problem where one can test our conjectures, is the
discrete two-level system (TLS) problem. Here, in terms of Pauli matrices, H, =
Ao?, while Hy;,(t) = —I'(t)o®, with I'(t) = —vt. The full H () is therefore

H(t)=Ac* —T(t)o” . (2.13)

The annealing interpretation is very simple: the classical optimal state is | |), with
energy E,,; = —A, separated from the excited state | 1) by a gap 2A. The kinetic
term induces transitions between the two classical states. Starting from the ground
state of H (t,) at time ¢, = —7 we let the system evolve up to to time ¢ty = g +7 = 0,
when the Hamiltonian is entirely classical, H(t; = 0) = H,; = Ao”. The probability
of missing the instantaneous final ground state | |), ending up with the excited state
| 1), is: Pop(0) = [(1 [¥©(0))[2/(©(0)|¥®(0)). In principle, P,, depends, for
given A, both on the initial ['(¢g) = Iy = v7 and on the annealing time 7. The really

important parameter, however, turns out to be the ratio v between these two quantities,
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Figure 2.6: The probability P.,(0) of ending up into the excited state, given by Eq. 2.14, for the
discrete two-level system problem in Eq. 2.13, for both imaginary-time (IT, dashed line) and real-time
(RT, solid line) Schrodinger annealing. The large-y behavior of P, (0) is, in both cases, given by
Pey(0) ~ 1/(25672).

which determines the “velocity of annealing”: Taking 7 — oo (i.e., g = —o0),
and 'y — oo with I'(t) = —wt for every ¢, the problem can be solved analytically
(in terms of parabolic cylinder functions, see for instance Ref. [3] for the RT case)
for both RT and IT. The probability P.,(0) of ending into the excited state can be
expressed in terms of the variable v = A? /4vy. The explicit expressions, in terms of

Gamma functions, are:

IR+ 1|2
Pl = sa+1mp)
1 T(1+2)
_ i¢o
Ro=e AT(1/2+2) (214)

where ¢g = 37/4 and z = i~y for RT, while ¢y = 7 and z = ~y for IT. A plot of P,,
for both RT and IT is shown in Fig. 2.6 as a function of v = A?/4v. Note that: i)
the IT-result for P,, (dashed line) is always below the RT-result, ii) the difference be-
tween the two curves is only quantitative: one can verify analytically that the leading
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Figure 2.7: Comparison between the RT (solid lines) and the IT (dashed lines) evolution of a Landau-
Zener problem, Eq. 2.15, for several values of the tunneling gap 2A (the values of A shown are
A =0.4,02,0.1,10"2,1072,10"*,1075,10%, while v = 1). The inset shows the two instantaneous
eigenvalues of the problem, . (t), as a function of ¢.
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behavior for large  is the same in both cases, i.e., Pp, & 1/(2567?). Similar results
are obtained by direct numerical integration of the Schrodinger equation for finite I'g
and 7, and with other forms of I'(¢).

With the same toy model, we can illustrate another point raised in the previous
section: what happens to the IT evolution after a Landau-Zener avoided crossing gap
is encountered. The Hamiltonian we consider is essentially that in Eq. 2.13, simply

rotated in spin space,

H(t) = —vto® — Ao” . (2.15)

In absence of the tunneling amplitude A, the two energy levels would cross at ¢t = 0,
while for A > 0 the two instantaneous eigenvalues are simply E(t) = £4/(vt)? + A2
(see inset in Fig. 2.7). Starting with the system in the ground state at t = —oco, we
can monitor the probability of getting onto the excited states at any time ¢, which
we plot in Fig. 2.7 for both the RT and the IT evolution and for several values of
A (taking v = 1). The RT data provide an illustration of the well-known Landau-
Zener result: after a (relatively short) tunneling time, and possibly a few oscilla-
tions, the probability of of getting onto the excited state saturates to a value given by
P.(t = o0) = e ™/ Ag for the IT data, the initial (tunneling) part and the sub-
sequent plateau of the curves are similar to the RT case: the plateau value attained,
call it P

ex’

the same for A — 0); after that, the IT evolutions starts to filter out the ground state

is indeed very close to the RT saturation value (in fact, asymptotically

component — initially present in the state with a small amplitude 1 — P} — through the
usual mechanism of suppression of excited states, leading to a P, (t) which is nicely
fit by the curve

jd o2 s dt' [E+(t')~E-()]

(1—Px)+ pe*wefz JEdt By (t)-B_(t)]

Pe(t) = ,
which asymptotically goes to zero as ¢ — oo. This rather trivial effect of filtering, if
on one hand explains the discrepancy between the IT and the RT evolution observed
in the asymmetric double well case of the previous section, is, on the other hand, of
no harm at all: on the contrary, it provides a quantitative improvement of IT over RT.

In summary, the essential equivalence of IT and RT Schrédinger annealing (with,
moreover, a quantitative improvement of IT over RT) justifies practical implementa-

tions of quantum annealing based on imaginary-time Quantum Monte Carlo schemes.
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Figure 2.8: Parabolic washboard potential resulting in a logarithmically slow classical annealing.
The minima are regularly located at positions ; = ¢a, and the dashed line shows the parabolic enve-
lope potential.

2.3 One-dimensional curved washboard: a potential

with many minima

After discussing at length the annealing problem in a potential with one minimum
and with two minima, we wish to move on to a multi-minima problem, however sim-
ple. There are simple but interesting one-dimensional potentials which allow us to
do that. The first example was proposed and solved by Shinomoto and Kabashima in
Ref. [42, 43], and consists in a parabolically shaped washboard potential. This exam-
ple will display a logarithmically slow classical annealing, showing CA may run into
trouble even in simple models with no complexity whatsoever, whereas quantum me-
chanics can do much better in this case. Consider a wiggly one-dimensional potential
with barriers of individual height ~ B separating different local minima, regularly
located a distance a apart one from each other, i.e., at positions x; = a%. The ith-local
minimum is at energy ¢; = ka?i2/2, so that the resulting envelope is parabolic. In
order to study the dynamics of a particle in this potential, a good starting point is to
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write the master equation for the probability P;(¢) that the particle is in the ith-valley
at time ¢:
1d

thpi(t) — PH_I(t)e*ﬂBH—l,i + Pi_l(t)e*ﬂBiq,i _ H(t) [efﬂBi,Hl + e*ﬁBi,i—l] ,

(2.16)
where « is an attempt frequency, B; ; is the effective barrier from 7 to j, and 8 =
1/kgT. This is a well justified starting point, in view of the results of the previous
sections (Secs. 2.2 and 2.1.1), showing that classical annealing is extremely fast in
reducing the width of a probability distribution within each valley to an essentially
delta-function like sequence of peaks of strength P;. The actual form of the effective
barriers depends on the way we model the details of the potential, with the only
constraint that detailed balance is satisfied, i.e.,

Biiy1 — Bit1i = €1 — 6 = Ay

in such a way that the stationary solution, for constant 7°, is simply the Boltzmann
probability distribution, P;(t — 00) o exp(—¢;/kpT). Ref. [42, 43] takes B;;1, =
B,y = B, while B;;11 = B+ A;and B,_1; = B+ A;_;, with A; = €41 — €.
The potential energy of the valleys enters only through the B; ;, which control the
probability of making transitions between valleys.

In order to study Eq. 2.16, Shinomoto and Kabashima introduced a continuum
limit, by defining a macroscopic coordinate z, such that the minima are at x; =
ia, and writing the equation governing the probability P(x,t) in the limit a — 0.
The derivation involves writing P;1;(¢) in terms of derivatives of P(z,t), keeping
consistently terms up to order a? and expanding exponentials with the assumption that
kpT/(ka?) >> 1. The continuum limit equation governing the evolution of P(z,t)
turns out to be a Fokker-Planck (FP) equation, Eq. 2.2, with an effective diffusion
constant of the form

Do (T) = ya?e B/ksT (2.17)

n(T) = kgT/Deg(T), and an effective drift potential V(z) = kz?/2 given by the
macroscopic parabolic envelope potential. In order to study the annealing properties
of the system, one can then follow exactly the same steps leading to Eq. 2.4, which
applies here too, except that now D is substituted by Deg(7'(t)), which has an expo-
nential activated behavior, Deg (7)) oc e~5/¥8T This exponentially activated Deg (T)
changes the annealing behavior in a drastic way. Recall that the CA exponent (2 4 of
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Sec. 2.1.1 decreases toward zero as the exponent «p in the relationship D(T) o< T*P

increases. Since, close to T = 0, e~ 8/ksT

<< T*P for any arbitrarily large ap, we
could suspect that the behavior of €,¢5(7) will no longer be a power law. In fact, the
surprising result of this exercise [42, 43] is that the optimal annealing schedule 7'()

is logarithmic and that €, (t) converges to 0 at best as °

€res(t) ~ log(t)™" . (2.18)

The reason behind this result is that the time derivative of €,.5(¢) becomes exponen-

~B/kBT i the diffusion

tially small as one anneals 7" toward 0, due to the presence of e
constant, and an exponentially small derivative brings — not surprisingly — a logarith-
mically slow decrease of the function. To put it more physically, consider solving
Eq. 2.4 for a time independent 7'; the solution is trivially

— _t/tre ax —_
6res(t) — 06 ! + T trelax - Q’YkaQ

We observe that the solution converges to the equilibrium (equipartition) value k g7'/2
exponentially with a characteristic time #,¢1,, Which itself increases exponentially fast
with decreasing 7T'. As a result, the system will never be able to follow the decreasing
T till the end of the annealing, by maintaining roughly the equilibrium value €,,; =
kgT/2. Indeed, if we assume for instance T'(t) = Ty(1 — t/7), the relaxation of
the systems will cease to be effective — i.e., the system will fall out of equilibrium —
at a time t*, and temperature 7* = T'(t*), at which t,ea & 7, i.e., when kpT* =~
B/log~T. The residual energy at this point cannot be smaller then the equipartition
value kgT*/2, hence €, ~ B/log~yr as well. This freezing and falling out of
equilibrium for classical systems with barriers seems to provide an ubiquitous source
of logarithms in classical annealing [44].

How would one tackle this annealing problem quantum mechanically? As the

quantum analog of the master equation Eq. 2.16, we propose studying the Schrodinger

SFor the sake of precision, we should stress the fact that the logarithm is, strictly speaking, born
out of the continuum limit, which is indeed valid only for T >> A = ka? /2. If the lattice constant
a is kept finite, there is a minimum non-zero value Ay for the splitting between the bottom of any
two valleys, and, based on the two-level system results, we could anticipate a final power-law behavior
7-Av/B_ Nevertheless, the logarithmic behavior should apply in a whole temperature window with a
final crossover to the power-law behavior.
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evolution governed by a tight-binding Hamiltonian with on-site energies €; and hop-

ping matrix-elements between adjacent sites h; ;41
H=Y"aclei= > hige (cless + ches) (2.19)
i i

The justification and possible limitations of this starting point, over the actual original
continuum problem will be discussed at the end of the section. Here it is enough to
consider that the hopping matrix-elements h; ;1 depend on tunneling through the
barrier separating ¢ from ¢ + 1. The precise form of h; ;1 is likely to be inessential,
including its energy (and hence site) dependence, for which we will assume the semi-
classical (WKB) form:

v, 1/4
hijy1 ~h=hg <?> eVl (2.20)

' = h?/(2ma?) being simply related to the quantum confinement energy of a particle
of mass m in a valley of size ~ a. Here hy and V), are energy parameters related
to the details of the potential and of the barrier, which will play little or no role. If
the mass of the particle m (and hence I' and h; ;1) is kept constant the particle will
explore the potential due to the kinetic term in the Hamiltonian: the correspondence
between the quantum and the classical formulation is that I' plays the role of T', h; ;11
plays the role of the classical transition probabilities, the ground state wavefunction

\\IIEF’GS) |? at a given value of T (or, equivalently, of the hopping term k) plays the role

of the classical equilibrium Boltzmann distribution P9

. The question, once again,
is how to anneal I', by reducing it as a function of time, I'(¢), in such a way as to

squeeze the wavefunction of the system so that the average potential energy

_ Sl
) = w0

is minimal.

As it turns out, the continuum limit is once again useful. One goes to the contin-
uum exactly as in the FP case by using x; = ai, writing ¥ (x;,t) = ¥;(t)/\/a and
expanding everything to order a?. When written in first quantized form, the Hamilto-

nian for the quantum particle in the macroscopic continuum coordinate z is simply

H(t) = —Teg(t)V? 4 V(z)
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where the coefficient of the Laplacian ['og is the quantum counterpart of the classical
effective diffusion constant D.g
ARA

T (t) = ah(t) = a’hg (T%) e~ VW/T®) (2.21)
and V(z) = kx?/2, as in the classical case. The continuum limit quantum problem
has therefore exactly the form we have considered in Sec. 2.1.1, except that I'(t)
in Eq. 2.7 is now substituted by an effective Laplacian coefficient I'eg which has a
highly non-linear, in fact exponential, dependence on the annealing parameter I'(¢).
We know, however, from Sec. 2.1.1, that a non-linear behavior of the type (1 —1¢/7)"
for the Laplacian coefficient leads to a power-law decrease of €, (7) with an exponent
(2g4 which is, remarkably, an increasing function of ar, approaching 1 as ar — oo.
Therefore, contrary to the classical case, where an exponentially activated behavior of
the diffusion constant Deg is strongly detrimental to the annealing (turning a power
law into a logarithm), here the exponential WKB-like behavior of I'eg will do no harm
at all. Indeed, we numerically integrated the relevant equation for By, Eq. 2.7 with I'eg
in place of I, using the exponential WKB expression Eq. 2.21 for I'eg While annealing
['(¢) with a linear schedule, I'(t) = ['g(1 — /7). The integration was performed, as
usual, with a fourth-order Runge-Kutta method, and was carried on up to time ¢t = T,
when the kinetic term in the Hamiltonian ceases to exist. The numerical results (not
shown) have a clear power-law behavior for the quantum annealed (QA) final residual
energy €,.05(t = 7) ~ 7 @4, with a power law exponent {204 which is compatible
with 1. Once again, the exponent appears to be insensitive to the choice of the type of
quantum evolution (RT versus IT), although the numerical values of residual energies
always respect the inequality €£L(7) > €!l (7).

Before ending this section, we would like to discuss briefly the reason for treat-
ing by tight-binding, Eq. 2.19, what was originally a continuum problem with a well
defined potential landscape. As we learned from the double-well case, there is never
a clear-cut discrete model (a discrete two-level system, in that case) describing in a
complete way the continuum Schrodinger problem, in all stages of the annealing. Ob-
viously, when the mass of the particle is very small, the tight-binding approximation
contained in Eq. 2.19 is not particularly good, since more than one state per valley is
generally important to describe the wavefunction accurately. As the mass of the par-
ticle increases, however, the tight-binding approach gets more and more appropriate,
until a further limitation appears: when the mass if very large, it is not legitimate to
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neglect excited states within, say, the central valley compared to the lowest states lo-
calized in metastable valleys. We can imagine that the ultimate behavior of €,.,(7), in
the quantum case, will be actually dominated by the rather trivial problem of squeez-
ing the wavefunction in the lowest central minimum, with its characteristic power-law
exponent (1/3, for instance, for a linear schedule). There is, however, an intermedi-
ate region, between the very short 7 scale, where the full details of the potential are
important, and the very long 7 scale, where the trivial squeezing mentioned above
sets in, and where the tight-binding approximation reasonably predicts a power-law
exponent (of order 1) for €, (7).

We believe that one of the important points that makes QA so different from CA in
the present case is that the spectrum of the instantaneous eigenvalues of the quantum
problem does not show any dangerous Landau-Zener avoided-crossing, and, corre-
spondingly, the ground state wavefunction is always more peaked in the central val-
ley than elsewhere. As in the two-level case, a disorder in the width of the different

valleys would change this result.

2.4 Role of disorder

Despite their disarming simplicity, the three case studies above turn out to be ex-
tremely informative in qualifying the profound difference of QA from CA, and their
surprising consequences. We expect that these results will be very important in un-
derstanding more realistic QA problems. Of course, the cases studied, although in-
structive, do not possess the real ingredient which makes annealing difficult, both in
CA and QA, i.e., some form of disorder in the distribution of the minima. We believe,
for instance, that even an irregular landscape with many minima, as the double-cosine
potential V' (z) = V; cos (2mz) + V, cos (2rrzx) (with r an irrational number) shown
in Fig. 2.9, would already change drastically the behavior of QA from a power-law
to a logarithm. On quite general grounds, Anderson’s localization [47] would predict
that wavefunctions are localized for a genuinely disordered potential for large enough
mass (i.e., small enough kinetic energy bandwidth) in any D > 2 (this localization
occurs for all value of the mass in D = 1, 2). Therefore, quantum annealing should
always, via a cascade of Landau-Zener events, end up into some localized state which
has, a priori, nothing to do with our search of the actual potential minimum.

A very simply illustration of the crucial role of disorder is given by the D = 1
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A W

Figure 2.9: Double cosine potential V() = cos(27x) + cos((1 + v/5)nz), showing an irregular
landscape with many minima.
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disordered Ising ferromagnet:
H= —ZJiafJ; - FZJE”
i i

where J; > 0 are positive random variables in the interval [0, 1], and T is the trans-
verse field inducing quantum fluctuations. Obviously, the ground state is the ferro-
magnetic state with all spins aligned up (or down). However, arbitrarily weak values
of the J; can pin domain walls between up and down ferromagnetic regions, with a
very small energy cost 2.J;. For a finite system with periodic boundary conditions
domain walls appear in pairs, and separate sections of the system with alternating 1
and | ferromagnetic ground states. Given two domain walls pinned at weak-.J; points
adistance L >> 1 apart, healing the system via single spin flip moves requires flipping
L spins, which can be a formidable barrier to tunnel through. The system will have a
very slow annealing (quantum, as well as classical) while showing, at the same time,

no complexity whatsoever: simple disorder is enough.



Chapter 3
Annealing by Classical Monte Carlo

In the previous chapter we studied the annealing dynamics of a simple double-well
system, by means of an exact integration of the dynamical equations of motion:
Fokker-Planck, for the classical case, or Schrodinger, for the quantum case. Unfortu-
nately, such a direct deterministic approach is applicable, for practical purposes, only
to small dimensional optimization problems. To appreciate the difficulty, it is enough
to think that the number of possible configurations, and hence the Hilbert space, of
a small 32x 32 square lattice Ising model is 2!1%2* ~ 103%, an astronomically large
number which forbids a direct deterministic dynamical approach. Since the hard in-
stances of typical optimization problems involve an even larger number of variables,
there is an obvious need for an alternative strategy.

As first pointed out by Kirkpatrick ef al. in their first application of simulated
annealing [1], a classical Monte Carlo scheme can be used to overcome this difficulty.
More recently, Quantum Monte Carlo algorithms have been implemented as a tool for

performing quantum annealing simulations [2, 8, 9, 10, 12, 13].

We recall that by “Monte Carlo” we simply mean a way of implementing a stochas-
tic (rather than exact) dynamics (a Markov chain), by making use of a (pseudo) ran-
dom number generator [48]. However, it is worth observing that deterministic dynam-
ics, FP or Schrodinger, and Monte Carlo, classical or quantum, are not equivalent, i.e.
they do not provide the same dynamics: there is no general relationship between the
(physical) time appearing in the Fokker-Planck or Schrédinger equation, and the cor-
responding classical or quantum Monte Carlo time-step. As a consequence, many
different Monte Carlo dynamics are possible, even if they converge to the same equi-
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librium probability distribution [48].

In this chapter, we shall first give a general introduction to Markov processes
and classical Monte Carlo (MC), and then discuss the results of a set of possible
implementations of MC dynamics for classical annealing of the double well system.
Much of the general framework we will illustrate applies to a general problem in a
(discrete or continuous) multidimensional configuration space, whose generic point
we denote by z. The detailed Monte Carlo results, however, will refer to the double-
well potential of the previous chapter. In the final part of the chapter, we will provide
a theoretical explanation of the MC results from a spectral analysis, both numerical

and analytical, of the relevant Markov transition matrix.

3.1 Markov processes

Suppose we have a system which is described by a certain configuration space z,
possibly multidimensional. The configuration space can be a continuum (like in our
double-well potential), or it can be discrete (for instance, for an Ising problem, z is
just the configuration {S} = (Si,---,Sn) of all the N spins, i.e., a discrete-value
variable in a 2V-dimensional space). For simplicity of notation, we will assume the
z-space to be discrete: a continuum case is recovered, as usual, by changing all the
sums into integrations.

A Markov process (or Markov chain) in x-space is a non-deterministic discrete-
time dynamics, for which the probability of having a configuration x,, at a certain time
t, = nAt, denoted by P,(z,), evolves, as a function of a discrete iteration time %,

according to a Master equation of the form:

Po1(Tns1) = Y W (@nt1,2n) Pulza) | 3.1)

where W (41, x,) is the conditional probability (or transition operator) for moving
from z,, to z,,1 in the given time-step At. The conditional probability, which does
not depend on n due to time homogeneity, is a non-negative and column-normalized

(generally non-symmetric) matrix, 1.e.,

Wiz’ z) >0
Y Wz)=1. (3.2)
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A distinctive feature of a Markov process is that P, ; depends only on P,, and not
on previous times.

The Master equation allows us, in principle, to calculate, iteratively, the time-
evolution of the probability P,, once an initial condition is given, for instance at
iteration n = 0, through a Py(z(). We stress that, although the actual value of the ran-
dom variable z,, at iteration n is not known deterministically (the Markov dynamics
is inherently stochastic), its probability distribution P, (z,) is instead known exactly,
in principle, if the Master equation is solved.

Despite the fact that a general solution of the Master equation is in general not
known, many useful properties can be derived, and a quite general theory is avail-
able for such a mathematical object [41]. First of all, a Markov process is conver-
gent, P, (z) — P.,(z) for n — oo, under quite general circumstances, to a unique
equilibrium distribution (see Ref. [49][page 53ff] for a complete proof). A sufficient
condition for this to occur, is that the transition operator W' is ergodic (i.e., starting
from a configuration z there is a non-vanishing probability of reaching any other con-
figuration z’ in a finite number of Markov time steps) and that is satisfies a detailed

balance condition:

W(z' z) P(z) = W(z,z') P(z") , (3.3)

with some P(z) > 0. ! P(x) appearing in Eq. 3.3 is exactly the unique stationary
solution to which the Master equation converges for n — oo, P, (z) — P(z) =
P(z).

It is possible to take the time-continuum limit of the previous discrete-time dy-
namics: this will be useful later on, in discussing the spectral properties of the Master
equation. Denote, for simplicity, P(x,t,) = P,(x), and rewrite the Master equation

3.1 as a finite difference:

P2 t, + At) — P(2', ty,) W(z', ) W(z,z") ,
N PV pp iy ST 25T g4y
At 2 T ay Pl =3 T P )
TF#x! TH#x!
3.4
In deriving Eq. 3.4 we have made use of the column normalizationof W (>~ W (z, z")

1), and we have got rid of the x = z’ contributions in the two sums, because they can-

I'This relationship indicates that the number of processes undergoing a transition  — ' has to be
exactly compensated, to maintain a stable stationary condition, by exactly the same amount of reverse
processes ' — .
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cel. In the limit At — 0, is is quite natural to postulate [41] that

W' x) = eV =6y + AtW (2!, z) +- - (3.5)

where W(x’ ,x) is a probability per unit time of making a transition from z to z’.

Obviously, the conditions on W in Eq. 3.2 imply that, to leading order in At:

W(z',z) >0 for 2’ #zx
ZW z) = (3.6)

In terms of W, it is immediate to take the limit At — 0 of Eq. 3.4, obtaining:

an ) ZWJ; ) P(z,1) . 3.7)

Notice, finally, that neither W nor 1% are, in general, symmetric matrices. How-
ever, if detailed balance holds, they can be readily symmetrized. This symmetriza-
tion is the precise analogue of the mapping of the Fokker-Planck equation onto an
imaginary-time Schrodinger problem (see App. A.2). Indeed, by dividing both terms
of the detailed balance expression in Eq. 3.3 by (At)\/P(x)P(z'), were P = P,
we immediately see that the matrix

Hy,=— W (', z)\/P(z) = Hyp (3.8)

is symmetric. As a by-product — using the above equation and Eq. 3.5 — we also
obtain that:
W(a',z) = y/P(z!) e 2 (2, x)

(3.9)

If we introduce the (wave)function ¢(z,t) such that P(z,t) = /P (x)¢(x,t), we can
rewrite the Master equation Eq. 3.7 as an imaginary-time Schrodmger problem which
has H as Hamiltonian:

alm 2 ZH“@Mt (3.10)

The minus sign introduced in the definition of H is merely a matter of convenience;

In this way: 1) the imaginary-time Schrodinger problem has the conventional sign,
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and ii) the off-diagonal matrix elements of H are non-positive (see Eq. 3.6), so that
the Perron-Frobenius theorem [49][page 54{f] — which guarantees the uniqueness and
positiveness of the ground state — applies. To finish this rather general section, it is
a very simple matter to verify that ¢o(z) = +/P(z) is a positive eigenfunction of
H with eigenvalue \y = 0. By the Perron-Frobenius theorem, ¢, must then be the
unique ground state of H, and every other eigenvalue of H must be positive ;s > 0.

Summarizing, if a Markov chain satisfies detailed balance and is ergodic, then an
equilibrium distribution P(x) will always be reached, for large enough n, indepen-
dently of the initial condition Py(x) at n = 0. > The convergence for large n (or ¢,
in the time-continuum formalism) is guaranteed to be exponentially fast, and is gov-
erned by e ** where )\; is the smallest non-zero eigenvalue of the symmetric matrix

H associated to the transition operator 1.

3.2 Metropolis algorithm

We now turn to the actual construction of a Monte Carlo (MC) algorithm. For that
purpose, we want to construct a Markov chain (i.e., a W (z', x) satisfying Eq. 3.2)
such that, for large n, the configurations x,, generated are distributed according to a
given probability distribution, P(z) = P,,(z): for instance, in the present context,
the Boltzmann probability Pgoig,mann (). We are free to choose W (', x) as we wish,

and therefore insist that W verifies the detailed balance condition, i.e.,
W (2!, z) Pey(z) = W (x, 2") Poy(z') . (3.11)

How do we do that, in practice? There is a quite large freedom in the choice of W,
and the construction comes therefore in many flavors (Metropolis MC, Heat Bath
MC, etc.). Metropolis and collaborators [50], for instance, introduced the following
very simple scheme. They started considering a trial (attempt) transition probabil-
ity T'(z', z), defining the probability of going from x to z’, which can be chosen with
great freedom, without any requirement of detailed balance. Basically, a trial distribu-
tion 7" must be: 1) simple to implement on a computer, ii) ergodic (any configuration
must be reachable in a finite number of steps), and iii) non-negative (7'(z', z) > 0)
and normalized to one (Y, T'(«', ) = 1). Many simple examples are possible: for

2P(x) is the distribution appearing in the detailed balance equation.
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a continuum problem, for instance, one can take a flat distribution on a compact do-
main (Box), a multidimensional Gaussian, or a Lorentzian (Cauchy) distribution (see
Sec. 3.3 for details). In order to define a W (2', x) satisfying the detailed balance con-
dition in Eq. 3.11, the new configuration =’ generated by the chosen trial transition

probability 7'(x’, ) has to be accepted only with a probability:

A(+',z) = min {1, ?izlxx))iz((fc; } , (3.12)

so that the resulting conditional probability W (z', z) is given by:
W', z) = A(z',z) T(«',z) forz' #x . (3.13)

(The value of W (z,z) is fixed by the normalization condition, ), W(z',z) = 1.)
The proof that detailed balance is satisfied by the W (z', z) in Eq. 3.13 is quite ele-
mentary, and can be found in Ref. [51].

Summarizing, if z,, is a configuration at time ¢,,, the Markov chain iteration, from

tn to t,41, 1s defined in two steps:

1. A move is proposed by generating a configuration x’ according to the trial tran-
sition probability T'(z', z,);

2. The move is accepted, and the new configuration z,, is taken to be equal
to z/, with probability A(x', x,) (practically, a random number &, uniformly
distributed in the interval (0, 1] is extracted, and the move is accepted if £, <

A(z', x,,)), otherwise the move is rejected and one keeps z,,.1 = .

Such a process (trial move followed by an acceptance/rejection step) is the basic
Monte Carlo step, and must be iterated repeatedly.

The length of this MC time series must be carefully chosen. First of all, the
equilibrium distribution is reached only after a suitable number of MC steps n >
Nequitibration, depending on the equilibration time of the process, which could be very
long. * Therefore, average quantities have to be calculated only after having skipped
of the order of Neqguilibration Steps. Secondly, since only a finite number of configura-
tions can be actually generated, one must take into account the statistical error due to

— A1t

3Recall that the leading correction to the n — oo limit is governed by e , where A; is the

smallest non-zero eigenvalue of the symmetric matrix H associated to W (see Sec. 3.1).



3.3 Different trial moves for the double-well potential 49

the truncation of the MC series. Consider the mean value of a given (local) observable
O(z), which can be estimated by:

M=

- 1
0= N 2 O(z;)

Quite generally, two configurations x; and x; will be correlated unless they are sepa-
rated by a suitably long time-interval, of the order of the so-called correlation time. *
The computation of the truncation error involves explicitly the correlation length. In-
deed, the equation var(Q) = Var(o) is valid only if the sampled configurations z; are

completely uncorrelated. ° In more general cases, one must make use of the equation:

var(O)
N
where 7., is the correlation time [53, page 69], which also appears in the so-called

var(0) = (14 27eor), (3.14)

autocorrelation function:
N—
_9 __t
C(t E x(i +1t)x(i) — T° ~ e Teorr .

For a more complete discussion, we refer the reader to Ref. [52].

3.3 Different trial moves for the double-well potential

As stressed in the previous section, the setting up of a MC algorithm to sample a given
equilibrium distribution P, gives a large amount of freedom in the construction of
the transition operator W. Even within the Metropolis algorithm, we still have a large
freedom in choosing the trial transition probability 7'(z’', x).

Let us restrict now our attention to the double-well potential case. The configura-

tion space z is here the real line.

4We stress again that time here has to be understood as number of Monte Carlo steps, i.e., a trial

move followed by an acceptance process.
>The variance of the observable O can be estimated through the formula: var(Q) =

L SN 0%*(z;) — 02, while the variance of the mean of the same observable is given by: var(0) =
(0?)—(0)?, where the angle brackets denote an average over different realizations of the same Markov
chain (see [52]).
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A first obvious choice for T'(z’, z) is given by the Box move (historically, the first
one used [50]):
= if |2’ —z|<0o
Tgos(z', ) = 27
Boa ) { 0  otherwise

where the length parameter o controls the move range. According to the Metropolis

prescription, see Eq. 3.13, the transition operator is written as:

: Peg(z') :
Woa (', ) = 5= min (1, Peq($)> if 0<la'—z/<o
0 if |¢'—2z|>0

(3.15)

An alternative, quite often used, choice for T'(z', z), is given by the Gaussian

Tew(z', z) = \/21_70 exp (_M) |

exp <—@> min (1, Peq(x')) if '#x.

move:

which results in:

1
Weaeu (@', x) =
“ ( ) V2mo

2 P, (z)
(3.16)
Finally, one can also introduce a Lorentzian move:
1 o
T or I7 = T Ny 5 ?
L (£ .Z') 7r(x’—:E)2+02
with a corresponding W given by:
1 o P (2"
Wior(2',2) = = —————min [ 1, =32 if o' . 3.17
Lor (2, T) 7r(:c’—3;)2+02mm( Poo(®) if o' #x (3.17)

In all cases, o controls the move range. We also emphasize that the dependence
of W(z',z) on At is now hidden in the o, which is the only free parameter. © We
note that all the trial moves 71" (Box, Gaussian, and Lorentzian) reduce to a Dirac’s
delta when o — (. Nevertheless, the three choices are very different: the Box distri-
bution has a compact support, while the two others have (long) tails extending over
the whole space. Moreover, the Gaussian and the Lorentzian differ in that the second
moment of the former is finite, while that of the latter diverges. We will see below that
while, by construction, all these W sample the same equilibrium distribution P,,(z),
the Markov dynamics associated to them are different, leading to different annealing
behaviors of the corresponding MC algorithms.

® This is a natural assumption for every diffusive process: the longer is the process time the wider
will be the spreading of the initial distribution. In particular, it is possible to derive the analytical
time-dependence of the move range o (A t) by means of the exponential map, Eq. 3.5.
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3.4 Derivation of the Fokker-Planck equation

Before illustrating the actual MC results, let us pause for a second to explore the
relationship between the continuous-time Master equation, Eq. 3.7, with a certain
choice of transition operator W (see Sec. 3.3), and the Fokker-Planck equation studied
in Chap. 2.

For o “small enough” (with respect to the typical length scales of the potential) it
must be possible to expand W (2, z) in Eq. 3.7 up to the second order in |z — z| (see
Ref. [41][page 214ff]). If we do so, we obtain that the Master Eq. 3.7 reduces to the
following Fokker-Planck equation:

OP(x,t) 0 1
= %s [a1(x) P(z,t)] + 3 [as(z) P(z,t)], (3.18)

where
@) = [ dyly -2 Wiw.o)

are the so-called jump moments of order k. These are the first two terms of an expan-
sion known as Kramers-Moyal series [54][page 63ff]. According to a theorem due to
Pawula [54][page 70ff], such a second-order approximation holds under quite wide
conditions.

On the basis of this small ¢ limit, we expect that the Metropolis dynamics should
reduce, apart from a generally unknown time-scale, to the previously studied Fokker-
Planck dynamics if the conditions are such that the small o limit dominates the dy-

namics. These conditions will be met for the Box trial move, as we shall see.

3.5 Classical Monte Carlo simulations on the double-

well potential

In this section we shall report the results of a classical annealing of the double-well
potential, implemented by means of Metropolis MC employing the three types of trial
moves illustrated in Sec. 3.3. Before illustrating the results, we need to specify a few
more technical details.

As in Chap. 2, we would like to start annealing from an equilibrium distribution
at a given (relatively high) temperature 7. This is easily done, within MC, by per-
forming, before the actual annealing, a (short) equilibrium MC run at a given fixed
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temperature 7 (equilibrium is reached after a short equilibration time at high T).
After this initial equilibration part, the actual annealing starts. In order to compare
with the Fokker-Planck results of Chap. 2, we set 7, = V|, and we employ a linear
annealing schedule: T'(t) = Ty (1 —t/7) (see Sec. 2.1). The internal time ¢ and the
annealing time 7 are now both measured in units of MC steps. In order to calculate
the statistical error of a given quantity, however, we cannot use the technique, adopted
in equilibrium MC, of making very long simulations to accumulate uncorrelated data.
In our out-of-equilibrium case, the statistical error of an observable must be calcu-
lated by performing several independent equilibration-plus-annealing runs, for each
given value of 7.

One last concern regards the choice of the length o parameterizing the range of
the trial move (see Sec. 3.3), and its behavior as a function of ¢ during annealing. o is

strictly correlated with the root mean square (rm.s.) displacement of x
D = ((x(t + At) — z(t))?) .

(We employed D instead of D in order to distinguish the r.m.s. displacement from the
diffusion constant.) At any given fixed 7', we carried out several equilibrium MC runs
at different values of o, with the goal of maximizing the r.m.s. displacement D. 7 This
procedure fixes, for any given 7', the o value which maximizes D.In Fig. 3.1 we plot
the resulting D (top) and o (bottom) versus the temperature 7, for equilibrium MC
simulations with the Box move. The values plotted are also reported in Table 3.1.
It is worth observing (see Table 3.1) that the value of o which maximizes D leads
also to an average acceptance close to 50%, which is a well-known rule-of-thumb
for optimal sampling in equilibrium MC simulations. Fig. 3.1 shows also power-law
interpolations for both the quantities shown. Admittedly, the results are a bit scattered,
but the approximation D o< T and ¢ o T/2 seems to catch the main data trend. There
is also a simple physical reason behind such a behavior. Indeed, D is related to the
diffusion constant D appearing in the Fokker-Planck equation D = D/(2At) (in the
short-time approximation, A ¢ — 0), and one expects that the Einstein relation D
T (originally stated for the Brownian motion, and nowadays understood in a more
general context of the Langevin equation theory) holds [41][page 217ff]. Moreover,

being o the natural length-scale of the displacement, we expect Dxo’>xT.

"By equilibrium simulation we mean that the temperature was held fixed during the simulation.
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Figure 3.1: Optimal r.m.s. displacement D and parameter o versus T for equilibrium MC simula-
tions with the Box trial move. The straights lines are power-law interpolations.

Summarizing, it seems natural to impose a square-root schedule for the o, i.e.
o(t) = 09 \/T(t)/Tp, and the only parameter we need to fix is the initial condition
0o. From Fig. 3.1, we see that oy = 2.0 for the Box trial move. A similar proce-
dure has been carried out for both the Gaussian and the Lorentzian moves, obtaining,

respectively, g = 2.0, and oy = 2.9.

We finally turn to illustrating the actual annealing results. Fig. (3.2) shows the
average residual energy €,.;(7) at the end of the annealing (see Sec. 2.1) for the three
possible choices of trial move (Box, Gaussian, Lorentzian). The average €,.s(7) and

its error-bar are calculated using 10° independent runs for each annealing time 7. The
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T o D Acceptance
100 3.9 2.89 54%
10 2.2 1.14 57%
1 2.0 0.56 43%
0.1 1.7 0.085 11%
0.01 0.09 | 9.910°4 43%
0.001 | 0.025 | 9.6107° 47%

Table 3.1: Optimal r.m.s. displacement D, parameter o, and average acceptance ration (see text) for
a set of equilibrium MC simulations with the Box trial move, at several temperatures 7.

upper panel of Fig. (3.2) refers to the symmetric double-well potential (SYM), while
the lower one refers to the asymmetric one (ASYM, see Sec. 2.2 for their definition).
As areference, we also plot the results obtained by means of the numerical integration
of the Fokker-Planck equation (see Sec. 2.2). ® First of all, we see that the differences
between the two potential cases — SYM and ASYM - are negligible. We conclude
that, as expected, the actual shape of the potential well does not affect the annealing
dynamics, except for the barrier height. Moreover, the Box trial move leads to results
in close agreement with those obtained by means of the exact integration of the FP
equation. Although the almost perfect superposition of the data is accidental, because
the overall MC time-scale is undetermined, the asymptotic behavior at large 7 is not
accidental. ° Nevertheless, as discussed in Sec. 3.4, in the limit 0 — 0 the Markov
dynamics associated to the MC should reduce to a form of Fokker-Planck dynam-
ics, at least in the case of a Box trial move, where a small o strictly cuts off large
displacements |z’ — z|. (See App. B for a more detailed study of this limit.)

Quite evidently, both the Gaussian and the Lorentzian trial moves allow to reach
residual energy €,.5(7) much below that of the Box move (and of the FP dynamics).

The Lorentzian case is particularly impressive. In Table 3.2, we report the annealing

8We stress that the MC annealing time 7 and that of the FP dynamics are not comparable, and it
would be dangerous to compare anything but the power law behavior in the asymptotic region. In
particular, 7 = 1 in the MC case means that a single MC step has been performed, and, for all practical

purposes, the configurations are still distributed according to the initial equilibrium distribution.
°In general, there is no reason to expect even a linear scaling between exact integration 7 and MC
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exponent ¢4, derived by fitting the asymptotic part of the data €,.,(7) oc 7 5tc4,

Qca
Fokker-Plank | 0.14
Box 0.13
Gaussian 0.31
Lorentzian 1.0

Table 3.2: Annealing exponents (see text) obtained by means of exact integration (Fokker-Planck)
and MC algorithm using several proposal move (Box, Gaussian, Lorentzian). These data refer to the
symmetric (SYM) double-well potential.

A brief discussion is here in order. The fact that the Gaussian trial move is more
effective than the Box one is understandable if one considers that the former always
allows, even at small 7', for long “jumps” over the barrier. What is less obvious,
from this point of view, is why the Lorentzian case, which also allows similar long
“jumps”, is so different, and much more effective, than the Gaussian. This could
be an artifact of the simple potential landscape we considered: it could be that for a
much rougher potential landscape all the MC trial moves could provide comparable
results. We point out, however, that Ref. [55] reports a genuine improvement of the
sampling by making use of the Lorentzian distribution, instead of the Gaussian, for
non-trivial problems. Moreover, in Ref. [56] a good performance of Lorentzian trial
move is reported for the J.J. Thompson problem (finding the equilibrium distribution
of N charged particles on a sphere), and in optimizing the structure of a cluster made
of N Ni atoms. The authors Ref. [56] suggest also that more exotic distributions, like
the non-extensive generalization of the Boltzmann distribution [57], might help the
relaxation dynamics of a classical annealing MC. These speculations apart, the result
that a Lorentzian move is often more effective than a Gaussian is apparently true even
for less-trivial optimization problems. In the remaining part of this chapter we shall
put this insight on a more sound mathematical ground, at least for the double-well

case we are considering.
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3.6 Spectral analysis of a Markov process

The results presented in the previous section show that the choice of the trial move
T(z', x) in the Metropolis MC scheme strongly affects the classical annealing behav-
ior for a double-well potential. We speculated that different moves likely lead to very
different relaxation times. In the remaining part of this chapter we shall prove this
statement by means of a quantitative analysis.

The idea is very simple. For a fixed temperature 7', the Markov process admits a
spectral analysis: In continuous time, the result is very simple, since we can borrow
it from the imaginary-time Schrddinger form of Eq. 3.10. ' It is straightforward to

verify that the expression for the probability distribution at time ¢ is:

P(z,t) = Peglz,t) + > a;e ™' Py(a) (3.19)

1>0

where {\; }i~o are the positive eigenvalues of -W (and of H, see Sec. 3.1), while
Py(z) = ¢o(z)¢i(z) = \/Peg(w)di(z), {#;} being the eigenvectors of H. The coef-
ficients a; depend on the initial condition. (Since P;(z) is the i-th right-eigenvector
of —W (2!, ), it follows that it will be also the right-eigenvector of W (', z) (see
Eq. 3.5), whose corresponding eigenvalue is \; = e~ %) Eq. 3.19 shows that the
approach to the equilibrium distribution is governed by a relaxation time t,,; = A\,
A1 being the smallest non-zero eigenvalue of -W (recall that Ay = 0). ' Therefore,
the largest is the spectral gap A = \; — Ay = )y, the fastest the system reaches
equilibrium.

How can we use this result in an annealing context? It is natural to assume that,
for a given schedule 7'(t), the best we can do is to maximize the spectral gap for each
given temperature 7°(¢). This is indeed what we will explore in the following. Gen-
erally speaking, finding explicitly the spectral gap A for a given W is an impossible
task; in the present one-dimensional double-well context, however, it turns out that

the spectrum of W is quite simple to obtain by discretizing the real axis. '?

10A similar analysis can be carried out for the original discrete-time Markov chain, see Ref. [41].
! Notice that, as a further consequence of the exponential mapping, \; = 1 — A\; + 0 (A t).
12 One can feel uneasy since in the definition of W (z', z) an undefined constant A ¢ remains, which

seems to spoil the generality of the results. However in the common Metropolis MC practice this
constant time-scale is disregarded, and only the proposal move range o is taken into account (see
Sec. 3.3). In particular, ¢ is the parameter one can tune in order to obtain better convergence of the
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3.7 Numerical diagonalization of 1/

In this section we shall apply the spectral analysis to the proposal moves we defined in
Sec. 3.3. We recall that they are: the Box move, see Eq. 3.15, the Gaussian move, see
Eq. 3.16, and the Lorentzian one, see Eq. 3.17. The main quantity under inspection is
the spectral gap A(T, o) = 1— (T, o) which is a function of both the temperature T
and the proposal move range 0. We obtain this gap (as well as the higher eigenvalues)
by diagonalizing a discretized version of the transition operator W (z', z).

In Fig. 3.3 we plot the gap A versus o at two fixed temperatures, 7" = 0.1 (Top)
and T = 0.001 (Bottom). As a general remark, notice how the behavior of A(o)
for different trial moves is remarkably different. Interestingly, for every proposal
move and every 7', there is a value of o which maximizes the gap A. Recalling that
the relaxation time is proportional to A~! we anticipate that, at every temperature
T, a o(T) exists which provide the most rapid relaxation dynamics. Clearly this
o(T) is a priori a better choice than taking just o(T) = oq (T'/Ty)'/?, as previously
implemented in Sec. 3.5. Notice, however, that at low 7" the dependence of A on o
is no longer smooth. In particular, for 7' = 0.001, the Box trial move shows a sharp
transition from vanishingly small gap values to finite ones, while both Gaussian and
Lorentzian moves show a cusp maximum. At low temperatures, the maximum gap
AL of the Lorentzian move is bigger than A, which is in turn bigger than
AL correspondingly, for small o, we have Aor) (g) > AlGew) (g) > A(Boz) (g),
This is, essentially, the reason for the faster relaxation dynamics of the Lorentzian
move during annealing (i.e., varying 7', with the same o(7") for all move choices).
Notice also that the maximum value of A, A,,,, decreases with temperature in all
cases, as one can realize by comparing the two panels in Fig. 3.3. Moreover the value
of o that maximizes the Lorentzian and Gaussian gap decreases with temperature,
while it seems to converge to a finite value (around o = 1.75) for the Box case.

The Box case is particularly intriguing, and deserves a closer inspection. In

Fig. 3.4 we plot A versus the inverse temperature 1/7 for the case of the Box move,

MC simulation (see Secs. 3.5 and 3.8). Moreover, the W (z', z') defined in Sec. 3.3 are well-defined
operators, while their corresponding W(;c’,a:) are singular, as one can verify by means of inverse

Fourier transformation (the Gaussian and Lorentzian cases are particularly simple).
13We made use of a uniform grid of up to 10® points in the interval [—3, +3] of the z-space, just as

in Sec. 2.2. This discretization appears to be suitable for the low-lying part of the spectrum we want to
study.



58 Annealing by Classical Monte Carlo

and for several values of o. For a whole range of 0, 0 < 0. &~ 1.75, we see a low-
temperature behavior typical of an activated Arrhenius process A(T) oc e~ Bess(@)/T
where B,s(0) is an effective barrier, clearly o-dependent, which the system expe-
riences. Above a certain o, the behavior of A changes drastically, from Arrhenius
to what appears, at first sight, just a constant. A closer inspection on an extended
temperature range, see Fig. 3.5, shows that at very small temperatures an (avoided)
crossing between A = 1 — A1 and 1 — )y occurs, and A starts to decrease again
toward zero as A o< T/2 (see App. B.5). '* Summarizing (more details about this in
Sec. 3.9), the Box trial move shows a sharp (first-order-like) transition at a value of
0. & 1.75, where an effective Arrhenius barrier B,fy(o) vanishes, and the gap starts
to decrease as a power-law, A oc T/2,

One might suspect that the cusps shown in Fig. 3.3 for the Gaussian and Lorentzian
cases signal, similarly to the Box case, some kind of transition. A closer inspection,
however, shows that this is not so: it is just a level crossing phenomenon. In Fig. 3.6
we plot A versus the inverse temperature 1/7" for several values of o, for the Gaus-
sian (Top panel) and Lorentzian (Bottom panel) proposal moves. After an initial
Arrhenius-like behavior, particularly visible for the Gaussian small o cases, the sys-
tem always, and smoothly, changes to a low-7" behavior which is entirely similar to
the large-o Box case: an apparent saturation of A followed by an avoided crossing
between A = 1 — \; and 1 — X, (not shown) and a final A  T/2 (see App. B.5). No
real transition exist in the Gaussian and Lorentzian case: the cusp in Fig. 3.3 moves

down toward smaller and smaller values of o for decreasing 7.

3.8 Results of Classical Annealing with optimal (7

In the previous section we argued about the possibility of an optimal choice for the
proposal move range o(7"). This choice should guarantee the fastest instantaneous
relaxation toward the instantaneous equilibrium distribution P,q(z) at any given tem-
perature. The classical annealing performance is expected to be greatly improved by
such a choice of o (7).

14 Notice that at very large T the eigenvalues saturate. This is a consequence of the Metropolis
algorithm: For T — oo, the acceptance factor A(z', ) — which does not depends on the proposal
move — goes to one, and therefore we are just diagonalizing the bare transition operator T'(z', ),
which does not depend on 7T'.
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In practice, for each choice of proposal move (Box, Gaussian, Lorentzian), we
have numerically determined the value of o that maximizes the gap A = 1 — \; for
each fixed 7. We will refer here to such an optimal o as o,,:(7). In Fig. 3.7 we plot
such an optimal choice for all the types of proposal moves introduced in Sec. 3.3.
For comparison, we also show the o(7") we employed in Sec. 3.5, which is definitely
smaller than o, for given value of T'.

Having done this, we have then performed classical MC annealing runs, similarly
to those reported in Sec. 3.5, with the usual linear annealing schedule for the tempera-
ture T'(t) = Ty (1 — t/7), where 7 is the annealing time. In Fig. 3.8 we show the MC
annealing results for the symmetric (Top) and asymmetric (Bottom) potential. The
behavior for both choices of the potential is qualitatively similar, and we shall discuss
them together. We stress again that the difference with respect to the runs illustrated
in Sec. 3.5, where we took o = oo(T/Tp)/?, is that, here, 0oy (T) is the optimal
choice of o obtained from the maximum instantaneous gap. In particular, the former
choice was supposed to optimize the diffusion properties of the system, while the
latter choice optimizes the instantaneous relaxation to the equilibrium distribution.
For a theoretical link between these two approaches, see App. B.6. We notice that the
Box and Gaussian results are now very different form the previous ones (see Fig. 3.2).
Moreover, interestingly, Box and Gaussian data fall almost on the same curve, which
is in turn very close to the Lorentzian case, the latter showing once again the best

annealing results. '’

3.9 A model for the low-lying spectrum of the transi-

tion operator

In this section we shall use analytical tools to explain the most relevant features of the
spectra shown in Sec. 3.7.

15 Notice that, in the Lorentzian case, the annealing exponent with o ,,(T) is actually a bit smaller
than that obtained with the naive choice o o< 7'/2 (compare Figs. 3.2 and 3.8). This small discrepancy
is the result of the MC implementation, and of a slight ergodicity loss at small 7'. Indeed, we have
noticed that, for 7 > 10%, the system always ends up, at the end of the Lorentzian annealing, in
the lower minimum, without any component on the metastable minimum. Since, as it turns out, the
Lorentzian oop(T') is slightly larger than the o T'/2 used in Sec. 3.5, this causes slightly larger
fluctuations of the results around the lower minimum.
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The question we want to address has to do with the low-lying spectrum of a Master

equation of the form

Poa(af) =) W(a',z) Pu(a) (3.20)

where W (', ) is the transition operator associated to a certain choice of trial move
in a Metropolis MC scheme (see Sec. 3.3). Equivalently, see the discussion in Sec. 3.1
and Eq. 3.8, we can study the spectrum of the exponential operator e~ AtH,

We shall start treating here the Box case, which admits a simple geometrical ap-
proach. For the general case, instead, we shall give here only the main steps of the
procedure used to extract information on the gap of W, collecting the many technical

details needed in the appendix of the present chapter.

3.9.1 The Box trial move: A simple geometrical interpretation

The Box trial move case shows an intriguing sharp transition of the gap at a critical
value o, ~ 1.75 (see Fig. 3.3). As shown in Fig. 3.9, the effective barrier B.sf(0)
extracted from an Arrhenius fit, A =1 — /_\1(T) o e Bess ()T of the data presented
in Sec. 3.7, goes to zero for 0 — o... There is a simple geometrical explanation for
this critical behavior. First of all, we notice that the value of o, is close to the distance
between the two minima: this suggests that the transition is related to the availability
of a direct jump from the bottom of the metastable well to the other one. If we call z .,
respectively, the minimum in the right and left well, there is a non-trivial solution of
the equation V' (z,) = V' (z) with z; lying between the two minima, z_ < 71 < x4
(see Fig. 3.10): It turns out that o, = x, — 1.

Indeed, for ¢ > o, there is a possible proposed move that brings the system
from z = z, (the metastable minimum) to the point ' = x; on the other side of the
barrier: such a “non-local” move pays no energy (AE = 0), and is therefore certainly
accepted by the Metropolis algorithm. In some sense, for o > o, the barrier is
not seen (or, at least, there are allowed and accepted moves that do not see it), and
By is zero. Consider now the case o < o.,. For every value V- = V(z) + AV,
with AV > 0, there are two equipotential solutions z1(AV') and z5(AV), such that
V(z1) = V(zy) = V, lying between the two minima, but on opposite sides of the
barrier, i.e., with x_ < z1(AV) < z2(AV) < z,. Denote now by d(AV) =
xo(AV) — z1(AV) the distance between such two equipotential points (d(AV) is
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a monotonically decreasing function of AV'). If the box width is o, we can always
find a AV such that 0 = d(AV)), i.e., such that there is a proposed move connecting
x = x5 to ' = x; which, once again, bypasses the barrier. The effective barrier seen
by the system close to the metastable minimum, for a given value of o, is therefore
just (see Fig. 3.10)

Bjf(0) = AV =d (o), (3.21)

i.e., in essence, a piece of length o is cut from the top of the barrier, and effectively
not seen by the system. In other words, the effective barrier B, is just the potential
energy drop AV the system must overcome before a long jump |z’ — x| ~ o is
made available at no energy cost (V(z') ~ V(z)). The value of B.ss(c) obtained
through such a simple geometric construction is shown by a solid line in Fig. 3.9:
the agreement with the numerical data is quite good, with small deviations for very
small values of o, which are likely due to the effect of the finite grid we employed in
diagonalizing the transition operator W (see Sec. 3.7), and to finite T effects. '°

We would like stress that this geometrical picture is strictly true only at zero tem-
perature, and it does not apply to the Gaussian or Lorentzian cases, whose long tails
provide a small non-vanishing chance of making a “long jump” for any value of o.
The treatment of the Gaussian and Lorentzian cases needs, therefore, a more detailed

and technical discussion, to which we shall devote the following subsections.

3.9.2 General case: two-level system approximation

The general case of W associated to trial moves of the Gaussian or Lorentzian form
is much harder to treat, and we have to resort to approximations. As explained in

—AtH _ where the

Sec. 3.1, a reduction to the exponential of a symmetric operator e
appropriate A ¢ is uniquely determined by the move range ¢ — is always possible.
The potential V' (x) will be always assumed to have the usual double-well form. At
very small temperatures, the equilibrium distribution P,,(z) is concentrated around
the local minima at z = x4. Therefore, there is definitely a regime of parameters
where a two-level system approximation for W must hold (see App. B.2). By ex-
ploiting this approximation, one can show (see appendix) that the spectral gap A of

the transition operator W can be expressed in terms of a well-to-well propagator of

SFor 0 — 0, we have that Besy — Vo — V(z4) ~ 0.9, the geometrical barrier height.
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the evolution operator of H as follows:

V-V,

A={(z_le |z, ye T | (3.22)

where T is the temperature and V3. = V(z.). The crucial quantity we need, therefore,
is the well-to-well propagator (z_|e=2*#|z_ ). An expression for this propagator can
be obtained by performing a Trotter decomposition and writing a Feynman integral.

The final result can be cast in the form:

ey o [ av 2w -van e ) ra vy,
o ov

(3.23)

where d(V — V,) is the function introduced in Sec. 3.9.1 (see Fig. 3.10), and K;
accounts for the Gaussian fluctuations around the saddle-point classical solution of
the Feynman integral, which do not modify the important exponentially activated
behavior provided by the term e T (v- V+J2FV7). T(d(V — Vy)), finally, is just the
proposal move distribution: T'(d(V —V,.)) = T(|xe — x1|) = T(x2, x1) (see Sec.3.3).
This rather simple equation for the well-to-well propagator can be further treated

by a standard saddle-point approximation of the relevant integral. We shall discuss
here the cases we are interested in: Box, Gaussian, and Lorentzian.

Box move: 7" was defined in Eq. 3.15. We recall that the function d(V — V), in-
troduced in Sec. 3.9.1, is a monotonically decreasing function of its argument, which
exhibits an infinite first order derivative for V' = V{,. There is no true saddle-point
for such a move, since the functions involved in the exponential part of Eq. B.8 are
all monotonic. On the other hand, — in the case of the Box move — the extremes of
integration in Eq. 3.23 can be taken as [V, d™* (o) + V, ] instead of [V, V{], since its
transition matrix, 7'(d(V — V,)), is zero outside the former interval. Therefore, the
largest contribution to the whole integral is due eitherto V = Vyor V = d (o) +V,,
which are the two integration extremes. It turns out that the latter choice guarantees
the largest exponential, and is therefore the right one. As a consequence, we can write

down that:

_ _ V,—-V_
(:v_|e_AtH|x+) x ef% (d o)+ ) .

This transition amplitude is Arrhenius-like, and so does the gap function (see Eq. B.5)

which reads:
_Begglo)

A(T,0) xe” T
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where B.ff(0) = d~*(0), as anticipated in Sec. 3.9.1 from geometrical considera-
tions. This is indeed the behavior seen in Fig. 3.4.
Gaussian move: 7' was defined in Eq. 3.16. In this case, a true saddle-point is
possible if the following equation has a solution:
1 dV-Vy) 0

T gy AV =V =0, (3.24)

Since g—“ﬁ < 0 and d > 0, then, in the limit 7' — 0 we have that either V = V}
or V = V, are solutions of Eq. 3.24. The second choice guarantees the largest
contribution to the integral in Eq. B.8, and must be therefore selected. The resulting

expression for the transition amplitude is:

(z_le 2|z, ) oce” 2T e 207

and the corresponding gap value is:

d(0)?

A(T,0) x e 207 . (3.25)

Fig. 3.11 shows that such a dependence perfectly fits the simulation data. We em-
phasize that even the coefficient within the exponential part of the fitting function
matches the theory (we recall that d(0) ~ 1.75): only an overall prefactor is used as
fitting parameter.

As observed in Sec. 3.7, the previous equation will be no longer valid for very
small values of the temperature 7', where an (avoided) crossing with the eigenvalue
Ao will occur. On the other hand, for large values of ¢ we see from Fig. 3.11 that
the data deviate from the behavior predicted by Eq. 3.25. This is the consequence of
another level crossing (see App. B.5).

Lorentzian move: 7" was defined in Eq. 3.17. To cut a long story short (calcula-
tions proceed similarly to the Box and Gaussian case), we write down the result. The
gap value is:

A(T,0) x o, (3.26)

and also in this case the model agrees with the data, see Fig. 3.11, within a multiplica-

tive fitting coefficient.
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Figure 3.2: Plot of a Monte Carlo implementation of the classical annealing of a double-well po-
tential, using three types of proposal moves: Box, Gaussian, and Lorentzian. 7 is the annealing time
and €,.5 the residual energy at the end of the annealing (see text). We also report the results of the
Fokker-Planck dynamics, for comparison. These data refer to the symmetric (SYM, Top) and to the
asymmetric (ASYM, Bottom) double-well potential.
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Figure 3.3: Exact diagonalization of the transition operator W, for the symmetric potential case. We
plot the gap A = 1 — \; versus the proposal move range o. The temperature is 7 = 0.1 (Top) or
T = 0.001 (Bottom), in the same units in which the barrier parameter is Vo = 1 (see Sec. 2.2).
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Figure 3.4: Exact diagonalization of the transition operator W, for the symmetric potential, with
Box proposal move. We plot the gap A = 1 — ); versus the inverse temperature 1/7 for several fixed
values of the proposal move range o.
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Figure 3.5: Exact diagonalization of the transition operator W, for the symmetric potential, with
Box move. We plot the gap A — 1 — \; and the next eigenvalue 1 — Xy versus the inverse temperature
1/T foro = 1.78 > oy
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Figure 3.6: Exact diagonalization of the transition operator, for the symmetric potential, with Gaus-
sian (Top) or Lorentzian (Bottom) move. We plot the gap A versus the inverse temperature 1/T for
several fixed values of the proposal move range o.
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also show, for comparison, the schedule o/(T') o T'*/? employed in Sec. 3.5.

Figure 3.7: Plot of the optimal o,,:(T') for the Box, Gaussian and Lorentzian proposal move. We
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Figure 3.8: Plot of Monte Carlo classical annealings for the symmetric (Top) and asymmetric (Bot-
tom) potential. 7 is the annealing time and €,s the residual energy (see text). We report the results
of the exact integration (Fokker-Planck), together with the actual MC data for several proposal moves
(Box, Gaussian, Lorentzian). The MC simulations are performed with an optimal choice for o(T')

obtained from the maximum instantaneous gap (see text).
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Figure 3.9: Plot of the effective barrier B.s (o) versus o for the Box case. The data are extracted
from an Arrhenius fit of the diagonalization data presented in Sec. 3.7, while, for the theory, B¢ ¢ (0) =
d~'(0), see the text. An arrow indicates the position of the critical value o, such that B,z (o) = 0.
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Figure 3.10: Tllustrative sketch of a Box move in a double-well potential. In the upper panel we
consider the case ¢ = o, while in the lower one we illustrate the general case ¢ < o.-.. Here
Vi = V(z4) is the potential at the bottom of the metastable minimum. The meaning of the other
symbols is explained in the text.
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Figure 3.11: Plot of the gap function A for the Gaussian (Top) and Lorentzian (Bottom) proposal
move versus the move range o obtained by numerical diagonalization (see Sec.3.7). The dashed line
represents the fit provided by Eq. 3.25 (Top) and Eq. 3.26 (Bottom), the only fitting parameter being

an overall multiplicative constant.
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Chapter 4

Annealing by Path-Integral Monte
Carlo

In Chap. 2 we studied, by direct numerical integration, the (real- and imaginary-time)
Schrédinger dynamics provided by the time-dependent Hamiltonian
32
H=-T(?) 9.2 +V(z), 4.1
where ['(t) = 1?/(2m(t)) = Ty (1 — %) is the inverse mass parameter, providing
the strength of the quantum fluctuations. This is, in some sense, a paradigmatic im-
plementation of a quantum annealing (QA) strategy. As pointed out in many circum-
stances, this Schrodinger dynamics is a kind of Gedanken application of QA, suitable
only for toy problems with a very limited Hilbert space, and inapplicable on actual
hard optimization problems. In order to become a viable strategy for actual optimiza-
tion problems, QA has to resort to stochastic, i.e., Quantum Monte Carlo (QMC), ap-
proaches, mostly appropriate for an imaginary-time framework (we remind the reader
that, as shown in Chap. 2, working in imaginary time is actually beneficial for QA).
There are several possible QMC techniques on which a QA strategy can be build.
By far the simplest of these QMC techniques is the Path-Integral Monte Carlo (PIMC)
method, which has already been used with some success in the QA context [10, 11, 13,
16]. The method does not addresses the imaginary-time Schrédinger time-dependent
dynamics, but simulates an equilibrium quantum system, held at a small finite tem-
perature 7', where the relevant parameter I'(t) is externally turned off in the course of
a QMC simulation: ¢ is not treated, therefore, as a proper physical time, but only as a
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Monte Carlo time. '

In the present chapter we will explore the potential of a PIMC-based QA strat-
egy on the same simple toy problem treated so far: the one-dimensional double well
potential. The reason for investing effort on such a simple problem, is that the sim-
plicity of the problem landscape will allow us to have a perfect control of all the
ingredients of the method. Indeed, we will learn a lot about PIMC-QA, particularly
the limitations of the method, from investigating such a simple toy problem.

We give a summary of the results and a few final comments in Sec. 4.5.

4.1 The Path-Integral Monte Carlo

The equilibrium properties of our quantum system, for any fixed value of I' = T'(¢),
are all encoded in the quantum partition function

2

Z(8) = Tr [ #T+0)] = / do (ae T 0)a) where T= -1 0 @2)

922
from which all the thermodynamics follows, for instance the internal energy being
given by:

UB) = _88—6 InZ(p) . 4.3)
Here, as usual, 3 = (kg T)~!. We will drop the Boltzmann constant kp from now
on. As we see from Eq. 4.2, Z involves an integral over a positive distribution,
(z|e=PT+V)|z), which involves, however, the very difficult task of calculating the
diagonal matrix element of the exponential of the Hamiltonian H. We will now show
that the calculation of the exponential of the Hamiltonian reduces, at the price of
an enlarged configuration space, to a classical partition function, for which all the
standard tools of classical MC apply.

The standard approach is to rewrite Eq. 4.2 as a Feynman’s Path-Integral [58].
The main mathematical tool employed in such an approach is the so-called Trotter
theorem, which reads:

e BTHY) = 1im (e_% Te-5 ‘7>P : (4.4)

P—oxo

! This strategy parallels in a direct way the philosophy behind the classical Simulated Annealing
technique, where the temperature 7'(t) is also a parameter which is externally driven in the course of a
standard equilibrium MC simulation.
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where P is the number of Trotter’s slices, in which the imaginary time interval [0, ;3]
has been partitioned, each slice being of length At = %. By means of Eq. 4.4,
and inserting P — 1 identities in the form of 1; = [ dx;|;)(x;|, one can rewrite the

partition function (see App. C.1 for this simple textbook derivation) as:

_ R A = 3
Z(B) = (M) / g dz; e +0 (AP, 4.5)

where Sp4[z] is the so-called (euclidean) primitive action:

P-1 2
. m [ Zi41 — &y . .
Spalz] = At ;:O {5 <Tt) + V(a:,)} with zp =1 . (4.6)

(Notice the periodic boundary condition involved in Eq. 4.6, xp = x4, a consequence
of the trace present in Eq. 4.2.)

The similarity of Eq. 4.5 with the classical partition function of a kind of closed
polymer with P beads is evident: the polymer beads x; can be seen as the imaginary-
time snapshots z; = z(iAt),i = 1,---, P, of a fluctuating closed path z(t) in the
enlarged configuration space (x,t), where ¢ is the imaginary time. Two neighbor-
ing beads x; and z;,, interact with harmonic interactions of spring constant K- =
mP?/(hf3)?, originating from the propagator of the quantum kinetic term,

L

@i 4.7)

I

_B
(x;]e PT|IZ'+1> x e

The strength of the harmonic interactions in imaginary time controls the amount of
quantum fluctuations: a large mass m (classical regime) results in a strong K+ and
hence in a very “rigid” polymer, while a small mass m (quantum regime) results in
a very soft and fluctuating polymer. All beads are also subject to the classical poten-
tial V' (z). Once we have reduced our problem to the Path-Integral form in Eq. 4.5,
the standard techniques of classical Metropolis MC can be used, and the resulting
algorithm is what is called a Path-Integral Monte Carlo (PIMC). The most obvious
MC moves to be used are just single bead moves, exactly as in a classical MC (see
Chap. 3).

These are the bare-bones of a PIMC approach. A similar derivation applies to the
Ising problem in a transverse field, with the difference that the spring constant K+
turns into a ferromagnetic interaction, while single bead moves are replaced by single
spin-flip moves. For the problem we are dealing with, a particle in a potential (or
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more generally for systems of quantum particles on the continuum), one can improve
the method just sketched in two possible directions: i) by improving the quality of
the approximation in Eq. 4.5, so as to get a smaller Trotter discretization error for a
given number of Trotter slices P used; ii) by introducing MC moves which are more
sophisticated than just moving a single bead at a time. Regarding 1), we will adopt a
fourth order approximation to the action, which improves the Trotter truncation error
of the partition function from O (A ¢* P) to O (A > P). This leads to an improvement
of the internal energy error from O (A %) to O (A t*). As for the MC move choice (ii),
we will adopt smarter moves, known in the context of classical polymer simulations,
which reconstruct entire pieces of the polymer, instead of a single bead at a time. We
will also appreciate the importance of instanton moves.

We now move to the presentation of the results.

4.2 Results I. I'V-order action and bisection move

The error done in calculating physical quantities, like the internal energy, by em-
ploying the primitive approximation — Egs. 4.5 and 4.6 — is proportional to O (A ¢?),
where At = hf/P. This error can be easily improved: many algorithms which

2 We refer to

achieve fourth-order precision in At, O (At*), have been devised.
App. C.2 for details on this topic. We have adopted the so-called Takahashi-Imada
approximation, which is especially suitable for continuum systems. The partition
function is still given by an expression of the form Eq. 4.5 with the primitive action

Spa replaced by the following Takahashi-Imada action:

P-1 2
m [ ZTiy1 — T4 .
Srralz] = At ;:0 {5 <+Ait) + Veff(m,-)} with zp=1z9, (4.8)

where the only difference with respect to Sp4 is in the potential energy, which now

reads:

1

Vags(a) = Vi) + 5T (807

8V(x))2 |

51 4.9)

2Since we want to use the smallest possible T (large 3), and the computation cost of the PIMC
algorithm scales with P, the use of a fourth-order approximation leads to a sensible speed-up of the
QA simulations.
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Concerning, briefly, the other details of the implementation, we have employed
tools developed in different physical contexts * in order to obtain the best performing
implementation of a PIMC-QA. In particular, we made use of the virial-centroid esti-
mators of the statistical functions (see App. C.3) in order to minimize the fluctuations
in the averages. Moreover, we took advantage of the so-called bisection algorithm
(see App. C.6) in order to propose a more effective set of moves involving many
Trotter’s replicas. * This choice guarantees a fast relaxation to the instantaneous
equilibrium distribution. Finally, we also used global (classical) moves, in the form
of rigid motion of the center of mass of the polymer (See App. C.7), so as to keep
a good sampling in the final part of the annealing, where the mass m is large (I is

small) and quantum moves are suppressed.

Several tests were performed in order to set up the parameters that govern the ac-
curacy and the efficiency of the algorithm. We refer the reader to App. C.8, Secs. C.9
and C.10, for a more detailed discussion of these issues. As for the inverse-mass an-

h2

nealing parameter I'(¢) = T appearing in Eq. 4.8, we decrease it linearly to zero,

['(t) =Ty (1 — f) (it 1s understood here that both ¢ and the total annealing time 7
are MC times, i.e., measured in units of MC steps, each MC step being made of one
bisection move plus one global move). The initial condition is set to 'y = 0.5 (as
in Sec.2.2). For every value of the annealing time 7 we calculated the relevant aver-
ages by repeating several times the same annealing experiment, starting from different

randomly distributed initial conditions (see App.C.10).
In Fig. 4.1 we plot the final PIMC-QA residual energy obtained for both potential

choices, V,5ym (Top) and Vj,,,, (Bottom) (with the same parameters used in Chap. 2),
for a fixed temperature T = 0.03. The statistical errors are evaluated by 10 rep-
etitions of each annealing run for 7 < 108, and 10? repetitions for 7 > 10°. We
employed P = 160 with an [ = 5 bisection level (i.e., moving polymer pieces con-
taining 2° — 1 beads, see App. C.6) for 7 < 10°, and P = 20 with [ = 2 (moving
22 — 1 beads) for 7 > 10°. We stress that the two series of data match perfectly, but
obviously the use of a smaller P allows us to achieve larger annealing times 7, which

3Mainly in the simulation of quantum fluids. See Ref. [59] for a review of the subject.
4 Actually, another sampling technique, the staging algorithm [60], has been previously employed

in the work of Liu and Berne [9] on Quantum Annealing of Lennard-Jones clusters. The staging
method is based on ideas very similar to those of the bisection method and it is also belied to be
equally effective [59][page 331], although it requires a bit more involved numerical computations.
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would be otherwise too computationally heavy. (An analysis of the convergence be-
havior of the algorithm as a function of both I' and P can be found in App. C.8.) In the
Vasym case (Top panel of Fig. 4.1) — which, we recall, presents a Landau-Zener (LZ)
transition (see Sec. 2.2.1) —, the residual energy €,¢;(7) as a function of the annealing
time 7 gets stuck around €,.s = 0.2. Since this energy is comparable to the energy of
the metastable state, V' (x ), and definitely larger than the thermal limit 7'/2 = 0.015,
we can claim that the algorithm failed to follow adiabatically the ground state. For
comparison, we also reported in Fig. 4.1 the residual energy data obtained by the ex-
act imaginary-time Schrodinger annealing (see Sec. 2.2), even if the time-scales of
the two algorithms are definitely different and unrelated. Considering, on the other
hand, the symmetric potential case V,,,,, bottom panel of Fig. 4.1, we notice that the
algorithm succeeds in reaching the thermal limit 7'/2 in a reasonable amount of MC
steps.

From this first comparison between PIMC-QA and exact Schrodinger QA, we
appreciate that the LZ transition leads to a severe slowing down of the Monte Carlo
algorithm, the actual tunneling event being essentially missed by the PIMC algorithm.

This difficulty is also present in a static simulation performed in the neighborhood
of the LZ crossing (occurring at I' ~ 0.038), where we find (see App. C.9) a danger-
ous loss of adiabaticity which calls for an improved sampling of the action: we will

show how this improved sampling is achieved by the introduction of instanton moves.

4.3 Results II. Adding the instanton move

In the previous section we tested an allegedly state-of-the-art PIMC-QA algorithm
for the very simple problem of a particle in a double-well potential, obtaining dis-
appointingly bad results. The essential problem is a sampling crisis: our action
1s accurate, but its sampling does not accurately accounts for the tunneling events,
and this is catastrophic when a LZ crossing occurs (asymmetric potential case). The
well-known cure for such a sampling problem, for the case of a perfectly symmetric
double-well, V (z) = Vy(x* — a?), is the introduction of the so-called instanton move
(see App. C.11). In a nutshell, an instanton is defined has a solution of the classi-
cal equation of motion in the inverted potential which goes from a minimum to the
other. Moreover, the time-reversed path (anti-instanton) is also a solution. Strictly
speaking, the whole classical trajectory takes an infinite (real) time, while the barrier
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overcoming is a very fast process (whence the name instanton). In our implementa-
tion, we made use of the imaginary-time version of an instanton/anti-instanton pair as
a proposal MC move (see App. C.11). In practice, the instanton move proposes to a
subset of the Trotter’s slices an excursion from one minimum to the other. The move
will be accepted according to the usual Metropolis criterion, with an energy compe-
tition between the possible gain in potential energy compensated by the increase in
kinetic energy due to the spring stretchings (at the positions of the instanton and of the
anti-instanton). > Obviously, the instanton move will be not effective in the classical
limit (small T, final part of the annealing), since it describes an inherently quantum
effect: the tunneling precess between the two wells. The interested reader is referred

to App. C.11 for more insights.

Before showing the results obtained, we need to stress an important point: the
instanton move is available only for potentials which are small deformations of a
perfectly symmetric double-well potential — as Vi, (2) and Vg are, see Sec. 2.2—
and is not the general key for solving sampling problems (ergodicity breaking) for
a generic potential, whose landscape is generally poorly known. In essence, we are
playing here an unfair game: we are using a detailed information on the potential

landscape in order to correctly implement the tunneling dynamics in our PIMC.

Fig. 4.2 shows the PIMC-QA residual energy results when the instanton move is
introduced, again for the case of Vj,,, (Top) and V,,, (Bottom). As in the previous
section, we employed P = 160 Trotter’s slices with [ = 5 bisection level, for 7 <
10°, and P = 20 with [ = 2 bisection level for 7 > 10°. Statistical errors are
evaluated with 103 repetitions of every annealing run. We notice that the introduction
of the instanton move causes a sensible improvement of the residual energy slope for
the V,sym potential case: the asymptotic power-law behavior is now quite evident,
€res(T) X 7-%%4  although with an exponent which is only 294 = 0.19 (smaller than
in the Schrodinger case). For the symmetric potential case, the instanton move leads
to a faster convergence to the thermal limit, but does not give a big qualitative change.

We want to stress that the partial acceptance ratio of the instanton moves is very

low — around 1% —, despite the fact that this proposal move was quite “tailored”” on the

3 Even if the harmonic stretching is shared by more that two single bonds, the kinetic energy cost
may be large whenever a too small number of Trotter slices, P, is employed. Nevertheless, the potential
. . 2,
energy can compensate for this loss, provided the I' = 2"—m is not too small.
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potential under investigation. ® Nevertheless, such a move changes quantitatively the
PIMC-QA performance. This is likely due to a somewhat generic feature of systems
with barriers: the importance of rare events in the long-time structural properties.
Unfortunately, the instanton “recipe” — which is natural for a double-well potential
— cannot be generalized to generic landscapes, including more complicated potentials,
not to mention actual combinatorial optimization problem. Nevertheless, the results
obtained are instructive in many respects: they show clearly a big potential limitation
of the PIMC approach, while demonstrating, once more, that a smart choice of the
proposal move — even in the case of PIMC-QA - leads to a sensible improvement of

the annealing performance.

4.4 Results III. Changing Kkinetic energy: The Lorentzian

Move

It is by now a sort of Leitmotiv of the previous and current chapter, that the choice
of the MC move strongly influences the dynamics, and hence the annealing behavior.
We recall, in particular, see Chap. 3, that in the classical annealing case the winning
choice was given by a Lorentzian distributed proposal move, which seldom provides
very long displacements.

In the present PIMC context, however, the non-relativistic kinetic part of the
Hamiltonian Eq. 4.1 forces, in a sense, the choice of Gaussian distributed moves,
because the free propagator of the non-relativistic kinetic energy is a Gaussian, see
Eq. 4.7. 7 The whole bisection algorithm makes strong use — see App. C.4, Secs.C.5
and C.6 — of the Gaussian nature of the free propagator.

It is natural to ask what would be the QA behavior if, instead of the standard non-
relativistic kinetic energy used so far, we employ a relativistic Hamiltonian of the

form

H=T(t)|p|+V(z) . (4.10)

6 A possible explanation is the inherent lack of global symmetry of our potentials with respect
to the perfectly symmetric double-well case, where the instanton and anti-instantons trajectory are

well-defined mathematical objects (see App. C.11).
"This is, as previously noticed, the origin of the harmonic coupling between neighboring Trotter

replicas.
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One immediate consequence of this choice is that the free Gaussian propagator ap-

pearing in Eq. 4.7 is now replaced by a Lorentzian:

1 AtT

| o= AtTp|| .. ——
(wile e N D o

4.11)

With a certain effort, we have succeeded in generalizing the bisection algorithm to im-
plement in a very effective way the dynamics provided by this Lorentzian propagator,
see App. C.12.

We present here the results of a PIMC-QA approach which implements the rela-
tivistic kinetic energy, through a bisection algorithm with such a “Lorentzian move”.
In Fig. 4.3 we report the residual energy results for the case of the V,,, potential
(Top) and Vy,, (Bottom). The results are obtained using P = 40 Trotter’s slices and
I = 2 bisection steps. Averages and statistical errors are calculated, as usual, with 103
repetitions of every annealing run. It is quite clear that — as in the classical case — the
Lorentzian move (alias, in the present context, the relativistic kinetic energy) greatly
speeds up the QA behavior for the difficult Vg4, case. As usual, the V,,,, case does
not show any big qualitative change.

4.5 Summary and discussion

As a way of summary, we would like to briefly stress some of the major points touched
upon in this chapter.

1. Tunneling and sampling difficulties. A tunneling event, and its associated LZ cross-
ing, can cause severe difficulties to an allegedly ‘“state-of-the-art” PIMC-QA
algorithm. The difficulty is associated to a poor sampling of the action which
does not accurately describes the rare, but all-important, tunneling events. This
problem has been cured by the ad-hoc introduction of “instanton moves”, but
this cure, while instructive, is playing an unfair game, i.e., using detailed in-
formation on the potential landscape we want to optimize. The generalization
of these “instanton moves” to more complicated potentials, let alone to generic
hard optimization problem, is basically not available: it would require, among
other things, a precise notion of the location of the minima were tunneling oc-

curs.
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2. Other limitations of PIMC. PIMC-QA suffers from a certain number of other lim-
itations. First of all, it works with a finite temperature T', and this sets up a
thermal energy lower bound below which we cannot possibly go (this limit
was particularly clear in our double-well example). Second, a large number
of Trotter slices P can cause additional sampling problems in that an effective
decorrelation of the configurations becomes harder and harder, even if a multi-
step bisection algorithm is employed. Moreover, the Trotter break-up itself, see
Eq. 4.4, can cause difficulties whenever, for generic kinetic energy 7', the form
of the free propagator, generalizing the simple Gaussian result of Eq. 4.7, is
now known analytically. This was indeed the difficulty met in the Traveling
Salesman Problem (TSP) 1.

3. Role of kinetic energy. The choice of the kinetic energy is clearly all important in
QA: Sec. 4.4, llustrating the improvements in PIMC-QA upon using a relativis-
tic kinetic energy, is particularly instructive. Notice that, in order to sample a
probability distribution required by the (one-dimensional) Lorentzian-bisection
scheme (see App. C.12), we have devised a rejection sampling technique which
has 50% acceptance rate. ® This is the only feasible implementation presently
known. A trivial generalization of our algorithm in D dimensions requires
a CPU time at least D times bigger than for the one-dimensional case. This is
definitely a good theoretical scaling, although the convenience of such a scheme
is not a priori obvious and further tests on higher dimensional problems would

be needed.

In view of the previous points, it is natural to explore alternative Quantum Monte
Carlo schemes for performing stochastic implementations of QA. One such scheme,
which in principle does not suffer from many of the limitations of PIMC, is the
Green’s Function Monte Carlo scheme, which we discuss in the next chapter, with

an application to Ising spin glasses.

8This is at variance with the Gaussian case, where one can sample the distribution exactly, without
rejection.
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Figure 4.1: (Top) PIMC-QA residual energy for the V5, potential, using a fourth-order action and
the bisection algorithm. The dashed line indicates the thermal equipartition limit 7'/2, for T' = 0.03.

As a reference, the results obtained by exact integration of the imaginary-time Schrédinger equation
(see Chap. 2) are reported. (Bottom) Same as above, for a symmetric potential Vi, .
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Figure 4.2: (Top and Bottom) Same as in Fig. 4.1, with the instanton move allowed. As a reference
the results obtained without instanton move are still reported.
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Figure 4.3: Same as in Fig. 4.1, but for a QA based on the relativistic kinetic energy of Eq. 4.10, im-
plemented via a bisection algorithm adapted to Lorentzian moves. As a reference, the results obtained
by exact integration of the imaginary-time Schrodinger and by the previous Gaussian-based PIMC-QA
with and without instanton move are still reported.
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Chapter 5

Annealing by Green’s Function Monte
Carlo

In chapter 4 we studied a Path-Integral Monte Carlo (PIMC) based quantum anneal-
ing (QA) algorithm, focusing our attention on a simple, but highly instructive, toy-
problem: the double well potential. There we learned a few potential dangers of
PIMC-QA, in particular: i) the unavoidable finite temperature 7" used in the simula-
tion, which provides a thermal lower limit to the average residual energies attained by
the algorithm; ii) the possible sampling difficulties (ergodicity breaking) of the PIMC
action associated to Landau-Zener tunneling phenomena.

We propose here to investigate an alternative Quantum Monte Carlo (QMC) based
QA algorithm. A very natural choice for this is provided by the Green’s Function
Monte Carlo (GFMC). ' As for the system on which to test this new GFMC-QA al-
gorithm, a very natural benchmark problem is provided by the Ising spin-glass ground
state search, a challenging optimization problem already addressed through QA in the
recent past [3], particularly through PIMC-QA [10, 11]. We refer the reader to the
Chap. 1, for an illustration of the previous PIMC-QA results on the problem. Here
we simply recall that the Hamiltonian of the problem reads:

H:_ZJiJUiZO;_FZUix:Hcl'FHkm, (5.1)
(4,3) i

where ) (i,jy Indicates a sum over nearest-neighbors, J; ; are random nearest-neighbor
!t

'Depending on details of the method, Diffusion Monte Carlo (DMC) is another name for a similar
approach.
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Ising coupling constants, and o7, of are Pauli’s matrices on site 2. More precisely, the
problem instance we concentrate on is the one which has been analyzed in detail in
Ref. [10, 11], which refers to a two-dimensional (2D) case, with an L x L lattice (with
L = 80), and the J;;’s drawn from a flat distribution in (-2, 2). *

If we denote by {S;} a generic configuration in the Hilbert space (where S; =
£1 are the eigenvalues of o7), the classical function we want to minimize is just
given by the first term in Eq. 5.1, i.e., B ({S;}) = ({S;} Hual{S;}) is our potential
energy. The non-trivial nature of the minimization task is due to the fact that the
number of configurations possible for a finite-size lattice with N = L? sites is 2%,
an astronomical number when N = 802 = 6400, while frustration and disorder in
the couplings J;; leave no simple rule for constructing good energy configurations.
The second term in Eq. 5.1, —=I" ) ;, 07, 1s the needed source of quantum fluctuation,
which plays therefore the role of kinetic energy. The transverse field I' represents
therefore the annealing parameter of the system; as usual, the goal is to follow the
time-dependent dynamics given by the Hamiltonian in Eq. 5.1 with a I'(¢) which

starts from very large values, and vanishes in a certain annealing time 7.

We emphasize that such a transverse field term is not just a theory dream. Indeed,
the whole field of QA was strongly revived by experimental results on the disordered
Ising ferromagnet LiHog 44 Y 56F4, where the transverse field I' was actually applied
to the system and manipulated in the laboratory, to perform the first true quantum

annealing experiment [4, 62].

The rest of the chapter is organized as follows. We begin by describing (Sec. 5.1)
the main ideas behind the GFMC approach and the results of a variational study of
two possible trial wavefunctions (Sec. 5.2). We then move to discussing the results
obtained by GFMC for fixed values of I' (Sec. 5.3). Finally, we present (Sec. 5.4) the
GFMC-QA results.

2The choice of a 2D case is motivated by the fact that the Ising glass ground state search is actually
a polynomial problem in 2D, and very efficient branch and cut algorithms (see Ref. [35] and the URL
www.informatik.uni-koeln.de/ls_juenger/projects/sgs.html)are know to find
the true optimal state energy Egg, which thus provides a clear benchmark for any annealing study. Yet,
the problem has a prohibitively large complexity for any direct application of a deterministic physical
dynamics (classical or quantum), like a true Glass [44, 61].
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5.1 Introduction to GFMC

We give here an account of the main ideas behind a GFMC algorithm. For a more
detailed introduction to the method, see App. D.1 and Ref. [63].

The Green’s Function Monte Carlo (GFMC) is a stochastic technique which is
based on a rather simple but important property of powers of matrices, strongly rem-
iniscent of the discussion of Markov chains and the associated Master equation given
in Chap. 3. We start by explaining the key idea in a deterministic context. Suppose
we want to get the exact ground state wavefunction ¢g(z) of a certain Hamiltonian
H, with corresponding eigenvalue Fy. We start from an initial state ¢y(x) with non-
zero overlap with the exact ground state ¢ (e.g., a randomly generated vector in the
Hilbert space, which is typically never orthogonal to the exact ground state). The ex-
act ground state can be filtered out from 1)y by iteratively applying to the state powers
of 1—AtH, where At is chosen such that (in absolute value) |1 — At FEy| is the largest
eigenvalue of |1 — AtH|. ° More precisely, we define, recursively:

Ynii(z') =Y (@'l — AtH|@)n(x) = Y (0ura — AtHo p)tn(z) . (5.2)
with 1)y the initial state selected. It is simple to show that, for large n, the iterated
state 1, converges to the ground state ¢o(z), if At is small enough that the condition
max; |1 — AtE;| = |1 — AtEy| is satisfied, and there is a finite gap between E; and
FE. Indeed, we can expand the initial wavefunction in the basis of eigenstates ¢; of H
Vo) = >, ai| @) with a; = (¢;|thy), and Y, a7 = 1. Thus, at iteration

of energies E;,

n, we have:

) = ai(1— ALE)"|¢:) - (5.3)

i
It is then clear that, by increasing n, the ground state component in the expansion
(5.3) will grow much faster than all the excited state components |¢;~o), provided
|1 — AEy| > |1 — AE;| for ¢ > 0. Finally, apart for an irrelevant normaliza-
tion factor (1 — AFEjp)", the convergence of 1, to ¢, is obtained with an expo-

3Notice that many operator functions of the Hamiltonian would do the job as well. The most

—AtH \which is however rather difficult

important one is obviously the imaginary-time propagator e
to implement, due to the exponential. Another possible choice is given by A — H where A is a
suitable shift constant which takes care of making |A — Eg| > |A — E;|. What we actually use is

1— At (H — er), where er is an estimate of E.
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nentially increasing accuracy in n, namely with an error proportional to A", where
A = max;z|l — AtE;|/|1 — AtEy|.

The method just described is called iterated power method, and is used in many
context in condensed matter and statistical mechanics. In the description given above,
all we have to do is to repeatedly apply a matrix, 1 — AtH, to a vector, 9,, an
operation which is very straightforward if the Hilbert space of the problem considered
is sufficiently small. “Small” here means that a few million elements can still be
managed, but not much more: on the contrary, a “small” Ising problem on a 32 x 32
lattice has a Hilbert space with 2102 ~ 103%® elements, and the application of the
power method as a matrix-vector product is totally out of question.

Let us see, now, how a stochastic implementation of this idea works. We denote,
as usual, by x the discrete labels specifying a given state of the Hilbert space of our
system (for instance, specifying all the electron positions and spins, for an electronic
problem, or just a spin configuration, for a spin problem). We will also assume that,
given the Hamiltonian H, the matrix elements (z'|H|z) = H, ,, for given z, can
be computed efficiently for each z’. Typically, for a lattice Hamiltonian, though the
dimension of the Hilbert space increases exponentially with the system size L, the
number of non-vanishing entries of the matrix representing H, H, , # 0, is quite
small — of the order of L —. Consider the type of problem required by the iterated
power method:

wn-kl (.’13’) = Z Gm’,wwn(x)
Gpo = (@'1=AtH|z) =6y — AtHy , , (5.4)

where we have defined G , the so-called Green’s function, as the matrix to be ap-
plied to the state. The problem in Eq. 5.4 looks superficially similar to the Master
equation introduced in Chap. 3 (see, in particular, Eq. 3.1) with a few very crucial
differences: 1) the ¢, (x) are not probabilities, but amplitudes, and as a consequence
we do not certainly have ), (z) = 1; ii) the Green’s function G ,, unlike the
transition probability of the Master equation, is not necessarily made of non-negative
elements, and is, in general, not column-normalized. In summary, the process under-
lying the iterated-power method is not a properly defined Markov chain, and, there-
fore, we cannot immediately use a Monte Carlo approach.

Problem ii) above can be quite serious: if some of the matrix elements of G, , are
negative, no possible interpretation of it as a “transition probability” is possible. This
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is at the hearth of the so-called sign problem, which plagues many Quantum Monte
Carlo approaches. In the following, therefore, we will assume that a choice of the
basis is possible in which no sign problem exist, i.e., all matrix elements of G are

non-negative, Gy o, > 0. 4 Still, we miss the correct column-normalization,
S Goe=1-0tY Hy, o, #1, (5.5)

and we have to circumvent this difficulty. A way out, is to factorize G in terms of a
stochastic matrix p,r , — by definition, a matrix with all positive elements p, , > 0,
and with the normalization condition ) _, p, , = 1 for all columns — times the scale
factor b, defined above. Indeed, with the previous definition (5.5) of b,, the matrix
Prrz = Gy 5/by is trivially positive and column normalized, and is therefore the

stochastic matrix we are looking for. In summary, we have split G into:

G:c’,ac = p:c’,:vbac
Dyt = Gw’,w/bw = Gw’,w/ZG:c’,ac . (56)

Do,z Would be a suitable transition matrix for a Markov chain in z-space, but evidently
this is not enough for our purposes, because all the information about b,,, which is in
some way related to the wavefunction amplitude, is not contained in it. The crucial
idea is now to extend the configuration space in which the Markov process is defined,
adding to the x a non-negative weight factor w: this extended configuration space is
then labeled by (z, w), where x runs as usual on the Hilbert space configurations, and
w > 0. The pair (z,w) is often called a walker, because it will be our basic entity in
the Markov chain “random walk”. The weight part will take care of b,, while x will
be taken care of by p,,. More precisely, if (x,,w,) indicates a walker at iteration

time n, in this extended configuration space, we set up the following Markov process:
5

a) generate x,, = «' with probability p, ,,

“This is certainly true for the Ising glass in a transverse field. More generally, since the choice
of the kinetic energy to be used in QA is at our disposal, it is wise to choose the signs in Hy;,, (see
Eq. 5.1) such that no sign problem occurs.

3 Practically, given z,, at iteration n, in order to define 2,1, it is enough to subdivide the interval
(0,1) into smaller sub-intervals of lengths p,/ ... for all possible z' connected to z, with non-zero
probability p, .., which are of order L in number. Then, a pseudo-random number £ between 0 and 1
is generated. This £ will fall inside one of the above defined sub-intervals, with a probability of hitting
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b) update the weight with w1 = wypb, . 5.7

More formally, the Markov process is defined by the following conditional probabil-
ity K(Zp41, Wnt1|Tn, wy), i.e., the transition probability for obtaining a new walker

(p+1, Wny1), at iteration n + 1 given the old one (z,, wy,), at iteration n:

K(Tny1, Wny1|Tn, wy) = pwn+1,wn5(wn+1 — Wby, ) - (5.8)

Thus, the Master equation corresponding to the probability density P,,(zy, w,) in the
enlarged configuration space is given by (see Eq. 3.1): °

Po(z,w') = Z/dw K(z' w'|z,w) P,(z,w) . (5.9)

In words: the walker performs a random walk in the Hilbert space z of the system and
in the weight space w; such a random walk is composed of a standard Markov chain
in z-space, associated to the p,s 5, plus a multiplicative process for the weight w,, —
Wpy1 = wpb,. By moving in this way, the walkers visits every point in the (z,w)-
space with a probability P,(x,,w,). The crucial question is: how is ¥, (x) related
to P,(x,,w,)? It is relatively simple to show that, if we define the wavefunction
amplitude 9, () to be the first moment of P, (z,w) with respect to the weight w,

Tﬁn(ﬂﬁ) =< wnéx,xn >déf Z / dwn W, 5w,wnPn(xna wn) = /dwn W, Pn(xa wn) 3
! (5.10)

then the basic iterative equation (5.4) is perfectly satisfied. 7 Needless to say, one can
construct a formal proof of the convergence of the Markov process in much the same

way as is usually done for the standard Markov chain [63].

the sub-interval corresponding to a certain 2’ which exactly equal to p,- . This clearly defines z,,+1
according to the desired Markov chain (5.7). The walker weight w,, is then automatically updated in
a multiplicative way, as w, — Wp4+1 = Wyby,, and the new walker configuration (&1, Wn41) is
completely defined.

®Here and in the following, the integration limits over the variable w are assumed to run over
the whole range —oo, 0o, the probability density P(x,w) being zero for the values of w that are not

allowed by the Markov chain (e.g., w < 0).
"The average < --- > appearing in Eq. 5.10 is intended over infinitely many independent real-

izations of the Markov chain, distributed according to Py, (z,,w;), and is rarely pursued in actual
practice, since there is too much information contained in v, (z) for every configuration z in the
Hilbert space. The actual goal is to calculated a few physically important averages, like energy and
correlation functions, and not the actual v, (z) itself.
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Summarizing, the power method guarantees convergence, for large n, to the ground
state of H and thus the walker (z,,w,) gives information on the ground state wave-

function ¥gs(x), namely

U (2) =< Wpp g, >y Yas(x) -

On the other hand, the well defined Markov process behind the whole construction
allows, in principle, to follow the iterations stochastically, i.e, through a Monte Carlo
procedure.

Local Energy and Ground State Energy. The ground state energy of the prob-
lem, can in principle be extracted from an appropriate average of the so-called local

energy:

er(z) =Y Hy,. (5.11)

More precisely, if we take the ratio between the averages of the two random variables
wnpe(zy,) and w, over the Markov chain (5.7), and we use Eq. 5.10 and Eq. 5.11, we

easily obtain:

< wper(x,) > . Zmn fdwnwneL(xn)Pn(xnawn) . an er(Tn)¥n(xn) noo o
<wp, > >, J dwnw, Py (2, wy) B > Un(n) Gs -

(5.12)
Indeed, for large n, when v, (x) approaches the ground-state wavefunction ¢gs ()
(up to a normalization constant) the numerator will converge exactly to the ground
state energy Eg times the denominator.

Importance Sampling. According to the GFMC scheme presented until now, the
fluctuations in the energy calculation, Eq. (5.11) and Eq. 5.12, are independent of any
possible knowledge we have of the ground state. Quite often, however, one has a rea-
sonably good guess of the ground state wavefunction 1gs(x), possibly dependent on
external parameters that have been optimized in some way through a Variational Cal-
culation. It would be desirable to use such information in reducing the fluctuations
in the averages we calculate. This is indeed possible through a slight modification
of the GFMC proposed until now, which goes under the name of importance sam-
pling. Suppose we have a reasonable guess of 1)gs(x) in the form of some nodeless

® wavefunction ¥ (z), known as trial (or guiding) wavefunction. It is then enough to

8Due to the fact that the Green’s function is non-negative, and hence the Hamiltonian has non-
positive off-diagonal elements, the Perron-Frobenius theorem [49][page 53ff] guarantees that the
Ground State wavefunction must be unique and positive.
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substitute G with the so-called importance sampling Green’s function:
Gw’,cﬂ = wT(xl)Gw’,:cwfl (CU) . (5.13)

Notice that, in general, Gw/,w i1s no longer symmetric. Whenever Gw',w > 0 for all
(z',z), it is possible to apply the same decomposition in (5.6) to G, defining the
corresponding Markov chain (5.7) with:

Ptz = éw’,w/bx

— e 1 _ fo ¢T($,)Hz’,w 1 _
by = ;Gw,,w_l At e (@) =1—-Ateg(z), (5.14)

where the last equality defines the importance-sampling local energy ér(z). Quite
amusingly, if the guessed trial wavefunction 7 coincides with the actual ground
state wavefunction 1 (z) = ¥gs(x), then €, (z) = Eggs is a constant, and statistical
fluctuations in the calculations of Eq. 5.12 vanish exactly. Therefore, by variationally
improving the quality of the guiding function t)7-(x) we can substantially reduce the
error bars in the energy calculation.

Fluctuations go wild: Many walkers and Branching. The scheme we have just
proposed works only in principle, but, unfortunately, not in practice. The reason for
this failure is quite simple to understand. While z,, — x,; is a honest Markov pro-
cess, the weight update w, — w,1+1 = w,b,, is a multiplicative process with random
factors b, , which is prone to very large fluctuations: w,, might grow tremendously
large, or small, in just a few iterations of the process, and the whole procedure would
go wild, because error bars in the calculations of the averages grow in an uncon-
trolled way. The cure to this disease goes through the introduction of many walkers
and through performing occasional “reconfigurations” of their weights, via the so-
called branching. In practice, one propagates simultaneously a set of M walkers
defined by weights w; and configurations z;, for ¢« = 1,--- M. Before the variance
of the weights w; becomes too large, one appropriately redefines the set of walkers
in such a way as to drop out those with a too small weight, and to generate copies of

the more important ones. ° After the reconfiguration (branching) all the walkers are

% The branching is just a particular Markov process applied to the configurations (z;,w;), which
leads to new walkers (2}, w}). Each new walker (2%, wj}), with j = 1--- M, will have the same weight
wj; = = ), w;/M and an arbitrary configuration z; picked up among the M possible old ones z,
k=1---M, with a probability p; proportional to the weight of that configuration, px = wg/ > ; w;.
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given again the same weight, and can be independently propagated again for a certain
number of iterations. By iterating this process, the weights of all the walkers will be
kept approximately equal during the simulation. This property yields a considerable
reduction of statistical errors, as the variance of the average weight w = ) . w;/M is
reduced by a factor o v/M. One can show [63] that such a reconfiguration process
does not modify, on average, the relevant wavefunction 1,,(x).

Continuous-time formulation.[64, 65] In the limit At — 0, clearly, the diagonal
elements dominate the Green’s function G, since off-diagonal elements G’w/,w (' # x)
have a factor At in front: if we were to apply the algorithm in a straightforward way,
in most of the iterations we would generate a diagonal move, x,,1 = z,, which
is highly inefficient. We can calculate, however, what is the total escape rate (i.e.,

probability per unit time) from a given configuration x:

)\m 2 Pesc = ZwT )‘l’)le ( ) :

At—>0 At
T’ #x

In the limit At — 0, the distribution of escape times from a given configuration z is
Poissonian [66][page 31ff]:
Py(t) = MAge " (5.15)

To see this explicitly, notice that the probability of escaping from x exactly during
iteration n (i.e., in the time interval [t — At,¢], where ¢ = nAt) is simply (1 —

pesc)n_lpesc- Therefore:
AtP,(t) = (1 — At\,)" " (At),),

so that taking the limit n — oo, At — 0, with t = nAt fixed, we easily recover
Eq. (5.15). During the n — 1 diagonal moves prior to the n-th off-diagonal one, the
weight of a walker has to be repeatedly multiplied (n — 1 times) by b, = 1 — Atég(x).
In the continuous-time limit this implies that the weight is multiplied as follows:

w— w = we L@ (5.16)

Therefore, it is enough to sample the average time ¢ we stay in a given configuration x
according to P,(t) (which we do very easily [66][page 31ff] by generating a random
number ¢ in (0, 1] and taking ¢ = —In(§)/\;), and directly go on selecting an off-
diagonal move according to G/ . In other words, there is no need to ¢y to move out



98 Annealing by Green’s Function Monte Carlo

of a configuration z: if we can estimate the average time we need to stay in x, we can
simply advance the clock by t, and exit from x right away. Each Monte Carlo step,
therefore, is associated to an off-diagonal move.

5.2 The choice of the trial wavefunction.

An appropriate importance sampling, via a good trial wavefunction 17 (), is in most
cases a crucial ingredient for a successful GFMC approach. Unfortunately, finding
a good trial ¥7(x) for the Ising spin-glass in a transverse field is far form trivial.
Frustration and disorder in the couplings .J;; induce, evidently, non-trivial correlations
between the spins, which are quite hard to catch. We illustrate below two simple
choices for ¥ which we have explored in the present work.

Single-site product wavefunction. As a first choice for a trial wavefunction, we
disregard all possible inter-site correlation and consider, in a mean field spirit, a p
which is a simple product of single-site wavefunctions:

N [ Lh h
(MF), _ et [ ite > [ 5.17
) 1]1( 2 o) : (5.17)

where {h;} are local fields on each site i, which we use as variational parameters to
be optimized. In terms of the local magnetization m; = tanh(h;), the average energy

reads:

B0 () = WD W) = =30 Jgmam =L 30 (/1 =m} ., (518
(i) ’

and the stationary conditions required by the minimization read:

pMF)
887;1. =—(1—m) Z Jijmy +Fmi\/1—m§:0 Vi, (5.19)

JEN(7)
where N (i) indicates the nearest-neighbors of site i. When I is large, the obvious
solution to the Eq. 5.19 is obtained by taking m; = h; = 0 for all sites ¢: this is
nothing but the ' = oo exact solution, with all spins aligned along +z. Such a large-
I quantum paramagnetic phase, with a gap of order 2I" separating the ground state
from higher excited states, survives down to some critical value I',., after which non-

trivial solutions of Eq. 5.19 with non-vanishing local magnetizations m; # 0 start to
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appear. '° In this small-T' region, in which solutions with m; # 0 start to appear,
our minimization problem is just the quantum counterpart of the well known Weiss
mean-field approach for the classical random Ising model [68], which is known to

' 'We anticipate that similar

get into big difficulties in the T < T}, glassy phase.
difficulties will plague our search for the minima of Eq. 5.18 in the small-I" phase.
Essentially, the minimization problem is characterized by the presence of many local
minima: searching for the minima of Eq. 5.18 at small I' is not much simpler, in
essence, than solving the original classical ground state search problem, except that
the configuration space in which we search for the minima is continuum, {m; € R},
instead of discrete, {S; = £1}.

Boltzmann-like wavefunction. Another quite natural choice of trial wavefunc-

tion is a Boltzmann-like function of the form:
{8y = N (B) 7" PallSh) | (5.20)

where (32 plays the role of an inverse effective temperature, E;({S;}) is the classical
energy of a given configuration {S;}, and N () is a normalization factor. Here 3 is
our variational parameter. Once again, for large I" we expect to find 8 = 0 (the exact
I' = oo solution), while, by decreasing I', larger values of § will privilege regions
where the “potential energy” FE({S;}) has local minima.

Variational results. We start by illustrating the results obtained for the first choice
of trial wavefunction, see Eq. 5.17. Given the explicit analytic expression of the en-
ergy to be minimized, Eq. 5.18, we have used a Conjugate Gradients (CG) algorithm
to find the optimal values for the {h; } and the corresponding optimal value of the vari-
ational energy per spin, esm’ ) = min{hi}E;MF)({hi}) /N. However, as anticipated,

the results obtained for e’ when ' < I'., depend on the initial point provided to

the algorithm, so that the only meaningful thing to do is to show histograms of €M)
obtained by repeated CG-minimization searches. In Fig. 5.1 we report the results of
four calculations for I' = 0.1, which turns out to be in the low-I" glassy phase. The

two right panels show the histogram of 50 repeated searches for the CG minimum,

19The value of T, is not easy to establish even within our variational framework. For the case of
a square lattice ordered ferromagnet (J; ; = J), it is instead simple to work out that I',, = 4 J. For

QMC results on the disordered case, see for instance Ref. [67].
n the classical case of finite 7', even improvements of the Weiss approach, through the so-called

TAP equations — where the cavity field created at site ¢ by all other spins is more properly calculated —
are known to fails, essentially, for T' < T,.
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Figure 5.1: Distribution of the variational energy per spin ea’ ) = M ing hi}(v,bg«MF) |H |¢(TMF)) /N
obtained by optimizing, with a Conjugate Gradients technique, the local-fields h; in the trial wavefunc-
tion |¢§~MF)) defined in Eq. 5.17. These results refer to the case of a fixed transverse field I' = 0.1.
The data in the two left panels have been obtained by using a variational annealing procedure (see text),
while the data in the right panels have been obtained by a straight conjugate gradient minimization.
In both cases, the starting point is a randomly distributed choice h; € (—e, +e), with e = 0.5 in the
upper panels and e = 1 in the lower ones. The histograms are obtained by dividing the energy interval
[—2, 0] into 100 subintervals.

starting from initial 4; which are randomly distributed in the interval (—e, +e¢), with
e = 0.5 (top panel) or e = 1 (bottom panel). The big solid arrow marks the location
of the classical ground state energy per spin, egs = Egs/N ~ —1.5805167, as a

reference. Although, in principle, quantum effects due to the finite value of I' make
eq(,%F) # €gs, the small I' value used (I' = 0.1) does not justifies such a large differ-
ence between the two quantities: in most of the attempts we simply find minima with
eq(,%F) ~ 0, that have nothing to do with the classical GS which quite likely dominates
the physics for such a low I' value. Only rarely, see top right panel, we end up with

minima in the range GQ%F) ~ —1.25, still quite far from €gg. In the two left panels of
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Fig. 5.1 we show the results of a sort of “variational” QA CG-based minimization. '?

In essence, we started from the usual {h; } distributed in (—e, €) and performed a first
CG-minimization at I';;, = 4. Then, the transverse field [ was repeatedly decreased
in steps of AT & 0.2, and at each step the new minimum was searched, via CG,
starting from the minimum found in the previous step, down to the desired value of
I' = 0.1. This “variational annealing” procedure provides results for es,%aF) which are
distributed much closer to the classical ground state g, although we still obtain, in
a non-negligible fraction of the attempts, quite bad minima. Such a lack of regularity,
consequence of the multiplicity of metastable minima, makes w(TMF) in Eq. 5.17 not

a particularly suitable guiding wavefunction for a GFMC simulation.

Turning now to the Boltzmann-like choice in Eq. 5.20, the expectation value of the
energy, as a function of the single parameter /3, was calculated by a Variational Monte
Carlo (VMC): in essence, an equilibrium GFMC simulation using 1/)(TB ) as importance
sampling trial wavefunction, but with all weights w,, consistently ignored, and taken
to be w, = 1 (see App. D.1, and references therein, for an introduction to VMC). '
Fig. 5.2 shows (top panel) the optimal value S, of 5 which minimizes the variational
energy (17| H|13%)), for several values of the transverse field I'. ' Notice that By
saturates for small I" to about # = 1, somewhat surprisingly, since, for ' — 0, we
would expect By, — +00, so that the GS dominates. This is the effect of an ergod-
icity breaking of the algorithm. Indeed, from the classical spin-glass physics [29, 69]
we know that a threshold energy E}, exist below which the system has a finite com-
plexity, i.e., it displays an exponentially large (in V) number of metastable minima.
Close to this threshold energy, the relaxation of any local algorithm toward equilib-
rium starts to be exceedingly slow, and the physical quantities measured are not really
representative of their true averages. Evidently, for [' — 0, the variational algorithm

12 Unfortunately, it is not at all obvious that an adiabatic theorem holds in this case, and there is
therefore no guarantee that — even for an infinitely slow annealing — the optimal solution will be found.

13 The averages are taken over 10° configurations of a single-walker Markov chain, separated by
102 Monte Carlo steps, in order to get uncorrelated data. The error is computed using the blocking
technique [52]. We noticed that the correlation time, and the initial equilibration time, increase, as
expected, when I is decreased inside the glassy low-I" region. This is the main reason for using a
single walker. Taking many walkers together would increase the statistics, but at the price of wasting
many initial equilibration parts, which are expensive for small I'. The correlation time, instead, it is

not affect by the walker number in such a variational scheme.
14 Bopt is found “by hand” via a cubic interpolation of results on a grid of 3 values.
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is not visiting the regions near the true minima of the classical energy, but it is getting
trapped in a band metastables states at higher energy. The central and bottom pan-

els in Fig. 5.2 show the optimal variational energies e\oc'™®) = (yp{Pr) | H|yp{P»)) /N,

and the variational residual energy €,.; = (¢(Tﬂ ovt) |Hcl\¢§? "pt)> — €gg corresponding
to the optimal 3 shown in the Top panel, for several values of transverse field ['. For
large I' values, the variational total energy (center panel) is linear in I', as it should,
since the transverse field kinetic term dominates in the quantum paramagnetic phase,
while the variational residual energy per-site is of order 1. By decreasing I' we notice
that the variational residual energy saturates, for small I, to finite non-zero values,
of order 0.03, in close agreement with the previously noted saturation in the optimal
B, due to ergodicity breaking. Notice, however, that this saturation value is definitely
below the best results provided by the previously discussed z/J(TMF), of order 0.04,
shown for comparison by a dashed horizontal line. Therefore, with all its pitfalls, the
Boltzmann-like trial wavefunction in Eq. 5.20 provides quantitatively better residual
energies, for small I', than the mean-field one in Eq. 5.17, and is also much better
behaved as far as the minimization problem is concerned: for these reasons, we have

decided to work out our GFMC results for the Boltzmann-like wavefunction only.

5.3 GFMUC results I: Fixed I' simulations

In this section we shall present the results obtained, for fixed values of I', by em-
ploying the whole GFMC machinery discussed in Sec. 5.1, with the Boltzmann-like
trial wavefunction presented in Sec. 5.2. A pseudo-code description of the GFMC
algorithm employed can be found in App. D.2.

In Fig. 5.3 we plot the GFMC results obtained for the 80 x 80 random Ising model

instance used in Ref. [10], for several fixed values of the transverse field I'. '° The

I>We list a few technical ingredients. We made use of 10 walkers, and we worked out the statistical
average over 10* configurations separated by 10* Monte Carlo steps, skipping the first 10° steps for
the equilibration. This statistics is reduced to only 10® configurations taken every 108 steps for ' <
0.25. Branching is performed every GFMC step (Tests accomplished allowing for branching every
10 GFMC steps showed weight instability at small value of I" (see also next section).). Indeed the
small I" correlation effects are more severe than in the variational case, and we were forced to run
longer simulations in order to have comparable statistical errors. Moreover, one has two balance the
bias effect due to a finite walker population — which increases the correlation — and the computational
cost required by a multi-walker simulation. We also stress that for very small transverse fields the
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top panel shows the GFMC estimate of the total energy per site for several values of
I', compared to the variational results e$Bo1%) {llustrated in the previous section. The
inset allows one to appreciate the differences between the two results in the small I'
region, which are invisible on the scale of the main plot. In the bottom panel we report
several data regarding the residual diagonal energy. A small technical point is here in
order. GFMC calculates directly the total energy estimates — ( H),, in the notation of
App. D.1 —, while averages of operators that do not commute with the Hamiltonian H
are less straightforwardly obtained. In particular, what one can simply evaluate is the

so-called mixed average of the potential energy H,

_ Yr|Halvas)
<Hcl>w - <¢T‘¢GS‘> 3

(see Sec. D.1 for more details). This is the estimator labeled “MIXED” in the second
panel. The true expectation value we want is, instead, ({)gs|H|®as), which might
be poorly approximated by (H),, if the trial wavefunction is poor. A simple partial

cure to this drawback, is to include the so-called Ceperley correction (see Eq. D.12):

(Yas|HalVas) = 2 (Ha)w — (Ha)r (5.21)

where (H.)r = (¢r|Hy|tr) is the variational estimate. The results of the latter
approximation for the residual energy are labeled “CEPERLEY” in Fig. 5.3, and are

seen to be consistently lower than the mixed average estimates, which, in turn, are

16

lower than the variational result. However, the non-monotonic behavior of the

off-diagonal transition probabilities are so small that the internal time increases a lot between two
reconfigurations, giving serious problems due to weight divergences (see Eqs. D.13 and D.14). This
drawback will appear again in the GFMC annealing case (see Sec. 5.4). We compute the error bars
using the blocking technique.

Usually a good indicator of stability of the simulation is the number of survived walkers after every
reconfiguration (see App. D.1 for more details), which has to be at least 80% — 90%. A smaller ratio
yields larger bias effects due to finite population (see Sec. D.1), or — even worse — it is the fingerprint of
a bad trial function. Whenever this happens, a smaller branching-time must be chosen (see App. D.2).
A larger survival ratio (~ 100%) is instead not dangerous, but it often leads to very correlated data
and, consequently, the need of longer simulations.

16 Notice that this technical problem in the different GFMC estimates of the residual energy should
not influence the I' — 0 region of the data, where the total energy and the potential energy approach
each other, and the mixed average becomes, in principle, exact. As a consequence, we need not worry
about this subtle differences in estimators in discussing the annealing results.



104 Annealing by Green’s Function Monte Carlo

residual energy data for small [' < 0.25, previously noted for the variational results,
should ring a bell about the quality of the trial wavefunction, and the efficiency of the
sampling, in that region.

5.4 GFMC Results II: Quantum Annealing.

In this section we shall finally present the results obtained by applying a GFMC-
based QA to the 80 x 80 random Ising model instance considered in Ref. [10]. The
basic algorithm illustrated in Sec. 5.1, and used for fixed I' calculations in Sec. 5.3,
is now used as an annealing tool, by reducing at each Monte Carlo step (MCS) the
coupling I' in the usual linear way, starting form an initial large value ['y = 2.5,
[, = To(1—n/7). 7 is here the annealing time measured as the total number of MCS
performed by the algorithm, and we recall that, due to the continuous-time strategy,
each MC step performs an off-diagonal move (flipping of a single spin), while the
internal time of the algorithm advances according to the rate of escaping from a given
configuration (see Eq. 5.16). For each value of I',, the trial wavefunction used is the
Boltzmann-like one, defined in Eq. 5.20, with a variational parameter ﬁopt(Fn), which
corresponds to the instantaneous optimal value. '” As for the branching, we employed
M = 20 walkers, and we chose to perform a weight reconfiguration at each MCS.
This choice is dictated by the fact that for small transverse fields I' the the average
weight is quite unstable; it would be definitely unnecessary for the initial stage of the
annealing, where the weights are well under control (indeed, the walker branching
survival rate is here ~ 100%), but we decided to adopt a uniform choice all along the
simulation. Even with this very conservative choice, the weights go completely wild
if a ' of order 10~ is reached: for this reason, we have decided to cut-off the T',,
annealing schedule in such a way that the final T is 10~ and not 0. This guarantees a
good weight stability. '8

In Fig. 5.4 we report the final part of a GFMC-QA dynamics for a fixed annealing
time 7 = 108. One can see (upper panel) that the average (over the walker popu-
lation) of the total energy presents large fluctuations (spikes), which are due to the

aforementioned weight instabilities, while the classical energy (lower panel) has a

7Practically, we have used for 3(I') the fitting function shown in Fig. 5.2, upper panel.
"8Whenever it was possible to perform annealings with smaller cut-offs on I', and approximatively

the same slope %, we checked that the results obtained are not very sensitive to the cut-off chosen.
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more regular profile. Fig. 5.5 shows the best residual energy per spin ever reached
during the annealing simulation, for several values of 7, averaged over 10 repetitions
of the annealing (due to time-limitations, a single run is shown for the largest 7 > 108
annealings). The CA and PIMC-QA data obtained in Ref. [10] are also shown, for
comparison. Notice that the 7 axes of the three calculations are completely unrelated:
the GFMC 7 is measured in units in which a MCS is just a single spin-flip, while
MCS for the CA and PIMC-QA are intended as sweeps of the entire lattice of N
spins (including all the Trotter slices, for the PIMC case). For this reason, a compar-
ison with the CA and PIMC-QA data with 7 multiplied by a factor NV is also given.
Although the GFMC-QA data are strictly below both the CA and the PIMC-QA data,
on the same per-spin time-unit (shifter CA and PIMC-QA data), it is clear that the
GFMC-slope is definitely worse than that of PIMC-QA, and indeed surprisingly sim-
ilar to CA. Moreover, the CPU-time needed for a single spin-flip in GFMC is much
larger than the corresponding single spin move in CA or PIMC-QA (each GFMC
move costs of order /V operations), so that, at present, GFMC is not a real competitor
of, say, PIMC-QA.

A few comments are in order. First of all, the small number of walkers used
(M = 20), and the branching performed at every MCS might lead to a big bias of
the energy estimators (see App. D.1). However, further tests where branching was
performed every 10 MCS, provided only small improvements, not enough to close
the gap to the PIMC-data slope.

The crucial point, we believe, has to do with the form and quality of the trial wave-
function used. The fact that importance sampling is indeed a necessary ingredient is
confirmed by a series of GFMC annealing simulations (not shown) which we have
performed with ¥ = 1 (no importance sampling): the results clearly indicate that
the system always gets stuck in the quantum paramagnetic phase (the classical energy
per spin was around zero even for moderately long annelings, 7 up to 10%). Never-
theless, while a trial wavefunction is definitely needed, several signs — such as the
quality of the fixed-I" residual energy in Fig. 5.3, and the sizable differences between
the various estimators there presented, as well as the noticed weight instabilities at
low I — point toward the possibility that the Boltzmann-like 1) we have adopted is
probably not the most suitable one. Perhaps, even the surprising coincidence of the
GFMC-QA and CA data slopes is the result of such a choice for {7, which might
force or bias — in some sense — the instantaneous spin configurations to be distributed
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according to the Boltzmann distribution.

So, the crucial question is: how to find a good trial variational wavefunction which
describes well enough the small transverse field phase of the Ising spin-glass? A
combination of the two different choices analyzed in Sec. 5.2, i.e., a Boltzmann-
like factor supplemented by local fields h;, is the first possibility, certainly worth
investigating. '° As a further possibility, one might introduce pair-correlations into
the trial wavefunction — for instance by means of a spin-spin Jastrow factor, either at
nearest-neighbor or at longer range — as usually done in the framework of correlated
lattice models [71], and of electronic structure calculations [51, 72]. Unfortunately,
for a spin-glass, due to frustration and disorder, the form of such pair-correlations is
far from obvious.

In conclusion, we have identified the choice of the importance sampling wave-
function in a GFMC-QA as the crucial step, as well as a weak point, of the method.
The results obtained are strongly influenced by such a choice: while no importance
sampling (1) = 1) produces useless results, a Boltzmann like choice 1 e~ B’ Fa
leads to results with a slope very similar to CA — but computationally much more
expensive! —, and definitely worse than PIMC-QA.

1“The optimization of the large number of parameters, however, requires the use of more advanced
minimization techniques, see [70], since CG is not possible for a correlated wavefunction.
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Figure 5.2: (Top) Plot of the optimal 3, Bop:, for the trial wavefunction |¢(TB )) defined in Eq. 5.20, for
several value of the transverse field I'. The dashed line is a fit of the data with the function Sop (T') =
1 — e /T, (Center) Optimal variational energies €\oc ') = (¢§,ﬂ ort)| T |z/1(Tﬁ *»)y /N corresponding to
the B,p: shown in the Top panel, for several I'. The inset magnifies the small-I" region. (Bottom) The
variation residual diagonal energy €5 = (zﬁé@ ovt) |Her |¢¥3 ort) ) —€as corresponding to the Bopr shown
in the Top panel, for several I. The dashed horizontal line labeled "MF’ represents the best residual
energy ever achieved, for I' > 0.01, by employing the mean-field trial wavefunction in Eq. 5.18.
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trial wavefunction the optimized
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discussed in Sec. 5.2. (Top) GFMC estimate of the total

energy per spin (H) /N, which is compared in the inset to the variational results of Fig. 5.2. (Bottom)

Several GFMC estimators of the residual diagonal energy €,.s = (He)/N — €gs: the mixed average,

the variational result of Fig. 5.2, and the Ceperley correction (see text and Eq. D.12)


FIGURES/figure_glass_GFMC/fig_glass_GFMC_b0.eps

5.4 GFMC Results II: Quantum Annealing. 109

-1.55

-1.56 | ]

-1.57

&0t/ Site

-1.58

I (e e —
9.0-107 9.5.10” 108

155

-1.56

8C|/Site

-1.57

1.58 Lo .
9.0-10 9.510 10

Figure 5.4: GFMC-QA dynamics for a fixed annealing time 7 = 108, in the time-interval [0.97, 7].

ng"ltz)), and Ty = 2.5 as initial transverse field. (Top)

We employed the optimal trial function |4
GFMC estimate of the total energy per spin (H)/N. (Bottom) MIXED estimators of the classical

energy €q = (Hcl>/N'


FIGURES/figure_glass_ANN/fig_glass_ANN_section_b0.eps

110 Annealing by Green’s Function Monte Carlo

0.1 ——————
AA T times N AI GFMC-QA *
Py Y PIMC-QA

“‘

0.01

€og/SitE

Z
Z

ttimesN |

0.001 b
10° 10° 10* 10° 10° 107 108 10%10¢
MC steps
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T, starting from 'y = 2.5 (the GFMC time-step consists of a single spin-flip).
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Conclusions and Perspectives

In this thesis I have addressed some important issues about classical and quantum
annealing (QA). I have illustrated several applications of both annealing strategies to
arange of problems going from textbook toy-models, to a challenging hard optimiza-
tion problem, the random Ising model, using techniques which go from deterministic
Fokker-Planck or Schrédinger evolutions, for the toy models, to a novel implementa-
tion of a Green’s Function Monte Carlo QA scheme, for the Ising case.

I started with a very simple toy-model, where the energy landscape to be op-
timized was well under control: a simple double-well potential in one dimension.
There I discovered the crucial difference between a classical annealing (CA) ap-
proach, realized by the solution of a time-dependent Fokker-Planck’s (FP) equation,
and a QA dynamics, where the Schrodinger equation (either in real or in imaginary
time) governs the system. In the FP classical case, the system reduces, after a very
short annealing, to an effective discrete two-level system, whose dynamics is governed
by the ratio between the level splitting Ay and the barrier height B, with a residual
energy €,cs(7) ~ 772v/B. In the Schrodinger case, on the contrary, the spectrum of
the system is never really a pure two-level system one, and the relevant feature con-
trolling the dynamics is a possible Landau-Zener avoided crossing in the ground state
related to the tunneling amplitude through the barrier. The analysis of other simple
toy models gave us other interesting observations. For instance, while a series of high
barriers without disorder, as in a parabolic washboard potential, is enough to make
CA logarithmically slow, QA turned out to be much more effective in that case, due
to a particular simplicity of the Schrodinger’s eigenvalue spectrum. As a by-product
of our study, I have come to the conjecture, verified by all the cases analyzed, that do-
ing real-time or imaginary-time Schrodinger dynamics is essentially equivalent, the
latter being quantitatively better: this opens up the route to all kind of stochastic im-
plementations of QA, notably more suited to the imaginary-time case. Finally, the
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crucial role of disorder in making QA (as well as CA) slow is discussed in one of
the simplest context: the one-dimensional disordered Ising ferromagnet, which has
a trivial ferromagnetic ground state, but whose annealing dynamics is made slow by
the presence of possibly large domains of wrongly aligned spins, pinned by arbitrarily
weak J;. An explicit study of the 1D disorder Ising case would be a very instructive

future work in this line of approach.

Next, armed with the understanding gained by the deterministic approaches, I
studied the same simple double-well potential through Monte Carlo (MC) anneal-
ing approaches, both in the classical and in the quantum case. In the classical case,
I discovered the large freedom that the choice of the proposal move gives to the
method, with results that differ very much if one consider a Box, a Gaussian, or
a Lorentzian distribution. This ambiguity of the MC-CA outcome was rationalized
through a detailed numerical and analytical study of the spectral properties of the as-
sociated Markov transition matrix I, which also provided a key to the optimization
of the move range o during the annealing, through the search of the instantaneous
maximum gap of W. In the quantum case, I discovered how an allegedly state-of-
the-art Path-Integral Monte Carlo (PIMC) based QA, with smart bisection moves and
improved fourth-order action, can perform in a disappointing poor way in the pres-
ence of a Landau-Zener tunneling event: the rather ad-hoc solution to the problem
— adding instanton moves to the sampling — is playing an unfair game, since it ex-
ploits a knowledge of the landscape which is generally not available. Finally, the
crucial role played by the choice of the kinetic energy operator was simply tested, in
the PIMC-QA double-well case, by comparing the familiar non-relativistic Laplacian
term (associated to a Gaussian propagator) with a relativistic dispersion Hy;, = T'|p|
(associated to a Lorentzian propagator), which turns out to perform much better than
the former. In some sense, the Leitmotiv of these MC studies is that the choice of
moves (in the classical case), and the choice of moves plus the form of Hy;, (in the
quantum case), determine in some way the effective energy landscape of the problem,
well beyond the pure potential energy term.

As a final application of QA, I decided to test a Green’s Function Monte Carlo
(GFMC) based QA on a real optimization problem, the random Ising model, where
both CA and PIMC-QA results are already known. In principle, GFMC looked like a
promising tool. In particular, at variance with PIMC, GFMC does not suffer: i) from
finite temperature effects, which give a thermal lower bound to the residual energies
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attained; i1) from difficulties in the Trotter discretization, as noticed in the Traveling
Salesman Problem case (see Sec. 1.2); iii) from difficulties in the sampling of the
action, as notice in the double-well case. However, GFMC needs, as an essential
ingredient, a good variational Ansatz for the ground state, to be used as importance-
sampling trial wavefunction. This need for a good trial wavefunction turns out to be
a crucial and difficult step in the GFMC-QA approach: the two wavefunctions I have
tested, a mean-field single-site product and a Boltzmann-like Ansatz, both provide
evidently poor choices. The final GFMC-QA results obtained using the Boltzmann-
like trial wavefunction turn out to be definitely worse than PIMC-QA, with a slope
which is very similar to the CA data. Improvements in the trial-wavefunctions are,
evidently, an open issue for future work in this field.

In conclusion, the crucial question “Is Quantum really better than Classical?”
has now a more clear answer. Although in many of the examples illustrated QA often
wins over CA, sometimes it does not, like in the 3-SAT case (see Ref [16]). The final
results is a priori not guaranteed and the outcome of the battle is strongly related to the
(effective) energy landscape of the problem one deals with, which is in turn influenced
by the choice of Monte Carlo dynamics, and by the quantum kinetic energy used.
Moreover, it is quite clear that QA, although potentially useful and sometimes more
convenient than CA, is not capable, in general, of finding solutions of NP-complete
problems in polynomial time. Nevertheless, understanding when and how quantum
mechanics can quantitatively improve on the solution of hard optimization problems

is still a timely issue, which deserves further studies.
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Appendix of Chapter 2

A.1 Annealing in a parabolic potential

A.1.1 Classical Annealing (Fokker-Planck) case

It is straightforward to find the solution of the Fokker-Planck Eq. 2.2 when the the potential is har-
monic, V(z) = kx?/2, and the initial condition is the Boltzmann distribution P(z,t = 0)
exp (—kx?/(2kBTy)). Indeed, it is simple to verify that the Gaussian Ansatz

P(z,t) = Che B@" (A.1)

fulfills the initial condition (if B;=¢ = B = k/(2kpT})) and solves the FP equation, as long as the
two functions By and C} satisfy the following ordinary differential equations:
B, = 2D, (8 - 2B})

Cy/Cy = Dy (#T(t) - th)

(A2)

The normalization constant C; turns out to be irrelevant in calculating the average potential energy

which we need
_ JdV(@)P(z,t) _ k

ot(t) = =——,
pot (¢) [ dzP(z,t) 4B,

and can be completely forgotten, since the equation for B; does not involve it. The equation for B;

(A3)

appears to be non-linear, but can immediately transformed into a linear equation by dividing up both
sides by B? and recognizing that the correct variable to use is precisely 1/ By, or better yet, €pot (t). In
terms of €0 (t) we can therefore write a linear equation of the form:

d

2
%Gpot(t) = kD (1 - m%ot(t)) ; (A4)

the initial condition being simply given by the equipartition value €, (t = 0) = (k/4By) = kpTp/2.
An alternative way [42, 43] of deriving Eq. A.4 consists in taking the derivative with respect to time
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of both sides of Eq. A.3, using then the FP equation for 9P/t on the left hand-side of the ensuing
equation, and finally integrating by parts the terms containing spatial derivatives of P (this procedure
results in a closed differential equation for €0 (¢) only if the potential V() is harmonic). As every
one-dimensional linear first-order differential equation, Eq. A.4 can be integrated by quadrature, the
solution being:

€pot(t) = €pot(t =0) e~ (k/2kB) [§ dyDy/T(y)
t
+k / dt' Dy e~ (/%) [} dyDy /T(w)
0

If we now anneal the temperature down to 0 in a time 7 in the usual way, T'(t) = To(1 — t/7)°7,
assuming that the diffusion constant behaves as D(T') = Do(T/T;)*P, we readily get an analytic
expression for the residual energy at the end of the annealing, €,..5(7) = €pot(t = 7), Which can be
shown to behave, for large 7, as a power law:

a
€res(T) RS r—Sca Qca = T

= =TT (A.5)

Quite evidently, annealing proceeds here extremely fast, with a power-law exponent ¢ 4 that can
increase without bounds (for instance if ap = 1) upon increasing the exponent ay of the annealing
schedule. Notice, however, that large values of ap are, on the contrary, detrimental.

A.1.2 Quantum Annealing (Schrodinger) case

Consider now the problem of a particle moving in a parabolic potential V (z) = kx?/2, with a time-
dependent mass, such that the Hamiltonian is given by:

H(t) = g:ﬁ -T()V?,

where T'(t) = h?/2m(t) denotes the coefficient of the Laplacian operator. The Schrodinger evolution
of the wavefunction 9 (z, ) is then,

where £ = ih for a real time (RT) evolution, and £ = —h for an imaginary time (IT) evolution. Now,
whereas general solutions of the time-dependent Schrodinger equation for arbitrary initial condition
(x,t = 0) are not easy, it turns out that if V' (x) is quadratic, then any initial Gaussian wavefunction
propagates into a Gaussian, which is enough for our goal. In detail, write the following Ansarz for
Pz, t):

P(z,t) = Cre B’ /2 Real(B;) = R(B;) > 0. (A7)

Substituting the Ansatz for 1(z, t) into the Schrodinger evolution (in RT or in IT), one immediately
verifies that ¢ (z,t) satisfies Eq. A.6 for arbitrary I'(¢) as long as B; and C; satisfy the following
ordinary differential equations:

{ —¢B, = k — 2T'(t)B? AS)

—EOt/Ct = —F(t)Bt
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Once again, the normalization constant C; turns out to be irrelevant in calculating the average potential

energy
() = LBV @@k
" J dzlip(a, b)) AR(B,)

and can be completely forgotten, since the equation for By does not involve it. The initial condition

By—y is, by assumption, such that at £ = 0 the system is in the ground state corresponding to I'g =
['(t = 0). Such a ground state value By is easily calculated by equating to zero the right-hand side of
Eq. A.8 with T'(t) — T, i.e., By = \/k/(2Ty).

A few general considerations can be based on a purely qualitative analysis of Eq. A.8. Consider
first the IT case, where the equation for B; reads hB, =k — 2T'(t) B2. One can easily get convinced
that By is forced to be a real, positive and monotonically increasing function of ¢, i.e., By > 0 and
B; > 0 fort > 0. Therefore, we can easily write an inequality of the form:

hB; =k —20(t)B? < k,

from which we immediately conclude, by integrating over ¢ the two sides of the inequality, that

kT
BT_BOS€5

i.e., the residual energy €,.5(7) = k/(4B;) cannot decrease faster than 1/7 for 7 — oc.

We will now assume, without great loss of generality, that the Laplacian coefficient I'(¢) is given
by T'(t) = Tof(t/T), where 7 is an annealing time-scale (for instance the annealing time, when a
linear schedule is used) and f(¢') is a positive decreasing function for ¢’ > 0 such that f(¢' < 0) = 1.
It is useful to switch to dimensionless variables by measuring times in unit of 7, t' = t/7, and By in
units of its initial ground state value B;—9 = By. The appropriate dimensionless quantity is therefore
b(t';7) = B/ By, with t' = t/7, where the parametric dependence on the annealing time-scale 7 has
been explicitly indicated. The equation for b(¢'; ) is given by:

all = fE*(57)]  a=T1V2kTo/(=¢)
b(0;7) = 1, (A9)

-

—
S
3

~
I

where the dot, from now on, will denote a derivative with respect to ¢'. Notice that the parametric
dependence on 7 is all buried into the coefficient «, which reabsorbs also the —¢ appearing in the
dynamics (RT versus IT). This kind of non-linear differential equation is of the well known Riccati
form. It can be transformed into a linear second-order differential equation by operating the following
substitution

Lo\ y(tl;'r)
b(t 7T) - af(t’)y(t’,T) ’ (AlO)

where, evidently, y is defined up to an overall normalization constant. Indeed, simple algebra shows
that we can re-express Eq. A.9 as a second-order linear equation for y, as follows:

FEGE's ) = fFE)gt'sm) = o F2(H )y (t's 7) (A.11)
9(0;7) = ay(0;7) .
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As long as f(t') # 0, it is simple to verify that the second-order equation for y(¢'; 7) can be also

% (y;t(;,;)) = a?y(t;7) . (A.12)

Finally, denoting by Y (¢; 7) the indefinite integral of y(¢'; 7), such that Y = y, and integrating over

equivalently written as:

t' both sides of Eq. A.12, we can also write:

Y(t';1) =2 f(tYY ;7). (A.13)

Eq. A.13 is easily solved when the annealing schedule for I'(¢) is linear, I'(t) = T'o(1 — t/7), i.e.,
when f(t') = (1 — ¢')®" with ar = 1, a case in which Eq. A.13 is of the Airy type. In the latter case,
it is useful to perform a final change of independent variable to z = £2|a|3 (1 — t'), so that, defining
F(2) =Y (t';7), we can write the equation for F' in the standard Airy form:

d2

wF(z) =2z2F(2). (A.14)

The general solution of Eq. A.14 is given in terms of the two Airy’s functions Ai(z) and Bi(z),
F(z) = BAi(z) +vBi(2) ,

where 3 and v are two constant coefficients. Going back to Y (¢';7) and y(¢';7), we then have the
explicit expressions:

Y(ts7) = BAi(Eal5(1—t)) +yBi(|els (1 —1')
Y(t'sr) = y(t';7) =—BEald Ai'(€]al’ (1 - t') — v€[al’ Bi'(€2[a]3 (1 - )
V(t'sr) = g(t'7) = Blals Ai"(E]al5 (1 - ¢') + vlali Bi"(£2|al5 (1 - )

= a?(1—¢) {BAi(€lal} (1 - ) +Bi(lalf (1 - ) } (A15)

where the prime indicates a derivative with respect to z, and we have used the property of Airy’s
functions that Ai"(z) = zAi(z) and Bi"(z) = zBi(z). Finally, substituting back the expressions in
Eq. A.15 into the original function By, see Eq. A.10, we get:

y(t/7;7) — £ Bolaf} BAI(E]al (1 —t/7)) +yBi(£]al’ (1 — t/7)) _
a(l —t/7)y(t/7;7) BAI'(€]als (1 - t/7)) + 7Bi'(€2|al5 (1 — t/7))

This general solution correctly depends on one parameter only, i.e., v/, so that we can put § = 1

BtzBO

without loss of generality. We impose the initial condition By—y = By by requiring:

L Ai(€2|ald [(£2|al?
£lof} ng IaI%)ﬂBz(& laf®)

Ai'(€2|al3) +yBi'(€2]al3)

Solving for 7y, we get:
_ _&lal34i(&|a|

§) — Ai'(€%]al3)
€2|a|5 Bi(€2]e|?) — Bi'(£2[al?)
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Due to the asymptotic properties of the Airy’s functions (Ai(z) — 0, Ai'(z) — 0 and Bi(z) — oo,
Bi'(z) — oo, when z — 0o on the real axis), we conclude that for the IT case:

v—=0 fora (or7) =

so that, finally,

~ + Ai(0) +1Bi(0)
B(r) = —Bola| Ai'(0) + vBi'(0)

5 (20T ey

1R

where we used that 4i(0) = 3=2/3/T(2/3) and Ai'(0) = —3~'/3/T'(1/3). On the other hand, for
the RT case we have to take the limit 2 — —oo (on the real axis) instead, and in that region all the
Airy’s functions oscillate. Nevertheless is possible to show that the value of +y is uniformly bounded
for 7 — oc.

We conclude, therefore, that for large 7 and with a linear annealing schedule, ar = 1,

B(1) T3 (A.16)

and, consequently, the residual energy behaves asymptotically as

_ k
" AR(B,)

xT %, (A.17)

eres(T)

The generalization of this result to an arbitrary annealing exponent ar > 0inI'(t) = Io(1 — t/7)°T,
is a bit more involved. It is however possible to establish a generalization of Eq. A.17, for arbitrary
ar, that we checked by means of direct numerical integration. It reads:

_ k
~ IR(B,)

ar

—Qoa —
Oép-i—?’

T (A.18)

€res (T) QQA

an expression that holds true for both RT and IT annealing.

A.2 Classical annealing with quantum tools: Imagi-
nary time Schrodinger evolution of the Fokker-

Planck equation

A side issue, but nonetheless an interesting one we wish to discuss here relates to classical anneal-
ing, and concerns the well-known mapping of a Fokker-Planck equation onto an imaginary-time
Schrodinger problem [73], and its implications on the relationship between CA and QA. The bottom-
line will be that the mapping does not imply that a FP-based CA is actually equivalent to QA, and
moreover that such a mapping is not particularly useful in our annealing context.
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Consider, once again, the FP problem with a time-dependent temperature 7'(t)

%P(z,t) = nldiv (PVV) + D,V?P. (A.19)
i

where both the friction coefficient and the diffusion constant are now time-dependent quantities, which
we indicate by n; = n(T'(t)) and D; = D(T'(¢)). In order to map the problem in Eq. A.19 onto an
imaginary-time Schrédinger problem, the standard procedure [73] is to pose P(z,t) = ®¢(x, t)¥(x, )
and to determine ®q(x, t) in such a way as to eliminate the non-Schrédinger-looking drift term, turning
it onto a standard potential term. The algebra is trivial. One can show that the drift term is eliminated
if, and only if, the ® satisfies the equation:

4
V(@ t) = —5 7

(PO (.TL‘, t) )
whose solution is readily found to be:
®o(z,1) = C(t)e”"/CmP)

with C(t) a function of time only, which can even be taken to be constant without loss of generality.
By plugging P = ®¢) in the FP Eq. A.19, with ®( as above, one can show that the resulting equation
for ¢(z, t) is indeed of the Schrédinger form

0

— 5@, 1) = =DiV*(,1) + Vip(e, )i (2,1) (A.20)
with an effective potential Vpp given by
L [(VV)® s D Po(z,1)
t) = — _ ZtZO0N 2
Vep(z,t) o [QUtDt VeV + Bo (@, 1)

The first term in Vpp is the standard effective potential of the Riccati form obtained in the time-
independent case [73]. The second piece in Vpp is absent in the time-independent case, and can be

0;®o(z,t) d 1
fﬁo(za:,t) = Vg (ZntDt) ‘

The main point we want to stress is that, by annealing 7'(t) and hence D;, we not only reduce the

easily seen to be

coefficient of the Laplacian in Eq. A.20, but we also strongly modify the potential Vg p, at variance
with a genuine QA where only the kinetic term is annealed down. The modifications of the potential
are so strong that, at low temperature, the instantaneous eigenvalue spectrum associated to the FP
equation, as discussed in Sec. 2.2, is vastly different from that of the quantum double well system.

A.3 Technical remarks on discretized dynamics

In order to simulate the exact dynamics provided by a partial differential equation (like the Fokker-
Planck or the Schroédinger equations), we first restrict the phase space to a compact interval of the

'If we consider that 5, D; = kT (t), we clearly see that, when annealing the temperature, the
overall sign of the factor in front of V() in the extra term of Vg p is negative.
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real line and further we discretize it by means of an uniform grid of N, points, whose mesh is a. As
a consequence, the partial differential equation becomes a set of N, ordinary differential equations:
z = f(t,x).

A fast and accurate integration method for such a system is provided by the fourth-order Runge-
Kutta scheme [74][page 710ff]. According to this method, if the system lies in a configuration z,, at
time t,,, then at time ¢, 1 = t,, + At it will stay in:

_ ki | ko | ks | ka s
mn+1—mn+6+3+3+6+0(At),

where the constants are given by:

kl = Atf(tn,.fb'n),
At k
ky = Atf(tn+7,xn+51),
At k-
ks = Atf(tn+7,a:n+§),
ks = Atf(t,+At,z, + k3) .

We notice that this algorithm needs four evaluations of the derivative operator f(t,z). Moreover, in
order to improve the precision of the algorithm, we properly employ the adaptive form of this method,
which can be found in Ref. [74][page 714ff].

A little concern arises when — as like in the case of the Fokker-Planck and the Schrodinger equa-
tions — the operator f(t,x) is linear. In particular f(¢, ) can be seen as a matrix and — since very deep
and wide results are available about the iteration of a matrix in a linear space (see [49][page 53ff]) —
one can analytically study the stability of a given algorithm.

The (disretized) Schrodinger equation is computational “safe”, because the discretized Hamilto-
nian is symmetric:

1 i1 =24 + i
2m 2

(Hy); =

As a consequence, the exponential operator e

+ Vit .

—tAtH jq well defined for every value of A t, so that the

discrete evolution (with time step A t) is stable. The imaginary evolution — which has been introduced

in Chap. 2 —is also well behaved, since it is implemented by an evolution operator, e~ 2 ¢, which has

the same good properties of e #AtH,

Unfortunately this is no longer true for the (discretized) Fokker-Plank equation, that reads:
oP Pi1—-2P+ P

at (W P); =D ———"—— *

1
+ e (Pig1 Vigr = Vi) + P (Vi1 =2V + Vig1) + P (Vier = V3))

a2

because it is not symmetric.
Anyway, the exponential of the operator W is stable and it converges to a unique equilibrium
vector P, if the following two conditions hold: First, all the non-diagonal entries of W; ; must be

2Whether the reader is not yet acquainted with the Fokker-Planck equation, we refer to Sec. 2.1 for
a brief introduction to our notation. Here we stress only few formal proprieties of its discretized form.
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non-positive, secondary W must be column normalized: Zfigl W;,; = 1Vj. The last constraint can
be easily satisfied, taking care of the boundary conditions. The former is more delicate. In particular,
it is equivalent to the condition: D > % |‘?9—‘z/ ; Vi, so that, in order to have a stable algorithm, the
discretization mesh must be small enough. Or equivalently, given a mesh, there is a lower limit to the
value of the coefficient D that one can safely use during the simulations. This point matters in the case
of the Classical Annealing, since D is indeed the annealing parameter (see Sec. 2.1) and it is usually
decreased to zero.
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Appendix of Chapter 3

B.1 Eigenvalues of a Fokker-Planck operator

Before approaching the general problem posed in Sec. 3.9, we discuss the much simpler case in which
W is a local differential operator, of the Fokker-Planck form (see Sec.2.1), i.e., the Master equation
reads:

%P(m,t) = —Lpp P(x,t), (B.1)

where Lz p is the (non-Hermitian) Fokker-Planck operator

= 8 10V o 18*°V
Ipp=-D—_ -2V 9 2%
£ 0x2 ndx 0z n dx?

The constants in the above equation are linked together by the Einstein relation, D = %, where T is
the temperature. As usual, the equilibrium probability distribution reads P,q(z) o< e~ Tm), and is the
ground state eigenvector of the FP operator, Lrp P, =0.

In order to study the spectrum of Lpp, it is useful to consider its Hermitian counterpart (see

discussion in Sec. 3.1, and App. A.2), obtained as usual as:

_ 1 - 0?
Hpp = 0 (@) Lpp(z) o(x) = —D 722 + Vep(z,T),
where ¢g(z) = \/Peq(z) and
D (8V\® D &V
Verle ) = 172 (57) = 37 5

is an explicitly temperature dependent potential. The Hermitian operator Hp is a quantum Hamilto-
nian which governs the spectrum and the dynamics of the FP problem. To appreciate the usefulness of
such a transformation, consider the case in which the original potential is harmonic: V(z) = % kx?.
The transformed potential Vg p then reads:

1.,
5T —2km o,

kz\®> Dk
2T

Vep(z,T) = D (
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2 . . . . . .
where k' = £k and § = £k The transformed potential is still harmonic, and its eigenvalues can be

immediately written down as:
1
An = n+§ w—40=2nd n=0,1,2,...

where w = V2D E' = 2§ is the harmonic frequency. Notice that Ay = 0. Since the levels are
equispaced, the gap value is
Dk

B.2 Reduction to a two-level system

In general, a master equation can not be reduced to a simple Fokker-Planck form, as in Eq. B.1. In
particular, the transition operator W may be equal to —Lprp (see App. B.1) plus a perturbation (see
also App. B.4). As a consequence, the hermitian counterpart of T, the Hamiltonian operator H
(see Sec. 3.1), is also equal to Hpp (see App. B.1) plus a perturbation. In this case, by making use
of the supersymmetric extension of the Fokker-Planck operator [75, 76], it is possible to prove that
one can obtained a reduced operator which account only for low-lying spectrum of H, provided that
the perturbation does not change the ground state of Hpp. The matrix elements of such a reduced
operator can be computed considering only the hopping process between local minima. This great
simplification clearly applies only at very small temperatures, when the equilibrium distribution P4 ()
is concentrated around the local minima (z = z 1 for the double-well potentials introduced in Sec. 2.2).
In the case of the the double-well potential the reduced operator describes an effective two level system
(TLS). Its correspondent (reduced) evolution operator reads:

—AtH| _ <x+|eiAtI_{|$+> <.’E+‘€7AtH|:L-7)
P [e ] - ( (x,|e’AtH|m+) <$7|6*AtH|x,) > (B.3)

where P denotes the projector on the two-lowest states. This approach is equivalent to a semi-classical
approximation which neglects Gaussian fluctuations around the classical solutions Z; = 4. '

Using the inverse of the transformation defined in Eq. 3.8, one can write down the correspondent
reduced operator of W = e~ 2* w (see Eq. 3.9):

i (wple®tFloy)  (oyle Ao yem T
P [e ] = ] Ly, / . (B.4)
(a_le=2tF |z, ) e (_le=2tA|z_)

!Gaussian fluctuations account for the harmonic modes in the bottom part of each well. Indeed that
equilibrium distribution is locally a Gaussian near x4, which is the well-known ground state solution
of a Schrodinger equation in an harmonic potential. Therefore there are harmonic levels in the H
spectrum and the first one accounts for the fastest intra-well dynamics (or relaxation). Nevertheless,
at very low temperature, it can be neglected (or better: integrated-out) since the inter-well dynamics is
the slowest one (see also App. B.1). This reasoning is true till an (effective) barrier between the wells
is present (see Sec. 3.7).
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Because the reduced evolution operator of the Master equation, defined in Eq. B.4, has to be stochastic
(see Sec. 3.2) the following two conditions must hold:

_ _ V_-V.
(@rle®  oy) + (@_le 2|z ) e 2 = 1

— Vi—-V_ —
(ple 2|z Ye 2 4 (z_le Atz ) = 1.

A further condition is that (z [e=2t#|z_) = (z_|e=2tH |, ), since the matrix in Eq. B.3 is Her-
mitian. In conclusion, all the four entries of the reduced evolution operator, Eq. B.4, can be expressed
in terms of only one independent quantity, the transition amplitude (z_|e 2t |z ). The eigenvalues
of reduced evolution operator, Eq. B.4, are simply given by:

X = 1
V.

M o= 1-2(x_|e 2t |g,) cosh(L

2T )7

. I I At H V_—Vy Vi-Vo .
so that the its spectral gap reads: A = \g — Ay = {z_|e 2 H |z ) e~ 2T (1 +e T T ) Since

T is assumed to be small, and V. > V_, the second term in parenthesis is negligibly small. Therefore,
the gap of the operator H is given by:

= V_-V.
A~ (z_|e Bt |g, ) e 7T (B.5)

The remaining part of this appendix is devoted to the calculation of the relevant transition ampli-
tude (x_|e~2*H|z,). Once again, we start with a simple calculation, i.e., the Fokker-Planck case,
where H = Hpp.

B.3 Calculation of transition amplitude: Fokker-Planck
case

Here we want to compute the matrix element
—-AtH
(z—le lz4)
in the Fokker-Planck case, for which the Hamiltonian operator is (see Sec. B.1):

o D (oV\® D 9*V
_ _ 2 _ -z
H=Hpp==-DV"+ 17 (6‘w> 2T 92"

It is simple enough to work out a Feynman Path-Integral version of this matrix element, which reads:
(a_fe > Merfay) = [ Dlaje fiarcten

with the usual boundary conditions in imaginary-time, (0) = x4, (t) = z_. The Lagrangian is
given by:

oz

L) = a2y 2 (07 * DoV
LY =4p? T are 2T a2
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When the temperature is small, the last term in the above equation can be neglected, and we shall make

use of the following approximation: £(z, %) ~ 75 22 + 125 (g—‘w/)z.

In order to obtain a semi-classical expansion [77] of this Feynman integral, one has to solve, as
usual, the classical Lagrangian equations of motion:

g DOV OV
T T2 9z Ox2’

A solution of this equation is given by:

T = a
+

This is the velocity of an overdamped motion ? going from . to . Moreover in the space interval

z € [z_,0]

z € [0,24] B0

e [VEslv
S

ESE)

[0, z4] the system “climbs” the barrier, and so the force field is opposite to the velocity. After the
top has been reached (with zero velocity), the system falls down onto the true minimum, and so in
the interval [z_, 0] the force and the velocity have the same sign. We also note that the time-reversed
trajectory T (t) = 2 (—t) is a classical solution of the Lagrangian equations of motion.

We can easily calculate the value of the action along the classical path, Eq. B.6. It is equal to:

t t 2
_ N 1 ., D [oV
Scl[xcl] - /0 dtﬁ(ib’,l‘) _/0 dt{ 4chl+ 472 (6:1:) }
3 2 t 2
B 1 ., D [0V 1 D [0V
= /0 dt {E“’"C’+—4T2 (%) }+/ dt {E”’C“TW (a—m) } !
where £ is defined by solving the equation z;(£) = 0. After some simplifications, we finally obtain:
S[]_/fdt1,av /fdt1,av
alfell = 0 2D 9z i 2D 9z
1 Vo Vi 1 Vi+V_ 1%
= 37 (/V = dV) —T(VO‘T> =7
where we used the notation V. = V(z_)and V}, = V(z,),and V = Vj — V““JQF—V‘

In conclusion, the semi-classical approximation leads to the following expression for the Fokker-
Planck transition amplitude:

<

(@_le 2|z, ) > C(t)e T, (B.7)

where C(t) is a function that accounts for the Gaussian fluctuations around the classical solution.
[78][page 1109ff]. It is not worth to know the analytical expression of such a coefficient, but it suffices
to point out that it depends linearly on A ¢. Indeed — since 4 # x_ — for small At the transition
matrix must be proportional to A ¢:

(@ le 2 |zy) ~ At (z_|H|zy) .

2The velocity is proportional to the force.
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Observe, in passing, that since the time-reversed path Z . (t) from z_ to z is also a classical
solution, we can explicitly check that the transposed transition amplitude of the Hamiltonian reads:

M

(myle 2|z Yy~ C(t)e

The classical solution in Eq. B.6, and its time-reversed, are not the only possible solutions of the
classical Lagrangian equations of motion. One can construct a whole family of paths bouncing many
time between x4 and z_. For instance, consider the following path:

zq(t) te€[0,t1]
2 =0 z4(t) telt,ta]
Tl (t) t e [tz, t]

where by means of the expression z;(¢), t € [0, t1], we mean a classical solution, as defined in Eq. B.6,
but with boundary condition z.;(0) = 24 and z(t1) = z_. In a similar way Z;(t) refers to the time
reversal trajectory from Zo(t1) = x—_ to T (t2) = x1. The last track is equivalent to the first, but
with different boundary conditions. Because of the integration linearity, we easily find that:

v
SalzP]=3 7

Summarizing, we conclude that (see also [78][page 180ff]):
(@ o2t oy} = (C@W e + Cot)e *F 40 )

where the series obviously goes on with higher-order terms obtained considering trajectories which a
larger amount of back-and-forth trips. Nevertheless, the leading contribution comes uniquely from the
first term, which is the one we shall retain. In the following, we shall refer to such an approximation

as the direct-path approximation.

B.4 Calculation of transition amplitude: General case

For a pure Fokker-Planck equation the scale of the thermal fluctuation is o5y o \/% — where k is
the (average) second derivative of the potential around the minima — and it is the only length-scale of
the system. However, the proposal moves introduced in Sec. 3.3, bring in another length-scale: the
proposal move range o. Therefore two regimes are possible: Either 0 < gcp5 oro > oeyy.

In the first case, o is the smallest scale and — if the temperature is small — this will justify the
the derivation of an effective Fokker-Planck, just as in Sec. 3.4. If, on the other hand, o,y is the
smallest scale (again for 7' small enough) we can split the full MC transition operator into two parts:
An effective Fokker-Planck-like dynamics for displacements smaller than o7y plus a remaining non-
local dynamics. As a consequence, the Hamiltonian operator H also splits into two terms, H =
Hpp + Hyjoc. The first term in H is the form we have just considered in Sec. B.3, while the second
term is a non-local part, where non-local means that (z1 |Hpjoc|z2) = 0if |21 — 22| < 0esy.



128 Appendix of Chapter 3

Using the Trotter’s decomposition, the full transition amplitude can be written down in the follow-
ing way:

N—-1
(afe 2 ay) = [ ] doi(onle ™ an-2)-+(@ile o)
i=1

where 7 = % is the Trotter time-step, IV is the number of Trotter slices, zog = x4, and zy = z_.

Moreover, if 7 is small enough, one can substitute (z1|e ™™ |zo) with (zq]e ™ Hrr e~ Hutoc|g),
with an error 0(72). It is then possible to write the transition amplitude, by making an explicit use of
this break-up, as:

2N—-1

(@_le 21 |zy) = /H d; (@anle ™ T7P [zan 1 Wwan—1le T e man o) -
i=1

(wale™ PP |y ) (@ e T Hntoc| )

In the framework of the direct-path approximation introduced in Sec. B.3, only a single non-
local jump is available during a path. Indeed, at very low temperatures the non-local move constraint
V(z1) = V(xo) (see below) can be satisfied only by passing through the barrier, and this can be done
just once. Using this approximation, we shall write down the transition amplitude in a more convenient

way:

<;1;_|e_AtH|g;+) = /dtldt2 (S(At—tz—tl—T) /d:cldz'g <£L'_|€_At2HFP|.'L'2)

T

(zole™T Hmtee|zy) (zy|e A0 Hrr g, ) |

where t1, to are the time elapsed by the local parts of the move and 7 the same for the non-local one.
The integrated coordinates 1 and x5 stand for the degrees of freedom of the starting and ending point
of the single non-local jump. Inserting Eq. B.7 in the above expression, we obtain that:

dt, dt
(z_|e 2t H)z,) = / 1 25(At_t2—t1—r)/dxldeC(t%x?)e—ﬁ(vm)—v_)
T
<$2|€7TH"I"C|.'L'1) C(tl,xl) efﬁ (V(z1)—Vy) .

We emphasize that the Gaussian fluctuations around the classical solution depend also on the coordi-
nates, because the latter are not fixed.

It remains a sort of ambiguity in the definition of T, since the only “physical” time is A ¢. However
we observe that the above integral can be maximizes — and then such a problem solved — putting
7 — At. Using this “variational” principle and the fact that x_ # x4, one can approximate the
non-local transition amplitude as follow:

—Atﬁnzoc| — 57 [V(z2)=V(21)| ,

(x2le 1) =T (x2,21) €

where T'(z2, x1) is the transition operator of a proposal move (e.g. Box, Gaussian or Lorentzian), that
we defined in Sec. 3.3. > Changing the spatial integration variables, we obtain that:

(a:_|e_AtH|a:+) = /dxl d(z2 —x1) K1(x1,22; At) e~ 7T (V(22)+V(21)=V4-V-)

3we have employed the symmetrization transformation for such an operator, as explained previ-
ously, and in Sec. 3.1.



B.5 The harmonic excitations 129

T(|z2 — 21]) e~ zr [V(z2)=V(z1)] ’

where Ky (z1,22;At) = [ 9892 §(ty + t1) C(zy,t1) C(x2,t2). (We made explicit use of the
translation invariance of the proposal moves, T'(|zz — #1|) = T'(x2,21), and we used, as usual, the
notation V. = V' (z4).

At small temperature the exponential e~ 27 |V{(#2)=V(#1)| is vanishingly small only if V (z2) ~
V (z1). For every value of the distance |z2 — z1|, there is a unique value of the potential energy V' such
that |22 — z1| = d(V — V) (see Sec. 3.9.1 for a definition of the function d). It is still possible to use
the saddle-point approximation to get rid of the integration in x4, finding that:

1 Vi+V_

(@ le2Flzy) = K, /d(xz—ml)Kl(wz—xl;At)e_T (47 ez —aa+257=)

T(|lz2 — =),

where K3 accounts for the Gaussian fluctuation around this saddle-point solution. * Performing a
change of variables, making use the function d, we finally obtain that:

T TR L Ap e ()
<.’L'7|€ |.’L'+> = K2 dVv W Kl(d(V—V+),At)€ T(d(V—V+)) . (BS)
Vi

The results obtained for the different trial moves are discussed in Sec. 3.9.2.

B.5 The harmonic excitations

In Sec. B.4 we defined the quantity o5y o %, which is the range of the thermal fluctuations around
a local minimum of a well, whose curvature (second derivative) is k. The other length-scale is the
proposal move range ¢. In this section we shall employ these length scales in order to discriminate
between different regimes of the Monte Carlo Dynamics. We also recall that we introduced in Sec. 3.4
the jump moments of order 5. We now extend the previous definition in a way that includes all the
cases under inspection:

aj(z) = / dy (y — ) Wrp(y, ),

where Wrp(y,z) = W (y,z) if 0 < 0z while

. W(y,z) |y—z|<oess
w, , L) =
rr(y;7) { 0 otherwise

if 0 > 0cpy. The first two jump moments enter in the definition of the Fokker-Planck equation (see
Eq. 3.18). They are given by (see App. B.7):

_Th o® 3V
al(w)_{ 3 T, 9y < Oeif

—\ T o5 8V
3T gy O 20eff

“We wrote Ki(xo — x1;At) instead of K;(xo, 21, At) because the Gaussian fluctuations are

translational invariant.
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and

270 .3
- <
a2(m): { 3 g g Oeff

2 T 3
Zh0cpp O 2 0efy

where To = lim|,_,|—,0 T'(y, ). ° Finally comparing Eq. 3.18 and Eq. B.1 we obtain that:

D = %ag(:c), (B.9)
1 a1 (x)
B 1l

Oy

and we also note that the Einstein relation D = % still holds.

In Sec. B.1 we found that the first non-vanishing eigenvalue of a Fokker-Planck equation with
harmonic potential V (z) = % k z? is given by Eq. B.2. By substituting it in the previous value of the
diffusion constant D we obtained that:

2 (T\ 1
Alharm) (5 ) oc{ T (%)~ o<oeys (B.10)

(%)1/2 02 Ocff

P

From Refs. [75, 76] we know that, for a generic double-well potential, there are in the spectrum
of the transition operator H (see Sec. 3.1) two low-lying states — the ground state and the fist exited
state connecting the two minima — and a whole series of almost harmonic states which are due to
the relaxation dynamics inside the two quasi-harmonic wells. Therefore the third eigenvalue A5 of a
double-well potential should be equal to the first exited state of the harmonic potential, Eq. B.10.

We claimed in the Sec. 3.9 that there is an avoided crossing between A; and Ay at very small
temperature 7" or for a large value of the move range o. Since both cases are compatible with the
condition o > .5, we shall try to fit our previous data with this model.

In particular, we fit % versus ¢ from the data shown in Fig. 3.3, for large values of ¢. From
the theory, we know that ’7\,—3 o T1/2. As one can see in Fig. B.1, there is an astonishing agreement
between data and theory for the proposal moves considered so far. Moreover, one can also estimate
thatoepy = 1.9 (%) Y 2, where the coefficient has been fitted from the numerical data.

We want to stress that — in contrast with the case of the A; coefficient (see Eq. B.8) — the expression
for the first harmonic gap is exactly known from the theory.

The avoided crossing between A; and Ay occurs — at fixed temperature 7' — for a & such that
A(5,T) ~ A2(G,T). In particular, for Box proposal move, this happens exactly when the effective
barrier By vanishes, at & = o, =~ 1.75, while for the other kind of moves (Gaussian, Lorentzian)
& depends on the temperature. This difference is due to the compact support of the Box move, which

limits the long jumps to be within the move range.

B.6 The diffusion constant

Suppose a Markov chain was defined as like in Sec. 3.1. A configuration in the phase space is labeled
by x and the average over the whole chain is indicated by angle brackets (...). We claim that the

Spo— 1 _ 1 1 ; - -
Ty = 50! Vapio® T o for Box, Gaussian, Lorentzian move respectively.
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0.1

0.01 ¢ - il Box .
‘ Gaussian .
Lorentzian o

0.87 TO° - -

10 1073 1072
T

Figure B.1: Normalized gap values (see the text) versus the temperature, for Box Gaussian, and
Lorentzian moves. These data fit with a T*/? dependence.

diffusion constant which appears in the Fokker-Plank equation, Eq. 2.2, is given by:

_ 2 2\ _
D= lip (&C+AD—z®)) . (ef) - @+ At 2(?))
At—0 2At At0 At
and we shall prove that such a definition is consistent with the usual definition of D obtained by means

, (B.11)

of Eq. 3.18. We stress that — after the Markov chain reached the equilibrium — the process becomes
stationary and so the diffusion constant does not longer depend on the time coordinate ¢, as in Eq B.11.

Using the symmetric transformation defined in Eq. 3.8, one can rewrite the time-dependent corre-
lation function which appears in Eq B.11 as:

(z(t + At)x(t)) = (Pol@(t + At) &(t)|o) »

where ¢o(z) is the ground state of the Hamiltonian operator associated to the Markov chain (see
Sec. 3.1). We made use of hats in order to distinguish the position operator (in Heisenberg picture)
from its eigenvalues (i.e. the positions z in real space).

By inserting two resolutions of the identity (in the energy basis) inside the previous expression,
we find the following series expansion of the time-dependent correlation function:

(dol&(t) £(0)|go) = ) (dol&|gi)(dile > |¢;)(e;|2] o)

0,3
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= (dol#ldo)* + D [{dolalgi)|?e 2, (B.12)
i>0
where 0 = Ag < A; < ... are the eigenvalues of the Hamiltonian defined in Eq. 3.8, which correspond
to the eigenvectors {¢g, ¢1,. .. }.
After a little algebra, the diffusion constant could be rewritten as:

D = lim (@?) = (2)* = Fiso [{gol2|gs) > =2 0N )
At—0 At

It is also simple to prove that the variance of the configuration along the Markov chain reads:
(@) = (@)* = D [(gol&|ga)[* .
i>0
Finally we obtain a simple expansion of the diffusion constant as:

D= lim 2is0 [(dol#| i) |? [1 —e At
At—0 At

L _ S Mltsolalont (B.13)
i>0
A short comment is in order. In the case of an harmonic oscillator, the well known dipole selection
rules yield to an even simpler result:

Dhrarm = ’\1|<¢0|-%|¢1)|2 ) (B.14)

which implies that — in this case — the diffusion constant is proportional to the spectral gap A;.

For more general potentials this conclusion is no longer true, but one can hope that — in every prac-
tical situation — the diffusion constant D, as defined in Eq. B.11, is a good estimator of the relaxation
properties of the system. Indeed, it is common wisdom to optimize the parameter of a Monte Carlo
proposal move in such a way that the diffusion constant results to be maximized (see Sec. 3.5).

We report another analytical definition of the diffusion constant, equivalent to previous one. It
reads: 9

D= AL (x(t+ At)z(t)) = —{¢o|% H Z|do) - (B.15)
This equation was obtained also employing Eqs. B.11 and B.12. H is again the Hamiltonian obtained

by symmetrization of the transition operator defining the Markov chain. By inserting two resolutions
of the identity (but in position space), we find the following expression of the diffusion constant:

D = —/da:dy (po|2ly)(y|H|z){z|Z|¢o) —/dmdy (boly)y(y| H|z)z(x|do)
= 5 [ Ay olo)(w - 2wl aloo)
— 5 [ dedy ol + ) ) el
= %/dmdy (&) (y — =) (y|H|z)(z|¢o) — %/dmw2(¢0|H|m)(x|¢0)+
- 5 [ Qb HIs)
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The last two terms are zero because H acts directly on ground state ¢ . ©
Therefore, the diffusion constant is given by:

D = 5 [ dody(nly)y - 2ol Hlz) olo) (B.16)

1
3 /d:vdy (y — 2)*W (y, ) Peg () - (B.17)

where W (y, z) = %(MH |) is the inverse of the symmetric transform introduced in Eq. 3.8 and
P, 4(z) is the equilibrium distribution of the Markov chain.
Using the notation of the Sec. 3.4, we finally attain that:

1
D= 3 /dxag(w) Py (),

where as(z) is the second jump moment (see Eq. 3.18). We emphasize that, whether the jump mo-
ment does not depend on the position or it varies over a range larger than the range of the thermal

fluctuations, one can safely use the approximation: D ~ %2, as we wanted to prove.

B.7 Jump moments

In this section we shall sketch the derivation of the jump moments as they appear in App. B.5. We
remember that the jump moment of order £ is defined as:

ar(z) = /+00 dy (y — z)* T(y, x) min [l,e

_V@)-v(=) ]
T
—00

?

where T'(y, x) is the transition operator related to the Monte Carlo proposal move (see Sec. 3.4 for a
thorough introduction).

First of all, we first all suppose that the argument of the integral is non-vanishing only if |y — z| <
Ocsys,and also that o,y is an absolute small quantity. These assumptions are reasonable in the context
of the proposal moves considered in Sec. 3.5 if the temperature 7' is not too much large. Therefore we
can rewrite the above equation as:

T+0ery V(e
ap(z) = / dy (y — z)* T (y, ) min [l,e_V(y)TV( )] .
T—0ess

Moreover — since all the proposal move considered in Sec. 3.5 are symmetric — we can employ the
further approximation: T(y,z) = To + Co (y — 2)* + 0 (a;‘f f), and put it in the definition of the
jump moments. It results that:

ap(@) = To be(z) + C1 bry2(2) + 0 (04

_v()=V (=)

where by,(z) = f;f;effff dy (y — 2)* min [1, e T ], and C; an unknown coefficient.

6Recall that the ground state energy A of the Hamiltonian is zero (see Sec.3.1).
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Then, we take a last approximation. Provided that F'(z) = — ‘?9—‘; # 0, one obtains that

NETY R R
T—0eff
The remaining singular points — where F'(z) = 0 — will be finally included in our formulation since
all the function that we employed are continuous.
Without loss of generality, we assume that Fi(z) < 0. As a consequence we can expand the
previous equation as follow:

z+oesy THoess F(2) (y—=)
bk(:v):/ dy (y — z)* +/ dy(y—a)fet— 7 .
T T

—Oeff —Oeff

and — by means of integration by part — we find the following recursive relation:

k+1 k
o T F(@)oesy T g
b — (_\k eff — k bk—l Nk eff E>0.
It is very simple to work out the zero-order jump moment, which reads:
T F(z)oagy
bo(x) = oess + @) (6 = 1) ~ 2057 +0(0244)

and, by means of the above recursive relation, all the others. We report only the first two because they
are the sole which appear in the Fokker-Plank equation (see Eq.3.18). They read:

1 F(z
bl(.fU) = g %Ugff +O (U;lff)
2

3

Finally, we obtain we following expression of the jump moments:

(10(1') = 2T006ff + 0 (a-gff)

To F(x)
a(2) = 3~ 0ty + 0 (o)
2T,
aa(w) = 52 0l + 0 (02y) -

A few final comments are in order. The fact that ag(z)  oesy < 11is not in contradiction with
the normalization of the transition operator. Indeed, in the definition of such an operator, one did not
include the singular part (proportional to a Dirac’s delta function) which account for move rejected
during a Metropolis Monte Carlo step (see Sec. 3.2). More in general, all the jump moments go to
zero as a power of o,y since the measure of the subset of the possible final configurations y (easy)
attainable from an initial configuration z shrinks according to that parameter.
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C.1 The Primitive Approximation for the action

The Eq. 4.2 can be directly rewritten as a product of P terms as follow:

Z(B)=Tr |e P H...e 7 H| . (.1
| S —
P

The number P of such terms is also called the number of Trotter slices. Every exponential in Eq. C.1
is similar to the original exponential of the Hamiltonian, but now with a reduced coefficient S,y =
B/P. Pushing this idea a step further, it is possible to define an effective temperature Topy = PT,
which is larger than the original one: the Feynman approach aims at taking advantage of such a high
temperature approximation in order to estimate the partition function. Let us insert P — 1 resolutions
of the identity (1 = [ dz |z)(z|) between every term in Eq. C.1:

P—-1
Z(ﬂ)z/ II deiTr g‘%Hpr_l)(mp_ll---|m1)<a:1|e‘%’{ . (C.2)
=1 ‘1;

It is worth to introduce the so-called density operator:
At
(2 50) = e ¥ ),

where % = (/P. For the sake of simplicity, from now on we shall set 4 = 1. In doing so, we
have moved from the old notation with the temperature 1/4, to the new one with the time-interval A ¢
because we want to stress the equivalence between this Path-Integral and that of quantum-field theory
in imaginary-time (i.e., after the so-called Wick rotation, see for instance [79]). In future development,
we shall keep this last notation because it leads to equations which are easier to remember. By inserting
the expression of the density operator inside Eq. C.2, we obtain a formal product that is written as a



136 Appendix of Chapter 4

convolution integral:

P-1
Z(At) :/ H dz; p (Tig1, 25 At), where zp =10 . (C.3)
i=0

Until now, everything is general. We know specify the Hamiltonian to be the usual quadratic one:

2

H=2 4v,
2m
where p = —i9;. Asin Chap. 2, T = ﬁ (remember that & = 1) will be our annealing parameter.

The kinetic term 7' = p?/(2m) does not commute with the potential V and it provides the quantum
fluctuations which cause a test particle to eventually tunnel through the barriers. With these notations,
the density operator is:

p(@ o At) = (|l Ty,

and, observing that for small A ¢ the following equation holds
= At (T+V) ze—At%e—AtTe—At%+O(At3) (C.4)

we obtain that:

vz)+vi(=
e—At %

p(e' z;At) = (a:’|e_AtT|;v) ‘10 (At®) . (C.5)

Eq. C.4 is equivalent to a first-order approximation of the so-called Trotter formula

e BI+Y) — lim (e_% Te-% V)P )
P00
which is Hermitian, as the original exponential operator. This is a subtle but important point, because
such an Hermitian approximation is correct up to second order, while the argument of the single
exponentials in the R.H.S. of Eq. C.4 contains only first-order terms. This increase of the precision is
a fingerprint of a whole class of Hermitian approximations, as we shall see in Sec. C.2.

It is now possible to work out analytically the matrix element in Eq. C.5 (e.g., by means of a
Fourier transform) to obtain:

1 1 2 ’
1 2 _Aidm % _‘_V(m )+V (=)
p(x',x;At):(m) e {2(A ) : }+O(At3) :
Inserting into Eq. C.3, we find that the partition function reads:

P-1

_(_1 \* o —Spalz] 3
Z(B) = (MFM) / 1}) dz; e +0 (A P), (C.6)

vl

where Sp4[z] is the so-called (euclidean) primitive action:

P-1 2
Spalz] = Z At {% (%ﬁ) +V(mi)} where zp =1z . (C.7)
i=0
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We want to make a few comments about this approximation. First of all, in the limit At —
0 (P — o0) {z;} becomes a trajectory in the configuration space labeled by the “time” ¢. This
trajectory is closed because z(3) = z(0), as required by the Trace condition. Therefore Sp4[z] in
Eq. C.7 becomes the (euclidean) action | dt H(z(t)), with periodic boundary condition. In Fig. C.1
a configuration of the PIMC is sketched and it may be helpful for visualizing the inter-slice couplings
scheme of Eq. C.7.

Lj42

Ti4+1

Figure C.1: Pictorial view of the PIMC configuration. One can see how the Trotter’s slices are
arranged in a closed chain. Bonds represent the kinetic part of Eq. C.7. By means of the arrows we
indicate the orientation of the chain (according to the growing subscript of the Trotter’s slices).

The quantum partition function written as in Eq. C.6 is indeed a classical partition function for P
copies of the original system. All the copies feel the same (original) potential energy V (x) and interact
by means of an harmonic potential whose strength depends on the number of copies itself and on the
annealing parameter I'. Letting I' — 0 — during the quantum annealing simulation — the stiffness of
such springs will diverge. Therefore, for very small values of I (at the very end of the annealing) all
the copies are forced to have the same configuration . This is nothing but the classical limit of the
original quantum system.

As for the Trotter discretization, one can show that, for instance, the internal energy has an error
which is 0 (A t2) =0(8/ P)2. This means that, for any given temperature, by increasing the number
of Trotter’s slices we should observe a quadratic convergence to the exact value. Finally we notice that
for a fixed target precision of a simulation, the number of Trotter’s slices must be proportional to the
inverse of the temperature. This is indeed a drawback of the PIMC: exploring regions of very small
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temperature is very time expensive, being the computational time required by a PIMC algorithm (at
least) linear in P.

C.2 Fourth-Order approximation

Not surprisingly, much effort has been devoted to searching better approximations of the exact action
than the primitive one. A general theory — which includes also applications to symplectic integrators
employed in molecular dynamics — has been formulated by Suzuki [80, 81, 82]. In general, this
approach makes use of many nested commutators and is best suited to lattice problem [83]. A simpler
formulation has been found by Takahashi and Imada [84]. Their fourth-order approximation involves
only local operators and it is remarkably equal to the semi-classical expansion of the partition function
[85, 86]. Recently, it has been pointed out that such an approximation does not include all the fourth-
order terms of the actual expansion [87, 88]. Nevertheless, the Takahashi-Imada approximation (TTIA)
provided very good results in quantum fluid simulations [89].
The Takahashi-Imada approximation of the partition function reads:

e 2@0] = T fe Be F0]" 0 (a8 p)
. = 1 (BY oo
‘/eff = V+ ﬂ F [V7 [T7 V]] . (CS)

(For a proof, see the original literature.) Because we shall apply it only to a one-dimensional potential,
for the sake of simplicity we shall study only the equations for this case.

The effective potential V¢ ¢, Eq. C.8, is a correction of the bare one which depends on the number
of Trotter’s slices. Since the double commutator is easily expanded in [85]:

.07y =2r (2
we obtain that: )
Vi (@) = V@) + %F(At)z (8‘5;”’)) . (.9)

Obviously, for At — 0 V,yy — V(z), so that both the primitive and the Takahashi-Imada schemes
lead to the same continuous limit. Moreover, because the non-trivial part of V¢ 7 (z) is always positive
and acts only when the variation of the potential is not negligible, it causes the particle to stay longer
around the local minima of the bare potential. The price to pay is that the computation of the forth-order
approximation is heavier than the primitive one due to the extra term added in Eq. C.9. In particular,
the knowledge of the first derivative of the potential is required.

The fourth-order approximation to the partition function reads:

1 B p1 .
_ . ,—STralT] 5
76 = <477I‘At) /11) do; ™24 40 (A P),

P-1 2
Srralz] = ZAt{% (%) +Veff(:ci)} where zp=129. (C.10)
i=0
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All the statistical averages for the observables can be carried out as usual. Obviously, the thermody-

1
namical estimator of the internal energy has a smaller error 0 (A ¢*) =0 <%) )

C.3 Statistical estimators

Even though the Trotter error is good, big statistical errors could arise from a Monte Carlo sampling
of poor observable estimators, and this can completely spoil the quality of the approximation. For
instance, the thermodynamical internal energy estimators in the case of the primitive and fourth-order
approximation read:

1 R z\2 1%4
_ - i e = S - .
Upa = 94y 4F§P< At ) +P§VE”($')
TA#2 & [0V (zi))>
Uria = UPA+Z? ;( s, ) .

The true internal energy is clearly:

U = (Upa)+0(AL)
U (Uria) + 0 (A)* .

Il

However, the Monte Carlo sampling of both these estimator leads to unreliable results. Indeed the first
two terms of Up4 almost cancel out [59] and this cancellation gives rise to large fluctuations which
usually increase with the number of Trotter’s slices [90] because of their 1/At dependence. ' We
now check that these fluctuations enter only in the kinetic term. In order to find an expression for the
potential energy estimator, consider a slightly different Hamiltonian H = T 4+ aV. The potential
energy can then be expressed as:

19

(V)= _ﬂa_alnz(ﬂaaﬂzx:l -
According to this formula, we obtain the following potential energy estimators for the two approxima-
tions:
1 E
Vpa = 3 ; V(zi)
T A2 [0V (z:)\’
Vrra = Vpa+ - (z:) . (C.11)
6 P i—0 81‘1

Taking the difference of U and V, we obtain the following estimators for the kinetic energy:
P—1 2
1 1 Ti+1 — L
K = -
pA 2At 4TP ; ( At

'Recall that in a free random walk, i.e. when V = 0, Zf;ol (g1 — a:z-)2 x P.
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T A2 = (V@)
K = — = ! . .
TIA Kpa + 2P - ( a2, ) (C.12)

i—
We notice that a contribution involving the potential gradient (i.e. the force) is also present in the TTA
kinetic estimator.

Actually, the observable estimators are not completely determined by the actions only. One can
consider the following equality:

SIS dos {55 (@1 - 2) 28021} et
: =P-1
[T, duieska]

where S[x] stands for either the Primitive or Takahashi-Imada actions, Eq. C.7 and Eq. C.10, while
1 P—1

T = 5 Do Ziisthe centroid coordinate. Eq. C.13 was obtained by means of an integration by

parts, and it is very similar to the virial in classical mechanics [91][page 22ff]. Substituting the action

(C.13)

inside such an equation, it becomes

2
INE TS wrirall ) IS vrirs (—)&} PA
Zi 1 Z4 2 P— _\ OV, x;
At 2F E ( + ) +Zi:01 (-'L'z_l') %} TIA.

From Eq. C.14 one then obtain that:

P-1=

P-1 1 —~P-1 = OV(=zs)
PA —32im0 (i — %) 5o PA
P—

P-1
1 (:c,+1 mz> _ 4
ATP N P-1 \ OVirs(@i
AP = At 5PAT — 3 Dizo (Ti — ) 73’:’;@) TIA

P—1
- 1 1 .0 V(:Bz)
K = — 4 — o
pa 25+2P§(“ ) o
_ _ T A2 2 OV (z;) 82V ()
K = K — — i — % ! . C.14
TIA PAt 3 p 2 (z; — ) o 922 (C.14)
We stress that no dangerous cancellations occur in Egs. C.14, and their classical limit is K = ﬁ,

has it should be, due to equipartition. Quantum corrections to classical equipartition appear to depend
on the fluctuations (z; — ), which are proportional to the De Broglie’s thermal length /47T B (in
the case of a smooth potential) [S9]. The potential energy is not affected by the virial transformation,
and Eqs. C.11 are still valid. There is a trade-off in the game: the virial estimator requires a further
derivative of the potential. In the most accurate case — Takahashi-Imada approximation plus virial
estimator — one has to compute up to the second-order derivative of the potential.

C.4 Sampling methods

In the previous sections, we studied several approximations of the partition function and several es-
timators of the main observables. A discussion of the sampling methods is now in order. The aim
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of the Path-Integral Monte Carlo is sampling configurations taken over a suitable (finite dimensional)
subspace of the whole Hilbert space. Since the partition function is written as:

1 £ P-1
Z = <7) / H dz; e50,
47T At Pt

this is equivalent to sampling vectors of R¥ distributed according to the multivariate distribution:

47T At

Since we shall employ the Metropolis algorithm, we use the notation of Sec. 3.2. A trial move

P, (zx) = ( ! )2 e Slel (C.15)

T(z',z; At) may involve many Trotter slices (i.e. component of the vector z), or just a single one
(viz. a single slice move). Anyway — instead of proposing a completely random displacement — one
can try to sample the kinetic part of the Hamiltonian exactly. We recall that the kinetic part of the
distribution defined in Eq. C.15 is given by:

IR |

47T At

and it is formally the trace of a Gaussian convolution. If we set:
Pg (")
J TS df Pre(a)’

we shall obtain a so-called heat-bath algorithm for a free (i.e. V(z) = 0) system. The acceptance

Tk(z' z) =

factor reads, in this case, as:

Ak (2',z) = min (1 Tx(@, ') PK(”“”) -1,

" Tk(x',z) Pk (z)
which is the best possible for a Metropolis algorithm. When we switch on the potential V' this result
will be no longer true:

. 1 H'P—01 e— AtV (z]) PA
min =T A v
A(z',z) = min (1 Tk (z,2") Peg(z')\ _ TS e AtV
) - b - ’ b
Tk (x',x) Pey(x . P—1 —AtVps(})
K( ) ) eq( ) min lan}=_()1 E_Atv o TIA
ILilo e ef £

but one can reasonably expect that, for a smooth potential, the acceptance will remain reasonably high.

The simplest illustration of such a proposal move involves only a single-slice displacement. Un-
fortunately, this is seldom a good choice. Indeed, a single slice change scarcely affects the global
configuration, and the correlation time is expected to be very long. Although it is not the better choice,
it is worth to start from such an example before to approach more effective and global proposal moves.
Indeed, changing only a single x;, one can neglect all the others slices but the nearest ones, z;41 and

z;—1, because they cancel out in the ratio 1;,’; ((:;)) . Therefore, we obtain that:
2ip1—2t\2 of—a;_1\?
o (7)) e (232
( ) e e

TI({I)(:E;,:L') — 4nT At

R C R R D

17T At
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y_®ig1tei_1)\2
i E—

= @TAtD) e mao

which is a Gaussian of mean % and variance At T'. This is a really non-trivial property of the
Gaussian distribution, and it is not shared by other distributions which are also stable under convolu-
tion, like the Lorentzian or more general Lévy distributions [92, 93]. Sampling a Gaussian is a very
fast process [53, 74] on a computer, but many Monte Carlo steps must be performed in order to have
decorrelated configurations. Usually, a single Path-Integral MC step consists, by definition, of a move
for each particle and for each Trotter slice (on average). The order of the single slice moves can be
either sequential or random, even though the second choice guarantees better decorrelation.

C.5 The Lévy construction

The simple single-slice move of the previous section is the basis of a more effective strategy which
involves many slices at time. The goal is still to find an algorithm which samples exactly the kinetic
part of Pe(x) in an iterative way. First of all, we need a few more notations. The kinetic part of the
density operator Eq. C.5 is given by:

1 ’ 2
1: ada (=22)7)
N — {4r At .
pK(.Z',-'E, t) (47TFAt> € ) (C 16)
and, as a consequence, the kinetic part of P,,(z) reads:
P-1
P(z) = [] px (mig1,zi;A1) ,
i=0

with the usual periodic boundary condition zp = zy. The single-slice transition probability can be
written as:
P (Tit1, 25 At) pr (), Ti-15At)

TM (4 2) =
K (mlim) PK ($i+1,$i—1;2At)

(C.17)
It is now possible to define the following transition probability:

7O (g1 ) = PX (Tigor-1, 2527 A L) pi (2], 2 01-15 2071 At)
K PK (Tipoi-1,T;_g1-152L At) ’

which is still correctly normalized (i.e. [ dz} TI((” (xf,x) = 1) because of the stability property of
the Gaussian under convolution. By making use of Tg) (x}, ), it is possible to construct iteratively
a so-called Brownian bridge between x;, 51-1 and x;_s—1. These two extremes are kept fixed and
the middle point is sampled according to TI((I) (z',x). After that one proceeds iteratively finding the
middle point between x;, 2:—1 and z;, and between z; and 2;_51-1, employing TI({Z_l) (T} 1-2,7) and
Tl(é_l) (%} ,1_2,), etc., until all the slices between are ;4 -1 and x;_o:—1 are fixed. It is convenient

to denote by T}(l’l_l) (zh,z) = T}(l—l)(m/

~(1—1 . . .
iio1=2:7) T& )(w;_2,_2,:c), with an obvious generalization

to further bisection steps.
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As simple example, we work out completely the case I = 2:

PK (Tiy2, T332 At) pr (25, Ti—2;2At)
PK (Tiy2,Ti—2;4 At)
prc (Tiga, oy 15 A L) pi (2,25 At)
PK (.Z'i+2, m{u 2A t)
pr (@, 2 At) p @)y, i 25 At)
pi (T}, Ti2;2At) ’

TS (2}, )

TSV (z,2) =

which exhausts all possible bisections. The product of these two terms reads:

T e) = TP (o) T (@), 2)
PK ($i+2,$2+1;At) PK ($§+1,$2;At) PK (mé,m;_l;At) PK (mg_l,mi,g;At)
pK (Tiyo,xi2;4 A1) '

The acceptance of the whole move is then given by the following equation

(2) ] ’
A (@) = min (1 Ty <:c,xz-)PK(x)) 1

| T} (a),x) Pc(a)
i.e., we are still sampling exactly Pk (z). Even for Tf(p (x}, z) a closed analytical expression exists:

2
(m/_mi 21—1+mi—2l—1)
i pl

s 1
T (2l 0) = (2w AtT) 2 e AT ,

which is a Gaussian of mean w and variance 2/ 1A ¢T". The generalization of this
procedure to larger values of [ gives the so-called Lévy construction [59], which provides a fast way of

simulating a free system.

C.6 The Bisection algorithm

In this section we shall describe an algorithm which is able to efficiently sample the whole Peq(z), by
taking advantage of the Lévy construction. A new notations first. We shall employ the following slide

sets:
I(l,l+1) = {$i+2’—1a$i—2’—1}a
I(l,l) = {$i+2l—1;$z’,$i—2l—1},
I(l,lfl) = {Tipo-1,Tipor-2, T, Ti_gi—2,Ti_g1-1},

and so long so forth, adding middle points of the previous set at every step. We define a partial trace
operator Tr; [+ - -] as:

Tr(z,m)["']z/ H da;[--].

L1, m)
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With this notations, we can rewrite the transition operator of the Lévy construction step as:

_ Tr(l,m) [PK(.'L'I)]
Tr(,mi1) [P (2')]

7™ (), ) = PL™ (o (C.18)
The probability PI((l’m)(:v) is well normalized and it represents a renormalized probability that takes
care only of a subset of the whole slices involved in the construction.

Instead of accepting a move at the end of the construction of the Brownian bridge, one can accept
it at every step according to the following equation:

T(lam) ! P(lvm) !
A(Il{’m) (z',7) = min <1, @ m)( > 23) @ m)(w ) = =1.
Ty (@}, @) P ()

The detailed balance holds at every step, as it follows from:

AL™ (2! 2) TE™ (2, 2) PE™ (2) = AL™ (2,2') TE™ (2,2) PE™ (a)

7 (3

and so does for the product of all the terms involved:

! 1
H A(lm (2, z) T(lm)(:v x) P(lm) H A(lm (z,x") T(lm)(:v m)P(lm)( .

Rearranging this equation one can reconstruct the kinetic part of the original distribution:

(l) H P(l m) I

the whole transition operator — which represents the probability of generating the Brownian bridge in
a single step —

T(l) :c ,T) H T(lm) a: ,T)

and the whole acceptance — which is the probability of accepting the whole Brownian bridge —
l
A(l) (=", z) H A(l m) =1.

This notation is cumbersome for a free system, but its generalization to the interacting case leads
to a simpler formulation of the so-called bisection algorithm [59]. The idea is simple: One propose
an exact kinetic move, constructing a Brownian bridge according to the Lévy construction, and then
accepts or rejects every step according to the following probability:

I,m l,m
A®G™) (3! 2) = min [ 1 TI(( )(x,x;)Pe(q )(x’)
7™ (@}, 2) PG™ ()

which will be in general different from 1.
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The definition of Pe(é’m) (z) is the analog to Eq. C.18, but it is possible to employ the Trotter
approximation Eq. C.5 and state that:

l,m _ogm—1 o m—
plm) () = PI% (@) iex ., € 2m_1AtV< ) +0((2m1At)®)  PA
eq P}(’m)(m) Hiel(l,m) e—2 AtVers(zi) 4 O ((mel At)5) TIA

Pe(é’m) (z) is not normalized, but it is not a serious drawback of the approximation, since the Metropolis
algorithm works well also with non-normalized distributions.

Finally we observe that the acceptance depends only on the reduced probability Pe(é’m) (x) =
P™ ()

—tt=y— Which involves only the potential energy:
Py ()

5(l,m
Alm) (ZL‘I,.Z') — min <1, Pf(gl n:)(m’)) ,
Peg™ ()
since the kinetic part of P, () was exactly sampled (see Eq. C.18).

The bisection scheme has the great advantage of being modular: a trial move that involves many
Trotter’s slices can be refused during an early bisection step, saving a lot of computation time. Unfortu-
nately, some problems will arise from the inherent discrete nature of the algorithm. Indeed, increasing
the number of bisections steps by one leads to a doubling of the slices to be moved. As we shall see in
the next subsection, in order to maximize the whole acceptance of the bisection algorithm one can only
tune this single discrete parameter (the bisection step), instead of a continuous one as in a classical MC
(see Sec. 3.5).

C.7 Global move

The bisection scheme neglects a very natural kind of move, which is a coherent translation of all the
slices (center of mass motion). If the global displacement y is distributed according to a Gaussian of
zero mean and variance o2, then the acceptance is given by the following equation:

. Hf=_01 e~ AtV(z;+y)
min (17 Hf=—01 e—AtV(z;) PA

!
Agu(z',z) = Pl —ALVppeity)
in (1, Mi=o_e TIA
min ) H'P—_ol o= At Verr(=i)

This move is very similar to a classical one, and one expects that the optimal variance 0%, should be
correlated which the temperature 1/, as explained in Sec. 3.5.

Global moves are really effective in the last part of the annealing, when the quantum move pro-
vided by the bisection algorithm are rarely accepted. In the following sections we shall assume that a
single global move is performed after every single bisection move.

C.8 Analysis of the convergence

In this section we shall present some result about the convergence of the internal energy U with respect
to the number of Trotter slices employed by a PIMC algorithm with bisection moves. The data refer
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to the V,sym double-well potential case only, because it presents a true Landau-Zener transition (see
Sec. 2.2.1).

Quantum fluctuations increase the kinetic and the internal energy, but in order to have quantum
effects completely at play, a suitable number of the Trotter slices must be employed. In Fig. C.2 we
report the convergence to the asymptotic value of the internal energy for a [ = 1 bisection algorithm
with primitive (PA) and Takahashi-Imada (TTA) approximation. The temperature has been set to the
relatively small value of ' = 0.03 and we fixed I' = 0.5 (i.e. an equilibrium simulation with a
small mass term). As we expected from the theory, the Takahashi-Imada approximation guarantees a

1'_""1'—.——.——0——.——3
0.8 1 )
> a
(@)]
2 0.6 | *
(D) .
T 04! T=0.03
= - Primitive
0.2 + . Takahashi-Imada =wmewm=
H Exact value - - -

O | | | | | | |
2 92 23 9% 95 o6 o7 58 59
P

Figure C.2: Convergence plot: both curves are obtain by a level 1 bisection plus global move PIMC
simulation of a particle of unitary mass (I' = 0.5) in V5, potential. A set of data refers to the
primitive approximation of the action, the other to the fourth-order approximation. The exact value is
obtained by means of exact diagonalization (see Chap. 2).

faster convergence (see Sec C.3). We make use of the virial estimator of the internal energy and we
obtained the averages over 10* decorrelated configurations. > The larger statistical error of the first
few points (small P) in the case of the fourth-order approximation is due to a smaller acceptance of
the method. This is a minor drawback, and it depends on the different ratio between the potential and
the kinetic part only at low P (see Eq. C.9), and on the fact that we employed exact kinetic sampling.
Nevertheless, the statistical error in the convergence region agrees for both PA and TIA case.

2In practice, we made use of an equilibration time of 10* MC steps, the rest of the simulation
lasted 108 MC steps, and we took a configuration every 10* MC steps. The blocking technique [52]
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P Acc (A z?)

2 0.22% | 0.791210°3
4

8

1.5% | 0.6236 1072
8.3% | 0.1302107¢
16 | 38% |0.2072107!
32 | 68% |0.142510°1
64 | 8% | 0.56831072
128 | 94% | 0.17261072
256 | 97% | 0.473610°3
512 | 99% | 0.12751073

Table C.1: Acceptance table of the bisection [ = 1 algorithm with Takahashi-Imada approximation:
In the second column we reported the average acceptance of a whole bisection move and in the third
one we collected the average r.m.s. displacement of the single slice.

Other useful diagnostic quantities are the average acceptance of a whole bisection move and the
average r.m.s. displacement (A a:z) of a single slice (see Sec. 3.5). In Table C.1) we report these data
for the bisection/ = 1 algorithm with Takahashi-Imada approximation. As P increases, the acceptance
approaches unity, but the average r.m.s. displacement has a maximum around P = 16. This value is
not very far from the convergence region — as shown in Fig. C.2 — and the corresponding acceptance
lies within the range empirically recognized as “optimal” (around 20%) [59].

On the other hand, the same analysis applied to the primitive approximation (see Table C.2) shows
that a maximum of the average r.m.s. displacement occurs when P = 8, which corresponds to a very
poor convergence. This means that the single-step bisection algorithm is not accurate enough and
a larger Brownian bridge is advisable. Increasing the number of bisection steps — the total number
of Trotter’s slices P being fixed — usually leads to a larger average r.m.s displacement, and also to
a smaller acceptance rate. As we anticipated in the previous section, the number of bisection steps
cannot be fine tuned and, as a consequence, big jumps in both average acceptance and average r.m.s.
displacement are usually found.

C.9 PIMC at Landau-Zener transition

As we explained in Chap. 2 the particular form of the potential Vg4, has been chosen because it
provides a clear Landau-Zener (avoided) crossing between the ground and the first exited state. It is
very instructive to study the system just at this point, which occurs for I', = 0.038, corresponding to

was applied to this series in order to show that such configurations were really decorrelated.
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P | Acc (A z?)

2 3.4% | 0.124710°1
4

8

9.9% | 0.3172107*
24% | 0.4464 107!
16 | 47% | 0.3305107*
32 | 70% | 0.164010°*
64 | 86% | 0.56421072
128 | 94% | 0.17671072
256 | 97% | 0.472710 3
512 | 99% | 0.1266 1073

Table C.2: Acceptance table of the bisection [ = 1 algorithm with primitive approximation: In the
second column we reported the average acceptance of a whole bisection move and in the third column
we collected the average r.m.s. displacement of the single slice.

an (Hamiltonian) energy gap A e = 0.608 10~2. For T' = 0.03, this gap is the smaller energy scale
in the problem and therefore thermal fluctuations could cause themselves a transition from the ground
to the first exited state. Nevertheless, since the gap between the first and the second exited states at
T. = 0.038 is A ey = 0.498, the system is still an effective two-level system. One can guess that at
the transition point the correlation time of the algorithm is huge, because of the smallness of the gap. *

We begin by examining the convergence plotof al = 1 and ! = 5 bisection algorithm at 7" = 0.03.
We made use of the virial estimator for the internal energy and we obtained the observables values aver-
aging over 10% decorrelated configurations. * Fig. C.3 shows that, despite the fact that the convergence
seems to be reached when P > 40 in both cases, the [ = 1 algorithm displays a less regular behavior.
We introduce now a new test, particularly useful in such a correlated system. In Fig. C.4 we report the
centroid coordinate of the configurations we employed in order to find the averages. The first panel of
the figure clearly shows a lack of ergodicity of the [ = 1 bisection algorithm. The centroid is prone to
be stack in one of the two minima (i.e. x_ ~ —0.75 and x4 ~ +1.25 see Sec. 2.2), and, indeed, it
presents many “holes” in the centroids data. On the other hand the ! = 5 algorithm display a “denser”
distribution, a fingerprint of a truly ergodic behavior.

3This correlation time has nothing to do with characteristic time 7z o< A €~2 of an Landau-Zener
transition. It means only that two configurations obtained by means of an equilibrium simulation at
T' =T, should be decorrelated only if they were separated by an amount of MC steps greater than this

correlation time.
“In particular we performed 10° MC steps employing an equilibration time of 106 MC steps (i.e.

we took a configuration every 106 MC steps). These times are considerably longer than for the case
I" = 0.5 we studied above.
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Figure C.3: Convergence plot of the [ = 1 and I = 5 bisection algorithm at the Landau-Zener
transition point: Vg, potential case. Data referring to the I = 5 case are computed only for P >
25 = 32 due to the constraint in the path construction. The exact vale is obtained by means of exact
diagonalization (see Sec. 2.2).

Summarizing, it is better, in terms of computational time, to avoid exceedingly large correlation
times, by increasing the number of bisection steps, rather than having to increase the number of itera-
tions with a small bisection level.

C.10 The role of the initial conditions

We would like to spend here some words about the initial condition we implemented in the actual
annealing simulations. As we explained in Sec. 3.5, every simulation starts with an equilibration part,
consisting of a few (with respect to the whole simulations length) steps performed at fixed annealing
parameter I'. We found that I' = (.5 is a reasonable value, as one can see in Fig. C.5, and also because
of the choice in Sec. 2.2. It remains to choose a suitable number of Trotter’s slices and of bisection
steps.

In Fig. C.5 we plot the profile of the diagonal part of the density matrix at 7' = 0.03 and I" = 0.5.
For every coordinate z this observable is equal to the average ( X[z,dz,z+dw]), where dz depends on the
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discretization grid employed. > Its exact value was obtained by diagonalization of the corresponding
Hamiltonian, taking the usual thermal average over the low lying eigenvectors. In order to maintain
each simulation around the optimal sampling regime, we always made use of a number bisection steps
which maximizes the average r.m.s. displacement. In particular we employed [ = 2 for Np = 20,
l = 3 for Ny = 40,1 = 4 for Ny = 80, and [ = 5 for N7 = 160. The exponential scaling is evident.
Indeed, for every practice purpose, the ratio between the moved slices, 2! — 1, and P must remain
constant in order to have optimal sampling conditions.

We want to stress that a sub-optimal choice of P leads to wrong initial condition. The exact
solution at 7' = 0.03 and I' = 0.5 is a unimodal distribution, meaning that the barrier among the well
does not affect the system. However, for P < 160, the diagonal part of the density matrix presents
two peaks, more or less defined. One can also claim that, for sub-optimal number of Trotter’s slice,
the system is less “quantum”, due to small tunneling rate.

Unfortunately a simulation with P = 160 requires a lot of computational time, even according to
a l = 5 bisection scheme. However, we stress that, for small values of I" (i.e. for large “mass”), this
initial large amount of Trotter’s slices is likely to be inessential. Indeed in such parameter region the
system is “less quantum” due to its larger mass. In order to check this hypothesis, we performed a
series of Quantum Annealings, starting with different number of Trotter slices P. In Fig. C.6 we plot
the residual potential energy €. versus the annealing time 7 for all the cases considered. Despite the
fact that, initially, the systematic error due to a sub-optimal Trotter’s slices number is considerable, it
becomes less and less relevant for slower annealings (i.e. larger 7).

These numerical experiments suggest that the actual asymptotic annealing behavior can be effec-
tively studied even by means of a simulation with P = 20, saving a lot of computational time.

C.11 The Instanton move

Even though the PIMC algorithm presents many drawbacks (finite temperature 7', sampling problems
for the action, difficulties with the Trotter break-up), we can still manage in order to find a smarter
proposal move. In particular we try to add a very specific global — but quantum — displacement of the
whole PIMC configuration, taking advantage from the so-called instanton theory.
This theory applies to a kind of potential more symmetric than the ones that we considered so far
(see Sec. 2.2). It reads:
V(z) = Vo (2% — a®)*. (C.19)

The classical equation of motion in such a potential is given by:
1 . ov

2T T 9x

but it is better to study its analytic continuation (i.e. setting t = —% 7):
1 9%z oV
2T 92 9z’

3In this case the mesh is dz = 0.05. The error is obtained over a set of 10% decorrelated configura-

(C.20)

tions.
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The trivial solutions of the last equation are z(7) = =+a. Moreover, other trajectories in the
imaginary time — which are also solutions of Eq. C.20 — can be written as:

w (T — 7 8TV
7o (T) = £a tanh (M) where w? = — 9.
2 a
They are the so-called the instantonic solutions. °
These paths connect the two minima, starting from Fa at 7 = —oo and reaching +a at 7 = +o0.

It is also possible to estimate the (imaginary) time which a particle takes tunneling through the barrier.

L1 | @
Ttun = T 16TV,

We stress that — since 7., depends on I' — this time will be very large in the final part of an annealing

It reads:

simulation.

The (anti)instanton is not by itself a good PIMC configuration, because it is not a closed path in
the configuration space. In order to obtain a suitable path, one has to consider a linear superposition of
an instanton and an antiinstanton. This configuration reads:

:cz(ms) =4 [a tanh (M) — a tanh (W)] , (C.21)
where the sign and the constants ¢; and i, are free parameters, while @ = w A ¢t. Strictly speaking,
Eq. C.21 does not represent an actual periodic solution, because in general a:gi? #* xz@"s). However,
till % < g, the error is negligible. Anyway, for small I" the instanton-like displacement will not
available, since the above condition can not be longer satisfied.

In a practical implementation of the PIMC, we propose an instanton move, Eq. C.21, after any
bisection (and global) move. Our algorithm will randomly choose the sign and the two parameters %1
and ¢2 of the Eq. C.21, while the coefficient a is set to 1, since 2a ~ a4 — a_ = 2 in the case our
double-well potentials (see Sec. 2.2). After that xz("’”) has been generated, a proposal configuration is

(ins)

obtained by adding it to the older configuration: x; = mg"ld) +z; /, and it is accepted or rejected

according to the usual Metropolis algorithm. In this case acceptance operator simply reads:

Ains(2', ) = min (1, 1}’322(5))) |

where z = (9D and g = gD 4 glins)

C.12 The Lorentzian Move

In Sec. 4.2 we present some simulations performed according to the Hamiltonian:

H=Tt)p*+V(z),

®By convention we shall call instanton the solution beginning with a + sign and antiistanton the
other one.
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o
ox

Given insight from the relativistic dynamics, one can set a new Hamiltonian as:

where p = —i = is the momentum operator. This is a natural choice, but it is not the only one.

H=T()p|+ V().

The new kinetic operator I'(¢) |p| is singular in real space representation, but the correspondent kinetic
density operator can be written in a simple closed form:

D L ()
2 At) = — 5 = .
pK(JI,iU, t) 71'F2At2+($l—$)2 WFAte

This is a Lorentzian (or Cauchy) distribution, while the kinetic density operator, Eq. C.16, considered
so far was a Gaussian one.

Since in the Sec. 3.5 we realized that a proposal move distribution with long tails can improve
the Classical Annealing performance, we want now to test this hypothesis also for the PIMC-QA dy-
namics. It is possible to obtain a generalization of the Lévy construction for this kind of Lorentzian
move, observing that both Gaussian and Lorentzian distribution are stable under convolution (a prop-
erty shared by all the so-called Lévy distribution [92, 93]).

First of all, we have to find a closed expression of TI({1 )(:cg,a:), as defined in Eq. C.17. In the
Lorentzian case it reads:

(zi+1*zi—1)2 +4
T‘,((l)(m{,m) _ TAt TAt ‘
¢ 27 |:(mi+1z2)2+1:| |:<z2zi—1)2+1:|
TAt TAt

Unfortunately, this is no longer a Lorentzian distribution, and therefore there is not an obvious sam-

pling way (that, for instance, makes use of the usual inversion technique; see [94][chap. 33]).
Carry the algebra on, after a smart change of variable (and taking care of the right Jacobian of
such a transformation), we obtain a simpler form of the transition probability. It is given by:
2 241
T}(('l)(yaa) = - ) s 9 )
™ w+ o +1] {5 -0 +1]

where

Ti+1 — Ti—1

2T At
¢ = Tiv1 +Ti—1
2T At
_
Y = 1A &

Finally (after some more tedious algebra), we find that:

1 1 y?+a’+1 1 y?—a?+1
T}é)(y,a):; - = )

[(y +a)? + 1] [(y —a)+ 1]1 ZT [(y +a)? + 1] [(y —a)’+ 1]4

Wi (y,0) Wa (y,0)

~
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and also that T,;(l)(y, a) < 2Wi(y,a).

An efficient strategy to sample T,i(l) (y,a) is to sample before W1 (y, a) and then to make use of
the usual rejection technique (see [94][chap. 33]) in order to achieve the original distribution. The
primitive of W (y, a) can be computed and it reads:

Ml(u,a):/ dyWi(y,a) = — tan™! (7“‘)_,_5

2 1—u2+a?

Inverting M; (u, a), and making use of an equidistributed random number u € (0, 1], we find that:

—d—/d>+ (a® +1 0,% 1
y= e+ 1) UE(l’z] where d = cot [27r (u——)] .
—d+ &+ (a2 +1) ue(s]] 2
Provided u' € (0, 1] — another equidistributed random number — we shall accept the y obtained
above according to the condition:

2W1(y7a) u' < Wl(yaa) - WQ(yaa) .

It results from standard considerations (see [94][chap. 33]) that the average acceptance of this method
will be around 50%. It means that in order to generate N random numbers distributed according to
TE ) (z}, x), one has to try on average 2 N times. Finally the original middle point value z} appearing
in Tg ) (x}, ) is obtained inverting the early change of variables:

o, =TAt (y+c) .

This sampling method is a bit cumbersome, but it can be easily implemented as a computer algorithm.
Its generalization to the more general case, namely TI((I) (x}, z), can be easily obtained following the
recipes of App. C.5.

Since we proved that it is possible to implement a bisection algorithm for a relativistic Hamilto-
nian, one can also proceed as in Sec. C.6 and implement a real Lorentzian-PIMC. Moreover, since

[V, [lpl, V]] = 0, for such a Lorentzian-PIMC the simple primitive approximation is already exact till
the fourth-order! We finally recall that the virial estimators for the kinetic an potential energy simply
read:
P-1
~ 1 1 0 V(II},)
K = -4+ — i — T
PA ,8+ P;:O (zi — 2) a1
1 E
Vpa = 3 > Vi),

i=1

where T is the centroid coordinates (see Sec. C.3).
A further generalization of the Lorentzian-PIMC, suitable for higher dimensional configuration
space, is discussed in Sec. 4.5.
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Appendix of Chapter 5

D.1 More about GFMC

The basic idea of the Green’s function Monte Carlo (GFMC), Diffusion Monte Carlo (DMC) and other
similar projection techniques is to obtain the exact ground state 1o (z) of an Hamiltonian operator H
from a simple trial function ¥r(x), by iterating the application of a (simple) function of the Hamilto-
nian G(H)[95]:

lim G™"(H)vr =1y - D.1)

n—oo

It’s customary to use only the following cases:

GUH e~AtH=er) DMC

(H) { b GFMC

where er is the so-called trial energy — an estimate of the true ground state energy — and At is a
constant governing the projection rate (e.g. At = 0 means no projection at all). We recall that we set
h = 1 throughout all this appendix.

To prove the converge of the algorithms, Eq D.1, we shall make use of the eigenvectors {¢;(z)}
and the eigenvalues {¢;} of the Hamiltonian. In such a basis the trial function reads: ¢r(z) =
2 j>0 4 ¥;(z) (the coefficients a; account for the initial condition). Therefore the projection pro-
cess is given by:

lim G™(H)yr = lim

n—oe n—oo

{ Ejzo e~ At(ej—er) ag-bv,bj (z) DMC
S0 (trarts—y) @iti(@) GFMC
As a consequence — whenever there is a finite gap (i.e. €; — €9 > 0), provided an appropriate choice
of At and er, and also that 1p¢ and ¢, are non-orthogonal (i.e. ag # 0) — the algorithms will converge
to the actual ground state, apart for an immaterial multiplicative constant.

In the case of lattice system, it is more convenient to deal with a short-time approximation of the
aforementioned cases, which is given by:

GH)(z',z) =1—-At(H(z',z) —eT) ,



158 Appendix of Chapter 5

where H(z',z) stands for (z'|H|z), the matrix elements between the two configurations z',z. We
emphasize that the matrix representation of G(H) is particularly easy to find in the case of the Random
Ising Hamiltonian defined in Eq. 5.1, since it connects only nearest-neighbors.

The trial function 17 () is supposed to be a simple analytical many-body function, which is also
a good approximation of the actual ground state. A huge amount of methods have been developed in
order to construct such a mathematical object [70, 72, 96] — at least in the context of the electronic
structure — and we have discussed a couple of especially simple choices of 17 (z) in Chap. 5.

Whatever trial function is employed, one can form another useful operator starting from the origi-

nal projector, G(H):
1

Yr(z)

We note that the iterated application of this function yields to 9o (x) ¥ () instead that on ground state

G(H)(a',2) = ¢r(z") G(H)(2', 2)

1o(x). Nevertheless — as we shall see just below — this choice guarantees better numerical stability of
the algorithm.

Unfortunately neither G(H) nor G(H) are native stochastic matrices — their elements can be
negative and their column can add to constants different from 1 (i.e. ), G(H)(z',z) # 1) — which
is basis condition for the transition operator of a Markov chain (see. Sec. 3.1). Nevertheless it is
still possible to manage these shortcomings and make a stochastic implementation of the projection
algorithm, Eq. D.1, available. First of all, both G(H) and G(H) are operators with non-negative
entries whenever ¢r(z) > 0, H(z',z) < 0if 2', 2, and At is small enough (we stress that — using
¢r(z) = 1 — the projector G(H) can be obtained from G(H) as a special case). This is far to be
the general rule and in many cases there is no way to reduce G(H) to a non-negative form (this is the
so-called sign problem of the Quantum Monte Carlo [51]).

If it was been possible to find such a non-negative projector, it would be simple to derive a good
transition operator starting, for instance, from G(H). One first introduce the following column nor-
malization factor:

b(z) =Y GH)('z),

(3=, is understood as the appropriate integral in the case of a continuous configuration space) and

then it is possible to define _

G(H) (', z)
bz)

which turns out to be a real stochastic operator. Moreover the normalization factor, b(z), can be

rewritten by means of the so-called local energy, er,(z) =3, ﬁTT((”;,)) H(2',x), as follow:

T(x',z;At) = (D.2)

b(z) =1— At (er(z) —er)

One can see from the definition that, if 7 (z) = o(x), then the local energy will be equals to the
ground state energy, e(x) = €y. Therefore, the better is the local energy, the smaller will be the
fluctuations induced by the normalization factor on the whole algorithm

Unfortunately, this Markov chain it is not yet equivalent to the projection process defined in
Eq. D.1, but it is a fundamental ingredient of a true implementation. Therefore it is worth to take
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just a bit more space in order to develop some fundamental concept about such a Markov chain that
we shall employ after.

Carrying on the previous algebra, we found that the transition probability up to the first order in
the time interval A ¢ reads:

—At z’f(&)) H(z',z) + O(At?) if z'#=x

1—At(H(z,z) —er) + O(At?) if z=2

T(x' ,z;At) = {

As a consequence, by using the above definition of the transition operator, it is also possible to define
a continuous-time Markov process based on the projection function G(H) whose transition rate from
the configuration z to configuration z’ is given by:

' s T(z',z;At) _ Yr(z') ' : '
T(.’L‘,JL‘)—AI%SIEO At ) H(' z) if 2 #z. (D.3)

Since the escaping probability from a configuration z (in an infinitesimal time interval A t) is naturally
defined as:

Desc(T;At) =1 —T(z,z;At) = Z T(x',z;At) = At (H(z,z) — e (x)) + O(At?)
o' #a
the corresponding escaping rate reads:
Ae = Alitrgoz%?t) = H(z,z) — e () .
We stress that such an escaping rate is non-negative because of the inequality er(z) = H(z,z) +
D arta ’;/’;;((z)) H(z',z) (remember that H(z',z) < 0 if 2’ # x and that ¢»r(z) > 0). Finally, the
escaping probability from the configuration z in a finite time, t = n A t, can be extrapolated as:

Py(t) = lim (1 Atd)" P A =e e, (D.4)

We briefly stop here the discussion and we summarize the way the continuous-time Markov chain
(or kinetic Monte Carlo [97]) proceeds:

1. First extract an equidistributed random number u; € (0, 1] and let the time counter to advance

by an amount equals to:

In (5%
tiner = — . D.5
i . (D.5)

This is equivalent to the Poisson process defined in the Eq. D.4 [98].

2. Given an enumeration of all the possible final configurations {z} };c reachable from z, extract
another equidistributed random number us € (0, 1] in order to find the new configuration z;
sampling the conditional probability: P(z;|z) = % [98]. The method is straightfor-
ward whenever only a finite number of final configurations is available I = {1,...,N,} (e.g.

in the case of a Random Ising Model). It suffices, indeed, to fulfill the condition:

Y T(,z) <up | D T(afa) | <> T(a),2), (D.6)
j =1

which can be easily obtained by means of a standard computer routine [74].
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We emphasize that one may save a lot of CPU time by using such a continuous-time sampling.
Otherwise — by means of standard Metropolis’ algorithm (see Sec. 3.2) — one could propose a random
move and accept it according to the transition probability defined in Eq. D.2 every time step, At.
Unfortunately, if the transition probability is really small, one can easily get stuck for a lot of (Monte
Carlo) steps in the same configuration (i.e. for a time which is a large multiple of A, let us say
t = n At). By means of the continuous-time algorithm, instead, every move is always accepted, and
it suffice to advance the internal time by ¢ = n A ¢. The trade-off is that the internal time increasing ¢
is no more a parameter (i.e. always equals to A ¢), but a true a random variable.

As we said above, such a Markov chain (even in the continuous-time fashion) does not implement
the right projection process we need. In particular it converges to a probability distribution 12 (x),
instead of the ground state 3 (). To prove this statement it suffices to show that the detailed balance
condition holds:

T(a' ) ¢7(z) = T(w,2") ¥7(a')

and it can be done in few lines. As a consequence, the continuous-time Markov chain we define above
is just a smart way to implement the so-called Variational Monte Carlo [51, 72]. In particular, it allows
to evaluate the observable averages on the trial function, {(¢)7|O|¢r) and — whether ¢ depends on
one or more external parameters — it can be used in order to find their optimal optimal value (i.e. the set
of parameter that provides better estimate of some observable, usually the total energy, (y7|H |1T)).
This can be achieved in several clever way [70, 96] or simply by inspection, as we did in Chap. 5. It
is worth to note that one can also deal with many walkers (i.e. many independent Markov chains) at
time as a simple way to increment the accumulated statistics. In the rest of the appendix we shall refer
to the averages obtained employing a such continuous-time Markov chain ( single- or multi-walker)
as the unweighted averages (or variational averages). They will be indicated by the symbol (- - - ).
For instance, the expectation value of the Hamiltonian over the trial function t7(z) (the so-called
variational (total) energy) is given by the unweighted average of the local energy er,(x)

M, ()
er = (el = [ a QI o ) _ Bzl VT ®7)

where M is the walker number (the so-called population and j € {1, ... M} the single walker index.

We emphasize that the correlation time of a continuous-time Markov chain implemented by means
of G(H) can be obtained by means of the spectral analysis explained in Chap. 3.6 (for a single walker).
In particular the symmetrization of the transition operator is the original projector (see Eq. D.9), what-
ever trial function is employed (it can be proved simply by means of the definition of G'(H)). There-
fore the correlation time of the variational approach is always proportional to the inverse of the original
Hamiltonian (first) gap: teorr X ﬁ This is also true for a multiwalker scheme, since the walkers
dynamics is completely independent.

Now we want to face the problem to find a real stochastic implementation of the projection algo-
rithm defined in Eq. D.1. In order to obtain the projection of the trial function on the ground state one
must extend the configuration space adding a new degree of freedom to every walker: the weight w.
As a consequence, the whole walker configuration reads now: (z(),w(?)), where j € {1,...M}is
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the walker index. For the sake of simplicity we drop the walker index till we shall really need of it (i.e.
we shall consider first the single walker formalism).
We assume that transition rate from (z, w) to (z',w’) is given by:
T(z' ,w',z,w;At) =T(z',2; A1) Ll—w 1 (D.8)
’ » ’ - fRad b(.Z') b(.Z') - .

As a consequence the weight updating is obtained through a multiplicative process (i.e. w' = w b(x))
implemented over the usual Markov chain. Suppose further that in the extended space the initial
condition is given by the probability: Py(z,w) = ¥4 (z) §(w — 1). It immediately follows that the
wavefuntion is given by:

— dww Py(z,w) = T).
o | W R = vr@)
More in general we want that:
1
(@) = —— [ dww P (z,w),
@ = g [ o Rt
where

Py, w') = /dw ZT(a:',w',;v,w;At)P(n,l)(;v,w)
by (@) = DY GH) (@', 2 At)Ym_1)(z),

(and 9y (0) = 97 (), by consistence). These equations define an isomorphism between the Markov
process in the extended space and the projection of the trial function on the ground state. To prove this
fact we note that:

Yy (@) = (&'|G(H))r)
= ! /dw' w' Py (', w')

Yr(z')
- szlm' /dw’w’/dwZT(m’,w’,x,w;At)P(n—n(x'aw')
= Gy [ /deT”’ 25208 (575 =) g Pl
_ Wtﬂ /deb YwT(@', 23 8¢) Py 1y(@',0)
= Z ¢T H)(2', z; At)/dww,P(nfl)(mlawl)

= ZG(H)(x',m;At)w%@/dww,P(n,l)(a:',w')
= Y GH)(@ 2 At) 1) (2)

Therefore the following equation holds:

@G = s [au'n! [dw Y T a0 A0 v (@) S — 1)
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T(a',z;At) Y7 (2) ,

and — more in general — it follows that:

1
(z'|G(H)"|yr) = - Z w(z', Tp-1,...,21,20) T(&',Tp_1,...,71,20) , (D.9)
wT(x) Tp—=15:++21,20
where

n—1
w(z', Tp_1,...,T1,T0) = H b(z;) , (D.10)

i=0
is the weight cumulated during the stochastic process (', Zpn_1,...,%1,Zo). The conditional prob-
ability to follow that path in the configuration space is clearly given by T(x', £p—1,...,%1,%0) =

H?:_()l T (@it1,%i; At) 2 (20), with 2’ = z,,. Finally the average of the energy can be attained by
means of the following limit:

(Yo|Hltho) _ lim (1 G(H)? |H|G(H)*® ¢r)
{vol¢0) n—oo (Yr G(H)?|G(H)*® yr)
m (Yr|H|G(H)" ¢r)
n—oo (Yr|G(H)™Pr)

/ dz e (2) Ty () |

where

(Yr|z) (z[tho)

(Y1)
e () (G )
n—oo  (Yr|G(H)™ Pr)
Dt nmrimo WETn1s- ., 21,20) T (2, Tn1, - . ., T1, To)
Zzn,---,zl,zo W(Try Tr—1y---521,20) T(Tn, T1y- -+, X1, To)
(6(x — zp) wW(Tn, Trn-1,---,%1,%0))T

(W(Zn, Tr-1,---,21,%0))T )

(D.11)

In a similar way, the average of every operator ) which commutes with the Hamiltonian H (and
so does with G(H)) is obtained by means of the following general formula:

0
{10|Olpo) / dz 0p (2 (2) .
(olbo)
where Or(z) = % is the local form of the observable. Because the presence of the weight
w(Z, Tp-1,...,%1,2To) in Eq. D.11, we shall call this kind of average weighted averages. They will

be indicated by means of the symbol (- - - ) ,,.

The general case concerning operators O’ which do not commute with the Hamiltonian is more
complicated, but is not requested in the context of our work. We would like only to mention that the
weighted average of O’ is given by:

<¢T|0'|¢0)

(0o {Yrlo)
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as one can check by using Eq. D.11. This is definitely different from the true ground state average
(10O [¢o). Nevertheless more accurate estimates — having a good trial wavefunction — are known. In
every practical case it is customary to employ the so-called Ceperley’s correction [51, 64][pg. 48]:

OI
% ~2(0L)0 - (OL)r » (D.12)

which is a second order approximation of the ground state average in the trial function accuracy (i.e.
its error is O (||tvT — vol|). A even more precise way to estimate the ground state average is obtained
by means of the so-called forward-walker technique [71, 72].

We shall see now how to employ the aforementioned continuous-time extended Markov chain to
project the trial function ¥7 on the actual ground state 1)9. The crucial point is the cumulative weight
computation, which can be worked out in the following way: Suppose that a walker escapes from the
configuration z after a time ¢ = n A ¢. The final weight will be:

b(z,t) = lim (H e ) = lim (1= At(er(z) —er)” = e =@ (D13
As a consequence the weight cumulated during the continuous-time extended Markov chain (2, ty,, . . .
should be rewritten as (see Eq. D.10):

W(Tnytn) = W(Tn, tn, - -, 30,t0) = [ blzi 1), (D.14)

where we drop a part of the Markov chain indices for the sake of simplicity.

In summary, by means of a continuous-time Markov chain it is possible to implement the projec-
tion process defined in Eq. D.1 (i.e. the GFMC). The algorithm proceeds has follow: a continuous
Markov chain is generated (for each walker) according to the transition operator defined in Eq. D.3.
Then, the weight is updated and recorded as well as the local observable (e.g. €r,(z)) after every step,
Because every Markov chain needs a finite amount of steeps (or time) before complete equilibration
is reached (see Sec. 3.2), it is better to start data recording after a long enough equilibration time, #,.
Moreover — because, in general, configurations are correlated — it is also better to record only data
separated by an amount of Monte Carlo Steps (MC) corresponding, at least, to a correlation time £ .oy
Both these times can be derived by warming-up simulations, for instance using the techniques that we
explained in Sec. 3.2. We also recall that the time itself is a random variable and it must be incremented
according to Eq. D.14.

At the end of the simulation an observable average, for instance the total energy average, is com-
puted as follow:

_ X S e @) 0 (@)
Ez’ Zj:l w() (SE,t)

where ¢ is the (recorded) configuration counter and j the walker index.

(H) = (eL)w

Unfortunately such a scheme is plagued by a severe (average) weight divergence: (w(x,t))r —

ZJ 1“’ (zt)

oo as t increases. (where w(x, t) = is the average of weight over the walker population).

J$0;t0)
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We recall that the weight updating is a multiplicative process (see Eq. D.14) which depends on the local
energy, €1,(z) —er (see Eq. D.13). On the other hand, the local energy must have finite mean and finite
variance (at the equilibrium), otherwise the whole Monte Carlo sampling is useless[48].

Without loss of generality, we can set: e = {er)r, and its variance equal to some (unknown)
constant g%. It is also reasonable to suppose that the actual distribution of the local energy (at equi-
librium) is Gaussian, especially whenever the trial function ¢ 7 is a good approximation of the actual
ground state. Therefore the logarithm of the cumulative weight is also Gaussian, as it follows from the
equation:

n—1 n—1
Inw(z,t) = Z Inb(z;, t;) ~ -1 Z (er(z;) —eT) (D.15)
=0 =0

where  is the average time-increasing after a MCS (at the equilibrium). A good estimate of ¢ is:
t = ﬁ Zj\il ﬁ (the average is obtained over the population). One can also see from Eq. D.15
that the means of In w(z, t) is zero and its variance #2 02 (n — 1). As a consequence the single weight
w(z,t) is distributed according to a Lognormal distribution [99][page 123ff], whose mean and variance
are given by:

2of (n=1)

(wyr = e 2
(W) — (w)2 (w)2. (e?a% (n—1) _1) _

We stress that, if o > 0, both these quantities diverge. A very accurate trial function or a large walker

population can slower this divergence, but they can not avoid it, one can check by inspection, being
the average weight, w, mean and variance given by:

i2 62, (n—1)
(Wyy = e T —
(n—-1)
(@) — (@) = (@) (¢ 7F T 1) .

It is worth to note that, in the limit of infinite population, the mean of the average (over the population)
weight is fixed and the correspondent variance is zero.

Because of such weights divergence, one may think that — for any practical purpose — the pure
GFMC scheme which we explained so far is completely useless, However, a bunch of treatment have
been devised and here we shall briefly sketch two of them.

First of all, one can apply the so-called branching algorithm [51, 64, 100]. In this case, instead of
cumulate the weight as in eq. D.14, one stops the process after ng MCS (or equivalently after a time
tp = npt), and computes the observables averages. Then, every configuration is killed or multiplied
according to the following equation:

M
N(z) = |us + Z Oz —z5) w(z;, t)] ,

where N(z) is the number of walker in a given configuration z at the end of the branching, and
uz € (0,1] is an equidistributed random number. In particular, N (z) = 0 means that all the walkers
lying on configuration  have been deleted, while if N(z) > 1 they have been copied N(z) times.
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More precisely, the walker lying in configuration z is actually copied together all its characteristics
(i.e. configuration, indeed, and also transition probabilities, observable averages, etc.). Finally all the
weights are set to 1, as like at the beginning of the simulation. If the weight divergence did not happen
during the previous ng MCS (i.e. before the branching), such a process avoids to cumulate weight
fluctuations in the further MCS, leading to enhanced stability. Nevertheless, the branching algorithm
is an approximation of the true multiplicative process underlying the weight update. Therefore it is
worth to note that — even if it reduces the observable fluctuation — it introduces an effective interaction
among the walker, which was absent in the pure GFMC scheme. As a consequence, the observables
averages taken just before the branching and immediately after may disagree:

Yt O@) w(zi,t) | [ dwO(z) N()
Zﬁl w(z;,t) J dz N(z)

This bias is mainly due to the finite population M, since one can proves the convergence of the all

(D.16)

averages as a power of ﬁ [101]. As usual, by means of few initial simulations, one can find the
optimal number of walkers that allows for fast and precise GFMC.

We are also interested in estimate the variance of the R.H.S. of Eq. D.16, since it is a measure of
the bias we introduced through the branching algorithm. It is obtained by the sum of two contributions:
The first one from the variance of the numerator (proportional to {(|w(z)| — w(z))?)7) and the second
one from the variance of the denominator (proportional to (| 3> w(z)] — 3 w(z))®)7). Anyway, we
would like to stress again that, in the limit of infinity large population, the weight is constant and both
the above contributions are zero. Therefore it is a good practice to use as many walkers as it is possible.

The denominator of Eq. D.16, R.H.S., is the average of the population after the branching:

M

which is no longer a constant. It is indeed customary to set the constant np (or tp) in such a way
to keep the population almost constant, bearing in mind that longer waiting-time causes larger weight
fluctuations. We stress also that 1 minus the ratio of the deleted walker number (after the reconfigu-
ration) over the population (before the reconfiguration) is the so-called survival rate. It is a measure
of the efficiency of the branching process (i.e. if it is around 1, it means that the branching is useless,
since almost nothing has changed. Moreover, it often means that the chosen value of the branching
time, ¢, is too much small).

The second method is the so-called stochastic reconfiguration [71, 95, 102] It is an improvement
of the branching algorithm devised to get rid of the bias due to the population fluctuations. In this case
the number of walker lying in configuration z after every reconfiguration (i.e. branching) is given by:

ML 0@ — x) wmi, t;)
YL, w(wi,t)

where ug € (0, 1] is the usual equidistributed random number.

N($)=|_U3+M J7

It results that the walker number is effectively fixed, because

M':/dmN(x)=LU3+MJ=M,
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and, since the population is constant, part of the variance of the average of observables taken after the
reconfiguration (see Eq. D.16, R.H.S.) is zero.

For more details about stochastic reconfiguration, we refers to Ref. [71], where this topic is ad-
dressed in a very rigorous way.

D.2 A GFMC scheme

We make use of a multiwalker GFMC with stochastic reconfiguration scheme (see Sec. 5.4) in order
to perform quantum annealing (QA) simulation of the two-dimensional Random Ising Model (see
Chap. 5). Here we briefly sketch the employed algorithm. First of all, we employ the usual linear
annealing schedule: I' = T’y (1 — %), where n is the counter of the reconfiguration steps and 7 the
annealing time. We recall that a reconfiguration step is achieved after n g Monte Carlo steps. We
avoid to decrease the annealing parameter I at the end of every Monte Carlo step because it may cause
weight instabilities (especially in the final part of the annealing). As a matter of convenience, in the
following scheme we specify the difference between a true GFMC annealing and an equilibrium (i.e.
with I" fixed) GFMC algorithm (see Sec. 5.3).
Our GFMC scheme proceeds as follow:

Equilibration: We set the initial transverse field (I' = 2.5 in the annealing case) and perform n,
reconfiguration steps, every one consisting of np GFMC steps (see below). At the end of
this part, all the internal counters and times are reset to zero, but configurations, transition
probability, averages, and all the other quantities referring to the walker state are saved.

Main: It consists of 7 reconfiguration steps, everyone made of ng GFMC steps. In a equilibrium
simulation T is kept constant, otherwise the annealing parameter is decreased according to the
linear schedule: I' = T’y (1 — %), where n is the reconfiguration steps counter.

At the early beginning of any reconfiguration step one has to compute the average branching
time: tg = ny ﬁ Ef\il ﬁ, and one also must set to zero the internal time t(9 of every
walker. Then an independent series of GFMC steps for each walker is performed. This is
consistent to the theory, which says that the walkers are independent till a reconfiguration (or a
branching) is attained (see Sec.D.1).

Every GFMC steps consists of:
1. First of all, the internal time of the ¢-th (we usually start from ¢ = 1) walker is increased

by: tiner = _/\%?)u(lm)’
Eq.D.5).

where u; € (0,1] is an equidistributed random number (see

2. Then a new configuration z} is chosen according to the method described in Eq. D.6 (this
operation requires another equidistributed random number).

3. Finally, the weight, the observables, and the transition probability are updated according
to the new configuration reached by the walker.
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If at the end of this step the internal time is still lesser then the branching time: (¥ < t,
another GFMC for the same walker is performed. Otherwise a GFMC step for the (i + 1)-th
walker can be started and so long so forth, till all the walkers are updated.

At the end of every reconfiguration step (i.e. after an average of ng GFMC for every walker)
the global time is increased by ¢, the observables means (over the walker population), 0, are
computed according to the general formula (see the L.H.S. of Eq. D.16), and finally they are

D S )
recorded. Also the average weight 0 = ==F——=

must be saved at the end of every step.
Then the stochastic reconfiguration procedure is performed (see Sec. D.1) and the walkers (their
configuration, transition probability, etc.) are copied or deleted as a consequence. Only after

this point all the weight set to 1 and another reconfiguration step may start.

That is all for an annealing simulation. The averages we saved can not be weighted again,
because they are obtained at different transverse fields, I'. As a consequence — in order to have
a suitable statistics — one must repeat the whole annealing algorithm several times (starting from
a different initial condition or changing the random number generator seed), and eventually one
has to take the final averages and variances over such repetitions. For this reason an annealing

simulation is really time consuming.

On the other hand — for an equilibrium simulation — many equivalent observable averages have
been recorded, since the external condition (i.e. the transverse magnetic field I') has been fixed.
Therefore one can increase the statistics simply making very long simulations, and collect more
configurations (provided that they are uncorrelated, see previous appendix). The final weighted
averages are then obtained by means of the observables means O and the average weight w
recorded at the end of every reconfiguration step (we remember that such averages have been
taken over the walker population). The final weighted averages and variances can be worked
out by means of the following formulas:

0y — 2. Oiws

( W’ D.17)
©)-p = HIE_(op. (D.18)

It is also clear that is much more convenient to perform a long simulation instead of rerun from
scratch many time, as like for the annealing case. In fact one can avoid this way many useless
initial equilibration steps.
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