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We show that the Standard Model electroweak interaction of ultrarelativistic electrons with nucleons (the
eN interaction) in a neutron star (NS) permeated by a seed large-scale helical magnetic field provides its
growth up to ≳1015 G during a time comparable with the ages of young magnetars ∼104 yr. The magnetic
field instability originates from the parity violation in the eN interaction entering the generalized Dirac
equation for right and left massless electrons in an external uniform magnetic field. We calculate the
average electric current given by the solution of the modified Dirac equation containing an extra current for
right and left electrons (positrons), which turns out to be directed along the magnetic field. Such a current
includes both a changing chiral imbalance of electrons and the eN potential given by a constant neutron
density in a NS. Then we derive the system of the kinetic equations for the chiral imbalance and the
magnetic helicity which accounts for the eN interaction. By solving this system, we show that a sizable
chiral imbalance arising in a neutron protostar due to the Urca process e−L þ p → N þ νeL diminishes very
rapidly because of a huge chirality-flip rate. Thus the eN term prevails over the chiral effect, providing a
huge growth of the magnetic helicity and the helical magnetic field.
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Some neutron stars, called magnetars, having magnetic
fields B ∼ 1015–1016 G, can be considered the strongest
magnets in our Universe [1]. Despite the existence of
various models for the generation of such strong fields,
based, e.g., on the turbulent dynamo [2], the origin of
magnetic fields in magnetars is still an open problem.
Recently, in Ref. [3] the authors tried to apply the chiral
magnetic effect [4,5], adapted successfully for the QCD
plasma [6], to tackle the problem of magnetic fields in
magnetars. The approach of Ref. [3] implies the chiral
kinetic theory, where the Vlasov equation is modified when
adding the Berry curvature term to the Lorentz force [7].
The fate of such a chiral plasma instability is based on

the Adler anomaly in QED with the nonconservation of
the pseudovector current for massless fermions ψ̄γμγ5ψ
in external electromagnetic fields. Since this current is the
difference of right jRμ and left jLμ currents, the assumption
of a seed imbalance between their densities given by
the difference of chemical potentials, ðnR − nLÞ ∼ μ5 ¼
ðμR − μLÞ=2 ≠ 0, where nR;L are the densities of right and
left fermions (electrons) and μR;L are their chemical
potentials, could lead to the magnetic field instability we
study here adding electroweak interactions in the Standard
Model (SM).
The same effect (while without weak interactions) was

used in Ref. [8] to study the self-consistent evolution of

the magnetic helicity in the hot plasma of the early
Universe driven by the change of the lepton asymmetry
∼μ5. In Ref. [8] it was shown that such an asymmetry
diminishes, μ5 → 0, due to the growth of the chirality-flip
rate in the cooling Universe through electron-electron
(ee) collisions, Γf ∼ α2emðme=3TÞ2, where αem ¼ e2=4π ≈
1=137 is the fine structure constant, me is the electron
mass, and T is the plasma temperature.
This negative result encouraged the appearance of

Ref. [9], where another mechanism for the generation of
magnetic fields was proposed. It is based on the parity
violation in electroweak plasma resulting in the nonzero
Chern-Simons (CS) term Π2 that enters the antisym-
metric part of the photon polarization operator in the
plasma of massless particles. Here we adopt the notation
for the CS term from Ref. [9]. In Ref. [10], a similar CS

term ΠðνlÞ
2 , based on the neutrino interactions with

charged leptons, was calculated. Based on this calcu-
lation, the magnetic field instability driven by neutrino
asymmetries was revealed. This instability is imple-
mented in different media such as the hot plasma of
the early Universe and a supernova (SN) with a seed
magnetic field.
The amplification of a seed magnetic field during the

SN burst driven by a nonzero electron neutrino asym-

metry Δnνe ≠ 0 which enters the CS term ΠðνeÞ
2 was

suggested in Ref. [10] to explain the generation of the
strongest magnetic fields in magnetars. Note that after
the SN burst, a cooling neutron star (NS) as the
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corresponding SN remnant equally emits neutrinos and
antineutrinos. Thus, the neutrino asymmetry vanishes.
The inclusion of the electroweak ee interaction with a
stable fraction of degenerate electrons ne ≈ const instead
of the νe interaction with vanishing neutrino asymmetry
Δnνe → 0 makes no sense since the corresponding

parity violating CS term ΠðeeÞ
2 tends to zero in the static

limit ω → 0 for an electron gas, ΠðeeÞ
2 → 0, as found

in Ref. [11].
In the present work we suggest taking into account the

electroweak electron-nucleon (eN) interaction providing a
longtime acting source of the magnetic field instability
that plays a role of a CS term in the pseudovector

electron current J5 ¼ ΠðeNÞ
2 B. Instead of the Matsubara

technique used in Refs. [10,11], here we calculate the
total electric current in SM (as an additive to the standard
ohmic current) solving the Dirac equation for the mass-
less right and left electrons (positrons) in a mag-
netic field.
We start the derivation of the aforementioned CS term

by solving the Dirac equation for a massless electron
in the magnetic field B ¼ ð0; 0; BÞ accounting for the
electroweak eN interaction in a NS. This equation reads

½γμði∂μ þ eAμÞ − γ0ðVLPL þ VRPRÞ�ψe ¼ 0; ð1Þ

where γμ ¼ ðγ0; γÞ are the Dirac matrices, Aμ ¼
ð0; 0; Bx; 0Þ is the vector potential, PL;R ¼ ð1∓γ5Þ=2
are the chiral projection operators, γ5 ¼ iγ0γ1γ2γ3, and
e > 0 is the absolute value of the electron charge.
In Eq. (1) we assume that there are no macroscopic

fluid (nucleon) currents in a NS. The effective potentials
VL;R in Eq. (1) are given by the SM Lagrangian of the
eN interaction via neutral currents in the Fermi approxi-
mation (see, e.g., Ref. [12]),

L ¼
ffiffiffi
2

p
GFψ̄eγμðgðeÞL PL þ gðeÞR PRÞψe

× ½ψ̄nγ
μψn − ð1 − 4ξÞψ̄pγ

μψp�; ð2Þ

where GF ≈ 1.17 × 10−5 GeV−2 is the Fermi constant

gðeÞL ¼ −1=2þ ξ and gðeÞR ¼ ξ are the standard coupling
constants in SM with the Weinberg parameter
ξ ¼ sin2 θW ≈ 0.23, and ψn;p are the neutron and proton
wave functions. We reduced the total eN Lagrangian in
Ref. [12] to Eq. (2), omitting the axial nucleon currents
∼ψ̄n;pγ

μγ5ψn;p that are irrelevant to our problem.
Taking the statistical averaging h…i in Eq. (2) over the

equilibrium (Fermi) distributions of nucleons in a neutron
star and recalling that macroscopic nucleon currents are
absent, i.e., hψ̄n;pγψn;pi ¼ 0, we get the following def-
inition of VR;L to be used in Eq. (1):

VL ¼ −
GFffiffiffi
2

p ½nn − npð1 − 4ξÞ�ð2ξ − 1Þ;

VR ¼ −
GFffiffiffi
2

p ½nn − npð1 − 4ξÞ�2ξ; ð3Þ

where nn;p ¼ hψ†
n;pψn;pi are the number densities of

neutrons and protons.
Let us decompose ψe in the chiral projections as

ψe¼ψLþψR, where ψL;R¼PL;Rψe. Then, using Eq. (1)
we get that ψL;R ¼ e−iEL;RtþipyyþipzzψL;RðxÞ, where

ψ ðnÞ
L;RðxÞ ¼

1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EL;R −VL;R

p

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EL;R −VL;R∓pz

p
un−1

∓i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
un

∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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EL;R −VL;R �pz

p
un

1
CCCCCA
;

ψ ð0Þ
L;RðxÞ ¼

1

2π
ffiffiffi
2

p

0
BBB@

0

u0
0

∓u0

1
CCCA: ð4Þ

Here ψ ðnÞ
L;R corresponds to n ¼ 1; 2;…, ψ ð0Þ

L;R to n ¼ 0,

η ¼ ffiffiffiffiffiffi
eB

p
xþ py=

ffiffiffiffiffiffi
eB

p
, unðηÞ ¼ ðeB=πÞ1=4 expð−η2=2Þ×

HnðηÞ=
ffiffiffiffiffiffiffiffiffi
2nn!

p
, and HnðηÞ is the Hermite polynomial.

The upper signs in Eq. (4) stay for ψL and the lower
ones for ψR. To derive Eq. (4) we use the γ matrices in
the Dirac representation as in Ref. [13]. The energy levels
EL;R in Eq. (4) can be obtained from the following
expression:

ðEL;R − VL;RÞ2 ¼ p2
z þ 2eBn: ð5Þ

The normalization factors in Eq. (4) correspond to

Z
ðψL;RÞ†npypz

ðψL;RÞn0p0
yp0

z
d3x ¼ δnn0δðpy − p0

yÞδðpz − p0
zÞ;
ð6Þ

since the chiral projections ψL;R are independent. It is
worth mentioning that a more general solution of Eq. (1),
which accounts for the nonzero electron mass, was found
in Ref. [14].
The spinors in Eq. (4) are then used to calculate the

induced electric current which has a nonzero projection
on the z axis ∼ψ̄eγ

3ψe. Analogously to Ref. [4], one shows
that the averaged current gets the contribution from the
main Landau level n ¼ 0 only. It should be noted that
massless particles have a strong correlation between their
momentum and helicity. Thus, at n ¼ 0, left electrons have
pz > 0, whereas right ones have pz < 0.
Making the statistical average with the Fermi-Dirac

distribution of the left and right electrons (positrons)
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fe;ēðEÞ ¼ ½expðβðE∓μL;RÞ þ 1�−1, where β ¼ 1=T is the
reciprocal temperature, μL;R are their chemical potentials,
and the lower sign stays for positrons, then using Eq. (5),
one obtains the component of the current Jz along the
magnetic field in the form

Jz ¼
e2B
4π2

�Z
0

−∞
dpz½feð−pz þ VRÞ − fēð−pz − VRÞ�

−
Z þ∞

0

dpz½feðpz þ VLÞ − fēðpz − VLÞ�
�
: ð7Þ

Basing on Eq. (7) and introducing vector notations, we
derive the average induced current in the final form as

J ¼ 2αem
π

ðμ5 þ V5ÞB; ð8Þ

which is an additive to the ohmic current JOhm in a standard
QED plasma. It should be noted that Eq. (8) is valid for any
electron temperature.
The current in Eq. (8) is proportional to αem and consists

of two parts: the vector term given in QED by the
pseudoscalar coefficient μ5 ¼ ðμR − μLÞ=2 (μ5 → −μ5
under spatial inversion) and the pseudovector current

J5 ¼ ð2αem=πÞV5B ¼ ΠðeNÞ
2 B given in SM by the scalar

factor V5 ¼ ðVL − VRÞ=2. Indeed, after statistical averag-
ing, the interaction Lagrangian in Eq. (2) becomes

L ¼ 1

2
ðVL þ VRÞψ̄eγ0ψe þ

1

2
ðVR − VLÞψ̄eγ0γ5ψe: ð9Þ

The factor ψ̄eγ0γ5ψe in the parity violation term of
Eq. (9) is the pseudoscalar with respect to the spatial
inversion P ¼ P−1 ¼ γ0 since Pγ0γ5P−1 ¼ −γ0γ5. Thus
V5 should be scalar; cf. Ref. [15]. The true pseudoscalar
for both P inversion and Lorentz transformation should
be ψ̄γ5ψ . It should be noted that one loses Lorentz
invariance in a medium with a selected reference frame
like a NS at rest.
The weak interaction coefficient in Eq. (8),

V5 ¼
GF

2
ffiffiffi
2

p ½nn − ð1 − 4ξÞnp�; ð10Þ

is of the order V5 ≈GFnn=2
ffiffiffi
2

p ¼ 6 eV in a NS
with nn ¼ 1.8 × 1038 cm−3, which corresponds to ρn ¼
3 × 1014 g · cm−3 since np ≪ nn. At first glance, the
electromagnetic QED term in the current in Eq. (8),
∼μ5, seems to be much bigger than the weak one in
Eq. (10) [16]. However, we show below that the latter
term remains a stable source of the magnetic field
instability in a NS while the former one vanishes,
μ5 → 0, e.g., for helical magnetic fields with the maxi-
mum helicity, contrary to the statement in Ref. [7] that an

imbalance μ5 ≠ 0 could lead to the generation of strong
magnetic fields in magnetars.
The evolution of the magnetic field in the presence

of the induced current in Eq. (8), proportional to the
magnetic field, obeys the modified Faraday equation;
cf. Ref. [10]. However, it is more convenient to study the
evolution of the magnetic helicity density

hðtÞ ¼ 1

V

Z
d3xðA ·BÞ; ð11Þ

where A is the 3D vector potential and V is the volume
of space. Defining the helicity density spectrum hðk; tÞ as
hðtÞ ¼ R

dkhðk; tÞ and accounting for the induced current
in Eq. (8), which includes both the chiral imbalance
contribution ∼μ5 and the electroweak term ∼V5, we get
the kinetic equation for hðk; tÞ which is the generalization
of Eq. (6) in Ref. [8],

∂hðk; tÞ
∂t ¼ −

2k2hðk; tÞ
σcond

þ αem
π

�
kðΔμþ 2V5Þ

σcond

�
hðk; tÞ:

ð12Þ
Here Δμ ¼ μR − μL ¼ 2μ5 and we have just assumed, as
in Ref. [8], the maximal helicity field configuration; i.e.,
the magnetic energy density reads ρBðtÞ ¼

R
dkρBðk; tÞ ¼

ð1=2Þ R dkkhðk; tÞ. It is worth mentioning that the sign of
the Δμ term in Eq. (12) is opposite to that in Ref. [8]
since we use the different definition of γ5.
We should then derive the kinetic equation which

governs the chiral imbalance evolution, which is comple-
mentary to Eq. (12). Using Eq. (11) and the Maxwell
equations, we get the helicity density change in the
standard form,

dhðtÞ
dt

¼ −
2

V

Z
d3xðE · BÞ; ð13Þ

where E is the electric field. Then, accounting for
the Adler anomaly for the pseudovector current in
the electromagnetic fields, ∂μðjμR − jμLÞ ¼ ∂μðψ̄γμγ5ψÞ ¼
ð2αem=πÞðE · BÞ, we derive the conservation law involving
hðtÞ and nR;L,

d
dt

�
nR − nL þ

αem
π

hðtÞ
�
¼ 0; ð14Þ

which is valid in a QED plasma.
Taking into account that nL;R ¼ μ3L;R=3π

2 and assuming
that μL ∼ μR ∼ μ, where μ is the chemical potential of the
degenerate electron gas in a NS, which is true at least
at the beginning of the imbalance in a NS, we get that
nR − nL ≈ 2μ5μ

2=π2. Eventually we obtain from Eq. (14),
using the expression for ∂hðk; tÞ=∂t in Eq. (12), the
evolution equation for μ5,
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dμ5
dt

¼ παem
μ2σcond

Z
dkk2hðk; tÞ

−
�
2α2emρBðtÞ
μ2σcond

�
ðμ5 þ V5Þ − Γfμ5: ð15Þ

In Eq. (15) we added the rate of the chirality-flip processes,
Γf ≃ ðme=μÞ2νcoll, given by the Rutherford electron-proton
(ep) collision frequency νcoll ¼ ω2

p=σcond without flip. Here

ωp ¼ μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αem=3π

p
is the plasma frequency in a degenerate

ultrarelativistic electron gas and σcond is the electric
conductivity in a degenerate electron-proton plasma con-
sisting of ultrarelativistic degenerate electrons and non-
relativistic degenerate protons [17]. Note that in a
degenerate electron gas νcoll depends on the temperature
T; cf. Ref. [18]. This is due to the Pauli principle when all
electron states with the momenta 0 ≤ p ≤ μ are busy; i.e.,
ep scattering is impossible at T ¼ 0.
One can see that Eq. (15) is different from the simplified

kinetic approach dμ5=dt ¼ Γinstμ5 − Γfμ5, where Γinst ¼
α2emμ5 is a factor providing the magnetic field growth
used in Refs. [3,7]. The first term on the rhs of Eq. (15) can
really be estimated as ∼α2emμ25 for all “equal” parameters
μ ∼ μ5 ∼ σcond, which is not the case we rely on. The more
important difference is the appearance of the second term
∼ρB that is the backreaction from the magnetic field that
diminishes an imbalance μ5.
Let us choose the simplest case of the monochromatic

helicity density spectrum hðk; tÞ ¼ hðtÞδðk − k0Þ, where
we can vary the wave number k0 and the magnetic field
scale ΛB ¼ k−10 to later find some critical regimes for the
imbalance evolution μ5ðtÞ through Eq. (15). Using the
dimensionless functions MðτÞ ¼ ðαem=πk0Þμ5ðtÞ and
HðτÞ ¼ ðα2em=2k0μ2ÞhðtÞ, which depend on the dimension-
less diffusion time τ ¼ ð2k20=σcondÞt, we can recast the self-
consistent system of Eqs. (12) and (15) as

dM
dτ

¼ð1 −M − VÞH − GM;

dH
dτ

¼ − ð1 −M − VÞH: ð16Þ

Here for fixed V5 ¼ 6 eV the dimensionless parameters
V ¼ ðαem=πk0ÞV5 and G ¼ ðσcond=2k20ÞΓf ¼ ð2αem=3πÞ
ðme=k0Þ2 are the function of the parameter k0 only.
Note that G does not depend on the conductivity σcond
since the rate of the chirality flip can be estimated as

Γf ≃ ðme=μÞ2νðno flipÞ
coll , where in the magnetohydrodynamic

plasma νðno flipÞ
coll ¼ ω2

p=σcond is the ep collision frequency
without flip. The dimensionless diffusion time τ depends
on the conductivity found in Ref. [18]:

σcond ¼
1.6 × 1028

ðT=108 KÞ2
�

ne
1036 cm−3

�
3=2

s−1; ð17Þ

which is valid for cooling NS matter consisting of degen-
erate nonrelativistic nucleons and ultrarelativistic degener-
ate electrons.
For the magnetic field scale ΛB comparable to the

NS radius RNS ¼ 10 km, or for the small wave number
k0 ¼ 1=RNS ¼ 2 × 10−11 eV, one gets the electroweak
interaction contribution in Eq. (16) as V ¼ 7 × 108 coming
from the current in Eq. (8), where we substitute the small
V5 ¼ 6 eV. We choose the initial chiral imbalance as
μ5ð0Þ¼1MeV≪μ, where for ne ¼ μ3=3π2 ¼ 1036 cm−3
in Eq. (17) the electron chemical potential is equal to
μ ¼ 60 MeV. Hence at the beginning the dimensionless
chiral imbalance Mð0Þ ¼ ðαem=πk0Þμ5ð0Þ≃ 1014 is much
bigger than the electroweak term V. At first glance, such an
inequality could be expected when comparing electromag-
netic and weak interaction effects, Mð0Þ ≫ V ¼ const.
We assume also the constant temperature in a cooling NS
T ¼ 108 K [19]. Therefore the electric conductivity in
Eq. (17) is also constant, σcond ¼ 107 MeV.
The dimensionless chirality-flip rate,

G ¼ 2αem
3π

�
me

k0

�
2

¼ 1030; ð18Þ

is huge for the given small k0 ¼ 2 × 10−14 keV. If we
change me ¼ 511 keV → meff ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αem=2π

p
[20], the rate

in Eq. (18) would be even bigger, diminishing μ5 faster
in the first line of Eq. (16). Finally, for the acceptable
initial magnetic field B0 ¼ 1012 G, the initial helicity
density hð0Þ ¼ B2

0=k0 ¼ 2 × 1013 MeV3 gives Hð0Þ ¼
ðα2em=2k0μ2Þhð0Þ ¼ 6 × 1021.
We solved the system of the self-consistent kinetic

equations in Eq. (16) numerically for the adopted V and G
as well as the initial conditionsMð0Þ ¼ 1014 and Hð0Þ ¼
6 × 1021 chosen above. In Fig. 1 we plot the evolution of
the chiral imbalanceMðτÞ. In the inset, one can see how a
large chirality imbalance μ5 ∼OðMeVÞ vanishes owing to
the huge chirality-flip rate in Eq. (18), μ5 → 0, corre-
sponding to t ∼ 10−12 s during a very short time τ ∼ 10−30.
In the main plot one finds a sharp slope forM somewhere
at τ ≈ 3 × 10−8 that corresponds to the time t ∼ 8000 yr.
The obtained critical time is of the order of young
magnetar ages [1]. In Fig. 2 we see that, at the same
time τ ≈ 3 × 10−8, the magnetic helicity density H grows
by about 10 orders of magnitude, which corresponds
to the growth of B ¼ ffiffiffiffiffiffiffi

k0h
p

by 5 orders of magnitude,
getting just B≃ 1017 G if we start from the seed
field B0 ¼ 1012 G.
It is interesting to mention that, in Fig. 1, a positive

primeval chirality imbalance, μ5¼ðμR−μLÞ=2>0, which
appears, e.g., due to the direct Urca process, e−L þ p →
nþ νeL, becomes negative, μR − μL < 0. This happens
due to the simultaneous growth of the helicity density h
(see Fig. 2), which amplifies the negative derivative
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dM=dτ < 0 much more intensely than the chirality flip
∼G. Vice versa, the attenuation ofM owing to the chirality
flip is more important at the first stage illustrated in the
inset of Fig. 1. SinceM → −V ¼ −7 × 108 (μ5 → −6 eV;
see Fig. 1), while the decreasing sum V þM remains
positive, the value of the positive derivative dH=dτ > 0
diminishes, or the helicity evolution simulates a saturation;
see Eq. (16) and Fig. 2.
Finally we notice that helical magnetic fields deter-

mine the evolution of the chiral imbalance μ5ðtÞ, rather
than a nonzero seed μ5 ≠ 0 can lead the growth of the
magnetic helicity density h ¼ B2=k0 or the magnetic
field itself. This imbalance starting from a sizable value
μ5 ∼OðMeVÞ decreases down to the eN interaction term
jμ5j ∼ V5 ∼ 6 eV. We stress that, namely, the electro-
weak interaction term V5 > jμ5j drives the amplification
of the seed magnetic field in a NS, see the second line
of Eq. (16). If one takes into account the cooling of a

neutron star, dT=dt < 0, a more realistic model to
generate strong magnetic fields in magnetars can be
developed. We plan to do that in our future work.
Of course, we considered here only the largest scale

k−10 ¼ RNS ¼ 10 km as the most interesting case for
magnetic fields in NS. Our model is simplified both due
to the choice of the maximum helicity density khðk; tÞ ¼
2ρBðk; tÞ instead of the more general inequality khðk; tÞ ≤
2ρBðk; tÞ [21] and owing to the choice of the monochro-
matic helicity density spectrum hðk;tÞ¼hðtÞδðk−k0Þ.
The generalization of our model, e.g., accounting for an
initially nonhelical magnetic field, the continuous mag-
netic energy spectrum, complicates the problem. This
requires solving the system of kinetic equations for the
magnetic helicity density and magnetic energy density
instead of the single Eq. (12) here. We also skipped the
stage of a supernova collapse with nonequilibrium proc-
esses at that time, considering in our model mostly
longtime intervals ∼ð103–104Þ yr for a thermally relaxed
NS core.
We would like to mention that recently, in Ref. [22],

the application of the chiral plasma instability in SN was
also criticized because the chirality flip was underesti-
mated in Ref. [3] in the approximation ðme=μÞ2 ≪ 1.
Instead of the tedious calculation made in Ref. [22], we
can reproduce in a simpler way the flip rate Γf obtained
by the authors in Ref. [3] and demonstrate why their
derivation is invalid. Indeed, in Ref. [3] the authors
incorrectly relied on the flip rate Γf ∼ α2emðme=μÞ2μ5,
meaning instead that the collision frequency without flip,

entering the flip rate as Γf ¼ ðme=μÞ2νðno flipÞ
coll , is given by

the common formula νðno flipÞcoll ¼σne≃ðα2em=μ2Þμ3¼α2emμ5.
Here it was assumed that μ ∼ μ5, using the electron
density ne ∼ μ3 and the Rutherford cross section for ep
collisions σ ∼ α2em=hEi2, where hEi ∼ μ is the mean
electron energy. Such an estimate of the flip rate Γf is
incorrect for a degenerate electron gas because the Pauli
principle was not taken into account.
To resume, we have suggested here a novel mechanism

for the magnetic field amplification in NS based on the
eN electroweak interaction. For this purpose, in Eq. (8),
we have generalized the CS term, derived in Ref. [4],
to include the electroweak interaction of right and left
ultrarelativistic degenerate electrons with nucleons. Then,
in Eqs. (12) and (15), we have obtained a new system of
kinetic equations for the evolution of the chiral imbalance
and the magnetic helicity. This system accounts for the
eN interaction and the backreaction. Finally we have
applied our results to predict the magnetic field growth in
a NS up to the values observed in magnetars.
It should be noted that our model is absolutely different

from the well-known approach put forward in Ref. [2]
based on a strong turbulent convection in the core of the
SN and the fast dynamo operating only for a few
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FIG. 1. The dimensionless chiral imbalance M versus τ.
The horizontal axis of the main plot starts at τ ≳ 10−30.
(Inset) The evolution of M in the initial time interval
corresponding to τ < 10−30.
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seconds, being driven by the high neutrino luminosity
Lν > 1052 erg · s−1 at that time. It should be noted that, in
Ref. [23], it was found that protostars, which were
progenitors to some magnetars, did not seem to reveal a
fast rotation as required in Ref. [2]. We also refute the
arguments in Ref. [3] that suggest the generation of strong
magnetic fields in magnetars is based on chiral magnetic
instability.
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