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Introduction

0.1 Origin and development of the problem and its

mathematical formulation

The idea of consider the crack propagation as the result of the competition between the

volume energy and the surface energy (needed to create new fracture) is the basis of

the mathematical formulation for irreversible quasistatic evolutionary models that will be

used in the present thesis.

The fracture process is assumed to be irreversible, so that the crack set can only

increase in time, and quasistatic, i.e., at each time the configuration describing the body

is in equilibrium.

The link between the crack propagation and surface and bulk energies of the body

is due to Griffith [21]. In 1920, making some precise experiments on a metallic body

subjected to alternating or repeated loads, he pointed out the necessity of modify the

hypotheses of rupture commonly used for elastic solids, by which a fracture may be

expected if either the maximum tensile stress or the maximum extension exceeds a certain

critical value. Hence, he proposed a new criterion, the celebrated Griffith’s criterion,

linking the crack process with a decrease in the potential energy. More precisely, he

added to the known statement that the potential energy of an elastic body in equilibrium,

deformed by surface forces, is a minimum, the following one:

Rupture has occurred if the system can pass from the unbroken to the broken

condition by a process involving a continuous decrease in potential energy.

Moreover, under the assumption that the surfaces of the crack are traction-free, he

proposed to express the increase of surface energy, due to the crack propagation, by the

product of the increment of surface with the surface tension (toughness) of the material.

In 1998 Francfort and Marigo in [18] proposed a mathematical formulation inspired by

Griffith’s criterion, and then based on energy minimization, for the study of quasistatic

crack growth in elastic bodies.

To be more specific, let Ω ⊂ R
2 represent the crack-free reference configuration of a

linearly elastic, isotropic and homogeneous body, let ∂dΩ be a part of its boundary and
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let ψ : ∂dΩ → R
2 be the displacement at the points of ∂dΩ. Then, for a given crack set

Γ ⊂ Ω of finite 1-dimensional Hausdorff measure, and for a boundary displacement ψ, the

set of admissible displacements is given by

AD(ψ,Γ) := {u ∈ H1(Ω \ Γ; R2) : u = ψ on ∂dΩ \ Γ} ,

where the equality has to be considered in the sense of traces. According to [18], the total

energy associated to a boundary displacement ψ and a crack Γ is given by

E (ψ,Γ) = min
v

{

W(Ev) + kH 1(Γ) : v ∈ AD(ψ,Γ)
}

(0.1.1)

where Ev denotes the symmetrized gradient of v and the bulk energy is defined by

W(Ev) :=
1

2

∫

Ω\Γ

A(x)Ev · Ev dx

where A(x) is the elasticity tensor. In the surface energy, kH 1(Γ), k denotes the toughness

(surface energy density) of the material and H 1 is the 1-dimensional Hausdorff measure.

The evolution is driven by time-dependent imposed boundary displacements ψ(t) for

t ∈ [0, T ], and in [18] is studied in the case of monotonically increasing loadings

ψ(t)(x) :=

{

tψ0(x) for t > 0

0 for t ≤ 0 ,

with ψ0 : ∂dΩ → R
n an H1-function.

The mathematical formulation of Francfort and Marigo consists of finding a time-

dependent map t 7→ Γ(t) describing the evolution of the crack during the loading process

generated by the imposed boundary displacement. More in detail, the map t 7→ Γ(t) shall

satisfy the following three conditions:

(a) global stability:

E (ψ(t),Γ(t)) ≤ E (ψ(t), K) for every K ⊃
⋃

s<t

Γ(s);

(b) irreversibility: the map t 7→ Γ(t) is monotonically increasing;

(c) energy inequality:

E (ψ(t),Γ(t)) ≤ E (ψ(s),Γ(s)) for every 0 ≤ s < t ≤ T .

This formulation, as condition (a) shows, deals with global minimizers for the energy

functional. In [18] the authors pointed out that a more realistic approach would be to

investigate local minimizers, but because of the mathematical difficulties, this approach

was not considered at that moment.
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Condition (b) expresses the irreversibility of the crack process, that is, the fracture

can only increase, while condition (c) is a constraint in order to bound the number of

solutions.

The authors indicated also how to obtain the existence of this evolution, that is by a

time-discretization process. Indeed, let us fix a sequence of subdivisions (tik)0≤i≤k of the

interval [0, T ], with

0 = t0k < t1k < · · · < tkk = T ,

lim
k→+∞

max
1≤i≤k

(tik − ti−1
k ) = 0 .

For i = 1, . . . , k we set ψi
k = ψ(tik). For every k ∈ N, we may define the discretized

evolution Γi
k by induction as follows. Let Γ0 be given and set Γ0

k := Γ0. Then Γi
k is

defined through the two conditions written below:

Γi
k ⊃ Γi−1

k

E (ψi
k,Γ

i
k) ≤ E (ψi

k,Γ) for every Γ ⊃ Γi−1
k .

As a next step, for every t ∈ [0, T ], we can define the piecewise constant functions

Γk(t) = Γi
k, ψk(t) = ψi

k ,

where i is the greatest integer such that tik ≤ t. Therefore, the real evolution Γ(t) will

be obtained as the limit as the time step goes to zero (i.e., k → +∞) of the discrete

evolutions Γk(t).

This is the “abstract” scheme of the proof. The “real” one needs a suitable mathemat-

ical environment in order to get the existence of the discretized evolution Γi
k, some apriori

bounds on Γk(t) in order to deal with a convergent subsequence, and the right notion

of convergence, togheter eventually with some mathematical tool, which guarantees that

the minimality properties at the discrete level of the sequence Γk(t) are transferred to the

limit function Γ(t).

Now we shall see how Griffith’s criterion, in the case when the crack path is prescribed,

is written through this notion of evolution. Let us suppose that the crack path is a

rectifiable curve Γ parametrized by its arc-length γ(s). We define

Γ(ℓ) := Γ0 ∪ {γ(s) : 0 ≤ s ≤ ℓ}

and

F (ℓ) := min
v

{1

2

∫

Ω\Γ(ℓ)

A(x)Ev · Ev dx : v ∈ AD(ψ0,Γ(ℓ))
}

.

The Griffith’s criterion is given in terms of the trajectory of the crack along its path, i.e.,

the map t 7→ ℓ(t), and states the following.

(1) ℓ̇(t) ≥ 0;
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(2) −t2 d
dℓ
F (ℓ(t)) ≤ k;

(3) ℓ̇(t)
(

k + t2 d
dℓ
F (ℓ(t))

)

= 0;

where ℓ̇(t) is the time derivative of the map ℓ(t). Indeed, if the energy release rate,

−t2 d
dℓ
F (ℓ(t)), equals the toughness k, then the crack propagation will take place, and it

will not if on the contrary in condition (2) the strict inequality holds.

As noticed before, this formulation needs to be treated as a well-posed mathematical

problem in order to be meaningful. In [18] the authors pointed out the correspondence

of the minimization problem (in its discrete form) with the model proposed by Mumford

and Shah [37] in the context of image segmentation, where the well-posed minimization

problem is studied in the space of special functions of bounded variation, SBV (Ω), and

they indicate this same space as the right one for their formulation.

However, when the crack path is prescribed, the mathematical problem is well-posed

in a suitable subspace of Sobolev functions, which will be the actual setting of the present

thesis.

Another assumption in order to deal with Sobolev spaces was taken into account by Dal

Maso and Toader in [9]. In this paper they obtained a precise mathematical formulation of

the problem and proved an existence result for an irreversible quasistatic evolution, in the

antiplane case and for general imposed boundary displacements, in the context of linear

elasticity. The admissible cracks are assumed to be connected or with a uniform bound

on the number of connected components. With this restriction the cracks are assumed to

be closed and then the deformation belongs to a suitable Sobolev space, simplifying the

mathematical formulation of the problem. In this paper, the notion of evolution satisfies

the analogous of conditions (a) and (b) while clarifies in some sense condition (c) of the

definition of evolution law in [18], which is here expressed as

(c) energy balance: the function t 7→ E (ψ(t),Γ(t)) is absolutely continuous on [0, T ] and

d

dt
E (ψ(t),Γ(t)) = 2

∫

Ω\Γ(t)

∇u(t) · ∇ψ̇(t) dx for a.e. t ∈ [0, T ] ,

where u(t) is a solution of a minimum problem similar to (0.1.1) defining E (ψ(t),Γ(t)),

and ψ̇(t) is the time derivative of ψ(t).

This condition states that the increment in stored energy plus the surface energy dissipated

in the crack process is equal to the work done by the loadings on ∂dΩ to produce the

imposed displacement. Indeed, if ∂dΩ is sufficiently regular, an integration by parts of the

right-hand side of equality in (c) gives

d

dt
E (ψ(t),Γ(t)) = 2

∫

∂dΩ\Γ(t)

∂νu(t)ψ̇(t) dH 1 for a.e. t ∈ [0, T ] ,
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where ν is the outer unit normal to the boundary of Ω. This last equality expresses the

conservation of energy in this quasistatic model, since the right-hand side is the power of

the force exerted on ∂dΩ in order to obtain the prescribed displacement ψ(t).

The authors also described and proved the validity of Griffith’s criterion for their

model. For simplicity let us consider here the case of connected cracks. Let then t 7→ Γ(t)

be the map describing the evolution during the loading process. Assume that there exists

a simple arc K contained in Ω and parametrized by the regular path γ : [σ0, σ1] → Ω such

that Γ(t) = Γ(0) ∪K(σ(t)), where K(σ) = {γ(τ) : σ0 ≤ τ ≤ σ}, and σ : [0, T ] → [σ0, σ1]

is a nondecreasing function such that σ(0) = σ0, and σ0 < σ(t) < σ1 for every t ∈ (0, T ).

Assume also that K ∩ Γ(0) = {γ(σ0)}.
Let u(t) be a solution to the minimum problem defining E (ψ(t),Γ(t)) (quite similar

to (0.1.1)). Finally, let κ(u(t), σ(t)) be the stress intensity factor of u(t) at the tip γ(σ(t))

(for its definition see Proposition 3.2.2 in Chapter 3). Then Griffith’s criterion can be

written here by the following three conditions:

(1) σ̇(t) ≥ 0 for a.e. t ∈ [0, T ];

(2) 1 − κ(u(t), σ(t))2 ≥ 0 for every t ∈ [0, T ];

(3) (1 − κ(u(t), σ(t))2)σ̇(t) ≥ 0 for a.e. t ∈ [0, T ].

Indeed, the first condition expresses the irreversibility of the process, while the second

condition, thanks to the link between the stress intensity factor and the energy release

rate (see, e.g., [23]), gives an upper bound for the energy release rate. Finally, the third

condition states that this upper bound is reached at almost every time in which the tip

of the crack moves with a positive velocity.

Chambolle in [3] extended then the existence result of [9] to the case of planar linear

elasticity, under the same restrictive assumptions on the number of the connected com-

ponents but imposed to Γ ∪ ∂NΩ, instead of the fracture set Γ alone, where ∂NΩ is the

part of the boundary that we have to add to the Dirichlet part of the boundary ∂DΩ

(where some displacement is prescribed) to obtain the whole boundary ∂Ω of the domain

Ω ⊂ R
2. The author proposed another improvement to the model, that is to consider

H 1(Γ \ ∂NΩ) (instead of simply H 1(Γ)) as the energy that must be spent to open the

crack Γ, following the idea that the possible parts of Γ touching ∂NΩ cannot really be

considered as “cracks”.

Subsequently, the paper [17] of Francfort and Larsen removed the restriction on the

connected components of the cracks and introduced, in an n-dimensional setting, a weak

formulation of the problem on the set SBV (Ω) of special functions with bounded variation.

The main mathematical tool developed by the authors in this paper is the so called jump

transfer theorem, which enabled the authors to show how to obtain the global stability

condition for the evolution from the equivalent condition of the approximating evolution.
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In [8], Dal Maso, Francfort and Toader provided the mathematical tools necessary to

solve the problem in the most general situation, without any simplifying hypothesis. For

this reason, we want to describe more in detail their formulation.

The deformation u is this time vector-valued, and maps a subset Ω of R
n into R

m

(with m ≥ 1). Due to this assumption, the mathematical formulation shall be given on a

subset of GSBV (Ω; Rm), the space of generalized special functions of bounded variation.

The authors studied the case of nonlinear elasticity, considering an arbitrary bulk

energy W(ξ), with energy density W (x, ξ) quasiconvex with respect to ξ and satisfying

suitable polynomial growth and regularity conditions. They took into account a large

class of time-dependent body and surface forces, whose work on the deformation u is here

denoted by L(t)(u).

In their work, a crack is any rectifiable set Γ ⊂ Ω with H n−1(Γ) < +∞, where H n−1

denotes the (n− 1)-dimensional Hausdorff measure. The work done to produce the crack

Γ is given by

K(Γ) =

∫

Γ

κ(x, νΓ(x)) dH n−1(x),

where νΓ is a unit normal vector field. The function κ(x, ν) depends on the material and

satisfies the standard hypotheses which guarantee the lower semicontinuity of K.

An admissible configuration is a pair (u,Γ), where Γ is an admissible crack and u is

an admissible deformation with jump set S(u) contained in Γ. The total energy of the

admissible configuration (u,Γ) at time t is therefore given by

E (t)(u,Γ) := W(∇u) + K(Γ) − L(t)(u) .

On a part of the boundary, ∂dΩ, they prescribed also a time-dependent deformation ψ(t)

so that the set AD(ψ(t),Γ(t)) of admissible deformations with crack Γ(t) and boundary

deformation ψ(t) is defined now as the set of functions u in GSBV (Ω; Rm) whose jump

set is contained in Γ(t) and such that u = ψ(t) in the sense of traces on ∂dΩ. An

irreversible quasistatic evolution of minimum energy configurations is then defined as a

map t 7→ (u(t),Γ(t)) satisfying the following three conditions:

(a) global stability: for every t ∈ [0, T ]

E (t)(u(t),Γ(t)) ≤ E (t)(u,Γ) for every Γ ⊃ Γ(t) and every u ∈ AD(ψ(t),Γ);

(b) irreversibility: the map t 7→ Γ(t) is increasing;

(c) energy balance: the increment in stored energy plus the work done to produce the

crack is equal to the work of the external loadings.

In the spirit of Griffith’s theory, a minimum energy configuration at time t, is any pair

(u(t),Γ(t)), with u(t) ∈ AD(ψ(t),Γ(t)) which satisfies the global stability condition at

time t.
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The authors proved the following existence result: if (u0,Γ0) is a minimum energy

configuration at time t = 0, then there exists an irreversible quasistatic evolution t 7→
(u(t),Γ(t)) starting from (u0,Γ0). The proof is obtained also here by time-discretization.

In the same years, Mielke together with his collaborators (see [34], [31], and [32])

developed a general scheme of continuous-time energetic formulation of rate-independent

processes (see also the more recent study [36] and references therein for an excellent

survey on the subject). Rate-independence means that if t 7→ y(t) represents an irre-

versible quasistatic evolution for the load L(t), then for each strictly monotone time-

reparameterization τ(t), the function y(τ(t)) represents the correspondent evolution for

the load L(τ(t)).

Let us describe now this formulation: in an abstract space Y , the unknown is a

function y : [0,+∞] → Y , whose evolution is governed by some energy storage potential

E : [0, T ]×Y → R and some dissipation potential ∆: Y → [0,+∞). The continuous-time

energetic formulation consists of finding a map y : [0, T ] → Y satisfying a suitable initial

condition (as y(0) = y0, with y0 given), and the following two conditions:

(S) Global Stability:

E(t, y(t)) ≤ E(t, ŷ) + ∆(ŷ − y(t)) for every ŷ ∈ Y ;

(E) Energy Equality:

E(t, y(t)) +

∫ t

0

∆(ẏ(s)) ds = E(0, y0) +

∫ t

0

∂sE(s, y(s)) ds .

The previous definition of irreversible quasistatic evolution given in [8] fits actually this

formulation. Indeed, taking y(t) := (u(t),Γ(t)) with Γ(t) admissible crack and u(t) ∈
AD(ψ(t),Γ(t)) (this shall define the state space Y), and E(t, u,Γ) := W(∇u) − L(t)(u),

we deduce that the Global Stability condition (S) coincides with item (a) in the definition

of irreversible quasistatic evolution and the Energy Equality condition (E) coincides with

item (c), while (b) can be obtained by using a nonsymmetric dissipation distance.

At this point, the precise mathematical formulation with a good notion of irreversible

quasistatic evolution and the way to obtain existence results seem to be clarified in the

case of elasticity, even if the majority of the results remains inserted in the context of

global minimizers. But further steps have to be done in the study evolutionary models,

performing an analysis of the mathematical tools developed so far in order to generalize

them, and taking into account some additional physical or mechanical features, in order

to represent in a more realistic way the fracture process.

Also this part is very difficult, since to any mechanical property added to the model

has to correspond the right mathematical tool in order to obtain the well-posedness of the

problem and then some existence result. Anyway, in the past few years, several contributes

appeared. We cite for example the paper [20] of Giacomini, where he studied the size
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effect for quasistatic crack growth in linearly isotropic elastic bodies under antiplanar

shear. Instead of the Griffith’s energy functional

E (u,Γ) =

∫

Ω\Γ

|∇u|2 dx+ H
n−1(Γ) (0.1.2)

the author considered a surface energy of the form
∫

Γ

ϕ(|[u]|(x))dH n−1 ,

where [u](x) := u⊕(x)−u⊖(x) is the difference of the traces of u on both sides of the crack

Γ, and ϕ : [0,+∞[ → [0,+∞[ is increasing, concave and constant after a critical length,

and is such that ϕ(0) = 0. Therefore in this model we point out the attempt to take into

account the cohesive forces exerted between the lips of the crack through this energy term.

Indeed, we associate the opening of the crack to a nonzero jump [u] of the deformation

and through such a function ϕ we may get the following physical interpretation: the

interaction between the two lips of the crack Γ decreases as the opening increases, and

disappears when the opening is larger than a critical length.

The author proved an asymptotic result, that is the following: as the size of the body

increases, despite of the cohesive form of the surface energy, under suitable boundary

displacements the fracture propagates following the Griffith’s functional (0.1.2).

0.2 Contents

The purpose of the present thesis is to continue this investigation, in the case of elasticity,

taking into account different aspects of the fracture process.

Accordingly, in Chapter 1 we study a variational model for which the new feature is

that the fracture energy term depends on the opening of the crack. This term is similar

to the one studied in [20], but here we do not perform an asymptotic analysis and prove

on the contrary an existence result via an energy functional containing this surface term.

The formulation of the problem and the plan of the proof (via a time-discretization

process) fit the scheme proposed in the previous section, including the condition on global

minimizers, but the dependence on the opening of the crack prevents us from applying

directly the tools developed so far in the applications to fracture mechanics of the theory

of free discontinuity problems (see [18], [9], [10], [3], [17], [7], [8]).

The formulation of the problem studied in Chapter 2 is completely different and is

the result of a preliminary study (performed in finite dimension) in order to deal with

local minimizers and with a notion of approximable evolution which will be considered in

Chapter 3.

To be more specific, let us recall that for a given Banach space X, and for an energy

functional E : [0, T ] × X → R, a quasistatic evolution t 7→ u(t) may be thought as a

8



solution of the system

∇xE(t, u(t)) = 0 , (0.2.1)

so that u(t) is a critical point for E(t, ·), and, possibly, a local minimizer.

In Chapter 2 we consider the limit behavior, as ε → 0, of the solutions uε of the

ε-gradient flow

εu̇ε(t) + ∇xE(t, uε(t)) = 0 ,

and we prove (in the case when X = R
n) that, under very general assumptions on E,

the limit function u(t) does exist and solves (0.2.1). In addition, by uniqueness, on its

continuity intervals ]ti−1, ti[, the function u(t) is actually defined via the Implicit Function

Theorem. As the main new feature of this chapter, the connection between the limits u(t−i )

and u(t+i ) is analyzed.

Inspired by the previous two ideas, that are to define the evolution map as a local

minimizer (as also suggested by Francfort and Marigo in their pioneering paper [18]) and

to characterize the evolution on its continuity intervals via the Implicit Function Theorem,

we study in Chapter 3 a new model of irreversible quasistatic evolution which satisfies a

local stability criterion rather than the “usual” global one.

To simplify the mathematical difficulties, along the thesis we make the assumption that

the crack path is prescribed, and this allows us to use Sobolev spaces in the formulation

of the variational problem. This hypothesis appears to be natural in the study of the

past evolution of a crack. It can also be used to predict the future evolution of a crack

assuming that the body has some natural weaker parts. For example, as already pointed

out by Mainik and Mielke in [32], we may assume that the two sides of the body are glued

together along the prescribed crack path, and that the glue is softer than the material

itself, so that, upon loading, the body can fracture only along the glue.

Let us describe now more in detail the content of this thesis.

In Chapter 1 we present a variational model for quasistatic crack growth in the presence

of a cohesive force exerted between the lips of the crack.

The evolution of the crack for our model is governed by an energy which is, (like,

e.g., in [8]), the sum of three terms: the bulk energy of the uncracked part, the energy

dissipated in the fracture process, and the work of the external loads, but here, as already

announced, the fracture energy depends on the opening of the crack.

The cracks are constrained to belong to a compact C1-orientable (n− 1)-dimensional

manifoldM contained in the reference configuration Ω ⊂ R
n, such that Ω\M is connected.

This restriction allows us to consider very general bulk and crack energies, which may

include constraints on the crack opening, related to the infinitesimal noninterpenetration

of matter.

To be more specific, we assume that the uncracked part of the body is hyperelastic
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and that its bulk energy relative to the deformation u ∈W 1,p(Ω \M ; Rm) is of the form
∫

Ω\M

W (x,∇u) dx,

where W : (Ω \M) × M
m×n → R is a given Carathéodory function such that W (x, ξ) is

quasiconvex with respect to ξ and satisfies suitable p-polynomial growth and regularity

conditions (see Section 1.1).

The work done by the external time-dependent loads L (t) on the deformation u is

denoted by 〈L (t), u〉, being 〈·, ·〉 the duality pairing between (W 1,p(Ω \ M ; Rm))′ and

W 1,p(Ω\M ; Rm). For the general form of the work done by the external loads see (1.1.5).

In order to obtain the work done to produce a crack for this model, we need some

preliminary discussion. If we neglect for a first moment the problem of irreversibility, we

may then assume that the work done to produce a crack can be written in the form
∫

M

ϕ(x, [u]) dH n−1,

where ϕ : M × R
m → [0,+∞] is a Borel function such that ϕ(x, 0) = 0 and the map

y 7→ ϕ(x, y) is lower semicontinuous on R
m for H n−1-a.e. x ∈M .

Suppose now that the deformation u depends on time, i.e., we have a map t 7→ u(t)

from [0, T ] into W 1,p(Ω \M ; Rm). If no crack is present until time 0 and

ϕ(x, [u(s)](x)) ≤ ϕ(x, [u(t)](x)) H
n−1-a.e. on M

for every s ∈ [0, t], then the energy dissipated in the crack process in the time interval

[0, t] is given, in our model, by
∫

M

ϕ(x, [u(t)](x)) dH n−1 .

However, in the general case, the irreversibility of the fracture process leads to in-

troduce an auxiliary time-dependent function t 7→ γ(t) (see Section 1.1), defined on the

prescribed crack path, which takes into account the local history of the crack up to time

t. More in detail we assume that t 7→ γ(t) is the smallest increasing in time function such

that γ(t)(x) ≥ ϕ(x, [u(t)](x)) for H n−1-a.e. x ∈ M and for every t ∈ [0, T ], and that the

total energy spent in the process of the crack production in the time interval [0, t] is given

by
∫

M

γ(t)(x) dH n−1 .

The notion of evolution of the crack (see Definition 1.2.4) is given in the framework

of Mielke’s approach to a variational theory of rate-independent processes (see [35], [32]),

and satisfies a global stability condition, an irreversibility condition and an energy bal-

ance condition which correspond to the analogous conditions for the evolutionary models

presented in the previous section.
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We prove an existence result (Theorem 1.2.10) for the quasistatic evolution follow-

ing the scheme already introduced by Francfort and Marigo, i.e., by approximating the

continuous-time problem by discrete-time problems, for which the evolution is defined by

solving incremental minimum problems. The main mathematical difficulty in the proof is

the compactness of the approximating functions t 7→ γk(t). This is solved by introducing

a new notion of convergence of functions related to the problem, with good compactness

and semicontinuity properties (see Section 1.3).

In Chapter 2 we use a different approach with the aim of investigating whether there

is the possibility to characterize the jumps of an evolution defined using some criterion

different from the global minimality. The analysis is carried on in a model case where the

main feature is that the dimension of the Banach space is finite.

As already observed in the first part of this section, we recall that the study of qua-

sistatic rate-independent evolutionary models may lead to consider gradient flow-type

problems. Indeed, suppose that X is a given Banach space and f : [0, T ]×X → R a time-

dependent energy functional. Then one can regard a quasistatic evolution as a solution

u(t) to the problem

∇xf(t, u(t)) = 0 . (0.2.2)

In order to obtain such an evolution, it seems natural to study the limit as ε → 0 of the

perturbed problem

εu̇ε(t) + ∇xf(t, uε(t)) = 0 , (0.2.3)

which is actually a gradient flow problem. The intention is to prove that if the functional f

satisfies suitable assumptions, then the solutions uε converge to a limit function u solving

problem (0.2.2) and that this method selects in a sense the most interesting solutions u

of (0.2.2) (see [15], [6]).

In Chapter 2 we study a model case with X = R
n. We shall see that, under very

general assumptions on f , the limit function u(t) is a local minimum of f(t, ·). Moreover,

it may admit some discontinuity times, while the approximating solutions uε(t) of the

ε-gradient system (0.2.3) are always continuous.

The first work on similar subjects was written by Efendiev and Mielke [15], who add to

the energy functional a dissipation term, which is crucial in the proof of the compactness

of uε. In our work, we do not have dissipative terms, but the assumptions on f are

stronger (for the precise assumptions see Section 2.1).

Let us describe now more in detail our model case. We consider a smooth energy func-

tion f : [0, T ] × R
n → R satisfying a suitable coerciveness condition (see Assumption 1).

We suppose also that uε(0) → u(0), ∇xf(0, u(0)) = 0, and that ∇2
xf(0, u(0)) is positive

definite. We will prove that uε converges, as ε goes to zero, to a piecewise regular function

u : [0, T ] → R
n, defined via the Implicit Function Theorem, such that ∇xf(t, u(t)) = 0

and ∇2
xf(t, u(t)) is positive definite on each continuity interval ]ti−1, ti[. Moreover the

limits from the left and from the right, u(t−i ) and u(t+i−1), exist. It turns out that at each
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discontinuity time ti, the value of u(t−i ) is located at a degenerate critical point of f(ti, ·),
i.e., at a point x ∈ R

n where the Hessian matrix ∇2
xf(ti, x) possesses at least one zero

eigenvalue.

To conclude this analysis we have to establish the connection between the limits u(t−i )

and u(t+i ). This will be done by passing to the fast dynamics, i.e., the dynamics governed

by the rescaled system of differential equations

v̇(s) = −∇xf(ti, v(s)) . (0.2.4)

In a generic situation we may assume that ∇2
xf(ti, u(t

−
i )) has exactly one zero eigen-

value, while the other eigenvalues are positive. To discuss the behavior of (0.2.4), we

are led to consider the autonomous system of differential equations v̇(s) = −∇xf(t, v(s))

where t is close to ti and plays the role of a parameter. Under very general hypotheses,

the following happens: before ti the vector field ∇xf(t, ·) has two zeroes, a saddle and a

node, at t = ti there is only one zero (the node and the saddle coalesce), and for t > ti
these zeroes of the vector field no longer exist. This corresponds to an abrupt change in

the phase portrait as the parameter varies, and it is known in the literature as saddle-node

bifurcation of codimension one (see [24], [42], [27]).

In Section 2.1 we list the technical assumptions which permit to obtain the main result

of the chapter, Theorem 2.2.7. Without entering all technical details, the setting obtained

from our assumptions is the following one. For every t ∈ [0, T ] there is a finite number

of critical points x ∈ R
n of f(t, ·) and among them at most one is degenerate. Moreover

there exists only a finite number of pairs (t, ξ) such that ξ is a degenerate critical point of

f(t, ·). On the degenerate critical points with only nonnegative eigenvalues, the Hessian

matrix ∇2
xf(t, ξ) has only one zero eigenvalue and satisfies two transversality conditions

(see (b) and (c) in Assumption 3). Although we do not prove that Assumptions 1–4

of Section 2.1 are generic in any technical sense, they cover a wide class of interesting

examples.

If ξ is a degenerate critical point of f(t, ·) satisfying all conditions considered above,

then we prove that there is a unique heteroclinic solution v(s) of v̇(s) = −∇xf(t, v(s))

issuing from the degenerate critical point ξ, and we suppose that v(s) tends, as s→ +∞,

to a nondegenerate critical point y of f(t, ·), with ∇2
xf(t, y) positive definite. The existence

of such heteroclinic solution is standard. Since we have not been able to find the proof of

uniqueness in the literature, we give the complete proof in Lemma 2.1.5.

This analysis leads to a more precise construction of the function u mentioned above.

Accordingly, the main result of this chapter, Theorem 2.2.7, states that if uε(0) → u(0),

∇xf(0, u(0)) = 0, and ∇2
xf(0, u(0)) is positive definite, and Assumptions 1–4 of Section 2.1

are satisfied, then uε(t) converges to u(t) uniformly on compact sets of [0, T ]\{t1, . . . , tk−1},
where ti are the discontinuity times for u. Moreover in a small neighborhood of ti, a

rescaled version of uε(t) converges to the heteroclinic solution v(s), connecting u(t−i )

and u(t+i ). Finally, the graph of uε approaches the completion of the graph of u obtained
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by using the heteroclinic trajectories.

The previous chapter may suggest the following idea, that it may be possible to char-

acterize the regular paths of an evolution u(t) using the Implicit Function Theorem. This

actually has become the key property for the irreversible quasistatic evolutionary model

studied in Chapter 3 of the present thesis.

For this model, the prescribed crack path, Γ, is a regular arc with one endpoint on the

boundary of the reference configuration Ω and the other inside Ω. We assume in addition

that there exists an initial connected crack starting from the boundary point, and that

the crack remains connected during the evolution. Hence, such a crack will be completely

determined by its length σ. Here a configuration is a pair (u, σ) where u is a scalar

function representing the displacement orthogonal to the plane of Ω, and σ represents the

length of the crack.

The evolution is driven by time-dependent imposed boundary displacements ψ(t) on a

part ∂DΩ of the boundary, and applied boundary forces g(t) on the remaining part ∂NΩ.

The total energy, E (t)(u, σ), of a configuration (u, σ) at time t, is the sum of the bulk

energy and the surface energy minus the work of the applied forces g(t).

For this model we are interested in obtaining a local stability criterion for the energy

functional rather than a global one. Hence, we focus on this aspect and keep the rest of

the model as simple as possible.

Therefore, the bulk part of the energy is given by the square of the L2-norm of the

gradient of u, while, according to Griffith’s theory, we assume the surface energy to be

proportional to the length σ of the crack, the constant of proportionality being given by

the toughness of the material.

For a given crack length σ and for a boundary displacement ψ(t), let AD(ψ(t), σ) be

the set of admissible displacements, i.e., displacements with finite bulk energy, compatible

with ψ(t) and σ.

Note that for this model, given t and σ, there exists a unique minimizer ut,σ of the

energy E (t)(u, σ) in AD(ψ(t), σ). Then let us consider the minimal energy E(t, σ) corre-

sponding to the boundary data ψ(t) and to the crack length σ, i.e., E(t, σ) := E (t)(ut,σ, σ).

The derivative ∂σE(t, σ) can be computed (see Proposition 3.2.4) and it is related to the

stress intensity factor of the displacement ut,σ at the tip of the crack. It plays a crucial

rôle in the Griffith’s criterion for the propagation of cracks, as reminded in the previous

section (see also, e.g., [9]).

Let us define now the notion of evolution we are interested in. The irreversible

quasistatic evolution problem consists in finding a left-continuous function of time t 7→
(u(t), σ(t)) such that the displacement u(t) at time t belongs to the set AD(ψ(t), σ(t)),

and the following three conditions are satisfied:
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(a) local stability: at every time t ≥ 0

E (t)(u(t), σ(t)) ≤ E (t)(v, σ(t)) ∀ v ∈ AD(ψ(t), σ(t))

∂σE(t, σ(t)) ≥ 0 ,

(b) irreversibility: the map t 7→ σ(t) is increasing;

(c) energy inequality: for every 0 ≤ s < t we have

E (t)(u(t), σ(t)) ≤ E (s)(u(s), σ(s)) + Work(u; s, t) ,

where Work(u; s, t) denotes the work of external forces.

A solution to this problem will be called an irreversible quasistatic evolution.

The main difference with respect to previous models stays in condition (a), where the

pair (u(t), σ(t)) shall satisfy the first order necessary conditions for the global stability, but

not the sufficient ones. In condition (c) three terms contribute to the work of the external

forces: two of them are due to the surface forces generated by the imposed boundary

displacement and the third one comes from the applied surface loads.

Despite of the new features, we will prove that conditions (a)-(c) are enough to ensure

that at almost every time t a weak version of Griffith’s criterion is satisfied (see Propo-

sition 3.3.2). We observe also that the globally stable irreversible quasistatic evolution

problem studied in [18], [9], [3], [17], [8] is actually a particular case of the previous one.

Therefore, this model contains the previously studied globally stable evolutionary models

and continue to ensure the validity of Griffith’s criterion.

In order to obtain an existence result we adopt a selection criterion different from

global stability and based on an approximation procedure with a regularizing effect. This

is performed directly in the time-continuous formulation, in the sense that there is no

need of a preliminary study of time-discrete problems.

We thus propose the notion of approximable irreversible quasistatic evolution (see

Definition 3.3.6) defined as an irreversible quasistatic evolution which is the limit, along

a suitable sequence, of some approximating more regular evolutions (uε, σε) obtained by

solving suitable nonlinear PDEs (see (0.2.5)). We prove that if (u(t), σ(t)) is a limit of

such an approximation, then the following property holds.

(P) if on a certain time interval [t0, t1] there exists a regular function σ0(t) such that

∂σE(t, σ0(t)) = 0 and ∂2
σE(t, σ0(t)) > 0 ∀ t ∈ [t0, t1] ,

and if σ̇ε(t) > 0 for every t ∈ [t0, t1], then the equality σ(t0) = σ0(t0) implies that

σ(t) = σ0(t) for every t ∈ [t0, t1].
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Since the regular function t 7→ σ0(t) can be obtained, under suitable standard assump-

tions, by applying the Implicit Function Theorem to ∂σE(t, σ) = 0, we deduce that our

evolution can be characterized on the convexity intervals of the energy functional through

this regular function σ0(t), provided that some additional assumptions are satisfied. This

feature makes the difference with the globally stable evolution, which is expected to move

abruptly toward the absolute minimum of the energy, while our approximable evolution

is expected to propagate continuously at least on every time interval where property (P)

holds.

Let us now describe more in detail the construction of the approximating evolutions.

First of all, we fix an initial condition: assume that at time t = 0 the crack length is equal

to σ0 > 0 and the displacement is equal to u0, in such a way that the initial configuration

(u0, σ0) is in equilibrium. Then, for every σ between σ0 and σ, where σ is the length of Γ,

we consider a diffeomorphism Φσ of Ω that transforms the crack of length σ into the one

of length σ0. Using Φσ, we change variables in the expression of the energy functional E

and transform it into a functional F depending on the time t, the crack length σ, and

the modified displacement v, which takes the form

F (t, v, σ) =

∫

Ω\Γ(σ0)

(A(σ, x)Dv(x)|Dv(x)) dx+ . . . ,

where Γ(σ0) is the crack of length σ0, A(σ, x) is a 2×2 symmetric matrix of smooth

coefficients coming from the change of variables, Dv is the distributional gradient of v

with respect to the spatial variables x, and (·|·) denotes the scalar product in R
2. The

advantage of this change of variables is that now the set of admissible functions v does

not depend on t, nor on the crack length σ. Therefore our argument is developed in terms

of the functional F (after having proved the equivalence of the critical points of F and

of E , see Proposition 3.2.1).

The same change of variables is considered, in a suitable small neighbourhood of the

crack tip, in order to compute the derivative ∂σE(t, σ) (see also [23], [2], [28]).

The approximating evolution (vε, σε) is obtained as the solution of a suitably modified

ε-gradient flow for the functional F which starts from the initial data (u0, σ0):






















εv̇ε = −gradvF (t, vε, σε)

εσ̇ε = (−∂σF (t, vε, σε))
+λ(σε)

vε(0) = u0

σε(0) = σ0 .

(0.2.5)

Here gradvF (t, v, σ) denotes the gradient of the function v 7→ F (t, v, σ) considered as a

function defined on the Sobolev space H1(Ω \ Γ(σ0)) with suitable boundary conditions.

The positive part in the second equation guarantees the irreversibility of the evolution,

while λ is a Lipschitz continuous positive cut-off function that becomes zero for σ = σ,

so that only increasing solutions with crack length less than σ are considered.
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If we are interested in the evolution until a certain crack length σ1, with σ0 < σ1 < σ,

is reached, then we choose λ(σ) = 1 for σ0 ≤ σ ≤ σ1. In this way for crack lengths less

than σ1, the regularized evolution law is proportional to the gradient flow for F , with the

constraint that the crack length is increasing, while it is distorted by λ for crack lengths

between σ1 and σ. Therefore the evolution is considered meaningful only until the crack

reaches the length σ1.

Note that, using the form of the functional F , the first equation in (0.2.5) can be

written as

ε∆xv̇ε(t, x) = −divx(A(σε(t), x)Dvε(t, x)) + . . .

with suitable boundary conditions. We preferred the evolution problem in H1 to the usual

parabolic one

εv̇ε(t, x) = −divx(A(σε(t), x)Dvε(t, x)) + . . .

which corresponds to the gradient flow in L2, because it helped us to prove property (P),

see Theorem 3.4.1. Note also that in this way the first equation in (0.2.5) becomes an

ODE and thus the existence of the solution for this modified ε-gradient flow follows from

classical existence and uniqueness results for ordinary differential equations in Banach

spaces.

We prove in Theorem 3.3.7 the existence of an approximable irreversible quasistatic

evolution, while in Theorem 3.4.1 we obtain property (P) for our evolution.

Let us remark that this model is not suited for the study of the crack initiation problem.

We also note that the approximating evolutions we consider have been chosen on the basis

of their mathematical simplicity and do not seem to have any mechanical interpretation.

Nevertheless, we think that the notion of approximable irreversible quasistatic evolution

proposed here could be the starting point for the study of different approximations with

a mechanical justification.

The results of Chapter 1 are obtained in collaboration with Gianni Dal Maso and

will appear in [11], while the content of Chapter 2 corresponds to the paper [44]. The

results of Chapter 3 are achieved in collaboration with Rodica Toader and correspond to

paper [41].
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Chapter 1

Quasistatic crack growth for a

cohesive zone model

In this chapter we present a variational model for quasistatic crack growth in the presence

of a cohesive force exerted between the lips of the crack.

We assume that the crack path is prescribed, and, more precisely, that it consists

of a compact C1-orientable (n − 1)-dimensional manifold M contained in the reference

configuration Ω ⊂ R
n, such that Ω r M is connected. We want to study the time

evolution of the crack in the framework of Mielke’s approach to a variational theory of

rate-independent processes (see [35], [32]).

The evolution of the crack is governed by an energy which is the sum of three terms:

the bulk energy of the uncracked part, the energy dissipated in the fracture process, and

the work of the external loads. The main mathematical difficulty is given by the fact that

the fracture energy depends on the opening of the crack. For this reason we cannot apply

directly the tools developed so far in the applications to fracture mechanics of the theory

of free discontinuity problems (see [18], [9], [10], [3], [17], [7], [8]).

We prove an existence result for the quasistatic evolution (see Theorem 1.2.10), by

approximating the continuous-time problem by discrete-time problems, for which the

evolution is defined by solving incremental minimum problems. The irreversibility of

the crack process leads to introduce an auxiliary time-dependent function t 7→ γ(t) (see

Section 1.1 below), defined on the prescribed crack path, which takes into account the

local history of the crack up to time t. The main mathematical difficulty in the proof is

the compactness of the approximating functions t 7→ γk(t). This is solved by introducing

a new notion of convergence of functions related to the problem, with good compactness

and semicontinuity properties.

The chapter is organized as follows. In Section 1.1 we describe the setting of the prob-

lem introducing all the mathematical quantities we need to define, in Section 1.2, the total

energy of an admissible configuration (u, γ), where u ∈ W 1,p(Ω \M ; Rm) represents the

deformation and γ belongs to a suitable subset of L1(M), named L1(M)+, and represents
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the internal variable due to the irreversibility of the process. Then we define the notion

of irreversible quasistatic evolution (see Definition 1.2.4) we are interested in and prove

some properties of it. In Section 1.3 we develop the mathematical tools in order to prove,

in Section 1.4, the main result of this chapter, Theorem 1.2.10. In Section 1.5 we study

the Euler conditions satisfied by globally stable pairs (u, γ) ∈W 1,p(Ω\M ; Rm)×L1(M)+.

Finally, in Section 1.6, we prove that, with some modifications, the main theorem continue

to hold also in the case where the uncracked part of the body in linearly elastic.

1.1 Setting

The reference configuration is a bounded open set Ω of R
n with Lipschitz boundary

∂Ω, which can be written as the union of two disjoint Borel sets ∂0Ω and ∂1Ω, with

H n−1(∂0Ω) > 0 and ∂1Ω relatively open. Here and henceforth H n−1 denotes the (n−1)-

dimensional Hausdorff measure. On ∂0Ω, the Dirichlet part of the boundary, we will

assign the boundary deformation, while on ∂1Ω, the Neumann part of the boundary, we

will prescribe surface forces.

We assume that the cracks are contained in a compact C1-orientable (n−1)-dimensional

manifold M ⊂ Ω with boundary ∂M , such that Ω rM is connected. Therefore it is rea-

sonable to take the deformation u as a function in the space W 1,p(Ω r M ; Rm), so that

the essential discontinuity points of u are contained in M . Although the natural choice

is m = n, there are no mathematical difficulties in considering an arbitrary m ≥ 1. The

case m = 1 is used in the study of antiplane shears. The number p > 1 depends on the

bounds on the energy density considered below.

We take into account prescribed time-dependent boundary deformations t 7→ ψ(t),

with ψ(t) ∈ W 1,p(Ω; Rm), in the sense that for each time t ∈ [0, T ] we consider only

deformations u ∈W 1,p(Ω rM ; Rm) such that

u = ψ(t) on ∂0Ω,

where the previous equality has to be considered in the sense of traces. We assume also

that, as a function of time, t 7→ ψ(t) is absolutely continuous from [0, T ] into W 1,p(Ω; Rm).

Thus the time derivative t 7→ ψ̇(t) belongs to the space L1([0, T ];W 1,p(Ω; Rm)) and its

spatial gradient t 7→ ∇ψ̇(t) belongs to the space L1([0, T ];Lp(Ω; Mm×n)).

We assume that the uncracked part of the body is hyperelastic and that its bulk energy

relative to the deformation u ∈W 1,p(Ω rM ; Rm) is of the form

∫

ΩrM

W (x,∇u) dx,

where W (x, ξ) is a given Carathéodory function W : (Ω rM) × M
m×n → R such that

(W1) ξ 7→W (x, ξ) is quasiconvex and C1 for every x ∈ Ω rM ;
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(W2) there are two positive constants a0, a1 and two nonnegative functions b0, b1 ∈ L1(Ωr

M) such that

a0 |ξ|p − b0(x) ≤W (x, ξ) ≤ a1 |ξ|p + b1(x), (1.1.1)

for every (x, ξ) ∈ (Ω rM) × M
m×n.

Since ξ 7→ W (x, ξ) is rank-one convex on M
m×n for every x ∈ Ω r M , we can deduce

from (1.1.1) an estimate for the partial gradient of W with respect to ξ, ∂ξW : (Ω r

M)×M
m×n → M

m×n. More precisely, there are a positive constant a2 and a nonnegative

function b2 ∈ L1(Ω rM) such that

|∂ξW (x, ξ)| ≤ a2 |ξ|p−1 + b2(x), (1.1.2)

for every (x, ξ) ∈ (Ω rM) × M
m×n.

To shorten the notation we introduce the function W : Lp(ΩrM ; Mm×n) → R defined

by

W(Ψ) :=

∫

ΩrM

W (x,Ψ) dx,

for every Ψ ∈ Lp(Ω r M ; Mm×n). By (1.1.1) and (1.1.2) the functional W is of class C1

on Lp(Ω r M ; Mm×n) and its differential ∂W : Lp(Ω r M ; Mm×n) → Lq(Ω r M ; Mm×n),

p−1 + q−1 = 1, is given by

〈∂W(Ψ),Φ〉 =

∫

ΩrM

∂ξW (x,Ψ) :Φ dx,

for every Φ, Ψ ∈ Lp(Ω rM ; Mm×n), where 〈·, ·〉 denotes the duality pairing between the

spaces Lq(Ω r M ; Mm×n) and Lp(Ω r M ; Mm×n), and ∂ξW (x,Ψ) :Φ denotes the scalar

product between the two matrices ∂ξW (x,Ψ) and Φ.

By the assumptions on W , the functions W and ∂W satisfy the following properties:

there are two positive constants α0, α1 and two nonnegative constants β0, β1 such that

α0 ‖Ψ‖p

p − β0 ≤ W(Ψ) ≤ α1 ‖Ψ‖p

p + β1, (1.1.3)

for every Ψ ∈ Lp(Ω rM ; Mm×n), and there is a positive constant α2 such that

〈∂W(Ψ),Φ〉 ≤ α2(1 + ‖Ψ‖p−1
p )‖Φ‖p, (1.1.4)

for every Ψ, Φ ∈ Lp(Ω rM ; Mm×n).

For a fixed time t ∈ [0, T ], we assume that the external time-dependent loads L (t)

belong to (W 1,p(Ω rM ; Rm))′, the dual space of W 1,p(Ω rM ; Rm). The duality product

〈L (t), u〉 is interpreted as the work done by the loads on the deformation u.

Let us fix an orientation of M and let u⊕ be the trace of u on the positive side of M ,

and u⊖ be the trace of u on the negative side of M . The most general form of the work
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done by the external loads is given by

〈L (t), u〉 =

∫

ΩrM

f(t) u dx+

∫

ΩrM

H(t) :∇u dx+

+

∫

∂1Ω

g(t) u dH n−1 +

∫

M

(g⊕(t) u⊕ + g⊖(t) u⊖) dH n−1,

(1.1.5)

where f(t) ∈ Lq(Ω r M ; Rm), H(t) ∈ Lq(Ω r M ; Mm×n), g(t) ∈ Lq(∂1Ω; Rm), g⊕(t)

and g⊖(t) ∈ Lq(M ; Rm), with p−1 + q−1 = 1. Actually the representation theorem for

(W 1,p(ΩrM ; Rm))′ shows that it is enough to use just the terms of the first line of (1.1.5).

The terms in the second line have been added in order to write in an explicit way the

contribution of the surface forces acting on the Neumann part of the boundary and on

one or both sides of M .

With these assumptions we do not exclude the possibility that H(t) could be discon-

tinuous on M . Moreover, observe that if f(t), H(t), g(t), g⊕(t) and g⊖(t) are sufficiently

regular, then

f(t) − div H(t)

plays the role of the volume forces on Ω rM ,

g(t) +H(t)ν

plays the role of the surface forces on ∂1Ω, and

g⊕(t) −H⊕(t)ν and g⊖(t) +H⊖(t)ν

play the role of the surface forces acting on the positive (respectively negative) side of M ,

where ν is the outer unit normal to ∂(ΩrM). We observe that, by our positions, ν turns

out to be the inner normal on the positive side of M ; this is why in the last formula we

take the minus sign in front of H⊕(t)ν.

We assume that, as a function of time, t 7→ L (t) is absolutely continuous from [0, T ]

into (W 1,p(Ω r M ; Rm))′. Thus the time derivative t 7→ L̇ (t) belongs to the space

L1([0, T ]; (W 1,p(Ω rM ; Rm))′). If L (t) is represented by (1.1.5), then the absolute con-

tinuity of t 7→ L (t) follows from the absolute continuity of the functions t 7→ f(t),

t 7→ H(t), t 7→ g(t), t 7→ g⊕(t), and t 7→ g⊖(t).

If the deformation u has a nonzero jump [u] = u⊕ − u⊖ on M , then the body has a

crack on (part of) M . More precisely the crack is given by the set

{x ∈ M : [u](x) 6= 0}.

Let us consider now the work done to produce a crack. If we neglect for a moment

the problem of irreversibility, we may assume that this work can be written in the form
∫

M

ϕ(x, [u]) dH n−1,

where ϕ : M × R
m → [0,+∞] satisfies the following properties
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(ϕ1) ϕ is a Borel function;

(ϕ2) ϕ(x, 0) = 0 for H n−1-a.e. x ∈M ;

(ϕ3) the function y 7→ ϕ(x, y) is lower semicontinuous on R
m for H n−1-a.e. x ∈M .

A simple example is given by the function

ϕ(x, y) :=

{

a+ b|y| if y ∈ R
m

r {0},
0 if y = 0,

(1.1.6)

where a ≥ 0 and b ≥ 0 are real constants. The constant a plays the role of an activation

energy; if b > 0, there is also an energy term proportional to the amplitude of the crack

opening. The classical Griffith’s model corresponds to the case a > 0 and b = 0.

Let L0(M) be the set of extended real valued measurable functions on M and let

L0(M)+ be the set of functions w ∈ L0(M) such that w ≥ 0 H n−1-a.e. on M .

We introduce the function φ : Lp(M ; Rm) → L0(M)+ defined by

φ(w)(x) := ϕ(x, w(x)),

for every w ∈ Lp(M ; Rm) and for H n−1-a.e. x ∈M .

Given an arbitrary family (wi)i∈I in L0(M)+ the essential supremum

w = ess sup
i∈I

wi

of the family is defined as the unique (up to H n−1-equivalence) function in L0(M)+ such

that

• w ≥ wi H n−1-a.e. on M for all i ∈ I;

• if z ∈ L0(M)+ and z ≥ wi H n−1-a.e. on M , then z ≥ w H n−1-a.e. on M .

For the existence of such a function see, for instance, [39, Proposition VI-1-1].

Suppose now that the deformation u depends on time, i.e., we have a map t 7→ u(t)

from [0, T ] into W 1,p(Ω rM ; Rm). If no crack is present until time 0 and

φ([u(s)]) ≤ φ([u(t)]) H
n−1-a.e. on M

for every s ∈ [0, t], then the energy dissipated in the crack process in the time interval

[0, t] is given, in our model, by
∫

M

φ([u(t)]) dH n−1.

This happens for instance when s 7→ φ([u(s)]) is monotonically increasing H n−1-a.e. on

M .
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In the general case, the irreversibility of the fracture process leads to introduce an

auxiliary function t 7→ β(t) from [0, T ] to L1(M), which takes into account the history of

the system up to time t. We assume that for every 0 ≤ t1 ≤ t2 ≤ T we have

β(t2) = β(t1) ∨ ess sup
t1≤s≤t2

φ([u(s)]) H
n−1-a.e. on M , (1.1.7)

so that

β(t2) − β(t1) = ess sup
t1≤s≤t2

(φ([u(s)]) − β(t1))
+

H
n−1-a.e. on M,

where for every a ∈ R, a+ := a ∨ 0 denotes the positive part of a.

In particular

• t 7→ β(t) is increasing, i.e., β(t1) ≤ β(t2) H n−1-a.e. on M for 0 ≤ t1 ≤ t2 ≤ T ;

• β(t) ≥ φ([u(t)]) H n−1-a.e. on M for every t ∈ [0, T ].

In our model the energy dissipated in the time interval [t1, t2] is given by

‖β(t2) − β(t1)‖1,M :=

∫

M

(β(t2) − β(t1)) dH
n−1.

According to this assumption there is no dissipation in the intervals [t1, t2] where φ([u(s)]) ≤
β(t1) H n−1-a.e. on M for every s ∈ [t1, t2], while the dissipation is given by

∫

M

(

φ([u(t2)]) − φ([u(t1)])
)

dH n−1

whenever β(t1) ≤ φ([u(s)]) ≤ φ([u(t2)]) for every s ∈ [t1, t2].

It follows from (1.1.7) that β(t) is uniquely determined by β(0) and by the history of the

deformation s 7→ u(s) in the interval [0, t]. Since it is difficult to deal with (1.1.7) directly,

we prefer to define the notion of quasistatic evolution by considering a more general

internal variable t 7→ γ(t) which is assumed to satisfy the following weaker conditions:

• t 7→ γ(t) is increasing, i.e., γ(t1) ≤ γ(t2) H n−1-a.e. on M for 0 ≤ t1 ≤ t2 ≤ T ;

• γ(t) ≥ φ([u(t)]) H n−1-a.e. on M for every t ∈ [0, T ].

We do not assume from the beginning that t 7→ γ(t) satisfies (1.1.7). This property will be

a nontrivial consequence of the other conditions considered in the definition of quasistatic

evolution (see Theorem 1.2.7).

Given functions ψ ∈ W 1,p(Ω; Rm) and γ ∈ L0(M)+, it is convenient to introduce

the set AD(ψ, γ) of admissible deformations with boundary value ψ on ∂0Ω and internal

variable γ. It is defined by

AD(ψ, γ) := {u ∈W 1,p(Ω rM ; Rm) : φ([u]) ≤ γ on M , and u = ψ on ∂0Ω},
where equalities and inequalities are considered H n−1-a.e., and the last equality refers to

the traces of u and ψ on ∂0Ω.

An admissible configuration with boundary value ψ on ∂0Ω is a pair (u, γ), with

γ ∈ L1(M)+ := L1(M) ∩ L0(M)+ and u ∈ AD(ψ, γ).
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1.2 Definition and properties of quasistatic evolutions

For every t ∈ [0, T ], the total energy of an admissible configuration (u, γ) at time t is

defined as

E (t)(u, γ) := W(∇u) − 〈L (t), u〉 + ‖γ‖1,M ,

where ‖ · ‖1,M denotes the L1-norm on M .

We now introduce the following definition in the spirit of Griffith’s original theory on

the crack propagation.

Definition 1.2.1. A pair (u, γ) ∈ W 1,p(Ω rM ; Rm) × L1(M)+ is globally stable at time

t ∈ [0, T ] if u ∈ AD(ψ(t), γ) and

E (t)(u, γ) ≤ E (t)(v, δ) (1.2.1)

for every δ ≥ γ and for every v ∈ AD(ψ(t), δ).

In other words, the total energy of (u, γ) at time t cannot be reduced by increasing the

internal variable γ or by choosing a new admissible deformation with the same boundary

condition.

Remark 1.2.2. For every t ∈ [0, T ] let (u(t), γ(t)) ∈ W 1,p(Ω r M ; Rm) × L1(M)+ be

globally stable at time t. By Definition 1.2.1 we can deduce an a priori estimate on u(t).

Indeed, by comparing E (t)(u(t), γ(t)) with E (t)(ψ(t), γ(t)), which is bounded uniformly

with respect to t, we get that W(∇u(t))−〈L (t), u(t)〉 is bounded uniformly in time. Next,

by the assumption (1.1.3) on W and the boundedness of L (t) in (W 1,p(Ω r M ; Rm))′,

we obtain that the W 1,p-norm of u(t), ‖u(t)‖1,p, is bounded uniformly with respect to t.

Furthermore from this fact and by Definition 1.2.1 we get that the crack term ‖γ(t)‖1,M

is bounded uniformly in time, too.

Remark 1.2.3. Condition (1.2.1) is equivalent to

E (t)(u, γ) ≤ E (t)(v, γ ∨ φ([v])),

for every v ∈W 1,p(Ω rM ; Rm) such that v = ψ(t) H n−1-a.e. on ∂0Ω. This is equivalent

to

W(∇u) − 〈L (t), u〉 ≤ W(∇v) − 〈L (t), v〉 + ‖(φ([v]) − γ)+‖1,M (1.2.2)

for every v ∈ W 1,p(Ω rM ; Rm) such that v = ψ(t) H n−1-a.e. on ∂0Ω. This implies that

if (u, γ) is globally stable at time t and γ̃ ∈ L1(M)+ satisfies φ([u]) ≤ γ̃ ≤ γ H n−1-a.e.

on M , then (u, γ̃) is globally stable at time t.

Definition 1.2.4. An irreversible quasistatic evolution of minimum energy configurations

is a function t 7→ (u(t), γ(t)) from [0, T ] into W 1,p(Ω rM ; Rm) × L1(M)+ which satisfies

the following conditions:
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(a) global stability: for every t ∈ [0, T ] the pair (u(t), γ(t)) is globally stable at time t;

(b) irreversibility: γ(s) ≤ γ(t) H n−1-a.e. on M for every 0 ≤ s ≤ t ≤ T ;

(c) energy balance: the function t 7→ E (t)(u(t), γ(t)) is absolutely continuous on [0, T ]

and

d

dt
(E (t)(u(t), γ(t))) = 〈∂W(∇u(t)),∇ψ̇(t)〉 − 〈L (t), ψ̇(t)〉 − 〈L̇ (t), u(t)〉 ,

for a.e. t ∈ [0, T ].

Remark 1.2.5. Condition (c) is equivalent to the following one:

(c’) energy balance in integral form: the function t 7→ 〈∂W(∇u(t)),∇ψ̇(t)〉−〈L̇ (t), u(t)〉
belongs to L1([0, T ]) and

E (t)(u(t), γ(t)) − E (0)(u(0), γ(0)) =

=

∫ t

0

(

〈∂W(∇u(s)),∇ψ̇(s)〉 − 〈L (s), ψ̇(s)〉 − 〈L̇ (s), u(s)〉
)

ds

for every t ∈ [0, T ].

This can be written in the form

W(∇u(t)) −W(∇u(0)) + ‖γ(t) − γ(0)‖1,M =

=

∫ t

0

(

〈∂W(∇u(s)),∇ψ̇(s)〉 − 〈L (s), ψ̇(s)〉
)

ds+ (1.2.3)

+ 〈L (t), u(t)〉 − 〈L (0), u(0)〉 −
∫ t

0

〈L̇ (s), u(s)〉 ds,

for every t ∈ [0, T ]. The first line is the increment in stored energy plus a term which

will be interpreted as the energy dissipated by the crack process in the time interval [0, t],

as we shall see in Remark 1.2.8. Using the divergence theorem we can show that the

second line represents the work done in the same time interval by the forces which act

on ∂0Ω to produce the imposed deformation. The third line represents the work done by

the imposed forces in the interval [0, t]; this follows from an integration by parts when

t 7→ u(t) is regular enough, and can be obtained by approximation in the other cases.

If t 7→ (u(t), γ(t)) satisfies condition (a), then (u(t), γ(t)) is bounded in W 1,p(Ω r

M ; Rm) × L1(M)+ by Remark 1.2.2. Therefore in condition (c’) it is enough to assume

that t 7→ 〈∂W(∇u(t)),∇ψ̇(t)〉 − 〈L̇ (t), u(t)〉 is measurable.

In the following theorem we prove one inequality of the energy balance.
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Theorem 1.2.6. Let t 7→ (u(t), γ(t)) be a function from [0, T ] into W 1,p(Ω r M ; Rm) ×
L1(M)+ which satisfies the global stability condition (a) and the irreversibility condition

(b) of Definition 1.2.4. Assume that t 7→ 〈∂W(∇u(t)),∇ψ̇(t)〉−〈L̇ (t), u(t)〉 is measurable.

Then

E (t)(u(t), γ(t)) − E (0)(u(0), γ(0)) ≥

≥
∫ t

0

(

〈∂W(∇u(s)),∇ψ̇(s)〉 − 〈L (s), ψ̇(s)〉 − 〈L̇ (s), u(s)〉
)

ds

for every t ∈ [0, T ].

Proof. We note that t 7→ 〈∂W(∇u(t)),∇ψ̇(t)〉 − 〈L̇ (t), u(t)〉 belongs to L1([0, T ]) by the

arguments of Remark 1.2.2. The result can now be obtained arguing as in [8] (see the

proof of Lemma 7.1 and the final part of the proof of Theorem 3.15).

Now we prove that for a quasistatic evolution t 7→ (u(t), γ(t)), the internal variable

t 7→ γ(t) satisfies a condition analogous to (1.1.7).

Theorem 1.2.7. Let t 7→ (u(t), γ(t)) be a quasistatic evolution. Then

γ(t2) = γ(t1) ∨ ess sup
t1≤s≤t2

φ([u(s)]) H
n−1-a.e. on M, (1.2.4)

for every 0 ≤ t1 ≤ t2 ≤ T .

Proof. It is enough to prove that

γ(t) = γ(0) ∨ ess sup
0≤s≤t

φ([u(s)]) H
n−1-a.e. on M, (1.2.5)

for every t ∈ [0, T ]. Let γ̃(t) be the right-hand side of (1.2.5). Since t 7→ γ(t) is increasing

and φ([u(t)]) ≤ γ(t) H n−1-a.e. onM for every t ∈ [0, T ], it follows that γ̃(t) ≤ γ(t) H n−1-

a.e. on M for every t ∈ [0, T ]. As φ([u(t)]) ≤ γ̃(t) H n−1-a.e. on M , by Remark 1.2.3

the pair (u(t), γ̃(t)) is globally stable at time t for every t ∈ [0, T ]. Since t 7→ γ̃(t) is

increasing, we can apply Theorem 1.2.6 and we obtain

E (t)(u(t), γ̃(t)) − E (0)(u(0), γ(0)) ≥

≥
∫ t

0

(

〈∂W(∇u(s)),∇ψ̇(s)〉 − 〈L (s), ψ̇(s)〉 − 〈L̇ (s), u(s)〉
)

ds

for every t ∈ [0, T ]. By the energy balance, item (c), it follows that the inequality

E (t)(u(t), γ̃(t)) ≥ E (t)(u(t), γ(t)) holds, i.e.,

W(∇u(t)) − 〈L (t), u(t)〉 + ‖γ̃(t)‖1,M ≥ W(∇u(t)) − 〈L (t), u(t)〉 + ‖γ(t)‖1,M ,

which implies ‖γ̃(t)‖1,M ≥ ‖γ(t)‖1,M . As γ̃(t) ≤ γ(t) H n−1-a.e. on M , we deduce that

γ̃(t) = γ(t) H n−1-a.e. on M for every t ∈ [0, T ], which concludes the proof.
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Theorem 1.2.7 can be used to explain the mechanical meaning of the internal variable

γ in the model case ϕ(x, y) := |y|. Indeed, if t 7→ (u(t), γ(t)) is a quasistatic evolution with

γ(0) = 0 and ϕ(x, y) := |y|, then (1.2.4) shows that γ(t)(x) coincides with the maximum

modulus of the amplitude of the opening reached by the crack at x up to time t.

Remark 1.2.8. As t 7→ γ(t) satisfies (1.1.7) by Theorem 1.2.7, the mechanical interpre-

tation given in Section 1.1 shows that the term ‖γ(t) − γ(0)‖1,M in (1.2.3) represents the

energy dissipated in the crack process in the time interval [0, t].

Remark 1.2.9. In our model, the dissipation term in the energy functional comes from

the expression ‖γ ∨ φ([v]) − γ‖1,M and is nonlinear in γ. This turns out to be the main

mathematical difference between our model and the model considered by Mielke and

Mainik and Mielke in [35, Section 4.2] and [32, Section 6.2], where the dissipation term

is linear.

We are now in a position to state our main result.

Theorem 1.2.10. Let (u0, γ0) ∈ W 1,p(Ω r M ; Rm) × L1(M)+ be globally stable at time

t = 0. Then there exists an irreversible quasistatic evolution t 7→ (u(t), γ(t)) such that

(u(0), γ(0)) = (u0, γ0).

1.3 Some tools

We introduce a notion of convergence for the functions γ, which is the counterpart of the

notion of convergence of sets introduced in [8]. The main property of this convergence

is that, if uk converges weakly in W 1,p(Ω r M ; Rm) to some function u and φ([uk]) ≤ γk

H n−1-a.e. on M , then φ([u]) ≤ γ H n−1-a.e. on M .

Definition 1.3.1. Let γk, γ ∈ L0(M)+. We say that γk σ
p
ϕ-converges to γ if the following

two conditions are satisfied:

(a) if uj ⇀ u weakly in W 1,p(Ω r M ; Rm) and φ([uj]) ≤ γkj
H n−1-a.e. on M for some

sequence kj → ∞, then φ([u]) ≤ γ H n−1-a.e. on M ;

(b) there exist a sequence ui ∈ W 1,p(Ω r M ; Rm), with supi φ([ui]) = γ H n−1-a.e. on

M , and, for every i, a sequence ui
k ∈ W 1,p(Ω rM ; Rm), converging to ui weakly in

W 1,p(Ω r M ; Rm) as k → ∞, such that φ([ui
k]) ≤ γk H n−1-a.e. on M for every i

and k.

Notice that we do not require any upper bound in L1(M)+ for the functions γk.
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Remark 1.3.2. If γk σ
p
ϕ-converges to γ, then in particular there are functions ui

k and ui

in W 1,p(ΩrM ; Rm) such that condition (b) in Definition 1.3.1 holds. We define for every

k the following two quantities

γi := sup
j=1,...,i

φ([uj]) and γi
k := sup

j=1,...,i

φ([uj
k]).

With this notation it turns out that

γ = lim
i→∞

γi and γk ≥ sup
i∈N

γi
k,

for every k.

Remark 1.3.3. If γk σ
p
ϕ-converges to γ, then

γ ≤ lim sup
k→∞

γk, H
n−1-a.e. on M,

as we can see by modifing the proof of Lemma 1.3.4 below. Notice that the inequality

can be strict, even when γk converges pointwise to a function γ̃. As an example, consider

n = 2, m = 1, p = 2, Ω = ]−2, 2[2 and M = [0, 1] × {0}. Let γk ∈ L0(M)+ be defined as

follows:

γk(x) :=















1 for x ∈
[

i
k
, i+1

k
− 1

k2

[

;

0 for x ∈
[

i+1
k

− 1
k2 ,

i+1
k

[

;

for i = 0, . . . , k − 1.

It follows from homogenization theory (see [12], [38], [40]) that condition (a) in Defini-

tion 1.3.1 is satisfied with γ = 0, hence γk σ
2
ϕ-converges to 0. Furthermore γk converge in

measure to 1, so up to a subsequence we have pointwise convergence to 1 =: γ̃ > γ.

We prove in the following lemma that the L1-norm is lower semicontinuous with respect

to σp
ϕ-convergence.

Lemma 1.3.4. Let γk, γ ∈ L0(M)+. If γk σ
p
ϕ-converges to γ then

‖γ‖1,M ≤ lim inf
k→∞

‖γk‖1,M . (1.3.1)

Proof. From the hypothesis it follows in particular that there are functions ui
k and ui in

W 1,p(Ω r M ; Rm) which satisfy condition (b) in Definition 1.3.1. With notation from

Remark 1.3.2, let us prove that for every i

‖γi‖1,M ≤ lim inf
k→∞

‖γi
k‖1,M . (1.3.2)

Extracting a subsequence we may assume that lim infk ‖γi
k‖1,M is a limit. As [uj

k] → [uj ]

strongly in Lp(M ; Rm) for j = 1, . . . , i, we can extract a further subsequence such that
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[uj
k] → [uj] pointwise H n−1-a.e. on M for j = 1, . . . , i. By the lower semicontinuity

assumption (ϕ3) this implies

γi ≤ lim inf
k→∞

γi
k H

n−1-a.e. on M.

By the Fatou lemma we obtain (1.3.2), which yields

‖γi‖1,M ≤ lim inf
k→∞

‖γk‖1,M .

We then pass to the limit as i tends to infinity and obtain (1.3.1).

We now prove a compactness result for the notion of σp
ϕ-convergence.

Lemma 1.3.5. Every sequence in L0(M)+ has a σp
ϕ-convergent subsequence.

Proof. Let us denote the Lp-norm by ‖ · ‖p. Let γk ∈ L0(M)+, let wh ∈ L∞(Ω rM ; Rm)

be dense in Lp(Ω r M ; Rm), and, for every positive integers l, h, and k, let us consider

the problem

min
{

‖∇u‖p
p + ℓ ‖u− wh‖p

p

}

, (1.3.3)

where the minimum is taken over all functions u ∈ W 1,p(Ω r M ; Rm) such that φ([u]) ≤
γk H n−1-a.e. on M .

To prove that the minimum is achieved, we take a minimizing sequence and we easily

obtain that it is bounded in W 1,p(Ω r M ; Rm). Then, up to a subsequence, we can pass

to the limit and by using our lower semicontinuity assumption (ϕ3) we can prove that

the limit function is actually a solution to the minimum problem (1.3.3). This solution,

which is unique by strict convexity, will be denoted by uℓ,h
k . Notice that this function is

bounded in W 1,p(Ω rM ; Rm) uniformly with respect to k, thus, up to a subsequence, we

can pass to the limit in k and get that there is a function uℓ,h such that uℓ,h
k ⇀ uℓ,h weakly

in W 1,p(Ω rM ; Rm). Further we define

γ := sup
ℓ,h∈N

φ([uℓ,h]) H
n−1-a.e. on M . (1.3.4)

In this way point (b) of Definition 1.3.1 is automatically satisfied.

We need to prove point (a). To this aim, let vj ⇀ v weakly in W 1,p(Ω r M ; Rm) be

such that φ([vj]) ≤ γkj
H n−1-a.e. on M for some sequence kj → ∞. We want to prove

that φ([v]) ≤ γ H n−1-a.e. on M . By density there is a subsequence of wh, say whi
, which

converges strongly to v in Lp(Ω rM ; Rm). Let ℓi → +∞ be such that ℓi‖v − whi
‖p

p → 0

as i tends to infinity. By the minimality of uℓi,hi

kj
, we have

‖∇uℓi,hi

kj
‖p

p + ℓi‖uℓi,hi

kj
− whi

‖p
p ≤ ‖∇vj‖p

p + ℓi‖vj − whi
‖p

p.

Then uℓi,hi

kj
is bounded in W 1,p(Ω r M ; Rm) uniformly with respect to j, and passing to

the limit as j tends to infinity we get

‖∇uℓi,hi‖p
p + ℓi‖uℓi,hi − whi

‖p
p ≤ sup

j∈N

‖∇vj‖p
p + ℓi‖v − whi

‖p
p.
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Since ℓi‖v − whi
‖p

p → 0 as i tends to infinity, this inequality ensures that ∇uℓi,hi is

bounded in Lp(Ω rM ; Rm) uniformly with respect to i, and uℓi,hi

kj
− whi

→ 0 strongly in

Lp(Ω rM ; Rm). As whi
→ v strongly in Lp(Ω rM ; Rm), we deduce that uℓi,hi converges

weakly to v in W 1,p(Ω r M ; Rm). Then [uℓi,hi] converges strongly to [v] in Lp(M ; Rm).

Passing to a subsequence, we may also obtain pointwise convergence H n−1-a.e. on M .

By (1.3.4) we have φ([uℓi,hi]) ≤ γ H n−1-a.e. on M , so that the lower semicontinuity

assumption (ϕ3) yields φ([v]) ≤ γ H n−1-a.e. on M , which is precisely the conclusion to

point (a) in the definition of σp
ϕ-convergence.

We shall use the following Helly-type compactness result. We recall that a function

t 7→ γ(t) from [0, T ] into L0(M)+ is said to be increasing if γ(s) ≤ γ(t) H n−1-a.e. on M ,

whenever 0 ≤ s ≤ t ≤ T .

Lemma 1.3.6. Let t 7→ γk(t) be a sequence of increasing functions from [0, T ] into

L0(M)+. Then there exist a subsequence γkj
, independent of t, and an increasing func-

tion t 7→ γ(t) from [0, T ] into L0(M)+, such that γkj
(t) σp

ϕ-converges to γ(t) for every

t ∈ [0, T ].

Proof. Let D be a countable dense subset of [0, T ] containing 0 and T . By Lemma 1.3.5,

using a diagonal argument, we can extract a subsequence, still named γk(t), and an

increasing function t 7→ γ(t) from D into L0(M)+, such that γk(t) σ
p
ϕ-converges to γ(t)

for every t ∈ D.

Let us define

γ(t+) := inf
s≥t, s∈D

γ(s) and γ(t−) := sup
s≤t, s∈D

γ(s),

for every t ∈ [0, T ]. It is easy to prove that:

(1) γ(t−) = γ(t) = γ(t+) for every t ∈ D;

(2) γ(t−) ≤ γ(t+) for every t ∈ [0, T ];

(3) if s < t, then γ(s+) ≤ γ(t−).

Define E := {t ∈ [0, T ] : γ(t+) = γ(t−) H n−1-a.e. in M} and γ(t) := γ(t−) = γ(t+)

for every t ∈ E. Note that by (1) D is contained in E and the definition of γ(t) agrees

with the original one on D. Then the definition of σp
ϕ-convergence and the monotonicity

condition imply that γk(t) σ
p
ϕ-converges to γ(t) for every t ∈ E.

Let us show now that the set Ec := [0, T ] rE is at most countable. For every pair of

positive integers i, k we set Ai,k := {t ∈ [0, T ] : ‖(γ(t+) ∧ k) − (γ(t−) ∧ k)‖1,M > 1/i},
so that Ec is the union of the sets Ai,k. Therefore it is enough to show that each set
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Ai,k is finite. Let t1 < · · · < tr ∈ Ai,k. Since, by (3), (γ(tj−1+) ∧ k) ≤ (γ(tj−) ∧ k) for

j = 2, . . . , r, we get

r

i
≤

r
∑

j=1

‖(γ(tj+) ∧ k) − (γ(tj−) ∧ k)‖1,M ≤ ‖γ(tr+) ∧ k‖1,M ≤ kH n−1(M),

so that r ≤ ikH n−1(M), which implies that Ai,k is finite. It follows that Ec is at most

countable, thus we can conclude the proof of the lemma by applying again the compactness

Lemma 1.3.5 for every t ∈ Ec, together with a diagonal argument.

The following result plays a crucial role in the proof of point (a) in the Definition 1.2.4

of quasistatic evolution.

Lemma 1.3.7. Let γk, γ ∈ L0(M)+. Assume that γk σ
p
ϕ-converges to γ. Then for any

v ∈W 1,p(Ω rM ; Rm) with φ([v]) ∈ L1(M)+ the following inequality holds true:

lim sup
k→∞

‖(φ([v]) − γk)
+‖1,M ≤ ‖(φ([v]) − γ)+‖1,M . (1.3.5)

Proof. It is not restrictive to assume that the lim sup is a limit. Let ui and ui
k be the

functions considered in point (b) of Definition 1.3.1. During the proof we shall use the

notation introduced in Remark 1.3.2. As γi
k ≤ γk H n−1-a.e. on M , we have

(φ([v]) − γk)
+ ≤ (φ([v]) − γi

k)
+,

hence

lim
k→∞

‖(φ([v]) − γk)
+‖1,M ≤ lim inf

k→∞
‖(φ([v]) − γi

k)
+‖1,M . (1.3.6)

Passing to a subsequence, we may assume that [ui
k] converges to [ui] H n−1-a.e. on M .

By the lower semicontinuity assumption (ϕ3) we obtain

γi ≤ lim inf
k→∞

γi
k H n−1-a.e. on M,

so that Fatou Lemma gives

lim sup
k→∞

‖(φ([v]) − γi
k)

+‖1,M ≤ ‖(φ([v]) − γi)+‖1,M ,

which, together with (1.3.6), yields

lim
k→∞

‖(φ([v]) − γk)
+‖1,M ≤ ‖(φ([v]) − γi)+‖1,M .

As γi → γ H n−1-a.e. on M , inequality (1.3.5) can be obtained by passing to the limit as

i→ ∞.

Remark 1.3.8. The conclusion of Lemma 1.3.7 does not hold, in general, when γk, γ ∈
L∞(M)+ and γk ⇀ γ weakly* in L∞(M). Consider, for instance, the case n = 2, m = 1,

Ω = ]−4, 4[2, M = [−π, π] × {0}, and define γk(x) := 1 + sin(kx1), where x1 denotes the

first coordinate of x. Then, γk converges to γ(x) := 1 weakly* in L∞(M), but (1.3.5) is

not satisfied for φ([v]) = 1, since in this case ‖(φ([v]) − γk)
+‖1,M = 2 for every k, while

‖(φ([v]) − γ)+‖1,M = 0.
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1.4 The discrete-time problems and proof of the main

result

In this section we prove Theorem 1.2.10 by a discrete-time approximation. We fix a

sequence of subdivisions (tik)0≤i≤k of the interval [0, T ], with

0 = t0k < t1k < · · · < tk−1
k < tkk = T, (1.4.1)

lim
k→∞

max
1≤i≤k

(tik − ti−1
k ) = 0. (1.4.2)

For i = 1, . . . , k we set L i
k = L (tik), ψ

i
k = ψ(tik), E i

k = E (tik).

For every k ∈ N we define ui
k and γi

k by induction as follows. Let (u0, γ0) be a minimum

energy configuration at time t = 0. We set (u0
k, γ

0
k) := (u0, γ0) and define (ui

k, γ
i
k) as a

solution of the minimum problem

min
{

E
i
k(u, γ) : γ ∈ L1(M)+, γ ≥ γi−1

k , u ∈ AD(ψi
k, γ)

}

, (1.4.3)

where the inequality means that γ ≥ γi−1
k H n−1-a.e. on M .

Remark 1.4.1. Consider the minimum problem

min
{

W(∇u) − 〈L i
k , u〉 + ‖φ([u]) ∨ γi−1

k ‖1,M : u = ψi
k on ∂0Ω

}

, (1.4.4)

where u is assumed to belong to W 1,p(Ω r M ; Rm). Then the following two conditions

are equivalent:

(a) the pair (ui
k, γ

i
k) is a solution to (1.4.3);

(b) ui
k is a solution to (1.4.4) and γi

k := γi−1
k ∨ φ([ui

k]) H n−1-a.e. on M .

The existence of a solution of (1.4.3) (or equivalently (1.4.4)) can be easily obtained by

using the direct methods of the calculus of variations. The compactness of a minimizing

sequence follows from (1.1.3) and positiveness of ϕ. The lower semicontinuity follows from

(W1), (W2), (ϕ3), and from the compactness of the trace operator.

For every t ∈ [0, T ] we define

τk(t) = tik, uk(t) = ui
k, γk(t) = γi

k, ψk(t) = ψ(tik),

Lk(t) = L (tik), Ek(t) = E (tik),
(1.4.5)

where i is the greatest integer such that tik ≤ t. Note that uk(t) = uk(τk(t)), γk(t) =

γk(τk(t)), ψk(t) = ψ(τk(t)), Lk(t) = L (τk(t)) and Ek(t) = E (τk(t)).
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Remark 1.4.2. Since ψi
k ∈ AD(ψi

k, γ
i−1
k ), then by Remark 1.2.2 we deduce that the

Lp-norms ‖∇ui
k‖p and ‖ui

k‖p are bounded uniformly with respect to i and k. Passing to

the piecewise constant functions t 7→ ∇uk(t) and t 7→ uk(t), we have that there exists a

positive constant C such that

‖∇uk(t)‖p ≤ C and ‖uk(t)‖p ≤ C (1.4.6)

for every k and for every t ∈ [0, T ]. Since Ek(t)(uk(t), γk(t)) is bounded uniformly with

respect to k, we get also that

‖γk(t)‖1,M ≤ C, (1.4.7)

for every k and for every t ∈ [0, T ].

We introduce now a sequence of functions which play an important role in our esti-

mates. For a.e. t ∈ [0, T ] we set

θk(t) := 〈∂W(∇uk(t)),∇ψ̇(t)〉 − 〈Lk(t), ψ̇(t)〉 − 〈L̇ (t), uk(t)〉. (1.4.8)

In the following lemma we present the main energy estimate for the discrete process.

Lemma 1.4.3. There exists a sequence Rk → 0 such that

E (τk(t))(uk(t), γk(t)) ≤ E (0)(u0, γ0) +

∫ τk(t)

0

θk(s) ds+Rk,

for every k and for every t ∈ [0, T ].

Proof. We need to prove that there exists a sequence Rk → 0 such that

E
i
k(u

i
k, γ

i
k) ≤ E (0)(u0, γ0) +

∫ ti
k

0

θk(s) ds+Rk,

for any k and for any i = 1, . . . , k.

Let us fix j and k with 1 ≤ j ≤ k. Since uj−1
k = ψj−1

k on ∂0Ω, and [uj−1
k +ψj

k −ψj−1
k ] =

[uj−1
k ] H n−1-a.e. on M , the function uj−1

k + ψj
k − ψj−1

k belongs to AD(ψj
k, γ

j−1
k ), hence

E
j
k (uj

k, γ
j
k) ≤ E

j
k (uj−1

k + ψj
k − ψj−1

k , γj−1
k ). The proof now can be concluded arguing as in

the proof of [8, Lemma 6.1].

We are now in a position to prove our main result.

Proof of Theorem 1.2.10. Let (tik), 0 ≤ i ≤ k, be a sequence of subdivisions of the interval

[0, T ] satisfying (1.4.1) and (1.4.2). For any k consider the pairs (ui
k, γ

i
k) inductively

defined as solutions of the discrete problems (1.4.3) for i = 1, . . . , k with the initial

condition (u0
k, γ

0
k) = (u0, γ0). Let τk(t), uk(t), γk(t), and ψk(t) be defined by (1.4.5) for

any t ∈ [0, T ]. By Lemma 1.3.6 there exists a subsequence of γk(t), independent of t,
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which σp
ϕ-converges to γ∞(t) ∈ L0(M)+, for every t ∈ [0, T ]. By (1.4.7) and Lemma 1.3.4

we have γ∞(t) ∈ L1(M)+.

Let θk(t) be defined by (1.4.8) for a.e. t and let

θ∞(t) := lim sup
k→∞

θk(t).

By (1.1.4) and (1.4.6) we deduce that

|θk(t)| ≤ α2(C
p−1 + 1)‖∇ψ̇(t)‖p + ‖Lk(t)‖∗‖ψ̇(t)‖1,p + C‖L̇ (t)‖∗,

where ‖ · ‖∗ is the norm in the dual space of W 1,p(Ω rM ; Rm). Since the right-hand side

of previous formula belongs to L1([0, T ]), we deduce that θ∞ belongs to L1([0, T ]), too,

and using the Fatou lemma we get

lim sup
k→∞

∫ τk(t)

0

θk(s) ds ≤
∫ t

0

θ∞(s) ds. (1.4.9)

For a.e. t ∈ [0, T ] we can extract a subsequence θkj
of θk, depending on t, such that

θ∞(t) = lim
j→∞

θkj
(t).

By (1.4.6) the sequence ukj
(t) is bounded in W 1,p(ΩrM ; Rm), therefore we can extract a

further subsequence, still denoted by ukj
(t), which converges weakly in W 1,p(Ω rM ; Rm)

to a function u∞(t).

Since φ([ukj
(t)]) ≤ γkj

(t) H n−1-a.e. on M , by point (a) in Definition 1.3.1 we have

φ([u∞(t)]) ≤ γ∞(t) H n−1-a.e. on M . On the other hand, as ukj
(t) = ψkj

(t) H n−1-a.e.

on ∂0Ω, we have also u∞(t) = ψ(t) H n−1-a.e. on ∂0Ω, so that u∞(t) ∈ AD(ψ(t), γ∞(t))

for every t ∈ [0, T ].

The next step is to prove that the pair (u∞(t), γ∞(t)) satisfies property (a) of Defi-

nition 1.2.4. To this aim, let γ ∈ L1(M)+, γ ≥ γ∞(t) and v ∈ AD(ψ(t), γ). By the

minimality of the incremental solutions (uk(t), γk(t)), we have that Ek(t) (uk(t), γk(t)) ≤
Ek(t)(vk, γk(t) ∨ φ([v])), where vk := v + ψk(t) − ψ(t). Since the functional u 7→ W(∇u)
is weakly lower semicontinuous and strongly continuous, and the function t 7→ L (t) is

continuous, it follows immediately that

W(∇u∞(t)) ≤ lim inf
k→∞

W(∇uk(t)), W(∇v) = lim
k→∞

W(∇vk), (1.4.10)

〈L (t), u∞(t)〉 = lim
k→∞

〈Lk(t), uk(t)〉, 〈L (t), v〉 = lim
k→∞

〈Lk(t), vk〉. (1.4.11)

So far we have easily obtained that

W(∇u∞(t)) − 〈L (t), u∞(t)〉 ≤
≤ W(∇v) − 〈L (t), v〉 + lim sup

k→∞
‖(φ([v]) − γk(t))

+‖1,M , (1.4.12)
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where the last term in right-hand side comes from the equality

(γ ∨ φ([v])) − γ = (φ([v]) − γ)+, (1.4.13)

which holds for every γ ∈ L0(M)+. In order to obtain that the pair (u∞(t), γ∞(t)) satisfies

point (a) in Definition 1.2.4 of quasistatic evolution we want to apply Lemma 1.3.7. To this

aim we need to know that φ([u∞(t)]) ∈ L1(M)+. By (1.4.7) in Remark 1.4.2 we have that

‖γk(t)‖1,M is bounded uniformly with respect to k. As uk(t) belongs to AD(ψk(t), γk(t)),

the sequence φ([uk(t)]) is bounded in L1(M)+, and by the lower semicontinuity assumption

(ϕ3) we obtain that φ([u∞(t)]) ∈ L1(M)+ thanks to the Fatou lemma. Then we can apply

Lemma 1.3.7 and we get

W(∇u∞(t)) − 〈L (t), u∞(t)〉 ≤
≤ W(∇v) − 〈L (t), v〉 + ‖(φ([v]) − γ∞(t))+‖1,M . (1.4.14)

Applying (1.4.13) to the last term in the right-hand side of (1.4.14) we conclude that

E (t)(u∞(t), γ∞(t)) ≤ E (t)(v, γ∞(t)∨φ([v])) ≤ E (t)(v, γ) for every t ∈ [0, T ] and point (a)

of Definition 1.2.4 is satisfied.

By the definition of the discrete problems, for every k the function t 7→ γk(t) is

increasing. Passing to the σp
ϕ-limit, the same property holds for t 7→ γ∞(t), so that point

(b) of Definition 1.2.4 is satisfied.

It remains to prove point (c). For a.e. t define

θ(t) := 〈∂W(∇u∞(t)),∇ψ̇(t)〉 − 〈L (t), ψ̇(t)〉 − 〈L̇ (t), u∞(t)〉.

Arguing as in the proof of [8, Theorem 3.15] we get

θ∞(t) = θ(t), (1.4.15)

for a.e. t ∈ [0, T ]. This in particular means that the map t 7→ θ(t) is measurable. Since

we have proved that for every t ∈ [0, T ] the pair (u∞(t), γ∞(t)) satisfies points (a) and (b)

of Definition 1.2.4, we are in a position to apply Theorem 1.2.6 and get

E (t)(u∞(t), γ∞(t)) − E (0)(u0, γ0) ≥
∫ t

0

θ(s) ds.

By (1.3.1), (1.4.10), and (1.4.11) we get

E (t)(u∞(t), γ∞(t)) ≤ lim inf
j→∞

Ekj
(t)(ukj

(t), γkj
(t)) ≤ lim sup

k→∞
Ek(t)(uk(t), γk(t)). (1.4.16)

Using Lemma 1.4.3 and taking (1.4.9) and (1.4.15) into account, we obtain

lim sup
k→∞

Ek(t)(uk(t), γk(t)) ≤ E (0)(u0, γ0) +

∫ t

0

θ(s) ds. (1.4.17)
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By (1.4.16) and (1.4.17) we get that

E (t)(u∞(t), γ∞(t)) ≤ E (0)(u0, γ0) +

∫ t

0

θ(s) ds

holds true for any t ∈ [0, T ], and this concludes the proof.

In the following theorem we prove that for every t ∈ [0, T ] the energy for the discrete-

time problems converges to the energy for the continuous-time problem. We emphasize

that the theorem is true for any irreversible quasistatic evolution t 7→ (u(t), γ(t)) corre-

sponding to a given t 7→ γ(t), not only for the one obtained as limit of the solutions of

the discrete-time problems.

Theorem 1.4.4. For every t ∈ [0, T ] let uk(t) and γk(t) be defined as in the beginning of

the proof of Theorem 1.2.10. Assume that γk(t) σ
p
ϕ-converges to γ(t) ∈ L1(M)+ for any

t ∈ [0, T ]. Let t 7→ (u(t), γ(t)) be an irreversible quasistatic evolution. For a.e. t ∈ [0, T ]

let θk(t) be defined as in (1.4.8), and set

θ(t) := 〈∂W(∇u(t)),∇ψ̇(t)〉 − 〈L (t), ψ̇(t)〉 − 〈L̇ (t), u(t)〉.

Then

W(∇u(t)) − 〈L (t), u(t)〉 = lim
k→∞

(W(∇uk(t)) − 〈Lk(t), uk(t)〉), (1.4.18)

‖γ(t)‖1,M = lim
k→∞

‖γk(t)‖1,M ,

for every t ∈ [0, T ]. Furthermore

θk → θ in L1([0, T ]),

so that there exists a subsequence of θk which converges to θ a.e. in [0, T ].

Proof. For the proof we need to show that

lim
j→∞

W(∇ukj
(t)) = W(∇u∞(t)), (1.4.19)

for every t ∈ [0, T ], where ukj
(t) is the subsequence constructed in the proof of Theo-

rem 1.2.10, and u∞(t) is its limit. To this aim, let vj := u∞(t)+ψkj
(t)−ψ(t). By the mi-

nimality of the pair (ukj
(t), γkj

(t)) we obtain that Ekj
(t)(ukj

(t), γkj
(t)) ≤ Ekj

(t)(vj , γkj
(t)∨

φ([u∞(t)])), and passing to the limit as j goes to infinity, we get by (1.2.2), (1.4.10), and

(1.4.11)

lim sup
j→∞

[

W(∇ukj
(t)) − 〈Lkj

(t), ukj
(t)〉

]

≤

≤ lim sup
j→∞

[

W(∇vj) − 〈Lkj
(t), vj〉 + ‖(φ([u∞(t)]) − γkj

(t))+‖1,M

]

=

= W(∇u∞(t)) − 〈L (t), u∞(t)〉 + lim sup
j→∞

‖(φ([u∞(t)]) − γkj
(t))+‖1,M .

(1.4.20)
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Since γkj
(t) σp

ϕ-converges to γ∞(t), by Lemma 1.3.7 we have

lim sup
j→∞

‖(φ([u∞(t)]) − γkj
(t))+‖1,M ≤ 0. (1.4.21)

Taking into account (1.4.20) and (1.4.21) we get in particular that

lim sup
j→∞

W(∇ukj
(t)) ≤ W(∇u∞(t)). (1.4.22)

This, together with (1.4.10), gives (1.4.19).

To conclude the proof it is sufficient to follow the arguments of the proof of [8, Theo-

rem 8.1].

The result can be improved under strict convexity assumption.

Theorem 1.4.5. In addition to the hypotheses of Theorem 1.4.4, assume that ξ 7→
W (x, ξ) is strictly convex for a.e. x ∈ ΩrM and that y 7→ ϕ(x, y) is convex for H n−1-a.e.

x ∈M . Then uk(t) → u(t) strongly in W 1,p(Ω rM ; Rm), for every t ∈ [0, T ].

Proof. We observe that for every t ∈ [0, T ] and γ ∈ L1(M)+ the functional v 7→ E (t)(v, γ)

is strictly convex on the set of functions v ∈W 1,p(ΩrM ; Rm) with v = ψ(t) H n−1-a.e. on

∂0Ω. Therefore for every t there exists a unique function u ∈ AD(ψ(t), γ(t)) such that the

pair (u, γ) is globally stable at time t. It follows that u(t) coincides with the function u∞(t)

constructed in the proof of Theorem 1.2.10 and that the whole sequence uk(t) converge to

u(t) weakly inW 1,p(ΩrM ; Rm). Therefore (1.4.18) implies that W(∇uk(t)) → W(∇u(t)).
Using [43, Theorem 3] we deduce that ∇uk(t) → ∇u(t) in measure. As

|∇uk(t) −∇u(t)|p ≤ 2p−1a−1
0 [W (∇uk(t)) +W (∇u(t))] + 2p−1a−1

0 b0,

the conclusion follows from the generalized dominated convergence theorem.

1.5 Euler conditions

In this section we study the Euler conditions satisfied by globally stable pairs (u, γ) ∈
W 1,p(Ω r M ; Rm) × L1(M)+. Let us fix t ∈ [0, T ] and let (u, γ) ∈ W 1,p(Ω r M ; Rm) ×
L1(M)+ be globally stable at time t, and let v ∈ W 1,p(Ω r M ; Rm) be such that v = 0

H n−1-a.e. on ∂0Ω. Hence for every ε > 0 the function u+εv belongs toAD(ψ(t), γ∨φ([u]+

ε[v])), and by the global stability of the pair (u, γ) at time t, we have that E (t)(u, γ) ≤
E (t)(u+ εv, γ ∨ φ([u] + ε[v])), therefore

lim inf
ε→0+

E (t)(u+ εv, γ ∨ φ([u] + ε[v])) − E (t)(u, γ)

ε
≥ 0. (1.5.1)
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The weak formulation of the Euler conditions will be obtained from this inequality. With-

out loss of generality, we assume that L (t) is given by (1.1.5), and we omit the dependence

on time. After some standard calculation, one can express (1.5.1) in the following form
∫

ΩrM

(

∂ξW (x,∇u) −H
)

: ∇v dx−
∫

ΩrM

fv dx−
∫

∂1Ω

gv dH n−1+

−
∫

M

(

g⊕v⊕ + g⊖v⊖
)

dH n−1 + lim inf
ε→0+

‖(φ([u] + ε[v]) − γ)+‖1,M

ε
≥ 0,

(1.5.2)

for any v ∈W 1,p(Ω rM ; Rm) such that v = 0 H n−1-a.e. on ∂0Ω.

To continue our analysis we need now to specify the form of the function ϕ. More

precisely, we consider ϕ : M × R
m → [0,+∞] defined by

ϕ(x, y) := ϕ0(x) + ϕ̃(x, y) for y 6= 0 and ϕ(x, 0) := 0 for all x ∈M, (1.5.3)

where ϕ0 ∈ L1(M)+ and ϕ̃ : M × R
m → [0,+∞] is a Borel function. We assume that for

every x ∈M the following properties hold:

(1) ϕ(x, y) = 0 if and only if y = 0;

(2) the function ϕ̃(x, ·) belongs to the space C0(Rm) ∩ C1(Rm
r {0});

(3) ϕ̃(x, 0) = 0;

(4) there exists an L∞-function ϕ̄ such that |∂yϕ̃(x, y)| ≤ ϕ̄(x) for any y 6= 0, where

∂yϕ̃(x, y) denotes the vector of the partial derivatives of ϕ̃ with respect to y;

(5) the limit

ψ̃(x, y) := lim
ε→0+

∂yϕ̃(x, εy)y (1.5.4)

exists and is finite for any y 6= 0.

Remark 1.5.1. By using de l’Hôpital Theorem, one obtain immediately that

ψ̃(x, y) = lim
ε→0+

ϕ̃(x, εy)

ε
,

for any x ∈M , y 6= 0. It follows from the positiveness of ϕ̃ that ψ̃ ≥ 0. Moreover, we get

easily that ψ̃ is positively 1-homogeneous with respect to y, i.e., ψ̃(x, λy) = λψ̃(x, y), for

every λ > 0. Furthermore, by (1.5.4) and (4), we get also

|ψ̃(x, y)| ≤ ϕ̄(x)|y| for every x ∈M and y 6= 0. (1.5.5)

The main result of this section is a theorem which makes explicit the Euler conditions

obtained from (1.5.2) in the case of the function ϕ specified above. Before stating the

theorem, we establish a general result concerning closed linear subspaces of L1
µ(Ω), for an

arbitrary Radon measure µ on Ω. We will apply this result to the measure µ = H n−1 M .

The characteristic function of any set E is denoted by 1E, i.e., 1E(x) = 1 if x ∈ E,

1E(x) = 0 otherwise.
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Lemma 1.5.2. Let µ be a Radon measure in Ω and let Y be a closed linear subspace of

L1
µ(Ω) with the following properties:

(a) if u, v ∈ Y , then u ∨ v ∈ Y ;

(b) if u ∈ Y and ω ∈ C∞
c (Ω), then ωu ∈ Y .

Then there exists a Borel set E ⊂ Ω such that Y = {u ∈ L1
µ(Ω) : u = 0 µ-a.e. on E}.

Proof. We begin by proving that

if u ∈ L1
µ(Ω) and |u| ≤ |v| for some v ∈ Y, then u ∈ Y. (1.5.6)

Indeed in this case there exists ω ∈ L∞
µ (Ω) such that u = ωv and there is a sequence

ωk ∈ C∞
c (Ω) such that ωk is bounded in L∞

µ (Ω) and ωk → ω µ-a.e. on Ω. By (b) we have

ωkv ∈ Y , and by the Lebesgue dominated convergence theorem ωkv → ωv = u in L1
µ(Ω).

Since Y is closed, we conclude that u ∈ Y .

Now we prove that

if u ∈ Y and t > 0, then u ∧ t ∈ Y and (u− t)+ ∈ Y. (1.5.7)

As |u ∧ t| ≤ |u|, we have u ∧ t ∈ Y by (1.5.6). Since (u− t)+ = u− u ∧ t, we obtain that

(u− t)+ ∈ Y .

Next we prove that

if u ∈ Y and t > 0, then 1{u>t} ∈ Y, (1.5.8)

where {u > t} := {x ∈ Ω : u(x) > t}. By (1.5.7) we deduce that for every k > 0 we have

k(u− t)+ ∧ 1 ∈ Y . As [k(u− t)+] ∧ 1 → 1{u>t} pointwise and [k(u− t)+] ∧ 1 ≤ |u|/t, the

convergence takes place in L1
µ(Ω) and we conclude that 1{u>t} ∈ Y .

Let (uk) be a sequence dense in Y and let E be the intersection of the sets {uk = 0}.
It is easy to prove by approximation that u = 0 µ-a.e. on E for every u ∈ Y . Conversely,

let u ∈ L1
µ(Ω) with u = 0 µ-a.e. on E. For every k let

Ak := {u1 ∨ u2 ∨ · · · ∨ uk > 1/k}.

By (a) and (1.5.8) we have 1Ak
∈ Y , so that (k1Ak

)∧u+ and (k1Ak
)∧u− belong to Y , by

(1.5.6). As (k1Ak
)∧u+ → u+ and (k1Ak

)∧u− → u− in L1
µ(Ω) we conclude that u ∈ Y .

Lemma 1.5.3. Let D ⊂ M , let Y m
D be the set of all functions of the form [v], with

v ∈ W 1,p(Ω r M ; Rm) and [v] = 0 H n−1-a.e. on D, and let Y m
D be the closure of Y m

D

in L1(M r ∂M ; Rm). Then there exists a Borel set D̃ (unique up to H n−1-equivalence),

containing D, such that Y m
D = {w ∈ L1(M r ∂M ; Rm) : w = 0 H n−1-a.e. on D̃}.
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Proof. Let YD be the set corresponding to the case m = 1. It is easy to see that Y m
D =

(YD)m. Therefore it suffices to prove the lemma in the case m = 1.

The conclusion follows from Lemma 1.5.2 applied to YD. It is enough to verify that

conditions (a) and (b) are satisfied by YD. Condition (b) is trivial. To prove (a) we

consider an open set U ⊂ Ω r M , with C1 boundary and M ⊂ ∂U , such that U lies on

the negative side of M . Given two functions u and v ∈ W 1,p(Ω r M) it is easy to check

that [u] ∨ [v] = [u ∨ (v − ṽ + ũ)], where ũ and ṽ ∈ W 1,p(Ω) coincide with u and v on U ,

respectively.

In the following theorem we will consider a function u ∈ W 1,p(Ω rM ; Rm) such that

the divergence of the matrix field ∂ξW (x,∇u)−H belongs to Lq(ΩrM ; Rm). It turns out

that its normal trace (∂ξW (x,∇u)−H)ν is defined as an element of (W 1− 1
p
,p(∂1Ω; Rm))′.

Moreover, we have that the normal traces (∂ξW (x,∇u) − H)⊕ν and (∂ξW (x,∇u) −
H)⊖ν (defined on the positive and negative side of M) are both elements of the space

(W 1− 1
p
,p(M r ∂M ; Rm))′. The duality pairing between (W 1− 1

p
,p(M r ∂M ; Rm))′ and

W 1− 1
p
,p(M r ∂M ; Rm) will be denoted by 〈·, ·〉.

Theorem 1.5.4. Let t ∈ [0, T ] and (u, γ) ∈W 1,p(ΩrM ; Rm)×L1(M)+ be globally stable

at time t. Assume that ϕ : M×R
m → [0,+∞] is defined as above in (1.5.3) and it satisfies

(1)–(5). Then

−div
(

∂ξW (x,∇u) −H) = f on Ω rM, (1.5.9)

(∂ξW (x,∇u) −H)ν = g on ∂1Ω, (1.5.10)

(∂ξW (x,∇u) −H)⊕ν + g⊕ = (∂ξW (x,∇u) −H)⊖ν − g⊖ on M r ∂M. (1.5.11)

Let us define

A := {x ∈M : 0 < φ([u])(x) = γ(x)},
B := {x ∈M : 0 = φ([u])(x) and γ(x) = ϕ0(x)},
D := {x ∈M : γ(x) < ϕ0(x)},

and let D̃ be the set associated with D by Lemma 1.5.3.

Then there exists h ∈ L∞(M r D̃; Rm) such that

〈(∂ξW (x,∇u) −H)⊕ν + g⊕, [v]〉 =

∫

MrD̃

h[v] dH n−1, (1.5.12)

for every v ∈W 1,p(Ω rM ; Rm) such that [v] = 0 H n−1-a.e. on D. Moreover

(a) for H n−1-a.e. x ∈ A r D̃ the vector h(x) belongs to the segment joining 0 and

∂yϕ̃(x, [u](x));

(b) for H n−1-a.e. x ∈ BrD̃ the vector h(x) belongs to the bounded convex set K(x) :=

{a ∈ R
m : ay ≤ ψ̃(x, y), ∀y ∈ R

m};
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(c) for H n−1-a.e. x ∈M r (A ∪B ∪ D̃) we have h(x) = 0.

Remark 1.5.5. It is easy to see that, if D is (H n−1-equivalent to) a closed set, then

D̃ = D (up to H n−1-equivalence). A more difficult proof shows that the same result is

true if D is (H n−1-equivalent to) a quasi closed set with respect to (1, p)-capacity.

It is clear that, if ϕ0 = 0, then D̃ = D = ∅.

Remark 1.5.6. For H n−1-a.e. x ∈ M the vector h(x), obtained in Theorem 1.5.4,

represents the cohesive force exerted from the positive lip of the crack on the negative lip.

The theorem shows the conditions satisfied by the cohesive force on the different regions

of M determined by the respective relations between φ([u]), γ and ϕ0.

Proof of Theorem 1.5.4. Since φ([u]) ≤ γ H n−1-a.e. on M , we have (φ([u]) − γ)+ = 0

H n−1-a.e. on M . If [v] = 0 H n−1-a.e. on M , then the lim inf in (1.5.2) is actually a

limit and it is zero. Therefore (1.5.9), (1.5.10), and (1.5.11) can be obtained from (1.5.2)

by standard argument involving integration by parts and a suitable choice of the test

function v ∈W 1,p(Ω; Rm).

To shorten the notation, we set h̃ := (∂ξW (x,∇u) − H)⊕ν + g⊕ on M r ∂M . As

explained before the statement of the theorem, we have h̃ ∈ (W 1− 1
p
,p(M r ∂M); Rm))′.

So far, we may rewrite (1.5.2) as

〈−h̃, [v]〉 + lim inf
ε→0+

‖(φ([u] + ε[v]) − γ)+‖1,M

ε
≥ 0, (1.5.13)

for any v ∈W 1,p(Ω rM ; Rm) such that v = 0 H n−1-a.e. on ∂0Ω.

Let us extend the definition of ψ̃ by setting ψ̃(x, 0) = 0 for every x ∈ M . Now we

prove that

lim
ε→0+

‖(φ([u] + εw) − γ)+‖1,M

ε
=

=

∫

M

(

(∂yϕ̃(x, [u])w)+ 1A + ψ̃(x, w) 1B

)

dH n−1,
(1.5.14)

for every w ∈ L1(M r∂M ; Rm) with w = 0 H n−1-a.e. on D. To this aim, it is convenient

to split the set M into the union of the following two disjoint subsets A′ := {x ∈ M :

[u](x) 6= 0} and B′ := {x ∈M : [u](x) = 0}.
On A′, as φ([u]) ≤ γ H n−1-a.e. on M , we have that

(φ([u] + εw) − γ)+

ε
≤ (φ([u] + εw) − φ([u]))+

ε
=

(ϕ̃(x, [u] + εw) − ϕ̃(x, [u]))+

ε
≤

≤ (ϕ̄(x)w)+,

H n−1-a.e. on M , where we used (1.5.3), and assumptions (3) and (4). Moreover, we have

that
(φ([u] + εw) − γ)+

ε
→ (∂yϕ̃(x, [u])w)+ 1A H

n−1-a.e. on A′,
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because A = {0 < φ([u]) = γ}. By the Lebesgue dominated convergence theorem we get

∫

A′

(φ([u] + εw) − γ)+

ε
dH n−1 →

∫

M

(∂yϕ̃(x, [u])w)+ 1A dH
n−1, (1.5.15)

as ε→ 0+, for every w ∈ L1(M r ∂M ; Rm).

Let us consider now the integral over B′. If w ∈ L1(Mr∂M ; Rm) and w = 0 H n−1-a.e.

on D, we have
(φ(εw) − γ)+

ε
= 0 H

n−1-a.e. on D,

thus we can focus on the set B′
r D. As γ ≥ ϕ0 H n−1-a.e. on M r D, for every

w ∈ L1(M r ∂M ; Rm) with w = 0 H n−1-a.e. on D, we obtain

(φ(εw)− γ)+

ε
≤ (φ(εw)− ϕ0)

+

ε
=
ϕ̃(x, εw)

ε
≤ ϕ̄(x)|w|

H n−1-a.e. on M rD, where we used (1.5.3), and assumptions (3) and (4). Moreover, by

Remark 1.5.1 we get that

(φ(εw) − γ)+

ε
→ (ψ̃(x, w))+ 1B = ψ̃(x, w)1B H

n−1-a.e. on B′,

as ε → 0+, for every w ∈ L1(M r ∂M ; Rm) with w = 0 H n−1-a.e. on D. We can apply

again the Lebesgue dominated convergence theorem and obtain

∫

B′

(φ([u] + εw) − γ)+

ε
dH n−1 →

∫

M

ψ̃(x, w) 1B dH
n−1,

as ε → 0+, for every w ∈ L1(M r ∂M ; Rm) with w = 0 H n−1-a.e. on D. This concludes

the proof of (1.5.14). We note that this equality cannot be true if the condition w = 0

H n−1-a.e. on D is violated, because in this case

lim
ε→0+

‖(φ(εw)− γ)+‖1,M

ε
= lim

ε→0+

‖(ϕ0 + ϕ̃(εw) − γ)+‖1,M

ε
= +∞.

Let Y m
D be the space defined in Lemma 1.5.3. Notice that Y m

D ⊂W 1− 1
p
,p(M r ∂M); Rm).

By (1.5.13) and (1.5.14) we have

〈−h̃, w〉 +

∫

M

[

(∂yϕ̃(x, [u])w)+ 1A + ψ̃(x, w) 1B

]

dH n−1 ≥ 0, (1.5.16)

for any w ∈ Y m
D . In order to localize this inequality, we prove first (1.5.12). Due to our

assumption (4) and to (1.5.5), if we apply (1.5.16) to w and −w we deduce that

|〈h̃, w〉| ≤ ‖ϕ̄‖∞‖w‖1,MrD , (1.5.17)
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for every w ∈ Y m
D . It follows that there exists a function h ∈ L∞(M rD; Rm) such that

〈h̃, w〉 =

∫

MrD

hw dH n−1,

for every w ∈ Y m
D . This implies that (1.5.12) is satisfied. By density from (1.5.16) we

obtain
∫

MrD

[

− hw + (∂yϕ̃(x, [u])w)+ 1A + ψ̃(x, w) 1B

]

dH n−1 ≥ 0, (1.5.18)

for every w ∈ Y m
D . Since by Lemma 1.5.3 we have Y m

D = {w ∈ L1(M r ∂M ; Rm) :

w = 0 H n−1-a.e. on D̃}, we conclude that

−h(x)y + (∂yϕ̃(x, [u](x))y)+ 1A(x) + ψ̃(x, y) 1B(x) ≥ 0, (1.5.19)

for every y ∈ R
m and for H n−1-a.e. x ∈M r D̃.

In particular, for H n−1-a.e. x ∈ A r D̃ the equality ∂yϕ̃(x, [u](x))y = 0 implies that

h(x)y = 0 (it is enough to use (1.5.19) with y and −y), so that for a given x ∈ Ar D̃ the

two vectors ∂yϕ̃(x, [u](x)) and h(x) are parallel, hence there exists λ(x) such that

h(x) = λ(x) ∂yϕ̃(x, [u](x)) for H
n−1-a.e. x ∈ Ar D̃, (1.5.20)

and it is easy to verify that 0 ≤ λ(x) ≤ 1, by using again (1.5.19). In this way we get

condition (a).

On B r D̃, from (1.5.19) we obtain

−h(x)y + ψ̃(x, y) ≥ 0 for H
n−1-a.e. x ∈ B r D̃, (1.5.21)

for every y ∈ R
m, which is precisely condition (b), by the definition of K. On the

remaining part of MrD̃, from (1.5.19) we get condition (c). This concludes the proof.

Remark 1.5.7. If ϕ0(x) > 0 for H n−1-a.e. x ∈ M , and (u, γ) = (u(t), γ(t)) for an

irreversible quasistatic evolution, then (1.2.4) implies that the set B r D̃ is nonempty

only if there exists y ∈ R
m

r {0} such that ϕ̃(x, y) = 0, for some x ∈ M . This happens,

for instance, in the Griffith model, where ϕ is given by (1.1.6) with a > 0 and b = 0. In this

special case, condition (b) becomes h(x) = 0 H n−1-a.e. on B r D̃, because K(x) = {0}.
Remark 1.5.8. If for every x the functions ξ 7→ W (x, ξ) and y 7→ ϕ(x, y) are convex,

then for any t ∈ [0, T ] and γ ∈ L1(M)+, the functional u 7→ E (t)(u, γ ∨ ϕ([u])) is convex.

Therefore, it is possible to prove by standard arguments that conditions (a), (b), and (c)

of Theorem 1.5.4 are equivalent to the inequality

−
∫

M

hw dH n−1 + lim
ε→0+

‖(φ([u] + εw) − γ)+‖1,M

ε
≥ 0,

for every w ∈ Y m
D . Thus, Euler conditions (1.5.9), (1.5.10), (1.5.11), (a), (b), (c) are not

only necessary, but also sufficient to global stability.
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We show now an example of a scalar problem, where the Euler conditions of Theo-

rem 1.5.4 lead to a simplified set of boundary conditions.

Example 1.5.9. Let m = 1, p = 2, W (x, ξ) := 1
2
|ξ|2, H(t) := 0, g⊕(t) = g⊖(t) := 0,

φ(y) := |y|, which correspond to the energy functional:

E (t)(u, γ) :=
1

2

∫

ΩrM

|∇u|2 dx+

∫

M

γ dH n−1 −
∫

ΩrM

f(t)u dx−
∫

∂1Ω

g(t)u dH n−1.

Let t ∈ [0, T ] and (u, γ) ∈ W 1,2(Ω rM) × L1(M)+ be globally stable at time t. Then we

are in a position to apply Theorem 1.5.4 and the final part of Remark 1.5.5, obtaining






























































−∆u = f(t) on Ω rM,

u = ψ(t) on ∂0Ω,

∂u

∂ν
= g(t) on ∂1Ω,

∂u

∂ν
= 0 on M ∩ {0 ≤ |[u]| < γ},

∣

∣

∣

∂u

∂ν

∣

∣

∣
≤ 1 and

∂u

∂ν
[u] ≥ 0 on M ∩ {|[u]| = γ}.

By Remark 1.5.8 we have also that if u solves the previous boundary value problem for a

given γ, then the pair (u, γ) is globally stable at time t.

1.6 The case of linear elasticity

In this section we show that, with some modifications, it is possible to consider also the

case where the uncracked part of the body is linearly elastic, which is excluded by the

first inequality in (1.1.1).

Let p = 2 and m = n ≥ 1. We assume now that the bulk energy relative to the

displacement u ∈ W 1,2(Ω rM ; Rn) has the form of linear elasticity
∫

ΩrM

A(x)Eu :Eu dx,

where Eu := 1
2
(∇u + (∇u)T ) is the symmetric part of the gradient of u, and A satisfies

the following properties:

(E1) for every x ∈ Ω, A(x) is a linear symmetric operator from the space M
n×n
sym of

symmetric n× n matrices into itself, and the map x 7→ A(x) is measurable;

(E2) there are two positive constants c0 and c1 such that

c0 |ξ|2 ≤ A(x)ξ : ξ ≤ c1 |ξ|2 (1.6.1)

for every x ∈ Ω rM and ξ ∈ M
n×n
sym .
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For the sake of simplicity in the notation we introduce the C1 map Q : L2(Ω r

M ; Mn×n
sym ) → R defined by

Q(Ψ) :=

∫

ΩrM

A(x)Ψ : Ψ dx

for every Ψ ∈ L2(Ω r M ; Mn×n
sym ), whose differential ∂Q : L2(Ω r M ; Mn×n

sym ) → L2(Ω r

M ; Mn×n
sym ) is given by

〈∂Q(Ψ),Φ〉 = 2

∫

ΩrM

A(x)Ψ : Φ dx,

for every Φ, Ψ ∈ L2(Ω r M ; Mn×n
sym ), where 〈·, ·〉 denotes now the scalar product in the

space L2(Ω rM ; Mn×n
sym ).

For every t ∈ [0, T ] the total energy of an admissible configuration (u, γ) ∈ W 1,2(Ω r

M,Rn) × L1(M)+ at time t is now defined as

E (t)(u, γ) := Q(Eu) − 〈L (t), u〉 + ‖γ‖1,M .

Once we have the energy functional, we introduce the notion of global stability as in

Definition 1.2.1.

Since the (n − 1)-dimension of ∂0Ω is positive, Korn inequality holds (see, e.g., [5],

[14]): there exists a constant C = C(Ω, ∂0Ω) such that

‖∇u‖2 ≤ C‖Eu‖2 for all u ∈W 1,2(Ω; Rn) such that u = 0 on ∂0Ω.

As an immediate consequence, we get the following Korn-type inequality:

‖∇u‖2 ≤ C‖Eu‖2 + (C + 1)‖∇ψ‖2 (1.6.2)

for every u ∈W 1,2(Ω rM ; Rn), and ψ ∈W 1,2(Ω; Rn) such that u = ψ on ∂0Ω.

Thanks to (1.6.2), we still have an a priori bound for the displacement u as in Re-

mark 1.2.2.

The definition of irreversible quasistatic evolution of minimum energy configurations

is now given replacing 〈∂W(∇u(t)),∇ψ̇(t)〉 by 〈∂Q(Eu(t)), Eψ̇(t)〉 in Definition 1.2.4.

Thanks to the Korn-type inequality (1.6.2), Theorems 1.2.7, 1.2.10, 1.4.4, and 1.4.5

(and Remark 1.2.5) continue to hold, with essentially the same proofs, if we replace

W(∇u(t)) and 〈∂W(∇u(t)),∇ψ̇(t)〉 by Q(Eu(t)) and 〈∂Q(Eu(t)), Eψ̇(t)〉, respectively,

and a similar substitution is done for uk(t).
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Chapter 2

Singular perturbations of finite

dimensional gradient flows

In this chapter we give a description of the asymptotic behavior, as ε → 0, of the ε-gradient

flow in the finite dimensional case.

Under very general assumptions we prove that it converges to an evolution obtained by

connecting some smooth branches of solutions to the equilibrium equation (slow dynamics)

through some heteroclinic solutions of the gradient flow (fast dynamics).

The chapter is organized as follows. In Section 2.1 we fix the mathematical assump-

tions, while in Section 2.2 we prove some preliminaries and define the evolution we are

interested in (see Definition 2.2.4). Section 2.3 consists in the proof of the main result of

the chapter, Theorem 2.2.7.

2.1 Setting of the problem

Throughout the chapter, for fixed T > 0, we make the following assumption:

Assumption 1. f : [0, T ] × R
n → R is a C3-function satisfying the property

∇xf(t, x) · x ≥ c0 |x|2 − a0 ,

for some a0 ≥ 0 and c0 > 0,

where ∇xf = (fx1, . . . , fxn
) denotes the gradient of f with respect to its spatial variable

x ∈ R
n.

We may deduce from this assumption that there exist two positive constants M and

c̃ (depending on a0 and c0), and a constant ã (depending also on f and T ) such that

f(t, x) ≥ c̃|x|2 − ã for every |x| ≥M and every t ∈ [0, T ] . (2.1.1)

For given t ∈ [0, T ], we say that a point x ∈ R
n is a critical point for f(t, ·) if ∇xf(t, x) = 0.
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Remark 2.1.1. Note that by Assumption 1 all critical points for the function f(t, ·)
belong to the compact B, where B := B(0,

√

a0c
−1
0 ) is the closed ball in R

n centered at 0

and with radius
√

a0c
−1
0 . Moreover, taking the minimum of f(t, ·) in B it is immediate to

get a critical point. Hence, for every t ∈ [0, T ], critical points for f(t, ·) exist and belong

to B.

We denote the set of zeroes to the gradient of f by Γf , namely,

Γf := {(t, x) ∈ [0, T ] × R
n : ∇xf(t, x) = 0} , (2.1.2)

and observe that Γf ⊂ [0, T ] × B, by Remark 2.1.1.

We recall that a critical point ξ for f(t, ·) is said to be degenerate if the kernel of the

Hessian matrix ∇2
xf(t, ξ) := (fxixj

(t, ξ))ij is nontrivial, i.e., det∇2
xf(t, ξ) = 0.

In this chapter, a particular interest will be given to the set Zf of all pairs (t, ξ) such

that ξ is a degenerate critical point for f(t, ·), i.e.,

Zf := {(t, ξ) ∈ Γf : det∇2
xf(t, ξ) = 0}. (2.1.3)

We make the following assumption.

Assumption 2. The number of all pairs (t, ξ), such that ξ is a degenerate critical point

for f(t, ·), is finite, i.e.,

card(Zf) = m < +∞.

Moreover, let Π: Zf → [0, T ] denote the projection of Zf on the time-segment [0, T ], then

we assume that Π is injective and that 0, T /∈ Π(Zf).

Throughout this chapter we will focus on a particular class of degenerate critical points.

More in detail, we make the following assumption.

Assumption 3. For every τ ∈ [0, T ] and for every degenerate critical point ξ ∈ R
n for

f(τ, ·), such that ∇2
xf(τ, ξ) is positive semidefinite, there exists ℓ ∈ R

n \ {0} such that the

following conditions are satisfied:

(a) ker∇2
xf(τ, ξ) = span(ℓ);

(b) ∇xft(τ, ξ) · ℓ 6= 0, where ft(τ, ξ) denotes the partial derivative of f with respect to

the time variable t;

(c)
∑

i,j,k fxixjxk
(τ, ξ)ℓiℓjℓk 6= 0.

Notice that condition (a) means that 0 is a simple eigenvalue of ∇2
xf(τ, ξ) with eigen-

vector ℓ, while the remaining n − 1 eigenvalues are positive. Conditions (b) and (c) are

known in the literature as transversality conditions (see, e.g., [24]).
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Remark 2.1.2. Let (τ, ξ) ∈ Zf , with ∇2
xf(τ, ξ) positive semidefinite. An argument

based on the Implicit Function Theorem (see, e.g., [42]), implies that if (τ, ξ) satisfies

Assumption 3, then there exists a smooth curve of solutions of ∇xf(t(λ), x(λ)) = 0, for λ

in a neighborhood of zero, with (t(0), x(0)) = (τ, ξ).

More precisely, if conditions (b) and (c) have the same sign, then for every t < τ and

near τ there are two solutions for the problem ∇xf(t, x) = 0, while for t near τ but t > τ

there are no solutions. If conditions (b) and (c) have opposite sign, then the reverse is

true.

Moreover, the curve of zeroes passing through (τ, ξ) possesses a vertical tangent at

(τ, ξ).

Remark 2.1.3. From our assumptions it turns out that Γf is the union of a finite number

of C2-curves with end-points contained in ({0} × R
n)∪ ({T} × R

n), see Figure 2.1 below

for an example of the set Γf .

t1 t2 t3 t4

m
m

m

m

m

m

mm

m

m

m

m

mM

M
M

M
M

M

M

M

0 T

Figure 2.1: An example for the set Γf : m and M stand for local minimum and maximum,

respectively.

Remark 2.1.4. The assumptions we made imply that for every t ∈ [0, T ] there exists a

finite number of critical points for f(t, ·). Indeed, if t /∈ Π(Zf), then Assumption 2 ensures

that there are only nondegenerate critical points for f(t, ·). Assumption 1 implies that all

critical points belong to the compact set B, while by Assumption 3 it follows that they

are isolated. On the other hand, by Assumption 2, at t = τ ∈ Π(Zf) there is only one

degenerate critical point ξ for f(τ, ·).

Let us freeze now a point τ ∈ Π(Zf ) and consider the autonomous system of differential

equations in R
n (depending on the single parameter τ)

ẇ(s) = −∇xf(τ, w(s)). (2.1.4)
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This is obviously a gradient system and, thanks to Assumption 1, (since positive semiorbits

are bounded) we may apply the well known result that the ω-limit set is contained into

the set of equilibria of equation (2.1.4) (see, e.g., [26, Theorem 14.17]). Moreover, since

the equilibrium points are isolated (see Remark 2.1.4), such an ω-limit set is a single

equilibrium point.

The following lemma ensures the existence of a unique heteroclinic solution w issuing

from (τ, ξ) ∈ Zf , while previous argument guarantees that w has limit as s → +∞, and

this limit is a (nondegenerate) critical point for f(τ, ·).

Lemma 2.1.5. Suppose that Assumption 1 and conditions (a) and (c) of Assumption 3

are satisfied. Let (τ, ξ) be a point of Zf such that ∇2
xf(τ, ξ) is positive semidefinite. Then

there exists a unique (up to time-translations) solution of the problem






ẇ(s) = −∇xf(τ, w(s))

lim
s→−∞

w(s) = ξ .
(2.1.5)

Proof. The proof is obtained by adapting a proof of the existence of the global center

manifold, based on the Contraction Mapping Principle (see, e.g., [42]). The main difficulty

is that usually, when the linearized part of a system of ordinary differential equations has

some zero eigenvalue, there is, in general, existence of a heteroclinic solution, but not

uniqueness (this is related to non-uniqueness of the local center manifold, see, e.g., [24],

[42, §1.4]). Here the uniqueness is obtained thanks to the particular conditions (a) and

(c) of Assumption 3.

During the proof, we will use the following notation: g(x) := f(τ, x), for every x ∈ R
n.

To simplify further the formulation we make a number of preliminary transformations:

a translation to take ξ to the origin, and a linear transformation to bring ∇2g(0) in

a diagonal form where the first eigenvalue is zero with eigenvector e1 = (1, 0, . . . , 0).

Therefore we are reduced to the following hypotheses:

∇g(0) = 0, ∇2g(0) =

(

0 0

0 A

)

, and gx1x1x1(0) 6= 0 , (2.1.6)

where A is an (n−1)×(n−1) diagonal and invertible matrix. Moreover, by our assumption,

the diagonal entries of A are all positive real numbers. In order to simplify the notation,

we also suppose that 1
2
gx1x1x1(0) = 1.

The existence and the uniqueness for the problem






ẇ(t) = −∇g(w(t)),

lim
t→−∞

w(t) = 0 ,
(2.1.7)

will be obtained applying the Contraction Mapping Theorem. As a first step, for every

x ∈ R
n we take the following decomposition x = (x1, x̄), with x̄ := (x2, . . . , xn) ∈ R

n−1
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and consider the space Y of all functions y : (−∞, 0] → R
n, y(t) = (y1(t), ȳ(t)), such that

‖y1‖Y1 := sup
t≤0

|(t− 1)y1(t)| <∞ , and ‖ȳ‖Y := sup
t≤0

|(t− 1)2ȳ(t)| <∞ ,

endowed with the norm

‖y‖Y := ‖y1‖Y1 + ‖ȳ‖Y .

For every x ∈ R
n let ∇g(x) = (D1g(x), D̄g(x)). Using now the Taylor expansion for x in

a neighborhood of 0 ∈ R
n, we get

D1g(x) = x2
1 + x1b · x̄+ ϕ(x̄, x̄) + o(|x|2)

D̄g(x) = Ax̄+ x2
1b+ x1Bx̄+ Φ(x̄, x̄) + o(|x|2) , (2.1.8)

where b is a suitable vector in R
n−1, ϕ : R

n−1 × R
n−1 → R and Φ: R

n−1 × R
n−1 → R

n−1

are bilinear symmetric forms (whose coefficients depend on the third derivative of g at

the origin), A is the matrix which appears in (2.1.6), and B is a (n− 1)× (n− 1) matrix

whose entries depend on the third derivative of g at 0.

More in detail, let aijk := gxixjxk
(0), i, j, k = 1, . . . , n. Then b ∈ R

n−1 is defined by

bi := 2a11(i+1), i = 1, . . . , n−1, ϕ : R
n−1×R

n−1 → R is given by ϕ(x̄, x̄) :=
∑n

i,j=2 aij1xixj ,

the (n − 1) × (n − 1) matrix B is given by Bij := 2a1(i+1)(j+1), i, j = 1, . . . , n − 1, and

Φ: R
n−1 × R

n−1 → R
n−1 is the bilinear symmetric form Φk(x̄, x̄) :=

∑n
i,j=2 aij(k+1)xixj ,

for k = 1, . . . , n− 1.

Moreover, for every y ∈ Y we define

h1(t) := −D1g(y(t)) + y1(t)
2

h̄(t) := −D̄g(y(t)) + Aȳ(t) ,
(2.1.9)

and observe that due to (2.1.8) the asymptotic behavior at −∞ is h1(t) ∼ (t − 1)−2,

and h̄(t) ∼ (t − 1)−2, respectively. For every h = (h1, h̄) satisfying these estimates,

let us consider the function x = (x1, x̄) obtained by solving the following two problems

depending on a parameter ε > 0, which will be fixed later.






ẋ1 + εx2
1 = εh1(t) on (−∞, 0],

x1(0) = −1

ε
,

(2.1.10)

and






˙̄x+ Ax̄ = εh̄(t) on (−∞, 0],

lim
t→−∞

x̄(t) = 0 .
(2.1.11)

We shall prove that problem (2.1.11) has a unique solution with ‖x̄‖Y finite, and that for

ε sufficiently small the solution of problem (2.1.10) does exist and satisfies

lim
t→−∞

x1(t) = 0 . (2.1.12)
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Note that, if h = (h1, h̄) is defined by (2.1.9), and if x = y, then w := εx solves prob-

lem (2.1.7).

From the variation of constant formula it follows that the unique solution of problem

(2.1.11) is

x̄(t) = ε

∫ t

−∞

e−A(t−s)h̄(s) ds . (2.1.13)

Moreover ‖x̄‖Y <∞.

Let us discuss now the existence of a solution of problem (2.1.10). For sake of intuition,

let s = −t and define v(s) := x1(t). Hence, problem (2.1.10) becomes, in terms of the

function v,






v̇ − εv2 = h̃(s) on [0,+∞)

v(0) = −1

ε
,

where h̃(s) := −h1(−s) is such that

|h̃(s)| ≤ M

(1 + s)2
.

Thanks to this bound, the existence of the solution will be obtained using differential

inequalities. Accordingly, let us begin with the auxiliary problem related to an upper

solution:










v̇ − εv2 = ε
M

(1 + s)2
on [0,+∞)

v(0) = −1

ε
.

(2.1.14)

We observe that this is a particular case of the Riccati equation (see, e.g., [33]), and can

be solved as follows. Putting v(s) = u(s)
ε(1+s)

we get

u̇

ε(1 + s)
− u

ε(1 + s)2
− ε

u2

ε2(1 + s)2
= ε

M

(1 + s)2

⇔ (1 + s)u̇ = ε2M + u+ u2 .

By separation of variables, since u(0) = −1, we obtain

∫ u(s)

−1

du

u2 + u+ ε2M
=

∫ s

0

dt

1 + t
.

Now, the second order equation u2 + u+ ε2M = 0 has the following two solutions

a :=
−1 −

√
1 − 4ε2M

2
b :=

−1 +
√

1 − 4ε2M

2
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provided that ε < (2
√
M)−1. Notice that a < b < 0. Hence,

∫ u(s)

−1

du

u2 + u+ ε2M
= − 1

b− a

∫ u(s)

−1

du

u− a
+

1

b− a

∫ u(s)

−1

du

u− b
=

=
1

b− a
log

( |u(s) − b|
|u(s) − a|

| − 1 − a|
| − 1 − b|

)

.

Thus, being −1 < a < b, we have obtained that

|u(s) − b|
|u(s) − a|

1 + a

1 + b
= (1 + s)b−a ⇔ |u(s) − b| = C|u(s) − a|(1 + s)b−a ,

where C := 1+b
1+a

. Since −1 < a, we have u(s) < a for every s ≥ 0. Then we get

u(s) =
b− aC(1 + s)b−a

1 − C(1 + s)b−a
,

and u(s) → a as s→ +∞.

Therefore, we have obtained that for ε < 1/(2
√
M) the function v(s) = u(s)(ε(1+s))−1

solves the auxiliary problem (2.1.14) and tends to zero as s→ +∞.

Let us pass now to consider the auxiliary problem related to the lower solution:










v̇ − εv2 = −ε M

(1 + s)2
on [0,+∞)

v(0) = −1

ε
.

(2.1.15)

Putting again v(s) = u(s)
ε(1+s)

and arguing as before, we are reduced to consider the following

problem
{

(1 + s)u̇ = −ε2M + u+ u2 on [0,+∞)

u(0) = −1 .

By separation of variables we obtain

∫ u(s)

−1

du

u2 + u− ε2M
=

∫ s

0

dt

1 + t
.

Now, the second order equation u2 + u− ε2M = 0 has the following two solutions

a :=
−1 −

√
1 + 4ε2M

2
b :=

−1 +
√

1 + 4ε2M

2
,

with a < 0 < b, so that in particular u(s) < b for every s ≥ 0, being a < −1 < b. Arguing

as before, we deduce that the function v(s) = u(s)(ε(1+s))−1 solves the auxiliary problem

(2.1.15) and converges to zero as s→ +∞, for every ε > 0.

Using now differential inequalities (see, e.g., [25, Theorem 6.1]), and then passing

from s ∈ [0,+∞) to t ∈ (−∞, 0], we may conclude that there exists ε0 = ε0(M) such that
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problem (2.1.10) admits a unique solution satisfying also the limit condition (2.1.12), for

every ε < ε0. Moreover, it is immediate to prove that the asymptotic behavior of x1(t) at

−∞ is like (t− 1)−1.

As a next step, for ε < ε0 we define the map Γ: Y → Y by setting

Γ(y)(t) := (x1(t), x̄(t)) , (2.1.16)

where x1(t) is the solution of (2.1.10)–(2.1.12), and x̄(t) is given by (2.1.13), with h1 and

h̄ defined by (2.1.9). Obviously, Γ(y) belongs to Y , while it remains to prove that the

map y 7→ Γ(y) is a strict contraction, for ε sufficiently small.

Let us begin with the first component of Γ(y). For every y ∈ Y , let h(t) = (h1(t), h̄(t))

be defined as in (2.1.9), and let us pass from t to −t, as before. Next, we notice that there

exists H1 ∈ L∞(0,+∞) such that −h1(−t) = H1(t)
(1+t)2

for every t ≥ 0. Let v(t) := x1(−t)
be the solution to the following problem











v̇ − εv = ε
H1(t)

(1 + t)2
on [0,+∞)

v(0) = −1

ε
.

In the same way, starting from y∗ ∈ Y , we define h∗ = (h∗1, h̄
∗), H∗

1 ∈ L∞(0,+∞), and

v∗(t) as the solution of an analogous problem having H∗
1 in the right-hand side, instead

of H1. Put as before v(t) = u(t)
ε(1+t)

, so that u(t) solves the problem

{

(1 + t)u̇ = ε2H1(t) + u2 + u on [0,+∞)

u(0) = −1 .

By this choice of the initial datum, we deduce that

|u(t) + 1| ≤ ε2M , (2.1.17)

for every t ≥ 0, being M an upper bound for the L∞-norm of H1. Arguing in the same

manner for v∗, we define u∗. We want to prove now that

|u(t) − u∗(t)| ≤ ε2C‖H1 −H∗
1‖∞ , (2.1.18)

for every t ≥ 0, so that, passing from t to −t and setting x∗1(−t) := v∗(t), we will get

|x1(t) − x∗1(t)| ≤
ε

|t− 1|C‖y − y∗‖Y for every t ≤ 0 ,

where we used the inequality ‖H1 −H∗
1‖∞ ≤ C‖y− y∗‖Y , which follows from (2.1.9). We

will obtain that

‖x1 − x∗1‖Y1 ≤
1

2
‖y − y∗‖Y , (2.1.19)
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having supposed that εC < 1
2
.

Therefore, we are reduced to prove (2.1.18). Let z(t) := u(t) − u∗(t), and α(t) :=

−u(t) − u∗(t) > 0. Then z(t) solves the problem
{

(1 + t)ż = ε2(H1(t) −H∗
1 (t)) − α(t)z + z on [0,+∞)

z(0) = 0 .

By the variation of constant method, we deduce that the solution z(t) can be represented

by the following formula:

z(t) = ε2

∫ t

0

H1(s) −H∗
1 (s)

1 + s
e−

R t

s

α(σ)−1
1+σ

dσ ds .

Due to (2.1.17), we obtain that u(t) < −3
4

for ε sufficiently small, and the same is true

for u∗(t). Hence, α(t) > 3
2
, for ε sufficiently small. Then

|z(t)| ≤ ε2‖H1 −H∗
1‖∞

∣

∣

∣

∫ t

0

1

1 + s
e−

1
2

R t

s
dσ

1+σ ds
∣

∣

∣
=

= ε2‖H1 −H∗
1‖∞

1

(1 + t)
1
2

∣

∣

∣

∫ t

0

(1 + s)−
1
2 ds

∣

∣

∣
≤ 2ε2‖H1 −H∗

1‖∞ .

This last estimate gives (2.1.18), and therefore (2.1.19) is proved.

Let us consider now the second component of Γ(y). Let Γ(y)(t) = (x1(t), x̄(t)) and

Γ(y∗)(t) = (x∗1(t), x̄
∗(t)). Therefore,

x̄(t) − x̄∗(t) = ε

∫ t

−∞

(h̄(s) − h̄∗(s))e−A(t−s) ds .

Hence, using the fact that, by (2.1.9), |h̄(s) − h̄∗(s)| ≤ C‖y − y∗‖Y (s− 1)−2, we get

(t− 1)2|x̄(t) − x̄∗(t)| ≤ Cε(t− 1)2

∫ t

−∞

e−A(t−s)

(s− 1)2
ds‖y − y∗‖Y .

Since

sup
t≤0

(

(t− 1)2

∫ t

−∞

e−A(t−s)

(s− 1)2
ds

)

< +∞ ,

we deduce that there exists a positive constant C∗ such that (t − 1)2|x̄(t) − x̄∗(t)| ≤
εC∗‖y − y∗‖Y , i.e.,

‖x̄− x̄∗‖Ȳ ≤ 1

2
‖y − y∗‖Y , (2.1.20)

having supposed that εC∗ < 1
2
.

This estimate, together with (2.1.19), guarantees that the inequality

‖Γ(y) − Γ(y∗)‖Y ≤ 1

2
‖y − y∗‖Y

holds true, and this concludes the proof.
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Throughout the chapter, we make the following assumption.

Assumption 4. For every (τ, ξ) ∈ [0, T ]×R
n such that ξ is a degenerate critical point for

f(τ, ·), satisfying the assumptions of Lemma 2.1.5, let w be the unique solution of (2.1.5)

corresponding to τ and ξ. Let w∞ := lims→+∞w(s), then we assume that

∇2
xf(τ, w∞) is positive definite . (2.1.21)

2.2 Preliminary results

Starting from a suitable point (t̄, x̄) ∈ [0, T [×R
n we prove in the next lemma the existence

of a maximal interval [t̄, t̂[, and of a regular function u, defined on [t̄, t̂[, such that u(t) is

a critical point for f(t, ·), for every t ∈ [t̄, t̂[.

Lemma 2.2.1. Let 0 ≤ t̄ < T , and let x̄ ∈ R
n be such that ∇xf(t̄, x̄) = 0 and ∇2

xf(t̄, x̄)

is positive definite. Suppose that Assumptions 1 and 2 are satisfied. Then there exist a

maximal interval of existence [t̄, t̂[, and a function u : [t̄, t̂[ → R
n of class C2, such that

u(t̄) = x̄ and ∇xf(t, u(t)) = 0 for every t ∈ [t̄, t̂[. Moreover, either t̂ = T or t̂ belongs to

Π(Zf) (defined in Assumption 2).

Proof. The Implicit Function Theorem ensures that there are a maximal interval of ex-

istence [t̄, t̂[ and a function u : [t̄, t̂[ → R
n of class C2 such that

∇xf(t, u(t)) = 0 and ∇2
xf(t, u(t)) > 0ispositivedefiniteon[t̄, t̂[.

The next step is to prove that u(t) has limit as t approaches t̂ to the left. This is trivial if

t̂ = T . For the case t̂ < T , we introduce the following auxiliary result that will be proved

later.

Lemma 2.2.2. Under the same assumptions of Lemma 2.2.1, let us define the following

set

K := {x ∈ R
n|∃sk ր t̂ : u(sk) → x}. (2.2.1)

Then K is a compact and connected set, composed only of critical points of f(t̂, ·). More-

over, if t̂ < T then det∇2
xf(t̂, x) = 0 for any x ∈ K.

Proof of Lemma 2.2.1 (continued). Let us suppose that Lemma 2.2.2 is true, and let us

prove that

lim
t→t̂−

u(t) (2.2.2)

does exist. Indeed, let K be the nonempty set defined by (2.2.1). We need to show that K

reduces to just one point. Assume by contradiction that the limit (2.2.2) does not exist.

Then there are at least two sequences si
k ր t̂, i = 1, 2 and two distinct points w1, w2 ∈ R

n

such that u(si
k) → wi, i = 1, 2. But K is a connected set, thus there exists a continuous
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path γ : [0, 1] → R
n, connecting w1 to w2, such that γ([0, 1]) ⊂ K. The contradiction

comes from the fact that by Lemma 2.2.2 x ∈ K implies (t̂, x) ∈ Zf , which is finite by

Assumption 2.

Finally, if t̂ < T , then by Lemma 2.2.2 det∇2
xf(t̂, x) = 0 for any x ∈ K, while by

continuity ∇xf(t̂, x) = 0, i.e., every x ∈ K is a degenerate critical point for f(t̂, ·). Hence

by Assumption 2, t̂ ∈ Π(Zf), and this concludes the proof of Lemma 2.2.1.

Proof of Lemma 2.2.2. We begin with compactness. By definition the set K is closed,

while Assumption 1 guarantees that it is bounded (see Remark 2.1.1).

We continue by proving that K is connected. This can be done in two steps. The first

one consists into prove that for any neighborhood U of the set K there exists k > 0 such

that u(s) ∈ U for any s ∈ Vk := [t̂− 1
k
, t̂[, that is, in other words, u(s) converges to K

whenever s→ t̂. This can be done arguing by contradiction and using again Assumption 1.

The second step consists in taking two closed and disjoint sets A and B and assuming by

contradiction B ∩K = K \A, and that distance(A∩K,B ∩K) is positive. Then the first

step gives the contradiction. These two arguments are standard and we omit the details

of them.

Last, let x ∈ K and assume t̂ < T . Then by definition there exists sk ր t̂ such that

u(sk) converges to x as k → ∞. By continuity, det∇2
xf(sk, u(sk)) tends to det∇2

xf(t̂, x),

and, moreover, ∇xf(t̂, x) = 0. If det∇2
xf(t̂, x) 6= 0, then the Implicit Function Theorem

could be applied, a contradiction with the definition of t̂. This concludes the proof.

Starting from t̄ = 0 and from a suitable point y0 ∈ R
n, we may repeatedly apply

Lemma 2.2.1 and Lemma 2.1.5 obtaining the result stated in the following proposition.

Proposition 2.2.3. Suppose that Assumptions 1–4 are satisfied. Let y0 be such that

∇xf(0, y0) = 0 and ∇2
xf(0, y0) is positive definite. Then there exist a unique (and finite)

family of times 0 = t0 < t1 < · · · < tk−1 < tk = T and a unique family of functions

ui : [ti−1, ti[ → R
n of class C2, for i = 1, . . . , k, and a unique (up to time-translations)

family of functions vi : R → R
n of class C2, i = 1, . . . , k − 1, such that

(1) u1(0) = y0,

(2) for every t ∈ [ti−1, ti[, ∇xf(t, ui(t)) = 0 and ∇2
xf(t, ui(t)) is positive definite,

(3) for every i = 1, . . . , k, there exists xi := lims→t−i
ui(t), while for every i = 1, . . . , k − 1,

(ti, xi) ∈ Zf , ∇2
xf(ti, xi) is positive semidefinite and conditions (b) and (c) of As-

sumption 3 have the same sign,

(4) for every i = 1, . . . , k − 1, function vi(s) solves

v̇i(s) = −∇xf(ti, vi(s)) (2.2.3)
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and satisfies

lim
s→−∞

vi(s) = lim
t→t−i

ui(t) lim
s→+∞

vi(s) = ui+1(ti). (2.2.4)

Proof. We apply Lemma 2.2.1 with (t̄, x̄) = (0, y0) obtaining the existence of t̂ =: t1, and

of a function u1 : [0, t1[ → R
n of class C2 such that u1(0) = y0, ∇xf(t, u1(t)) = 0 on

[0, t1[, and ∇2
xf(t, u1(t)) is positive definite on [0, t1[. This proves conditions (1) and (2)

restricted to [0, t1[.

Arguing as in the proof of Lemma 2.2.1 (using Lemma 2.2.2), we deduce that there

exists x1 := limt→t−1
u1(t) and all eigenvalues of ∇2

xf(t1, x1) are nonnegative. Moreover,

since for every t < t1 the function u1(t) solves the problem ∇xf(t, x) = 0, then it follows

from Remark 2.1.2 that the transversality conditions (b) and (c) of Assumption 3 have

the same sign. Indeed, if on the contrary they had the opposite sign, then there should

be no solutions for the problem ∇xf(t, x) = 0 for t belonging to a left neighborhood of

t1. Thus condition (3) (restricted to [0, t1[) is satisfied.

By Lemma 2.1.5 there exists a unique (up to time-translations) heteroclinic solution

v1 issuing from x1. In addition, as s→ +∞, v1(s) tends to a critical point y1 for f(t1, ·),
and by Assumption 4, ∇2

xf(t1, y1) is positive definite, so that condition (4) for i = 1 is

satisfied.

Finally, if t1 < T , we apply Lemma 2.2.1 with (t̄, x̄) = (t1, y1) and repeat the previous

arguments.

Definition 2.2.4. Suppose that Assumptions 1–4 are satisfied. For fixed y0 ∈ R
n such

that ∇xf(0, y0) = 0 and ∇2
xf(0, y0) is positive definite, let ui, i = 1, . . . , k be the functions

obtained in Proposition 2.2.3. We thus define the C2-piecewise function u : [0, T ] → R
n,

such that u(0) = y0, by

u∣
∣[ti−1,ti)

:= ui, for every i = 1, . . . , k .

Hence, u is discontinuous at t1 < · · · < tk−1 and satisfies

∇xf(t, u(t)) = 0 for every t ∈ [ti−1, ti), u(ti−1) = yi−1 and lim
t→t−i

u(t) = xi , (2.2.5)

for every i = 1, . . . , k (cfr. Figure 2.2).

At the points (ti, xi), by Assumption 3, the Hessian matrix ∇2
xf(ti, xi) has one zero

eigenvalue while, by construction, the remaining n − 1 eigenvalues are positive, for i =

1, . . . , k − 1. By Remark 2.1.2 there exist ri > 0 and Ri > 0 such that the following

conditions hold true (see also Figure 2.3).

(Cl) There are two regular branches of solutions of ∇xf(t, x) = 0 for t ∈ [ti − ri, ti],

i = 1, . . . , k− 1. Moreover, if ker∇xf(ti, xi) = span(ℓi), then the two branches have

common (vertical) tangent (0, ℓi) at (ti, xi), i = 1, . . . , k − 1;

56



y0

y1

y2

y3

x1

x2

x3

x4

t1 t2 t3

u1

u2

u3
u4

0 = t0 t4 = T

Figure 2.2: The C2-piecewise function u, expressed in terms of the functions ui defined in

Proposition 2.2.3, when k = 4.

(Cr) We have

|∇xf(t, x)| > 0, on ]ti, ti + ri] × B(xi, Ri) (2.2.6)

for every i = 1, . . . , k − 1.

By Definition 2.2.4 and condition (Cl) one of these two regular branches of solutions has

graph contained in {(t, u(t))|t ∈ [0, T ] \ {t1, . . . , tk}}. Throughout the chapter, the other

one will be called ū(t). We notice that u and ū have the same limit as t→ t−i .

|∇xf(t, x)| > 0

u(t)

ū(t)

ti − ri ti ti + ri

xi

Ri

Figure 2.3: The local structure of Γf near ti.

In the second part of this section we study some properties of the following ε-gradient

system

εu̇ε(t) = −∇xf(t, uε(t)). (2.2.7)

We start by proving the existence of global solutions to Cauchy problems associated to

(2.2.7). By global we mean here a solution defined on the whole interval [0, T ].
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Lemma 2.2.5. Under Assumption 1, for any x ∈ R
n there exists a unique solution

t 7→ uε(t) to equation (2.2.7), defined on the whole interval [0, T ], with the initial condition

uε(0) = x. Moreover, uε(t) is bounded uniformly with respect to t and ε.

Proof. Since, by assumption, the function f is regular, it follows from standard arguments

on ordinary differential equations that for every ε, the Cauchy problem associated to

(2.2.7) has locally a unique solution t 7→ uε(t). Moreover, multiplying (2.2.7) by uε and

using Assumption 1 we get

d

dt
|uε(t)|2 ≤ 2

a0

ε
− 2

c0
ε
|uε(t)|2 ,

which in particular implies that for every ε the solution uε is defined on [0, T ].

By a standard comparison argument it follows that

|uε(t)|2 ≤
a0

c0
+ e−2

c0
ε

t
(

|x|2 − a0

c0

)

≤ max
{a0

c0
, |x|2

}

,

which gives the uniform boundedness of uε with respect to t and ε. This concludes the

proof.

In the next proposition we deduce another important fact for the sequence (uε)ε.

Proposition 2.2.6. Suppose that Assumption 1 is satisfied. For every ε, let uε be the

solution to a Cauchy problem associated to (2.2.7). Then

εu̇ε → 0 strongly in L2([0, T ]),

as ε goes to zero.

Proof. Let us first notice that

−∇xf(t, uε)u̇ε = − d

dt
f(t, uε) + ft(t, uε). (2.2.8)

Multiplying equation (2.2.7) by u̇ε, integrating between 0 and T , and taking into account

(2.2.8), we get

ε

∫ T

0

|u̇ε(t)|2 dt = f(0, uε(0)) − f(T, uε(T )) +

∫ T

0

ft(t, uε(t)) dt.

The conclusion follows now from the fact that the right-hand side is bounded uniformly

with respect to ε.

Now we are in a position to state the main result of this chapter.
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Theorem 2.2.7. Under Assumptions 1–4, let y0 ∈ R
n be such that ∇xf(0, y0) = 0 and

∇2
xf(0, y0) is positive definite. Let u : [0, T ] → R

n be the C2-piecewise function given by

Definition 2.2.4 with u(0) = y0, and let uε : [0, T ] → R
n be the solution of (2.2.7) starting

from uε(0) =: yε ∈ R
n. If yε → y0, then

uε → u uniformly on compact sets of [0, T ] \ {t1, . . . , tk}. (2.2.9)

Moreover, for every i = 1, . . . , k − 1 let vi be the heteroclinic solution of (2.2.3)–(2.2.4).

Then there exists tiε such that tiε → ti as ε→ 0 and

vi
ε(s) := uε(t

i
ε + εs) → vi(s) uniformly on compact sets of R. (2.2.10)

Finally, if γi := vi(R) ∪ {xi, yi} represents the trajectory of vi and

G := graph(u) ∪
k

⋃

i=1

({ti} × γi), (2.2.11)

then

dist((t, uε(t)), G) → 0 as ε→ 0 , (2.2.12)

uniformly for t ∈ [0, T ].

Remark 2.2.8. In previous theorem the following three facts are established. First,

that out of some small neighborhoods of the critical times ti, the distance between the

“perturbed” solution uε(t) and the limit function u(t) is small uniformly with respect to t.

Next, that in a small neighborhood of ti, the solution uε belongs to a tubular neighborhood

of the trajectory of the heteroclinic solution vi.

Notice that these two facts together imply that the graph of uε approaches the comple-

tion of the graph of u obtained by using the heteroclinic trajectories, defined in (2.2.11).

The third fact is that near the critical times ti, a suitable rescaled version of uε

converges to the heteroclinic solution vi.

2.3 Proof of the main result

The proof of Theorem 2.2.7 follows from some intermediate lemmas which we are going

to prove. For simplicity, we focus on the first subinterval [0, t1] and we start by showing

in the next lemma that (2.2.9) holds true.

Lemma 2.3.1. Under the assumptions of Theorem 2.2.7, if uε(0) → u(0), then uε → u

uniformly on compact subsets of [0, t1).

Proof. For every 0 ≤ τ < t1, by construction of the function u, there exists α = α(τ) such

that

∇2
xf(t, u(t))y · y ≥ 2α|y|2
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for every y ∈ R
n and every 0 ≤ t ≤ τ . (Indeed it is sufficient to take α(τ) be equal to one

half of the smallest (positive) eigenvalue of ∇2
xf(t, u(t)) for t ∈ [0, τ ]).

By uniform continuity, there exists δ0 > 0 such that

∇2
xf(t, x)y · y ≥ α|y|2 (2.3.1)

for every y ∈ R
n and every t ∈ [0, τ ], provided that |u(t) − x| < δ0.

Since uε(0) converges to u(0) as ε → 0, then there exists ε0 > 0 such that |uε(0) −
u(0)| < δ0, for every ε < ε0. Let t∗1 be the largest time such that |uε(t) − u(t)| < δ0 for

every t ∈ [0, t∗1), i.e.,

t∗1 := sup{t ∈ [0, τ) : |uε(t) − u(t)| < δ0} .

For every t ∈ [0, t∗1) and every ε < ε0, subtracting εu̇(t) to the ε-gradient system (2.2.7),

we deduce that

ε(u̇ε(t) − u̇(t)) = −∇xf(t, uε(t)) + ∇xf(t, u(t)) − εu̇(t).

Let us multiply previous equation by wε(t) := uε(t)− u(t). By the Mean Value Theorem,

and using (2.3.1) and the Cauchy inequality, we obtain

ε

2

d

dt
|wε(t)|2 ≤ −α|wε(t)|2 +

ε

2
β +

ε

2
|wε(t)|2 ,

where β is an upper bound for |u̇(t)|2. Using differential inequalities, we deduce that

|wε(t)|2 ≤
(

|wε(0)|2 − ε
β

2α− ε

)

e−(2α
ε
−1)t + ε

β

2α− ε
. (2.3.2)

It follows from (2.3.2) that for ε small enough |uε(t
∗
1)−u(t∗1)| < δ0, which, by the definition

of t∗1, implies that t∗1 = τ . Moreover, since by assumption wε(0) → 0, we deduce from

(2.3.2) that wε(t) → 0 uniformly on [0, τ ] as ε → 0, and this concludes the proof.

In order to prove condition (2.2.10) in Theorem 2.2.7, we zoom in on a neighborhood

of t1 and discuss what happens. Let x1 be defined by condition (3) in Proposition 2.2.3,

and let Λ := min{|x1 − y| : ∇xf(t1, y) = 0 , y 6= x1} be the minimal distance between x1

and the other critical points of f(t1, ·). Let 0 < δ1 < min{Λ, R1}, where R1 is the constant

such that inequality (2.2.6) is satisfied for every t ∈ ]t1, t1 + r1], and |x− x1| < R1.

By continuity, since u(t) tends to x1 as t→ t−1 , there exists t̄ < t1 such that

|u(t) − x1| <
δ1
4

∀ t ∈ (t̄, t1) . (2.3.3)

Consider now an increasing sequence (τh) approaching t1 to the left, with τ1 > t̄. Since,

for every h, Lemma 2.3.1 implies that |uε(t) − u(t)| → 0 uniformly on [0, τh], we deduce

that there exists εh > 0 such that

|uε(t) − u(t)| < δ1
4

∀ t ∈ [0, τh], ∀ 0 < ε < εh. (2.3.4)
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Let us define

tδ1ε := inf{t ≥ τ1 : |uε(t) − x1| ≥ δ1}, (2.3.5)

i.e., tδ1ε is the first time larger than τ1 such that |uε(t) − x1| = δ1.

Lemma 2.3.2. Let tδ1ε be defined by (2.3.5). Then

tδ1ε → t1 as ε → 0. (2.3.6)

Proof. We begin by proving that

lim inf
ε→0

tδ1ε ≥ t1. (2.3.7)

Let t̄ < t1 be such that (2.3.3) is satisfied. Since by definition τ1 > t̄, we have that

τh belongs to (t̄, t1) for every h. Then for fixed τh it follows from (2.3.3), (2.3.4), and

triangular inequality, that

|uε(t) − x1| <
δ1
2

∀ t ∈ (t̄, τh), and every ε < εh.

Hence, tδ1ε > τh, for every 0 < ε < εh. Thus, lim infε→0 t
δ1
ε ≥ τh for every h, which

implies (2.3.7).

On the other hand, by Proposition 2.2.6 and by (2.2.7), for a.e. t∗ ∈ [0, T ] we have

that |∇xf(t∗, uε(t
∗))| tends to 0 as ε → 0 along a suitable sequence. In particular,

this is true for a.e. t∗ in a right-neighborhood of t1. Condition (2.2.6) implies now that

|uε(t
∗) − x1| > R1 for ε sufficiently small. Let us take η > 0 and choose t∗ ∈ ]t1, t1 + η[.

Since R1 > δ1, from the definition of tδ1ε and the regularity of uε, we deduce immediately

that tδ1ε < t∗ for ε sufficiently small. This concludes the proof, since the result does not

depend on the subsequence of ε chosen.

Let us observe now that for s ∈ [−tδ1ε /ε, (T − tδ1ε )/ε], function vε
1(s) := uε(t

δ1
ε + εs)

solves the following problem

{

v̇ε
1(s) = −∇xf(tδ1ε + εs, vε

1(s))

vε
1(0) = uε(t

δ1
ε ).

(2.3.8)

Moreover, since uε(t
δ1
ε ) belongs to the compact set ∂B(x1, δ1), there exists κ1 ∈ ∂B(x1, δ1)

such that, passing to a subsequence, uε(t
δ1
ε ) → κ1 as ε→ 0. Therefore, Lemma 2.3.2 and

the Continuous Dependence Theorem imply that vε
1 converges uniformly on compact sets

of R to the solution w(s) of the following problem:

{

ẇ(s) = −∇xf(t1, w(s))

w(0) = κ1.
(2.3.9)
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The next step consists in proving that w is precisely (up to time-translations) the hete-

roclinic solution v1, defined in Proposition 2.2.3. To this aim we introduce a sequence

δk ց 0, where δ1 is the constant already introduced (after the proof of Lemma 2.3.1), and

define, for k > 1,

tδk
ε := sup{t ≤ tδ1ε : |uε(t) − x1| ≤ δk}, (2.3.10)

i.e., tδk
ε is the last time before tδ1ε such that |uε(t) − x1| = δk.

Lemma 2.3.3. For s ∈ [−tδk
ε /ε, (T − tδk

ε )/ε], let vε
k(s) := uε(t

δk
ε + εs), and let tδ1ε =

tδk
ε + εS1,k

ε , for some S1,k
ε > 0. Then S1,k

ε → sk < +∞ as ε → 0 along a suitable sequence,

and, for every k,

vε
k(s) → w(s− sk) uniformly on compact subsets of R . (2.3.11)

Moreover sk → +∞ as k → ∞. Finally, lims→−∞w(s) = x1.

Proof. We begin by observing that tδk
ε converges to t1 as ε → 0. Indeed, arguing in the

same manner as for tδ1ε in the proof of Lemma 2.3.2, we get that lim infε→0 t
δk
ε ≥ t1, while,

since tδk
ε ≤ tδ1ε , and tδ1ε → t1, we deduce that lim supε→0 t

δk
ε ≤ t1.

Near (t1, x1), using the local structure of the set Γf (defined in (2.1.2)), given by (Cl)

and (Cr), we can prove that for every k there exists ηk > 0 such that

Γf ∩
(

[t1 − ηk, t1 + ηk] × B(x1, R1)
)

⊂ [t1 − ηk, t1] × B
(

x1,
δk
2

)

, (2.3.12)

where R1 is the constant such that (2.2.6) is satisfied for every t ∈ ]t1, t1 + r1] and |x−x1| <
R1. Next, we notice that for fixed k, for ε sufficiently small and for t ∈ [tδk

ε , t
δ1
ε ], we have

(t, uε(t)) ∈ Sk := [t1 − ηk, t1 + ηk] × {x ∈ R
n : δk ≤ |x− x1| ≤ δ1} .

Moreover, we observe that Sk is closed and since, by (2.3.12), (t, x) ∈ Sk is quite distant

from both (t, u(t) and (t, u(t)) (the two regular branches of Γf near (t1, x1)), we have

Sk ∩ Γf = ∅, so that there exists a positive constant ck such that |∇xf(t, x)| ≥ ck > 0 for

every (t, x) ∈ Sk. By the fact that (t, uε(t)) ∈ Sk for t ∈ [tδk
ε , t

δ1
ε ], it follows

|∇xf(t, uε(t))| ≥ ck > 0 for every tδk
ε ≤ t ≤ tδ1ε , (2.3.13)

and for ε small. (See also Figure 2.4)

After these preliminaries, we prove now that S1,k
ε → sk < +∞, as ε → 0 along a

suitable sequence. Indeed, for s ∈ [0, 1] let us define wε(s) := uε(s(t
δ1
ε − tδk

ε )+ tδk
ε ). Hence,

wε is the solution of the following problem:







1

S1,k
ε

ẇε(s) = −∇xf(s(tδ1ε − tδk
ε ) + tδk

ε , wε(s))

wε(0) = uε(t
δk
ε ).

(2.3.14)

62



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

������
������
������
������

�������
�������
�������

�������
�������
�������

����x1
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δk

[t1 − ηk , t1] × B(x1,
δk

2
)

Sk

t1 t1 + ηkt1 − ηk

Figure 2.4: The sets Sk and [t1 − ηk, t1] ×B(x1,
δk

2
) are disjoint.

Multiplying by ẇε and integrating between 0 and 1 we get:

1

S1,k
ε

∫ 1

0

|ẇε(s)|2 ds = f(tδk
ε , uε(t

δk
ε )) − f(tδ1ε , uε(t

δ1
ε ))+

+ (tδ1ε − tδk
ε )

∫ 1

0

ft(s(t
δ1
ε − tδk

ε ) + tδk
ε , wε(s)) ds,

where the right-hand side is bounded uniformly with respect to ε. If, by contradiction,

S1,k
ε → ∞ as ε → 0 along a suitable sequence, then (S1,k

ε )−1ẇε → 0 strongly in L2(0, 1),

which in particular implies that

1

S1,k
ε

ẇε(s) → 0 for a.e. s ∈ [0, 1]. (2.3.15)

On the other hand, by (2.3.13) and the definition of wε, for ε sufficiently small, we obtain

that

|∇xf(s(tδ1ε − tδk
ε ) + tδk

ε , wε(s))| ≥ ck > 0 ,

for every s ∈ [0, 1], which contradicts (2.3.14) and (2.3.15).

Now we continue as for δ1, and define vε
k(s) := uε(t

δk
ε + εs), for s ∈ [−tδk

ε /ε, T − tδk
ε /ε].

It turns out that vε
k solves

{

v̇ε
k(s) = −∇xf(tδk

ε + εs, vε
k(s)),

vε
k(0) = uε(t

δk
ε ).

Since uε(t
δk
ε ) belongs to the compact set ∂B(x1, δk), we deduce that there exists κk ∈

∂B(x1, δk) such that uε(t
δk
ε ) → κk as ε → 0 along a suitable sequence. It follows that, if

we define wk as the solution of

{

ẇk(s) = −∇xf(t1, wk(s))

wk(0) = κk,
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then vε
k(s) → wk(s) uniformly on compact subsets of R, by the Continuous Dependence

Theorem. Moreover, the equality vε
k(S

1,k
ε ) = uε(t

δ1
ε ) implies wk(sk) = κ1. By the unique-

ness of the solution of the Cauchy problem (2.3.9) we obtain wk(s) = w(s − sk) and

w(−sk) = κk. It follows that w(−sk) → x1 as k → +∞.

Let now s∞ be such that sk → s∞, and assume by contradiction that s∞ < +∞. Then,

by continuity, w(s∞) = x1 and, since x1 is an equilibrium point, from the uniqueness it

should follow w(s) ≡ x1, a contradiction.

It remains to prove that lims→−∞w(s) = x1. Indeed this follows from some standard

facts on the α-limit set (see, e.g., [30], [1]).

More precisely, let g(x) := f(t1, x) for every x ∈ R
n, and let E be the set of critical

points of g, i.e., E = {x : ∇g(x) = 0}. Let us denote the α-limit set of w by α(w). Then

x1 ∈ α(w), and we can prove that for every y ∈ α(w) we have g(y) = g(x1). Indeed, for

y ∈ α(w) there exists a sequence ŝk such that w(−ŝk) → y and ŝk → +∞. Moreover,

the sequence g(w(−ŝk)) converges to g(y) as k → ∞. Since the map s 7→ g(w(s)) is

nonincreasing, there exists a ∈ R ∪ {+∞} such that g(w(s)) → a, as s→ −∞. But

lim
s→−∞

g(w(s)) = lim
k→∞

g(w(−sk)) = lim
k→∞

g(κk) = g(x1) ,

so that a = g(x1) ∈ R and a = g(y), for every y ∈ α(w). It follows that g(w(s)) ≤ a for

every s ≤ 0. By the coerciveness of the function f (2.1.1), we deduce that the negative

semiorbit is precompact. Then α(w) is connected, compact, and contained in E.

Since by assumption the points of E are isolated, we have α(w) = {x1}, therefore

lims→−∞w(s) = x1.

By Lemma 2.3.3 there exists a subsequence εk → 0 such that

uεk
(tδ1εk

+ εks) → w(s) .

Let us choose now v1 satisfying (2.2.3) and (2.2.4) of Proposition 2.2.3. Then there exist

α, β ∈ R such that

{s ∈ R : v1(s) ∈ ∂B(x1, δ1)} ⊂ [α, β] . (2.3.16)

From the fact that w(0) = κ1 ∈ ∂B(x1, δ1) and by uniqueness, there exists unique c ∈ R

(defined by v1(c) = w(0) = κ1) such that

w(s) = v1(s+ c) . (2.3.17)

In order to prove that our main result does not depend on suitable subsequences of ε, we

will use the following lemma (given in an abstract setting).

Lemma 2.3.4. Let C be a nonempty set, let (F , d) be a metric space, and let us consider

a function G : ]0, ε0[ × C → F . Assume that there exists g0 ∈ F such that

∀εk → 0 ∃εkj
, ∃c ∈ C : G(εkj

, c) → g0 . (2.3.18)
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Then for every ε ∈ ]0, ε0[ there exists cε ∈ C such that

G(ε, cε) → g0 .

Proof. It is sufficient to prove that

inf
c∈C

d(G(ε, c), g0) → 0 . (2.3.19)

Assume by contradiction that (2.3.19) is not true. Then, there exists η > 0 such that for

every k ∈ N there exists εk ∈ ]0, 1
k
[ with

inf
c∈C

d(G(εk, c), g0) > η . (2.3.20)

But this contradicts the assumption (2.3.18), since for every subsequence εkj
of εk and for

every c ∈ C we should get d(G(εkj
, c), g0) > η.

Now we are in a position to prove the main result of this chapter.

Proof of Theorem 2.2.7. Let us first concentrate on the time interval [0, t1].

Then Lemma 2.3.1 implies that condition (2.2.9) restricted to [0, t1] is satisfied.

Let us prove now condition (2.2.12). For fixed η ∈ ]0, t1
2
[ the goal is to prove that there

exists ε0 > 0 such that

dist((t, uε(t)), G) < η for every ε < ε0 , (2.3.21)

uniformly with respect to t ∈ [0, t1]. Indeed, let τ := t1 − η

2
. Let us take δ1 < η and

define tδ1ε as in (2.3.5). We consider now ε belonging to a suitable sequence tending to

zero such that κ1 is defined (as the limit of uε(t
δ1
ε )). Then by Lemma 2.3.1 there exists

ε1 > 0 such that (2.3.21) is satisfied for every t ∈ [0, τ ] and every ε < ε1. Moreover, from

the definition of tδ1ε we deduce that |uε(t) − x1| ≤ δ1 < η, for every t ∈ ]τ, tδ1ε ]. Hence

(2.3.21) is satisfied for every t ∈ [0, tδ1ε ] and every ε < ε1.

On the other hand, by Lemma 2.3.3 and by (2.3.17), there exists ε2 > 0 such that

|uε(t
δ1
ε + εs) − v1(s+ c)| < η

2
for every 0 ≤ s ≤ Sη and ε < ε2 ,

where Sη ∈ R is such that

|v1(s) − y1| <
η

2
for every s ≥ Sη .

Let τ 1
ε := tδ1ε + εSη − εc and observe that it is not restrictive to assume that τ 1

ε > tδ1ε .

Hence, for s = Sη and ε small enough,

|uε(τ
1
ε ) − v1(Sη)| <

η

2
.
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We have thus obtained that

dist((t, uε(t)), {t1} × γ1) ≤ η on [tδ1ε , τ
1
ε ] ,

recalling that γ1 is the trajectory of v1. This, together with the fact that τ 1
ε → t1,

completes the proof of (2.3.21) and begins the proof of the uniform convergence in the

interval [t1, t2]. After a finite number of steps we obtain (2.2.9) and (2.2.12).

Since (2.2.9) and (2.2.12) do not depend on the particular subsequence chosen, we

deduce that the result holds true for the whole sequence ε.

More delicate to prove is condition (2.2.10), since the constant c introduced in (2.3.17)

depends on the subsequence εk. But we recall that uεk
(tδ1εk

+ εks) → w(s) = v1(s+ c), i.e.,

uεk
(tδ1εk

− εkc+ εks) → v1(s) .

Therefore Lemma 2.3.4 applies with C := [α, β] (see (2.3.16)) and F be equal to the set

of continuous functions endowed with the distance induced by the uniform convergence

on compact sets, and we obtain (2.2.10).
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Chapter 3

An artificial viscosity approach to

quasistatic crack growth

In this chapter we study the crack growth in brittle materials when the prescribed crack

path Γ is a regular arc with one endpoint on the boundary of the reference configuration

Ω and the other inside Ω. We assume in addition that there exists an initial connected

crack starting from the boundary point, and that the crack remains connected during the

evolution. Hence, such a crack will be completely determined by its length σ.

For this model the evolution is driven by time-dependent imposed boundary displace-

ments ψ(t) on a part ∂DΩ of the boundary, and applied boundary forces g(t) on the

remaining part ∂NΩ. The total energy, E (t)(u, σ), of a configuration (u, σ) (where u re-

presents the displacement) at time t, is the sum of the bulk energy and the surface energy,

minus the work of the applied forces.

Let us introduce now all the ingredients necessary to define the notion of irreversible

quasistatic evolution we are interested in. The set of admissible displacements, i.e., dis-

placements with finite bulk energy, compatible with the imposed boundary displacement

ψ(t) and with the crack length σ, will be denoted by AD(ψ(t), σ). Since for this model,

given t and σ, there exists a unique minimizer ut,σ of the energy E (t)(u, σ) in AD(ψ(t), σ),

we consider the minimal energy, E(t, σ), corresponding to the boundary data ψ(t) and to

the crack length σ, i.e.,

E(t, σ) := E (t)(ut,σ, σ) .

The derivative ∂σE(t, σ) can be computed (see Proposition 3.2.4) and it is related to the

stress intensity factor of the displacement ut,σ at the tip of the crack. It plays a crucial

rôle in the Griffith’s criterion for the propagation of cracks.

Now we are in a position to define the notion of evolution we are interested in. The

irreversible quasistatic evolution problem consists in finding a left-continuous function

of time t 7→ (u(t), σ(t)) such that the displacement u(t) at time t belongs to the set

AD(ψ(t), σ(t)), and the following three conditions are satisfied:
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(a) local unilateral stability: at every time t ≥ 0

E (t)(u(t), σ(t)) ≤ E (t)(v, σ(t)) ∀ v ∈ AD(ψ(t), σ(t))

∂σE(t, σ(t)) ≥ 0 ,

(b) irreversibility: the map t 7→ σ(t) is increasing;

(c) energy inequality: for every 0 ≤ s < t we have

E (t)(u(t), σ(t)) ≤ E (s)(u(s), σ(s)) + Work(u; s, t) ,

where Work(u; s, t) denotes the work of external forces.

A solution to this problem will be called an irreversible quasistatic evolution.

We observe that condition (a) deals only with the first order necessary conditions for

the minimality of the pair (u(t), σ(t)), neglecting completely the sufficient ones. Anyway

the globally stable irreversible quasistatic evolutions considered in [18], [9], [3], [17], [8],

fit the previous definition, and despite of the new feature, the three items ensure that a

weak version of the Griffith’s criterion is satisfied (see Proposition 3.3.2).

The aim of this chapter is to obtain an existence result for an evolution possibly

different from the globally stable one. More precisely, the selection criterion we adopt is

based on an approximation procedure with a regularizing effect. Accordingly, we give in

Definition 3.3.6 the notion of approximable irreversible quasistatic evolution (u(t), σ(t))

defined as limit of solutions (uε(t), σε(t)) of regular evolution problems (see (3.3.7) in

Definition 3.3.3), after having performed a suitable change of variables in order to study

the problem on a fixed Sobolev space (independent of σ), to simplify the mathematical

difficulties.

Accordingly, the main result of this chapter, Theorem 3.3.7, states the existence of

such an approximable evolution.

In addition, we prove that if (u(t), σ(t)) is an approximable irreversible quasistatic

evolution, then the following property holds.

(P) if on a certain time interval [t0, t1] there exists a regular function σ0(t) such that

∂σE(t, σ0(t)) = 0 and ∂2
σE(t, σ0(t)) > 0 ∀ t ∈ [t0, t1] ,

and if σ̇ε(t) > 0 for every t ∈ [t0, t1], then the equality σ(t0) = σ0(t0) implies that

σ(t) = σ0(t) for every t ∈ [t0, t1].

In this way, when some additional hypotheses are satisfied (like in (P)) our evolution can

be characterized on the continuity subintervals by the Implicit Function Theorem, which

gives the regular evolution t 7→ σ0(t) (see Theorem 3.4.1). On the other hand, we note in

Remark 3.3.9 that the energy functional decreases when the evolution has a jump. This
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characterization makes the difference with the globally stable evolution that we expect to

move directly to the absolute minimum for the energy functional, while our approximable

evolution is expected to propagate continuously at least on every time interval where

property (P) holds.

Let us remark that this model is not suited for the study of the crack initiation problem.

We also note that the approximating evolutions we consider have been chosen on the basis

of their mathematical simplicity and do not seem to have any mechanical interpretation.

Nevertheless, we think that the notion of approximable irreversible quasistatic evolution

proposed here could be the starting point for the study of different approximations with

a mechanical justification. For a different approach to the irreversible quasistatic crack

growth see also [19].

The chapter is organized as follows. In Section 3.1 we fix our notations and make some

preliminary calculations in order to write the problem on a fixed domain, independent

of σ. Section 3.2 collects some (known) results on critical points of the energy, while

in Section 3.3 we prove our main result, Theorem 3.3.7. In Section 3.4, property (P) is

obtained. In Section 3.5 we detail our results in the case of monotonically increasing in

time imposed boundary displacements and compare this evolution with the one proposed

by Francfort and Marigo in [18], while in Section 3.6 we provide an example where the

energy, as function of the crack length, has at least a concavity interval.

3.1 Setting of the problem

3.1.1 The reference configuration and the crack.

Let Ω be a bounded connected open set of R
2 with Lipschitz boundary ∂Ω. The set Ω

represents the reference configuration of an isotropic, homogeneous elastic body. Let ∂DΩ

be a closed subset of ∂Ω with H 1(∂DΩ) > 0, where H 1 denotes the one-dimensional

Hausdorff measure, and let ∂NΩ := ∂Ω \ ∂DΩ. On the Dirichlet part of the boundary,

∂DΩ, we will impose the boundary displacements, while on the Neumann part of the

boundary, ∂NΩ, we will prescribe the boundary forces.

Let Γ be a simple C3-arc and let γ : [0, σ] → Γ be its arc-length parametrization.

We assume that γ(0) ∈ ∂NΩ and γ(σ) ∈ Ω for 0 < σ ≤ σ. For technical reasons it is

convenient to extend Γ until it reaches another point in ∂NΩ, so that it cuts the reference

configuration Ω into two subsets. The extension will still be called Γ, and its arc-length

parametrization will now be γ : [0, σmax] → Γ. We assume that its intersection with the

boundary ∂Ω is not tangential. Let ν be a unit normal vector field on Γ. Then we denote

by Ω+ the part of Ω \ Γ which is positively oriented with respect to ν, and by Ω− the

remaining part, so that Ω \ Γ = Ω+ ∪ Ω−. Both Ω+ and Ω− are bounded connected sets

with Lipschitz boundary. We assume that H 1(∂DΩ∩∂Ω+) > 0 and H 1(∂DΩ∩∂Ω−) > 0.
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We make the following simplifying assumption: all admissible cracks are of the form

Γ(σ) := {γ(s) : 0 ≤ s ≤ σ} with σ ≤ σ .

According to Griffith’s theory we assume that the energy spent to produce the crack

Γ(σ) is proportional to the length of the crack, and, for simplicity, we take it to be equal

to σ.

3.1.2 The bulk energy.

We consider here the case of antiplane shears. Given a crack Γ(σ), an admissible displace-

ment is any function u ∈ H1(Ω\Γ(σ)), and the bulk energy associated to the displacement

u is

W(Du) :=

∫

Ω\Γ(σ)

|Du(x)|2dx ,

where Du is the distributional gradient of u and | · | denotes the norm in R
2.

3.1.3 The boundary displacement.

In the sequel it will be convenient to work on a fixed time interval [0, T ] with T > 0. We

impose a time-dependent Dirichlet boundary condition on ∂DΩ:

u = ψ(t) on ∂DΩ,

where equality on the boundary is considered in the sense of traces. We assume that

ψ(t) is the trace on ∂DΩ of a bounded Sobolev function, still denoted by t 7→ ψ(t), with

ψ(t) ∈ H1(Ω) ∩ L∞(Ω).

We assume also that ψ ∈ W 1,∞(0, T ;H1(Ω)) ∩ L∞(0, T ;L∞(Ω)). Thus, the time

derivative t 7→ ψ̇(t) belongs to the space L∞(0, T ;H1(Ω)) and its spatial gradient t 7→
Dψ̇(t) belongs to the space L∞(0, T ;L2(Ω; R2)).

3.1.4 The external loads.

We are interested in the case of time-dependent dead loads, in which the density, g : [0, T ]×
∂NΩ → R, of the applied surface force per unit area in the reference configuration does

not depend on the displacement u. We assume that the function t 7→ g(t)(·) belongs to

W 1,∞(0, T ;L2(∂NΩ,H 1)), with time derivative denoted by t 7→ ġ(t)(·). The associated

potential, for a displacement u, is given by

G(t)(u) :=

∫

∂NΩ

g(t)(x)u(x)dH 1 .

Moreover, we assume that for every t ∈ [0, T ] the support of g(t) does not intersect the

set Γ.
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3.1.5 The admissible displacements and their total energy.

For every t ∈ [0, T ], the set AD(ψ(t), σ) of admissible displacements in Ω with finite

energy, corresponding to the crack Γ(σ) and to the boundary data ψ(t) is given by

AD(ψ(t), σ) := {u ∈ H1(Ω \ Γ(σ)) : u = ψ(t) on ∂DΩ} ,

where the last equality refers to the traces of u and ψ(t) on ∂DΩ. The total energy of a

configuration (u, σ) with u ∈ AD(ψ(t), σ) is given by

E (t)(u, σ) := W(Du) + σ − G(t)(u) .

Note that it does not depend on the particular extension ψ(t) chosen, but only on its

value on the Dirichlet part of the boundary.

3.1.6 Moving to a fixed domain.

Let H1
∂DΩ(Ω \ Γ(σ)) denote the space of functions u ∈ H1(Ω \ Γ(σ)) whose trace on ∂DΩ

is zero. We may consider the energy as a functional defined on H1
∂DΩ(Ω \Γ(σ)) by simply

writing ũ = u+ ψ(t) with ũ ∈ AD(ψ(t), σ) and u ∈ H1
∂DΩ(Ω \ Γ(σ)). Still the domain of

the energy functional would depend on σ. To transform it into a functional defined on a

fixed domain we consider the following change of variables.

Let 0 < σ0 < σ. For σ ∈ [σ0, σ], let Φ(·, σ) = Φσ(·) : Ω → Ω be a diffeomorphism

which coincides with the identity near the boundary of Ω, leaves invariant both Ω+ and

Ω− and transforms Γ(σ) into Γ(σ0). Let Ψ(·, σ) = Ψσ(·) := Φ−1(·, σ) : Ω → Ω. Then

letting x = Ψσ(y) we get

∫

Ω\Γ(σ)

|(Du+Dψ(t))(x)|2dx =

∫

Ω\Γ(σ0)

|(Du+Dψ(t))(Ψσ(y))|2detDΨσ(y)dy .

For u ∈ H1
∂DΩ(Ω \Γ(σ)) define v(y, σ) := u(Ψσ(y)), so that v belongs to the fixed domain

H1
∂DΩ(Ω \ Γ(σ0)), and let ψ̃(t)(y, σ) := ψ(t)(Ψσ(y)). With these notations

∫

Ω\Γ(σ)

|(Du+Dψ(t))(x)|2dx=

∫

Ω\Γ(σ0)

|((DΨσ)
T )−1(y)(Dv +Dψ̃(t))(y, σ)|2detDΨσ(y)dy,

and the last integral can be written also in the form
∫

Ω\Γ(σ0)

∑

i,j∈{1,2}

aij(σ)(y)Dj(v + ψ̃(t))(y, σ)Di(v + ψ̃(t))(y, σ)dy ,

with the coefficients aij given by the change of variables as follows. From

DΨσ(x) :=

(

D1Ψ1(x) D1Ψ2(x)

D2Ψ1(x) D2Ψ2(x)

)
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and

DΨ−1
σ (x) =

1

detDΨσ(x)

(

D2Ψ2(x) −D1Ψ2(x)

−D2Ψ1(x) D1Ψ1(x)

)

,

we obtain

|((DΨσ)
T )−1D(v + ψ̃(t))|2 detDΨσ =

1

detDΨσ

[

(D1(v + ψ̃(t)))2((D2Ψ2)
2 + (D1Ψ2)

2)−

− 2D1(v + ψ̃(t))D2(v + ψ̃)(D2Ψ2D2Ψ1 +D1Ψ2D1Ψ1)+

+ (D2(v + ψ̃(t)))2((D2Ψ1)
2 + (D1Ψ1)

2)
]

,

which implies:

a11(σ)(x) :=
1

detDΨσ(x)

(

(D2Ψ2)
2 + (D1Ψ2)

2
)

(x),

a12(σ)(x) = a21(σ)(x) := − 1

detDΨσ(x)

(

D2Ψ2D2Ψ1 +D1Ψ2D1Ψ1

)

(x),

a22(σ)(x) :=
1

detDΨσ(x)

(

(D2Ψ1)
2 + (D1Ψ1)

2
)

(x).

Define A(σ) := (aij(σ))ij and note that aij(σ) ∈ C(Ω), for every σ ∈ [σ0, σ], and every

i, j = 1, 2.

We may assume that 0 < c < ‖detDΦσ‖∞ < C independently of σ ∈ [σ0, σ], where

‖ · ‖∞ denotes the L∞-norm on Ω. Since Γ is of class C3, we may also choose Φ(·, σ)

(and hence Ψ(·, σ)) to depend regularly on σ in such a way that, as functions of σ, the

coefficients aij be of class C2 on [σ0, σ], uniformly in Ω. In particular, we shall use the

fact that there exist five positive constants λ,Λ,Λ′, L , L′ > 0 independent of σ, such that

(A(σ)ξ|ξ) ≥ λ|ξ|2 ∀ ξ ∈ R
2 , ∀x ∈ Ω , (3.1.1)

where (·|·) denotes the scalar product in R
2,

‖(A(σ)ξ|η)‖∞ ≤ Λ|ξ| |η| ∀ ξ, η ∈ R
2 , (3.1.2)

‖(∂σA(σ)ξ|η)‖∞ ≤ Λ′|ξ| |η| ∀ ξ, η ∈ R
2 , (3.1.3)

‖aij(σ
′) − aij(σ

′′)‖∞ ≤ L|σ′ − σ′′| and (3.1.4)

‖∂σaij(σ
′) − ∂σaij(σ

′′)‖∞ ≤ L′|σ′ − σ′′| (3.1.5)

for every σ′, σ′′ ∈ [σ0, σ] and i, j = 1, 2.

Note that, since Ψσ coincides with the identity near the boundary of Ω, this change

of variables does not have any effect on G:

G(t)(u+ ψ(t)) = G(t)(v + ψ̃(t)) .

Moreover, we can neglect the dependence of ψ̃ on σ since, for every σ ∈ [σ0, σ], Ψσ

coincides with the identity near the boundary of Ω, and we may assume that the support
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of ψ is included in the set where, for every σ ∈ [σ0, σ], Ψσ is the identity. Hence the

change of variables influences only the bilinear term in v.

For brevity of notation, let

V := H1
∂DΩ(Ω \ Γ(σ0)) .

On V we consider the norm ‖ · ‖V defined by ‖v‖V := ‖Dv‖2, and the scalar product

(v, w)V := (Dv,Dw), where ‖ · ‖2 and (·, ·) denote the norm and, respectively, the scalar

product in L2(Ω) or L2(Ω \ Γ(σ0); R
2), depending on the context. Let V ′ denote its dual

space and let 〈·, ·〉 denote the duality pairing between V ′ and V .

For every t ∈ [0, T ], v ∈ V , and σ ∈ [σ0, σ] define

F (t, v, σ) :=

=

∫

Ω\Γ(σ0)

∑

i,j∈{1,2}

aij(σ)Dj(v + ψ̃(t))Di(v + ψ̃(t))dx+ σ −
∫

∂NΩ

g(t)(v + ψ̃(t))dH 1.

Then the functional F can be also written as

F (t, v, σ) :=

∫

Ω\Γ(σ0)

(A(σ)Dv|Dv) dx+ 2

∫

Ω\Γ(σ0)

(Dψ(t)|Dv) dx−

−
∫

∂NΩ

g(t)v dH 1 + σ +

∫

Ω

|Dψ(t)|2dx−
∫

∂NΩ

g(t)ψ(t) dH 1,

or

F (t, v, σ) :=

= (A(σ)Dv,Dv) + 2(Dψ(t), Dv) − (g(t), v)∂NΩ + σ + ‖Dψ(t)‖2
2 − (g(t), ψ(t))∂NΩ

where (·, ·)∂NΩ denotes the scalar product in L2(∂NΩ,H 1). Hence the elastic energy

becomes F el(t, v, σ) := F (t, v, σ) − σ, and there exist four positive constants λF , ΛF ,

µF , and MF , independent of t and σ, such that for every t ∈ [0, T ] and every σ ∈ [σ0, σ]

F
el(t, v, σ) ≥ λF‖v‖2

V − µF

F
el(t, v, σ) ≤ ΛF‖v‖2

V +MF ,

for every v ∈ V . Indeed, this follows from the uniform ellipticity of the bilinear part and

standard estimates (on Ω+ and Ω−).

3.2 Critical points of the energy

For every t ∈ [0, T ] the function F (t, ·, ·) : V × [σ0, σ] → R is twice Fréchet partially

differentiable with respect to (v, σ). In particular, the partial differential ∂vF (t, v, σ)
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belongs to V ′, while the partial gradient gradvF (t, v, σ) is, by definition, the element of

V given by

(gradvF (t, v, σ), w)V = 2(A(σ)Dv,Dw) + 2(ψ(t), w)V − (g(t), w)∂NΩ,

for every w ∈ V . The partial differential ∂σF (t, v, σ) is given by

∂σF (t, v, σ) = (∂σA(σ)Dv,Dv) + 1 .

For fixed v ∈ V and σ ∈ [σ0, σ], we have that F (·, v, σ) ∈W 1,∞(0, T ), with

∂tF (t, v, σ) = 2(Dψ̇(t), Dv +Dψ(t)) − (ġ(t), v + ψ(t))∂NΩ − (g(t), ψ̇(t))∂NΩ .

Note that by the regularity assumptions on ψ and g it follows also that the map

(t, v, σ) 7→ (gradvF (t, v, σ), ∂σF (t, v, σ))

is continuous from (0, T ) × V × (σ0, σ) into V × R.

The second order partial differentials with respect to (v, σ) are given by

〈〈∂2
(v,σ)F (t, v, σ)(w1, τ1), (w2, τ2)〉〉 = 2(A(σ)Dw1, Dw2) + 2(∂σA(σ)Dv,Dw1)τ2 +

+2(∂σA(σ)Dv,Dw2)τ1 + (∂2
σσA(σ)Dv,Dv)τ1τ2 ,

for every (wi, τi) ∈ V × R, i = 1, 2, where 〈〈·, ·〉〉 denotes the duality product between

V ′ × R and V × R.

For fixed t and σ, the function v 7→ F (t, v, σ), being strictly convex, has a unique

critical point vt,σ, and vt,σ is a minimum point. Also the function u 7→ E (t)(u, σ) is

strictly convex and its critical point is the unique minimum point ut,σ ∈ AD(ψ(t), σ) of

u 7→ E (t)(u, σ). The function ut,σ satisfies

2

∫

Ω\Γ(σ)

(Dut,σ|Dw)dx =

∫

∂NΩ

g(t, x)w dH 1 ∀w ∈ H1
∂DΩ(Ω \ Γ(σ)) .

Proposition 3.2.1. For fixed t ∈ [0, T ] critical points of F (t, ·, ·) correspond to critical

points of E (t) in the following sense: minimum points vt,σ ∈ V of v 7→ F (t, v, σ) corre-

spond by the change of variables to minimum points ut,σ ∈ AD(ψ(t), σ) of u 7→ E (t)(u, σ).

Moreover, ∂σF (t, vt,σ, σ) = ∂σE(t, σ), where E(t, σ) := E (t)(ut,σ, σ).

Before giving the proof we discuss some properties of the minimizers ut,σ. The following

result provides a useful characterization of the “singular” part of the displacement ut,σ

near the tip γ(σ) of the crack. For the proof we refer to [22], [23].

Proposition 3.2.2. Let σ ∈ [σ0, σ] and u ∈ H1(Ω \ Γ(σ)) be such that

∆u ∈ L2(Ω \ Γ(σ)) and ∂νu = 0 on Γ(σ). (3.2.1)
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Then there exists κ ∈ R satisfying

u− κ

√

2

π
r

1
2 sin

θ

2
∈ H2(U \ Γ(σ)), (3.2.2)

for every U ⊂⊂ Ω open. In (3.2.2), r(x) := |x−γ(σ)| and θ(x) is the continuous function

on U \ Γ(σ) which coincides with the counterclockwise oriented angle between γ̇(σ) and

x− γ(σ), and vanishes on the points of the form x = γ(σ) + hγ̇(σ) for h > 0 sufficiently

small.

The coefficient κ
√

2/π represents the stress intensity factor associated to the displace-

ment u at the tip γ(σ). We shall use its following characterization.

Proposition 3.2.3. Let σ ∈ [σ0, σ], u ∈ H1(Ω \ Γ(σ)) satisfying (3.2.1), and let κ be

defined by (3.2.2). Then for every φ = (φ1, φ2) ∈ C∞
c (Ω; R2) we have

κ2φ(γ(σ))γ̇(σ) =

∫

Ω

[

((D1u)
2 − (D2u)

2)(D1φ1 −D2φ2)+

+2D1uD2u(D1φ2 +D2φ1)
]

dx+ 2

∫

Ω

∆u(D1uφ1 +D2uφ2) dx.
(3.2.3)

Proof. The proof follows the lines of [2, Proposition 2.2], but we present it for the sake

of completeness. Let η > 0 be such that the closed ball centered at γ(σ) with radius η,

denoted by B(γ(σ), η), is contained in Ω and let us consider the following integration by

parts:
∫

Ω\B(γ(σ),η)

[

((D1u)
2 − (D2u)

2)(D1φ1 −D2φ2) + 2D1uD2u(D1φ2 +D2φ1)
]

dx =

=

∫

∂B(γ(σ),η)

[

((D1u)
2 − (D2u)

2)(ν1φ1 − ν2φ2) + 2D1uD2u(ν1φ2 + ν2φ1)
]

dH 1+

−2

∫

Ω\B(γ(σ),η)

∆u(D1uφ1 +D2uφ2) dx,

(3.2.4)

where (ν1, ν2) is the inner normal to ∂B(γ(σ), η), i.e., it is the outer normal to ∂(Ω \
B(γ(σ), η)). Therefore, we obtain the following identity:

∫

Ω

[

((D1u)
2 − (D2u)

2)(D1φ1 −D2φ2) + 2D1uD2u(D1φ2 +D2φ1)
]

dx+

+2

∫

Ω

∆u(D1uφ1 +D2uφ2) dx =

=

∫

∂B(γ(σ),η)

[

((D1u)
2 − (D2u)

2)(ν1φ1 − ν2φ2) + 2D1uD2u(ν1φ2 + ν2φ1)
]

dH 1+

+

∫

B(γ(σ),η)

[

((D1u)
2 − (D2u)

2)(D1φ1 −D2φ2) + 2D1uD2u(D1φ2 +D2φ1)
]

dx+

+2

∫

B(γ(σ),η)

∆u(D1uφ1 +D2uφ2) dx.

(3.2.5)
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Now, taking into account (3.2.1) and (3.2.2), we are going to prove that the limit in (3.2.5)

when η tends to zero is the left-hand side in (3.2.3).

Thanks to (3.2.2) we may split u into the sum of two terms, the regular one and the

singular one, as follows:

u = ureg + κ

√

2

π
r

1
2 sin

θ

2
, (3.2.6)

where ureg ∈ H2(Ω \ Γ(σ)). Note that, taking into account (3.2.6),

lim
η→0

∫

B(γ(σ),η)

∆u(D1uφ1 +D2uφ2) dx = 0 . (3.2.7)

Indeed,

∫

B(γ(σ),η)

∆u(∂1uφ1 + ∂2uφ2) dx ≤ ‖∆u‖2

(

∫

B(γ(σ),η)

(∂1uφ1 + ∂2uφ2)
2 dx

)
1
2
.

Here by (3.2.1) the first term in the right-hand side is bounded, and the second one is

O(η) (it is sufficient to pass to the polar coordinates and notice that Du = O(r−
1
2 )).

Passing to the limit as η goes to zero, we get (3.2.7).

Using (3.2.6), we can prove also that

lim
η→0

∫

B(γ(σ),η)

[

((D1u)
2−(D2u)

2)(D1φ1−D2φ2)+2D1uD2u(D1φ2+D2φ1)
]

dx = 0. (3.2.8)

Next, we prove that

lim
η→0

∫

∂B(γ(σ),η)

[

((D1u)
2 − (D2u)

2)(ν1φ1 − ν2φ2) + 2D1uD2u(ν1φ2 + ν2φ1)
]

dH 1 =

= κ2φ(γ(σ))γ̇(σ) .
(3.2.9)

First of all, note that, by (3.2.6), we can split the left-hand side integrand in three parts.

The first one contains the terms in ureg, the second one contains mixed terms, and the

third one is given only by the derivatives of v := κ
√

2
π
r

1
2 sin θ

2
, the singular part of u. Since

ureg has bounded gradient, the first two integrands are bounded uniformly by O(
√
r) and

consequently their integrals tend to zero. Thus we have to study the third integral.

Let α be the counterclockwise oriented angle between the vector γ̇(σ) and the half line

{(x1, 0) : x1 ≥ 0}. Passing to the polar coordinates, after standard calculations we get

∫

∂B(γ(σ),η)

[

((D1v)
2 − (D2v)

2)(ν1φ1 − ν2φ2) + 2D1vD2v(ν1φ2 + ν2φ1)
]

dH 1 =

=
1

2π
κ2

∫ 2π

0

φ(γ(σ) + η(cos(θ − α), sin(θ − α)))γ̇(σ) dθ,
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where we used the fact that γ̇(σ) = (cosα,− sinα), since |γ̇(σ)| = 1. To be more precise

we have (x1, x2) = γ(σ) + r(cos(θ − α), sin(θ − α)) and

(∂1v, ∂2v) =
( 1√

2π
κr−

1
2 sin(α− θ

2
),

1√
2π
κr−

1
2 cos(α− θ

2
)
)

. (3.2.10)

Further, (ν1, ν2) = (− cos(θ − α),− sin(θ − α)) which, together with (3.2.10) gives

∫

∂B(γ(σ),η)

[

((∂1v)
2 − (∂2v)

2)(ν1φ1 − ν2φ2) + 2∂1v∂2v(ν1φ2 + ν2φ1)
]

dH 1 =

=
1

2π
κ2η

∫ 2π

0

1

η
(sin2(α− θ

2
) − cos2(α− θ

2
))(− cos(θ − α)φ1 + sin(θ − α)φ2)+

+ 2
1

η
sin(α− θ

2
) cos(α− θ

2
)(− cos(θ − α)φ2 − sin(θ − α)φ1) dθ =

=
1

2π
κ2

∫ 2π

0

− cos(2α− θ)(− cos(θ − α)φ1 + sin(θ − α)φ2)+

− sin(2α− θ)(cos(θ − α)φ2 + sin(θ − α)φ1) dθ =

=
1

2π
κ2

∫ 2π

0

φ1(cos(2α− θ) cos(θ − α) − sin(2α− θ) sin(θ − α))+

+ φ2(− cos(2α− θ) sin(θ − α) − sin(2α− θ) cos(θ − α)) dθ =

=
1

2π
κ2

∫ 2π

0

φ1 cosα− φ2 sinα dθ =

=
1

2π
κ2

∫ 2π

0

φ(γ(σ) + η(cos(θ − α), sin(θ − α)))γ̇(σ) dθ .

Taking the limit as η tends to zero, we obtain (3.2.9).

By (3.2.5), (3.2.7), (3.2.8), and (3.2.9) we finally reach the conclusion (3.2.3).

Proposition 3.2.4. The function σ 7→ E(t, σ) is differentiable on [σ0, σ] and

∂σE(t, σ) = 1 − κ2
t,σ , (3.2.11)

where κt,σ

√

2
π

is the stress intensity factor associated to ut,σ at γ(σ).

Proof. The proof follows the same arguments of the proof of [2, Theorem 3.3], but for the

sake of completeness we make it.

In order to fix the notation, let us compute the derivative at σ∗ ∈ [σ0, σ]. We consider

φ ∈ C2
c (Ω; R2) such that φ(γ(σ)) = γ̇(σ) for σ in a small neighborhood of σ∗. For |σ̃| small

enough, σ̃ > 0 if σ∗ = σ0, and, conversely, σ̃ < 0 if σ∗ = σ, we consider the application

F : R
2 → R

2 defined by F (y) := y + σ̃φ(y). It is a C2-diffeomorphism from Ω into Ω

which maps Ω+ into Ω+, Ω− into Ω−, Γ(σ∗) into Γ(σ∗ + σ̃), and does not vary ∂Ω.

During the proof we use the following notation: for fixed σ, zσ(t)(x) := (ut,σ +ψ(t))(x)

and z̃σ(t)(x) := zσ(t)(F (x)). Hence, using the change of variable y = F (x) and the
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approximations DF (x)−1 = x− σ̃Dφ(x), det DF (x) = 1 + σ̃ divφ we get

∫

Ω\Γ(σ)

|Dzσ(t)|2 dy =

∫

Ω\Γ(σ∗)

|(x− σ̃Dφ)Dz̃σ(t)|2(1 + σ̃divφ) dx .

Since z̃σ(t)(x) := zσ(t)(F (x)) = zσ∗(t)(x)+ σ̃U̇ , where U̇ is the derivative of z̃σ at σ = σ∗,

we obtain

d

dσ

(

∫

Ω\Γ(σ)

|Dzσ(t)|2 dy
)

|σ=σ∗

=
∫

Ω\Γ(σ∗)

(

− 2(Dzσ∗(t)|DφDzσ∗(t) +DU̇) + |Dzσ∗(t)|2divφ
)

dx .
(3.2.12)

On the other hand,

d

dσ

(

∫

∂NΩ

g(t)zσ(t) dH 1
)

|σ=σ∗

=

∫

∂NΩ

g(t)U̇ dH 1 . (3.2.13)

In conclusion, from (3.2.12) and (3.2.13) it follows that

d

dσ
E(t, σ)|σ=σ∗ = 1 +

∫

Ω\Γ(σ∗)

(

− 2(Dzσ∗(t)|DφDzσ∗(t) +DU̇) + |Dzσ∗(t)|2divφ
)

dx−

−
∫

∂NΩ

g(t)U̇ dH 1 =

= 1 +

∫

Ω\Γ(σ∗)

(

− 2(Dzσ∗(t)|DφDzσ∗(t)) + |Dzσ∗(t)|2divφ
)

dx ,

because U̇ is a good test function for the equation satisfied by zσ∗(t). This last equality

concludes the proof, thanks to the characterization of κt,σ∗ given in Proposition 3.2.3,

since equality (3.2.3), expressed in vector notation, actually becomes:

κ2
t,σ∗φ(γ(σ∗))γ̇(σ∗) =

∫

Ω

(2(Dut,σ∗|DφDut,σ∗)−|Dut,σ∗|2divφ) dx+2

∫

Ω

∆ut,σ∗(Dut,σ∗|φ) dx .

(3.2.14)

Similar computations have been recently done in [28] where the stored energy density

W is a polyconvex function with W (A) = ∞ for every matrix A with detA ≤ 0, and Γ is

a segment.

Remark 3.2.5. Fix t0 ∈ ]0, T [ . The map σ 7→ vt0,σ has the same regularity as σ 7→ A(σ),

hence, under the regularity assumptions we made on A(σ), it is of class C2([σ0, σ]). Since

in this case we are not interested in the dependence on t, let us simplify the notation

and set vσ := vt0,σ. Then standard arguments for elliptic PDE’s allow us to obtain that

for every σ∗ ∈ [σ0, σ] there exists v′σ∗ ∈ V as strong limit in V of the difference quotient
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vσ−vσ∗

σ−σ∗
, and the map σ 7→ v′σ is continuous in the strong topology of V . More precisely,

from the equality

2(A(σ)Dvσ, Dvσ) + 2(Dψ(t), Dvσ) − (g(t), vσ)∂NΩ = 0 ,

it follows that there exists a positive constant C such that ‖Dvσ‖2 ≤ C. Hence there

exists vσ∗ ∈ V with vσ ⇀ vσ∗ as σ → σ∗. Moreover, using vσ − vσ∗ as test function for the

equation satisfied by vσ and the equation satisfied by vσ∗ , respectively, we get also that

vσ → vσ∗ strongly in V . Indeed, the equality

(A(σ)Dvσ −A(σ∗)Dvσ∗ , Dvσ −Dvσ∗) = (A(σ)(Dvσ −Dvσ∗), Dvσ −Dvσ∗)+

+ ((A(σ) − A(σ∗))Dvσ∗ , Dvσ −Dvσ∗)

implies that ‖Dvσ −Dvσ∗‖2
2 → 0 as σ → σ∗, and therefore the map σ 7→ vσ is continuous

in the strong topology of V .

Now we take the difference of the equations satisfied by vσ and vσ∗ , for a generic test

function, obtaining

2(A(σ)Dvσ − A(σ∗)Dvσ∗ , Dw) = 0 for every w ∈ V .

Hence,

(A(σ) − A(σ∗)

σ − σ∗
Dvσ + A(σ∗)

Dvσ −Dvσ∗

σ − σ∗
, Dw

)

= 0 for every w ∈ V . (3.2.15)

Passing to the limit as σ → σ∗ we obtain

lim
σ→σ∗

(Dvσ −Dvσ∗

σ − σ∗
, A(σ∗)Dw

)

= −(∂σA(σ∗)Dvσ∗ , Dw) for every w ∈ V .

Using w = vσ−vσ∗

σ−σ∗
in (3.2.15) we get

(A(σ) − A(σ∗)

σ − σ∗
Dvσ + A(σ∗)

Dvσ −Dvσ∗

σ − σ∗
,
Dvσ −Dvσ∗

σ − σ∗

)

= 0

i.e., there exists a positive constant C such that

‖Dvσ −Dvσ∗

σ − σ∗
‖2 ≤ C .

Therefore, there exists v′σ∗ ∈ V such that

Dvσ −Dvσ∗

σ − σ∗
⇀ Dv′σ∗ as σ → σ∗ ,

and solves the following equation:

(A(σ∗)Dv′σ∗ , Dw) + (∂σA(σ∗)Dvσ∗ , Dw) = 0 for every w ∈ V .
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In order to obtain the strong convergence of v′σ to v′σ∗ in V as σ → σ∗, we take the

difference of the equations satisfied by v′σ and v′σ∗ using w := v′σ − v′σ∗ as test function,

obtaining

((A(σ) −A(σ∗)), Dv′σ + A(σ∗)(Dv′σ −Dv′σ∗), Dv′σ −Dv′σ∗)+

+(∂σA(σ)Dvσ − ∂σA(σ∗)Dvσ∗ , Dv′σ −Dv′σ∗) = 0 .

Now we pass to the limit as σ → σ∗, which gives limσ→σ∗(A(σ∗)(Dv′σ − Dv′σ∗), Dv′σ −
Dv′σ∗) = 0, hence the strong convergence of v′σ → v′σ∗ in V is proved.

The same arguments can be repeated to obtain the existence of v′′σ∗ ∈ V as strong

limit in V of the difference quotient
v′σ−v′

σ∗

σ−σ∗
, and the continuity of the map σ 7→ v′′σ with

respect to the strong topology in V . Note that v′′σ solves the following equation

(A(σ)Dv′′σ, Dw) + 2(∂σA(σ)Dv′σ, Dw) + (∂2
σA(σ)Dvσ, Dw) = 0 ∀w ∈ V .

Proof of Proposition 3.2.1. It follows from the change of variables, Proposition 3.2.3, and

Proposition 3.2.4.

More precisely, taking the usual change of variables y = Ψσ(x) and setting as before

v(y, σ) = u(Ψσ(y)), we obtain

〈∂uE (t)(u, σ), w〉 = 2

∫

Ω\Γ(σ)

(Du|Dw) dy−
∫

∂NΩ

g(t, y)wdH 1 =

=

∫

Ω\Γ(σ0)

[

2(A(σ)Dv|Dw̃) + 2(Dψ(t))|Dw̃)
]

dx−
∫

∂NΩ

g(t, y)w dH 1 =

= (gradvF (t, v, σ), w̃)V ,

for every w ∈ H1
∂DΩ(Ω \ Γ(σ)), where w̃(x) = w(Ψσ(x)).

On the other hand, let ut,σ be a minimum of u 7→ E (t)(u, σ), φ ∈ C1
c (Ω; R2) be

such that φ(Ψσ(x)) = ∂σΨσ(x), and consider the usual change of variables y = Ψσ(x).

Proposition 3.2.3, Proposition 3.2.4 and the fact that φ(γ(σ)) = γ̇(σ) imply

∂σE(t, σ) = 1 − κ2
t,σ =

= 1 +

∫

Ω\Γ(σ)

(

− 2(Dut,σ|DφDut,σ) + |Dut,σ|2divφ
)

dy =

= 1 +

∫

Ω\Γ(σ0)

(∂σA(σ, x)Dvt,σ|Dvt,σ) dx =

= ∂σF (t, vt,σ, σ) .

Indeed, from Dvt,σ(x) = (DΨσ)
TDut,σ(Ψσ(x)) we get

∫

Ω\Γ(σ0)

(∂σA(σ, x)Dvt,σ(x)|Dvt,σ(x)) dx =

=

∫

Ω\Γ(σ0)

(∂σA(σ, x)(DΨσ)TDut,σ(Ψσ(x))|(DΨσ)
TDut,σ(Ψσ(x))) dx .
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To shorten the notation we denote by Dzt,σ(x) the term Dut,σ(Ψσ(x)). Then:

(DΨσ)
TDzt,σ =

(

D1Ψ1D1zt,σ +D2Ψ1D2zt,σ

D1Ψ2D1zt,σ +D2Ψ2D2zt,σ

)

,

and ∂σA(DΨσ)TDzt,σ is equal to the vector
(

∂σa11(D1Ψ1D1zt,σ +D2Ψ1D2zt,σ) + ∂σa12(D1Ψ2D1zt,σ +D2Ψ2D2zt,σ)

∂σa12(D1Ψ1D1zt,σ +D2Ψ1D2zt,σ) + ∂σa22(D1Ψ2D1zt,σ +D2Ψ2D2zt,σ)

)

.

Hence

(∂σA(DΨσ)
TDzt,σ|(DΨσ)

TDzt,σ) =

= (D1zt,σ)2
[

∂σa11(D1Ψ1)
2 + 2∂σa12D1Ψ1D1Ψ2 + ∂σa22(D1Ψ2)

2
]

+

+2D1zt,σD2zt,σ

[

∂σa11D1Ψ1D2Ψ1 + ∂σa12(D1Ψ2D2Ψ1 +D2Ψ2D1Ψ1)+

+∂σa22D1Ψ2D2Ψ2

]

+ (D2zt,σ)2
[

∂σa11(D2Ψ1)
2 + 2∂σa12D2Ψ2D2Ψ1 + ∂σa22(D2Ψ2)

2
]

.

Developing the terms ∂σaij, i, j = 1, 2 we get

(∂σA(DΨσ)
TDzt,σ|(DΨσ)

TDzt,σ) = (D1zt,σ)2
[

D1Ψ1D2φ̃2 +D2Ψ1D1φ̃2 −D1Ψ2D2φ̃1−

−D2Ψ2D1φ̃1

]

+ 2D1zt,σD2zt,σ

[

D2Ψ1D2φ̃2 −D1Ψ1D1φ̃2 +D1Ψ2D1φ̃1 −D2Ψ2D2φ̃1

]

+

+(D2zt,σ)2
[

D2Ψ2D1φ̃1 +D1Ψ2D2φ̃1 −D2Ψ1D1φ̃2 −D1Ψ1D2φ̃2

]

,

where φ̃(x) := ∂σΨσ(x) = φ(Ψσ(x)). In conclusion we have obtained the following equal-

ity:
∫

Ω\Γ(σ0)

(∂σA(σ, x)Dvt,σ|Dvt,σ) dx =

=

∫

Ω\Γ(σ0)

{

[

(D2zt,σ)2 − (D1zt,σ)2
][

D2Ψ2D1φ̃1 +D1Ψ2D2φ̃1 −D2Ψ1D1φ̃2 −D1Ψ1D2φ̃2

]

−

−2D1zt,σD2zt,σ(D2Ψ1D2φ̃2 −D1Ψ1D1φ̃2 −D2Ψ2D2φ̃1 +D1Ψ2D1φ̃1)
}

dx .

Now, for y = Ψσ(x), φ̃(y) = φ(Ψσ(x)), we deduce Dφ(Ψσ(x)) = Dφ̃(y)(DΨσ)
−1, where

Dφ̃(DΨσ)−1 =
1

detDΨσ

(

D2Ψ2D1φ̃1 −D2Ψ1D1φ̃2 D1Ψ1D1φ̃2 −D1Ψ2D1φ̃1

D2Ψ2D2φ̃1 −D2Ψ1D2φ̃2 D1Ψ1D2φ̃2 −D1Ψ2D2φ̃1

)

.

Therefore,
∫

Ω\Γ(σ0)

(∂σA(σ, x)Dvt,σ|Dvσ) dx =

=

∫

Ω\Γ(σ0)

{

[

(D2zt,σ)2 − (D1zt,σ)2
]

(D1φ1(Ψσ) −D2φ2(Ψσ))−

− 2D1zt,σD2zt,σ(D1φ2(Ψσ) +D2φ1(Ψσ))
}

detDΨσ dx =

=

∫

Ω\Γ(σ)

{

[(D2ut,σ)2 − (D1ut,σ)2](D1φ1 −D2φ2)−

− 2D1ut,σD2ut,σ(D1φ2 +D2φ1)
}

dy ,
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and this concludes the proof.

Remark 3.2.6. Fix t0 ∈ ]0, T [ . With the same notation as in Remark 3.2.5 we set

vσ := vt0,σ, and note that the second order differential, ∂2
(v,σ)F (t0, vσ, σ), of F with respect

to (v, σ) is strictly positive definite if and only if the second order derivative of the function

σ 7→ F (t0, vσ, σ) is strictly positive, when both exist. Moreover, by Proposition 3.2.1,

this is equivalent to the fact that the second order derivative of σ 7→ E(t0, σ) is strictly

positive.

Indeed, as ∂vF (t0, vσ, σ) = 0, and σ 7→ vσ is, by Remark 3.2.5, a C2-function, we have

〈∂σ∂vF (t0, vσ, σ), w〉 + 〈∂2
vvF (t0, vσ, σ)v′σ, w〉 = 0 ∀w ∈ V .

Assume that the second order derivative of the function σ 7→ F (t0, vσ, σ) is strictly

positive, i.e.,

0 <
d

dσ
(∂σF (t0, vσ, σ) + 〈∂vF (t0, vσ, σ), v′σ〉) =

= ∂2
σσF (t0, vσ, σ) + 〈∂σ∂vF (t0, vσ, σ), v′σ〉 + 〈∂v∂σF (t0, vσ, σ), v′σ〉 +

+〈∂2
vvF (t0, vσ, σ)v′σ, v

′
σ〉 + 〈∂vF (t0, vσ, σ), v′′σ〉 .

Hence

∂2
σσF (t0, vσ, σ) + 〈∂v∂σF (t0, vσ, σ), v′σ〉 > 0 ,

which implies that

∂2
σσF (t0, vσ, σ) > 〈∂2

vvF (t0, vσ, σ)v′σ, v
′
σ〉

(recall that in our case 〈∂σ∂vF , w〉 = 〈∂v∂σF , w〉).
Therefore

〈〈∂2
(v,σ)F (t0, vσ, σ)(w, τ), (w, τ)〉〉 =

= ∂2
σσF (t0, vσ, σ)τ 2 + 2〈∂σ∂vF (t0, vσ, σ), w〉τ + 〈∂2

vvF (t0, vσ, σ)w,w〉 >
> 〈∂2

vvF (t0, vσ, σ)v′σ, v
′
σ〉τ 2 − 2〈∂2

vvF (t0, vσ, σ)v′σ, w〉τ +

+〈∂2
vvF (t0, vσ, σ)w,w〉 ≥ 0 ,

which shows that ∂2
(v,σ)F (t0, vσ, σ) is strictly positive definite.

It is also easy to see that if ∂2
(v,σ)F (t0, vσ, σ) is strictly positive definite then the second

order derivative of the function σ 7→ F (t0, vσ, σ) is strictly positive.

3.3 Irreversible quasistatic evolution

Let σ0 an initial crack length and let u0 be an initial value of the displacement, such that

the initial configuration (u0, σ0) is in unilateral equilibrium, i.e., unilateral with respect
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to the crack growth:
{

gradvF (0, u0, σ0) = 0 ,

∂σF (0, u0, σ0) ≥ 0 .

Our purpose is to study a quasistatic evolution of configurations (u, σ) which starts from

(u0, σ0).

We are interested in the evolution until the crack length reaches the value σ1. We

cannot avoid the solution to have jumps (even at t = 0) to configurations with crack

lengths larger than σ1; if this is the case, then the boundary data are not compatible with

a progressive crack growth on the interval [σ0, σ1].

Definition 3.3.1. The irreversible quasistatic evolution problem consists in finding a left-

continuous map t 7→ (u(t), σ(t)), where σ(t) represents the length of the crack up to time

t, and the displacement u(t) belongs to AD(ψ(t), σ(t)), which satisfies the following three

conditions:

(a) local unilateral stability: for every t

E (t)(u(t), σ(t)) ≤ E (t)(u, σ(t)) ∀u ∈ AD(ψ(t), σ(t)) (3.3.1)

∂σE(t, σ(t)) ≥ 0, (3.3.2)

where E(t, σ) is defined in Proposition 3.2.1;

(b) irreversibility: the map t 7→ σ(t) is increasing;

(c) energy inequality: for every 0 ≤ s < t we have

E (t)(u(t), σ(t)) ≤ E (s)(u(s), σ(s)) +

+

∫ t

s

(

2

∫

Ω\Γ(σ(τ))

(Du(τ)|Dψ̇(τ))dx−
∫

∂NΩ

g(τ)ψ̇(τ)dH 1 −
∫

∂NΩ

ġ(τ)u(τ)dH 1
)

dτ .

In terms of the functional F , the irreversible quasistatic evolution problem consists

in finding a left-continuous function t 7→ (v(t), σ(t)) which satisfies the following three

conditions:

(aF ) local unilateral stability: for every t
{

gradvF (t, v(t), σ(t)) = 0,

∂σF (t, v(t), σ(t)) ≥ 0;

(bF ) irreversibility: the map t 7→ σ(t) is increasing;

(cF ) energy inequality: for every 0 ≤ s < t we have

F (t, v(t), σ(t)) ≤ F (s, v(s), σ(s)) +

∫ t

s

∂tF (τ, v(τ), σ(τ))dτ .
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A solution, t 7→ (v(t), σ(t)), to this problem is called an irreversible quasistatic evolution

for F .

Let us remark that, by the very construction of the functional F , an evolution for F

is well-defined only for cracks whose length is less than or equal to σ.

In terms of an irreversible quasistatic evolution t 7→ (v(t), σ(t)) associated to the

functional F , the Griffith’s criterion can be expressed as:














σ̇(t) ≥ 0

∂σF (t, v(t), σ(t)) ≥ 0

∂σF (t, v(t), σ(t))σ̇(t) = 0

(3.3.3)

for a.e. t. Since the first two conditions are included in the definition of an irreversible

quasistatic evolution, it remains to prove the last one.

Proposition 3.3.2. Let t 7→ (v(t), σ(t)) be an irreversible quasistatic evolution for F .

Then for a.e. t we have

∂σF (t, v(t), σ(t))σ̇(t) = 0 .

Proof. Since σ is increasing, σ̇ exists at a.e. t. Fix t0 such that σ̇(t0) exists. As, given

σ(t), the function v(t) is determined as the unique solution of gradvF (t, v, σ(t)) = 0, the

hypotheses we made on A(σ) and on the data ψ and g imply that v̇(t0) exists, as strong

limit in V of the difference quotient v(t)−v(t0)
t−t0

.

More in detail, from the continuity of the map t 7→ gradvF (t, v(t), σ(t)) and the weak

convergence of v(t) to v(t0) in V as t → t0 (which can be easily deduced from standard

calculations), we obtain that

(A(σ(t))Dv(t), Dv(t)) → (A(σ(t0))Dv(t0), Dv(t0)) .

Hence, using also the continuity of the map t 7→ A(σ(t)) we get

lim
t→t0

(A(σ(t))(Dv(t) −Dv(t0)), Dv(t) −Dv(t0)) =

lim
t→t0

[

(A(σ(t))Dv(t), Dv(t)) − 2(A(σ(t))Dv(t), Dv(t0)) + (A(σ(t))Dv(t0), Dv(t0))
]

= 0 ,

so that v(t) → v(t0) strongly in V , as t→ t0. Thus v̇(t0) belongs to V , as strong limit in

V of the difference quotient v(t)−v(t0)
t−t0

.

Next, let us observe that, as gradvF (t, v(t), σ(t)) = 0, we have

∂tF (t, v(t), σ(t)) =
d

dt
F (t, v(t), σ(t)) − ∂σF (t, v(t), σ(t))σ̇(t) ,

and using this fact together with the energy estimate (cF ) we deduce that for a.e. t

∂σF (t, v(t), σ(t))σ̇(t) ≤ 0 . (3.3.4)

Since σ̇(t) ≥ 0 and ∂σF (t, v(t), σ(t)) ≥ 0, (3.3.4) implies the equality to be proved.
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Going back to the energy functional E , the Griffith’s criterion now reads















σ̇(t) ≥ 0

1 − κ2(t) ≥ 0

(1 − κ2(t))σ̇(t) = 0

(3.3.5)

for a.e. t, where κ(t)
√

2
π

is the stress intensity factor associated to the displacement

u(t) at the tip σ(t) (see Proposition 3.2.2). Since by the change of variables we made,

∂σF (t, v(t), σ(t)) = 1 − κ2(t), the previous proposition shows that during an irreversible

quasistatic evolution the Griffith’s criterion is satisfied. Note that this can be proved

directly for E , following, for instance, the lines of [10, Theorem 6.1].

Let us return to our notion of irreversible quasistatic evolution. We remark that the

globally stable evolutions of minimum energy configurations studied in [9], [3], [17], [8]

satisfy the three axioms of our Definition 3.3.1. Moreover we recall that during a globally

stable irreversible quasistatic evolution the total energy is an absolutely continuous func-

tion of time and the energy inequality (c) becomes an equality. However, this notion of

evolution is not completely satisfactory since, in order to get the global stability, we have

to compare, at each time, the energy of a configuration with the energy of all admissible

configurations with larger crack lengths.

For this reason we adopt here a different selection criterion: among all irreversible

quasistatic evolutions we choose the approximable ones, i.e., those that can be obtained

as limits of solutions to a regularized evolution problem. In particular we consider here

the approximation problem given by a modified ε-gradient flow for the functional F .

Before giving the precise definition of the approximation problem for F , we need

some preliminary discussion. Since we are interested in an irreversible crack growth for σ

varying in the interval [σ0, σ1], we ask the function σ(t) to be increasing. Hence, we are

led to consider the positive part of the derivative of F with respect to σ.

In addition, we modify the evolution law for the crack length in such a way that it

never reaches σ. To this end we introduce a penalization factor λ(σ) that can be any

Lipschitz continuous function of σ which is equal to one for σ ≤ σ1, is strictly positive for

σ1 < σ < σ, and is equal to zero for σ = σ. For instance, let

λ(σ) :=
(σ − (σ ∨ σ1))

+

σ − σ1

. (3.3.6)

In such a way the evolution is the one given by the ε-gradient flow, with the constraint

that σ is increasing, on the interval [σ0, σ1] that we are interested in, and it is modified

by this artificial penalization term for σ > σ1, so that we do not consider it meaningful

for σ > σ1.
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Definition 3.3.3. A function t 7→ (vε(t), σε(t)) is called a solution to the initial value

problem for the modified ε-gradient flow for the functional F on [0, T ]























εv̇ε = −gradvF (t, vε, σε)

εσ̇ε = (−∂σF (t, vε, σε))
+λ(σε) ,

vε(0) = u0

σε(0) = σ0 ,

(3.3.7)

where λ(σ) is given by (3.3.6), if vε ∈ C1([0, T ];V ), σε is a C1-increasing function from

[0, T ] into [σ0, σ] and the first equation in (3.3.7) is satisfied in the following sense

(εv̇ε, w)V = −(gradvF (t, vε, σε), w)V ∀w ∈ V ∀ t ∈ [0, T ] .

Note that (3.3.7) is a Cauchy problem for an ordinary differential equation in V × R.

Theorem 3.3.4. There exists a unique solution (vε, σε) to the initial value problem (3.3.7)

with λ(σ) given by (3.3.6), and the following energy estimate holds: for every s, t ∈ [0, T ]

with s < t

ε

∫ t

s

‖v̇ε(τ)‖2
V dτ + ε

∫ t

s

|σ̇ε(τ)|2
λ(σε(τ))

dτ + F (t, vε(t), σε(t)) ≤

≤ F (s, vε(s), σε(s)) +

∫ t

s

∂tF (τ, vε(τ), σε(τ)) dτ .

(3.3.8)

Proof. Taking into account the expressions of gradvF and ∂σF (see Section 3.2), the

equations in (3.3.7) can be written as

{

ε(v̇ε, w)V = −2(A(σε)Dvε, Dw) − 2(ψ(t), w)V + (g(t), w)∂NΩ ∀w ∈ V

εσ̇ε = (−(∂σA(σε)Dvε, Dvε) − 1)+λ(σε) .
(3.3.9)

The vector field defining the equation (3.3.9) depends on t only through the boundary

data ψ and g, therefore it is Lipschitz continuous in t. Moreover, for fixed t, standard

estimates show that it is Lipschitz continuous and bounded on the bounded subsets of

V × R. Hence classical results on ODE’s (see, e.g. [13]) give the local existence and the

uniqueness of the solution. Since there exist α ∈ C([0, T ]) and β > 0 such that

(−gradvF (t, v, σ), v)V + σ(−∂σF (t, v, σ))+λ(σ) ≤ α(t)(‖v‖2
V + σ2) + β

for every (v, σ) ∈ V × R, the solution is defined on the whole interval [0, T ].

The function t 7→ F (t, vε(t), σε(t)) is then Lipschitz continuous on [0, T ] with deriva-

tive given for a.e. t ∈ [0, T ] by

d

dt
F (t, vε(t), σε(t)) = ∂tF (t, vε(t), σε(t)) + (gradvF (t, vε(t), σε(t)), v̇ε(t))V +

+∂σF (t, vε(t), σε(t))σ̇ε(t) .
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Taking into account the equations satisfied by vε and σε, for every s, t ∈ [0, T ] with s < t

we have

F (t, vε(t), σε(t)) − F (s, vε(s), σε(s)) =

=

∫ t

s

(

∂tF (τ, vε(τ), σε(τ)) − ε‖v̇ε(τ)‖2
V − ε

(σ̇ε(τ))
2

λ(σε(τ))

)

dτ ,

which implies (3.3.8) and the proof is complete.

Remark 3.3.5. Let t 7→ (vε(t), σε(t)) be a solution to problem (3.3.7). Assume ‖vε(t)‖V ≤
M for some positive constant M independent of t and ε. By (3.1.3) and the definition

(3.3.6) of the map λ,

εσ̇ε(t) ≤ (Λ′M2 + 1)λ(σε(t)) ≤ C(σ − σε(t))
+ ,

for some constant C > 0. By classical results on differential inequalities (see, e.g. [25,

Theorem I.6.1]) it follows that for every t ∈ [0, T ]

σε(t) ≤ σ − e−C t
ε (σ − σ0) ,

hence σε never reaches σ.

Note that, since the evolution is constrained to cracks with lengths less than or equal

to σ, Griffith’s criterion is meaningful in this setting only until the length σ is reached. As

the penalization factor λ(σ) is strictly positive for σ < σ, we may replace the expression

(3.3.3) of Griffith’s criterion by















σ̇(t) ≥ 0

∂σF (t, v(t), σ(t))λ(σ(t)) ≥ 0

∂σF (t, v(t), σ(t))σ̇(t) = 0 .

for a.e. t ∈ [0, T ]. Therefore, also the second line in the local stability condition (aF ) may

be replaced by ∂σF (t, v(t), σ(t))λ(σ(t)) ≥ 0.

We introduce now the following notion of evolution.

Definition 3.3.6. The approximable irreversible quasistatic evolution problem on the

interval [0, T ] with initial data (u0, σ0) consists in finding a left-continuous map t 7→
(v(t), σ(t)) from [0, T ] into V × R which satisfies the following conditions:

(a′
F

) for every t ∈ [0, T ]

gradvF (t, v(t), σ(t)) = 0

∂σF (t, v(t), σ(t))λ(σ(t)) ≥ 0 ;

87



(bF ) the map t 7→ σ(t) is increasing;

(cF ) for every 0 ≤ s < t ≤ T

F (t, v(t), σ(t)) ≤ F (s, v(s), σ(s)) +

∫ t

s

∂tF (τ, v(τ), σ(τ))dτ ;

(dF ) the pair (v(t), σ(t)) is the limit, along a suitable sequence, of solutions (vε(t), σε(t)) of

the modified ε-gradient flow for F with initial conditions vε(0) = u0 and σε(0) = σ0,

in the sense that for a.e. t

σε(t) → σ(t),

vε(t) → v(t) strongly in V.
(3.3.10)

A solution t 7→ (v(t), σ(t)) to this problem is called an approximable quasistatic evolution

for F .

We are now in a position to state the main result of this paper.

Theorem 3.3.7. There exists a solution t 7→ (v(t), σ(t)) to the approximable irreversible

quasistatic evolution problem with initial condition (u0, σ0) on [0, T ].

Remark 3.3.8. The fact that an approximable quasistatic evolution starts from (u0, σ0)

means only that for every ε > 0, vε(0) = u0 and σε(0) = σ0. We may always set

(v(0), σ(0)) := (u0, σ0), but in general v and σ are not continuous in t = 0. The only case

in which (u0, σ0) is the initial value for the evolution in a “classical” sense, is when (u0, σ0)

is the absolute minimum point of F (0, ·, ·). Indeed, in this case, by semicontinuity and

by the energy inequality (cF ), it is easy to see that t 7→ F (t, v(t), σ(t)) is continuous in

t = 0.

Proof of Theorem 3.3.7. For ε > 0 let (vε, σε) be the solution of the modified ε-gradient

flow with initial data (u0, σ0). Let t ∈ [0, T ]. From the ε-energy inequality (3.3.8) evalu-

ated between s = 0 and t ∈ (0, T ], using the estimates we have on F (see Subsection 3.1.6)

we get

λF‖vε(t)‖2
V ≤ µF + F (0, u0, σ0) +

∫ t

0

(a(τ)‖vε(τ)‖2
V + b(τ))dτ

for some functions a, b ∈ L∞(0, T ) which depend only on the data ψ and g. Then, by

Gronwall’s Lemma, there exists a positive constant C > 0 independent of t and ε such

that

‖vε(t)‖V ≤ C ∀t ∈ [0, T ] . (3.3.11)

By the ε-energy estimate (3.3.8) we now get that there exists two positive constants C1

and C2 such that

ε‖v̇ε‖2
L2(0,T ;V ) ≤ C1 (3.3.12)

ε‖σ̇ε‖2
L2(0,T ) ≤ C2 . (3.3.13)
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Let ε→ 0. By Helly’s Theorem, there exists a subsequence, still denoted by ε, and an

increasing function σ : [0, T ] → [σ0, σ] such that

σε(t) → σ(t) for every t ∈ [0, T ] .

The estimate (3.3.11) implies that there exists a function v ∈ L2(0, T ;V ) such that

vε⇀v weakly in L2(0, T ;V ) ,

while, by (3.3.12),

εv̇ε → 0 strongly in L2(0, T ;V ) .

Hence

ε(v̇ε(t), w)V = (−gradvF (t, vε(t), σε(t)), w)V → (−gradvF (t, v(t), σ(t)), w)V = 0 ,

for every w ∈ V and for a.e. t ∈ [0, T ]. It follows that

∫ T

0

(A(σε(t))Dvε(t), Dvε(t))dt→
∫ T

0

(A(σ(t))Dv(t), Dv(t))dt ,

which gives the strong convergence in V of vε(t) to v(t) for a.e. t ∈ [0, T ], by using the

same argument proposed during the proof of Proposition 3.3.2.

By (3.3.13), εσ̇ε(t) → 0 for a.e. t ∈ [0, T ]. Taking into account the equation sat-

isfied by σε, we obtain that (−∂σF (t, v(t), σ(t)))+λ(σ(t)) = 0 for a.e. t ∈ [0, T ], i.e.,

∂σF (t, v(t), σ(t))λ(σ(t)) ≥ 0.

When passing to the limit in the ε-energy estimate (3.3.8), we neglect the terms

containing the norms of the time derivatives of vε and σε, and thus get that for a.e.

s, t ∈ [0, T ] with s < t

F (t, v(t), σ(t)) ≤ F (s, v(s), σ(s)) +

∫ t

s

∂tF (τ, v(τ), σ(τ))dτ . (3.3.14)

(By semicontinuity the estimate holds true for every t ∈ [0, T ].)

Since σ is increasing, for every t ∈ [0, T ] there exists the limit σ⊖(t) := lims→t− σ(s).

Let v⊖(t) be the unique solution to gradvF (t, v, σ⊖(t)) = 0. Then v(s) → v⊖(t) strongly

in V as s → t−, σ(t) = σ⊖(t) and v(t) = v⊖(t) for a.e. t ∈ [0, T ]. By construction,

the map t 7→ (v⊖(t), σ⊖(t)) is left-continuous from [0, T ] into V × [σ0, σ]. Moreover,

∂σF (t, v⊖(t), σ⊖(t))λ(σ⊖(t)) ≥ 0 for every t ∈ [0, T ]. Let s, t ∈ [0, T ] with s < t, and

let sn → s−, tn → t− be such that (3.3.14) holds for sn and tn. Passing to the limit as

n→ +∞ we obtain

F (t, v⊖(t), σ⊖(t)) ≤ F (s, v⊖(s), σ⊖(s)) +

∫ t

s

∂tF (τ, v⊖(τ), σ⊖(τ))dτ ,

so that we conclude that (v⊖, σ⊖) is an approximable quasistatic evolution for F on [0, T ]

which starts from (u0, σ0).
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Remark 3.3.9. From (3.3.14) we deduce that if t̂ ∈ [0, T ] is a discontinuity point of

t 7→ F (t, v(t), σ(t)) then

lim
t→t̂+

F (t, v(t), σ(t)) ≤ F (t̂, v(t̂ ), σ(t̂ )) .

Indeed, note that at every time t the function t 7→ σ(t) has a right limit. Let σ⊕(t̂ ) :=

limt→t̂+ σ(t), and let v⊕(t̂ ) be the solution to gradvF (t̂, v, σ⊕(t̂ )) = 0. By the regularity

assumptions made on the data, we have that v(t) converges to v⊕(t̂ ) strongly in V , and

hence, using (3.3.14), we obtain

lim
t→t+

F (t, v(t), σ(t)) = F (t̂, v⊕(t̂ ), σ⊕(t̂ )) ≤ F (t̂, v(t̂ ), σ(t̂ )) .

3.4 Quasistatic evolution and the Implicit Function

Theorem

In this section we show that, under suitable regularity assumptions, the solution to the

modified ε-gradient flow converges to the continuous solution for the quasistatic evolution

problem given by the Implicit Function Theorem.

We recall that for fixed t and σ the map u 7→ E (t)(u, σ) admits a unique minimum

point ut,σ and we set E(t, σ) := E (t)(ut,σ, σ) as in Proposition 3.2.1.

Theorem 3.4.1. Assume that in (t0, σ0) ∈ [0, T [ × [σ0, σ1[ the following conditions are

satisfied

∂σE(t0, σ0) = 0

∂2
σE(t0, σ0) > 0 .

Then there exists a time interval [t0, t1] and a unique Lipschitz continuous function σ0 :

[t0, t1] → [σ0, σ1] such that

∂σE(t, σ0(t)) = 0 ∀ t ∈ [t0, t1] .

Moreover, if (vε, σε) is the solution to the modified ε-gradient flow and the following two

conditions are satisfied:

σ̇ε(t) > 0 ∀ t ∈ [t0, t1]

σε(t
0) → σ0 as ε→ 0 ,

then σε(t) → σ0(t) and E(t, σε(t)) → E(t, σ0(t)) for every t ∈ [t0, t1].

The first part of the theorem follows from the Implicit Function Theorem. As for the

second part, let us remark that even if there are not at the moment general theorems guar-

anteeing the strict monotonicity of σε during the approximation process, in many cases

this will follow, for a suitable choice of the boundary data, from a symmetry argument.
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We now prove the theorem in an equivalent form for the functional F . Indeed,

since ∂σE(t, σ) = ∂σF (t, vt,σ, σ) (see Proposition 3.2.1), if the second order derivative

∂2
σE(t0, σ0) > 0, then also d

dσ
∂σF (t0, vt0,σ0 , σ0) > 0, and this last condition is equivalent

to the fact that the second order partial differential ∂2
(v,σ)F (t0, vt0,σ0 , σ0) is strictly positive

definite (see Remark 3.2.6).

Theorem 3.4.2. Assume that in (t0, v0, σ0) ∈ [0, T [×V × [σ0, σ1[ the following conditions

are satisfied
{

gradvF (t0, v0, σ0) = 0 ,

∂σF (t0, v0, σ0) = 0 ,

and the second order differential, ∂2
(v,σ)F (t0, v0, σ0), of F with respect to (v, σ) is strictly

positive definite, i.e., there exists α > 0 such that

〈〈∂2
(v,σ)F (t0, v0, σ0)(w, τ), (w, τ)〉〉 ≥ α(‖w‖2

V + |τ |2) ∀w ∈ V ∀τ ∈ R . (3.4.1)

Then there exist a time interval [t0, t1] and a unique Lipschitz continuous function (v0, σ0) :

[t0, t1] → V × [σ0, σ1] such that

{

gradvF (t, v0(t), σ0(t)) = 0

∂σF (t, v0(t), σ0(t)) = 0

for every t ∈ [t0, t1].

Moreover, let (vε, σε) be the solution of the modified ε-gradient flow for F given by

Theorem 3.3.4 and assume that

vε(t
0) → v0 strongly in V and

σε(t
0) → σ0 as ε→ 0 .

Assume in addition that σ̇ε(t) > 0 and σε(t) < σ1 for every t ∈ [t0, t1]. Then for every

t ∈ [t0, t1]

vε(t) → v0(t) strongly in V and

σε(t) → σ0(t) ,

as ε tends to zero.

Proof. By our assumptions on the data, ∂2
(v,σ)F (t, v, σ) (see Section 3.2) is continuous with

respect to (t, v, σ) ∈ [0, T ] × V × [σ0, σ]. Moreover, the function t 7→ ∂tgradvF (t, v, σ)

belongs to L∞(0, T ;V ), while ∂t∂σF (t, v, σ) = 0. By the Implicit Function Theorem (see,

e.g., [29]) applied in (t0, v0, σ0) to

{

gradvF (t, v, σ) = 0

∂σF (t, v, σ) = 0 ,
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it follows that there exist a time interval [t0, t1] and a unique Lipschitz continuous function

(v0, σ0) : [t0, t1] → V×[σ0, σ1) such that

{

gradvF (t, v0(t), σ0(t)) = 0

∂σF (t, v0(t), σ0(t)) = 0
(3.4.2)

for every t ∈ [t0, t1]. By a compactness argument, changing eventually the value of α, we

may assume that there exist α > 0 and r > 0 such that for every t ∈ [t0, t1], for every

v ∈ Br(v
0(t)) ⊂ V , and for every σ ∈ (σ0(t) − r, σ0(t) + r)

〈〈∂2
(v,σ)F (t, v, σ)(w, τ), (w, τ)〉〉 ≥ α(‖w‖2

V + |τ |2) ∀w ∈ V ∀τ ∈ R . (3.4.3)

Restricting eventually the time interval, we have σ0(t) + r < σ1 for every t ∈ [t0, t1].

Let 0 < r′ < r be a number that we shall choose later. For every ε > 0 small enough

we have ‖vε(t
0) − v0‖V < r′ and |σε(t

0) − σ0| < r′. By continuity, there exists a time

interval, depending on ε, on which these inequalities hold. Let τε be the largest time such

that for t < τε, ‖vε(t) − v0(t)‖V < r′ and |σε(t) − σ0(t)| < r′. In addition, λ(σε(t)) = 1

for t < τε.

We want to prove that τε = t1. Assume by contradiction that τε < t1. Taking

vε(t) − v0(t) as test function in the equation satisfied by vε, multiplying by σε(t) − σ0(t)

the equation satisfied by σε, and taking also into account system (3.4.2), we obtain

ε

2

d

dt
‖vε(t) − v0(t)‖2

V +
ε

2

d

dt
|σε(t) − σ0(t)|2 =

= −(gradvF (t, vε(t), σε(t)) − gradvF (t, v0(t), σ0(t)), vε(t) − v0(t))V +

+
(

− ∂σF (t, vε(t), σε(t)) + ∂σF (t, v0(t), σ0(t))
)

(σε(t) − σ0(t)) −
− ε(v̇0(t), vε(t) − v0(t))V − εσ̇0(t)(σε(t) − σ0(t)) .

Setting

ζε(t) := ‖vε(t) − v0(t)‖2
V + |σε(t) − σ0(t)|2 ,

in the previous equality and using (3.4.3), it follows that

ε

2
ζ̇ε(t) ≤ −αζε(t) − ε(v̇0(t), vε(t) − v0(t))V − εσ̇0(t)(σε(t) − σ0(t)) ≤

≤ −αζε(t) +
ε

2
‖v̇0(t)‖2

V +
ε

2
‖vε(t) − v0(t)‖2

V +
ε

2
|σ̇0(t)|2 +

ε

2
|σε(t) − σ0(t)|2 ≤

≤ (−α +
ε

2
)ζε(t) +

ε

2
β ∀t ∈ [t0, τε) , (3.4.4)

where β is an upper bound for ‖v̇0(t)‖2
V + |σ̇0(t)|2 on [t0, t1].

Hence

ζε(t) ≤
(

ζε(t
0) − βε

2α− ε

)

e(−
2α
ε

+1)(t−t0) +
βε

2α− ε
∀ t ∈ [t0, τε) . (3.4.5)
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Therefore, choosing now r′ small enough, from (3.4.5) we get that also ‖vε(τε)−v0(τε)‖V <

r and |σε(τε) − σ0(τε)| < r. By continuity, these inequalities hold also for some t > τε,

which contradicts the maximality of τε, and so we deduce that τε = t1. We observe that

r′ is independent of ε, since we can take r′ and ε0 such that

2(r′)2 +
βε0

2α− ε0
< r ,

and observe that the previous inequality remains true for every ε < ε0.

We have thus obtained that (3.4.5) holds for every t ∈ [t0, t1]. Passing now to the limit

in (3.4.5) as ε→ 0, we reach the conclusion.

By the change of variables that defines the functional F , and by the uniqueness of

the regular evolution given by the Implicit Function Theorem, it follows that the regular

evolution in Theorem 3.4.2 corresponds to the one in Theorem 3.4.1.

Proof of Theorem 3.4.1 continued. Let (vε, σε) be the solution to the modified ε-gradient

flow. By Theorem 3.4.2, σε(t) → σ0(t) and vε(t) → v0(t) strongly in V for every t ∈ [t0, t1].

Since the function v 7→ gradvF (t, v, σ) is continuous from V to V with respect to the

strong topology, it follows that

gradvF (t, vε(t), σε(t)) → gradvF (t, v0(t), σ0(t)) = 0 .

Let now vε(t) be the element of V associated to ut,σε(t) by the change of variables,i.e.,

vε(t)(x) = ut,σε(t)(Ψσε(t)(x)). As gradvF (t, vε(t), σε(t)) = 0 we deduce that vε(t)−vε(t) →
0 strongly in V . This implies that

F (t, vε(t), σε(t)) − F (t, vε(t), σε(t)) → 0 ,

On the other hand,

F (t, vε(t), σε(t)) → F (t, v0(t), σ0(t)) = E(t, σ0(t))

F (t, vε(t), σε(t)) = E(t, σε(t)) ,

so that we conclude that E(t, σε(t)) → E(t, σ0(t)) for every t ∈ [t0, t1].

3.5 Monotonically increasing in time boundary dis-

placements

In this section we consider the setting proposed by Francfort and Marigo in [18] and com-

pare the evolution defined therein with a solution to the irreversible quasistatic evolution

problem.
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Assume ψ(t) := tψ0, with ψ0 ∈ H1(Ω), and g(t) = 0, and define

E(σ) := min{‖Du‖2
2 : u ∈ AD(ψ0, σ)}.

Since H1(Ω \ Γ(σ′)) ⊂ H1(Ω \ Γ(σ′′)) for σ′ < σ′′, we have that E(σ′) ≥ E(σ′′), so that

the function σ 7→ E(σ) is decreasing.

As in Definition 4.13 of [18], we define a crack trajectory t 7→ σF M(t) by the following

three properties:

(i) t 7→ σF M(t) is increasing;

(ii) t2E(σF M(t)) + σF M(t) ≤ t2E(σ) + σ, for every σ ≥ σ−
F M

(t);

(iii) t2E(σF M(t)) + σF M(t) ≤ t2E(σF M(s)) + σF M(s), for every s ≤ t.

The following result shows that if σ → E(σ) is concave in some subinterval of (σ0, σ) then

t 7→ σF M(t) is discontinuous.

Proposition 3.5.1. Let t 7→ σF M(t) be a crack trajectory which satisfies properties (i)–

(iii) above. If there exists a subinterval (a, b) ⊂ (σ0, σ), with a < b, where σ 7→ E(σ) is

concave, then σF M(t) has some discontinuity points.

Proof. Let t0 ≥ 0 be such that σF M(t0) < a. We first prove that there exists t > t0 such

that σF M(t) > a. Indeed, assume by contradiction that σF M(t) < a for every t > t0.

Then conditions (i), (ii) and the fact that σ 7→ E(σ) is decreasing imply the following

inequalities:

t2E(b) + b ≥ t2E(σF M(t)) + σF M(t) ≥ t2E(a) + σF M(t) ≥ t2E(a) + σF M(t0).

In particular, we deduce that t2 ≤ b(E(a) − E(b))−1, which, up to considering T large

enough, represents a contradiction.

If σF M(t) 6= a for every t ∈ [0, T ] then σF M is discontinuous and the proof is concluded.

Otherwise, let t̄ be the first time such that σF M(t̄) = a. We claim that

σF M(t) = a for every t̄ ≤ t ≤ t∗, (3.5.1)

where

t∗ :=

√

b− a

E(a) −E(b)
. (3.5.2)

Indeed, fix t ∈ (t̄, t∗) and assume by contradiction that σF M(t) ∈ ]a, b]. Then there exists

α ∈ ]0, 1] such that σF M(t) = αa + (1 − α)b. By condition (ii) and the concavity of

σ 7→ E(σ) on (a, b) we have

t2E(b) + b ≥ t2E(σF M(t)) + σF M(t) ≥ t2αE(a) + t2(1 − α)E(b) + αa+ (1 − α)b,
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that is

t2E(a) + a ≤ t2E(b) + b. (3.5.3)

Therefore

t2E(σF M(t)) + σF M(t) ≥ α(t2E(a) + a) + (1 − α)(t2E(b) + b) ≥ t2E(a) + a. (3.5.4)

Since (3.5.4) is in contradiction with condition (iii), we deduce that σF M(t) = a.

Consider now the case t = t∗. Formula (3.5.3) becomes the identity

(t∗)2E(a) + a = (t∗)2E(b) + b.

Assume there exists α ∈ ]0, 1] such that σF M(t∗) = αa+ (1−α)b; then, arguing as before,

we obtain that

(t∗)2E(σF M(t∗)) + σF M(t∗) ≥ (t∗)2E(a) + a,

which, by conditions (ii) and (iii), implies that σF M(t∗) = a.

To conclude, we prove that

σF M(t) ≥ b for t > t∗. (3.5.5)

Indeed, let us fix t > t∗ and assume by contradiction that σF M(t) < b. Then there exists

α ∈ ]0, 1] such that σF M(t) = αa + (1 − α)b, and this fact together with condition (ii)

implies that

t2 ≤ b− σF M(t)

E(σF M(t)) − E(b)
≤ α(b− a)

αE(a) + (1 − α)E(b) − E(b)
= (t∗)2, (3.5.6)

a contradiction. This fact concludes the proof, since we have shown that for t ≤ t∗

σF M(t) = a, while σF M(t) ≥ b for t > t∗.

Let (u(·), σ(·)) be an irreversible quasistatic evolution. Recalling that u(t) is the

minimum point of ‖Du‖2
2 on AD(tψ0, σ(t)), we have that ‖Du(t)‖2

2 = t2E(σ(t)). We may

now express conditions (a), (b) and (c) of Definition 3.3.1 of an irreversible quasistatic

evolution, in terms of σ(t), and, in the case of this particular choice of the data, we obtain:

(a′) 1 + t2E ′(σ(t)) ≥ 0 for every t ≥ 0;

(b′) the map t 7→ σ(t) is increasing;

(c′) t2E(σ(t)) + σ(t) ≤ s2E(σ(s)) + σ(s) + 2

∫ t

s

τE(σ(τ)) dτ , for every 0 ≤ s < t,

where E ′(σ(t)) denotes the derivative of E with respect to σ computed at σ(t).

Since E(σ(τ)) ≤ E(σ(s)) for τ ∈ [s, t], condition (c′) implies condition (iii).

In terms of this evolution t 7→ σ(t), the Griffith’s criterion can be expressed by condi-

tions (a′), (b′) and the following one: (1 + t2E ′(σ(t)))σ̇(t) = 0 for a.e. t ∈ [0, T ].
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Remark 3.5.2. Let t 7→ σ(t) be a left-continuous map on [0, T ] which satisfies condition

(c′) and define

σ̇⊖(t) := lim sup
s→t−

σ(t) − σ(s)

t− s
.

Then

(1 + t2E ′(σ(t)))σ̇⊖(t) ≤ 0 (3.5.7)

for every t ∈ [0, T ]. Indeed, let tk ր t be such that

lim
k→∞

σ(t) − σ(tk)

t− tk
= σ̇⊖(t).

Then condition (c′) between tk and t can be written as

(t2 − t2k)E(σ(t)) + t2k(E(σ(t)) − E(σ(tk))) + σ(t) − σ(tk) ≤ 2

∫ t

tk

τE(σ(τ)) dτ,

and (3.5.7) follows dividing by t− tk and letting k → +∞.

In the last part of this section we analyze the behavior of the evolution t 7→ σ(t)

distinguishing between the concavity and convexity intervals for the energy functional

E(σ).

Remark 3.5.3. Let t 7→ σ(t) be a left-continuous map on [0, T ] which satisfies conditions

(a′), (b′), and (c′), and let t ≥ 0 be such that σ̇⊖(t) > 0. Then, by Remark 3.5.2 and

conditions (a′) and (b′), it follows that

E ′(σ(t)) =
d

dσ
E(σ)|σ=σ(t) = − 1

t2
,

which implies that σ(t) does not belong to the concavity intervals of E(σ), since t 7→ σ(t) is

increasing, and t 7→ E ′(σ(t)) would be decreasing, while the right-hand side is increasing.

More precisely, let (a, b) ⊂ [σ0, σ], with a < b, be such that σ 7→ E ′(σ) is strictly decreasing

on (a, b) and let t0 ≥ 0 such that σ(t0) ∈ (a, b) and σ̇(t0) > 0 (or σ̇⊖(t0) > 0). Let t > t0
with σ(t) ∈ (a, b). Then σ(t) > σ(t0), and condition (a′) and our assumption on E ′(σ)

imply

− 1

t2
≤ E ′(σ(t)) < E′(σ(t0)) = − 1

t20
< − 1

t2
,

a contradiction.

In order to specify better the monotonicity needed in the above remarks we introduce

the following notion. We say that t0 is a local left-constancy point for σ if there exists

ε > 0 such that σ is constant on the interval [t0 − ε, t0].

Proposition 3.5.4. Let σ : [0, T ] → [σ0, σ[ be a left-continuous map which satisfies con-

ditions (a′), (b′), and (c′), and let t0 ≥ 0. If
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(1) t0 is not a local left-constancy point for σ and

(2) there exists (a, b) ⊂ [σ0, σ[ such that E ′(σ) is strictly decreasing on (a, b)

then σ(t0) /∈ (a, b).

Proof. If t0 is not a local left-constancy point for σ, then, given ε > 0, there are t1ε, t
2
ε ∈

[t0 − ε, t0] such that σ(t1ε) 6= σ(t2ε). Therefore, there exists tε ∈ [t0 − ε, t0[ such that

σ̇⊖(tε) > 0. Then (3.5.7) together with (a′) imply that 1 + t2εE
′(σ(tε)) = 0. By Remark

3.5.3, σ(tε) /∈ (a, b) and we conclude by passing to the limit as ε → 0 (since σ is left-

continuous).

Proposition 3.5.5. Let σ : [0, T ] → [σ0, σ[ be a left-continuous map which satisfies

conditions (a′), (b′), and (c′). Assume that E(σ) is convex on (a, b) ⊂ [σ0, σ]. Then σ(t)

is continuous at every t with σ(t) ∈ (a, b).

Proof. Assume by contradiction that σ(t) < σ(t+). Then condition (c′) and condition (a′)

imply
E(σ(t+) −E(σ(t)))

σ(t+) − σ(t)
≤ − 1

t2
≤ E ′(σ(t)),

a contradiction.

3.6 Concavity and convexity intervals for the energy

functional

In this section we consider the energy functional

σ 7→ E(σ) := min{‖Du‖2
2 : u ∈ AD(ψ, σ)},

and construct an explicit example of Ω and ψ for which E(σ) is concave on some subin-

terval. Let B−2 denote the ball of radius 1 centred in (−2, 0), let B2 denote the ball of

radius 1 centred in (2, 0), and let Γ := [−3, 3] × {0}.
For ε > 0 let

Tε := ] − 2 + cos ε, 2 − cos ε[ × ] − sin ε, sin ε[ , Ωε := B−2 ∪ Tε ∪B2.

Further, for every σ ∈ [−3, 3] let

Γ(σ) := [−3, σ] × {0}.

Let (ρ, θ) and (ρ̃, θ̃) be polar coordinates around (−2, 0) and (2, 0), respectively, where the

functions θ and θ̃ are chosen, as in Proposition 3.2.2, such that θ(x1, x2) → −π if x2 → 0−
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0−2 2

Γ

B−2 B2

Tε
θ

θ̃

Figure 3.1: The set Ωε.

and x1 < −2, θ(x1, x2) → π if x2 → 0+ and x1 < −2, and, analogously, θ̃(x1, x2) → −π
if x2 → 0− and x1 < 2, θ̃(x1, x2) → π if x2 → 0+ and x1 < 2.

On ∂Ωε we define the boundary data ψε as follows:

ψε(x) :=















































sin θ(x)
2

on
(

∂B−2 ∩ ∂Ωε

)

\ Γ(σ),

sin θ̃(x)
2

on
(

∂B2 ∩ ∂Ωε

)

\ Γ(σ),

sin ε
2

on ] − 2 + cos ε, 0[ × {sin ε},
− sin ε

2
on ] − 2 + cos ε, 0[ × {− sin ε},

sin ε
2

+ x1

2−cos ε

(

cos ε
2
− sin ε

2

)

on [0, 2 − cos ε[ × {sin ε},
− sin ε

2
+ x1

2−cos ε

(

sin ε
2
− cos ε

2

)

on [0, 2 − cos ε[ × {− sin ε}.

(3.6.1)

ε

sin θ

2

sin ε

2

− sin ε

2

sin ε

2
+ x1

2−cos ε
(cos ε

2
− sin ε

2
)

− sin ε

2
+ x1

2−cos ε
(sin ε

2
− cos ε

2
)

sin θ̃

2

Γ(σ) −2
0

2

Figure 3.2: The boundary datum ψε.

For every σ ∈ ] − 3, 3[, let uε(σ) ∈ H1(Ωε \ Γ(σ)) be the solution of the problem:

Eε(σ) := min
{

∫

Ωε\Γ(σ)

|Du|2 dx : u ∈ AD(ψε, σ)
}

. (3.6.2)

Our aim is to prove that for ε sufficiently small there exists a subinterval [a, b] of [−2, 2]

such that Eε(σ) is concave on [a, b].
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As σ 7→ Eε(σ) is a C2-function, in order to prove that Eε(σ) cannot be convex on

the whole interval [−2, 2], it is enough to show that the following three conditions are

satisfied:

(a) lim supε→0+ Eε(2) is finite;

(b) lim infε→0+ Eε(−2) = ∞;

(c) lim supε→0+ E ′
ε(−2) is finite;

where we denote by ′ the first derivative with respect to σ.

In order to prove condition (a) we construct an admissible function ũε for Eε(2) whose

energy, ‖Dũε‖2
2, is bounded uniformly with respect to ε. We define the open sets B+

−2 and

B−
−2 by

B+
−2 = {(x1, x2) ∈ B−2 : x2 > 0}

B−
−2 = {(x1, x2) ∈ B−2 : x2 < 0}.

Let v+ be the solution to the following problem:















∆u = 0 on B+
−2;

u(x) = sin θ(x)
2

on ∂B+
−2 ∩ ∂B−2;

∂νu = 0 on ] − 3,−1[ × {0}.

Then the function v−(x1, x2) := −v+(x1,−x2) solves the analogue problem on B−
−2. Let

ũε be the function which coincides with the harmonic functions that satisfy the boundary

conditions on B+
−2, on B−

−2, and on B2, respectively, that is, ũε := v+ on B+
−2, ũε := v−

on B−
−2, and ũε := ρ̃

1
2 sin θ̃

2
on B2. On Tε \ (B2 ∪ B−2) we define ũε in the following

way: on the horizontal line x2 = sin θ, with θ ∈ [−ε, ε], we set ũε(x1, x2) := sin θ
2

for

x1 ∈ ] − 2 + cos θ, 0] and then interpolate linearly with the boundary data on ∂B2 ∩
Tε: ũε(x1, x2) := sin θ

2
+ x1

2−cos θ
(cos θ

2
− sin θ

2
) for x1 ∈ [0, 2 − cos θ[, if 0 < θ ≤ ε, and

ũε(x1, x2) := − sin θ
2

+ x1

2−cos θ
(− sin θ

2
− cos θ

2
) for x1 ∈ [0, 2 − cos θ[, if −ε ≤ θ < 0. It is

easy to check that ũε ∈ AD(ψε, 2) and that Dũε is bounded in L2(Ωε \ Γ; R2) uniformly

with respect to ε. This implies that

lim sup
ε→0+

Eε(2) ≤ lim sup
ε→0+

∫

Ωε\Γ(2)

|Dũε|2 dx < +∞,

and condition (a) is satisfied.

We continue by proving condition (b), i.e., Eε(−2) tends to infinity as ε goes to zero.

Let us first consider the model problem

min
{

∫

Rε

|Du|2 dx : u ≥ 1

2
on ∂1Rε, u ≤ −1

2
on ∂2Rε

}

(3.6.3)
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where

Rε := ]0, 1[ ×
]

− ε, ε
[

, ∂1Rε := [0, 1] ×
{

ε
}

, ∂2Rε := [0, 1] ×
{

− ε
}

. (3.6.4)

It is easy to see that problem (3.6.3) admits a solution and that it is equivalent to

min
{

∫

Rε

|Du|2 dx : u =
1

2
on ∂1Rε, u = −1

2
on ∂2Rε

}

, (3.6.5)

which admits the affine solution ua(x1, x2) := 1
2ε
x2 for every x = (x1, x2) ∈ Rε.

Going back to the domain Ωε, let us consider the same problem with different con-

stants: the rectangle Rε is defined now by

Rε := ]Aε, 2 − cos ε[ × ] − sin ε, sin ε[ ⊂ Tε ,

where Aε is a positive constant such that ψε(x) ≥ 1
2

on ∂1Rε := [Aε, 2 − cos ε] × {sin ε},
(and ψε(x) ≤ −1

2
on ∂2Rε := [Aε, 2−cos ε]×{− sin ε}), when ε is sufficiently small. Then

Eε(−2) =

∫

Ωε\Γ(−2)

|Duε(−2)|2dx ≥
∫

Rε

|Duε(−2)|2dx ≥
∫

Rε

|Dua|2dx .

Since
∫

Rε
|Dua|2dx→ +∞ as ε → 0, condition (b) is proved.

It remains to show that condition (c) is satisfied, i.e., that the first derivative of

σ 7→ Eε(σ) at σ = −2 is bounded as ε goes to zero. Since

E ′
ε(σ) = −κ2

ε(σ) , (3.6.6)

(for the proof see, e.g. [23, Theorem 6.4.1]), where κε(σ)
√

2
π

is the stress intensity factor

associated to uε(σ) at the tip (σ, 0), see Proposition 3.2.2, it is enough to show that κε(σ)

remains bounded when, for instance, −5
2
≤ σ ≤ −3

2
.

For σ ∈ [−5/2,−3/2], let v(σ) be the solution of the following problem:

min
{

∫

B−2\Γ(σ)

|Du|2 dx : u ∈ H1(B−2 \ Γ(σ)), u = sin
θ

2
on ∂B−2 \ Γ(σ)

}

. (3.6.7)

Let us extend v(σ) to R × [−1, 1] constantly on the horizontal lines and denote now by

v(σ) this extension.

We claim that

uε(σ) → v(σ) strongly in H1(B−2 \ Γ(σ)). (3.6.8)

Assuming the claim true, we now use the following characterization of κε (see Propo-

sition 3.2.3):

κ2
ε(σ) =

∫

B−2\Γ(σ)

[

((D1u
ε)2 − (D2u

ε)2)D1ϕ+ 2D1u
εD2u

εD2ϕ
]

dx (3.6.9)
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with ϕ ∈ C1
c (B−2) such that ϕ(σ, 0) = 1. By (3.6.8) and the definition of v(σ), we can

pass to the limit in the right-hand side as ε→ 0+ and define in such a way the quantity:

κ2(σ) :=

∫

B−2\Γ(σ)

[

((D1v(σ))2 − (D2v(σ))2)D1ϕ+ 2D1v(σ)D2v(σ)D2ϕ
]

dx. (3.6.10)

Therefore, by (3.6.6),

lim sup
ε→0+

E ′
ε(σ) = −κ2(σ) for every − 5

2
≤ σ ≤ −3

2
. (3.6.11)

As, by (3.6.10), κ(σ) is bounded, formula (3.6.11) concludes the proof of condition (c).

Proof of the claim. Let Ω̃ε := Tε∪B2 and let wε be the solution of the following problem:

min
{

∫

Ω̃ε

|Du|2 dx : u ∈ H1(Ω̃ε), u = ψε on ∂Ωε ∩ ∂Ω̃ε

}

. (3.6.12)

We consider a cut-off function ϕ ∈ C∞(R) such that 0 ≤ ϕ ≤ 1, ϕ(x1) = 1 for x1 ≤ −2
3
,

and ϕ(x1) = 0 for x1 ≥ −1
3
. Then the function ζ := ϕv(σ) + (1 − ϕ)wε belongs to

AD(ψε, σ) and

Eε(σ) =

∫

Ωε\Γ(σ)

|Duε(σ)|2 dx ≤
∫

Ωε\Γ(σ)

|Dζ |2 dx. (3.6.13)

By convexity, we have
∫

Ωε\Γ(σ)

|Dζ |2 dx ≤
∫

B−2\Γ(σ)

|Dv(σ)|2 dx+

∫

Ω̃ε

|Dwε|2 dx+

∫

Tε

|Dv(σ)|2 dx+

+

∫

Tε∩(suppDϕ)

(

2Dϕ(ϕDv(σ) + (1 − ϕ)Dwε)(v(σ) − wε) + |Dϕ|2(v(σ) − wε)
2
)

dx.

(3.6.14)

Now

lim
ε→0+

∫

Tε

|Dv(σ)|2 dx = 0,

lim
ε→0+

∫

Tε∩(suppDϕ)

|Dϕ|2(v(σ) − wε)
2 dx = 0,

(3.6.15)

and, for any η > 0,
∫

Tε∩(suppDϕ)

2Dϕ(ϕDv(σ) + (1 − ϕ)Dwε)(v(σ) − wε) dx ≤

≤ 2

∫

Tε∩(suppDϕ)

DϕϕDv(σ)(v(σ)− wε) dx+

+
1

η

∫

Tε∩(suppDϕ)

|Dϕ|2|v(σ) − wε|2 dx+ η

∫

Tε∩(suppDϕ)

|Dwε|2(1 − ϕ)2 dx .

(3.6.16)

Since the first two terms in the right-hand side tend to zero, it remains to prove that

lim
ε→0+

∫

Tε∩(suppDϕ)

|Dwε|2 dx = 0 . (3.6.17)
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As in the proof of condition (b), we consider first a model problem. Similarly to (3.6.4),

we now set

Rε :=] − 1, 0[× ] − ε, ε[ , ∂1Rε := [−1, 0] × {ε}, ∂2Rε := [−1, 0] × {−ε},

and define hε as the solution to the following problem:























∆hε = 0 on Rε,

hε = ε
2

on ∂1Rε,

hε = − ε
2

on ∂2Rε,

‖hε‖∞ ≤ 1.

(3.6.18)

We claim that

lim
ε→0+

∫

R̃ε

|Dhε|2 dx = 0, (3.6.19)

where

R̃ε :=
]

− 4

5
,−1

5

[

× ] − ε, ε[ ⊂ Rε.

Indeed, note that the function zε(x1, x2) := 1
2
x2 solves (3.6.18) (for ε ≤ 1). By a Cacciopoli

type estimate we obtain

∫

R̃ε

|D(hε − zε)|2dx ≤ C

∫

Rε

|hε − zε|2dx ≤ C1|Rε| ,

for some positive constants C and C1 which do not depend on ε, hence (3.6.19) holds.

Applying this argument with

Rε =
]

− 1, 0
[

× ] − sin ε, sin ε[ and R̃ε =
]

− 4

5
,−1

5

[

× ] − sin ε, sin ε[

it follows that (3.6.17) holds true.

���
���
���

���
���
���

B−2

Γ(σ)

−2
0R̃ǫ

Ω̃ǫ

2

Figure 3.3: The rectangle R̃ǫ where we apply a Cacciopoli type estimate in order to obtain

(3.6.17).
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From (3.6.13), (3.6.14), (3.6.15), (3.6.16), and (3.6.17) we deduce that

∫

Ωε\Γ(σ)

|Duε(σ)|2 dx ≤
∫

B−2\Γ(σ)

|Dv(σ)|2 dx+

∫

Ω̃ε

|Dwε|2 dx+ o(1). (3.6.20)

Since
∫

Ω̃ε

|Duε(σ)|2dx ≥
∫

Ω̃ε

|Dwε|2dx

we obtain
∫

B−2\Γ(σ)

|Duε(σ)|2 dx ≤
∫

B−2\Γ(σ)

|Dv(σ)|2 dx+ o(1) ≤ C (3.6.21)

uniformly with respect to ε. Thus, there exists u∗(σ) ∈ H1(B−2 \ Γ(σ)) such that

uε(σ) ⇀ u∗(σ) weakly on H1(B−2 \ Γ(σ)), (3.6.22)

and

u∗(σ) = sin
θ

2
on ∂B−2 \ Γ(σ). (3.6.23)

As (Duε(σ), Dϕ) = 0 for every ϕ ∈ H1(B−2\Γ(σ)) with ϕ = 0 on ∂B−2\Γ(σ), by (3.6.22)

we obtain that (Du∗(σ), Dϕ) = 0. By (3.6.7), this fact, together with (3.6.23), implies

that

u∗(σ) = v(σ) . (3.6.24)

In addition, by the lower semicontinuity and by (3.6.21), we have

∫

B−2\Γ(σ)

|Dv(σ)|2 dx ≤ lim inf
ε→0+

∫

B−2\Γ(σ)

|Duε(σ)|2 dx ≤
∫

B−2\Γ(σ)

|Dv(σ)|2 dx. (3.6.25)

By (3.6.22), (3.6.24), and (3.6.25), we deduce that (3.6.8) holds.
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[26] J. Hale and H. Koçak, Dynamics ad bifurcations, Texts in Applied Mathematics,

3 Springer-Verlag, New York, 1991.

[27] J.H. Hubbard and B.H. West, Differential Equations: A Dynamical System

approach. Higher-Dimensional Systems, Texts in Applied Mathematics, 18 Springer-

Verlag, New York, 1995.

[28] D. Knees and A. Mielke, Energy release rate for cracks in finite-strain elasticity.

Preprint WIAS Berlin, (2006).

[29] S. G. Krantz and H. R. Parks, The Implicit Function Theorem. History, theory

and applications. Birkhäuser, Boston, 2002.
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