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Introduction

Small molecules solvated in large � He clusters (nanodroplets) exhibit free-rotor-
like spectra, though with a reduced rotational constant (hence with an increased
molecular inertia) [1, 2]. This behavior has been interpreted as the vestiges of the
superfluidity of the solvent in such extremely confined conditions [3]. The nearly-
free rotation phenomenon raises the questions on how small a superfluid droplet
could be, as well as on the causes of the renormalization of the molecular dynam-
ics upon solvation and on the dependence of this effect on the cluster size [1].
Spectroscopic experiments have recently studied molecules in clusters with up
to about twenty particles [4–7], showing that fingerprints of superfluidity can be
found in these systems with just eight He atoms [4]. Available measurements,
however, have not yet reached large enough sizes to show how the rotational dy-
namics of the solute in small clusters approaches that observed in nanodroplets.
On the other hand, in the small-size regime non trivial effects of the solvent on the
geometry of the system and on its dynamics may be found [5].

Spurred by experiments, considerable theoretical effort has been devoted at
studying the rotational dynamics of � He solvated molecules. Several theoreti-
cal models have been proposed to explain the molecular inertia increase in nan-
odroplets [8–11]. Estimates of the latter can be obtained by using structural in-
formation derived from numerical simulations, yielding in various cases results
in good agreement with observations [9–11]. Unfortunately, these models are
suited, by construction, to the study of large clusters. For systems up to a few tens
of He atoms, direct simulations of the rotational dynamics of embedded molecules
exist, but the reliability of the results is not well established [11–14]. These cal-
culations, in particular, contributed to originate the somewhat oversimplified view
that the rotational dynamics of solvated heavy rotors would reach the nanodroplet
regime well before the completion of the first solvation shell [2], whereas for light



2 Introduction

molecules the convergence would be much slower [14, 15]. This opinion, how-
ever, is partially contradicted by the latest experiments [6, 7, 16], thus demanding
for further investigations.

Recent progresses in quantum many-body simulation techniques are now al-
lowing for the determination of the low-lying excitations spectrum, as well as for
the understanding of the relations between structure and dynamics in interacting
bosons systems [17, 18]. For molecules solvated in He clusters, the scarcity of
low-lying excited states makes it possible to extract information on the position
and intensity of the spectral lines, from an analysis of the time series generated by
quantum Monte Carlo (QMC) random walks [17–19]. Among the various QMC
techniques, we have adopted reptation quantum Monte Carlo (RQMC) [17, 18],
a path integral scheme which is particularly well suited to calculate ground state
expectation values and imaginary-time correlation functions.

In this thesis, the rotational dynamics of several molecules solvated in He clus-
ters has been simulated using RQMC. The small-size behavior of these systems
has been studied in the case of clusters seeded with carbon monoxide (CO@He � ),
for which the well known asymmetric top spectrum of the He-CO dimer [20] sur-
vives to relatively large sizes [5]. In our calculations, the features of the observed
infrared spectra of CO@He � are accurately reproduced and interpreted in terms
of the structural properties of the clusters.

Then, the problem of the convergence of the rotational dynamics of He sol-
vated molecules to the nanodroplet regime is addressed. To this aim a heavy and
a light molecule, in clusters with up to ��� He atoms, have been studied. We find
that the approach to the asymptotic regime is slow in the former case, and fast in
the latter. In contrast with common assumptions [2, 11], and in agreement with
limited experimental evidence [6, 7, 16], our results demonstrate that interesting
effects are present in the evolution of the rotational dynamics with the cluster size
well beyond the completion of the first solvation shell. By useful computer exper-
iments, we also show that the slow or fast approach to the asymptotic regime, as
well as the increase of the molecular inertia upon solvation, are mainly determined
by the strength and the anisotropy of the He-molecule interaction, more than by
the molecular weight.

RQMC proved to be the most appropriate technique to study doped He clusters
in the size range that we have explored. In order to study even larger systems we
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implemented the path sampling algorithm developed by Ceperley and Pollock for
finite temperature simulations [21]. This method is expected to become more
efficient than RQMC for large droplets [17] and we have studied the efficiency
crossover with increasing the cluster size.

The thesis is organized as follows: in the first chapter we provide a short de-
scription of the scenario which frames our work. Some significant experiments
are presented, together with the questions raised by them, the theoretical inves-
tigations they stimulated, and the open issues. The second chapter describes the
reptation quantum Monte Carlo method and its theoretical foundations. Technical
aspects (the choice of the trial functions, the procedure to calculate the cluster
rotational energies) are discussed in third chapter. We also report some studies
on the reptation algorithm. In the fourth chapter we apply RQMC for the inter-
pretation of the infrared spectra of CO@He � [5]. The fifth chapter addresses the
problem of the evolution of the rotational dinamics of He solvated rotors toward
the nanodroplet regime; two paradigmatic cases, OCS@He � and HCN@He � , are
studied. Our conclusions are drawn in the last chapter.
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Chapter 1

Doped Helium clusters and droplets

The great experimental interest in He droplets stems from their potential as spec-
troscopic matrices [1]. In spectroscopy, it is useful to cool the probed species in
order to minimize the population of excited states, thus simplifying the spectra.
In addition, the study of transient species, such as atoms, molecular radicals and
ions, requires to prevent their uncontrolled aggregation [2]. Both these needs can
be satisfied by trapping the species in low-temperature condensed media, the so-
called matrices. Crystals of rare gases or hydrogen allow to reach the sub-Kelvin
region ( ���
	�� ) [2]. The relatively strong interaction between the matrix and the
solute species localizes and stabilizes the sample, but may result in considerable
shifts or broadening of the spectral lines [1, 2].

The situation is quite different if one uses helium matrices, since helium does
not solidify even down to absolute zero and has extremely weak interactions with
foreign species. Moreover, thanks to its large quantum mechanical delocalization,
liquid helium gently adapts itself to the solute [2]. However, because of the low
molecular solubility in helium, molecular impurities quickly coagulate, thus pre-
venting the use of liquid helium as a spectroscopic matrix in the bulk phase [1, 2].
The problem can be overcome by the cluster isolation technique [22], in which
a beam of large He clusters (or nanodroplets), each containing 	
������	���� atoms,
passes through a chamber filled with the vapor of the foreign species and picks
up in flight the impurity [1, 2, 22]. Isolation of dopant species inside or on the
surface of the free droplets avoids their aggregation or precipitation. According
to theoretical calculations, the rapid evaporation of atoms levels the temperature
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of � He droplets at ����������� , for times larger than about 	������ sec [23]. In the
case of � He droplets, the temperature is even lower ( ��� ���!	��"� ) [23]. Since the
typical time of flight through the experimental apparatus is in the range of few
milliseconds, the equilibrium temperature is reached before the pick-up process
and it is maintained after the impact with the dopant, thanks to the evaporative
cooling [1, 2]. In this ultra-cold and very gentle environment, the species are then
probed downstream by laser spectroscopy [1, 2, 22]. The energy of the laser pho-
ton absorbed by the sample is relaxed in the droplet, leading to the evaporative
loss of several hundreds of He atoms. The absorption is revealed by a mass spec-
trometer which monitors the droplets beam and detects the decrease in the droplet
size [2].

Helium Nanodroplet Isolation (HENDI) spectroscopy is an extremely power-
ful technique, which provides highly resolved spectra, with small matrix shifts
and broadenings (see below) [1, 2]. In addition, not only single molecules and
unstable species, but also specifically tailored aggregates, assembled inside the
droplets, can be studied [1, 2, 24].

1.1 Free rotor molecular spectra in � He nanodroplets

The first experimental evidence of the unique properties of � He droplets as spec-
troscopic matrix was reported in 1992 by Scoles et al. [25]. They observed in-
frared (IR) absorption lines of sulfur hexafluoride (SF # ) with a width much smaller
than in other rare gas clusters. Later experiments by Toennies and collabora-
tors [26] showed that the IR spectra of SF # presented a rotational fine structure. An
analogue result was found later for carbonyl sulfide (OCS) [3], a linear molecule.
For both SF # and OCS, the rotational peak spacing was significantly smaller than
in gas-phase spectra.

In Fig. 1.1 [8] the absorption spectrum of OCS, measured in the gas phase
at room temperature, is compared with that obtained in He droplets having mean
size $ �&%��'�'� atoms. Whereas the assignment of lines is not obvious at room
temperature, the spectrum in � He droplets shows distinct free-rotor lines.

The rotational spectra of a linear molecule in the gas-phase are well described
by the formula:
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Figure 1.1: From Ref. [8]. Absorption spectrum of OCS molecule at (*),+
-�-�. (a) and
in � He droplets (b). The mean droplet size is estimated to be /�0�+
-�-�- . The factor 12-
enlarged spectrum in the left hand corner (c) shows the results for the OC � � S isotope. The
spectra are measured in the IR region of the C-O stretching vibration around 3
-54�3 cm �76 .

8"9;:�<>=@?�AB?DC 	5EF�,G =
?IH�AJ?KC 	5E H (1.1)

where
?

is the angular momentum,
<L=M:ON HQP�RTS =

is the rotational constant,
S =

is the moment of inertia, and G = is the centrifugal distortion constant, which ac-
counts for the non rigidity of the molecule. When the molecule is solvated in � He
droplets, the same relation holds, but the

<
values are smaller though of the same

order as in the gas-phase. The centrifugal distortion constant, instead, is three or
four orders of magnitude larger than in the gas-phase, thus indicating a significant
floppiness of these systems [1]. For heavy molecules—with

<;=
smaller than 	

cm �76 — < decreases by a factor %U��� upon solvation, while for light ones the
reduction is much smaller [1]. From the line intensities, assuming a Boltzmann
distribution, the droplet temperature can be determined. The resulting estimates
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Figure 1.2: From Ref [27]. Infrared spectra of an OCS molecule in � He (panel a) and

� He (panel b) clusters. Panels c-f: evolution of the spectra in � He, when an increasing
number of � He atoms is added. Pictures on the right represent the OCS molecule in the
clusters. � He and � He densities are indicated in green and blue, respectively.

give � : ���V%'W;� for � He droplets and � : ���!	��;� for mixed � He/ � He ones (see
below) [8], in agreement with theoretical predictions [23].

At the beginning, it was not clear whether the sharp rotational lines might
simply be a consequence of the weak van der Waals He-molecule interactions,
or they are related to the superfluidity of the environment. In 1998, Grebenev
et al. [3] reported an experimental study of the spectra of OCS in both � He and
� He droplets, demonstrating that the boson character of � He plays an essential
role in the free rotation phenomenon. In Fig. 1.2 we report the spectra measured
in Ref. [3]. In � He (Fig. 1.2 a) a well resolved rotational structure is observed.
On the contrary, in � He (Fig. 1.2 b), only a broad band is found, just like in a
classical liquid. The He-molecule interaction is the same for both isotopes. If the
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sharp rotational lines were a consequence of the weak van der Waals potential,
then in � He, the lines should be even sharper because of the larger zero-point
energy and lower temperature. The difference in the spectra, then, is a microscopic
manifestation of superfluidity. According to theoretical calculations, in fact, at the
temperature � : ���V%X�Y�Z�V�;� , pure and doped � He droplets are supposed to have
a significant superfluid component, at least for $\[]�^� [28, 29]. On the contrary,
the _ transition temperature is `a%cbK� for � He, which is thus a normal fluid at
the droplets temperature.

Ref. [3] provided also an indication on the minimum number of � He atoms
needed to have a free rotation regime in nanodroplets. The authors found that
`ed'� He atoms around the OCS molecule (corresponding to about two solvation
shells) are sufficient to provide resolved rotational spectra.

1.2 Spectroscopy of small � He clusters

The results of Grebenev et al. [3] pose the question on how small an � He cluster
can be to show fingerprints of superfluidity. Recent refinements of experimental
techniques allowed high-resolution spectroscopy on � He clusters with as few asR � R � atoms. In these experiments the sample is generated from a mixture of He
atoms and gas-phase molecules [30], and the probed jet contains systems of dif-
ferent size. By tuning the pressure and the temperature in the production chamber,
the relative abundance of a given complex is controlled, allowing for the assign-
ment of individual lines to clusters with a well defined number of atoms [4, 5, 30].
The analysis of the lines intensities yields effective rotational temperature in the
sub-Kelvin range [4, 5, 30].

1.2.1 Carbonyl sulfide

In 2003, Jäger and coworkers [4] studied OCS in small � He clusters (OCS@He � ),
adding to the high resolution IR spectroscopy the direct observation of pure rota-
tional transitions in the microwave (MW) region. The spectra of OCS@He � were
measured up to about $ : R � and unambiguously assigned for $ : R �fW [4]. In
this range, the combination of IR and MW data was used to derive the rotational
constants

<
for the various sizes, $ . In Fig. 1.3 we report the IR spectra observed
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Figure 1.3: From Ref. [4]. Left panel: infrared spectra of OCS@He � , observed in the
region of the C-O stretching vibration of OCS ( 0,3
-54�3 cm �76 ). The spectra are stacked in
order of increasing backing pressure [4]. Right panel: Rotational constant measured for
/g)h1jifk . The dashed horizontal line refers to the l value observed in nanodroplets
( /�0m12- � ). The circle at /e)*- is the gas-phase value l = )n-'o�3
-�- cm �76 .
by Jäger et al. [4] and their results for

<DA $ME .
By increasing the cluster size $ , the rotational constant,

<
, decreases (in-

dicating an increase in the effective moment of inertia) and, for $ : dU�pW , it
undershoots the nanodroplet limit,

<;q
: ���V�^r�% cm �76 (i.e. the value measured in
large droplets [3]). According to the authors of Ref. [4], the turnaround of

<
to

its asymptotic value (though not observed) has to be attributed to the partial de-
coupling of the first solvation shell He density from the molecular rotation. This
hypothesis has been confirmed by quantum Monte Carlo calculations of the angu-
lar correlations between the molecular motion and the He-atom current [31]. The
findings of Ref. [4] suggest that even He atoms in the first solvation shell may
contribute to the superfluid fraction in the nanodroplets, thus providing the first
experimental hint of the evolution of superfluidity at the atomic scale.

1.2.2 Carbon monoxide

Carbon monoxide (CO) is the second molecule which has been studied in � He
matrices by $ -resolved spectroscopy in the small size regime [5]. The infrared
spectrum of CO@He � was measured in the region of the C-O stretching vi-
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bration (
R 	
��� cm �76 ) [5]. Due to the low temperature ( �s`O���t�D� ) [5] and to

the large value of the rotational constant (
<L=u: 	'�tv R % cm �76 ), only R(0) roto-

vibrational transitions1 were observed, thus preventing the disentanglement of the
rotational and vibrational contributions.2 However, the roto-vibrational patterns
of CO@He � are less congested than in OCS@He � and lines have been reported
up to $ : R 	 , with clear assignments up to $ : 	
� .

In Fig. 1.4 the infrared spectrum of CO@He � [5] is reported as a function
of the cluster size $ . The spectrum consists of two series of R(0) transitions.
The lower energy one is indicated as w -type, the other as x -type. The series of x -
type transitions starts off about seven times stronger for $ : 	 and progressively
looses intensity as $ increases [5], until it disappears around $ : rj�uW . Around
this size, just before it disappears, the x -type line seems to split in two. On the
contrary, the w -type series gains strength from $ : 	 to $ : W , and rapidly
increases in energy for rzye${y|	 R , linking to the nearly free rotation observed
at larger sizes. Analogously to the x -type series, around $ : 	5� the w -type line
also seems to split. For $}[~	5� the line assignments become uncertain [5].

The spectrum of CO@He � can be better understood considering that the T-
shaped He-CO complex has an asymmetric rotor spectrum [20], with two � A �^E
lines, defined as w -type and x -type. The w -type line can be associated with the
end-over-end rotation, i.e. the rotation of the vector from the CO center of mass
to the He atom [20]. The x -type transition, instead, corresponds to the nearly-
free rotation of the molecule in the complex. The two series in the spectrum of
CO@He � , smoothly correlate with the w -type and x -type � A �^E lines of the binary
complex, and thus they have been indicated with the same notation.

The existence of two � A �^E lines in the spectra of CO@He � , for clusters up
to $ : W , was in a sense an unexpected result. For comparison, it has to be
noticed that OCS@He � , for $ : 	L� R , is an asymmetric rotor too, with more

1Transitions between vibrational levels ���]� and ���
� and between angular momentum
states �X��� and �;��� .

2The vibrational states of the solvated molecule are shifted by the presence of the matrix.
Hence, the energy of the vibrational transition �X������� differs from that measured in the gas
phase, and one observes a displacement of the center of the roto-vibrational band, �@� , with respect
to free molecule spectra. Such a displacement, which is generally small in He droplets, is called
vibrational shift: ���2�������������2���������U����� �¡�¢� , where ���������2������� and �����£�¡�¢� are the energies of
the � transition for a molecule in the cluster and in the gas phase, respectively [32].
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Figure 1.4: From Ref. [5]. Energies of the R(0) transitions of CO@He � , as a function
of the cluster size, / .

than one � A �^E transition in the spectra. The linear rotor behavior, however, is
recovered almost immediately with increasing the cluster size [4]. On the contrary,
for CO@He � , J. Tang and A. R. W. McKellar [5] found that the asymmetric
rotor spectra survived up to relatively large cluster sizes, thus indicating a non
trivial role of the solvent in the system dynamics. Second, the w -type and x -type
transitions derive continuously from the end over end rotation of the He-CO dimer
and from the internal (free) rotation of CO in the complex, respectively. Since in
large clusters the solvent should decouple from the molecule rotation, one would
expect the x -type lines to grow in intensity and evolve into the free-rotor line
of the nanodroplet limit. The fact that the opposite is observed was considered
“puzzling” in Ref. [5]. Third, the authors speculate that the splitting at $ : 	5�



1.3 Previous theoretical studies 13

could be caused by the crossing between the w -type series and a “dark states”
one, due to other spectral excitations not revealed by the spectroscopic data [5].
In chapter 4 these problems will be discussed and rationalized in terms of the
structure and the dynamics of the He matrix.

1.2.3 Carbon dioxide and nitrous oxide

Size-resolved molecular spectra in He clusters have been recently measured also
for nitrous oxide (N H O@He � ), both in the IR and MW regions, and for carbon
dioxide (CO H @He � ), only in the IR, for sizes up to $ : 	 R and $ : 	5r , re-
spectively [6, 7]. In Fig. 1.5 the rotational constant values for these two systems
are compared with those of OCS@He � . CO H and N H O are, in several respects,
analogous to OCS. Their rotational constants (

<;=¤: ���V%'v'� cm �76 for CO H and<"=¥: ���V��	�v cm �76 for N H O) are close, even if larger, to that of OCS. These
three molecules have also a similar interaction with the solvent, though with a
greater strength in the case of N H O (see Refs. [16, 33, 34] and references therein).
However,

<
reduces differently in the three cases:

<;q P <"=�: ���V%'v for CO H ,<¦q P <"=>: ���!	�r for N H O and
<¦q P <"=>: �Z�t%'d for OCS [4, 6, 7]. A greater simili-

tude, instead, is found in the small size behavior of the rotational constant, which
shows an initial decrease in all the three cases. For CO H and N H O, measurements
arrive at sizes large enough to show a turnaround of

<
. The latter is interpreted

in terms of transition from a van der Waals molecular complex to a full quantum
solvation regime [7, 16]. It has also to be noticed that, at the largest explored size,
the nanodroplet limit is not yet reached. Since CO H @He � and N H O@He � com-
plete their first solvation shell around $O` R � [16, 34], the experiments suggest
a nontrivial evolution of the rotational dynamics toward the asymptotic limit and
also a non negligible role of the outer solvation shells in determining the conver-
gence [6, 7].

1.3 Previous theoretical studies

Theoretical investigations on � He droplets have accompanied and, in several cases,
preceded the experiments discussed so far. Using the liquid drop model, Stringari
et al. [23] showed that at the low temperatures of the droplet, its internal regions
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Figure 1.5: From Ref. [6]. Variation of the rotational constant l with the cluster size
/ , in the range /§)¨-©iu1«ª . l values for CO H @He � , N H O@He � and OCS@He � are
obtained from Refs. [6], [7] and [4] respectively. The corresponding nanodroplets limit
values are indicated by dashes lines.

are expected to be largely devoid of thermal excitations. In 1989, Sindzingre
et al. [28] found a substantial superfluid fraction in pure � He droplets with dT�
atoms, for temperatures below `a	'�Vv¬� . Studies based on the liquid drop model
reported the appearance of the roton gap, typical of the bulk superfluid state, for
� He clusters with about rT� atoms [35]. Density functional [36, 37] and quantum
Monte Carlo calculations [38] predicted that atoms or molecules which interact
strongly with helium, are located inside the droplets. As a result of the He-He and
He-impurity interactions, modulations of the He density in a shell structure are
found. On the contrary, � He [39] and alkali-metal atoms [40, 41] and their small
clusters [42] are expected to reside on the droplet surface, producing a dimple on
the latter [41, 42].

Further theoretical studies were spurred by the experimental results described
in the previous section. Babichenko and Kagan [43] showed that the difference
in the spectral line widths, found in � He and � He droplets, could be explained in
terms of the different elementary excitations in the two quantum fluids, available
to couple with the molecular rotation. After this work and prior to size-selective
experiments, much effort has been devoted to the prediction of the

<
value in

large droplets. In particular, two main models were proposed to explain the re-
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duction of the rotational constant upon solvation: the two-fluid model [11], and
the hydrodynamical model [9, 10]. The former is based on an early suggestion of
Toennies et al. [3] that part of the He density follows the molecular rotation. The
latter attributes a key role to the irrotational flow of the superfluid solvent around
the rotating impurity. On the basis of given relations between structure and dy-
namics, the models can predict the nanodroplet

<
value starting from structural

information. In this context, numerical simulations were mainly used to provide
the structural input, but until 2003 few attempts have been done to simulate di-
rectly the cluster dynamics. In this section we give an account of the theoretical
studies preceding our work.

1.3.1 Hydrodynamic and two-fluid models

The increase of the molecule inertia upon solvation was first explained by as-
suming that some of the solvent atoms would follow rigidly the molecule rota-
tion [8, 26]. The model works for OCS and SF # , but for light molecules the
increase of the inertia is largely overestimated [1].

Grebenev et al. [3] introduced a more sophisticated two-fluid model, which
follows the original Landau theory of superfluid � He [44, 45]. According to this
model, the helium density would consist of local superfluid and normal compo-
nents. Only the normal component, which is supposed to be large in the first sol-
vation shell, would contribute to the molecular inertia [3]. Unfortunately, the au-
thors do not provide any quantitative definition of this local normal fluid fraction.
Kwon and Whaley [46], proposed to calculate the latter, following the scheme
commonly adopted in path integral Monte Carlo (PIMC) simulations of � He sys-
tems [21, 28, 29, 47], where the Feynman’s path integral expansion of the thermal
density matrix is exploited to obtain the superfluid fraction [21]. In the approach
of Kwon and Whaley [46], the scalar and local superfluid component, ­¯® A±° E , is
estimated from the imaginary-time exchange paths which are large relative to the
system size [46].3 The difference between the total He density and ­�® A±° E pro-

3Notice that the inertial response of helium to rotations is a second rank tensor. In 2003,
Draeger and Ceperley defined a different local estimator for the superfluid density, which has the
correct tensorial properties (see Ref. [47]). Following this approach, Kwon and Whaley have
recently developed a tensorial local estimator, successfully tested on OCS (see Ref. [48]).
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vides the non superfluid density ­�²
® A¢° E [46] (which is induced not only by thermal
excitations, but also by the He-molecule interaction [11, 46]).

The increase in the molecular inertia is then calculated by integrating ­Z²
® A±° E
up to a cut off distance from the molecule, fixed at the end of the first solvation
shell [11]. For heavy rotors (such as, e.g. SF # and OCS), this operation provides<

estimates in good agreement with experimental values, but it is not viable in
the case of light molecules [11]. This would be rationalized using the concept of
adiabatic following [11]. Heavy molecules rotate slowly when excited and they
usually have a stronger and more anisotropic interaction with the solvent. As a
result of the combination of this two effects the non superfluid component would
be dragged along by the molecular rotation. This effect would be greatly reduced
in light rotors, both because they rotate faster and because their interaction with
He atoms is usually more spherical [11, 49].

Callegari et al. [9, 10] have developed a hydrodynamical model, relying on
two assumptions. The He density is supposed (i) to be fully superfluid, and (ii)
to rearrange instantaneously around the rotating molecule by an irrotational flow.
In other words, the density in the rotating frame of the molecule is constant and
equal to that of the static case (the density profile is derived from Density Func-
tional calculations) [9, 10]. The solvent rearrangement is defined as adiabatic
following also in this context; notice that this expression has a different mean-
ing with respect to the two-fluid model. The irrotational motion of the superfluid
would generate a kinetic energy term proportional to the square of the angular
velocity of the molecule, ³ . The increase in the effective moment of inertia would
then result from this hydrodynamical contribution to the total energy of the cluster
as a function of ³ . For light rotors, for which the hypothesis of adiabatic following
does not hold [50], the model overestimates the inertia increase. For heavy rotors
there is a good agreement with experimental values, and the discrepancies, which
are at most by %��^´ , are ttributed to the uncertainties in the He solvation densities.

1.3.2 Rotational dynamics of small doped clusters: existing sce-
nario

Recent progresses in Quantum Monte Carlo (QMC) methods are now allowing
for a direct access to the dynamics of small molecules solvated in clusters with
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Figure 1.6: From Ref. [13]. Rotational constants l>µ·¶J¸ for OCS@He � obtained from
POITSE [19] (solid circles) and from experiments for /g)�1
¹·3 [53, 54] (open circles)
and /�)º+»i¼k [4] (squares). The left dashed lines indicates the gas-phase value l = ; the
right one corresponds to the large cluster limit, l q .

up to a few tens of He atoms [17, 19]. In particular it has now become possible
to determine the spectrum of low-lying excitations of these systems [17, 19]. In
this size range, still little explored experimentally, QMC simulations help to cover
the gap between small clusters and nanodroplet regime [11, 13, 14]. Many in-
vestigations employed the projector operator imaginary-time spectral evolution
(POITSE) technique [19], a development of diffusion Monte Carlo [51] (DMC),
in which excited state energies are extracted from the inverse Laplace transform
of the imaginary-time evolution of an initial state. To date, several molecules [11,
13, 14, 52], have been studied with POITSE simulations, even if some limitations
of the method make the results not fully reliable.

Based on calculations for SF # [11] and, using POITSE, for OCS [13](see
Fig. 1.6), Whaley and collaborators concluded that heavy rotors would approach
the nanodroplet regime well before the completion of the first solvation shell [11,
13]. This fast convergence would be explained in terms of adiabatic following of
the non superfluid density of the first solvation layer (see Sec. 1.3.1). The same
argument would also account for the strong reduction of

<
observed in spectro-

scopic experiments [2, 11] (
<Lq P <"=U: ���V%'d and ���V%^r for OCS and SF # , respec-

tively).
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Figure 1.7: From Ref. [14]. Effective rotational constant l for HCN@He � , as a
function of the cluster size / . The l values are derived from POITSE calculations [14].
The rotational constant for / )�1 (diamond, Ref. [56]) and / 0�+
-�-�- (dashed line,
Ref. [50]) are also displayed.

Unfortunately, difficulties in the implementation of the POITSE method have
required more than one study to improve the agreement of the calculations on
OCS with available measurements [12, 13, 55]. Thus, it might not be worthless
to carry out further investigations on the evolution of the OCS dynamics toward
the asymptotic limit, and in fact, using a different computational approach, we
found a significantly different behavior (see chapter 5). In addition, the cases of
CO H @He � and N H O@He � contradict the proposed view (see Sec. 1.2.3). First of
all, the rotational constant of these two heavy rotors show no signal of convergence
to the asymptotic value within the completion of the first solvation shell. Second,
given that for OCS there is saturation to almost full adiabatic following [49],
this concept alone cannot explain the fact that N H O undergoes a much stronger

<
reduction than the heavier OCS. These results suggest that solvent contributions
to the dynamics of heavy rotors extend beyond the first solvation shell, and that
the relation between molecular weight and effective inertia increase is less clear
than expected.

Using POITSE, the rotational dynamics of He clusters seeded with hydrogen
cyanide (HCN@He � ) was also studied [14], finding that at $ : R � , beyond
the completion of the first solvation shell ( $ �s	5� ), < has not yet saturated to
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the nanodroplet limit (
<Lq}: 	'� R � cm �76 ), and it stays significantly higher than

the latter (see Fig 1.7). On the basis of these results and of a following study
of HCN dynamics in the bulk limit [15], Zillich and Whaley proposed that the
asymptotic

<
value for HCN derives primarily from coupling of the molecular

rotation to the collective modes of the � He, and thus it is reached only for large
enough clusters [15]. In this case, the much smaller

<
reduction experienced by

light rotors with respect to heavy ones would result from the lack of adiabatic
following. In Ref. [15], the rotational dynamics of light molecules solvated in He
clusters is supposed to rely on a different physics with respect to that of heavy
rotors. However, the hypothesis of the slow convergence to the asymptotic regime
originates from the alleged large

<
value found for HCN@He H � in Ref. [14], but

this result clearly demands for further investigations. It has to be noticed, indeed,
that for $ : R � the effective rotational constant is even larger than the gas-phase
value (

<"=": 	'����r cm �76 ). Because of the high isotropy of the He density profiles
for these sizes [14], it seems difficult to explain such a result with an asymmetric
reorganization of the solvent. Thus, such a large

<
value could be due to some

inaccuracy in the calculations, as already supposed by the authors [14, 15]. In
chapter 5, on the basis of our simulations, a completely different prediction will
be presented.

Due to possible inaccuracies and to the mentioned discrepancies of the above
results with available experiments [12–14, 52, 55], the view of a fast (slow) con-
vergence for heavy (light) rotors seems somehow forced. As to the distinction
between light and heavy molecules, it has also to be noticed that experimental evi-
dence is not compatible with a simpler picture in which the lighter is the molecule,
the smaller is the

<
reduction. There is not only the example of OCS and N H O;

also in the cases of CO, HCN and DCN, which have similar interactions with he-
lium (even identical for the latter two molecules), a lighter mass corresponds to a
stronger reduction upon solvation [50, 57]. These findings suggest that, maybe,
something more (or something else) than the bare molecular inertia, plays a deter-
minant role in the

<
reduction.

In the next chapter we will describe a more recent quantum Monte Carlo ap-
proach [17, 18], namely reptation quantum Monte Carlo (RQMC). For sizes up to
several tens of He atoms, the method allows for an accurate description of clusters
dynamics, and for a deeper understanding of its relation with the structure and,
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in some cases, the superfluidity of the system [31]. Using RQMC, several of the
problems described here have been studied, obtaining interesting and, sometimes,
unexpected results (see chapters 4 and 5).



Chapter 2

Reptation quantum Monte Carlo
simulations

Let us consider a continuous quantum system described by the Hamiltonian ½ :
�¦¾ H Cf¿KA±À E , where

À
is a G -dimensional vector denoting a configuration of the

system and ¾ is the gradient with respect to
À

. Let us indicate the ground state
of ½ as Á = . Static and dynamical properties of the system can be obtained by
calculating, respectively, ground state expectation values

Â¯ÃÄUÅ : Â Á =�Æ ÃÄ Æ Á = ÅÂ Á =�Æ Á = ÅÈÇ (2.1)

and time correlation functions

É�ÊË A¢Ì E :
Â Á =TÆ ÃÄ A¢Ì E ÃÄ A �'E Æ Á = ÅÂ Á =�Æ Á = Å � (2.2)

of a suitably chosen quantum operator
ÃÄ

, where
ÃÄ A�Ì E :�Í@ÎÐÏ

ÊÑ ÃÄ Í � ÎÐÏ
ÊÑ

.

In general, the evaluation of Eqs. 2.1 and 2.2 is not feasible for two reasons:
(i) for interacting many-body systems, Á = is unknown; (ii) the time evolution
of an operator in the Heisenberg representation,

ÃÄ A¢Ì E , does not have a closed
form. For static operators, (Eq. 2.1), the simplest solution to the first problem is
to approximate Á = with an explicitly known trial wave function, ÁLÒ , chosen as
close as possible to the true ground state:
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Â¯ÃÄ�Å �
Â Á>Ò Æ ÃÄ Æ Á"Ò ÅÂ Á>Ò Æ Á"Ò Å

: ÓzÔ ÀuÆ Á>Ò A±À E Æ H Ä Ò A±À E
ÓÕÔ ÀnÆ Á"Ò A±À E Æ H

: ÄXÖ Ç (2.3)

where
Ä Ò A±À E : Â ÀnÆ ÃÄ Æ Á>Ò Å P Á>Ò A±À E . If

ÃÄ
is local,

Â ÀuÆ ÃÄ Æ ÀK× Å : Ä A±À E Ø A±À � ÀK× E ,
then
Ä Ò A±À E : Ä A¢À E , independent of Á¦Ò . In the variational Monte Carlo method

(VMC) [58],
ÄÙÖ

is calculated by sampling configurations from the probabil-
ity density Ú A¢À E :{Æ Á>Ò A±À E Æ H2P ÓzÔ ÀÕ×ÛÆ Á"Ò A¢ÀK× E Æ H , and then averaging

Ä A±À E over
the sample. The sampling can be performed by a generalized Metropolis algo-
rithm [58]. In particular, to explore the configuration space, one can generate a
random walk according to the discretized Langevin equation [59]:

ÀDÜ2Ý 6 :]ÀDÜÞC�ß àâájA±ÀDÜ E CYã@Ü � (2.4)

where
ß

is the step of the time discretization,
à�á
: R ¾~äæå!ç'è�Á>Ò A±À EBé is the drift

velocity, and the
ã
Ü

is a vector of Gaussian random numbers of zero mean value
and variance

R ß
.

VMC approach can be systematically improved by projecting out of Á;Ò its
excited-state components by imaginary-time propagation:

Æ Á = Å"ê å!ë�bcì�í qmÆ Á"ì Å ,
where

Æ Á¦ì Å :{Í � ì
ÊÑ Æ Á>Ò Å . The ability to calculate

Í � ì
ÊÑ

, would also solve the
problem (ii), provided one contents oneself of correlations in imaginary time,É Ë A¢î E , where

îK: �>ï Ì .

2.1 Path Integral representation of the imaginary-
time propagator

In the coordinate representation, the expectation value of a local operator
ÃÄ

on
the state

Æ Á¦ì Å reads

Â¯ÃÄ�Å ì :
Â Á¦ì Æ ÃÄ Æ Á"ì ÅÂ Á¦ì Æ Á"ì Å



2.1 Path Integral representation of the imaginary-time propagator 23

: ÓzÔ À 6 Ô À H Ô À � Á>Ò A¢À 6 E·ð A¢À � Ç À 62ñóò E ð A±À H Ç À � ñóò E Á"Ò A±À H E Ä A¢À 6 EÓÕÔ À 6 Ô À H Á>Ò A±À 6 E ð A±À H Ç À 6Qñ R ò E Á"Ò A±À H E Ç
(2.5)

where

ð A±À × Ç À ñ£ò E : Â À × ÆæÍ � ì
ÊÑ Æ À Å Ç (2.6)

is the imaginary-time quantum propagator of the system.
Using the the identity

Í � H ì
ÊÑ :}AÛÍ ��ô

ÊÑ E õ , with
ß�: R ò P
ö , and a short time

approximation, such as

÷ A±À × Ç À ñ ß E :øA ��Ú ß E �
áâù H Í �ûúýü^þ�ÿ
ü�� ���� Í � ���� Ö	��
 þ � Ý Ö
��
 ��� : ð A±À × Ç À ñ ß E C��ZAÛß � E (2.7)

for the quantum propagator, we arrive at a discretized path integral representation
of ground state expectation values:

Â�ÃÄcÅ ì�� ÓzÔ ÀD=������ Ô À õ Á>Ò A¢ÀD= E�� õ �76Î�� = ÷ A¢À Î Ý 6 Ç À Î ñ ß E£Á>Ò A±À õ E Ä A±À�� � E
ÓzÔ ÀD=������ Ô À õ Á"Ò A¢ÀD= E � õ �76Î�� = ÷ A¢À Î Ý 6 Ç À Î ñ ß E£Á>Ò A±À õ E Ç (2.8)

where
À�� � is the mid configuration of the imaginary-time path � :��5À = Ç ����� Ç À õ  .

The same result holds for imaginary-time correlation functions,
É©ÊË A¢î E , with the

difference that, in such a case, a single path entails a larger number of configura-
tions,

ö :hA R ò C,î E P ß :

É ÊË�! ì A�î E"� ÓÕÔ ÀD=������ Ô À õ Á>Ò A±ÀD= E£Á>Ò A±À õ E � õ �76Î#� = ÷ A±À Î Ý 6 Ç À Î ñ ß E Ä A¢À%$ E Ä A±À&$ Ý(' EÓÕÔ ÀD=������ Ô À õ Á>Ò A±ÀK= E£Á>Ò A±À õ E � õ �76Î#� = ÷ A±À Î Ý 6 Ç À Î ñ ß E Ç
(2.9)

where ) : ò P ß and * : ) C,î P ß .
In the above expression, operator values are calculated at two points of the

path separated by the imaginary-time interval
î

. From now on the configurationsÀD=
,
À 6 , ����� ,

À õ will be also called time slices of the imaginary-time path � :
the imaginary-time corresponding to the + -th time slice,

À Ü
, is
î@Ü©: +-, ß .

The short time approximation of Eq. 2.7 is based on the Trotter decomposi-
tion [60] of the imaginary-time evolution operator, and it is known as the primitive
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approximation [21] (other and more accurate choices are possible, for instance,
the pair approximation [21] (see next chapter). However, for the problems treated
in this thesis the primitive approximation guarantees both accurate and efficient
calculations). With this choice, the propagator is non-negative. Then, if the trial
function is node-less, the expressions 2.8 and 2.9 for

Â ÃÄ�Å ì and
ÉjÊË�! ì A¢î E have the

form of statistical averages,

Â/. Å ì0� ÓÕÔ �MÚÞä �Mé . ä �MéÓ Ô �MÚÞä �Mé Ç (2.10)

of an appropriate estimator
. ä1��é , over the probability density:

ÚÞä �Mé : Á>Ò A±ÀK= E�� õ �76Î#� = ÷ A±À Î Ý 6 Ç À Î ñ ß E Á"Ò A¢À õ EÓÕÔ À × = ����� À × õ Á>Ò A¢À × = E � õ �76Î#� = ÷ A±À ×Î Ý 6 Ç À ×Î ñ ß E Á>Ò A±À × õ E C2��A±ß£H EQ�
(2.11)

Eq. 2.10 is thus suitable for a Monte Carlo integration [58].

2.2 Ground-state path integral Monte Carlo

Ground-state path integral Monte Carlo methods [17, 21, 61] exploit precisely
the discretized path integral representation of

Í � ì
ÊÑ Æ Á>Ò Å . The simulation amounts

to generate a set of 3 paths
� �54  , with 6 : 	 Ç ����� Ç 3 , distributed according to

ÚÞä �Mé . Estimates of ground state quantum expectation values are then obtained as
averages over the paths. In the case of static operators, one simply accumulates
the operator value in the central slice,

À�� � , of the path. As to imaginary-time
correlation functions, they can be evaluated in the central portion of the path,
by accumulating the products of operator values in two time slices separated byî : + ß : É ÊË�! ì A + ß E : Â 6Ò ù ô±� � Ü �76 �(7 Ò ù ôÛ� ÜÎ#� = ÃÄ A ò C�A ï C +¯E ß E ÃÄ A ò C ï ß E Å , where

Â ����� Å
denotes an average over the sampled paths, � is the time length of their central
portion (see Fig. 2.1), and + : � Ç Ò ô .

The paths representative of ÚÞä �Mé are sampled by using a generalized Metropo-
lis algorithm [58], in which a move from � to 8 is proposed according to a suit-
able a priori sampling distribution 9�ä:8 Ç �Mé and then accepted with probability
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Figure 2.1: Graphical representation of an imaginary-time path. Filled circles correspond
to the time slices of the reptile. The total imaginary-time associated with the path has
length 3�;=<�( . ; indicates the imaginary-time intervals which projects the trial function
onto the ground state within the desired accuracy. ( is the internal portion of the path,
where the imaginary-time correlation functions are calculated. The path is discretized in
time steps of length > .

? ä � Ç 8Ùé : min

@
	 Ç 9�ä � Ç 8;é!ÚÞä:8Xé9�ä:8 Ç ��é!ÚÞä �MéBA � (2.12)

2.2.1 Reptation quantum Monte Carlo

In Eq. 2.12, if the sampling probability, 9�äC8 Ç �Mé , satisfis the detailed balance
condition, we could achieve acceptance 	 . Hence, we search for a 9�ä:8 Ç �Mé as
close as possible to this condition. To this purpose, it proves useful to consider
the importance-sampling Green’s function [51] of the systemDð A±À × Ç À ñ ß E : Á>Ò A±À × E ð A±À × Ç À ñ ß E 	

Á>Ò A±À E � (2.13)

An explicit expression for
Dð is given by the approximation standardly used in

diffusion Monte Carlo (DMC) [51]:Dð A±À × Ç À ñ ß E : ðFE A¢À × Ç À ñ ß E Í � �� � GIH ��
 þ � Ý GJH ��
 ��� C2��A±ß£H E Ç (2.14)

where

ð0E A±À × Ç À ñ ß E :ÈA ��Ú ß E � áâù H2Í �LK ü^þ�ÿ
ü7ÿ ��MJN úýüO�QP ���� Ç (2.15)
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Figure 2.2: Graphical representation of the reptation algorithm. The old path, or snake,R
is displayed in blue solid line. Red color is used for the new piece of the path. The

dashed line indicates the portion of the old snake which is cut in the move.

and SUT A¢À E : ÊÑWV(X ��
 �V(X �Y
 � is the so-called local energy. Using Eqs. 2.11, 2.13 and 2.14,
the probability density of the paths can be written as

ÚÞä �Mé : Á HÒ A±ÀK= E � õ �76Î#� = ðFE A¢À Î Ý 6 Ç À Î ñ ß E Í � �� � GJH �Y
�ZY[]\ � Ý GIH ��
�Z ���ÓÕÔ À × = ����� À × õ Á HÒ A±À × = E � õ �76Î#� = ð0E A±À ×Î Ý 6 Ç À ×Î ñ ß E Í � ���� G H ��
 þ ZQ[^\ � Ý G H �Y
 þ Z ��� C2��A±ß E
: DÚÞä �Mé Í �`_ � a � C2��A±ß E Ç (2.16)

where b¦ä1�Mé : ôH 7 õ �76Î#� = ä S(T A±À Î Ý 6 E C SUT A¢À Î EBé . The factor
DÚÞä �Mé is the probability

density of a variational path generated according to the the Langevin equation
(Eq. 2.4), and thus it can be sampled directly by using the latter.

Given a quantum path, � :c�5À�= Ç ����� Ç À õ  , the new path, 8 , is conveniently
proposed by adding one slice, generated through Eq. 2.4, at the head of the path,
or snake, and cutting one slice from the tail: 8 :d�5À 6 Ç ����� Ç À õ Ý 6  (the reverse
move, in which a slice is added to tail and removed from the head with a change in
the indexes, is also possible). Reptation quantum Monte Carlo method (RQMC)
is named from this reptation or slithering snake algorithm [17] (see Fig 2.2). With
such a choice 9�ä:8 Ç �Mé : ðFE A±À õ Ý 6 Ç À õ ñ ß E , so that using the definition of ÚÞä �Mé
in Eq. 2.16, and the time-reversal properties of variational paths [17], the accep-
tance probability, Eq. 2.12, reduces to? ä � Ç 8Xé `: min

@
	 Ç
Í � �� � G �Y
 � []\ � Ý G �Y
 � ���Í � �� � G �Y
 \ � Ý G ��
�e ��� A � (2.17)

If the moves is accepted, the indexes of 8 are relabeled from � to
ö

(as for the
choice of the slithering direction, see below).
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Equation 2.17 shows both the strength and the weakness of the reptation al-
gorithm: the acceptance probability depends only on the the local energy, apart
from time discretization factors. In the ideal limit of ÁLÒ : Á = , S(T is a constant
and each move is accepted with unit probability. In a more realistic case, when
Á>Ò is not the exact ground state, the quality of the trial function can be improved
by mean of optimization procedures. For a good trial function and systems not
too large, as those studied in our work, local energy fluctuations are small, and
RQMC is extremely efficient.1

Since RQMC displaces all the particles simultaneously at each step (global
moves), in large systems, significant variations of SfT , after a move, become more
probable, causing a decrease in the acceptance rate. In this case algorithms based
on one-particle moves, such as path integral ground state Monte Carlo (PIGS) [21,
61], guarantee a better scaling with the system size, since large local energy fluc-
tuations are avoided (see next chapter).

The bounce algorithm

Our RQMC version uses the bounce algorithm [62], whereby if the moves is ac-
cepted, the next move is in the same direction, while, in case of rejection, the
direction is reversed. Different solutions are possible. For instance, the slither-
ing direction can be chosen randomly at each step. With this choice, it takes on
average

ê ö H
steps (where

ö
is the number time slices of the path) to refresh

all the the slices [17]. The prefactor in this relation can be reduced by moving, at
each MC step, a number of slices sampled with uniform deviate between � and a
maximum value g , where g is chosen as to optimize the efficiency of the algo-
rithm. Taking in to account the computational cost of such multiple moves, the
net gain in CPU time is �cg . The bounce procedure [62] avoids the search for the
optimal g . More importantly this device allows one to save computational time,
since expensive multiple moves are not rejected at the last step. In Ref. [62] it
is demonstrated that the bounce algorithm samples the correct paths distribution,
even though detailed balance is not satisfied.

1In our code, we do not use the propagator in the importance-sampling Green’s function form
(Eq. 2.14), but in the primitive approximation (Eq. 2.7). The two schemes, however, differ only
for terms of the second order in h . Thus the conclusions drawn in this paragraph remain valid.
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Comparison with other methods

The use of the imaginary-time evolution operator is exploited in other ground
state quantum Monte Carlo techniques. We first consider DMC, which is prob-
ably the most widely used approach for ground state simulations of continuous
systems [51]. DMC is more efficient than RQMC for the calculation of the ground
state energy, and, in the case of bosons, it provides an exact estimate of the latter.
DMC, however, samples the mixed distribution i : ÁLÒ Á = , so that only mixed
estimates are accessible for operators not commuting with the Hamiltonian [51].
Estimates are also biased by the population control associated with the branch-
ing scheme [51]. Finally, the dynamical variables of the random walk are single
configurations and the imaginary-time “history” of the walker is not exploited to
derive imaginary-time correlations. However, the latter, as well as biases-free esti-
mates, can be obtained in any case, through the “forward walking” technique [63],
but at the price of additional statistical fluctuations [17].

In comparison with DMC, RQMC samples imaginary-time paths and, thus,
both ground state expectation values and imaginary-time correlation functions
(Eqs.2.1 and 2.2) can be easily calculated without any systematic bias but those
due to the finite projection time, ò , and to the time step,

ß
[17, 18]. Sampling an

explicitly known distribution, the discretized path integral expansion of
Í � ì
ÊÑ Á>Ò ,

allows one to employ a generalized Metropolis algorithm, avoiding branching [51],
which may reduce the efficiency.

The imaginary-time path integral representation of quantum expectation val-
ues is also used in PIGS [21, 61]. For the systems we have studied, however,
RQMC is more efficient, while PIGS becomes advisable to simulate larger clus-
ters [28, 47]. In the next chapter, our implementation of PIGS algorithm will be
shown and its performances will be compared to those of RQMC.



Chapter 3

Technical details

In this chapter several technicalities of our RQMC simulations are illustrated.
First, we describe specific aspects related to the anisotropy of the He-molecule in-
teraction, and, in particular, its effects on the quantum propagator, on the transition
probability, and on the trial function. We also present the procedure to calculate
the cluster rotational energies from imaginary-time correlation functions. In the
last part, we dwell upon some general features of the RQMC algorithm (such as
time-step and projection-time biases, computational time and efficiency scaling),
as well as on some techniques which may be used to study very large systems.

3.1 Doped cluster Hamiltonian

Our clusters, which contain linear molecules such as CO, OCS, HCN, will be
generically indicated as X@He � , and they will be described through a realistic
Hamiltonian,

Ã½ , in which the $ He atoms are treated as point particles and X as
a rigid linear rotor:

Ã½ : �
N H
R'ö Ãj H � N HRlk �m

Î#� 6 Ã) HÎ C Ã¿ Ñon � ÑWn C Ã¿�p � ÑWn C¨<"= Ã? H � (3.1)

where
k

and Ã) Î are the mass and the linear momentum of He atoms, and
ö

,<"=
,
Ãj

,
Ã?

are, respectively, the mass, the rotational constant, the linear and the
angular momentum of the molecule. The He-He and the He-molecule poten-
tials are assumed to be the sum of pair contributions: 7 �Îrqls ¿ Ñon � ÑWn Aut Î:s E and
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Figure 3.1: Graphical representation of the polar coordinates v and w , used in the expres-
sion of the anisotropic He-molecule potential. As an example, the molecule was taken to
be the carbon monoxide. C,O and He atoms are shown as filled circles. Here x coincides
with the molecular symmetry axis.7 �Î#� 6 ¿ X � Ñon Aut Î ÇIy Î E respectively, where

° Î is the position of the ï -th atom with
respect to the center of mass of the molecule,

t Î :{Æ ° Î Æ , y Î is the angle between° Î and the molecular axis, z (see Fig. 3.1), and
t Î:s is the distance between the

ï -th and the { -th He atoms. Our Hamiltonian does not depend on the rotor bond
lengths, since we have assumed that inter and intra-molecular degrees of freedom
are adiabatically decoupled. In fact, dopant vibrations and bound state energies
of an He atom in the He-molecule potential well are of the order of some thou-
sands and of a few tens of cm �76 , respectively. In our simulations, both the He-He
and the He-molecule interactions are modeled by analytical expressions fitted to
accurate ab-initio quantum-chemistry calculations. The potential energy surfaces
(PES) that have been used for our systems are described in Refs. [20, 33, 64, 65].

3.2 Sampling rotations

For a system of $ point particles plus a linear rotor, the quantum propagator
contains a rotational term, whose exact expression is [66]:

ð0|~} Ï A��� Ç �� × ñ ß E : Â �� ÆæÍ ��ô�� e Ê9 � Æ/�� × Å
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:
qm 9 � = R ?ÕC 	��Ú j�9�A��� ���� × E Í ��ô�� 9 � 9
Ý 6 � Ç (3.2)

where
�� denotes the molecular axis versor. For small time steps, ð&|~} Ï can be

conveniently approximated by a Gaussian function of the angle 6 between
�� and�� × :

ð�|~} Ï A��� × Ç �� ñ ß EL� 	A ��Ú <>=2ß E 6 ù H
Í ��� ������ e � (3.3)

This can be sampled directly by chosing randomly an axis orthogonal to
�� and that

rotating the latter around it, by an angle generated with probability 9�|~} Ï : ð�|~} Ï .
Actually, the RQMC code that has been used is conceived for generic three-
dimensional molecules and rotates them around their three principal axis of in-
ertia. The orientation of the molecule is thus changed by successive rotations
around the two principal axis orthogonal to

�� :9�|�} Ï A � × Ç � ñ ß E ê Í ��� �\� ��� e , Í ��� �����r� e , Í ��� �\� ��� e Ç (3.4)

where the different indexes of the rotation angles, � 6 and � H , indicate rotations
around different axis of inertia. The rotation � 6 has been decomposed in two steps
to reduce the effect of the non-commutativity of finite rotations around different
axis.

3.3 Trial functions

For the trial wave function, Á¦Ò , we use the standard Jastrow form [67]:

Á>Ò : exp � � �m Î#� 6L� 6 A�t Î Ç�y Î EF� �m Î�qls � H Aut Î:s E~� Ç (3.5)

where � 6 and � H are known, respectively, as the He-molecule and the pair He-He
pseudo-potentials. For � H we chose a functional form already used in accurate
variational descriptions of bulk � He [68]:

� H Aut E : ) 6t $ � C ) � Í � $ � � | � $�� � � � (3.6)
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In the above and in the following formulas, the ) Î ’s are parameters to be opti-
mized (see below). � 6 is written as a sum of Legendre polynomials times radial
functions:

� 6 Aut Ç�y E : m ' i ' Aut E jW'±Au� ç]� y E«� (3.7)

Retaining five or six terms in the sum is enough to represent even the most anisotropic
situations treated in this work, namely, a ring of five He atoms tightly bound
around the OCS molecular axis in correspondence with the principal minimum of
the PES (see chapter 5). As for the radial function, i 'ÛA�t E , in the case of CO@He �
and HCN@He � , we have adopted the form [32]:

i 'ÛAut E : ��å!ç'è R�� ) 6tF� � ) H t $�� ��) � å�ç'è t �û� (3.8)

The strongly anisotropic He-OCS interaction makes the radial density in OCS@He �
clusters more structured than for CO and HCN. Hence, a more flexible expression
for i 'ÛA�t E has been used:

i 'ÛA�t E :¡ �¢�£ � ) 6 C ) H t � C ) � t � C ) � tl¤t � C ) � t # ��� (3.9)

Our trial function parameters, whose number is in the range of a few tens, have
been optimized by standard minimization of the cluster variational energy, em-
ploying a correlated sampling scheme [58]. This approach has been preferred to
the variance minimization [69] since, in our case, the latter might lead to trial
functions ensuring a very small variance of the local energy, but poorly approxi-
mating the ground state (e.g a trial function representing a state in which all the
He atoms are far away from each other and from the molecule). Even for the
largest clusters, our optimization procedure requires only a small fraction of the
total simulation time so that Á¦Ò has been optimized independently for each size.



3.4 Extracting the absorption spectrum of doped He clusters 33

3.4 Extracting the absorption spectrum of doped He
clusters

The absorption spectrum of a molecule solvated in a non polar environment is
given by the Fourier transform of the autocorrelation function of its dipole, ¥¦ :

S A ³�E : § Ý7q
� q
Â Á =�Æ ¥¦ A�Ì E � ¥¦ A �^E Æ Á = Å Ô Ì

: R Ú m ² Æ Â Á = Æ ¥¦ Æ Á"² Å Æ H Ø AÛ8 ²L� 8»= �n³�E Ç (3.10)

where Á = and Á"² are ground- and excited-state wave functions of the system and8©=
and
8 ² the corresponding energies. The real-time correlation function can be

expressed as a sum of oscillating exponentials:

Â Á =�Æ ¥¦ A¢Ì E � ¥¦ A �^E Æ Á = Å : m©¨ S A ³�E Í � Î ¨ Ï � (3.11)

Given that RQMC easily provides imaginary-time correlation functions as time
correlation along the path, we analytically continue

Â Á =�Æ ¥¦ A�Ì E � ¥¦ A �^E Æ Á = Å to imagi-
nary time:

Â Á =�Æ ¥¦ A �>ï Ì E � ¥¦ A �'E Æ Á = Å : Â ¥¦ A�î E � ¥¦ A �^E Å«ªU¬ (3.12)

where the subscript �09 underlines that the expectation value is obtained from
the random walk sampling.

Continuation to imaginary-time transforms the oscillatory behavior of the real-
time correlation function—which is responsible for the Ø -like peaks in its Fourier
transform—in a sum of decaying exponentials, whose decay constants are the
excitation energies, and whose spectral weights are proportional to the absorption
oscillator strengths,

Æ Â Á =�Æ ¥¦ Æ Á"² Å Æ H :
Â ¥¦ A¢î E � ¥¦ A �'E ÅJª�¬ : m ² Æ Â Á =�Æ ¥¦ Æ Á"² Å Æ H Í �`­�®�¯ (3.13)

where °5² : 8 ²�� 8»= . Dipole selection rules imply that only states with
?m: 	

can be optically excited from the ground state:
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Â ? × ö × Æ ¥¦ Æt?¼: � Å : � if
? ×²±: 	'� (3.14)

The dipole of a linear molecule in a non polar environment, is oriented along its
axis, so that the optical activity is essentially determined by the autocorrelation
function of the molecular orientation versor, ¥� .

The energies of the transitions to excited states with higher angular momenta?
can be easily obtained from the multipole correlation function ³ 9¯A¢î E , defined as

the imaginary-time correlations of the Legendre polynomials,

³ 9¯A�î E : ´µj�9�A ¥� A¢î E � ¥� A �^E E�¶ ª�¬
: ´ � ��ÚR ?ÕC 	 õ � 9m

õ � � 9 8&·9 õ A ¥� A¢î E E«8 9 õ A ¥� A �'E£E~�"¶ ªU¬ Ç (3.15)

given that

Â ? × ö × Æ 8fT õ A ¦ E Æt?�: � Å : � if
? ×W±: 3 or

ö ×¸±: ö � (3.16)

The energies, ° 9² , and the corresponding spectral weights,
? 9² , for rotational tran-

sitions from the ground state to states with angular momentum
?

can be derived
from a fit of ³ 9¯A¢î E to a sum of decaying exponentials:³ 9¯A¢î E�� m

²
? 9² Í �`­~¹® ¯ � (3.17)

Generally speaking, the usefulness of this representation for obtaining the dy-
namical properties from quantum simulations is rather limited, because the calcu-
lation of the spectrum from imaginary-time correlation functions requires to carry
out an inverse Laplace transform, a notoriously ill-conditioned problem [70]. In
the case of doped He clusters, however, the situation is not so bad, because very
few excited states contribute to ³ 9�A¢î E . In fact, if the solvated molecule was isolated
only one rotational state would contribute to ³ 9¯A¢î E which would have therefore
the form of a single exponential. Furthermore, the interaction between the sol-
vent matrix and the solute molecule is rather weak, so that this single-exponential
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picture is only slightly perturbed. Last and most important, the bosonic nature
of the quantum solvent determines a low density of low-lying excitations. As a
consequence of the scarcity of low-lying excitations available to couple with the
molecular rotation, the spectrum consists of very few peaks, well separated in
energy, which nearly exhaust the entire spectral weight. The positions and the in-
tensity of the spectral lines can then be reliably extracted by the multiexponential
fit in Eq. 3.17.

The reliability of our fitting procedure is assessed by checking how our results
depend on the number of exponentials, º , entering the fit. While a single exponen-
tial is not enough to fit the data, by increasing º one quickly reaches a situation
of over-fitting, in which the data are equally well fitted by vastly different spectra.
This is the manifestation of the mentioned fact that the inverse Laplace transform
is an ill-conditioned problem.

In particular, we determine the excitation energies and the spectral weights
when, adding a new exponential, three conditions are fulfilled: (i) the » H is ac-
ceptable; (ii) energies and spectral weights remain stable; (iii) statistical errors are
small enough. In Fig. 3.2 we report three paradigmatic situations, regarding the³O¼½ A�î E correlation functions of HCN@He � , for $ : 	 Ç 	�� Ç R � . For $ : 	 the first
requirement is satisfied starting from º : R . With º : % and º : � (ii) and (iii)
are also verified and, thus the multi-exponential fit provides reliable results. For
$ : 	�� , the condition (ii) is satisfied for º : % Ç � within the statistical errors,
but the latter are relatively large, particularly on the energies. Hence, the third
condition is not fully verified, indicating that longer simulations are needed. The
$ : 	
� cluster is thus a limiting case, where the information extracted from the
multiexponential fit is not too robust. For $ : R � , all the conditions are satisfied
quite well for º : R and º : % . The spectral function contains a single dominant
exponential, while the others have small weights and very high energies.

The accuracy of the estimate of the rotational energies and of the correspond-
ing spectral weights also depends on the length of the imaginary-time used to cal-
culate the time correlations. The internal portion of the path, whose time length
is � (see chapter 2), has to be long enough so that the multiexponential fit can
clearly distinguish the lowest modes in the spectrum. Fig. 3.3 reports the two
lowest rotational energies, ° 6 and ° H , and the corresponding spectral weights as
extracted from the correlation function ³ ¼½ A¢î E of CO@He 6 , for different values of
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Figure 3.3: The two lowest rotational energies (left) and the corresponding spectral
weights (right) for CO@He 6 , extracted form the correlation function Å ¼½�Æ�ÇOÈ for different
length ( of the internal portion on the path (see chapter 2). The dashed lines represent
the experimental data of Ref. [5] for CO@He 6 referred to the center É = of the vibrational
band (see Sec. 1.2.2).

� . Full convergence of the results is achieved for � : ���VW¦� �76 imaginary-time.
We finally remark that the use of Jackknife analysis [71] allows one to re-

duce the systematic bias affecting estimates of quantities which are a non-linear
function of basic data (the time correlation functions in our case). In particular,
for excitation energies and spectral weights, we first use the binning technique to
eliminate autocorrelation on the basic data set, then we calculate the fluctuations
of the fit parameters over the different data sets obtained by averaging all but one
of the binning blocks.

3.5 Projection-time and time-step biases

The systematic errors coming from the finite projection time ò and time step
ß
,

can be removed by performing simulations at different time steps and projection
times and extrapolating the results for

ßËÊ � and ò Ê Ì
. In the left panel of

Fig. 3.4 we report the estimated ground-state energy per particle,
8¦= P $ , for a pure

cluster of seven � He atoms, He ¤ , as a function of the time step,
ß
. The dependence

of
8»= P $ on the time step is quadratic, as indicated by the best fit curve.

The right panel displays the energy per particle of He ¤ as a function of ò . For

ò�Í ���t�¦�¬�76 most of the high energy components of the trial function have been
filtered out and the energy has converged to its exact ground state value, within a
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Figure 3.4: Left panel: energy per particle, Î =�Ï / , in a pure cluster containing seven

� He atoms (He ¤ ), as a function of the time step > . The black line represents the best fitting
second order polynomial. Right panel: energy per particle of He ¤ , as a function of the
projection time ; . The time step is fixed at >�)*-'oý-�-^1û. �76 .
few mK. For quantities like correlation functions, a more practical approach is to
select a time step and a projection time such that the residual bias is smaller than
the desired accuracy. In our simulations the total length

R ò C � of imaginary-
time paths is typically between one and two inverse Kelvin, with projections time
between ����	j� �76 and �����L� �76 , and a time step

ß�: 	�� � � � �76 .

3.6 Computational costs and path sampling

The CPU time per step increases quadratically with the number, $ , of the helium
atoms, due to the pair inter-particle potential, as well as to the trial function (for
the largest simulated size, $ : ��� , one Monte Carlo step requires about 	 msec
on a 1.4GHz PentiumIII). The global efficiency of the algorithm, however, has a
less favorable scaling. Because of the global moves used in RQMC, the larger is
the system, the lower is the acceptance rate (see e.g. the left panel of Fig. 3.5).
As a consequence, the reversal of the slithering direction, accomplished by the
bounce procedure, becomes more frequent, thus increasing significantly the aver-
age number of moves needed to refresh the whole path. This can be visualized in
the right panel of Fig. 3.5, where we monitor the position of the head of the snake,Ð A¢î E , on the axis of the imaginary-time, for different sizes of HCN@He � . We
note that, to have a statistical error of 	'�Ð��,u	���� H cm �76 on the lowest HCN@He �
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Figure 3.5: Left panel: acceptance rate for a He cluster doped with HCN, as a function
of the size, / . In the simulations we employed a time step of -'oý-�-^1j. �76 . Right panel:
Diffusion Ñ Æ�ÇOÈ of the reptile head as a function of the random walk time Ç , from RQMC
simulation of HCN@He � , for /O)h3 (black solid line), ª (black dotted line), 1�Ò (red
line) and Ò
- (blue line). The simulations have been performed with paths of 12-�-�- time
slices and time step >F),-'oý-�-^1F. �76 .
rotational energy, we need about %��'� hours for $ : 	5� and `g�^v��'� hours for
$ : %'� , on a 1.4GHz PentiumIII.

3.7 Toward the nanodroplet regime

For future work on larger clusters, we have implemented a different algorithm,
the path integral ground state Monte Carlo [21, 61]. PIGS , as well as RQMC,
relies on the path integral scheme for calculating ground state expectation val-
ues and imaginary-time correlations. The basic difference is in the sampling
method. In PIGS the moves are performed by the Bisection-Multilevel (BSML)
technique, used in state-of-the-art PIMC calculations [21, 47]. BSML uses multi-
slices single-particle (or few-particles) moves, whose acceptance is largely inde-
pendent of the system size. For an efficient implementation of PIGS, it is crucial
to reduce the number of time slices as much as possible. This, in turn, requires to
go beyond the primitive approximation for the propagator. Following Ref. [21],
we adopt the pair action approximation, which allows accurate calculations for the
condensed phase of helium, with a time step as large as ���V� R �"�U�76 . We note that,
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at large sizes, the combination of such a time step with global moves results in a
very low acceptance, thus limiting the effectiveness of the pair action in RQMC.

The pair action uses the exact expression of the propagator for a two-particle
system to approximate the $ -body propagator [21]. For spherical potentials, the
former can be precomputed and tabulated, so that the full propagator can be eval-
uated quickly during the simulation [21] (see Appendix A).

When the interaction is anisotropic, such as the He-molecule one, a straight-
forward tabulation is not feasible. The standard choice [47, 72], in these situ-
ations, is to rewrite the anisotropic PES as a sum of spherical potentials plus a
small correction, which are then treated in the pair and in the primitive approx-
imation, respectively. We have applied this procedure to the He-CO interaction,
as it is shown in the Appendix A. We note that for large time steps the Gaussian
approximation of Eq. 3.3 for the rotations propagator, ð�|~} Ï , has to be substituted
with the exact expression (Eq. 3.2).

Now we discuss the efficiency of our PIGS implementation in the case of pure
clusters. The efficiency of an algorithm, for a given property

ÃÄ
, can be defined as

how quickly the error bars decrease as a function of the computer time [21]:

ã ÊË : 	Ó H A ÃÄ E j �I® Ï n $ (3.18)

where Ó A ÃÄ E is the statistical error on the Monte Carlo estimate of
Â ÃÄUÅ

,
j

is the
number of steps of the simulation and � ® Ï n $ is the computer time per step.

In order to compare RQMC and our implementation of PIGS, we have eval-
uated the efficiency of the two algorithms for the calculation of the ground-state
energy per particle,

8>= P $ , of a pure He cluster. The result is shown Fig. 3.6. In
RQMC simulations the primitive approximation has been used with

ß�: ���t����	F�U�76 .
In the other case, thanks to the pair action, we could take a

R � times larger time
step. The PIGS algorithm becomes more efficient than reptation for $ Ô{	��'� .
However, in the size range studied in this work ( $O�
��� ), RQMC is far superior
than PIGS.
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Chapter 4

Understanding the relation between
structure and dynamics: CO@He Õ
In this chapter, the rotational dynamics of CO@He � is studied using RQMC in
the size range $ : 	 �Õ%�� . We aim at elucidating the relation existing between the
position, number, and intensity of the rotational lines and the size and structure
of the cluster (see chapter 1). Our results reproduce rather accurately the roto-
vibrational features of the observed CO@He � spectra [5], and allow for a detailed
analysis of the interplay between structure and dynamics in these systems.

4.1 Ground state properties

RQMC simulations have been performed using the He-He and He-CO interactions
of Refs. [64] and [20], respectively. Further technical details can be found in
chapter 3. Fig. 4.1 shows the He-CO potential,

¿KA
r E , as calculated in Ref. [20],

together with the atomic density distribution ­�� , where ­�� is the ground-state
expectation value of the He density operator:

Ã­ A r E :
�m
Î#� 6 Ø A r � r Î E Ç (4.1)

for a given cluster size, $ . The He-CO PES, calculated in the ground state of the
intra-molecular vibration, has one single shallow well of

¿×Ö
: �"%����!	�%Ù� . This
minimum is located on the oxygen side, at a distance of

t©Ö~: %������ Å from the
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Figure 4.1: Upper left panel: He-CO interaction potential. C and O atoms are repre-
sented by two circles whose radius is the corresponding van der Waals radius. Contour
levels start from Ø¥)�- to negative values, and they are spaced by Ò�. . The other panels
depict the He density, Ù � , for various sizes of the CO@He � cluster. For the density pro-
files, contour levels start from -'oý-�-^1 with increments of -'oý-�-©Ò , in unit of Å � � . The lenght
scale is indicated by the vertical segment corresponding to 1 Å.

CO center of mass, and at an angle y Öº: �^W��VW]Ú from the molecular axis. For small
$ , the atoms start filling the potential well. As the number of He atoms increases
the fluid overflows from the minimum and the borders of the dome stream down
along the molecule. Already at $ : � (not reported) some He density can be
found all around the impurity, indicating that CO is fully solvated very rapidly.
The most relevant aspect, shown by the density contour plots of Fig. 4.1, is the
smooth evolution to an increasingly isotropic solvent distribution.

A more direct description of the solvation process is provided by a simulta-
neous analysis of the He atomic binding energy g 8 � : 8 � �76 � 8 � with the
incremental atomic density distribution g�­Z� A±° E : ­�� A±° Ej�p­�� �76 A±° E . The for-
mer quantity is reported in Fig. 4.2 as a function of the cluster size. g 8 � first
increases up to $ : �X�Y� , and it stays roughly constant in the range $ : �¦�YW ;
from this size on g 8 � starts decreasing, first slowly, then, from $ : 	�����	'	 ,
rapidly down to a minimum at $ : 	�v . For $ Í 	�v%g 8 � increases again and
slowly tends to the nanodroplet regime (where it coincides with the bulk chemical
potential, Û : rZ���©� [18]) which is however attained for much larger cluster sizes
than explored here [73].
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Figure 4.2: Atomic binding energy, Ü0Î � )ÝÎ � iÞÎ � �76 , as a function of the cluster
size in CO@He � . The horizontal line on the right of the figure indicates the chemical
potential in bulk � He, ßÕ)ºªTo1à�. [18].

This behavior can be understood by comparing gU­�� A r E with the shape of the
CO–He potential energy function,

¿DA
r E (see Fig. 4.3). For very small $ the

atomic binding energy is dominated by the He–CO attraction of the potential well.
As He atoms fill this well, g 8 � first slightly increases, as a consequence of the
attractive He–He interaction, then, for larger $ , the increased He–He interaction
is counter-balanced by the spill-out of He atoms off the main attractive well, until
for $���v the reduction of the He–CO interaction overcomes the increased attrac-
tion and the binding energy starts decreasing steeply. For $ in the range 	��"��	
� ,
He atoms accumulate toward the C pole, while, around $ : 	5� , the first solvation
shell is completed and the differential atomic density, g�­�� , is considerably more
diffuse starting from $ : 	�d . g 8 � reaches a minimum at $ : 	
v . For larger
sizes, the trend in the atomic binding energy is dominated by the increase of the
He–He attraction related to the increase of the cluster size, until it converges to
the bulk chemical potential.

4.2 Rotational spectrum

The energies of the two lowest rotational transitions
?È: 	�á � , ß 6µ�â ã , as well

as the corresponding spectral weights,
? 6µ�â ã , are obtained form the imaginary-time
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Figure 4.3: Upper left panel: He-CO interaction potential. C (blue) and O (cyan) atoms
are pictured by two circles whose radius is the corresponding van der Waals radius. The
other panels picture the differential He density, ÜäÙ � )ÝÙ � iåÙ � �76 for various sizes of
the CO@He � clusters. Color convention is rainbow: red to purple in order of increasing
magnitude.

correlation function ³^æ½ A�î E with the procedure described in Sec. 3.4. In Fig. 4.4 we
report the positions and spectral weights of the rotational lines, as functions of the
cluster size, $ . In the size range $ : 	©�ºv , analysis of the dipole time correla-
tions clearly reveals the presence of two peaks, w -type and x -type, which correlate,
respectively, with the end-over-end rotation and with the free molecule rotation in
the He-CO complex (see Sec. 1.2.2). The spectral weights of the x -type series
rapidly decrease by almost a factor 2. Note that the sum of the spectral weights of
these two lines nicely sums to one, indicating that they exhaust all the oscillator
strength available for optical transitions originating from the ground state. For $
between 10 and 12 (shaded area in Fig. 4.4) the situation is less clear. As the
weight of the x -type line drops to zero, the statistical noise on its position grows
enormously. Furthermore the multi-exponential fit introduces some ambiguity, as
the results become somewhat sensitive to the number of terms in the sum. How-
ever the important information that one line disappears between $ : 	�� and 12
is clear. For larger $ only one relevant line remains, and the robustness of the fit-
ting procedure is recovered, with the minor exception of the sizes around $ : 	�d ,
where the minimum of the » H appears to be less sharp, possibly correlating with
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Figure 4.4: Left panel: position of the rotational lines of CO@He � as obtained from
RQMC simulations as a function of the cluster size, / . ç -type lines are indicated with
diamonds, è -type lines with triangles. Right panel: spectral weights of the lines reported
in the left panel; the continuous line near the upper border of the figure corresponds to the
sum of the spectral weights.

the splitting of the line observed in the infrared spectra for $ : 	5� (see below).
The surviving series of transitions shows no dependence on $ , thus indicating the
onset of a nearly free rotation regime.

In the left panel of Fig. 4.5 we compare the rotational structure of the observed
infrared (vibrational) spectrum [5] with the rotational excitation energies that we
have calculated. Experimental data are referred to the center, é = , of the vibrational
band for $ : � (CO monomer). In order to better compare our predictions with
experiments, we have corrected the former with an estimate of the vibrational
shift gËé = (the displacement of the vibrational band origin as a function of the
number of He atoms, see Sec. 1.2.2). The vibrational shift can be calculated as
the difference in the total energy of the cluster obtained with two slightly different
potentials [20],

¿ =B=
and
¿ 6B6 , representing the interaction of a He atom with the CO

molecule in its vibrational ground state and first excited state, respectively [32].
Since the evaluation of a small difference between two large energies is computa-
tionally demanding for large clusters, gËé = has been evaluated perturbatively with
respect to the difference

¿ =B= � ¿ 6B6 using a correlated sampling technique [73].
We have used the vibrational shift calculated in Ref. [73] after verifying on small
clusters that the perturbative treatment is reliable.

The good agreement between theory and observation is quite evident, and
contributes to validate the procedure used to extract the rotational energies from
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Figure 4.5: Left panel: positions of the infrared lines of CO@He � as observed ex-
perimentally (Ref. [5], empty circles) and as estimated from the present simulations and
corrected by the estimated vibrational shift (solid diamonds, see text). Right panel: vi-
brational shift of the lines, as estimated in the present work (triangles) and in Ref. [73]
(diamonds and dashed line).

imaginary-time correlation functions. We stress that the analysis of the dipole
correlation function, is able to disclose both the presence of two lines in the spec-
trum and the fading of the x -type one. The behavior of the corresponding esti-
mated spectral weights (see Fig. 4.5) shows that the higher frequency series does
not disappear abruptly, but gradually looses intensity in favor of the w -type one.
The spectral weights indicate a smooth transition between two dynamical regimes,
suggesting that, with increasing the size, slow changes are occurring in CO@He � .

4.3 Structure and dynamics

Despite the remarkable agreement between our results and experiments, some of
the features of the observed spectrum call for a deeper understanding and theoreti-
cal investigation. Two questions, in particular, naturally arise. Why are two peaks
observed in the small-size regime, and what does determine the disappearance of
one of them at $ : W ? What does determine the split of the higher-frequency
( x -type) line at $ : r and of the lower-frequency ( w -type) one at $ : 	5� ?

The existence of two lines for small $ is likely due to a larger asymmetry of
the cluster in this regime. If the CO@He � complex is described as a rigid rotor,
in fact, one would have one rotational line originating from a

?¤: � ground state
if the complex has cylindrical symmetry, while this line would double if some
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of the atomic density accumulates in a longitudinal protrusion. The inertia of the
complex would in this case be larger for a rotation about an axis perpendicular to a
plane containing the protrusion (end-over-end rotation) than about an axis lying on
such a plane. Given that the Hamiltonian of the system is invariant under rotation
about the molecular axis, any breaking of this symmetry can not be revealed by
the ground state He atomic density. In Fig. 4.1, no difference can be found in the
reported contour plots, although they correspond to extremely different dynamical
situations: at $ : % the spectrum consists of two transitions; at $ : r the x -type
line splits and the w -type one is still present. $ : 	 R is exactly the size at which
the higher energy line disappears. Finally, no significant change appears between
the solvent densities of CO@He 6 � and CO@He 6 # . Nevertheless, in the former
case a doubling of the w -type line is observed, while in the latter the nearly free
rotation regime is restored.

In order to detect a possible asymmetric structure, we need a correlation func-
tion of higher order than the density. Hence, we define an atomic angular corre-
lation function, ê A/ë E , as the probability of finding two He atoms which form a
dihedral angle

ë
with respect to the molecular axis:

ê Aìë E :d´ 	
$ A $a�¥	5E

m
Îuí�^s Ø A/ë Î � ë s � ë Eî¶,� (4.2)

In the left panel of Fig. 4.6 we show ê Aìë E , for different cluster sizes. The
depletion of ê for

ë
larger than Ú P'R , clearly visible for $ : % (green circles), in-

dicates a tendency of the He atoms to cluster on a same side of the molecular axis.
For larger clusters this effect weakens, suggesting the approach to the cylindric
distribution. However, the larger is the cluster size, the harder is the distinction of
the signal of an asymmetry from the structural information related to the He–He
interaction. As $ increases, the features of ê Aìë E tend to resemble those of the
liquid He radial pair distribution: the dimple due to steric repulsion, the nearest-
neighbor peak and the subsequent plateau. Once the latter has appeared in ê A/ë E ,
it is difficult to interpret the maximum around

ë : ���V%L�,�����>Ú as a clear proof of
an asymmetric arrangement of the He density.

A more sensitive measure of the propensity of He atoms to cluster on a side of
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Figure 4.6: Left panel: probability density of finding two He atoms which form a dihe-
dral angle ï with respect to the molecular axis; the probability is normalized to 1. Results
pertain to clusters with / )�+ (green circles), /�)p4 (blue triangles) and /�)~1Q+ (red
diamonds). Right panel: The integrated probability density, defined in Eq. (4.3), as a
function of the cluster size.

the molecule is given by the integral of ê A/ë E from 0 to ð H ,
ö : §òñ �= ê Aìë E Ô ë � 	R � (4.3)

ö
measures the deviation of the He density distribution from the cylindrical sym-

metry. In the right panel of Fig. 4.6 we display
ö

as a function of the cluster
size, $ : one sees that

ö
decreases with $ and reaches a minimum at $ : 	
� .

This is precisely the size at which the first solvation shell is completed and thus,
for steric reasons, the He atomic distribution is more homogeneous. The cluster
asymmetry increases again when the second shell starts to build. The rotational
spectrum of the solvated molecule, however, is insensitive to this asymmetry for
clusters of this and larger sizes. This indicates that the existence of the asymme-
try is a necessary but not sufficient condition for the line doubling. If quantum
fluctuations make the motion of the protrusion fast with respect to the molecular
rotation, the impurity perceives a cylindrical effective distribution. The existence
of two lines in the rotational spectrum of the molecule requires therefore that an
asymmetry in the instantaneous distribution of He atoms around the molecular
axis exists; that the molecular inertia is sensitive to this asymmetry (the protru-
sion can be ‘dragged’ along the molecular rotation); and that the motion of this
protrusion around the molecular axis is slow enough with respect to the molecular
rotation.
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Figure 4.7: Diamonds: CO rotational frequencies in CO@He � as functions of the
cluster size, / (same as in Fig. 4.4). Dots: frequency of the lowest mode appearing in the
spectral analysis of the angular He–He correlation function (see Eq. (4.4)).

In order to better characterize the motion of He atoms around the molecule
and their coupling to the molecular rotation, we examine the imaginary-time cor-
relations of the versor, ó , of the He center of mass,

°]ô õ , relative to the molecular
center of mass: É�õ A�î E : Â ó A¢î E � ó A �^E Å � (4.4)

For the binary complex, He–CO,
°Bô õ coincides with the position of the helium

atom, and we expect its angular dynamics to be strongly correlated to the molecu-
lar rotation, at least in the end-over-end mode. In Fig. 4.7 we report the frequency
of the slowest mode appearing in the spectral analysis of

É×õ A¢î E , ß õ , as a func-
tion of $ , and compare it with the corresponding frequencies of the molecular
rotation. We see that for cluster sizes up to $ : v��~	�� , ß õ is degenerate with
the w -type frequency in the molecular rotational spectrum, with a spectral weight
which passes from

? õ � 	 for $ : 	 to
? õ �}���Ðr for $ : 	�� . These find-

ings are a manifestation of the fact that He atoms are dragged along the slowest,
end-over-end, rotation of the solvated molecule, and that the effect of this drag-
ging decreases when more He states with

?p: 	 become available and subtract
spectral weight to the slowest mode. For $ Í 	�� , ß õ further increases and de-
parts from

ß µ , indicating an effective decoupling of the two kinds of motion. The
lowest atomic mode,

ß õ
, slows down again for $ : 	5� . This is due, however to

the slow He motion in the second solvation shell which hardly affects the rotation
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of the solvated molecule. Although the resolution that can be achieved with our
simulations is not sufficient to detect the doubling of the w and x lines which is
experimentally observed for $ : 	5� and $ : r respectively, it is interesting to
notice that the former occurs in correspondence with the crossing between

ß õ
andß µ , possibly due to the resonant interaction between the two modes. It is tempting

to assume that a similar mechanism may be responsible for the doubling of the x
line at $ : r , involving however higher-energy He states. A deeper study of the
He dynamics would clarify this point.

In a recent theoretical work [66] the onset of the nearly free rotation regime
( 	 R ye$\y R � ) is connected to the x -type line, as it would be expected from the
notion of x -type mode in the He-CO dimer. Here we propose a different view,
in which the free rotation series simply evolves from the w -type one when the
latter departs from the series of the He mode. We add that, when the cluster size
increases, it looks inappropriate to distinguish the two kinds of spectral lines by
resorting to the concepts of w - and x -type lines as defined for the dimer. This
conclusion was already suggested by the authors of Ref. [5].

4.4 Summary and discussion

Using RQMC, the CO dipole autocorrelation function has been calculated, allow-
ing to reproduce rather accurately the rotational features in the IR spectrum of
CO@He � [5]. The presence of two spectral lines— w -type and x -type, evolving
respectively from the end-over-end and from the free-molecule rotations of the bi-
nary complex—is revealed and related to the propensity of the He atoms to cluster
on a same side of the molecular axis. This propensity is measured by an appropri-
ate angular pair distribution function. We find that as more He atoms progressively
fill the first solvation shell, their clustering propensity weakens; the CO impurity
gets more isotropically coated, looses a preferred axis for the free-molecule mode,
and the x –type line disappears.

Additionally, dynamical information on the He atoms in excited states with?u: 	 has been obtained, by calculating the time autocorrelation of the versor of
the He center of mass. We find a substantial spectral weight on a He mode whose
energy,

ß õ
, is degenerate with the w -type line for $ up to about ten. This indicates

that some of the He density is dragged along by the molecular rotation—in other
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words, part of the angular momentum in the cluster mode involving molecular
rotation is carried by the He atoms. We also find that for larger clusters the molec-
ular rotation effectively decouples from this He mode, and its energy

ß µ becomes
essentially independent of the number of He atoms. We relate the onset of the
free-rotor-like regime and the evolution of the w -type series. When the cluster size
approaches the critical value of $ : 	 R , it is no more possible to think of the w -
and x -type transitions as they are meant for the binary complex.

Extrapolating the result obtained for $ up to 30 to the nanodroplet limit, we
have predicted a renormalization factor of the

<
value of 0.78. A recent experi-

ment [57], however, indicates that in large droplets the effective
<

is d'%^´ of the
gas phase value. In Ref. [57] these findings have been rationalized in terms of
coupling between phonon modes of the solvent and molecular rotation. Our cal-
culations do not allow us to draw any conclusion on this problem, but we consider
it a target for further studies.

Our results show how computer simulations of small molecules solvated in
He clusters can provide direct information on the dynamical processes observed
in spectroscopic investigations. Rotational lines are predicted with high accuracy.
Even more importantly, computer simulations give access to quantities (such as,
e.g., binding energies, density distribution, dynamics of the He matrix) not di-
rectly accessible by the experiments, but whose knowledge allows for a deeper
understanding of the relations between structure and dynamics in these confined
boson systems.





Chapter 5

Toward the nanodroplet regime

In this chapter we focus on the effective rotational constant of He solvated ro-
tors, addressing the problem of its convergence to the nanodroplet limit and of its
reduction upon solvation. In particular, we want to understand the relative im-
portance of the bare molecular inertia and of the anisotropy of the He-molecule in
determining the rotational properties of solvated molecules. Hence, using RQMC,
we have first simulated OCS@He � and HCN@He � , chosen as paradigmatic
cases of heavy and light solvated molecular rotors, respectively. Then, we have
performed computer experiments in which the rotational dynamics of OCS and
HCN molecules was simulated using a fictitious inertia appropriate to the other
molecule. Our findings indicate that the approach to the nanodroplet regime, as
well as the reduction of the molecular inertia upon solvation, is determined by the
anisotropy of the potential, more than by the molecular weight. Our conclusions
are positively supported by the remarkable agreement with the available experi-
mental data, and also by the results of the previous chapter.

5.1 Molecule-atom interactions

For both OCS@He � and HCN@He � , the He-He and the He-molecule interac-
tions are parametrized after accurate ab-initio quantum chemistry calculations [33,
64, 65]. For the He-OCS PES, in particular, we use the unmorphed version of
Ref. [33]. In the next section we show that this version—which results from a
direct fit to quantum-chemistry calculations—is considerably more accurate for a
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1 AS C O N C H

Figure 5.1: Potential energy surfaces of He-OCS (left) and He-HCN (right) used in this
work. The He-OCS PES is the unmorphed version from Ref. [33] (see text). The length
scale is indicated by the vertical segment corresponding to 1 Å. Contour levels start fromØm)*- to negative values, and they are spaced by Ò�. .

wide range of cluster sizes [74] than the morphed one which was refined so as to
improve the predictions for the spectrum of the OCS@He 6 complex [33]. Con-
tour plots of the He-HCN and the He-OCS PES are displayed in Fig.5.1, showing
a much greater strength and anisotropy of the latter.

The He-OCS interaction potential has a deep equatorial doughnut-shaped well
around the C atom, and two secondary polar minima in correspondence of the O
and S atoms. The OC an CS bond lengths are fixed at 	'��	�d Å and 	'�t��d Å re-
spectively. The global minimum is

¿×Ö : �"d R � R d�� deep and it is located at
� Ö�: %��V�'� Å from the OCS center-of-mass, at an angle y Ö&: d�v��Ðr Ú with re-
spect to the molecular axis. The well at the oxygen side has a dept of �"%�d�� R rX�
and it is �¯�tW R Å away from the OCS center-of-mass. At �¯�t� R Å from the latter,
near the sulphur, the potential energy surface reaches �>�^�Z�!	
�©� , forming a deeper
and broader well than at the oxygen end. The two linear minima are separated
from the global one by transition states found at

A � P Å ÇIy P ÚóE :eA �¯�t%�% Ç 	'	�vZ�!	5E andA �¯�t�'� Ç R v�����E , with energies � R�R �Ðr��c� and �"%����t%'��� . Hence the potential in the
region of the oxygen atom is quite flat.

The He-HCN interaction, instead, has a shallow main minimum of �>�^%Z�t� R � ,
in correspondence with the hydrogen molecular pole. The bottom of the main well
is located at ��� R'R Å from the molecular center of mass. A secondary minimum
appears slightly below the equator on the nitrogen side, at a bent geometry. This
shallower well is situated at %��t��v Å from the HCN center-of-mass, at an angle
	��'W��t�BÚ , and has a depth of �>%�	'�tr'�©� . The region of the PES in the vicinity of the
local minimum is very flat, and the latter is barely visible in the lower panel of
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Figure 5.2: Left panel: potential energy surface of He-OCS (we display here the mor-
phed version from Ref. [33] which was used in Ref. [18]). Right panels: contour plots of
the helium density profiles of OCS@He ö and OCS@He 6 = . The length scale is indicated
by the vertical segment corresponding to 1 Å. For the density profiles, contour levels start
from 0.001 with increments of 0.005, in units of Å � � .
Fig. 5.1. The HC and CN bond lengths are considered fixed at 	'�V�^r Å and 	��!	5� Å.

5.2 Carbonyl sulfide

5.2.1 Appraising the quality of intermolecular potentials

After the experiment of Jäger et al. [4], the rotational dynamics of OCS@He �
in the small and intermediate size range, has been addressed by several theoreti-
cal studies [13, 31, 55], in which variable agreement with experimental data was
found.

Much of the discrepancy between the results of quantum Monte Carlo simula-
tions and experiments (as well as among different simulations, we should add)
may be due to the quality of the He-molecule potential utilized for the simu-
lations [31]. In Ref. [55] it was in fact shown that the difference between the
predictions of Refs. [31] and [13] is indeed (almost) entirely due to the poorer
quality of the potential utilized in Ref. [13]. In Fig. 5.2 we compare the atomic
density distributions of OCS@He ö and OCS@He 6 = with the He-OCS potential
used in Ref. [31]. According to the analysis of Ref. [31], the minimum in the
effective inertia of the solvated OCS molecule occurs at the largest cluster size at
which quantum tunneling between the main, equatorial, and the two secondary,
polar, potential wells is hindered by the energy barriers which separate them. It
is clear that the larger the barrier, the smaller the tunneling, and the larger the cor-
responding effective inertia will be. In Ref. [31] it was indeed found that fudging
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the He-OCS PES—so as to enhance the potential energy barrier which separates
the main well from the molecular poles—hardly affects the rotational constant
for $ � � , while it increases the inertia for $ : d Ç r Ç W , thus bringing the re-
sults of the simulations in much better agreement with experiments. It was later
found that this too low a value for the relevant energy barriers is in fact an artifact
of the morphing procedure adopted in Ref. [33], where an already very accurate
OCS-He potential obtained from coupled-cluster quantum-chemical calculations
has been morphed to yield an even better agreement with the known spectra of
the OCS@He 6 complex. As a consequence of the morphing, the transition state
near the oxygen end is made

R �t��dL� deeper, so that the PES becomes even flatter
between the global minimum and the O pole. The lower barrier favours quantum
tunneling, thus producing, for $ [|� , the fictitious decrease of the OCS@He �
effective inertia calculated in Ref. [31].

We conclude that the spectra of clusters with many He atoms—which depend
on the PES far from the minimum—are a much more sensible benchmark of the
overall quality of the PES than those of the helium-molecule dimer. A similar
conclusion was drawn in Ref. [55] where a different He-OCS PES was proposed,
such that the rotational constants calculated from POITSE simulations agree well
with experimental data available for $ �
W . RQMC simulations performed with
this PES in the size range 	����]$}�]%'� show a behavior of the rotational constant
very similar to that reported in Fig. 5.4, obtained from the unmorphed version of
the PES of Ref. [33], although the resulting values are slightly smaller for the
largest sizes (hence closer to the experimental nanodroplet regime: see below).

5.2.2 Solvent density

Fig. 5.3 displays the He density profiles of OCS@He � , at various sizes. For
$ : 	X��� , the solvent fills the main equatorial well of the potential, forming
a ring around the molecule. With the sixth atom the density in the ring keeps
increasing, although slightly, but the main effect is its spill over into the shallow
well at the oxygen side. The overflow of the Helium toward the O end continues
with up $ : W , even if the sulphur minimum is deeper. This is so because the
potential barrier between the global minimum and the oxygen pole is lower than
toward the opposite hemisphere. At $ : 	�� , the He density has reached the



5.2 Carbonyl sulfide 59

N=6 ρ

S C O

N=8 ρ

S C O

N=10 ρ

S C O

N=5 ρ

1 A

S C O

N=20 ρ

S C O

N=26 ρ

S C O

Figure 5.3: He density, Ù � for various sizes of the OCS@He � cluster. Contour levels
start from -'oý-�-^1 with increments of -'oý-�-©Ò , in unit of Å � � . The length scale is indicated
by the vertical segment corresponding to 1 Å.

S end and the dopant impurity is fully coated by the solvent. The implications
of this full solvation on the rotational dynamics of the molecule are discussed in
the next section. Between $ : R � and $ : R d no significant changes occur
in the He distribution of the inner region of the cluster. We can thus infer that
at $ : R � a first shell of solvation has been completed. It can be noticed that,
starting from $ : d the density maximum in the equatorial ring is not modified
by the further addition of He atoms. At the same time, the other local structures
in the inner shell persist and the density maintains an highly anisotropic shape up
to the largest simulated clusters.

5.2.3 Effective rotational constants

In Fig. 5.4 we report the dependence of the effective rotational constant,
<

, on the
cluster size, $ , as calculated with the unmorphed He-OCS potential of Ref. [33].
The nanodroplet limit resulting from measurements on clusters of ��d'�'�'� atoms [3]
is indicated by a dashed line. RQMC results compare favorably with experimental
data which are available up to $ : W [4]. In the small-size regime ( $ �hW ) the
rotational constant decreases with increasing cluster size because the He atoms
trapped in the (equatorial) and in the first polar (near oxygen) well are dragged
along by the molecular rotation, thus increasing the effective inertia. For $ Í W —
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Figure 5.4: Effective rotational constant of OCS@He � , as a function of the cluster
size, / . Diamonds: results from RQMC simulations performed using the unmorphed
potential of Ref. [33] (see text). Open circles: experimental data from Ref. [4]. The
horizontal dashed line indicates the nanodroplet limit measured in Ref. [3].

as the second polar (near sulphur) well starts to be filled—an increasing fraction
of the He atoms can freely tunnel among different wells, thus not contributing to
the molecular inertia. The quantum fluid nature of the He solvent is such that tun-
neling is a collective process in which not only the excess atoms not fitting in the
main potential well take part, but even those which are tightly bound to it. For this
reason, once tunneling among different wells is made possible by the spill-out of
excess atoms, this process determines a decrease of the molecular inertia, i.e. an
increase of the rotational constant for an increasing cluster size. As a matter of
fact, it was shown in Ref. [31] that the value of the correlation between the molec-
ular angular momentum and the atomic angular current—which is maximum in
the main equatorial potential well—starts decreasing as the rotational constant
increases past the minimum ( $ Í W ). This decrease continues until the first sol-
vation shell is completed at a cluster size $ � R � , around which the rotational
constant seems to stabilize. As the second solvation shell starts to build, how-
ever, quantum exchange cycles involving atoms from this shell would contribute
to further, although weakly, decrease the molecular inertia. A similar behavior
of the evolution of the rotational constant for sizes shortly beyond completion
of the first shell is also observed in simulations of clusters doped with N H O and
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CO H [16, 34], which are all molecules having a qualitatively similar interaction
with He atoms. Our findings demonstrate that—contrary to a commonly accepted
assumption [2]—He atoms from outer (larger than the first) solvation shells do af-
fect the molecular inertia. For N H O and CO H this is also supported by experimental
evidence [6, 7]: the measured value of

<
for the largest cluster with secure as-

signment of spectral lines ( $ : 	 R for N H O and $ : 	5r for CO H ) is significantly
higher than the nanodroplet limit, with no plausible signs of convergence within
the first shell. A role of outer shells in bringing down the effective rotational con-
stant is thus to be expected. How far from the molecule does this effect extend,
our simulations—which are limited at present to a few tens atoms—cannot say
yet. This finding is at least compatible with current phenomenological models of
the inertia of He-solvated molecules, which predict a lower contribution of the sol-
vent to the molecular inertia, with decreasing atomic density. In hydro-dynamical
models [9, 10] a lower atomic density would determine a reduced kinetic energy
of the irrotational flow of the solvent; in a two-fluid model [46], instead, a lower
inertia would simply follow from a reduction of the nonsuperfluid component of
the atomic density. Coming down from the nanodroplet regime, a decrease of the
atomic density in the first solvation shell(s) is indeed expected, as a consequence
of the reduced pressure exerted by the outer shells. This is clearly demonstrated
in Fig. 5.5 in which the He radial density profiles around OCS are compared for
$ : R � and $ : ��� . The radial density in the first shell is significantly lower for
the smaller cluster. On purely classical grounds, a competing effect could arise
if the spatial extension of the first shell was sensitive to the pressure release, thus
affecting the second moments of the atomic density. The density profiles shown in
Fig.5.5, however, suggest that this effect is small, since the positions of the peaks
in the first shell hardly change between clusters of 20 and 50 He atoms.

Our results demonstrate that in OCS@He � clusters the effective rotational
constant does not attain its asymptotic limit upon completion of the first solva-
tion shell, being in fact higher at this size. When the second shell starts to build
up, the value of

<
further increases (arguably, via quantum exchange cycles in-

volving particles of both shells [34, 47]). Whether, in larger clusters, the missing
inertia will be recovered by a change in the density of the first shell or by a direct
contribution from the outer shells, or both, remains to be investigated.
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Figure 5.5: Radial density profile Ù Æ v È of He in OCS@He � for / )¥3
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5.3 Hydrogen cyanide

Hydrogen cyanide (HCN) is considered to be a prototype of light helium-solvated
rotors [2, 11], for which the assumption of adiabatic following breaks down. This
has been demonstrated both experimentally, by comparing the rotational constants
of HCN and DCN in the nanodroplet regime [50], and theoretically, by compar-
ing the He density profiles obtained from simulations performed including and,
in turn, neglecting the molecular degrees of freedom [14]. The calculation of the
molecular rotational constant,

<
, in large droplets thus defies the application of

either the two-fluid [11] or hydrodynamic [9] models, which both rely on the con-
cept of adiabatic following, albeit in a different manner (see Sec.1.3). On the other
hand, direct calculations of rotational excitations by the POITSE method [14] in-
dicated that the nanodroplet value would not be reached even for $ : R � , well
beyond completion of the first solvation shell. This slow convergence of the rota-
tional constant as a function of the cluster size was later attributed to the coupling
of molecular rotation to phonon-like excitations of the solvent which would de-
velop only in the nanodroplet regime [15]. Unfortunately experimental data for
the effective rotational constant of HCN are only available, so far, for very large
droplets [50]. We will see however how a comparison of our theoretical results
for HCH@He � with both theoretical and experimental results which are available
for the closely related CO@He � system will allow to draw a number of important
and non trivial conclusions.
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Figure 5.6: Upper left panel: He-HCN interaction potential, the same as in Fig.5.1. The
other panels depict the He density, Ù � for various sizes of the HCN@He � cluster. For
the density profiles, contour levels start from -'oý-�-^1 with increments of -'oý-�-©Ò , in unit of
Å � � . The length scale is indicated by the vertical segment corresponding to 1 Å.

5.3.1 Structural properties

In Fig. 5.6 we display the He-HCN potential—already reported in Fig.5.1—along
with the He atomic density distributions at different sizes. The contour plots ev-
idence how the solvent forms, at first, a broad cap around the H end of the HCN
molecule, centered on the main potential well of the PES. With increasing N, the
He atoms flow out of the minimum and surround the impurity. By comparing the
density profiles of HCN@He � with those of OCS@He � , we note that the sol-
vent distribution is much less structured in the former case, as expected from the
more isotropic He-molecule interaction. A careful consideration of the PES can
also explain the slight differences between the density profiles of CO@He � with
respect to HCN@He � . The pictures of Fig. 4.1 and Fig. 5.6 corresponding to the
same sizes show that the He distribution around CO has a maximum as high as in
HCN@He � . Nevertheless, in the latter system, the density peak is slightly thinner
and more stretched toward the opposite pole. In other words, as $ increases, the
solvent spills out of the potential minimum and streams down along the molecule
more rapidly in HCN@He � than in CO@He � . This effect can be related to the
amplitude of the wells of the PES. In the case of the He-HCN interaction the
narrower well can contain a smaller amount of solvent than the minimum of the
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Figure 5.7: Contour plot of the incremental density, ÜäÙ � Æ�÷�È )�Ù � Æ�÷�È iåÙ � �76 Æ�÷�È , for
selected HCN@He � clusters. The HCN molecule has its center of mass at the origin,
with the hydrogen atom on the positive x direction. The length scale is indicated by the
vertical segment corresponding to 1 Å. Contour levels start from 0.0001 with increments
of 0.001, in units of inverse cubic Å.

He-CO PES. The latter is thus filled slowly and the density peak is therefore less
dispersed. In spite of these differences, CO@He � and HCN@He � are similar
among them, and much more isotropic than OCS@He � .

In order to better characterize the solvation process of HCN@He � and, more-
over, to evidence the strong analogy with the case of CO@He � , we analyze the
incremental atomic density profile of HCN, g�­�� A±° E : ­�� A¢° E¦�~­�� �76 A±° E . In
Fig. 5.7 we report g�­�� A±° E , as calculated for a few selected cluster sizes. As $
increases, the He density smoothly piles up in the main well of the PES, with
no visible signature of the secondary, sub-equatorial, minimum. The incremental
density is mainly localized on the H side of the HCN molecule for $ up to 6,
mainly on the N side for $ between 8 and 14, and nearly isotropically thereafter.
Starting from $��ø	�d , the incremental density shifts toward larger distances from
the HCN center of mass (see the inner and the outer contour levels in Fig. 5.7). We
consider this behavior as an indication that the first solvation shell is completed
around $��ø	5� , although shell effects are by no means sharp in this system

The dependence of the cluster ground-state energy,
8KA $ME , on the size of the

system reflects the extremely smooth evolution of the He density profile, as shown
in Fig. 5.8 which reports the chemical potential, Û A $ME :�8KA $MEâ� 8DA $§�Y	5E . For
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The dashed line is the bulk limit.

$ up to a dozen the effect of the He-HCN interaction dominates: the chemical
potential stays almost constant, decreasing only very weakly with the cluster size,
as a consequence of the He-He interaction. For 	 R y�$ y R � the first solvation
shell is filled and the kinetic energy of He atoms increases due to their closer
packing, thus determining a rise of the chemical potential. For $øÔ R ��Û A $ME is
stabilized again at a value which is larger than the bulk limit, due to the smaller
effects of the He-He interaction in this size range.

The fact that the first solvation shell is completed in the size range 	 R y
$&yR � is confirmed by an analysis of the integral
ö

(Eq. 4.3) of the angular corre-
lations of He atom pairs, ê Aìë E (Eq. 4.2).

ö
measures the tendency of the He

atoms to cluster together on the same side of the molecular axis, due to the He-
He attraction (see chapter 4). Fig. 5.9 displays

ö
as a function of $ , revealing

that this tendency is smallest around $ : 	5� , corresponding to completion of the
first solvation shell where, for steric reasons, the angular distribution of He atoms
around the molecule is most uniform.

5.3.2 Rotational excitations

All the above features of He-solvated HCN molecules are similar to the CO case,
already studied in the previous chapter. In Fig. 5.10 we report the energies of
the two lowest rotational excitations with angular momentum

?,: 	 , along with
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Figure 5.9: Integrated pair distribution of the dihedral angle, defined in Eq. 4.3, as a
function of the cluster size, for HCN@He � .

the corresponding spectral weights (Eq.3.17). We note that our predictions for
$ Í 	�� considerably differ from those of Ref. [14] which were obtained with
the POITSE method. This disagreement does not seem to be due to the quality
of the potential. The He-HCN interaction used in Ref. [14] is given by the 2E8
PES of Ref. [75]. The latter is an empirical potential, derived from a least-square
fitting of a functional form to computational and spectroscopic data relative to
HCN@He 6 [56]. In order to check if the fitting procedure can make the PES less
accurate for larger clusters, we repeated our calculations for few selected sizes,
employing the potential of Ref. [75]. In Fig. 5.11 we compare the RQMC results
obtained in both cases. Even if, for $ : 	@���¼	�� , the use of the 2E8 PES shifts the
rotational transitions to lower frequencies, the difference with the POITSE result
at $ : R � persists.

We cannot offer any explanation for this discrepancy. We can only observe
that the value of

<
calculated in Ref. [14] for $ : R � is even larger than in the

gas phase, a fact that can hardly be explained on physical grounds. In fact, while
the reduction of one of the moments of inertia below its value in gas phase—
experimentally observed in the binary complex—can be explained by the consid-
erable relative mass redistribution occurring upon formation of the binary com-
plex, similar effects are hard to justify at cluster sizes where the density profile
evolves with $ in a smooth and almost isotropic way. This seems to suggest that
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Figure 5.10: Left panel: Rotational energies of HCN@He � as functions of the cluster
size, computed by RQMC ( ç -type, diamonds and è -type, filled circles); results from the
POITSE calculations of Ref. [14] are indicated by squares. The dashed line is twice the
effective rotational constant of HCN in the nanodroplet limit [50], while the empty circle
at /O)ø- is twice the gas-phase value. Energy units are cm �76 . Right panel: Spectral
weight of the ç -type line (diamonds) and the è -type line (filled circles).

the results of Ref. [14] may be affected by some inaccuracies for the largest sizes
considered in that work. On the other hand, while it is difficult, for large clus-
ter sizes, to ensure full convergence with respect to projection time, as well as
full ergodicity in path sampling, we note that the present calculations for HCN
are indirectly supported by the agreement between the experiment [5] and similar
calculations for the closely related CO-He clusters (see chapter 4).

Two series of excitations, called w -type and x -type lines, evolve smoothly from
the known end-over-end and the free molecule rotational modes of the binary com-
plex, respectively. The x -type line starts off with a stronger spectral weight, then it
quickly weakens and eventually disappears. Note how the intensity of the x -type
line follows the decline of the He-density angular correlation anisotropy displayed
in Fig. 5.9. The existence of two relevant spectral lines (instead of a single line
appropriate to the spectrum of an isolated linear rotor) is in fact a manifestation of
the dynamical anisotropy of the atomic-density distribution around the molecular
axis, which lowers the cylindrical symmetry of the molecular rotor. For $ Í 	5�
the rise of the He-density angular correlation anisotropy does not give rise to any
significant line splitting because it is due to atoms in the second solvation shell,
which are only very weakly coupled to the molecular rotation.
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Figure 5.11: Spectral lines, obtained by using the He-HCN potentials of Ref. [65] (dia-
monds and filled circles correspond to a- and b-type lines, respectively) and of Ref. [75]
(triangles).

The coupling between the molecular rotation and He-density fluctuations is
better understood using the (imaginary) time correlations

É×õ A¢î E of the versor, ó ,
pointing from the molecular center of mass toward the center of mass of the com-
plex of He atoms (Eq. 4.4). Such a time correlation function contains information
on the energies and spectral weights of the

?¤: 	 cluster excitations whose char-
acter is predominantly that of a He-density fluctuation. In Fig. 5.12 we display the
lowest-lying excitation energy extracted from the spectral resolution of

É�õ A¢î E as
a function of the cluster size, and we compare it with the positions of the w -type
and x -type lines already reported in Fig. 5.10. We see that this density-fluctuation
excitation—which has a relatively strong spectral weight—is degenerate with the
w -type line for $ ��	�� . As in the previous chapter, this mode is interpreted as a
cluster excitation in which part of the He density is dragged along by the molecu-
lar rotation. For $ Í 	�� , the energy of this mode departs from the w -type line, and
the x -type line correspondingly disappears. This relates to the onset of a situation
where the He density is decoupled from the molecular rotation.

We come now to the main concern of this chapter, i.e. the convergence of
the effective rotational constant to its asymptotic, large-size, value. Our results
indicate that the residual renormalization of the effective inertia does not change
significantly upon further growth of the cluster beyond, say, $ : 	5� . This fact is
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Figure 5.12: Comparison between the positions of the spectral lines reported in Fig. 5.10
(diamonds and filled circles correspond to a- and b-type lines, respectively) with the low-
est mode in the spectral resolution of the correlation ù õ Æ�ÇOÈ (crosses, see text).

in complete analogy with the findings reported in chapter 4 for clusters doped with
CO (and in agreement high resolution IR spectra recently obtained for He clusters
seeded with CO up to $ : R � [5]), but at variance with the results reported for
HCN in Ref. [14] and with the commonly accepted view. With a similar rotational
constant and a similar interaction with He, CO and HCN are not expected to be-
have very differently upon solvation in He clusters. The experimental results for
CO do not seem compatible with a large variation of

<
between, say, $ : 	5� and

25, thus challenging the idea of slow convergence to the nanodroplet limit as a
general feature of the effective inertia of quantum solvated light rotors. Although
a conclusive answer will require the measurement and assignment of spectral lines
for even larger clusters, we believe that the agreement between our previous cal-
culations and high-resolution IR measurements for the closely related CO@He �
system warrants a considerable trust in the present results and in the conclusions
on the approach to the nanodroplet regime based on them.

In conclusion, the results reported here for HCN and in the previous chapter
for CO (the latter being supported by the experimental study of Ref. [5]) suggest
that for these light rotors the asymptotic value of the effective rotational constant
is reached well before completion of the first solvation shell. We will see in the
next section that this behavior is better attributed to the weak anisotropy of the
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Figure 5.13: He density profiles, Ù � for various sizes of the f-OCS@He � cluster.
Contour levels start from -'oý-�-^1 with increments of -'oý-�-©Ò , in unit of Å � � . The length
scale is indicated by the vertical segment corresponding to 1 Å.

potential, rather than to the small value of
<

in gas phase.

5.4 Fudged molecules

In this section we consider the fractional reduction of the gas-phase rotational con-
stant

<"=
upon solvation in He nanodroplets, g :|< P <L= . The observed general

trend (see e.g. Fig. 13 in Ref. [2]) is that lighter rotors tend to have larger values
of g . A suitably defined amount of adiabatic following [49] has been proposed
as the key physical property responsible for the value of g (see Sec. 1.3.2). Qual-
itatively, the analysis of Ref. [49] supports the simple picture that both a small
molecular inertia and a weakly anisotropic interaction lead to a large value for g .
However, there are several exceptions: for instance, N H O, as shown in Sec. 1.3.2.
Therefore, it seems useful to gain further insight by disentangling the role of the
PES anisotropy from that of the gas–phase inertia. To this purpose, we have per-
formed simulations with two fictitious molecules: f-OCS (fudged OCS), with the
PES as OCS and the same

<¦=
value as HCN, and f-HCN (fudged HCN), featur-

ing the HCN–He interaction and the
<L=

value of OCS. Note that the gas-phase
rotational constants of OCS and HCN are in a ratio of about 1:7.

Fig. 5.13 depicts the He density in f-OCS@He � clusters. As f-OCS has a
larger zero-point energy than the real molecule, the solvent distribution is con-
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Figure 5.14: Left panel: rotational energies of f-OCS@He � as a function of the cluster
size ( ç -type, filled circles, and è -type, diamonds). The cross at /h),- shows the fictitious
value of 2 l = . Inset: the detail of the ç -type line. Right panel: spectral weights of theç -type line (filled circles) and the è -type line (diamonds) for f-OCS@He � .

siderably more diffuse than in OCS@He � . It can be noted, first, that the full
solvation of the impurity occurs at a smaller size, with respect to the real case
(see below). Second, the fudged clusters maintain the anisotropic structure of the
OCS@He � , even if the density accumulations are less prominent.

Fig. 5.14 shows the rotational energies of f-OCS@He � (left) and the corre-
sponding spectral weights (right). The general appearance of both quantities for
f-OCS is closer to HCN than to OCS, due to the presence of an w -type and a x -type
line, with the spectral weight of the latter decaying with increasing $ . However,
at variance with HCN, the w -type line for large $ approaches an energy signifi-
cantly smaller than the gas-phase value,

R <L=
. Taking the value at $ : %'� as an

estimate (very likely an overestimate, see Section 5.2) of the asymptotic value, we
obtain gú� ���V%'% , which is close to—and somewhat smaller than—the value of
OCS.

The w -type line of f-OCS shows a minimum at $ : d or r , i.e. at a smaller size
than OCS. As shown in Fig. 5.13, already for $ : W there is a significant He den-
sity all around the molecule, which is presumably responsible for the turnaround
of the

<
value (although the relation between density profiles and turnaround of

the
<

value could be not so straightforward for f-OCS, due to the residual spectral
weight in the x -type line). Regardless of the implications for the turnaround, we
stress that the significant difference between the density profiles between f-OCS
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Figure 5.15: He density profiles, Ù � , for various sizes of the HCN@He � (up) and f-
HCN@He H (down) clusters. Contour levels start from -'oý-�-^1 with increments of -'oý-�-©Ò , in
unit of Å � � . The length scale is indicated by the vertical segment corresponding to 1 Å.

and OCS (see Fig. 5.13) implies a significantly different amount of adiabatic fol-
lowing. The fact that the g values of f-OCS and OCS are nevertheless very simi-
lar, indicates that the anisotropy of the potential, rather than the dynamical regime
implied by the gas-phase inertia, is mainly responsible for the renormalization of
the rotational constant upon solvation.

Similar conclusions hold for f-HCN as well. A rapid glance at the structure
of the fudged f-HCN@He � clusters evidences that, making the rotor heavier, the
solvent can arrange itself in the potential well more easily. In Fig. 5.15 we com-
pare the He density distributions of the fudged clusters with those containing the
real HCN molecule. The lower mobility of the heavy f-HCN produces more con-
centrated density profiles.

The energy of the lowest rotational excitation with
?�: 	 , and the correspond-

ing spectral weight, is shown in Fig. 5.16 as a function of $ . Already for $ : %
the spectral weight of this excitation exceeds 90 percent, and in this respect f-HCN
is closer to OCS than to HCN (i.e. the spectrum looks that of a linear rotor for
$}[�% ).

The different dynamical behavior of f-HCN@He � with respect to HCN@He �
can be understood by comparing the asymmetry estimator,

ö
, and the rotational

energies in the real and in the fictitious cases. In the left panel of Fig. 5.17, we
report the

ö
values for the two systems, as a function of the cluster size. It can
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Figure 5.16: Left panel: Rotational energies for f-HCN@He � (filled circles), as a func-
tion of the cluster size. Right panel: Spectral weights of the two lowest rotational energies
of f-HCN@He � . Filled circles correspond to the ç -type series, triangles to the è -type
one(not reported in the left panel).

be noted that the deviation from the cylindrical distribution is quite similar in the
two systems. The figure displays also the lowest cluster excitations with

?m: 	
(right). The

ß õ
series, extracted from the spectral resolution of

É×õ A¢î E , departs fromß µ series as the cluster size increases. The separation between these two modes
is significant even at $ : W , thus explaining the absence of a second line in the
fudged clusters. The values of the

ß õ
excitations are indeed of the same order

of magnitude in f-HCN@He � and in HCN@He � , while the rotational states of
f-HCN lie below those of the real molecule, due to the larger mass of the former.

Thanks to the increased weight, the rotational spectrum of the f-HCN@He �
becomes similar to that of OCS. However, as far as the value of g is concerned,
the effect of fudging the gas-phase inertia is very small. In order to estimate the
asymptotic limit of the rotational constant, we assume that it is given by the value
at the largest-size cluster simulated ( $ : R � ), noting that the evolution of

<DA $ME
in Fig. 5.16 is nearly flat for $}[~	 R (for HCN, this assumption would give a very
good agreement with the experimental nanodroplet value, see Fig. 5.10). This
gives g : ���Vv'� for f-HCN, close to—and somewhat higher than—the value 0.81
measured in HCN [50].

Our findings indicate that the potential alone has a dominant role in establish-
ing the value of g , at least in the range of physical parameters appropriate to the
linear molecules studied here. Furthermore, the effect of reducing the molecular



74 Toward the nanodroplet regime

0

1

2

3

0 5 10 15 20 25

ε1 [c
m

-1
]

N

0

0.2

0.4

0.6

0 5 10 15 20 25

M
(N

)

N

Figure 5.17: Left panel: integrated pair angular distribution, û , as a function of the
cluster size, for HCN@He � and f-HCN@He � (filled and empty circles respectively).
Right panel: Comparison between the positions of the spectral lines reported in Fig. 5.16
(filled circles) with the lowest mode in the spectral resolution of the correlation ù õ Æ�ÇOÈ
(diamonds), for f-HCN@He � .

inertia while keeping the PES fixed is to slightly decrease the g value. This re-
sult, in agreement with an experimental study of HCN and DCN [50], contradicts
the alleged correspondence between light rotational inertia and large g values.
We conclude that this correspondence is due, to a large extent, to the generally
small anisotropy of the interaction between light rotors and helium—an acciden-
tal effect, as far as the rotational dynamics of the solvated molecule is concerned.
Within this picture, the behavior of N H O is not an anomalous case, but merely a
consequence of the stronger stiffness and anisotropy of the N H O-He potential with
respect to, say, OCS or CO H .

We finally note that a previous calculation for SF # with a fictitiously small
gas-phase inertia would support the opposite conclusion that, for given interaction
with the solvent, a lighter molecule would have a larger value of g [76]. While
this result could shed some doubts on the generality of the conclusions drawn
from the analysis of a few linear molecules, we believe that the calculations of
Ref. [76] probably deserve further analysis because they were obtained using a
fixed-node approximation, whose accuracy is not warranted, especially for light
rotors [14].
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5.5 Summary and discussion

Using the RQMC method, we have studied the evolution of the rotational excita-
tions with the number $ of solvent He atoms for a prototype heavy rotor, OCS,
and a prototype light rotor, HCN. The size range explored, wider than presently
attained with number-selective IR and/or MW spectroscopy, allows us to draw a
series of conclusions on the approach of the rotational constant to its asymptotic
value in the nanodroplet limit. Our results entail a substantial revision, both quan-
titative and qualitative, of the common view that the asymptotic limit would be
essentially determined by the amount of adiabatic following and that—at least for
heavy rotors—it would be reached well before completion of the first solvation
shell.

The rotational constant of OCS, after the undershoot of the nanodroplet value
and the turnaround which signals the onset of superfluidity, crosses again its
asymptotic limit at $ : 	 R ; moreover, starting with the beginning of the sec-
ond solvation shell around $ � R � , it develops a further structure with an ex-
tremely broad maximum, and a faint hint of a (final?) decrease only seen at the
largest size we studied, $ : �T� . This feature, which parallels similar findings
for CO H and N H O, definitely supports slow convergence to the nanodroplet value.
A strikingly different behavior is found for HCN. In this case, a linear-rotor-like
spectrum is found for $ larger than 10, and the resulting rotational constant stays
constant in a wide range (say 15 to 50), with a value close to the measured value
in the nanodroplet limit. This result contradicts the expectation of a slow con-
vergence to the asymptotic limit (determined by coupling of molecular rotation
with well-developed bulk-like excitations of the solvent) as a general property of
light rotors. Indeed, a behavior very similar to that illustrated here for HCN was
found for another light rotor, namely CO. It would be tempting to propose that
fast convergence to the nanodroplet limit is a general rule for light rotors. How-
ever, recent experimental results [57] indicate that, for CO, the asymptotic limit is
significantly lower than inferred from the nearly constant value of the rotational
constant in the size range from a dozen to a few tens He atoms. These findings
rule out the possibility of defining a general trend for light rotors. In Ref. [57] the
different dynamics of CO and HCN in large droplet is related to the different ex-
tent of the coupling between the molecule rotation and (discrete) phonon modes.
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As already mentioned in the previous chapter, this issue can be seen as a natural
prosecution of our work.

In order to establish the relative importance of the bare molecular inertia and
of the strength and anisotropy of the He-molecule interaction in determining the
approach of the rotational dynamics to the nanodroplet regime, we have also per-
formed computer experiments in which the molecular inertia was intentionally
modified. To this end, we have considered two fudged molecular species, f-OCS
and f-HCN, i.e. OCS and HCN with fictitiously small and fictitiously large values
of the gas-phase rotational constant, respectively (appropriate in fact to the other
molecule). Perhaps the most important feature which was attributed to the pre-
dominant role of the bare molecular inertia is the amount of renormalization of
the gas-phase rotational constant,

<
, upon solvation: the strong (weak) reduction

of
<

observed for heavy (light) rotors was attributed to the large (small) amount
of adiabatic following. Our results indicate that the fractional reduction of the
gas-phase rotational constant upon solvation is slightly stronger for f-OCS than
for real OCS, despite the obvious fact that adiabatic following is much larger for
the latter. Likewise, the reduction calculated for f-HCN is somewhat weaker for
f-HCN than for real HCN. The same trend was experimentally observed, with
a smaller variation of

<¦=
, in a comparative study of HCN and DCN [50]. This

clearly shows that it is the strength and the anisotropy of the He-molecule inter-
action, rather than the bare molecular inertia, which is mainly responsible for the
renormalization of the rotational constant in the nanodroplet regime. In this per-
spective, the classification into heavy and light rotors thus retains its validity only
to the extent that heavier molecules tend to have stronger and more anisotropic
interactions with He.



Conclusions and perspectives

Stimulated by an increasing experimental interest and by some theoretical con-
troversies, we have studied several molecules solvated in He clusters, using the
reptation quantum Monte Carlo method. Our work sets up a computational strat-
egy to investigate the dynamics of these systems (i) in a wide size and mass range;
(ii) without any assumption on the relation between structure and dynamics; (iii)
when the spectra exhibit either a single or a double line.

Rotational energies can be obtained with high accuracy. The agreement with
the available experimental data is always remarkable, demonstrating the predictive
power of our technique. The effectiveness of the latter is also shown in the cal-
culations of static properties (such as binding energy and density profiles) which
cannot be measured experimentally. In particular appropriate estimators have been
developed to probe structural asymmetries. Important information on the dynam-
ics of the He matrix have also been derived from unconventional correlation func-
tions, an approach which looks worthy of further attention.

These instruments have been first used to reproduce and interpret the evolution
of the rotational spectrum of CO in He clusters, from small to intermediate sizes.
Here, a significant insight in the relation between structure and dynamics has been
provided. Subsequently we have studied the rotational dynamics of He solvated
molecules toward the nanodroplet regime. Here we found unexpected results,
mainly the slow approach to the asymptotic limit by heavy molecules, somehow
reopening an issue which seemed fully clarified.

Definitely bridging the gap between intermediate size and the nanodroplet
regime is a challenging task. This of course requires to access the spectrum of
low-lying excitations for larger systems than those studied to date. To this aim
the implementation of a ground-state path integral technique, based on the use
of the pair approximation to the propagator, has been carried out. The most im-
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mediate application would be the study of the rotational spectrum of CO in large
droplets, which has indicated a reduction of the rotational constant much larger
than inferred from the intermediate size dynamics. These findings, as well as our
calculations, demonstrate a non trivial contribution of the outer shells in bringing
the rotational constant to the nanodroplet limit. Understanding the nature, the ex-
tent of this contribution and its relation with the features of the impurities would
be an interesting development of our work.



Appendix A

Pair density matrix approximation

The action of a link between two time slices is defined as minus the logarithm of
the exact quantum propagator:

ü A¢À s Ç À s �762ñ ß Eþý �Må!ç'è©äVð A±À s Ç À s �762ñ ß EJéý ÿ A±À s Ç À s �76óñ ß E C��cA¢À s Ç À s �76óñ ß E (A.1)

wher ÿ is the exact kinetic action, as appearing in Eq. 2.7, and
�

is the interaction
term (which is simply ôH ä ¿KA±À s �76 E C�¿KA±À s EBé in the primitive approximation).

Given a system of $ particles, interacting via a two-body potential, and with
positions

° Î in the time slice
À

, the pair action approximation is based on the
assumption that correlations involving more than two particles can be neglected
in the interaction term of the action,

�
[21]. The latter can thus be written as

�cA±À Ç À × ñ ß EL� � H A¢À Ç À × ñ ß E :
m
Î�qls � H A¢° Î:s Ç ° ×Î:s ñ ß E«� (A.2)

where
° Î:s : A¢° Î � ° s E and � H A¢° Î1s Ç °5×Î1s ñ ß E is the exact inter-action for two parti-

cles [21], or pair density matrix (PDM).
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A.1 Calculating the pair action for spherical poten-
tials

From the computational point of view, it is convenient to evaluate numerically the
exact two-body action on a suitable mesh and then interpolate it by a polynomial
expression [21]. For spherical potentials the procedure is feasible and is imple-
mented in the SQUARER code [77]. The exact two-body action is written through
a partial waves expansion [21]:

� H A¢° Ç ° × ñ ß E : 	
��Ú t t × qm ' � = A R * C 	5E � '±Aut Ç t × ñ ß E jW'ÛA ³ ��� y E«� (A.3)

Here y is the angle between
°

and
° ×

. It can be shown that each partial wave
verifies the following convolution equation [21]

� ' Aut Ç t × ñ ß E : § q= Ô t × × � '±A�t Ç t × × ñ ß P'R E � '±A�t × × Ç t × ñ ß P'R E Ç (A.4)

which provides the foundations for the matrix squaring method [21]. Analytical
forms, such as the semiclassical action [21], are accurate in the small time step
limit, and they can be used for the partial waves [21]. Therefore, starting from a
small time step expression � 'ÛAut Ç t × ñ ß P +¯E , partial waves � 'ÛA�t Ç t5× ñ ß E for any desired
time step

ß
, are obtained by squaring � 'ÛA�t Ç t5× ñ ß£Ü E�+ times, throughout Eq. A.4.

Finally the pair action is rewritten in a form which is cheap to evaluate in a Monte
Carlo simulation [21]. In particular, three distances are defined [21]:

� :hA2Æ °�Cº° × Æ E P'R Ç �":�Æ ° � ° × Æ z :�Æ °7Æ � Æ ° × Æ � (A.5)

Since they are small (of the order of the thermal de Broglie wavelength,
� �TÚ�_ ß ),

the pair action is expanded in a power series of the variables
�

and z [21]:

� H A±° Ç ° × ñ ß E :
� =B= A�t ñ ß E C � =B= Aut × ñ ß ER

C ²m Ü � 6
Üm s«� = � Ü s A � ñ ß E«z H s �
H � Ü � s � Ç (A.6)

where the integer º is the order of the expansion. The first term on the right hand
side is defined end point action and corresponds to º : � . The remaining sum
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Figure A.1: Convergence of the energy per particle of He ¤ as a function of the time step > .
We report the results of RQMC simulation using the primitive approximation (diamonds),
pair action for ¿Õ),- (filled circles), ¿Õ),3 (empty circles) and ¿Õ),+ (triangles).

contains the off-diagonal contributionsi [21]. The code SQUARER [77] provides
the tables for the function � Î:s A � E throughout a least-squares fit to the partial wave
expansion. In the study of a given system, the tables are produced once for all
before running the QMC simulations. The order in Eq. A.6 has to be chosen by
checking the convergence of physical properties for different values of º [21].
Alternatively one can compute the root mean square (rms) error, » , in converting
the exact pair action to the polynomial representation of Eq. A.6. According to
Ref. [21], when » is less than ���t�Z	 most of the measurable quantities are well con-
verged. We have verified that for the He-He interaction of Ref. [78] this condition
holds already for º : R . We have tested the correctness of our implementation
of the pair action by simulating a cluster of r He atoms using RQMC with the
PDM approximation. The results are shown in Fig. A.1, where they are compared
with those obtained with the primitive approximation. The figure evidences the
better quality of the pair action with respect to the primitive one. The off-diagonal
terms bring most of the accuracy: the latter is completely lost if the end-point
approximation is used, in agreement with previous findings on a two hard spheres
system [79]. We also note that when the expansion of Eq. A.6 is taken to orderR

or to order % (which requires CPU time 1.6 times longer), no significant differ-
ence is observed. The second order is the usual choice for calculations on liquid
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helium [21]. Since the six terms in the power series share common calculations,
the computational demand to evaluate Eq. A.6 for º : R is only twice larger than
for the primitive approximation.

A.2 Pair action approximation for anisotropic po-
tentials

In the case of anisotropic interactions of a linear rotor with helium, a straight-
forward tabulation of the pair density matrix is not feasible [47, 66]. Because
of this, it is convenient to expand the anisotropic potential in a sum of spherical
interactions plus a correction term [47, 52, 66]:

¿KAut ÇIy E : �m Ü � 6 ¿7Ü'A2Æ ° �	� Ü�Æ E C g ¿DA�t Ç�y E (A.7)

where
¿KA�t Ç�y E is the He-molecule potential,

¿ Ü^Aut E is a radial function which de-
scribes the interaction of the He atom with a fictitious interaction site � Ü , andg ¿DA�t Ç�y E is the residual term. The functions

¿ Ü
depend on a set of parameters� ) ÜÎ  . The values of the

� ) ÜÎ  and the interaction sites positions � Ü have to be
chosen in order to minimize

Æ g ¿DAut ÇIy E Æ .
The spherical interactions

¿ Ü
’s can be treated with the pair action, while for

the small residual term, g ¿ , the primitive approximation is used. Hence, for a
doped He cluster of size $ , the interaction part of the total action can be written
as:

�cA±À Ç À × ñ ß E :
�m
Îrqls � Ñon � ÑonH A¢° Î1s Ç ° ×Î1s ñ ß E

C �m Ü � 6 �m Î#� 6 � ÜH ä A¢° Î �	� Ü E Ç A±° ×Î �	� × Ü E ñ ß é
C ß
R
�m
Î#� 6 äCg ¿DAut Î ÇIy Î E C g ¿DAut ×Î ÇIy ×Î EJéÛ� (A.8)

Let us now show the details of this procedure for the He-CO case. For sym-
metry reasons, the interaction sites � Ü have to be located along the CO molecular
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C O C O 1 AC O

Figure A.2: Left panel: He-CO potential energy surface of Ref. [20]. Central panel:
PES resulting from the sum of four spherical potentials of the form described in Eq. A.9
and centered respectively in 
 6 ) Æ -'¹J-'¹J-'oý-©Ò���3�+ È Å, 
 H ) Æ -'¹J-'¹QiÞ-'o�k5ª
4'1
� È Å, 
 � )Æ -'¹J-'¹J-'o�4�k�3'1Qk�Ò È Å, 
 � ) Æ -'¹J-'¹Qi�-'oý-'oý-�-5+�3�à5- È Å. The coordinates are in the molecule fixed
frame. In the left panel and in the central one, contour levels start from Ø¨)*- to negative
values and are spaced of Ò©. . Right panel: � ÜFØ Æ v ¹ w È � ; contour levels start from Ø�)p-
to positive values and are spaced of 3�. . The thick black line indicates the Ø])º- isopo-
tential line of the true He-CO interaction. For all the panels units on the axis are in Å,

axis. In Eq. A.7, we have used four radial potentials
¿ Ü^Aut E depending on seven

parameters:

¿ Ü'A�t E : ) Ü 6 Í � $��� | C ) Ü�t # C ) Ü�t ¤ � öm
² � # Gc² A�t E ) Ü² �76t ² Ç (A.9)

where the Gc² Aut E ’s are the Tang-Toennies damping functions [80]:

Gc² Aut E : 	»� Í � $��� | ²mÖ � = A ) ÜH t E Ök�� � (A.10)

The various terms of Eq A.9 mimic the repulsion, induction and dispersion con-
tributions appearing in the potentials of van der Waals complexes. In fact, in
the choice of the functional form for the

¿ Ü'Aut E , we have been guided by one of
the analytical expression used to describe the He-HCN interaction [75], which is
very similar to that of He-CO [20]. In Fig. A.2 we compare the He-CO PES of
Ref. [20] (left panel), with its representation in spherical potentials (central panel).
The good quality of the expansion of Eq. A.7 is confirmed by the small anisotropic
correction, displayed in the right panel of the same figure. It can be noticed thatg ¿ is small in the regions physically accessible for He.

The two-body action between a He atom and the + -th interaction site is a
function of the reduced mass of the He atom and a fictitious particle in � Ü . It is not



84 Pair density matrix approximation

clear which is the criterion to adopt in choosing the mass of the interaction site. In
previous calculations, in which time steps in the range ���V��	 R �L�º���V� R �¦�U�76 were
used, the sites were supposed to have infinite mass [47, 66]. If we want to include
the molecular motion (translations and rotations) it seems more appropriate to use
a finite value, e.g., the mass of the CO molecule. For a detailed discussion of the
interaction sites expansion see Ref. [72]. We note that the choice of the mass may
affect the time step error, but not the zero time step limit of the results.

For each radial potential
¿ Ü^Aut E , the matrix-squaring procedure has provided

the corresponding density matrix, �
ÜH . The latter has been re-expressed throughout

the polynomial representation of Eq. A.6 up to the second order. The quality of
the power expansion can be judged from left panel of Fig. A.3, which compares
the rms error » relative to the �

ÜH ’s with that of the He-He pair action. » is about
an order of magnitude smaller than the confidence threshold of ���t�Z	 . In the right
panel of Fig. A.3 we show the � =B= terms of the two-body density matrices for the
He-He interaction [78] and the fictitious spherical potentials.
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Figure A.3: Left panel: rms error ¾ in converting the exact two-body density matrices
� Ñon � ÑonH and �

ÜH to the second order power series of Eq. A.6. The error is shown as a
function of � , after averaging over � and x . Right panel: � =B= terms of the polynomial
expansion of Eq. A.6 for � ÑWn � ÑWnH and �

ÜH . Distances on the horizontal axis are in Å. The
time step is -'oý-53�Ò¦. �76 . Black solid line: � Ñon � ÑonH ; black dashed line: � 6H ; red line: � HH ;
green line: � �H ; blue line: � � H .
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