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Chapter 1

Introduction

Rotations and pseudorotations in molecules and in solids are cyclic motions

where the ionic coordinates execute a closed orbit, thus giving rise, in virtue

of their bare charge, to an orbital magnetic moment. Electrons however also

take part in the motion; and were they to cling infinitely tightly to the ions,

they should completely screen – totally cancel – the ionic orbital magnetic

moment. In reality, the electrons are only softly tied to the ions, and do not

exactly cancel the ionic magnetic moment. The compound result of ion and

electron orbital motion is a total rotational g-factor tensor gR
ii , i = 1, 2, 3 [1],

whose components may take real values, ranging from one (no screening) to

zero (perfect screening), to negative (overscreening).

gR
ii is a basic property, long known for rotation of simple molecules such as

H2 [2, 3], but not always quantitatively available, particularly for pseudorota-

tions. The latter may be of special relevance for Jahn-Teller (JT) and pseudo-

JT systems in free molecules and in solids, for example those of C60 [4], such

as those with displacive structural transitions[5, 6, 7], including incipient

ferroelectric perovskites[8] and perhaps some special glasses [9, 10, 11, 12].

High-accuracy Hartree-Fock and Multi Configurational Self Consistent

Field molecular calculations of rotational g-factors are well established in

the chemical literature[1, 13, 14]. Though quite successful, these approaches

are not easily extended to solids. On the other hand, the density functional

4



CHAPTER 1. INTRODUCTION 5

methods that are standard in both solids and molecules could in principle be

straightforwardly extended to calculate the gR tensor.

The motion of the ions being slow, it can in fact be treated as an adi-

abatic parameter with respect to the electrons. In presence of a magnetic

field, the electrons cause the appearance of an additional geometric vector

potential (GVP) which is a Berry connection [15]. The work done in this the-

sis is aimed at providing a practical and accurate density functional method

for evaluating the rotational and pseudorotational g-factor of molecules and

solids through a Berry phase technique, as the rotational g-factor is a mani-

festation of Berry’s phase [15, 16, 17, 18].

In chapter 2, we will recall how in presence of an external magnetic field

the usual Born-Oppenheimer approximation has to be modified to include

a geometric vector potential term acting on the nuclear degrees of freedom.

The GVP adds to the magnetic vector potential A(R); its gradient gives rise

to a force which acts to modify, “screen” the Lorentz force due to the bare

nuclear charges.

In chapter 3, we will show benchmark results for the g-factor of rotat-

ing molecules, where direct physical interpretation of the magnetic screening

factor is quite transparent. The results will be compared to experimental

data, and to previous quantum-chemical calculations, generally with excel-

lent agreement.

In chapter 4, we will present an alternative implementation, based on

a local orbital calculation scheme, including the magnetic field through a

“Peierls” phase factors. This method is suitable for a faster, if somewhat less

accurate evaluation of the rotational g-factor.

In the second part of this thesis, we will apply our technique to pseudoro-

tations in solids. Motivated by experimental data by Lawless [19], showing

a magnetic field dependence of the static dielectric constant of two quantum

paraelectrics, potassium tantalate (KTaO3) and strontium titanate (SrTiO3),
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we will discuss the possible effects of an external magnetic field on the dielec-

tric response of quantum paraelectrics. We will focus our attention specifi-

cally on the Zeeman interaction of the orbital magnetic moment connected

with the soft mode, with the external magnetic field. That is expected to

yield weak splittings and shifts, which can only be of significance in quan-

tum paraelectrics and incipient ferroelectrics, where the soft mode frequency

is very low.

After reviewing in chapter 5 the phenomenology of quantum ferroelectrics

and paraelectrics, we will show in chapter 6 results about the pseudorota-

tional g-factor of KTaO3 and SrTiO3. Finally, in chapter 7, we will relate the

orbital magnetic moment and the pseudorotational g-factor to the change of

static dielectric constant in a magnetic field. The calculated effect is sev-

eral orders of magnitude smaller than that observed in these incipient ferro-

electrics. This suggests that while a different mechanism may be at work in

these compounds, a measurement of the rotational g-factor in these systems

must await different experiments.



Chapter 2

Theoretical background and

computational methods

In this chapter we start by illustrating the theoretical tools used to calculate

the electronic structure of the systems under consideration. Using the Born-

Oppenheimer (BO) approximation it is possible to decouple the ionic and

electronic degrees of freedom thanks to their large mass difference; the BO

approximation consist in solving the Schrödinger equation for the electronic

ground state by considering the nuclei as fixed. All the calculations are done

within the framework of Density Functional Theory (DFT) [20], which is

widely used in modern computational materials science. The ground state

electronic wavefunction is the starting point for treating the magnetic field

within the Density Functional Perturbation Theory (DFPT) [21]. In the

following we illustrate the general DFT and DFPT framework in the plane

wave implementation. We will show how the BO approximation has to be

modified in order to include the magnetic field and the “screening” of the

electrons on the nuclear degrees of freedom.

7



CHAPTER 2. THEORETICAL BACKGROUND 8

2.1 Density functional theory

The Density Functional Theory describes an electronic system based on a

theorem stating that the ground state properties of an interacting electron

system is uniquely determined by its electronic density, which minimizes the

energy functional [20]:

E[n(r)] = F [n(r)] +
∫

Vext(r)n(r)dr, (2.1)

where Vext in the external potential, F [n] is a universal functional (inde-

pendent of Vext) and the density n(r) must integrate to N , the number of

electrons in the system.

Unfortunately, the functional F [n] is unknown, and all its approximations

in terms of the density alone give poor results. In order to transform DFT

into a practical tool, Kohn ans Sham (KS) [22] introduced an auxiliary system

of non-interacting electrons, with the same density of the original one. In

this way the functional F [n] is split into three parts:

F [n(r)] = Ts[n(r)] +
1

2

∫

n(r)n(r′)

|r− r′| drdr
′ + Exc[n(r)], (2.2)

where Ts is the kinetic energy of the non interacting system, the second term

is the classical electrostatic interaction, and the last term, called exchange-

correlation energy, accounts for all the many-body effects. The minimization

of F [n] imposing the constraint that the integrated density must give the total

number of electrons, is equivalent to solving self consistently the following

set of equation:

HKSψi(r) =
[

−1

2
∇2 + VSCF (r)

]

ψi(r) = εiψi(r), (2.3)

VSCF (r) = Vext(r) +
∫ n(r′)

|r − r′|dr
′ + vxc(r), (2.4)

vxc(r) =
δExc[n]

δn(r)
, (2.5)

n(r) =
∑

i∈occ

|ψi(r)|2. (2.6)
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The success of this method relies in the good description of the kinetic and

electrostatic terms and the appropriated description of the smaller exchange-

correlation part, via a suitable mean-field approximation (valid in not too

strongly-correlated materials).

The simplest approximation for the exchange-correlation energy is ob-

tained taking Exc[n] to be a local functional of the density (Local Density

Approximation or LDA) [23]:

ELDA
xc [n(r)] =

∫

εLDA
xc (n(r))n(r)dr, (2.7)

where εLDA
xc (n) is the exchange-correlation energy density of a uniform elec-

tron gas with density n. The function εLDA
xc (n) has been calculated using

Quantum Monte Carlo methods and then parametrized in a form suitable

for practical calculations. The LDA approach has proved very useful approx-

imation for a large class of materials. Typically LDA yields a good accuracy

in the calculated structural and vibrational properties; it usually overesti-

mates bonding energies and underestimates bond lengths, lattice spacings,

and insulating band gaps.

2.2 Density functional perturbation theory

Once the unperturbed problem has been solved in DFT, DFPT provides an

efficient method to calculate the electronic linear response to an external

perturbation of arbitrary wavelength.

When an external perturbation λVbare is superimposed to the external KS

potential, the self consistent potential is modified accordingly:

VSCF → VSCF + λV
(1)
SCF , (2.8)

where λ is the perturbation parameter, and the superscript (1) denotes the

first order in λ variation of the ground state quantities.

From standard first order perturbation theory, the linear variation of a

wavefunction ψ
(1)
i and of the charge density n(1) can be obtained solving



CHAPTER 2. THEORETICAL BACKGROUND 10

self-consistently the following set of equations:

[HKS + αPv − εi]
∣

∣

∣Pcψ
(1)
i

〉

= −PcV
(1)
SCF |ψi〉 , (2.9)

n(1)(r) = 2Re
∑

i∈occ

ψ?
i (r)ψ

(1)
i (r), (2.10)

V
(1)
SCF (r) = Vbare(r) +

∫

n(1)(r′)

|r − r′|dr
′ + n(1)(r)

dvxc

dn

∣

∣

∣

∣

∣

n=n0

. (2.11)

Here α is a parameter chosen is such a way that the left hand side operator

is not singular; Pv and Pc are the projectors on filled (valence) and empty

(conduction) states, respectively:

Pv =
∑

i∈occ

|ψi〉 〈ψi| , Pc = 1 − Pv. (2.12)

The DFPT equations resemble very much the set of KS equations except

that the first equation in the set is not an eigenvalue equation, but requires

solving a linear problem. One of the main advantages of DFPT is that

one can treat perturbations with arbitrary wavelength; different wavelengths

are decoupled one from each other. This leads to an enormous time saving

because calculations are done on the same small unit cell, independently of

the wavevector of the perturbation.

2.3 Plane wave pseudopotential method

To solve numerically the KS equations it is necessary to expand the wave-

functions in a basis set. One of the most useful choices in ab-initio calculation

for periodic systems, is that of plane waves (PW’s)1:

ψnk = eik·runk(r), (2.13)

unk(r) =
∑

G

cnk(G)eiG·r, (2.14)

1http://www.pwscf.org describes the implementation we use here.
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where n is the band index, k a point in the Brillouin zone, unk(r) is the

periodic part of the Bloch wavefunction and G is a reciprocal lattice vector.

The KS equation in reciprocal spaces becomes a linear problem:

∑

G′

[

1

2
|k + G|2δG,G′ + VSCF (G − G′)

]

cnk(G
′) = εnkcnk(G). (2.15)

The size and accuracy of the calculation is set by fixing the kinetic energy

cutoff for the truncation of the basis:

1

2
|k + G|2 < Ecut. (2.16)

The main advantage of the PW basis set lies in its translational invariance

properties, in the existence of a simple parameter controlling the accuracy

and in the availability of Fast Fourier Transform. However, on the other

hand, this choice of basis implies the same resolution in every region of space

so that it is impossible to describe, with a manageable number of PW’s,

the oscillations of the wavefunction of core electrons. That requires the

use of pseudopotentials which are built to describe in an effective way the

interaction between core and valence electrons, considering core electrons

as frozen. Pseudopotentials are required to reproduce – at the reference

electronic configuration – both the energies and the wavefunctions of the

all-electron valence states outside the core region.

This approach makes it possible to perform the calculations with a man-

ageable energy cutoff for the PW basis set. Details about the pseudopoten-

tials used in this work will be given in the following chapters.

2.4 Linear response to a uniform magnetic

field

The external applied magnetic field enters the electronic hamiltonian in the

kinetic energy term, via minimal coupling p → (p − eA/c) with the vector

potential A, the field being B = ∇× A. Treating the magnetic field magni-

tude B as a small perturbation, we expand the kinetic energy in powers of
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A, and retain only the first order “paramagnetic” terms:

1

2m

[

p +
e

c
A(r)

]2

=
p2

2m
+

e

2mc
(p · A + A · p) +

1

2mc2
|A(r)|2 , (2.17)

and neglecting the last (diamagnetic) term.

In isolated systems (atoms, molecules) one can safely choose a gauge in

which the vector potential is proportional to the coordinate r (i.e. the Lan-

dau or symmetric gauge A = (1/2)B × r), but this choice is problematic

in a periodic system. One possible solution was adopted by Sebastiani and

Parrinello [24]. They transform the homogeneous magnetic field into a peri-

odic one, by defining a new periodic position operator r [25]. This is done by

a unitary transformation from the subspace of the occupied wavefunctions,

maximally localized Wannier functions [26]. The unit cell is chosen large

enough so that each Wannier function is significantly different from zero only

within a limited region of the unit cell. The position operator, when acting on

a Wannier function, can be replaced a saw-tooth shape whose discontinuities

fall in regions of space where the wavefunction is close to zero.

A different approach introduced by Mauri and collaborators [27, 28, 29,

30, 31], is based on the substitution of the homogeneous magnetic field,

with a long wavelength modulated magnetic field B = B0 exp(iq · r). In this

approach the vector potential is chosen as:

A(r) = iB
q × b̂q
|q|2 exp(iq · r). (2.18)

By taking the curl of A, the magnetic field is:

B = B b̂q exp(iq · r), (2.19)

where: b̂q and B are the direction and the intensity of the magnetic field and

q is a wavevector with |q| � 1 and q ⊥ b̂q.

The action of the first order perturbation operator on a Bloch wavefunc-

tion is:

H1 =
e

2mc
(p ·A + A · p) , (2.20)
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〈

r |H1| eikruk(r)
〉

= −e
i(k+q)·r

m

(

B

c

)

q × b̂q
|q|2

[

~∇ + i
(

k +
q

2

)

uk(r)
]

, (2.21)

〈

u
(j)
k+q |H1|u(i)

k

〉

=
∑

G

c
(j)∗
G,k+qc

(i)
G,k

[

− iB

mc

(

q × b̂q
|q|2

)

·
(

k + G +
q

2

)

]

. (2.22)

This relation can be implemented very quickly in the existing linear response

plane wave code. As pointed out by Mauri and coworkers [32], the operator

(−i∇ + k + q/2) can, in pseudopotential calculations, be replaced by the

velocity operator vk,k′ = −i∇ + k′ − i
[

r, V nl
k,k′

]

where V nl
k,k′ is the non-local

pseudopotential operator.

We choose Mauri and coworkers method because it can be implemented

quickly and accurately within our existing linear response code. The actual

calculations are done in three steps:

1. A standard SCF electronic structure calculation is done, in order to get

the self consistent potential and the ground state wavefunctions u
(i)
k .

2. A non-SCF calculation is done, by using the self consistent potential

calculated at the previous step; the hamiltonian is diagonalized at each

k + q point yielding the u
(i)
k+q functions.

3. Finally a linear perturbation calculation is done, giving the perturbed

wavefunctions ∆u
(i)
k,q.

2.5 Adiabatic approximation in a magnetic

field

If the standard Born-Oppenheimer factorization of a molecular wavefunction

into a product of electronic and nuclear parts is applied to a molecular system

in an external magnetic field, the resulting effective Hamiltonian for the

nuclear motion is that of “bare” nuclear charges interacting with the magnetic

field. The reason for this is that the Born-Oppenheimer procedure calls for

the averaging of electronic properties for fixed nuclei before considering the
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nuclear motion. Thus, any effect of the velocity acquired by the electrons as

they “follow” the nuclear motion is lost, and this of course includes the force

experienced by electrons as well as nuclei as the molecular system moves in

an external magnetic field [17].

Since the application of this “naive” Born-Oppenheimer procedure is evi-

dently wrong as it would predict that a neutral atom would be deflected in a

magnetic field as if it were a bare nucleus, it follows that some modification

of the procedure is called for in the presence of a magnetic field.

The Born-Oppenheimer approximation starts by writing the total (nu-

clear and electronic) wavefunction as a the product:

Ψ(r,R) = ψnu(R)ψel(r;R). (2.23)

The aim is to obtain an effective Schrödinger equation for the nuclear wave-

function ψnu where the electronic degrees of freedom have been integrated

out. We start by considering the effect of the canonical nuclear momentum

P̂ on the total wavefunction:

P̂Ψ(r,R) = −ih̄ ψel(r;R)∇Rψnu(R) − ih̄ ψnu(R)∇Rψel(r;R). (2.24)

Then, multiplying to the left with ψel and integrating over the electronic

degrees of freedom, we get the effective nuclear momentum acting on ψnu(R):

P̂ψnu(R) = −ih̄ ∇Rψnu(R) − ih̄ 〈ψel,R|∇R|ψel,R〉 . (2.25)

The last term appearing in eq. 2.25 is called “geometric vector potential”

(GVP) or “Berry connection”, as it has the same properties of a vector

potential [15]. The rest of this review part follows that given by Resta [18].

Whenever the electronic wavefunction can be chosen as real (i.e. without

any external magnetic field and if there is no degeneracy), the GVP vanishes

and the kinematic momentum P̂ is equal to the canonic one (−ih̄∇R). But if

we follow the adiabatic evolution of the electronic wavefunction along a closed

path in {R} space encircling a degeneracy, then the electronic wavefunction

can undergo a sign change. As the total wavefunction must be single-valued,
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also the ionic wavefunction must undergo a sign change, a Berry phase [15].

This sign change is a boundary condition which modifies the spectrum of the

effective nuclear hamiltonian and which has in fact remarkable observable

effects on the rotovibrational spectrum of some molecules [33, 34, 35].

If on the other hand, even in absence of level crossing, but when a genuine

magnetic field is applied, the electronic wavefunction is necessarily complex

and the GVP doesn’t vanish. Now the nuclear equation of motion includes

two vector potentials and if we treat this equation of motion at a classical

level, there will be two “Lorentz forces”. The curl of the vector potential is of

course the physical magnetic field, while the curl of the GVP is a “magnetic-

like” field which, in general, does not vanish. It has to be stressed here

that the true, physical magnetic field present is that arising from the vector

potential; for instance, in an NMR experiment, the nuclear spins see the

external magnetic field plus the induced magnetic field generated by the

surrounding electrons. The additional “magnetic-like” field affects only the

mechanical, or “orbital” nuclear motion.

Within a naive Born-Oppenheimer approximation – i.e. neglecting this

extra geometric vector potential – the physical magnetic field acts on the

nuclei as if they were “naked” charges; it is pretty clear however that the

GVP term is no small correction. This is easily illustrated in the simple case

of a neutral hydrogen atom moving at constant speed in a uniform magnetic

field.

2.6 An illuminating example: hydrogen atom

in a magnetic field

Suppose we take a neutral hydrogen atom in a uniform magnetic field; then

the full hamiltonian, neglecting the Zeeman effect becomes:

H =
1

2M

[

P +
e

c
A(R)

]2

+
1

2m

[

p − e

c
A(r)

]2

− e2

|R − r| , (2.26)
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where we took e, the electron charge, negative. Now in the screened Born-

Oppenheimer approximation the correct hamiltonian is:

H =
1

2M

[

P +
e

c
A(R) − χ(R)

]2

+ E(R), (2.27)

where E(R) is the ground state energy of the electronic problem in presence

of the magnetic field:

hR(r) =
1

2m

[

p − e

c
A(r)

]2

− e2

|R− r| , (2.28)

and χ(R) is the geometric vector potential, given by:

χ(R) = i〈ψR(r)|∇RψR(r)〉, (2.29)

where ψR(r) is the ground state of hR(r).

For the free motion of the H atom, the exact form of the wavefunction

ψR(r) is known by gauge-invariance to be of the form:

ψR(r) = exp
[

ie

2c
r · B× R

]

ψ0(r − R), (2.30)

where ψ0(r) is the electronic ground state wavefunction when the proton is

at R = 0 and the phase factor is just that needed to translate from the gauge

A = 1
2
B× r to the gauge A = 1

2
B× (r + R) (both describing the same field

B). The Berry connection is:

χ(R) =
e

2c
〈ψ0(r− R)|B× r|ψ0(r − R)〉 +

+ i〈ψ0(r)|∇Rψ0(r)〉 =

=
e

2c
B × R =

e

c
A(R), (2.31)

which cancels exactly the term giving the Lorentz force on the bare nuclear

charge.

2.7 Integral formulation and Berry phase

The previous calculation is a particular case where the Berry connection can

be evaluated in a trivial manner. In a general case, the evaluation of the
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Berry connection is not an easy task, as explained in the previous section.

The problem is that the GVP is not gauge-invariant; we need to restate the

problem in a gauge-invariant way, since only gauge-invariant quantities have

a physical meaning.

The solution is to carry out a contour integral of the GVP around a close

loop in configuration space; the resulting quantity is called Berry phase (γ).

It can be proved that the Berry phase is gauge invariant, and therefore it can

be a physical observable [15, 18]:

γ = i

∮

χ(R) · dR. (2.32)

Indeed, many manifestations of Berry phase do exist, and have been subject

by several studies. Well known solid state applications include the Aharonov-

Bohm effect, the macroscopic polarization in insulators [36], spin-wave dy-

namics [37]. Here, we will show that for rotating molecules, the Berry phase

influences the rotational g-factor, a term which accounts for the screening of

rotational magnetic moment of the nuclei, by the electrons.

In order to calculate this magnetic screening, we integrate also the classi-

cal vector potential term (which of course depend on the choice of the gauge)

around the same closed path, getting the magnetic flux through the surface

embraced by the circuit:

Φ =
e

c

∮

∂S
A(R) · dR =

e

c

∫∫

S
B · dS. (2.33)

If the electrons were absent, Φ would be the phase factor acquired by the

nuclear wavefunction after a closed loop. The electrons contribute with the

additional Berry phase γ, that can compensate, or even overcome, the nuclear

contribution. The compound result is that the nuclear wavefunction acquires

a phase factor as if the magnetic field were replaced by an effective magnetic

field:

Beff = (1 + σ)B, σ = γ/Φ, (2.34)

where we have defined σ as the “magnetic screening”. In our convention, the

Berry phase γ and the bare magnetic phase Φ generally have opposite signs;

hence σ is negative.



CHAPTER 2. THEORETICAL BACKGROUND 18

In order to carry out numerically the integral 2.32, it is substituted by a

finite summation over a discrete set of points along the path (fig. 2.1). It has

been shown by Resta [18] that for a system of non interacting electrons (i.e.

the wavefunction is a single Slater determinant), the Berry phase is given by:

γ ' −Im log
N−1
∏

ξ=0

detS(ξ, ξ + 1), (2.35)

where the matrix elements of S are the overlap between occupied single-

particle wavefunctions at consecutive ξ points along the integration path:

Sij(ξ, ξ + 1) = 〈ψi(ξ)|ψj(ξ + 1)〉 . (2.36)

These expression can be implemented straightforwardly in an existing elec-

tronic structure code.

The integral formulation of the Berry phase has several advantages rela-

tive to the differential formulation, involving the GVP. For a complex hamil-

tonian (the way our code is implemented generally yields complex wavefunc-

tions and hamiltonians even in zero field), if the state |ψ(ξ)〉 is obtained by

numerical diagonalization, the phase at each ξ-point is chosen at random by

the diagonalization routines and shows no regularity at all when the set be-

comes denser and denser. Notwithstanding this, the discrete expression for

the Berry phase does converge to a meaningful value. Also, if the occupied

orbitals are degenerate at some ξ-point, there is an ambiguity in defining

the ξ-dependence of each orbital separately. This causes no problems in the

discrete formulation for the Berry phase, a quantity uniquely determined by

the condition that the highest occupied orbital be separated by a finite gap

from the lowest unoccupied at any ξ-point of the path (level crossings can

only come in pairs leading at most to a Berry phase of π).

In the present case, we calculate the Berry phase of the full electronic

wavefunctions, perturbed to linear order by the magnetic field:

ψi(ξ) = ψ
(0)
i (ξ) +

B

c
ψ

(1)
i (ξ), (2.37)
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ξ=0 ξ=1 ξ=2

ξ=Ν−1

ξ=Ν−2
|Ψ(ξ)>

. . .

Figure 2.1: Adiabatic evolution of a ket |ψ(ξ)〉 along a discretized closed path in

parameters space.

where ψ
(0)
i (ξ) is the unperturbed wavefunction for a given ξ point, and ψ

(1)
i (ξ)

is the linear term in the perturbation of ψ
(0)
i (ξ) by the magnetic field. Equa-

tion 2.36 becomes:

Si,j(ξ, ξ + 1) =
〈

ψ
(0)
i (ξ) +

B

c
ψ

(1)
i (ξ)

∣

∣

∣

∣

ψ
(0)
i (ξ + 1) +

B

c
ψ

(1)
i (ξ + 1)

〉

. (2.38)

In the previous equation we retained only the terms up to first order in the

magnetic field, and discarded the quadratic term (B/c)2
〈

ψ
(1)
i (ξ)

∣

∣

∣ ψ
(1)
i (ξ + 1)

〉

.

The resulting Berry phase γ is proportional to (B/c).

The flux Φ of the magnetic field (eq. 2.33) can be calculated straightfor-

wardly and in practical calculation, we set the perturbation parameter (B/c)

to a small value (10−6).



Chapter 3

Rotational g-factor in molecules

In the previous chapter we showed how the geometric vector potential (GVP)

can account from the screening of the bare nuclear Lorentz force by the elec-

trons for a neutral atom in a magnetic field. The proof can be easily gener-

alized to any neutral molecule with all nuclear degrees of freedom “frozen”

except for the center of mass translation.

In this chapter, we consider a molecular system in which all nuclear de-

grees of freedom are frozen except rotation about the center of mass. In case

of a rotation in a uniform field, the question of the electronic contribution to

the interaction of the molecule with the field may be restated as that of the

electronic contribution to the orbital magnetic moment. That contribution

“screens” that of the bare nuclei giving rise to a rotational g-factor ranging

from one (no screening), to zero (perfect screening) and to negative values

(over-screening).

3.1 Rotational g-factor

Let’s consider a rigid nuclear framework rotating at constant speed ω around

a fixed axis. The rotational g-factor tensor is defined as minus the second

derivative of the energy respect to the magnetic field B and to the angular

20
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momentum L:

HZeeman = −gµNL · B, (3.1)

gij = − 1

µN

∂2E

∂Li∂Bj
, (3.2)

where µN is the nuclear magneton, equal to e/(2mpc), where mp is the proton

mass.

From equation 3.1, it can be recognized that the magnetic moment µ is

equal gµNL; so that, the g-factor can be expressed as the ratio between the

magnetic moment µ and the angular momentum L, in units of the nuclear

magneton:

g =
1

µN

µnu + µel

L
. (3.3)

The electrons contribute only the orbital magnetic moment, as in a closed

shell molecule, the sum of the angular momentum of all the electrons is zero.

Treating the nuclei from a classical point of view:

µnu = |e|
∑

i

(Zi/c) πr
2
i ν, (3.4)

L = Iω =
∑

i

Mi 2πν r2
i , (3.5)

where the sum runs on the nuclei, Zi and Mi are the charge and mass of the

nucleus i, ri is distance of the nucleus from the rotation axis and ν is the

frequency of rotation.

The “magnetic screening”, defined as the ratio between the electronic

magnetic moment and the rotational nuclear one, is:

σ =
µel

µnu

= −1 + g

∑

imir
2
i

∑

iZir
2
i

(generally < 0), (3.6)

where mi = Mi/mp is the nucleus mass in unit of the proton mass. Inverting

this relation, we finally obtain the expression of the rotational g-factor in

terms of the magnetic screening:

g = (σ + 1)

∑

i Zir
2
i

∑

imir2
i

. (3.7)

From this expression, the qualitative significance of the rotational g-factor

becomes immediately clear:
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• a g-factor close to one means that the σ is close to zero, and that the

electrons screen poorly the nuclei;

• a g-factor close to zero, on the contrary, means that the electrons screen

almost completely the nuclear charges;

• a negative g-factor means that σ < −1 and that the electrons give

rise to a magnetic moment contrary and greater than that of the bare

charges of the nuclei (overscreening); the total magnetic moment is

opposite in direction with respect to the rotational angular momentum.

The test molecules we have investigated (hydrogen molecular ion H+
2 , hydro-

gen H2, acetylene C2H2, methane CH4 and fluoromethane CF4) exhibit the

full range of g-factors.

As shown in ref. [14], the electronic contribution to the rotational g-factor

is related to the paramagnetic part of the susceptibility tensor χp:

gel
αβ = gbare σ

1 + σ
= −4Mp

χp
αβ

Iα
, (3.8)

where gbare is the g-factor as if the nuclei where naked, Mp is the proton

mass and Iα is the α component of the moment of inertia. The magnetic

field perturbs the electronic structure of the molecule, inducing paramagnetic

and diamagnetic currents (e.g. ring currents in aromatic compounds like

benzene). The induced currents generate a field-induced magnetic moment,

equal to the the paramagnetic susceptibility times the magnetic field.

Thus, poor magnetic screening corresponds to small paramagentic sus-

ceptibility; conversely, almost complete screening, corresponds to large para-

magnetic susceptibility.

3.2 Details of practical calculations

In order to calculate the magnetic screening, we applied the procedure il-

lustrated at end of the previous chapter. The Berry phase was calculated
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using the discrete formulation (eq. 2.35). The ξ points in nuclear configura-

tion space correspond, in the simple case of rotation, to the perfect circular

trajectories covered by the nuclei, rotating around the center of mass of the

molecule.

The practical computation consists in a sequence of calculations for many

rotated configuration of the molecule. The rotated configuration does not

span the full circumference, but only a symmetry-irreducible interval. For

instance, in the case of linear molecules, it is sufficient to span the [0, π)

interval. For CH4 and CF4 it is sufficient to span the [0, 2π/3) interval. The

angle increment was 6◦ (π/30).

Molecules were placed in a periodically repeated cubic cell with enough

empty space in order to minimize interactions between them. For practical

calculations we set |q| = 0.01(2π/a) where a is the side of the cubic cell.

As explained in the previous chapter, we performed three calculations

for each configuration: a standard SCF calculation; a non-SCF calculation

of the wavefunctions at q; a linear response calculation giving the pertubed

wavefunctions. The nuclear contribution to the orbital magnetic moment is

calculated straighforwarldy, given the geometry of the molecule.

3.3 Hydrogen molecular ion H+
2

As the first test case we studied the rotation of the simplest molecule, namely

the hydrogen molecular ion H+
2 . This is a single electron molecule, whose

Schrödinger equation for fixed nuclear separation can be solved exactly and

analytically [38]. The exact solution gives an equilibrium separation between

the nuclei of 2.0 a.u.; the ground state wavefunction shows two cusps in

correspondence of the nuclei.

We set the bond distance at the equilibrium value of 2.0 a.u. and used

for the electron-proton interaction the bare coulomb potential. In order to

make use of our cell-periodic plane-wave scheme of chapter 2, the molecule

was placed in a cubic cell with lattice spacing set to 6 Å. The magnetic
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field was placed orthogonal to axis of the molecule. As the energy cutoff

required for solving exactly the full potential problem should be infinite, we

increased the cutoff of the plane wave expansion from 80 Ry to 200 Ry,

in order to estimate the convergence of the g-factor. The results, given in

table 3.1, show that 80 Ry is already accurate to within 2·10−4 accuracy. We

obtained an exact electron screening of −5.43%, corresponding to a g-factor

of 0.946 in H+
2 . This, we note, is a very poor screening, reflecting the effective

concentration of the electron magnetic response in the vicinity of the bond

center. Note that there is no such concentration in the charge density, which

has instead a minimum at the bond center. Magnetic screening is therefore

a very independent quantity with respect to the electron charge distribution.

By comparison, the rotational g-factor generated by e.g. rigidly rotating the

static electronic charge of H+
2 is calculated to be −0.83, a very different value.

The reason for this is that the charge density of H+
2 extends in a region of

space far away from the nuclei and the expectation value of (x2 +y2) is larger

than the square of the proton-proton distance R2 (fig. 3.1).

Lacking an experimental comparison, our accurate result g = 0.946, while

confirming an earlier variational estimate of about −5% [39], can be used to

test the standard self-consistent (SCF) pseudopotential electronic structure

calculations to be routinely used later on.

Carrying out again the calculation for H+
2 , but using now a pseudopo-

tential for H, and standard self-consistency as if H+
2 were a many-electron

system (we used non spin-polarized LDA functional with the orbital occupa-

tion equal to one) we found a magnetic screening of −5.75%, corresponding

to a g-factor of 0.9425, in close agreement with the exact result 0.946.

Satisfied by this check we can move on to calculate the rotational g-factor

of the hydrogen molecule (H2) and other molecules.
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B

Figure 3.1: H+
2 charge density plot. The protons are indicated by the full circles

and rotates on a circular trajectory. The magnetic field is perpen-

dicular to the plane of the figure.

screening g-factor notes

H+
2 rotation:

−5.41% 0.9459 EX, 80 Ry

−5.42% 0.9458 EX, 120 Ry

−5.43% 0.9457 EX, 160 Ry

−5.43% 0.9457 EX, 200 Ry

−5.75% 0.9425 SCF, pseudopot., 80 Ry

Table 3.1: Plane wave results for the rotational g-factor of the hydrogen molec-

ular ion H+
2 ; EX stands for “exact” calculation, i.e. one electron full

potential; SCF stands for self-consistent calculation with a pseudopo-

tential for hydrogen.
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3.4 Hydrogen and other molecules

Using the experimental bond length of 1.4 a.u. for H2, we performed a

SCF calculation with a plane wave cutoff of 80 Ry and obtained a magnetic

screening of −12.45%, corresponding to a g-factor of 0.8755. That is in

excellent agreement with the experimental value of 0.8787 obtained long ago

by Ramsey [2]. Comparison with H+
2 indicates that the two electrons of H2

just approximately double to −12.45% the single electron screening −5.4%

of H+
2 , irrespective of a factor 1.42 in the H–H distance.

In order to further benchmark the accuracy of our method, we consid-

ered next molecules with larger magnetic screening and smaller g-factors [3],

namely the linear acetylene (C2H2), and the tetrahedral methane (CH4) and

carbon tetrafluoride (CF4) molecules. In these molecules the C–H and C–F

bonds possess a partly ionic character, some electron fraction attracted to a

larger distance from the center, and thus likely to screen more effectively the

nuclei.

In all three cases, we used the experimental bond-lengths and a plane

wave cutoff of 80 Ry. The three molecules were placed in repeated cubic cell

with a lattice spacing of 9 Å; the magnetic field was placed parallel to the

principal rotation axis of the molecule, i.e. perpendicular to the molecule for

C2H2 and parallel to a bond for CH4 and CF4.

Our results (table 3.2) confirm a large screening value and (except for

CH4) agree very closely with experiment where available. The small g-factor

value is thus an indicator of ionicity, whereas (as exemplified by H2) a g-factor

close to 1 is characteristic of the covalent bond.

The marginally positive g-factor of C2H2 confirms the nearly perfect

screening of nuclei, whereas the marginally negative g-factor of CF4 indi-

cates a slight overscreening (|σ| > 1), probably due to an important electron

fraction that effectively orbits beyond the C-F distance. In fact, inverting

equation 3.7, one gets Zi = 7.658 electrons for the fluorine atom (7.462 from

the experimental g-factor), with about half an electron beyond neutrality. For

CH4, our calculated rotational g-factor (0.20) compares less favorably with
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the experimental value of 0.313 and the most accurate quantum chemistry

value of 0.319 [40]. The reason for this unexpected discrepancy is unclear

and is being presently pursued.

The g-factor can be revealed experimentally also as a field-induced split-

ting of the rotational states of two coupled rotating methyl groups. In fact

Peternelj and coworkers [41], by NMR spectroscopy studied the constrained

rotations of methyl end groups (−CH3) about C-C bond in amorphous or-

ganic samples [41]. In particular for the L = 1 rotational state, the frequency

shift is given by:

∆E = µN g B = 7.622 MHz g
B

Tesla
, (3.9)

where B is in Tesla; the numeric coeffiecient 7.622 MHz corresponds to the

splitting of the rotational state for a field of 1 Tesla and g=1. Measure-

ments in acetyl-acetone (CH3CO−COCH3) show a splitting of about 38 kHz

for a field of 0.05 Tesla, corresponding to a methyl group g-factor of about

0.1. Thus screening is somewhat larger than that for single CH4 molecule

(g =0.3), most likely reflecting a slight increase in ionicity of the methyl C–

H bonds, compensating the decrease in the C–C bond. This underlines an

exquisite sensitivity of the rotational g-factor to even delicate changes of the

chemical circumstances.
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a)

b) c)
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H

H
H

H

CC HH

Figure 3.2: Structure of the three molecules under study. The arrows indicate

the rotation axis and the magnetic field. a) acetylene H–C≡C–H. b)

Fluoromethane CF4. c) Methane CH4.
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screening g-factor notes

H2 rotation:

−12.45% 0.8755

−12.13% 0.8787 Expt. [2]

−11.01% 0.8899 From MC-SCF theory [40]

C2H2 rotation:

−94.2% 0.0405

−92.9% 0.0490 Expt. [3]

−91.7% 0.0570 From MC-SCF theory [40]

CF4 rotation:

−109.4% −0.0445

−106.6% −0.0312 Expt. [3]

CH4 rotation:

−79.6% 0.2047

−68.7% 0.3133 Expt. [1]

−68.1% 0.3190 From MC-SCF theory [40]

Table 3.2: Plane wave results for the rotational g-factor of some molecules, com-

pared to existing experimental data (Expt.) and to previous quantum

chemical results [40].
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3.5 Pseudorotations

In the chemical literature [42], a pseudorotation is defined as a cyclic motion

of the atoms resulting in a structure that appears to have been produced by

rotation of the entire initial molecule and is superposable on the initial one,

unless different positions are distinguished (e.g. by isotopic substitution of

the atoms).

Pseudorotations appear in molecules and in solids also as suitably de-

generate vibrational modes and are generated by a linear combination of

degenerate vibrational modes. Like genuine rotations, an angular variable

can be associated with the pseudorotation (θ for a twofold degenerate state,

(θ, φ) for a threefold degenerate state).

For a twofold degenerate vibrational mode, the linear combination of the

two vibrational mode with a phase angle θ:

ui,α =
[

u
(1)
i,α cos θ + u

(2)
i,α sin θ

]

α = x, y, z, (3.10)

generates a pseudorotation, where the nuclei cover small orbits around a high

symmetry configuration.

A simple example of pseudorotation is shown in fig. 3.3 for an equilateral

triangle-shaped A3 molecule. This molecule have a non-degenerate vibra-

tion A1 mode and a twofold degenerate E1 mode. Combining the two E1

eignemodes, when θ ranges from 0 to 2π, the atoms follow a continue circu-

lar path around the high symmetry configuration and the molecule “appears”

to rotate, hence the name pseudorotation (fig. 3.4).
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E A1 1

Figure 3.3: Vibrational modes of an equilateral triangle-shaped molecule. The

E1 modes are degenerate.

Figure 3.4: Pseudorotation generated by the E1 eigenmodes of an equilateral

triangle-shaped molecule (from [43]).
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Figure 3.5: Schematic representation of two degenerate eigenvector of the ν18

mode in benzene, following Herzberg [44].

3.6 Pseudorotation in benzene

Besides rotations, the present technique can be directly applied to calculate

g-factors for pseudorotations. As a simple prototype, we chose the lowest E2

mode of benzene C6H6, of frequency ν18 at 606 cm−1 [44]. The eigenmodes

of the lowest frequency E1 mode are perpendicular to the benzene ring and

does not encircle any area. Here instead, the nuclei move in the molecular

plane, and the pseudorotation is generated by combining the two eigenmodes

(fig. 3.5) with a phase factor:

ui,α = A(θ)
[

u
(1)
i,α cos θ + u

(2)
i,α sin θ

]

. (3.11)

where A(θ) is the amplitude, i runs over the atoms and α = x, y, z.

For a general large distortion, A(θ) should of course be determined for

each angle θ , giving a generally non-circular pseudorotation orbit.

From a classical point of view, the amplitude A(θ) of the oscillation of a

harmonic oscillator is given by the points of inversion of the motion. They

are fixed by the inital conditions (initial elongation, or equilvalently total

energy) and they can assume any value.

For the quantum harmonic oscillator, energy is quantized and only the

expectation value of the amplitude
√

〈x2〉 can be calculated. Moreover, for



CHAPTER 3. ROTATIONAL G-FACTOR IN MOLECULES 33

g-factor amplitude A(θ)

0.7851 0.04 Å

0.7934 0.10 Å

Table 3.3: Calculated pseudorotational g-factor of the ν18 mode of benzene; the

correct result for a small vibration is obtained by extrapolating A at

zero.

the n = 0 vibrational state, the result is simply:

〈

x2
〉

=
h̄

mω
, (3.12)

where m is the “mass” of the harmonic oscillator (V (x) = (1/2)mω2x2).

In the present case we considered a small vibration, and A(θ) was chosen

constant. We did not tried to estimate the amplitude of the vibration, as

this calculations served us to test the applicability of our method to pseu-

dorotations. Notice that in practical calculations, if A(θ) is too small, very

accurate calculations are needed. We will come back to this, later in this

work, when we will illustrate pseudorotations in solids.

A pseudorotation in benzene is expected to trigger orbital currents encir-

cling the large molecular radius, and that might lead to unusually large mag-

netic screenings. Our calculated g-factor of benzene of about 0.79 (table 3.3)

indicates instead for this pseudorotational mode a surprisingly modest 20%

magnetic screening by the orbital electron currents.

In contrast, the rotational g-factor of benzene is slightly negative (ref. [1]

reports the rotational g-factor of several ring molecules, derived from ben-

zene; in all cases the g-factor is slightly negative). This is in agreement

with the unusual large paramagnetic susceptibilty found in ring aromatic

molecules, due to to the ring current induced by the magnetic field.

To understand the poor screening of the pseudorotation, we display in

fig. 3.6 frames showing the evolution with θ of the electron charge density

difference relative to undistorted benzene. Atoms pseudorotate counterclock-

wise, their small orbit causing large orbital electron currents with a complex



CHAPTER 3. ROTATIONAL G-FACTOR IN MOLECULES 34

pattern.

The electron imbalance forms a sort of dipole – from the C–H bonds to

the carbon ring– that rotates clockwise, while shifting phase, until at θ = π

its sign has reversed – from the carbon ring to the C-H bonds. Moreover from

θ = π until θ = 2π the charge motion occurs in reverse. The nearly exact

balance of positive and negative currents explains the globally small magnetic

screening in benzene. According to our calculated g-factor, a magnetic field

should theoretically lead to a splitting of this E2 mode:

δν18 = g × 7.622 MHz
B

Tesla
. (3.13)

For a field of 10 Tesla the calculated splitting is only a tiny 59.8 MHz, when

compared with a reported line width of about 500 GHz even below 50 K[45].
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0° 36° 72°

108° 144° 180°

Figure 3.6: Illustration of orbital current caused by a pseudorotation in benzene.

Plot shows the difference between distorted and undistorted electron

density in the molecular plane at increasing values of the phase θ of

the counterclockwise ion pseudorotation. Full lines: electron accumu-

lation; dashed lines: electron depletion. Interval between isocharge

lines: 4 · 10−5(au)−2. Carbon displacement amplitude 0.1 Å, here

enhanced by a factor 5 for clarity. Note the clockwise motion of

electron accumulation, and its phase shift into a depletion at θ = π.

The current is basically reversed from θ = π to θ = 2π, explaining a

relatively small magnetic screening (see text).



Chapter 4

Localized basis set calculations

The calculations in the previous chapter were carried out with a plane wave

basis set. Even though plane waves are an excellent basis set for describing

periodic systems, calculations done with this technique can be computation-

ally intensive and may require massively parallel machines if the number of

atoms is greater than 50-100. This is especially true when first row atoms or

transition metal atoms are present, as they require a cutoff of ∼ 80 Ry with

standard norm-conserving pseudopotentials.

In the following we illustrate an alternative approach to DFT, based on

a localized basis set, aimed at simpler and faster evaluation of the rotational

and pseudorotational g-factors, still applicable to isolated molecules and to

periodic systems.

4.1 The SIESTA approach to DFT

This section describes the self-consistent density-functional method imple-

mented in the code SIESTA (Spanish Initiative for the Electronic Structure

of Thousands of Atoms) [46, 47].

This method is based on the pseudopotential approximation, but unlike

the plane-wave method, wavefunctions are expanded in a localized basis set,

made up of atomic orbitals centered on each atom in the simulation cell. The

36
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atomic orbitals are obtained by the solution of the radial Schrödinger equa-

tion of the pseudo-atom, with the additional constraint that these solution

vanish beyond a certain cut-off radius rc (confinement radius). The purpose

of the confinement of the wavefunctions is to improve the convergence of the

calculation going from the isolated atom to the solid. In fact, when two or

more atoms become closer together, the exclusion principle dictates that the

atomic wavefunctions get compressed and increase their kinetic energy [48].

Within the standard-pseudopotential approximation, the Kohn-Sham hamil-

tonian can be written as:

H = T +
∑

I

[

V loc
I (r) + V nl

I

]

+ VH(r) + VXC(r), (4.1)

where I is an atom index, T is the kinetic energy operator, VH(r) and VXC(r)

are respectively the Hartree and exchange-correlation potentials; V loc
I and

V nl
I are the local and non-local (Kleinman-Bylander) parts of the atomic

pseudopotentials of atom I.

In order to eliminate the long range part of V loc
I (r), which hamper unfea-

sible any calculation of periodic systems, the local potential is screened by an

atomic electron density ρatom
I (r) centered on the same site, constructed with

appropriate valence atomic charges. The sum of the local potential V loc
I (r)

and the Hartree and XC potentials arising from this atomic electron density,

form the “neutral-atom” potential V na
I . Notice that, since the atomic basis

orbitals vanish beyond rc, the screened neutral-atom potentials V na
I are also

zero beyond this radius.

Let now δρ(r) be the difference between the self-consistent electron den-

sity ρ(r) and the sum of the atomic densities ρatom
I (r). δρ(r) represents the

change in electron density due to bonding and the charge transfer between

the atoms. The Kohn-Sham hamiltonian can be rewritten as:

H = T +
∑

I

V nl
I +

∑

I

V na
I + δVH(r) + VXC(r). (4.2)

The matrix elements of the first two terms involve only two-center integrals

that can be precalculated at the beginning as a function of the nuclear sep-

aration between any two atoms.
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The matrix elements of the three remaining terms are easily evaluated

on a fine real space grid; this is the same grid needed for representing the

charge density in the plane wave methods. Once the density is available

at the grid points, VXC is evaluated directly and δVH is evaluated by fast

Fourier transform. The hamiltonian (whose matrix size is the number of basis

functions) is diagonalized by standard linear algebra methods or by sparse-

matrix techniques and a new δρ(r) is obtained; the δρ(r) is then iterated to

self-consistency.

4.2 Peierls’ phase

Consider a wavefunction ψR(r) for a non-degenerate level of an atom located

at position R. Translation in a field is accompanied by a phase factor [49]:

ψR(r) = ψ0(r − R) exp
[

ie

c
Φ(R → r)

]

, (4.3)

where ψ0(r − R) is the atomic wavefunction centered in R; and Φ(R → r)

is the integral of the vector potential along the straight line connecting R to

r. This expression is valid in the Landau or symmetric gauge, in which A is

a linear function of r.

For a very localized state the magnetic phase factor can be included in a

tight-binding or LCAO form:

Ψ(r) =
∑

k

ck exp
[

ie

c
Φ(Rk → r)

]

φk(r − Rk), (4.4)

where k is the orbital index, Rk is the center of the k-th orbital, and Φ(Rk →
r) is the phase associated with the center Rk.

The phase factor is constructed in such a way to cancel the vector poten-

tial term in the hamiltonian; in fact, the action of the hamiltonian on a basis

function is:

〈r|H |k〉 =

[

1

2m

(

p − e

c
A(r)

)2

+ V

]

exp
[

ie

c
Φ(Rk → r)

]

φk(r − Rk) =

= exp
[

ie

c
Φ(Rk → r)

]
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{

1

2m

[

p − e

c
(A(r) −∇Φ(Rk → r))

]2

+ V

}

φk(r − Rk) =

= exp
[

ie

c
Φ(Rk → r)

]

[

p2

2m
+ V

]

φk(r − Rk), (4.5)

and then, under the assumption that the magnetic field is slowly varying re-

spect to atomic distances, the matrix element of the hamiltonian, is obtained

with the following Peierls’ approximation:

Φ(Rk → r) − Φ(Rk′ → r) ' Φ(Rk → Rk′), (4.6)

where the integral of the vector potential is on the straight line from Rk to

R′
k. Thus the hopping matrix elements are renormalized by the so-called

Peierls’ factor:

Hkk′ → Hkk′ exp
[

ie

c
Φ(Rk → Rk′)

]

, (4.7)

Skk′ → Skk′ exp
[

ie

c
Φ(Rk → Rk′)

]

. (4.8)

This Peierls phase approximation is valid for slowly varying magnetic field

relative to atomic distances. It should only become equivalent to the exact

London shifted basis [13] in the limit of infinitely localized basis functions,

and is thus affected by an error proportional to the amount of delocalization.

Notice that the Peierls approximation, when used with only nearest neigh-

bours interactions, yields always vanishing magnetic susceptibility except

when there are closed loops, like in benzene or nanotubes; next-nearest neigh-

bours interactions are equivalent to closed loops. The reason for vanishing

magnetic susceptibility is that all the phase factors compensate and the spec-

trum of the hamiltonian is left unchanged by the magnetic field and:

χij =
∂2H

∂Bi∂Bj
= 0. (4.9)

The Berry phase instead does not vanish, as the Peierls phase factors are still

present in the wavefunction 4.4.



CHAPTER 4. LOCALIZED BASIS SET CALCULATIONS 40

4.3 Technical details of the calculations

The Periels phase formalism is a non perturbative technique and there is

no need to perform a linear response calculation, but only standard matrix

diagonalizations. From the coefficients of the expansion of the wavefunctions

on the localized basis set, the perturbation dependent wavefunction 4.4 is

set up. We used the symmetric gauge (A = (1/2)B × r) with origin in the

center of mass of the molecule.

In order to calculate the Berry phase, we followed a procedure similar to

that for plane waves: the practical computation of the Berry phase consists

in a sequence of calculations for many rotated configuration of the molecule.

The angle increment was 6◦ (π/30). In calculating the discrete Berry phase

(eq. 2.35) and the overlap matrix Sij between occupied states (see eq. 2.36,

not to be confused with the overlap matrix Skk′ between basis functions),

we applied again the Peierls approximation 4.6 to all the matrix elements

between basis functions centered on different atoms.

Even if molecules are isolated systems, they were placed in the same

periodically repeated cubic cell as for the plane wave case. We used the

same norm-conserving pseudo-potentials and the same LDA functional as in

the previous calculations based on plane waves; as before, the charge density

was expanded up to a kinetic energy of 320 Ry.

We used three sets of basis functions:

• single-ξ (SZ): it is the minimal basis, containing one function for each

occupied angular momentum channel (i.e. 1s for H, 2s 2p for C, ...);

• double-ξ (DZ): it contains two functions for angular momentum channel

(i.e. 1s 2s for H, 2s 2p 3s 3p for C, ...);

• double-ξ plus polarization (DZP): in addition to the DZ basis set, it

contains an extra basis function for each angular momentum up to l = 2

(i.e. 1s 2s + 3s 2p 3d for H, 2s 2p 3s 3p + 4s 4p 3d for C, ...).
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The confinement radius is chosen automatically by the program in order to

have a kinetic energy shift of 15 mRy on each orbital.

4.4 Results for rotational g-factor of molecules

We repeated calculations for all molecules considered earlier, and obtained

the rotational g-factors summarized in table 4.1. Though clearly less accu-

rate, the agreement with experiment and with the plane wave calculations is

still quite good. Interestingly, the simplest minimal basis set SZ calculations,

including just one function per angular momentum channel, gives the best

results.

In particular, in CF4 where the g-factor is marginally negative, the bigger

DZP calculation fails to reproduce the overscreening but the SZ gets it. When

using larger basis sets, the excited states are more diffuse and the Peierls

approximation is evidently worse.

Altogether the localized basis calculations require much less computa-

tional effort than the plane wave ones. In our case, the CPU time required

was 4 to 5 times smaller; and for bigger molecules the ratio is expected to

increase. Moreover the memory requirements are far smaller, since only the

charge density need to be stored in full detail in a real space mesh (in a plane

wave code, instead, also the wavefunctions have to be stored in a reciprocal

space mesh, dual to the real space mesh). This advantage should make that

method preferable for larger size problems where the plane wave approach

becomes impractical.
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screening g-factor basis set

H+
2 rotation:

−5.43% 0.9457 PW

−5.89% 0.9411 SZ

−8.85% 0.9115 DZ

−6.41% 0.9359 DZP

H2 rotation:

−12.13% 0.8787 Expt. [2]

−12.45% 0.8755 PW

−12.35% 0.8765 SZ

−17.42% 0.8258 DZ

−13.06% 0.8694 DZP

C2H2 rotation:

−92.9% 0.0490 Expt. [3]

−94.2% 0.0405 PW

−88.8% 0.0782 SZ

−98.0% 0.0139 DZP

CF4 rotation:

−106.6% −0.0312 Expt. [3]

−109.4% −0.0445 PW

−103.2% −0.0151 SZ

−98.3% +0.0080 DZP

CH4 rotation:

−68.7% 0.3133 Expt. [1]

−79.6% 0.2047 PW

−78.1% 0.2192 SZ

C6H6 pseudorotation:

0.7596 SZ, ampl. 0.02 Å

0.7593 SZ, ampl. 0.04 Å

0.7595 SZ, ampl. 0.10 Å

0.7934 PW, ampl. 0.10 Å

Table 4.1: Localized basis set g-factors for various molecules: SZ, DZ and DZP

denote the basis set used for the LCAO expansion of the wavefunc-

tions.



Chapter 5

Quantum paraelectrics and

ferroelectrics

In the second part of this thesis we wish to apply our new method for cal-

culating the g-factor of pseudorotations in solids. Our chosen examples will

be ferroelectric perovskites, where the soft phonon mode is degenerate and

has the character of a pseudorotation, and must therefore give rise to a small

magnetic moment. As a consequence of that, it will be split by an external

magnetic field, and that can lead among other things to field-induced change

of dielectric constant. Evaluation of the magnitude of this change requires

precisely a calculation of the pseudorotational g-factor caused by magnetic

screening of the electrons, which is unknown. Because the splittings are ex-

pected to be small, the phenomenon could be detectable in systems where the

dielectric constant is very high, namely incipient ferroelectrics or quantum

paraelectrics.

In this chapter we shall give first of all a brief description of the phe-

nomenology of quantum paraelectrics and ferroelectrics, and we will focus our

attention on two perovskites: potassium tantalate (KTaO3) and strontium

titanate (SrTiO3). These crystal have very high static dielectric constants

(> 103) and are incipient ferroelectrics, or “quantum paraelectrics” [8, 50].

We recall that the transition of a classical ferroelectric to a quantum to

43
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paraelectric can be seen as a case of “rotational quantum melting” [51]. In

the ferroelectric, the pseudorotation consists of the crystal cell polarization

jumping between one preferred direction, or “valley”, to another, then to yet

another, and so on, until returning to the origin. In the paraelectric, the

pseudorotation is the soft ferroelectric T1u phonon mode. We will then need

to discuss the crystal dynamical matrix in a magnetic field.

5.1 The perovskite structure

The general chemical formula for a perovskite is ABO3. The ideal structure

is cubic perovskite, where the A and B cations are arranged on a simple

cubic lattice (as in the CsCl structure), and the O ions lie on the face centers

nearest the (typically transition metal) B cations. Thus the B cations are at

the center of BO6 octahedra, while the A cations lie in a larger 12-coordinated

site (fig. 5.1).

At high temperature, the ABO3 perovskites retain full cubic symmetry.

However, various structural phase transitions take place as the temperature

is reduced. These may involve rotations and distortions of the BO6 octa-

hedra, as well as displacements of the cations from their ideal sites. The

interplay of these instabilities accounts for the rich variety of ferroelectric

and antiferroelectric behaviors. For examples, BaTiO3 and KNbO3 undergo

phase transitions from the cubic paraelectric phase, to a succession of tetrag-

onal, orthorhombic, and finally rhombohedral ferroelectric phases. In con-

trast, PbTiO3 displays only a single transition from the cubic paraelectric

phase to a tetragonal ferroelectric phase. In NaNbO3 and PbZrO3, non-

polar antiferrodistortive (AFD) or antiferroelectric (AFE) transitions take

place, associated with different types of tilts of the oxygen octahedra.

The qualitative reason for ferroelectricity in these perovskites arises gen-

erally from B–O bonds that, due to the large size of cation A, are slightly

too long in the undistorted phase. Upon distorting, one B–O bond becomes

more covalent, shorter, and stronger, and this overcompensates for the loss of
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Figure 5.1: The cubic perovskite structure. The BO6 octahedra are shown. The

A cations lie in a 12-coordinated site

strength of all the others. Electronically, the high-symmetry valence bands

are linearly split with a quadratic energy gain that could upper be viewed

as a pseudo Jahn-Teller effect [5]. When the size of the cation A is reduced,

ferroelectricity is instead gradually suppressed.

Incipient ferroelectrics (also called quantum paraelectrics [8, 50] because

of the crucial role of quantum fluctuations in that case), are systems poised

on the brink of ferroelectricity at zero temperature.

Ferroelectricity in perovskites is displacive, and generally associated with

a “soft-phonon” mode, whose frequency drops to zero upon cooling, vanishes

nominally at the ferroelectric transition, and hardens back again upon further

cooling [52]. In incipient ferroelectrics the soft mode is exceedingly low in the

range of 10–20 cm−1, and ferroelectricity can be easily induced by driving it

to zero with externals agents such as uniaxial expansion or doping.

The two perovskites under consideration in this work are strontium ti-

tanate (SrTiO3) and potassium tantalate (KTaO3). Both behave as incipient

ferroelectrics [8], in the sense that they have a large static dielectric response
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and as temperature is reduced, the static dielectric response closely obeys a

Curie-Weiss law of the form:

ε ∼ (T − Tc)
−1, (5.1)

but the divergence at the critical temperature Tc that would be expected from

this formula is not observed. Instead, the static, lattice-induced dielectric

susceptibility saturates at an enormous value (∼ 2 · 104 for SrTiO3) as T

approaches to zero (fig. 5.4).

Regarding structure, KTaO3 retain its cubic structure down to very low

temperature, while SrTiO3 undergoes a non-ferroelectric phase transition

from the cubic to a tetragonal antiferrodistorted (AFD) phase when temper-

ature drops below 105 K. This is due to a softening of the lowest frequency

triply degenerate zone-corner R-point vibrational mode. In this mode, the

Sr and Ti atoms remain fixed, while the oxygen octahedra rotate about one

of the cubic axes passing through the Ti atom, in opposite senses in all ad-

jacent cells, as shown in fig. 5.2. This rotation of the oxygen octahedra is

coupled to lattice strain and the crystal structure passes from cubic to tetrag-

onal, slightly compressing in the direction parallel to the rotation axis, and

slightly expanding in the plane perpendicular to that axis. The new crystal

cell thus contains two formula unit and it is shown in fig. 5.3; the new lattice

vectors are chosen along the [110], [1̄00] and [001] directions of the original

cubic structure.

5.2 Quantum paraelectrics

In this section, we will give a phenomenological review of the physics of

quantum paraelectrics [8, 50, 53, 54, 55].

At high enough temperature, the perovskites SrTiO3 and KTaO3 behave

just like ordinary classical paraelectrics, well described by the displacive limit,

with very well defined optically active TO modes, hard and narrow. These

modes soften down upon cooling, as expected in analogy with ordinary fer-

roelectrics like BaTiO3.
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Figure 5.2: Displacement pattern generating the AFD instability in the cubic

structure on SrTiO3. The oxygen octahedra rotate about one cubic

axis in opposite sense in all adjacent cells.

However, just above the extrapolated classical Curie temperature (37

K for SrTiO3, and 40 K for KTaO3), the picture changes. In SrTiO3 the

soft mode levels off and broadens. Müller and coworkers [50] observed a

dip at 37 K of the EPR spin hamiltonian of a Fe3+ impurity, indicating a

weak phase transition. Also experimental observations of hyper-Rayleigh

scattering indicates the presence of local disorder, or off-center displacement

of the ions, which locally breaks the inversion symmetry. Various anomalies

observed in the spectroscopy of soft and acoustic modes in SrTiO3 point to

the existence of large clusters, whose typical size equals the wavelength of the

reduced wavevector for which the anomalies are most pronounced (λ ∼ 20

lattice constants at very low T) 1).

In KTaO3, the NMR experiments clearly indicate a dynamical off-center

displacement of the Ta ions which sets up rather abruptly below 40 K [57].

In the microwave region, the slow Debye relaxations typical of the order-

disorder regime appear in KTaO3, their typical frequency τ−1 decreasing with

1for a review, see [56]
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Figure 5.3: Sketch of the structure of tetragonal AFD phase of SrTiO3. View is

along the tetragonal axis. Only the Ti–O2 plane is shown. The rota-

tion of the oxygen octahedra has been enhanced for sake of clarity.

The dashed lines indicate the new tetragonal cell.
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Figure 5.4: Dielectric constant as a function of temperature for three samples of

SrTiO3 [8].

temperature. Unlike the classical systems, however, τ doesn’t diverge with

decreasing temperature, but saturates to a very long relaxation time (τ−1 ∼
500 MHz). Because of this lack of divergence of τ , long-range ferroelectric

order is never reached, and the system remains paraelectric even at the lowest

temperatures. The failure to order ferro electrically accompanied by these

slow dielectric fluctuations has been attributed to quantum zero-point motion

of the ions [8].

The reason why zero point motion and quantum fluctuations are so im-

portant in SrTiO3 and KTaO3 is not because the ions are particularly light.

Rather, the lattice spacing is so tight, as compared e.g. to BaTiO3, to leave

very little room for the Ti or Ta ions to move off-center and form a pref-

erential strong covalent bond with one of the surrounding oxygen atoms.

As the lattice is compressed, the classical ferroelectric off-center equilibrium
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displacement gets smaller and smaller and the system approaches the clas-

sical displacive limit, characterized by a vanishing Curie temperature and a

vanishing zero temperature distortion magnitude. The extrapolated classical

off-center Ti displacement is only ∼ 0.03 Å at low temperature in SrTiO3,

against ∼ 0.1 Å in BaTiO3. As the equilibrium classical displacements gets

smaller and smaller, the influence of zero-point quantum mechanical motion

increases, because the off-center valleys get shallower, and the barrier separat-

ing the different valleys decreases. The limit where this barrier drops to zero

is entirely dominated by quantum effects, with quantum fluctuations acting

to suppress ferroelectricity well before its classical disappearance [53, 54, 51].

The quantum fluctuations can be easily removed, the system reverting

into a regular ordered ferroelectric, by applying either pressure or impurity

doping, as in the case of KNbxTa1−xO3 [58].

Other remarkable systems where the suppression of ferroelectricity is

caused by quantum fluctuations do exist: one of them is potassium dihydro-

gen phosphate (KDP), whose chemical formula is KH2PO4 [59, 55], under

pressure.. The paraelectric structure of KDP is a body-centered tetrago-

nal arrangement of K2P(OH)4 distorted octahedral units. The −OH groups

of neighboring units are linked together by hydrogen bonds. In the high

temperature paraelectric phase the hydrogens form a covalent bond plus an

hydrogen bonds between two oxygen atoms. Under pressure, the hydrogens

move to a bond-center position, pulling the two bridge oxygens together, the

whole lattice volume shrinking by a few percent, suppressing ferroelectricity.

5.3 Rotational quantum melting in KTaO3 and

SrTiO3

In the displacive model of classical ferroelectrics, the B atom goes off-center

driven by the formation of a strong covalent bond with one of the equivalent

surrounding oxygens, and an electric dipole appears in the B–O direction.

When the off-center displacement becomes small, the central atom can tun-
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nel between the six (or four, depending on the lattice symmetry) equivalent

potential energy valleys. As these quantum fluctuations, which are propor-

tional to the intra-cell inter-valley tunnel splitting, become stronger than the

ferroelectric inter-cell interaction, then a quantum paraelectric state can be

stabilized even at zero temperature: quantum mechanical rotation of the B

ion around the center being the driving force.

Perovskite quantum paraelectrics are in this sense a case of “rotational

quantum melting”; unlike classical melting, there is deep order in the quan-

tum melted ground state. Here we will review some concepts out forward by

Tosatti and Martonák [51].

Each B–O dipole bond, once formed by lowering temperature, can take

a multiplicity of orientations inside the oxygen cage, and therefore may be

seen as a discrete rotor. The cubic field of the crystalline cage leaves angular

momentum of the lowest lying states, L = 0 for the ground state, and L = 1

for the first excited state (call their energy separation ∆) unquenched. If

a large ferroelectric coupling J between different cells is present, hybridiza-

tion between different L states of neighboring cells becomes dominant. In

the ensuing ferroelectric ordered state, rotational symmetry is broken and

individual angular momentums are quenched.

For sufficiently small J � ∆, however, it becomes more convenient to

disrupt ferroelectric order, and to recover rotational invariance as in the

J → 0 limit. In this limit the ground state is just a product of L = 0 states

in each cell, it is non degenerate, and has a finite excitation gap ∆. For

finite but small J , the gap will decrease, but symmetry will not change, at

zero temperature, until a critical value (J/∆)c, where the gap closes, and

ferroelectricity sets in. Conversely, starting from the ferroelectric regime and

decreasing J , there is rotational quantum melting at T = 0 to a quantum

paraelectric when (J/∆)c is reached.



CHAPTER 5. QUANTUM PARAEL. AND FERROEL. 52

5.4 Soft modes as quantum rotors

Within the soft mode theory of phase transitions, the structural phase tran-

sition takes place when the lowest frequency vibrational mode goes unstable,

and thus the system breaks its symmetry and distorts along the direction of

the soft mode. The undistorted configuration is no more a minimum in the

potential energy surface, and due to the cubic crystal field generated by the

neighboring oxygens, the actual potential energy surface shows that there

are potential energy valleys and mountains, the former situated off-center, in

the direction of the six B–O bonds. When the central atom sits off-center,

an electric dipole arises, in the direction of the six B–O bonds [52].

The 3-fold degenerate soft mode in cubic perovskites, correspond to the

three orthogonal directions along which the metal atom goes off-center; more-

over, the 3-fold T1u mode has the same group symmetry properties of a L = 1

three-dimensional rigid rotator. This analogy between soft-modes and quan-

tum rotors, will be emphasized when evaluating the effect of an external

magnetic field on the T1u soft-mode in perovskites, and the dependence of

the static dielectric constant upon the applied magnetic field.
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Figure 5.5: Temperature dependent phonon spectrum of KTaO3, measured by

neutron diffraction. TO = transverse optic phonon (soft mode); TA

= transverse acoustic phonon.



Chapter 6

Pseudorotations in solids:

ferroelectric perovskites

In this chapter we will show the results of Berry phase calculations of the

pseudorotational magnetic g-factor for the soft mode of KTaO3 and SrTiO3

in their paraelectric or incipient ferroelectrics state. In order to apply the

integral formulation of magnetic screening, it is necessary to determine the

trajectory followed by the pseudorotating nuclei. The actual trajectory is

well approximated by the soft phonon eigenvectors on the paraelectric side,

and by adiabatic potential energy “valley” on the ferroelectric side of the

phase diagram. These two trajectories are in any case very similar in shape;

the size is however microscopic in the paraelectric state, but macroscopic in

the ferroelectric state.

Experimentally, KTaO3 can be made ferroelectric by applying a uniaxial

stress; the lattice shrinking in one direction is accompanied by the lattice ex-

pansion in the two orthogonal direction, and ferroelectricity develops on the

plane perpendicular to the applied stress [60]. On the contrary, SrTiO3 at

low temperature undergoes a phase transition from cubic to a tetragonal an-

tiferrodistortive (AFD); theoretically, the low temperature tetragonal phase

is classically unstable [61] to two orthogonal ferroelectric modes (A + 2E).

In both cases, ferroelectric KTaO3 under uniaxial stress [001] and tetragonal

54
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AFD SrTiO3, the threefold degenerate soft mode splits into a twofold degen-

erate E mode and a nondegenerate A mode. The pseudorotation generated

by the E mode lies on the (001) plane. We used this twofold degenerate E

mode in our calculation of the adiabatic potential energy surface.

6.1 Dynamical matrix in a magnetic field

In order to evaluate the effect of an applied magnetic field on the soft mode

frequency and eigenvectors, the equations of motion for the bare ions must

take into account the Lorentz force term coming from the magnetic field. Let

the magnetic field be oriented in the z direction, and let uα(l) the displace-

ment of the atom l in direction α = x, y, z, with respect to the equilibrium

positions. In a simple two-body force approximation and disregarding out

first electrons, the equations of motion are:


















Mlü1(l) = −∑l′α′ Φ1α′(ll′)uα′(l′) + (ZlB/c)u̇2(l)

Mlü2(l) = −∑l′α′ Φ2α′(ll′)uα′(l′) − (ZlB/c)u̇1(l)

Mlü3(l) = −∑l′α′ Φ3α′(ll′)uα′(l′),

(6.1)

where:

Φαα′(ll′) =
∂2E

∂uα(l)∂u′α(l′)
(6.2)

is the force constants matrix. In principle, the external magnetic field affects

also the electronic structure of the system and the force constants will depend

themselves from the magnetic field. But for small magnetic fields (< 30

Tesla), that can be reached in laboratory, the magnetic field can be treated as

a small perturbation to the crystal potential, and the charge density remains

unchanged, to first order in the field. As a consequence of this, the Hellman-

Feynman forces do not depend from the magnetic field, at least to first order.

After making the substitution u→ u exp[i(ωt+ k · x)], and setting k = 0

as we are interested in the zone center phonons, we get:


















ω2e1(l) =
∑

l′α′ D1α′(ll′)eα′(l′) − iωZlB
Mlc

e2(l)

ω2e2(l) =
∑

l′α′ D2α′(ll′)eα′(l′) + iωZlB
Mlc

e1(l)

ω2e3(l) =
∑

l′α′ D3α′(ll′)eα′(l′),

(6.3)
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where:

Dαα′(ll′) =
Φαα′(ll′)√
MlMl′

, (6.4)

is the unperturbed dynamical matrix and

eα(l) =
√

Ml uα(l). (6.5)

In matrix form, the previous system of equations becomes:

ω2I e = D e+ iω(B/c)E e, (6.6)

where the matrix E has this simple form:

E =





































0 −Z1/M1 0

Z1/M1 0 0

0 0 0

0 −Z2/M2 0

Z2/M2 0 0

0 0 0
. . .





































. (6.7)

In order to obtain perturbatively the frequency change of the soft mode, we

take a linear combination of the threefold degenerate soft mode eigenvectors

(call them e(i), with i = 1, 2, 3, e(i)
α (l) 6= 0 only if α = i):

qn(l, α) =
3
∑

i=1

An,ie
(i)
α (l). (6.8)

In this new basis, the two matrices D and E become 3×3 matrices, given by:

Dm,n =
∑

i,j

A?
n,iAm,j

∑

lα l′α′

e(n)
α (l)Dαα′(ll′)e

(m)
α′ (l′) (6.9)

= ω2
0

∑

i

A?
n,iAm,i, (6.10)

where ω0 is the frequency of the soft mode in zero magnetic. The matrix E is

real antisymmetric and in our geometry only E1,2 and E2,1 are different from

zero:

E1,2 = −E2,1 = (6.11)

=
∑

i,j

A?
n,iAm,j

∑

l

Zl

Ml

e
(1)
1 (l)e

(2)
2 (l). (6.12)
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Eq. 6.6 can be rewritten as:

ω2 − ω2
0

ω
I q = i

B

c
E q, (6.13)

which is a matrix eigenvalue equation; the eigenvectors give the rows of the

Ai,j matrix. The result is simply (∆ω � ω0):

∆ω = 0, ±B

2c

∑

l

Zl

Ml
e
(1)
1 (l)e

(2)
2 (l), (6.14)

to linear order in B. Notice that in this equation, the eigenvectors e are

normalized to one. The result is in fact independent from the area of the

orbit, which is proportional to 1/ω, because the current generated by the

orbital motion is proportional to ω. Of the three original modes, the one

polarized parallel to the magnetic field is unaffected (q
3

= e3). The other

two modes (q
1

=
√

2/2(e1− ie2), q2
=

√
2/2(e1 + ie2)), transverse to the field,

are split by an amount proportional to the magnetic field. The splitting is:

∆ω = ±µNB
∑

l

Zl

ml
e(1)(l)e(2)(l) (6.15)

= 2.54 · 10−4cm−1gbare
B

Tesla
, (6.16)

where:

gbare =
∑

l

Zl

ml
e(1)(l)e(2)(l). (6.17)

The last equation allows to calculate the splitting of the soft-mode due to

the orbital motion of the bare nuclei; µN is again the nuclear magneton; ml

is the mass of the ion l in units of the proton mass and Zl is the valence

charge in units of the electron charge; gbare is a pure number. The quantity

µNgbare is then the bare nuclear orbital magnetic moment of the mode.

To first order in the magnetic field, the 3-fold degeneracy of the T1u mode

is removed in the same way the Zeeman term removes the degeneracy of the

L = 1 state of the quantum 3D rigid rotator, or of a p state of the hydrogen

atom (fig. 6.1). Notice that the linear splitting is valid only when the ∆ω is

much smaller than the soft mode frequency; when the soft mode frequency

goes to zero, the splitting is no more symmetric.
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Figure 6.1: Magnetic field-induced splitting of the soft mode. ∆ω is proportional

to the magnetic moment. The pattern of splitting is the same of the

Zeeman splitting on an L = 1 state.

Up to now we have considered the effect of the magnetic field on the bare

nuclear charges, ignoring the electrons. As seen in earlier chapters, the effect

of electrons within the Born-Oppenheimer approximation consist in adding

a vector potential-like term to the canonical momentum of each ions (Berry

connection). The Berry connection ~χ enters the dynamical matrix as an

additional Lorentz force-like term:

Zlu̇(l) × B

c
− u̇(l) · ~∇l~χ(l), (6.18)

~χ(l) = i 〈ψ| ~∇l |ψ〉 . (6.19)

Repeating the calculation taking into account this extra term, and equa-

tion 6.6 for the lattice dynamics becomes:

ω2I e = D e + iω(B/c)E e+ iωF e. (6.20)

By specializing again to the threefold degenerate T1u soft mode, the 3×3

matrix F is real antisymmetric:

Fnn = 0, Fnm = −Fmn (6.21)
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Fnm =
∑

l

1

2Ml
e(1)(l)e(2)(l)Ynm(l), (6.22)

where

Ynm =
∂χn

∂um
− ∂χm

∂un
= −2 Im

〈

∂ψ

∂un

∣

∣

∣

∣

∣

∂ψ

∂um

〉

(6.23)

is the so-called Berry curvature, which is a gauge invariant and in principle

physically observable [15]. The Berry curvature is the analog of the magnetic

field; in fact, the n = 1, m = 2 component is equal to the component of ∇× χ

parallel to the applied magnetic field. The main difference with respect to

the physical magnetic field, is that the Berry connection is not uniform in

space. The new splitting ∆ω of “L = ±1” is given by:

∆ω = ±1

2

∑

l

[

B Zl

Mlc
+

Y12(l)

2Ml

]

e(1)(l)e(2)(l), (6.24)

and is still linear in the external field B, since Ymn is proportional to A/c.

As pointed out by Resta [18], a computation of the Berry curvature could

be actually implemented, but it would require the evaluation of all the excited

states at any point in parameter space. Once again, it is wiser to resort to

an integral formulation, by computing the Berry phase along a closed orbit,

which equals the flux of the Berry curvature through the orbit. Then the

pseudorotational g-factor is simply related to the bare one, by the usual

relation:

g = (1 + σ)gbare, (6.25)

where σ is the magnetic screening as defined in earlier chapters. The mag-

netic screening is evaluated by integrating the vector potential and the ge-

ometric vector potential terms around a closed loop in configuration space.

The closed loop can be chosen as the classical trajectory of the nuclei on the

potential energy surface. Later we will show that the combination of two of

the degenerate T1u eigenvectors with a simple phase factor generates a tra-

jectory which is very close to the actual trajectory on the adiabatic potential

energy surface.
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6.2 KTaO3 and SrTiO3 cubic structure

Our task is now the calculation of gbare and of the magnetic screening σ for

incipient perovskite ferroelectrics, KTaO3 and SrTiO3. All the calculations

on KTaO3 and SrTiO3 were performed with the plane wave pseudopotential

method and in order to check the convergence needed for a correct representa-

tion of the wavefunctions, we performed a set of standard electronic structure

calculations on the perfect cubic perovskite structure and compared to both

experimental data and existing calculations in literature.

6.2.1 KTaO3

We used standard norm-conserving Martins-Troullier [62] pseudopotentials

for the three atomic species. They were generated in the same configuration

and with the same cutoff radii as found in literature. The oxygen pseu-

dopotential was generated according from Troullier and Martins [62], the p

channel taken as local. The potassium pseudopotential was generated in the

4s14p0 configuration with rs = 3.65a0, rp = 3.8a0. The s channel was taken

local and the non-linear core correction was added to the potential [63]. The

tantalum pseudopotential was generated in the 6s26p05d3 configuration with

rs = 2.68a0, rp = 3.44a0 and rd = 1.51a0. As before, the s channel was taken

as local [64].

We used a plane wave cutoff of 80 Ry, a Monkhorst-Pack (6,6,6) mesh [65]

for sampling the Brillouin zone, and the Perdew and Zunger parametri-

zation [23] of the LDA functional.

The LDA equilibrium lattice spacing was found to be 3.936 Å and the

bulk modulus 192 GPa, to be compared to the experimental values of 3.983

Å and 218 GPa. The underestimation of the lattice spacing is well known

for the LDA functional. We did not find in literature any other plane wave

calculation of the same properties, but two full-potential (FP) studies of

KTaO3, one by Postnikov and coworkers [66, 67, 68] who used a FP-LMTO

method and by D. J. Singh [69] who used a FP-LAPW method. These results
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Lattice spacing (Å) Bulk modulus (GPa) Notes

3.983 218 Experiment

3.936 192 This work

3.928 225 FP-LMTO [67]

3.960 211 FP-LAPW [69]

Table 6.1: KTaO3 lattice spacing and bulk modulus.

are summarized in table 6.1.

We also calculated the electronic band structure of cubic KTaO3 (fig. 6.2).

The nine valence bands are mainly derived from O 2p orbitals. These are

separated by an indirect (R-Γ) gap from the transition metal d derived con-

duction bands. However, from the projected density of states [69], there is

quite a large p − d hybridization, reflecting the partial covalent of the Ta–

O bond. As in typical LDA calculations for insulators, the bands gaps are

underestimated. The calculated energy gap is 2.58 eV, to be compared with

the experimental value of 3.8 eV.

As mentioned earlier, KTaO3 does not undergo phase transitions and

remains cubic down to low temperature. Experimentally, the zone center Γ15

softens by cooling, from 80 cm−1 at room temperature, to 24 cm−1 at 12

K [70] (see fig. 5.5).

Theoretically, the energetics of the ferroelectric instability is very sensi-

tive to the Brillouin zone sampling, reflecting the importance of an accurate

description of the metal-oxygen covalent bond, and particularly the sam-

pling of the k ' 0 region where the pseudo Jahn-Teller splitting occur. The

ferroelectric instability is also very sensitive to volume; when a hydrostatic

pressure is applied, the BO6 cage get smaller and there is less room for the

metal atom to move off-center thus destroying ferroelectricity. In fact, in

ferroelectrics like BaTiO3, the BaO6 cage is somehow “expanded”.

Not surprisingly therefore, the calculation of the frequency of the soft

mode in perovskites is very sensitive to the volume of the cell. In general a
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Figure 6.2: KTaO3 band structure in the cubic perovskite structure.
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Mode Exp. (12 K) This work FP-LMTO FP-LAPW

[70] [68] [69]

T1u 24 107 61i 80

T1u 196 215 205 172

T1u 546 602 504 528

T2u 279 288 330 264

Table 6.2: Calculated and experimental phonon frequencies in cm−1 for KTaO3

at the experimental lattice spacing.

calculation done at the theoretical equilibrium lattice spacing, which in LDA

tends to be smaller than the experimental one, predicts the soft mode to

be stable (i.e. positive ω2). The same calculation done at the experimental

lattice spacing, which is a bit larger, might instead predict a lattice instability

(i.e. negative ω2), and thus a ferroelectric state [71, 72, 61]. Our finding of

the absence of the ferroelectricity in KTaO3, in agreement with experiment,

is gratifying and expected, since LDA calculations generally agree best with

experiment when performed at the experimental lattice.

The calculated zero field, zero temperature T1u and T2u phonon frequen-

cies at the experimental lattice spacing are shown in table 6.2. The frequency

of the three T1u modes are higher with respect to the experimental values

and to FP calculations. But most important, the soft mode is predicted to

be stable even at the experimental lattice spacing, like in the calculation by

Singh and contrary to the findings of Postnikov and coworkers. These results

underline the extreme sensitivity of the soft mode frequency not just to vol-

ume, but to all details and approximations. The eigenvectors however appear

to be more stable: and the are what will give us a dependable g-factor.

6.2.2 SrTiO3

Strontium titanate was studied theoretically in detail by Vanderbilt and

coworkers [71, 61, 73]. In order to build on this well-documented case, we
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decided to take as reference precisely the calculations of Sai and Vander-

bilt [61], using the same technique and working in the same conditions. The

ultrasoft [74] pseudopotentials for the three atoms, were kindly provided by

Prof. Vanderbilt. Each pseudopotential contains two non-local projectors

per angular momentum channel. The Sr pseudopotential was generated in

the 4s24p65s2 configuration and includes the 4s, 4p semicore states; the Ti

pseudopotential was generated in the 3s23p64s23d1 configuration and includes

the 3s, 3p semicore states.

We used the same plane wave cutoff of 30 Ry for the wavefunctions and

270 Ry for the charge density, as Vanderbilt. By using the same Brillouin

zone sampling, the (6,6,6) Monkhorst-Pack mesh, we got of course identical

results for the lattice spacing and bulk modulus. The structure is found to be

stable at the LDA lattice spacing, while at the experimental lattice spacing

it is unstable against both the zone center soft ferroelectric mode and zone

border antiferrodistortive (AFD) mode.

Fig. 6.3 shows the band structure in the perfect cubic structure and in the

ferroelectric distorted structure (but not the AFD distorted structure). The

main difference between the two sets of bands are in the region around the Γ

point and are shown in of fig. 6.4. The ferroelectric splitting is larger for the

conduction band, and it extends along the Γ−R direction up to zone border.

The doubly degenerate valence band are split at Γ and, they cross along the

Γ − R at a wavevector δk−1 ' 4 lattice cells. This is a rough estimate of

the correlation length of ferroelectricity for this distortion, which means, the

typical size of clusters of rotors in SrTiO3.

Furthermore, the energy gain caused by the distortion is proportional to

the energy splitting times the volume in k-space where the pseudo Jahn-

Teller splitting appears. From fig. 6.4, the splitting is anisotropic and affects

mainly the Γ − R line and the region of k-space interested by the pseudo

Jahn-Teller is an ellipsoid elongated in the Γ − R direction. The volume in

the Brillouin zone could be taken roughly proportional to δk, which in turn
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is itself proportional to ∆E, the pseudo-JT splitting1.

1That would make the energy gain of order (∆E)2, which is the same power but the

opposite sign of the elastic cost of the distortion. An accurate calculation will require very

fine BZ sampling and the calculation of energy gain as a function of the distortion
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Figure 6.3: SrTiO3 band structure. Upper panel: perfect cubic structure. Lower

panel: ferroelectric-distorted structure (not AFD).
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Figure 6.4: Detail of SrTiO3 band structure, near Γ point. Left: cubic undis-

torted structure. Right: cubic ferroelectric-distorted structure. The

top of the valence bands and the bottom of conduction bands are

shown. The arrow mark δk, as discussed in the text.
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6.3 Ferroelectricity of KTaO3 under uniaxial

stress

Starting with the ideal, classically stable paraelectric structure of KTaO3,

ferroelectricity can be driven along directions of lattice expansion by external

strain [60]. We will do that theoretically in the following, with the aim of

extracting constant energy surfaces, soft mode frequencies and eigenvectors

of the zero temperature ferroelectric phase of KTaO3.

In order to apply a uniaxial stress in the [001] direction, we compressed the

lattice spacing in one direction, and by a series of total energy calculations,

we minimized the total energy as a function of the lattice spacing in the [100]

and [010].

Then we calculated the zone center phonons in the tetragonal structure.

The T1u mode in the cubic structure splits into a 2-fold degenerate E1 mode

and a non-degenerate A1 mode.

The A1 mode is polarized in the [001] direction and it is found to be

stable (i.e. ω2 > 0) in all cases. Moreover, the frequency of the A1 mode

is harder than that of the T1u mode, mirroring the fact that ferroelectricity

is suppressed by pressure, as the TaO6 cage shrinks in one direction. The

E1 mode is polarized in the perpendicular directions and it is found to be

unstable, except for the smallest strain. These results are summarized in

table 6.3.

The determination of the adiabatic trajectories of the nuclei on the po-

tential energy surface, in principle would require a series of structural opti-

mizations of all the internal coordinates; however, by using symmetry, the

number of internal coordinates can be reduced to less than the cartesian

coordinates of the system (3×5).

Moreover, if we combine the two E1 modes with an phase angle θ, as for

the pseudorotation of benzene, the amplitude A(θ) is the only quantity that

needs to be minimized. We notice that the configurations that minimize the

energy as a function of the amplitude (∂E/∂A(θ) = 0), provides a very good
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[001] Strain a (=b) (Å) c/a ω(E1) (cm−1) ω(A1) (cm−1)

1% 4.037 0.977 44 178

2% 4.063 0.960 136i 174

3% 4.077 0.947 196i 201

Table 6.3: Effect of a uniaxial stress on KTaO3. Strain is referred to the relative

compression of the c axis, relative to the experimental cubic lattice

spacing. ω(E) and ω(A) are the frequencies of the ferroelectric mode

perpendicular and parallel to the tetragonal axis.

starting point for the full structural optimization, as a function of the phase

angle θ.

As an example, fig. 6.5 shows the total energy as a function of the am-

plitude A(θ), for a uniaxial stress of 3%. Table 6.4, for instance, shows the

pattern of atomic displacement for θ = 0◦, in the minimum of E[A(θ)] and

after the full relaxation of atomic positions. The relaxation took only few

steps of structural minimization. This reflects the fact that the trajectory

generated by combining the two eigenmodes is very close to the adiabatic

trajectory. As an example, the two trajectories are compared in fig. 6.6 for

an oxygen atom in the TaO4 plane.

After having determined the atomic displacements for the three phase

angles 0, π/8, π/4, we assumed a simple rosette-like analytic form for the

trajectory of each atom:



















xl(θ) = Ax,l(θ) cos(θ)

yl(θ) = Ay,l(θ) sin(θ)

A(θ) = a + b cos(4θ) + c cos(8θ), θ ∈ [0, 2π),

(6.26)

and fitted the analytic expression on the calculated points.

The shape of the actual trajectory is shown in fig. 6.7 and in fig. 6.8.

The potassium, the tantalum and the oxygen atoms not belonging to the

TaO4 plane, follow a highly symmetric trajectory, elongated in the [110] di-

rection. Conversely, the two in-plane oxygen atoms follow a very anisotropic
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Figure 6.5: Energy as a function of the amplitude of the E1 mode, for three

phase angles θ. The results are for a uniaxial stress of 3%. Insets:

polarization of the ferroelectric distortion; only the TaO4 plane is

shown, and Ta is in the center.

trajectory, elongated in the direction of the Ta–O bond. During the pseu-

dorotation (fig. 6.8), the tantalum atom breaks one strong Ta–O bond (θ = 0)

and moves off-center, reaching the maximum elongation for θ = π/4. In this

configuration, also the two in-plane oxygens move to approach the tantalum

atom, forming two weak Ta–O bonds. Although these two bonds are slightly

weaker than the initial Ta–O bond, the system gains 18.50 meV/cell when

the Ta atom is displaced in the [110] direction. The energy gain in the [100]

direction is 10.06 meV/cell, which is approximately a factor 1/2. In fact the

energy per bond is 9.25 meV/cell for the [110] direction.

For the less strained system (2%), the results are qualitatively the same,

except that the system is less favorable to ferroelectricity. In fact the off-
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Figure 6.6: Comparison between the soft-mode trajectory and the adiabatic one

for the oxygen in the TaO4 plane (3% strain ferroelectric phase).

Atom Position E1 displacement Fully relaxed

K (0, 0, 0) 0.0041 0.0079

Ta (1/2, 1/2, 1/2) −0.0059 −0.0070

O (0, 1/2, 1/2) 0.0216 0.0206

O (1/2, 0, 1/2) 0.0102 0.0113

O (1/2, 1/2, 0) 0.0252 0.0280

Table 6.4: Displacement pattern in KTaO3, strained by 3%. E1 displacement is

the eigenvector of the E1 mode in [100] direction which minimizes total

energy (∆E = −8.30 meV/cell). The fully relaxed structure is 10.06

meV/cell lower in energy relative to the undistorted configuration.
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Figure 6.7: KTaO3: adiabatic trajectory for the potassium (corner) and oxygen

atoms (center), on the z = 0 plane (strain = 3%). All the atoms

rotate in the same sense. The amplitude of the trajectory has been

rescaled up by a factor 20.

center displacement of the atoms is smaller than for 3% strain, by a factor

roughly 1/3. The maximum elongation of the Ta atom is again in the [110]

direction, and the energy gain in this case is 0.54 meV/cell. The shape of the

trajectory of the atoms on the TaO4 is shown in fig. 6.9. Apart the smaller

size, the orbits of the two oxygen atoms are less anisotropic, and the aspect

ratio is ' 0.6, while for the more strained sample it was ' 0.5.

For the smallest strain (1%), the ferroelectric mode is now stable, and

one cannot apply the same procedure. Nonetheless, we can now calculate

the magnetic screening effect on the soft phonon. To this end, we let the

atoms follow the trajectory generated by combining the E1 eigenvectors,

with a constant amplitude. Practical calculation is best done with a finite

tantalum off-center displacement (we use here 0.04 Å). The resulting elliptical

trajectories have an area intermediate between those calculated at 3% and

2% strain, and as expected they are similarly elongated in the [100] and [010]

directions.
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Figure 6.8: KTaO3: adiabatic trajectory for the tantalum center and oxygen

atoms, on the z = 1/2 plane (strain = 3%). All the atoms rotate in

the same sense. The amplitude of the trajectory has been rescaled

up by a factor 20. The Ta–O bond and O–O bonds are shown in the

figure.
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Figure 6.9: KTaO3: adiabatic trajectory for the potassium, tantalum and oxygen

atoms, (strain = 2%). The amplitude of the trajectory has been

rescaled up by a factor 20. The Ta–O bond and O–O bonds are

shown in the right panel.

6.4 Ferroelectricity in tetragonal SrTiO3

At the experimental lattice spacing classical SrTiO3 is, within our LDA cal-

culations, unstable both to a zone center ferroelectric mode, and to a zone

border antiferrodistortive (AFD) mode [61]. The cubic to AFD tetragonal

SrTiO3 consists in rotation of TiO6 octahedra plus a small expansion of the

lattice in the direction perpendicular to the AFD plane, and a small com-

pression in the other two directions, relative to the cubic structure. The

tetragonal structure is again unstable to two zone center ferroelectric modes

A2u +E1u coming from the threefold degenerate T1u mode in the cubic sym-

metry.

We used the same lattice strain and internal coordinates as determined

accurately by Sai and Vanderbilt [61], relatively to the cubic structure at

the experimental lattice spacing. The TiO6 octahedra are rotated by 4.93◦

(5◦ in experiment [75]) and the the tetragonal distortion is c/a = 1.004.
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Figure 6.10: Adiabatic trajectory for the strontium, titanium and oxygen atoms,

in the AFD distorted tetragonal structure of SrTiO3. All the atoms

rotate in the same sense. The amplitude of the trajectory has been

rescaled up by a factor 20. The Ti–O bond and O–O bonds are

shown in the right panel.

The calculated phonon frequencies and eigenvectors agree well with those

reported by Sai and Vanderbilt [61]. The E1u and A2u modes are found to

be unstable by, respectively, ωE = 100i cm−1 and ωA = 112i cm−1, slightly

more unstable than in the calculation of Sai (ωE = 96i cm−1 and ωA = 96i

cm−1), the difference probably due to parameters controlling the convergence

of the calculations.

The calculated E1u eigenvectors generate a pseudorotation in the (001)

plane, perpendicular to the tetragonal axis. The adiabatic trajectories of the

ions are shown in fig. 6.10. The strontium atoms rotate around their center

on a small orbit, elongated in the [110] and [11̄0] directions. The oxygen

atoms move on large orbits, slightly elongated in the direction of titanium

atoms; compared to KTaO3, where the oxygens elongate much more toward

the tantalum atom, the oxygen orbits are more isotropic, or nearly circular.
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6.5 Magnetic screening in KTaO3 and SrTiO3

After having determined the classical trajectory of the ions, we can calculate

Berry’s phase in a magnetic field B, within the soft mode theory and using

the dynamical matrix in magnetic field. For KTaO3 it is sufficient following

the trajectories up to the phase angle of θ = π/2, since all subsequent con-

figurations can be obtained by simple rotations of the calculated arc. We

covered the arc in increments on 5◦. The tetragonal phase of SrTiO3 is lower

in symmetry, and we covered the full half loop from 0 to π, again in steps

of 5◦. The classical vector potential term is easily integrated analytically, by

knowing the area of the loops.

With this, we calculated the bare g-factor (the contribution of the bare

nuclei) using equation 6.15. The total g-factor can be finally obtained by the

magnetic screening, as the total orbital magnetic moment is given by:

µNg = µbare + µel = µNgbare(1 + σ). (6.27)

The results are summarized in table 6.5. Notice that the calculated σ is

negative and larger than one in modulus. This means that the electrons

overscreen the orbital magnetic moment of the nuclei.

The oxygen atoms are negatively charged and move on large orbits, while

the other ions (K and Ta; Sr and Ti) are positively charged but move on

smaller orbits. As all the atoms rotate in the same sense, a cancellation

of the magnetic moment must occur, but the contribution from the oxygen

atoms is evidently stronger, and it overcomes the magnetic moment of the

other ions. The net result is that the electronic current overscreen the nuclear

currents in these ferroelectrics.

In order to clarify that further, we estimated what the pseudorotational

g-factor would be if instead of the above, correct procedure, it was assumed

simply that ions displaced their dynamical effective charge instead of the

bare nuclear charges. Generally, in all perovskites the oxygen Born effective

charge is anisotropic and the derivation of eq. 6.15 should be modified in

order to take into account the full tensorial form of the Born charges. We
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state gbare (eq. 6.15) σ g-factor g?

KTaO3 (strain 3%) FE 0.2519 -1.316 -0.079 -0.176

KTaO3 (strain 2%) FE 0.2482 -1.709 -0.176 -0.169

KTaO3 (strain 1%) PE 0.2298 -1.667 -0.153 -0.163

SrTiO3 FE 0.2267 -2.381 -0.313 -0.221

Table 6.5: Magnetic screening and g-factor in KTaO3 and SrTiO3. The bare

g-factor accounts only for the magnetic moments of the bare nuclei.

The total g-factor is negative, and the magnetic screening shows that

electrons overscreen the magnetic orbital magnetic moment of nuclei.

g? is the g-factor calculated with eq. 6.15 and Born effective charges.

FE means ferroelectric; PE means paraelectric.

know in fact that ZSr = 2.56, ZT i = 7.26, ZO(//) = −5.73 and ZO(⊥) =

−2.15 from ref. [76] for SrTiO3, and we calculated ZK = 0.79, ZTa = 8.49,

ZO(//) = −6.17 and ZO(⊥) = −1.50 for KTaO3. To obtain as a rough

estimate, we used 1/3 of the trace of the Born charge tensors and the results

are denoted by g? in table 6.5. The resulting g-factors are actually close to

the calculated pseudorotational g-factors, especially for KTaO3.

In conclusion, the pseudorotational g-factor on incipient ferroelectric per-

ovskites is small and negative, and that is due to relatively large orbits of

the oxygen atoms overscreening the opposite contribution of the cations.



Chapter 7

Dielectric response of

ferroelectrics in a magnetic

field

We now would like to investigate consequences of our results in chapter 6.

One relevant question is: what will be the effect of magnetic field on the

dielectric function of solids? Experimental data of Lawless and coworkers [19]

show that the static dielectric constant of two incipient ferroelectric materials

(SrTiO3 and KTaO3) depends quadratically on the applied magnetic field,

increasing in the case of SrTiO3 and decreasing in the case of KTaO3 (fig 7.1).

Other interesting systems are some high-dielectric constant glasses of the

family of barium-oxide aluminum-oxide silica [9]. Those materials might be

considered as incipient ferroelectrics; in fact they possess very low frequency

modes and large correlation lengths on the scale of 20 Å. Remarkably, even

a small magnetic field influences the dielectric constant, as shown in fig. 7.2.

The dielectric response of an insulating solid can be expressed as:

ε(ω) = εopt(ω)
∏

i

ω2 − ω2
L,i

ω2 − ω2
T,i

, (7.1)

where εopt(ω) is the high-frequency optical dielectric function (equal to the

square refractive index n2 at lattice frequencies), ωL,i and ωT,i are the optical
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Figure 7.1: Magnetic field dependence of the dielectric constant in KTaO3 and

SrTiO3, from Lawless [19].

Figure 7.2: Influence of the magnetic field on the dielectric constant of some

glasses. Upper panel: time variation of the applied magnetic field.

Lower panel: relative change of the dielectric constant [9, 10, 11, 12].
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active longitudinal and transverse mode frequencies. At zero frequency, the

static version of eq. 7.1 is:

ε0 = ε∞
∏

i

ω2
L,i

ω2
T,i

. (7.2)

When a magnetic field is applied, several different effects can be envisaged:

(i) Valence and conduction bands turn into a multiplicity of Landau levels.

In the simplest model, the minimum direct gap suffers a slight increase

(fig. 7.3):

∆Egap ' 1

2
(h̄ωv

c + h̄ωc
c) , (7.3)

and this will cause a slight field-induced decrease of refractive index,

i.e. ε∞ = ε∞(B).

(ii) The Landau level quantization of bands will also provoke a change of

screening (electron-phonon coupling) that can cause a change of phonon

frequency, particularly of the soft mode ωT,0. This effect most likely

results in an increase of ωT,0, and therefore also reduces ε0(B).

(iii) The soft mode, being a rotor involving charges, couples to the magnetic

field through the orbital g-factor of chapter 6, leading to magnetic field-

induced shift and splitting of optically active modes, which changes the

dielectric response.

Of these effects, the first two (i) and (ii) appear to depress ε0, while

the latter (ii) can increase ε0, because one of the split soft modes can drop

in frequency. Only the second effect (ii), i.e. the soft mode shift due to

Landau band quantization via electron-phonon coupling appear to have been

considered earlier by Bersuker and collaborators [6, 5, 7].

In this thesis, we will concentrate on only an effect that can lead to an

enhancement of ε0, namely the direct field-rotor coupling (iii).
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ωc
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Conduction
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Valence
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(1/2)

(1/2)

val
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Figure 7.3: Magnetic field effect on the optical transitions. The original valence

and conduction bands (dashed lines) are substituted by Landau levels

(full lines). The offset of the first Landau level respect to the original

bands are half the cyclotron mass for the electrons and for the holes.
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7.1 Estimate of dielectric function change in

magnetic field

Ignoring all effects except (iii) above, the static dielectric function may be

written as:
ε0(B)

ε∞(B)
= const.×

∑

i

fi

ω2
i

, (7.4)

where the sum runs over the threefold degenerate soft mode, fi is the oscilla-

tor strength, ωi is the frequency and the constant is the contribution of order

1, of all other optically active modes of higher frequency.

Except perhaps very close to the ferroelectric-paraelectric transition, the

large value of ε0 found in displacive ferroelectrics is almost entirely deter-

mined by the low soft-mode frequency. As ω0 goes to zero, the dielectric

constant diverges.

The effect of magnetic field on the static dielectric constant is to split

the degenerate T1 mode, and the calculation must take into account the new

transitions energies and the change in the oscillator strengths, as a function

of the applied magnetic field.

At the beginning of chapter 6, we calculated the dynamical matrix in

magnetic field and obtained the soft mode splitting like an orbital Zeeman

interaction:

∆ω = 0,±µNgB. (7.5)

Within the classical theory, the oscillator strengths are given by the electric

dipoles, which are to lowest order unchanged by the magnetic field. Of the

three original T1u modes, the one polarized parallel to the magnetic field

is unaffected, whence, the zero frequency dielectric response parallel to the

magnetic field is independent from the magnetic field (fig 7.4):

ε//(B) = ε0|B=0 . (7.6)

Conversely, the static dielectric response in the direction perpendicular to
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the magnetic field, is:

ε0(B)

ε∞
∝ 1

2

[

f

(ω0 + ∆ω)2
+

f

(ω0 − ∆ω)2

]

(7.7)

' ε0(B = 0)

ε∞

[

1 + 3
(

∆ω

ω0

)2
]

. (7.8)

In deriving this result, we have assumed ∆ω � ω0 and we expanded in

powers of ∆ω/ω0. Notice that the terms linear in ∆ω cancel; if on the other

hand, the soft mode frequency becomes very small, of the order of ∆ω, this

expansion is no more valid, and the relative change of dielectric constant will

diverge as ω0 approaches zero.

The dielectric constant is expected always to increase as an effect of an

external magnetic field. Within linear theory, the increase is thus:

∆ε⊥
ε0

= 3
(

∆ω

ω0

)2

. (7.9)

7.2 Dielectric function change for KTaO3 and

SrTiO3

Now we come to the actual case of KTaO3 and SrTiO3. From the theory of

the dynamical matrix in a magnetic field we have calculated the total (ionic

+ electronic) the bare ionic orbital magnetic moment and the bare g-factor

(eq. 6.15). Then, we calculated the magnetic screening for orbital motion of

the ions, and the total pseudorotational g-factor.

Using the g-factor calculated at the end of the previous chapter, being

µNB = 2.54 · 10−4 cm−1(B/Tesla), and using equation 7.9:

∆ε⊥/ε0 = 3
g2(µNB)2

ω2
0

, (7.10)

KTaO3 : ∆ε⊥/ε0 ' +1.4 · 10−9 (B = 10 Tesla, ω0 = 21 cm−1), (7.11)

SrTiO3 : ∆ε⊥/ε0 ' +7.1 · 10−10 (B = 10 Tesla, ω0 = 16 cm−1). (7.12)
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0ω + ∆ω
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x−iy

x+iy

B=0 B>0

⊥ ⊥

//

Figure 7.4: Magnetic field-induced splitting of the soft mode. ∆ω is proportional

to the magnetic moment. The pattern of splitting is the same of the

Zeeman splitting on an L = 1 state. The transitions contributing

to the dielectric response are represented by vertical lines. ⊥ is the

dielectric response perpendicular to the magnetic field. // is the

parallel one.
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From the work of Lawless and coworkers (see fig. 7.1), the relative variation of

dielectric constant can be extracted (in their samples of KTaO3 and SrTiO3

the dielectric constants were 3772 and 6088 respectively):

KTaO3 : ∆ε0/ε0 ' −7.5 · 10−5 (B = 10 Tesla), (7.13)

SrTiO3 : ∆ε0/ε0 ' +1.8 · 10−5 (B = 10 Tesla). (7.14)

The calculated values are four order of magnitude less than the experimental

data, and always predict an increase of dielectric constant. We didn’t find in

literature any later experimental data to compare to, measured after the work

of Lawless [19]. This work came at the end of a sequel of experimental data,

often showing discrepancies and contrasts among them [77, 78, 79, 80, 81],

probably due to the difficulty of these low temperature measurements. We

must conclude that at least within our mean-field theory, the orbital Zeeman

coupling of the soft mode is unable to account for the reported magnetic field

dependence of the dielectric constant of KTaO3 and SrTiO3.



Chapter 8

Conclusions

In this work, we have considered the magnetic screening of the electrons on

the nuclei by the geometric vector potential and we have established a clear

link between the Berry phase and the total (nuclear + electronic) orbital

magnetic moment, in molecules and solids.

We have developed and tested two techniques for calculating the magnetic

screening both in isolated molecules and periodic solids. Both two techniques

(plane waves and localized basis set), are based on a Berry phase formula-

tion, giving the electronic contribution to the orbital magnetic moment. Like

the macroscopic polarization in insulators, which is not determined by the

sole knowledge of the charge density distribution, also in our case the orbital

magnetic moment in not determined by the charge density but rather by the

geometric phase acquired in the magnetic field by the electronic wavefunc-

tion after a closed loop in the configuration space spanned by the nuclear

coordinates.

The localized basis method we have developed, helps understanding that:

for instance, for the hydrogen molecule, the Berry’s phase is totally accounted

by the Peierls’ phase between the two 1s orbitals. Moreover, if one treats the

electron distribution in H2 as if it were a classical rotating charge distribution,

its orbital magnetic moment would overscreen enormously that of the bare

nuclei (gclassic = −0.79). The reason for that is that the electron charge
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density extends in far out regions of space, and the expectation value of r2 is

much larger than the square R2 of the proton-proton bond length. Both the

plane wave and the localized basis methods reproduce well the experimental

g-factor of some molecules and also compare well with existing quantum

chemical calculations, which, on the other hand, cannot easily extended to

periodic systems.

Next, we applied our technique to solids, as the codes are ideally suited for

treating periodic systems. We studied pseudorotations represented by soft

modes in perovskites. They should be accompanied by an orbital magnetic

moment, interacting with an external magnetic field via an orbital Zeeman

coupling. The main result of our calculations is overscreening of the nuclear

orbital magnetic moment in the perovskites. The dominating contribution is

due to oxygen atoms, which carry around electrons on large orbits, compared

to the other ions. This remarkable result is also supported by an estimate

done with Born effective charges (see tab. 6.5).

The calculated total orbital magnetic moments, together with the the-

ory of the dynamical matrix in a magnetic field, allows us to calculate the

orbital Zeeman effect of the magnetic field on the soft ferroelectric modes.

As discussed in the previous chapter, there are several effects that lead to

a magnetic field dependence of the dielectric constant. From the Lyddane-

Sachs-Teller relation:

ε0(B) = ε∞(B)
∏

i

ω2
L,i

ωT,i(B)2
, (8.1)

where ε∞ is the optical dielectric constant, ωL,i and ωT,i are the frequencies

of the longitudinal and transversal optic modes.

In this work we considered only the variation and splitting of ωT due

to the orbital Zeeman effect. The estimated increase of the static dielectric

constant ε0(B) is moreover much smaller than the experimental value (and

even of opposite sign in the case of KTaO3). The orbital Zeeman effect,

probably, is not the dominant effect. The influence of the magnetic field on

the electronic structure could be much more significative than the effect on
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the lattice. However, there is no simple effect that will explain the large

increase seen in SrTiO3 [19].

The relative change in dielectric constant (eq. 7.9) will increase as the soft-

mode frequency (ω0) approaches to zero. For this reason, we suggest that this

effect could be detectable when the system is driven toward ferroelectricity,

i.e. by applying pressure. Then, at the Curie temperature, the dielectric

should grow to be extremely large, an outright divergence suppressed by non-

homogeneity of the samples. Measurements taken close to Tc (i.e. obtained

by pressure) could detect precisely this effects.

In conclusion we have developed a technique for calculating the orbital

magnetic moments and the g-factors for rotations and pseudorotations; our

technique is based on the calculation of the electronic Berry phase in a mag-

netic field. Our calculated rotational g-factors compare very well with exist-

ing experimental data on simple molecules. The calculated pseudorotational

g-factors for two incipient ferroelectric perovskites, even if they cannot be

compared directly to experimental data, indicates that in general the oxy-

gen atoms dominates the pseudorotational g-factor and they overscreen the

nuclear orbital magnetic moments.



Appendix A

Estimate of dielectric function

change in magnetic field in the

spherical rotor model

In chapter 7, we have derived the magnetic field dependence of the dielectric

constant, from the classical theory of the dynamical matrix in magnetic field.

In earlier chapters, we have pointed out that the threefold degenerate T1u

mode correspond to the transition from the L = 0 state to the L = 1 state

of a quantum spherical rigid rotor. In this section, we will estimate the

magnetic field-induced dielectric function change, for the spherical quantum

rotor. The unperturbed hamiltonian is:

H =
L2

2I
, (A.1)

where I = MR2 is the moment of inertia associated with the rotor. The

energy separation between the L = 0 ground state and the L = 1 excited

state is ω0 = 1/I.

The magnetic field acts like a perturbation, comprising a paramagnetic

term and a diamagnetic term, both to be evaluated to first order:

∆H =
eB

2Mc
Lz +

e2B2

8Mc2
R2
(

x2 + y2
)

, (A.2)
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Figure A.1: Effect of the magnetic field on the energy levels and transitions in the

rigid rotor. l = 0 represents the ground state and l = 1 represents

the soft T1u ferroelectric mode. The paramagnetic term splits the

|1,±1〉 states linearly in the magnetic field. The diamagnetic term

always shifts the energy levels quadratically in the magnetic field,

and it couples the |l,m〉 state with the |l + 2k,m〉 excited states,

where k is a positive integer.

where we have taken B = (0, 0, B). Notice that the diamagnetic term depend

on the radius of the rotor and it can be rewritten as:

e2B2

8M2c2
I
(

x2 + y2
)

=
[

eB

2Mc

]2 x2 + y2

2ω0
. (A.3)

The L = 0 and L = 1 levels are perturbed by the magnetic field as shown in

fig. A.1. Notice that the paramagnetic term is diagonal in our representation,

and splits the L = 1 state. The diamagnetic term shifts up the |0, 0〉 and the

|1, 0〉 states and the opposite for the |1,±1〉 states.

The new transition energies are:

ω1 ' ω0 − µB − 17

15

µ2B2

ω0
, (A.4)
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ω2 ' ω0 −
2

15

µ2B2

ω0
, (A.5)

ω3 ' ω0 + µB − 17

15

µ2B2

ω0

, (A.6)

where µ = e/(2Mc) is the effective magneton of the rigid rotor, equal to the

magnetic orbital moment we calculated in chapter 6.

Now, for an electric field parallel to magnetic field, the only allowed tran-

sition is ω2 and the new oscillator strength changes to second order in the

magnetic field (the diamagnetic term couples the |l, m〉 state with the states

for which ∆l = 2, 4, 6, ..., ∆m = 0):

f2 '
∣

∣

∣

∣

∣

0.577 − 0.051
µ2B2

2ω2
0

∣

∣

∣

∣

∣

2

, (A.7)

leading to an overall increase of the dielectric constant, quadratic in the

magnetic field:
∆ε//

ε0
' 0.222

µ2B2

ω2
0

. (A.8)

Conversely, if the electric field is perpendicular to the magnetic field, the

only allowed transitions are ω1 and ω3:

f1,3 '
∣

∣

∣

∣

∣

0.408 + 0.018
µ2B2

2ω2
0

∣

∣

∣

∣

∣

2

; (A.9)

notice that in this case the two terms linear in the magnetic field (±µB)

cancel and the final result is now a much larger again increase of the dielectric

constant:
∆ε⊥
ε0

' 4.17
µ2B2

ω2
0

. (A.10)

Also this model predicts that the static dielectric constant would always

increase as a result of applying a magnetic field. In this case, in addition to

the Zeeman splitting, the diamagnetic term shifts the transitions to higher

frequencies. The dielectric response parallel to the magnetic field, is smaller

than the perpendicular response, and it is determined by the diamagnetic

interaction.
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The change of the oscillator strengths is due to the diamagnetic coupling

with excited states. The diamagnetic interaction contributes also the perpen-

dicular dielectric response, as can be seen comparing eq. 7.9 and eq. A.10; the

difference between the two formulas is the prefactor multiplying (∆ω/ω0)
2;

the diamagnetic interaction accounts for a factor 4.17/3 ' 1.4, with respect

to the derivation based on the dynamical matrix.

Furthermore, carrying out the same calculations considering a finite broad-

ening of the transitions, the change in dielectric constant is slightly affected

by a multiplicative factor 1 − (δω/ω0π), where δω is the line width.
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