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Introduction

Soon after the discovery of high Tc in cuprates, it was observed that some of their pe-

culiar non-Fermi liquid properties could be explained phenomenologically by assum-

ing a singular frequency (but not momentum) dependence of the electron self-energy,

which was named as marginal-Fermi liquid behavior[1]. This observation stimu-

lated a lot of activity in single-impurity models showing non-Fermi liquid behav-

ior [2–5], which are the simplest cases where a singular frequency dependence may

show up. Meanwhile non-Fermi liquid behavior started to be observed in uranium

and cerium heavy-fermion compounds [6], which also admitted simple explanations

through exotic single-impurity models [6] or phenomenological descriptions in terms

of magnetic susceptibilities with anomalous frequency- but conventional momentum-

dependence[7, 8].

All these theoretical attempts assumed, more or less implicitly, that a single-

impurity behavior had chance to survive even in a translationally invariant system.

This assumption is however not easy to justify theoretically. For instance, in the

case of heavy-fermion compounds, one rather expects that, once the density of im-

purities is increased, the effects of the single-impurity singular behavior should be

smoothened[9] and the non-Fermi liquid character lost. Even more difficult it is to

relate the single-impurity behavior to the physics of cuprates, where the strength of

the hybridization between the strongly correlated copper d-orbitals and the oxygen p-

orbitals is comparable to the charge transfer gap. For these reasons and especially in

the case of high Tc superconductors, the original interest towards anomalous single-

impurity models lessened rapidly. Actually a connection between lattice models and

impurity models was just near to come and what was lacking in the earlier approaches

was indeed fixed by dynamical mean field theory (DMFT)[10–12], which improves

ordinary Hartree-Fock theory by treating exactly temporal fluctuations while consid-

ering spatial fluctuations within mean-field. This theory provided a rigorous frame-
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work in which a lattice model is mapped onto an Anderson impurity model (AIM)

subject to a self-consistency condition which relates the impurity Green’s function to

the hybridization function with the conduction bath. The quasiparticle bandwidth of

the lattice model transforms into the Kondo temperature TK of the AIM. As in the

case of classical mean-field theory, DMFT is exact only for infinite lattice connec-

tivity, which is its main limitation. In finite dimensional systems, DMFT amounts

to neglect the spatial dependence of the electron self-energy, while keeping its fre-

quency dependence, which is presumably a safe approximation provided all relevant

correlations are local.

Now that this tool is at disposal, the natural next step would be to apply it to

those impurity models that are known to exhibit non-Fermi liquid behavior. The lat-

ter may emerge in impurity models for two distinct reasons. The first one is that,

by construction, the conduction electrons may not be able to perfectly Kondo-screen

all the impurity degrees of freedom. This is realized for instance in multi-channel

Kondo models. The second mechanism is the competition between the Kondo effect

and other couplings which may by their own screen the impurity degrees of free-

dom. In fact, the Kondo exchange takes advantage of letting the impurity tunnel

among all available electronic configurations. This quantum tunneling is hampered

by any term which splits the degeneracy and tends to trap the impurity into a given

state. Therefore either the Kondo exchange overwhelms the intra-impurity splitting

mechanism, or vice-versa, which leads respectively to a Kondo-screened phase or an

unscreened one. When none of the two effects prevails, a non trivial behavior may

appear. The two simplest models possessing either the first or the second ingredient

are the over-screened multi-channel Kondo model[13] and the two S = 1/2-impurity

Kondo model (2IKM)[14–17].

In the former an impurity-spin of magnitude S interacts antiferromagnetically

with k conduction bands of electrons. If k > 2S (over-screened model) the conduc-

tion electrons are not able to perfectly screen the impurity and the low-energy fixed

point has non-Fermi liquid properties.

In the latter model two S = 1/2 impurities interact antiferromagnetically with

each other (inter-impurity coupling) and with a conduction band of electrons (ordi-

nary Kondo coupling). In this case the Kondo interaction favors the screening of the

impurity spins by the conduction electrons, while the inter-impurity coupling tends

to force the impurities into a non-degenerate singlet, which gets decoupled from the
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conduction band. Under particular circumstances[18], the competition of these two

screening-mechanisms originates an unstable non-Fermi liquid fixed point.

Unfortunately there is no lattice model that can be mapped through DMFT into

any of these impurity models, because none of them can be interpreted as the low-

energy (large U ) limit of a single AIM. This is obvious in the two-impurity Kondo

model. For what it concerns the multi-channel Kondo, one has to notice that any

AIM has by construction a number of screening channels always such as to screen

all impurity degrees of freedom, hence it generally gives rise to a perfectly-screened

Kondo model rather than to a non-Fermi liquid over-screened one. This fact stresses

the importance of finding realistic AIMs with non-Fermi liquid behavior. Examples of

lattice models with purely local interactions suitably designed to exhibit non-Fermi

liquid phases in infinite dimensions were proposed in Ref. [19]. These models are

extensions of heavy-fermion lattice models which include besides strongly-correlated

orbitals hybridizing with conduction bands also several non-hybridizing screening

channels.

Here we are going to follow an alternative route which leads to simpler lattice

models. As we saw, among the possible mechanisms for non-Fermi liquid behavior

in AIMs, there is the competition between different screening processes. Since this

fixed point requires fine tuning of the model parameters, it is tempting to conclude

that it is of little physical relevance. In reality a similar competition is at the heart

of any strongly-correlated electron lattice model near a Mott transition. Here the

kinetic energy profits by the electrons hopping coherently through the whole lattice,

which implies that each single site visits democratically all available local electronic-

configurations, with the only constraint imposed by the average electron number. On

the contrary, the strong correlation tries to optimize local energetics by favoring a

well defined electronic-configuration, thus opposing against the hopping. This local

physics involves at least two different energy scales. The higher one is the so-called

Hubbard U , which tends to suppress on-site valence fluctuations, namely to fix the

local charge to a well defined value. The lower one, let us define it generically by J ,

governs the splitting among on-site electronic configurations at fixed charge. J may

be for instance controlled by the exchange-splitting (Hund’s rules), by the crystal

field, by local distortion modes or even by short-range inter-site correlations, as e.g.

the super-exchange.

Within DMFT such a lattice model is mapped into a suitable AIM. The quasi-
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particle bandwidth Wqp of the lattice translates into the Kondo temperature TK of

the AIM, while J becomes an alternative screening mechanism competing with the

Kondo screening. As the model is driven towards a Mott metal-insulator transition

(MIT), either by increasing repulsion at integer filling or by doping at large repul-

sion, it necessarily encounters a regime in which the coherent Wqp is of the same

order as J , which we expect is essentially unaffected by U as it just determines the

multiplet splitting at fixed charge. Translated into the AIM language, this implies

that, before the MIT, the effective AIM has to reach a regime in which TK ∼ J , just

where non-trivial behavior is expected to emerge. This is in short the route we are

going to follow to design lattice models which, within DMFT, might show anomalous

non-Fermi liquid behavior.

In order to realize the above mentioned competition between Kondo screening

and another built-in screening mechanism, the simple AIM is clearly inadequate and

generalizations are required. The most obvious one consists in considering multi-

orbital impurities. Actually the Anderson impurity model was initially introduced

to study 3d-impurities in non-magnetic metals, hence the orbital degeneracy was a

natural ingredient of the model. In multi-orbital impurities additional interactions are

indeed permitted, like Hund’s coupling, crystal-field splitting and Jahn-Teller effect.

In particular the latter represents an appealing possibility to favor a non-degenerate

singlet ground state and hence to compete against the Kondo effect. Preliminary

attempts along this direction were reported in Refs. [20, 21], where lattice models of

molecules with degenerate orbitals in the presence of a dynamical Jahn-Teller effect

were analyzed. If the Jahn-Teller effect is strong enough to reverse the sign of the

effective Hund’s coupling, the isolated molecule has a non-degenerate singlet ground

state for even number of electrons. In this case, a lattice of molecules coupled by an

inter-molecular hopping undergoes a transition from a metal into a non-magnetic Mott

insulator, a local version of a valence bond insulator, as the strength of the hopping

decreases with respect to the Coulomb repulsion. However the transition as described

by DMFT turns out to be not direct. Indeed it was found that a superconducting region

intrudes between the metal and the singlet Mott insulator[22]. It was later realized that

this superconducting phase, which was named strongly correlated superconductivity

(SCS), has anomalous properties, as for instance a huge superconducting gap[23].

Although it was speculated that this unexpected behavior might reflect anomalous

properties of the effective AIM onto which the lattice model maps by DMFT[22], a
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more detailed analysis was lacking.

In this thesis we try to fill this gap by uncovering the physical behavior of the

AIMs which correspond within DMFT to the lattice models analyzed in Refs. [22,

23], which are basically two- and three-orbital Hubbard models in the presence of an

exchange splitting which can give rise either to ordinary or inverted Hund’s rules, in

the latter case mimicking e.g. a dynamical Jahn-Teller effect. In order to study these

impurity models, we employ the Wilson numerical renormalization group (NRG)

technique supplemented by conformal field theory (CFT) as well as Fermi-liquid the-

ory arguments, all together providing us with a rather exhaustive characterization of

the models.

We discover that the phase diagrams of both the two-orbital and the three-orbital

models contain a non-Fermi liquid unstable fixed point (UFP) at intermediate cou-

pling, which, as expected, is generated by the competition between the Kondo effect

(whose associated energy scale is the Kondo temperature TK) and the inverted Hund’s

rule (acting at an energy scale J) . This fixed point is in general robust with respect

to particle-hole symmetry breaking, and this feature is important for the properties of

the corresponding lattices since it implies that the properties driven by the UFP are

robust to doping.

The two-orbital model can be seen as an on-site version of the 2IKM, having a

quite similar phase diagram and in particular sharing the same unstable non-Fermi

liquid fixed point, as we demonstrate by comparing the finite-size spectrum at the

UFP with that predicted by CFT for the 2IKM.

We also calculate by NRG the spectral function of the impurity in the full range of

parameters. In particular we study in detail the behavior of the spectral function across

the UFP. We notice that the model contains three relevant parameters, the impurity

Hubbard U , the Kondo temperature TK and the inverted Hund’s rule coupling J .

The former is the highest energy scale, below which the valence of the impurity is

practically frozen leaving aside only the degrees of freedom corresponding to the

electronic configurations at that fixed charge. The next energy corresponds to a scale,

which we denote by T+, below which these residual degrees of freedom start to be

quenched. This scale coincides with TK , if TK � J , and with J , if J � TK . Naïvely

we expect T+ ∼ Max(TK , J) or either T+ ∼ TK + J . However, around the fixed

point, not all the impurity degrees of freedom are involved in the screening processes

which take place below T+. Some of them have to wait until a lower energy scale,
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T−, is crossed. Roughly speaking these degrees of freedom correspond to the fact

that the model has two screening mechanisms at its disposal, TK and J . If TK > J ,

the impurity finally use the Kondo screening to get rid of these left-over degrees of

freedom, otherwise, if J > TK , it prefers the inverted Hund’s coupling. Right at

the UFP, the impurity is unable to choose among TK and J , and these degrees of

freedom stay unscreened down to zero temperature, leaving a residual entropy of

value 1/2 log 2. Therefore T− controls the deviation from the fixed point, which

occurs when J = J∗ ∼ TK , and, in particular,

T− ∼ (J − J∗)
2

J∗
.

All the above energy scales, U > T+ > T−, show up in the impurity density of

states (DOS). We find that the DOS, besides the Hubbard peaks, whose position is

controlled by U , is characterized by a low energy broad resonance of width T+. On

top of this resonance we find, in the Kondo screened side of the fixed point, a narrower

one of width T−, which vanishes as UFP is approached, leaving right at the UFP

only the broad resonance. On the unscreened side of the UFP, this narrow resonance

transforms into a narrow pseudo-gap, of width still controlled by T−. Through Fermi

liquid and scattering theory arguments we can also obtain a model low-energy spectral

function which fits perfectly all the numerical results and provides us with a numerical

estimate of both T+ and T−.

Then we set up a local Fermi liquid theory description that allows a better under-

standing of the relevant perturbations close to the UFP, in other words of the local

susceptibilities which are singular at the UFP. This is an important information to un-

derstand the behavior of the lattice model which corresponds by DMFT to that AIM.

Indeed, as we said, near the Mott transition the AIM onto which the lattice model

maps is necessarily driven towards the UFP, in other words towards a regime with

strongly enhanced, eventually singular, local susceptibilities. However, through the

DMFT self-consistency, these singularity may turn into true bulk instabilities, lead-

ing to spontaneous generation of a bulk order parameter in a whole region around

the single-impurity UFP. Since we do know all channels which are singular at the

single-impurity fixed point, we can predict all the symmetry broken phases which can

appear in the lattice model. Specifically, our two-orbital AIM at the UFP is unstable

in several particle-hole channels as well as in a particle-particle one. Hence we fore-

see that, unless band-structure singularities, like nesting, are present, the most likely
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instability is towards superconductivity. This supports and justifies the DMFT re-

sults of Refs. [22, 23], and it has been also recently confirmed also in the two-orbital

Hubbard model[24].

We have also checked the stability of the UFP with respect to various symmetry

breaking terms. In particular we find that the particle-hole symmetry breaking, which

is the analog of doping in the corresponding lattice model, does not spoil the UFP and

further extends the relevance of the results to lattice models away from half filling.

Finally we perform a similar analysis in the case of the three-orbital AIM corre-

sponding to the lattice model of Refs. [22, 23]. As before, the competition between

the Kondo effect and the dynamical Jahn-Teller effect, mimicked again by an inverted

Hund’s coupling, splits the phase diagram into two regions separated by an UFP with

non-Fermi liquid properties. In the specific case analyzed in Refs. [22, 23], which

corresponds to an average impurity occupancy of two electrons, we recover a very

similar picture as in the two-orbital AIM; namely two Fermi-liquid phases, one Kondo

screened and the other unscreened, separated by an UFP, still singular in the particle-

particle channel. Again this confirms and clarify the DMFT finding of [22, 23]. More

interesting is what we find for an average impurity occupancy of three electrons, cor-

responding to half-filling in the lattice model and to particle-hole symmetry in the

AIM. Here the UFP separates the Kondo screened Fermi-liquid phase from a whole

non-Fermi liquid stable phase. Unless the lattice model would break spontaneously

particle-hole symmetry, this result suggests that the half-filling case, not yet studied

by DMFT, might present much more interesting and anomalous behavior than what

found in Refs. [22, 23].

From a purely theoretical point of view, the three-orbital AIM turns out to rep-

resent also a quite novel situation in boundary conformal field theory, which is the

appropriate field theory framework to describe impurity models. Indeed the stable

and unstable fixed points which we find realize several possible boundary conditions

of three-state Potts models in two dimensions.

This thesis is organized as follows:

• In Chapter 1 we introduce the basic language of DMFT, stressing the relation

between lattice and impurity models obtained through the self-consistency im-

posed on the impurity. We analyze the general properties of the simplest impu-

rity model, the Anderson model, and then those of more other impurity models

that present interesting features like non-Fermi liquid behavior.
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• In Chapter 2 we present the method we used in this thesis to study impurity

problems. We introduce the Numerical Renormalization Group method in some

detail. We also briefly introduce the some concepts of Conformal Field Theory

that will be useful in particular to interpret the data of the three-orbital model.

• In Chapter 3 and 4 we present the results for the two-orbital and three-orbital

models respectively. These two Chapters contain the original contribution of

this thesis.



Chapter 1

Dynamical mean field theory and

impurity models

1.1 Dynamical mean field theory

Dynamical Mean Field Theory is the natural generalization to quantum many-body

problems of the classical Weiss mean field theory. The underlying idea is that it is pos-

sible to describe a lattice using a single site embedded in a self consistent medium.

As in traditional mean field theory, the DMFT approximation becomes exact in the

limit of infinite dimensions, but contrary to the classical case not all the fluctuations

are frozen. Indeed DMFT neglects the spatial fluctuations but treats exactly the tem-

poral ones (from which the name “dynamical”). The effective field of the classical

Weiss mean field theory, in that case simply a number, is replaced in DMFT by a

function of (imaginary) time because now it has to describe the temporal fluctuations

of the effective medium. This implies that the single site problem is still a non-trivial

quantum many-body problem, but allows the use of the machinery developed to solve

impurity problems in this different context.

The DMFT approach to a strongly correlated lattice problem with local interac-

tions consists in focusing the attention on one site of the lattice and formally inte-

grating out all the others obtaining an effective dynamics for the selected site. This

effective action is greatly simplified by the assumption of infinite coordination of the

lattice and can be interpreted as that of an AIM provided that a self-consistency con-

dition is satisfied.
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To understand the basic steps that lead to this construction it is useful to consider

the simple case of the Hubbard model

H = −
∑

〈ij〉,σ
tij

(

c†iσcjσ + h.c.
)

+ U
∑

i

ni↑ni↓, (1.1)

with action

S =

∫ β

0

dτ





∑

i

c†iσ (∂τ − µ) ciσ −
∑

〈ij〉,σ
tijc

†
iσcjσ + U

∑

i

ni↑ni↓



 (1.2)

in the absence of symmetry breaking, i.e. in the paramagnetic phase.

In order to give sensible results (finite kinetic energy per site) when the dimension-

ality is sent to infinity the hopping integral must be appropriately scaled t ∼ t∗/
√
z,

where t∗ is a constant value and z is the number of nearest neighbors[11].

We concentrate on site 0 and to obtain an effective action for that site we decom-

pose the original action into three pieces: a part containing the local terms involving

only site 0, a part involving all the other sites but site 0 and a part connecting site 0

with the rest of the system:

S
(

c†i , ci

)

= S0

(

c†0, c0

)

+ S(0)
(

c†i6=0, ci6=0

)

+ ∆S. (1.3)

The S(0)
(

c†i6=0, ci6=0

)

term describes the original system in which the site 0 is re-

moved, thus creating a “cavity”.

Now all the fields c†i6=0, ci6=0 are formally integrated out giving rise to an effective

action containing the generating functional of all the connected Green’s functions of

the system with the cavity:

Seff =S0 +
∞
∑

n=1

∑

i1...jn

(1.4)

∫

t0j1c
†
0(τj1) . . . t0jn

c†0(τjn
)G

(0)
i1...jn

(τi1 . . . τin , τj1 . . . τjn
) t0i1c0(τi1) . . . t0inc0(τin).

where spin labels are omitted here and in the following to simplify the notation.

This derivation is valid in any dimension, but in the limit d→ ∞ this effective ac-

tion simplifies because only the two-point Green’s functionG(0)
ij (τi, τj) survives while

higher-point Green’s functions are suppressed by inverse power of the dimensionality.

This allows to write the d = ∞ effective action as

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′c†0σ(τ)G−1
0 (τ − τ ′)c0σ(τ ′) + U

∫ β

0

dτn0↑n0↓ (1.5)



1.1 Dynamical mean field theory 11

where in Matsubara frequencies G−1
0 is given by

G−1
0 (iωn) = iωn + µ−

∑

ij

t0it0jG
(0)
ij (iωn). (1.6)

It can be shown that the term containing the cavity Green’s functions G(0)
ij is re-

lated to the local on-site component of the original lattice Green’s function, defined

as

Gloc(iωn) =
∑

k

G(k, iωn), (1.7)

by the relation

−
∑

ij

t0it0jG
(0)
ij (iωn) = G−1

loc(iωn) −R[Gloc(iωn)] (1.8)

where R[Gloc] is the reciprocal function of the Hilbert transform of the density of

states corresponding to the lattice considered. Given the non-interacting density of

states ρ(ε) the Hilbert transform is defined as

ρ̃(ζ) =

∫ ∞

−∞
dε
ρ(ε)

ζ − ε
(1.9)

and its reciprocal function as

R[ρ̃(ζ)] = ζ. (1.10)

The solution of the effective action (1.5) gives the interacting site-0 Green’s func-

tion G(iωn) defined by

G(τ − τ ′) = −〈Tc0(τ)c†0(τ ′)〉Seff
(1.11)

and the translational invariance of the system implies that

G(iωn) = Gloc(iωn). (1.12)

Equations (1.6), (1.8) and (1.12) provide a closed set of conditions that, once

solved, gives the fully interacting local lattice Green’s function.

Different lattices have different densities of states and the only place where these

differences enter is in the Hilbert transform. In particular, in the case of the Bethe

lattice the DMFT relations become very simple. The density of states of the Bethe

lattice in d = ∞ is semicircular

ρ(ε) =
1

2πt2

√
4t2 − ε2, |ε| < 2t (1.13)
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and the Hilbert transform and its inverse are

ρ̃(ζ) =
(

ζ − sgn(Imζ)
√

ζ2 − 4t2
)

/2t2 (1.14)

R[G] = t2G+ 1/G. (1.15)

Given these expressions, the relations (1.6) and (1.8) become

G−1
0 (iωn) = iωn + µ− t2G(iωn). (1.16)

Up to here this mapping is of poor practical use. The crucial intuition due to

George and Kotliar[12] is that this effective action can be interpreted as the action of

an Anderson impurity model. Indeed if we introduce auxiliary fields that hybridize

with site 0 providing a mechanism for the temporal fluctuation, it is possible to for-

mulate the problem in an Hamiltonian form:

HAIM =
∑

kσ

εka
†
kσakσ +

∑

kσ

V
(

a†
kσc0σ + c†0σakσ

)

− µ
∑

σ

n0σ + Un0↑n0↓ (1.17)

where the fields a represent a bath of electrons.

If we integrate out the a fields we obtain exactly Seff in which

G−1
0 (iωn) = iωn + µ−

∫ ∞

−∞
dε

∆(ε)

iωn − ε
(1.18)

where ∆(ε) = πV 2ρ(ε) is the hybridization function and ρ(ε) is the density of states

of the electron bath.

Hamiltonian (1.17) is precisely that of the Anderson impurity model that we will

present in the next Section. In terms of this model, in the case of the Bethe lattice, the

self-consistency condition (1.16) becomes

t2G(iωn) =

∫ ∞

−∞
dε

∆(ε)

iωn − ε
. (1.19)

In this way the DMFT self-consistency becomes a practical recipe: to solve a lat-

tice model in infinite dimension we have to solve an AIM in which the density of

states is that of the non-interacting lattice; from the solution we obtain the impurity

Green’s function G that must be related to the hybridization function of the electron

bath through (1.12) and (1.18). From this procedure we obtain a new hybridization

function that is plugged back into the AIM and the procedure restarts. When the con-

vergence is achieved the Green’s function obtained coincides with the local Green’s
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function of the original lattice model. To solve the AIM in principle we can employ

any technique able to obtain the impurity Green’s function.

One of the first applications of DMFT was the description of the Mott metal-

insulator transition in the half-filled Hubbard model. Indeed it is known that upon in-

creasing U the Hubbard model, which for U = 0 is a metal, becomes more and more

correlated and at a critical value of U becomes an insulator due to the strong corre-

lation between the electrons. Using DMFT it was proven that this happens with the

progressive shift of the electron spectral weight from the quasiparticle peak that lies

at the Fermi energy and represents the coherent component of conduction electrons,

to the so called Hubbard bands, representing the on-site charge excitations induced

by U . Close to the Mott metal-insulator transition the two Hubbard bands are well

separated from the quasiparticle peak that shrinks progressively disappearing exactly

at the transition.

This brief presentation of the DMFT equations justifies the interest in the AIM and

provides a rigorous connection between the physics of impurities and that of lattice

models in infinite dimension.

1.2 Anderson impurity model

The Anderson impurity model was originally introduced[25] to explain the experi-

mental fact that some impurities with unfilled 3d shell have well defined magnetic

moments when dissolved in simple metals, such as copper, whereas others are non-

magnetic.

In order to describe transition metal impurities in a non-magnetic host, rather

than starting from a realistic band structure calculation, Anderson proposed a model

able to show realistic dynamical behavior and still simple enough to allow explicit

calculations.

In this model the metal is represented as an electronic band with energy εk for

momentum k while the impurity is represented as an extra orbital with two spin orien-

tations σ =↑, ↓ and energy εd. The transition between this orbital and the conduction

band is allowed by a hybridization term with amplitude Vkd. Furthermore, Anderson

introduced an intra-atomic Coulomb repulsion between two electrons at the localized

level to reduce the probability of double occupation. This term results essential to

the formation of a magnetic moment on the localized orbital, since in order to be
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“magnetic” this orbital must be singly occupied. Collecting all terms the Anderson

Hamiltonian is:

HAIM =
∑

kσ

εkc
†
kσckσ +

∑

kσ

Vkd

(

c†
kσdσ + d†σckσ

)

+ εdnd + Und↑nd↓ (1.20)

where c†
kσ creates conduction electrons with momentum k and spin σ, d†σ creates

localized electrons with spin σ and ndσ = d†σdσ is the occupation number of the local-

ized level. This Hamiltonian is equivalent to (1.17), simply rewritten in the notation

that is usual in impurity models. The model in which εd = −U/2 is particle-hole

symmetric and is usually called the symmetric Anderson model.

The Anderson model in this formulation does not take into account the orbital de-

generacy of the d-level. As we will see, orbital degeneracy brings into play additional

interactions that can in turn generate interesting new phenomena.

If U = 0 the problem is exactly solvable. In this simple case, due to the presence

of the hybridization term in (1.20), electrons can remain on the localized level for a

finite time only, eventually hopping back to the conduction band. The width of this

resonance is

∆ = πV 2ρ0(εd) (1.21)

where V 2 denotes an appropriate average of |Vkd|2 and ρ0(εd) is the density of states

of the conduction electrons at the energy of the resonant level.

The impurity Green’s function is given by

G0,σ(ω + iε) =
1

ω − εd + i∆
(1.22)

where the subscript 0 indicates that the Coulomb interaction has not been taken into

account. The impurity density of states is a lorentzian of width ∆

ρσ(ω) ≡ − 1

π
lim

ε→0+
(ImG0,σ(ω + iε)) =

1

π

∆

(ω − εd)2 + ∆2
. (1.23)

The conduction electron Green’s function can be expressed through the free elec-

tron Green’s function and the scattering T -matrix as

Gkk′,σ(ω) = δkk′G(0)
k,σ(ω) + G(0)

k,σ(ω)Tkk′,σ(ω)G(0)
k′,σ(ω) (1.24)

where

G(0)
k,σ(ω + iε) =

1

ω − εk + iε
(1.25)
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and in the non-interacting case

Tkk′,σ(ω) = VkdG0,σ(ω)Vdk′. (1.26)

For U 6= 0, a simple Hartree-Fock solution of this model pointed out the dis-

tinction between a magnetic and a non-magnetic state. In the Hartree-Fock picture

this model has a transition between a phase in which 〈nd↑〉 = 〈nd↓〉, corresponding

to a non-magnetic impurity, to a phase in which 〈nd↑〉 6= 〈nd↓〉 and the impurity is

magnetic. The condition for the onset of a magnetic state can be written

Uρ
(0)
d (0) > 1 (1.27)

where ρ(0)
d (0) is the density of states at the Fermi level of the impurity when U = 0.

The presence of a sharp phase transition is an artifact of the Hartree-Fock approx-

imation, but this simple analysis already unveils the presence of two qualitatively

different regimes of the model.

Many other important observations followed the introduction of the AIM. It was

demonstrated by Schrieffer and Mattis[26] that there is no transition between a non-

magnetic and a magnetic state in the model as predicted by the Hartree-Fock solution

but rather a smooth cross-over. In the same work it was recognized that the diagram-

matic expansion of the self-energy in terms of U is formally identical to that of the

electron self-energy in an interacting Fermi liquid (except for the lack of momentum

conservation). Langreth[27] pointed out that the most important consequence of this

result was that the impurity self-energy retains the property that characterizes Fermi

liquids

ImΣ(ω ∼ 0) ∼ ω2. (1.28)

This property implies that the low energy physics can be described by Fermi liquid

theory and in particular by a single phase shift. Indeed, for U 6= 0, the impurity

Green’s function can be written as

Gσ(ω + iε) =
1

ω − εd − Σ(ω + iε) + i∆
; (1.29)

combining (1.26) with the interacting expression (1.29) and using the property (1.28)

we can obtain the T -matrix at zero energy

Tkk′,σ(ω = 0 + iε) = Vkd

{

1

ω − εd − ReΣ(ω) + i∆

}

ω=0+iε

Vdk′
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=
1

πρ0

{

1

ω − εd − ReΣ(ω) + i∆

}

ω=0+iε

(1.30)

and from this the phase shift at zero energy

δσ(ω = 0) = cot−1

(

εd + ReΣ(ω = 0)

∆

)

. (1.31)

Using the previous results Langreth has also given a general rigorous derivation

of the Friedel sum rule. Assuming that the scattering can be described in terms of

phase shifts, this sum rule expresses the total number N of extra electrons associated

with the impurity in terms of the phase shift as

N =
1

π

∑

σ

δσ(ω = 0) (1.32)

1.3 Kondo model

The fact that for large U the impurity tends to behave as a spin rather than as a non-

magnetic impurity suggests a connection with another impurity model, the s − d

exchange model, also known as Kondo model. In this model a conduction band of

electrons interacts with a single spin-1/2 impurity S via an exchange interaction. The

Hamiltonian is

HK =
∑

kα

εkc
†
kαckα − JK~s · ~S (1.33)

where ~s =
∑

kk′ c
†
kα

~σαβ

2
c
k′β represent the conduction electron spin density at the im-

purity site and ~S is the impurity spin. A rigorous proof of the connection between the

Anderson and the Kondo model was established by Schrieffer and Wolff[28]. They

demonstrated that, in the limit U � ∆ and when εd < 0 and εd + U > 0, applying

a canonical transformation to the Anderson Hamiltonian it is possible to obtain the

Kondo Hamiltonian plus a potential scattering term. The canonical transformation is

HK = eSHAIMe
−S (1.34)

with generator

S =

(

∑

kσ

Vkd

εk − εd − U
nd−σc

†
kσdσ +

∑

kσ

Vkd

εk − εd
(1 − nd−σ)c†

kσdσ

)

+ h.c. (1.35)



1.3 Kondo model 17

The couplings of the two models can be related via

JK = |Vkd|2
U

εd(εd + U)
< 0 (1.36)

implying that the coupling is always antiferromagnetic.

This mapping between Kondo and Anderson models demonstrates once more that

in the latter the impurity may behave as a magnetic moment in a suitable range of

parameters.

The same relation was also interesting in view of the discovery of a striking phe-

nomenon, the resistance minimum in metals with magnetic impurities: very small

amount of magnetic impurities (Fe, Mn, Cr) in a non-magnetic host (Cu, Ag, Au,

Al) causes a resistivity minimum at low temperature and eventually a saturation at

T = 0.

In 1964 Kondo[29] provided an explanation for this phenomenon calculating the

third order correction to the resistivity due to the presence of the impurity in the s−d

model. The result was that the resistivity is

R ∼ 2πρ0cJ
2
K

[

1 + 4JKρ0 ln

(

T

D

)]

(1.37)

where ρ0 is the density of states at the Fermi level of the conduction band, c is the

concentration of impurity and D is the bandwidth of conduction electrons. It is clear

from this formula that in the antiferromagnetic case JK < 0 when the temperature

decreases the second term in parenthesis grows, becoming of order 1 for a temperature

of the order of the so called Kondo temperature

TK ∼ D exp

(

1

2JKρ0

)

. (1.38)

This result is limited to high temperatures, since for temperatures of the order of TK

the perturbation expansion breaks down, but it already points to a qualitative change

in the physics of the Kondo model at low temperature. The emergence of logarithmic

terms in perturbation theory and the non-analytic expression of the Kondo tempera-

ture is the hallmark of an intrinsically non-perturbative problem.

The solution to this puzzle came with the contributions of Anderson and Wilson.

The first introduced the idea of scaling[30] of the Kondo coupling JK: the process

of lowering the temperature is equivalent to replacing the original problem with a
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new one with a rescaled coupling. The antiferromagnetic case can be interpreted in

terms of an effective coupling scaling to infinity at zero temperature. In this way the

impurity forms a singlet with conduction electrons and gives a unitary contribution

to the resistivity. Establishing a correspondence between the Kondo problem and the

statistical mechanics of appropriate Ising chains[31–34], Anderson was able to guess

correctly the low temperature behavior.

Once accepted that the low temperature physics is described by the strong cou-

pling JK → −∞ theory, the difficult task is to connect the high-temperature and the

low-temperature regimes. This was done by Wilson with the help of a numerical so-

lution of the Kondo problem[35]. Wilson provided the most striking proof that below

TK the Kondo impurity is screened by the conduction electrons and the ground state

is a total singlet.

The technique introduced by Wilson, the numerical renormalization group (NRG),

became a cornerstone and was later used to solve many other impurity models. In this

thesis we employed mainly the NRG to analyze our impurity models. A more detailed

description of this method is deferred to Chapter 2.

After the solution of the Kondo problem, NRG was applied to the AIM by Kr-

ishnamurthy et al.[36, 37]. The picture that emerged confirmed the validity of the

Schrieffer-Wolff transformation and can be summarized by the renormalization group

flow of the symmetric AIM between the different fixed points in the phase space.

At high temperature the impurity is essentially a free orbital; when the temperature

drops below U the system flows to the so called local moment fixed point, in which

the impurity is singly occupied and behaves as a spin-1/2 but is decoupled from the

conduction band resembling the Kondo model for weak antiferromagnetic coupling;

eventually when T � TK � U the fixed point is that in which the impurity is com-

pletely screened and leaves behind a phase shift δ = π/2 for the conduction electrons.

1.4 Non-Fermi liquid behavior

In this Section we briefly introduce those impurity models that present a non-Fermi

liquid fixed point in the phase diagram. The first two, the overscreened Kondo model

and the two-impurity Kondo model, will be deeply connected with the models we are

going to study in this thesis. For the sake of completeness we cite also the pseudogap

models, even if they will not be relevant for this thesis.
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1.4.1 Over-screened Kondo models

The ordinary Kondo model can be generalized to impurity spin higher than 1/2 and

to an arbitrary number of conduction band channels. The Hamiltonian of the model

can be written as

HK =
∑

kaα

εkc
†
kaαckaα − JK~sa · ~S (1.39)

where now the electron operator carries an additional index a = 1, . . . , k representing

the channel, ~sa =
∑

kk′ c
†
kaα

~σαβ

2
c
k′aβ represent the conduction electron channel-a spin

density at the impurity site and ~S is the impurity spin operator. The class of models

obtained in this way can be divided into three classes according to the value S of the

spin of the impurity and to the number k of conduction channels.

If k = 2S the model is called perfectly screened because the k conduction chan-

nels, each carrying a spin 1/2, are able to compensate the impurity spin exactly. In

the strong coupling JK → −∞ limit the conduction electrons in each channel are

antiferromagnetically oriented in a neighborhood of the impurity such as to screen

the impurity. Since the net spin of the conduction electrons is equal to the impurity

spin, the low temperature ground state of the model is a non degenerate singlet. This

model is the direct generalization of the ordinary Kondo model to higher spin and the

physics is practically the same.

If k < 2S the model is underscreened because now there are not enough con-

duction channels to screen completely the impurity. In this case the strong coupling

limit corresponds to the reduction of the impurity spin from S to S − k/2, due to the

screening of the impurity by the available channels, and the low temperature ground

state is degenerate and corresponds to a decoupled spin-S − k/2 impurity.

Eventually, if k > 2S the model is called overscreened. The peculiarity of this

model is that both the weak and the strong coupling fixed point are unstable and the

stable low energy fixed point is at intermediate coupling and has non-Fermi liquid

properties. That the strong coupling fixed point is unstable can be seen following a

naïve argument due to Nozières and Blandin[13]. Consider the simple case S = 1/2

k = 2 with the impurity spin polarized along the z direction. At strong coupling, if

the impurity spin is ↑, two conduction electrons (one per channel) are trapped at the

impurity site with spin polarization opposite to that of the impurity (↓). The impurity

in this regime can be seen as an effective spin-1/2 with down polarization. The impu-

rity site becomes inaccessible to the remaining conduction electrons except for virtual
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processes. Since the conduction electrons at the impurity site are already polarized

downward, the only virtual processes allowed by the Pauli principle are those involv-

ing the up conduction electrons. By second order perturbation theory the energy of

up electrons is this lowered while that of down electrons is unaffected. Considering

that the effective polarization of the impurity in the strong coupling regime is point-

ing downward the effective interaction corresponds to an antiferromagnetic Kondo

coupling between the effective impurity and conduction electrons. This is a relevant

perturbation and the fixed point is hence unstable.

It is very important to note that the low temperature non-Fermi liquid fixed point

is unstable with respect to anisotropies in the couplings. For instance in the above

mentioned S = 1/2 k = 2 case, as soon as one of the channels is coupled to the

impurity more strongly than the other, the low temperature stable fixed point is again

a Fermi liquid in which the strongly coupled channel screens the impurity while the

other is decoupled.

The first to suggest the existence of this non-Fermi liquid intermediate coupling

fixed point were Nozières and Blandin[13]. They were able to demonstrate its exis-

tence in the case of a large number of conduction channels calculating perturbatively

the β-function. Later the problem was solved also numerically by NRG[38] and ana-

lytically by Bethe-Ansatz[39–41] and conformal field theory[42–44].

1.4.2 Two impurity Kondo model

This model describes two spin-1/2 impurities embedded in a metal. The impurities

are sitting at two different positions in space r1 and r2 at a distance R one from the

other. The Hamiltonian of the model is

H =
∑

kσ

εkc
†
kσckσ + J

[

~s(r1) · ~S1 + ~s(r2) · ~S2

]

+K~S1 · ~S2 (1.40)

where ~S1,2 are the two impurity spins and ~s(r) is the conduction electron spin density

operator at position r. The coupling J is the usual Kondo coupling between the impu-

rities and the conduction electrons, while K is the Ruderman-Kittel-Kasuya-Yosida

(RKKY) coupling between the impurities. The RKKY coupling is added explicitly

here but is also generated by the Kondo term in second order perturbation theory.

When antiferromagnetic, the RKKY coupling tends to favor a singlet configuration

of the two impurities. This tendency is in contrast with the Kondo effect that tries
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to optimize the energy through the screening of the impurity spins by the conduction

electrons.

This model was initially analyzed by Jones and Varma using NRG for ferromag-

netic RKKY coupling[14]. Later an unstable fixed point with non-Fermi liquid prop-

erties was found in the antiferromagnetic RKKY region[15, 16] for −K ∼ TK . The

complete description of the UFP was found by Affleck and Ludwig[17] using con-

formal field theory techniques and by Sire, Varma and Krishnamurthy[45] and by

Gan[46] using bosonization.

The fixed point separates a phase in which the two impurities are Kondo-screened

by the conduction electrons from a phase in which the impurities form a singlet and

are decoupled from the conduction electrons. The UFP exists only if the system is

particle-hole symmetric and this can be seen from a simple argument[47]. Due to

particle-hole symmetry the phase shift of the conduction electrons can be only 0 or

π/2. In the Kondo screened phase the phase shift is π/2 as in the usual Kondo effect,

while in the unscreened phase the phase shift is 0 because the impurities are decoupled

from the conduction band. This implies that between these two phases there must be

a phase transition, either first or second order. In the latter case the corresponding

fixed point must be a point in which the phase shift is not defined, i.e. a non-Fermi

liquid fixed point.

1.4.3 Pseudogap models

This class of models is a generalization of the ordinary Kondo and Anderson model

to the case in which the conduction band density of states vanishes at the Fermi level

with a power-law behavior. The motivation for considering such a generalization

comes from the observation that the conduction electrons that contribute to the Kondo

screening of the impurity are those that lie close to the Fermi level. It is interesting to

ask what happens if we consider a conduction band with a density of states ρ(ε) ∼ εr

where r > 0 and the energy is measured with respect to the Fermi level. In this

case, as the temperature is lowered, the conduction band has less and less electrons at

disposal to screen the impurity. For instance in the case of the Kondo model defined in

(1.33), it turns out that if 0 < r < 1/2 the Kondo effect takes place only for a coupling

JK < Jc
K where |J c

K| ∼ r identifies an unstable non-Fermi liquid fixed point. Above

this value of the coupling the system flows to weak coupling. On the other hand, for
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r > 1/2 the strong coupling fixed point is never reachable and the system always flow

to weak coupling. Once again the presence of a symmetry breaking (here a potential

scattering that breaks particle-hole symmetry) changes the picture substantially.

The problem was originally studied by Withoff and Fradkin[48]. For a more ex-

haustive review see Ref. [49] and references therein.



Chapter 2

Numerical and analytical methods

The importance of impurity models is twofold: on one hand they are interesting as

theoretical models per se, showing different unusual behaviors; on the other hand they

are simpler than lattice models but they still retain many of their physical properties.

For these reasons a great variety of techniques has been developed in order to solve

these models. Each technique has its advantages and its drawback and very often it is

the combinations of different techniques that give the most sensible results.

A real breakthrough in this field is the solution of the Kondo model obtained by

Wilson in the early seventies[35]. To tackle the Kondo problem Wilson developed a

numerical technique, the NRG, able to link the high and low temperature regimes in

a non perturbative way. The NRG technique is the main numerical tool we employed

in this work and will be described in detail in the next Section.

After the Wilson solution other analytical techniques were developed that were

able to give an essentially exact solution of the Kondo problem: this is the case of

the Bethe Ansatz[50] which gives the analytically exact solution of the static and

thermodynamic properties of the model and of bosonization.

In the eighties the development of Conformal Filed Theory (CFT) brought a fresh

impulse in the physics community and consequences arrived also in the field of impu-

rity models. Cardy’s work on Boundary CFT started a development that culminated

with Affleck and Ludwig theory of the Kondo model. This theory is able to describe

the fixed points of an impurity model based on the assumption of its conformal in-

variance and symmetry properties. The major success achieved by this method was

the solution of the over-screened and of the two-impurity Kondo models. We used
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this technique as a counterpart of NRG, given its possibility to extract the finite size

properties of the model which can be directly compared with the spectrum obtained

numerically.

2.1 Numerical Renormalization Group

The basic idea behind the Wilson approach to the Kondo model is that there is no clear

separation of energy scales in the problem and this implies that an infinite number of

energy scales should be treated on equal footing. In order to overcome the problem,

Wilson introduced a rephrasing of the model in a way suitable for a renormalization

treatment: instead of treating the conduction electron band as a continuum of ener-

gies, he introduced an artificial logarithmic discretization of the band. This mapping

allows to treat each (logarithmic) energy scale as a perturbation of the preceding one

and to obtain a scaling recursion for the Hamiltonian of the model.

Let us start from the simpler case of the original Anderson model[36, 37] (gener-

alizations to more complicated models are straightforward)

H =
∑

kσ

εkc
†
kσckσ +

∑

kσ

Vkd√
Ω0

(

c†
kσdσ + d†σckσ

)

+ εdnd + Und↑nd↓. (2.1)

Moving to a continuum representation, assuming isotropic dispersion relation and

hybridization with the impurity and decomposing the conduction electron operators in

spherical harmonics centered at the impurity site, one obtain an equivalent description

in which only s-wave hybridize with the impurity:

H =
∑

σ

∑

lm

∫

dk εkc
†
klmσcklmσ

+

√

1

2π2

∑

σ

∫

dk k Vkd

(

c†k00σdσ + d†σck00σ

)

+εdnd + Und↑nd↓ (2.2)

where c†klmσ creates an electron with momentum k and spin σ in an l-wave configura-

tion with azimuthal numberm around the impurity. Since the impurity hybridize only

with ck00σ, the l 6= 0 and m 6= 0 components can be dropped and in the following the

orbital and azimuthal indexes will be omitted.
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The next step is to move to a representation in the energy space substituting c†kσ =
√

dεk

dk
c†εσ. To simplify the notation we can consider the case in which the energies of

the band, measured with respect to the chemical potential, range from −D to D, but

generalizations to non-symmetrical bands are again straightforward.

In this simplified case, after a trivial rescaling of variables, the Hamiltonian be-

comes

H = D

∫ 1

−1

dε ε c†εσcεσ+

∫ 1

−1

dε

√

D∆(Dε)

π

(

c†εσdσ + d†σcεσ
)

+εdnd+Und↑nd↓ (2.3)

where ∆(ε) = πV 2(ε)ρ(ε) is the hybridization function, ρ(ε) is the density of states

of the conduction band and summation over repeated spin indices is implied from

now on.

If one is not interested in particular cases like pseudogap models, where the den-

sity of states has a power-law behavior close to the Fermi energy ρ(ε) ∼ εr, the energy

dependence of the hybridization function can be neglected and ∆(ε) replaced by its

value ∆0 at the Fermi energy. Another important application where the energy de-

pendence of ∆ is fundamental is DMFT where it enters the self-consistent equations

for the effective Weiss field.

It is worth noticing now that under very weak assumptions we obtained a one-

dimensional description of the original model. The possibility to map the problem to

one dimension is what allows the use of techniques like bosonization, Bethe Ansatz

or conformal field theory in impurity models.

To solve the problem numerically it is instead more convenient to transform the

Hamiltonian in a tight-binding chain model

H = D

∞
∑

n=0

[

enf
†
nσfnσ + tn

(

f †
nσfn+1,σ + h.c.

)]

+

√

2D∆0

π

(

f †
0σdσ + d†σf0σ

)

+εdnd + Und↑nd↓ (2.4)

using a Lanczos tridiagonalization procedure where the coefficients en and tn and the

states fn (called “shells” because they roughly correspond to conduction electrons

in spherical shells of increasing radius around the impurity) are determined via the

recursive relations:

en = 〈fnσ|
∫ 1

−1

dε ε c†εσcεσ|fnσ〉 (2.5)
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tn|fn+1,σ〉 =

(
∫ 1

−1

dε ε c†εσcεσ − en

)

|fnσ〉 − tn−1|fn−1,σ〉 (2.6)

〈fn+1,σ|fn+1,σ〉 = 1. (2.7)

In the simplified case in which the hybridization function is symmetric, ∆(−ε) =

∆(ε), it can be easily shown that all the coefficients en vanish.

Here f0 is the linear combination of conduction electrons that couples directly to

the impurity:

f0σ =
1√
2

∫ 1

−1

dε cεσ. (2.8)

It is maximally delocalized in momentum space and hence it is maximally localized

at the impurity site in position space.

The crucial point is that in the Hamiltonian obtained after this transformation the

coefficients tn converge to a finite value for large n, thus making any finite-length

chain approximation useless. Here comes Wilson’s intuition about the energy scales.

Introducing a discretization of the conduction band [−1, 1] in intervals [Λ−n−1,Λ−n]

and [−Λ−n,−Λ−n−1], where Λ > 1 is a parameter and n = 0, 1, . . . ,∞, it is possible

to obtain a formulation of the problem in which the hopping amplitudes along the

chain decay like tn ∼ Λ−n/2. Indeed replacing the conduction band states in each

interval by a single state,

anσ = (Λn/2/
√

1 − Λ−1)

∫ Λ−n

Λ−n−1

dε cεσ (2.9)

bnσ = (Λn/2/
√

1 − Λ−1)

∫ −Λ−n−1

−Λ−n

dε cεσ (2.10)

for positive and negative energy respectively, and repeating the Lanczos construction,

the resulting Hamiltonian describes a chain with hopping decreasing exponentially

with n.

The main difference between a logarithmic discretization and a linear one is that

the former has a poorer resolution in the high energy region but allows to capture en-

ergy scales arbitrarily close to the Fermi level and this feature is essential in problems

like the Kondo model where logarithmic scales play a crucial role.

The parameter that controls this approximation is Λ: Λ → 1 corresponds to the

original continuum limit, while Λ > 1 is an approximation of the original problem

but provides a separation of energy scales.
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If we now consider chains of finite length N , the smallest energy scale of the

system is of order Λ−N/2, hence the next term in the Hamiltonian, which is of order

Λ−(N+1)/2, can be treated as a “perturbation”. Even if this argument is not rigorous,

it gives an idea of why the method works.

Hence to solve the problem we can proceed iteratively. We first define the Hamil-

tonian of the length N system

HN = Λ(N−1)/2

{ ∞
∑

n=0

Λ−n/2ξn

(

f †
nσfn+1,σh.c.

)

+∆̃
1/2
0

(

f †
0σdσ + d†σf0σ

)

+ε̃dnd + Ũnd↑nd↓

}

(2.11)

where ∆̃0 = C2
Λ(2D∆0/π), ε̃d = CΛεd/D,Ũ = CΛU/D, CΛ = 2/(1 + Λ−1) and

ξn are coefficients of order 1. The Hamiltonian is rescaled by the factor Λ(N−1)/2 in

order to have the lowest energy excitations always of order 1. In this way it will be

easier to follow the evolution of the low-lying levels and the original Hamiltonian will

be recovered in the limit

H = lim
N→∞

C−1
Λ DΛ−(N−1)/2HN . (2.12)

We derive a simple recursive relation between HN and HN+1:

HN+1 = T (HN) = Λ1/2HN + ξN

(

f †
NσfN+1,σ + h.c.

)

. (2.13)

This relation represents the renormalization group transformation and ensures that

the knowledge of the eigenvalues and eigenvectors of HN and of the matrix elements

〈|f †
Nσ|〉N is enough to solve the HN+1 problem.

In practice the method starts diagonalizing the HamiltonianH0 of the system built

up with the impurity and the first shell f0; then H1, involving also f1, is constructed

from the eigenvalues and eigenvectors of H0 and is again diagonalized; then the pro-

cedure is iterated.

The Hilbert space of the system grows at each iteration by a factor 4 and after few

steps becomes too large to be handled entirely. To proceed we focus our attention on

the low energy part of the spectrum and truncate the high energy part retaining only

a fixed number of states in each diagonalization. In this way we retain the spectrum
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relevant for the low temperature properties and, at the same time, we can keep the

computational cost of each iteration fixed. This procedure is justified by the fact

that matrix elements between high energy and low energy states are small due to the

exponential decay of the hopping along the chain, implying that high energy states do

not influence the low energy behavior. This exponential decay is in turn governed by

the value of Λ.

The choice of Λ is indeed a compromise: for a value close to 1 the model de-

scribed is more similar to the original model but the computational effort needed to

describe it faithfully grows rapidly because a larger number of states must be retained;

for a large value of Λ the decay of the hopping along the chain is faster, hence the

number of states needed for a good description decreases but on the other hand the

approximation of replacing states in an energy interval [Λ−n−1,Λ−n] by just one state

is worse. In practice Λ is typically chosen to lie between 2 and 3.

In order to reduce substantially the computational effort it is fundamental to ex-

ploit all the possible symmetries of the problem. Keeping track of the quantum num-

bers of the states it is possible to reduce the Hamiltonian to a block diagonal form

and diagonalize smaller matrices. Typical examples of symmetries exploited are the

global charge U(1) and spin SU(2).

The outcome of each iteration is a set of energy levels representing the ground

state and low-lying excitations of the system. Analyzing the evolution of these levels

with the length of the chain it is possible to identify the flow of the system between

various fixed points. Indeed, when the system is close to a fixed point, the Hamil-

tonian is left almost invariant under the renormalization group transformation (2.13),

and the spectrum extracted from the numerical calculation remains constant from it-

eration to iteration.1

Usually the fixed point can be inferred by analyzing its spectrum and assuming

that the fixed point itself correspond to a modification of the boundary conditions of

the original system. This is the case for the Kondo and the Anderson models, where

all the fixed points can be described in terms of the corresponding Hamiltonians in

which the original parameters involving the impurity are sent either to 0 or to ±∞.

1Due to the intrinsic differences between chains with even and odd number of sites, the fixed

points in these two cases are in general different. Hence the spectrum remains constant from even

(odd) iteration to even (odd) iteration. Formally the fixed point is a property of the transformation T2,

being rather a limiting cycle for T .
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This will not be the case for other models, like for instance the two-impurity Kondo

model, where some fixed points correspond to non-trivial boundary conditions that

cannot be defined in terms of the original fermionic degrees of freedom and require a

more general definition of boundary condition.

A useful and simple criterion to discriminate between a Fermi liquid fixed point

and a non-Fermi liquid one is the spacing of the lowest lying excitations. Indeed in

a Fermi liquid the low energy spectrum can be described by quasiparticles with well

defined energies. This means that the spacing of the lowest levels must be uniform,

corresponding to the energy necessary to add a quasiparticle, and that the spectrum

contains levels whose energy is an integer multiple of the quasiparticle energy. On

the other hand, the spectrum of a system at a non-Fermi liquid fixed point does not

possess in general this peculiar feature.

As we saw, at the N -th iteration the lowest energy scale is ∼ Λ−N/2 and the

energies of the states kept lie in a range close to this value (typically between ∼
10Λ−N/2 and ∼ 0.1Λ−N/2). Then it is natural interpretN as related to the temperature.

The relation between N and the temperature of the system is T ∼ Λ−N/2. This

relation implies that as the length of the chain grows the system flows to the low

temperature fixed point.

2.1.1 Effective Hamiltonian description

During the renormalization group flow the system goes from one fixed point to an-

other but is never exactly at a fixed point (unless artificially tuned to lie on it). The

presence of relevant (or marginally relevant) operators close to an unstable fixed point

drives the system far away from it, hence if the system is not precisely at the fixed

point the spectrum is always slightly different from that of the fixed point and the

differences grow as the system is driven out of that fixed point. Close to a stable fixed

point instead there are irrelevant (or marginally irrelevant) operators that fade away

asymptotically but for any finite point along the renormalization group flow (corre-

sponding to a finite length N of the Wilson chain) produce again a deviation from the

fixed point spectrum.

If a fixed point can be described by Fermi liquid theory, Wilson provided a simple

and effective way to describe the behavior of the system in the vicinity of this fixed

point. Describing the system by the fixed point Hamiltonian plus a term containing
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the most relevant operators and fitting the deviation of the spectrum from the fixed

point values it is possible to extract the magnitude of the operators and describe the

system in terms of an effective Hamiltonian

HN = H∗
N + Λ(N−1)/2δHN (2.14)

where H∗
N represents the fixed point Hamiltonian and δHN the deviation due to rele-

vant or irrelevant operators.

From this description it is possible to extract susceptibilities and the so called

Wilson ratios (the ratio between the change in the susceptibility and the change in

the specific heat due to the impurity) for conserved quantities. For non-conserved

quantities, scattering amplitudes can be accessed and related to the corresponding

susceptibility using Fermi liquid theory.

2.1.2 Spectral functions

The spectral properties of the impurity in the case of the Anderson model are an

essential feature in connection with DMFT and in general can provide further insight

in the properties of the model.

NRG allows to calculate the spectral function of the impurity simply retaining

memory of the matrix elements of the d†σ operator between the states during the var-

ious iterations[51, 52]. Indeed the spectral function can be written using Lehmann

representation as

Aσ(ω) =
1

Z

∑

m,n

∣

∣〈m|d†σ|n〉
∣

∣

2
δ(ω − (En − Em))

(

e−βEn + e−βEm
)

. (2.15)

Calculating the impurity spectral function in this way we obtain a set of delta

peaks at each iteration whose position is cut-off on the low energy side by the typical

energy scale of the iteration and on the high energy side by the truncation procedure:

at iteration N the lowest energy scale is ∼ Λ−N/2 hence the energy position of the

peaks will be larger (in absolute value) of some fraction of this typical value; on the

other hand the number of states retained is limited by the computational cost and the

highest energy states will be typically within ∼ 10Λ−N/2.

In order to get a smooth function we have to combine the spectral weight from

different iterations and broaden the delta peaks. The set of peaks obtained at iteration
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N is added to the spectral weight from the previous iterations in the energy region

where the two sets don’t overlap, while in the overlapping region the two sets are

combined with a linear function as weighting factor.

To obtain a continuous curve the delta peaks are then substituted by smooth gaus-

sian functions on a logarithmic scale:

δ(ω − ωnm) → e−b2/4

b ωnm

√
π

exp

[

−(lnω − lnωnm)2

b2

]

(2.16)

where ωnm = En − Em and b is a broadening parameter. b must be chosen ap-

propriately: if b is too small the resulting A(ω) has artificial oscillations due to the

discretized nature of the spectrum; if it is too large the features like the Hubbard bands

and the Kondo resonance result suppressed. Typical values for b are 0.5 for Λ = 2

and 0.7 for Λ = 3.

2.1.3 Observable averages

To gain further information on the properties of the system it is useful to calculate the

low temperature average of some impurity quantities like spin or angular momentum

in case of complex impurities.

In order to obtain this averages we employed a very simple approach. Instead

of calculating step by step the matrix elements of the interesting quantity among the

states, as in the case of the spectral function, we used the Hellmann-Feynman theorem

that relates the average of a perturbation to the derivative of the ground state energy

with respect to the strength of the perturbation itself.

Consider a system with Hamiltonian H = H0 + λV with ground state energy E,

and let |ψ0〉 be the ground state of H0. Then

〈ψ0|V |ψ0〉 '
∂E

∂λ
. (2.17)

To make use of this property we made some runs with an impurity Hamiltonian

containing a term proportional to the operator to be averaged and then numerically

differentiate the ground state energy with respect to the corresponding coupling con-

stant. The result proved to be very reliable and effective.
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2.2 Conformal field theory

In this Section we want to give just a brief survey of some development of conformal

field theory related to impurity problems that will be useful in the analysis of our

models, without any claim of being exhaustive due to the vastness of the topic[17, 18,

42, 43, 53–60].

There are two properties common to many impurity problems that allow the ap-

plication of conformal field theory techniques. The first is that the spectrum of the

conduction band is and remains gapless, since a single impurity can not open a bulk

gap. Secondly, the problem, even if formulated in d dimensions, can be effectively

reduced to a 1-dimensional problem.

These two conditions imply that the physical behavior can be described by a suit-

able (1 + 1)-conformal field theory. In this representation the role of the coordinates

of the two-dimensional plane is played by the time and the space coordinate of the

original model, ~r = (t, x), t ∈ [−∞,∞], x > 0. The impurity becomes a pertur-

bation acting on the boundary (t, x = 0) of the plane. Since the bulk spectrum has

to remain gapless, even in the presence of the impurity, this implies that the latter

transforms in the scaling limit, namely at a fixed point, into an effective conformally

invariant boundary condition which substitutes the one in the absence of impurity.

This means that at a fixed point, not only the bulk is conformally invariant, but also

the impurity is replaced by a boundary condition that is conformally invariant.

In the simple Kondo model the two fixed points, corresponding to JK = 0 and

to JK = −∞, can be described by two simple boundary conditions. Let us consider

a one-dimensional version of the Kondo model in the form of a tight-binding chain

with the impurity interacting with the first site in the spirit of Eq. (2.4)

H = t

∞
∑

i=0

(

c†iσci+1σ + h.c.
)

− JK
~S · c†0σ

~σ

2
c0σ. (2.18)

In the limit JK → 0 the impurity is absent and site 0 is equivalent to all other sites. In

the opposite limit JK → −∞ the first site is locked to form a singlet with the impurity

and the bulk electrons cannot access site 0, hence the system becomes equivalent to a

chain with one less site. In both cases the impurity disappears from the description of

the fixed point and is replaced by a boundary condition.

In a general impurity problem, the physics in the bulk, far from the impurity,

is described by a scale-invariant behavior independent on the boundary condition.
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However the critical behavior may still be affected, in a universal way, by the presence

of the boundary. Consider, for example, a two-point Green’s function: in the limit in

which the two points are far from the boundary compared to their relative distance,

the behavior is that of the bulk, independent on the boundary; if the relative distance

between the points is larger that their distance from the boundary, the critical behavior

is influenced by the boundary condition.

In general, to each bulk universality class correspond several boundary universal-

ity classes. An arbitrary boundary condition should renormalize to one of these at

each fixed point.

Provided the assumption of conformal invariance of the boundary at a fixed point

is satisfied, an arbitrary conformal transformation is of the form: z → w(z) where

z = τ + ix, τ being the imaginary time, and w(z) an analytic function. Since this

transformation must leave the boundary invariant, its Taylor expansion must be of the

form

w(z) =

∞
∑

n=1

anz
n (2.19)

where the coefficients an must be real, contrary to the general bulk case in which the

an can be complex. This means that of the full conformal group, only “half” remains

in the presence of the conformally invariant boundary condition. Nevertheless the

number of generators of the conformal group in presence of the boundary is still

infinite and the theory is still integrable.

From the real time, Hamiltonian viewpoint, the boundary relates left and right

movers, i.e. incoming, ψL ∼ e−ik(x+vt), and outgoing, ψR ∼ eik(x−vt), scattering

components, and imposes a constraint on the left and right component of the energy-

momentum tensor (T and T̄ respectively). This condition can be interpreted as the

vanishing of the momentum density at the boundary (no current flowing through the

boundary)

T (t, 0) = T̄ (t, 0). (2.20)

Since T is a function of t+x only and T̄ is a function of t−x only, Eq. (2.20) implies

that T̄ can be interpreted as the analytic continuation of T to the negative x-axis

T (t, x) ≡ T̄ (t,−x) for x < 0. (2.21)

Thus we can map the model into one defined in terms of left-movers only but

living on the entire real axis. This identification of left and right-movers leads to a
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modification of Green’s functions near the boundary. Indeed an arbitrary operator O

consists of a left and a right component

O(t, x) = OL(t + x)ŌR(t− x). (2.22)

Close to the boundary, where left and right are related, (2.22) becomes

O(x) = OL(x)OL(−x). (2.23)

This is similar to the method of image charges in electrostatics and implies that the

operator acquire a non vanishing expectation value near the boundary

〈O(x)〉 → 〈OL(x)OL(−x)〉 =
C

(2ix)η
. (2.24)

The presence of the boundary can be in general characterized by the operator product

expansion (OPE)

O(x) → OL(x)OL(−x) →
∑

j

Cj

(2ix)ηj
Oj(0) (2.25)

where the operators Oj correspond to the left-moving Hilbert space of the bulk pri-

mary operators and exponents ηj are the associated scaling dimensions. The depen-

dence on the boundary condition enters only in the OPE coefficients Cj.

To find all the possible conformally invariant boundary conditions of a problem,

Cardy[56] developed a general theory that relates boundary conditions to boundary

states. Consider the system defined on a cylinder of circumference β in the τ (imag-

inary time) directions and length l in the x (space) direction. Denoting by H l
AB the

Hamiltonian for the system with boundary conditions A and B at the two ends, the

partition function is

ZAB = Tre−βHl
AB . (2.26)

On the other hand, making a modular transformation, we can interchange space and

time, and interpret l as the time interval and β as the spatial length of the system.

Now the system becomes periodic in space and it propagates in time for an interval l

between state |B〉 at time 0 and state |A〉 at time l. The Hamiltonian can be denoted

by Hβ
P , where P stands for periodic, and the partition function transforms into the

propagation amplitude from state |B〉 to state |A〉 in the time l

ZAB = 〈A|e−lHβ
P |B〉. (2.27)
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|A〉 and |B〉 are called boundary states and are in one-to-one correspondence with

boundary conditions.

Let us consider the first, time-periodic, cylindrical configuration with boundary

conditions A and B. Given that condition (2.20) must be satisfied at both ends of

the cylinder, and that it is possible to identify the right-moving part with the analytic

continuation of the left-moving one, the system can be viewed as composed by only

left-movers defined periodically on a torus of length 2l.

To the energy-momentum tensor T are associated the conformal towers. Each

conformal tower, generated by the application of the generators of the Virasoro al-

gebra to a highest weight state, is in one-to-one correspondence with a primary field

of the theory. The Hilbert space is built up as a sum of conformal towers but, while

the conformal towers are independent on the boundary conditions imposed, which

conformal towers occur in the spectrum does depend on the boundary conditions.

For each conformal tower in the theory we can define the character

χi(q) ≡
∑

α

e−βEi
α(2l) (2.28)

where q = e−πβ/l and Ei
α(2l) are the energies in the i-th conformal tower for the

system with length 2l

Ei
α(2l) =

π

l
(xi + nα) − πc

24l
(2.29)

where xi is the (left) scaling dimension of the i-th primary operator, nα is an integer,

c is the conformal anomaly and we set the Fermi velocity equal to one.

The partition function can be expanded in terms of the characters

ZAB =
∑

i

ni
ABχi(q) (2.30)

where ni
AB are non-negative integer multiplicities. These numbers represent the spec-

trum of the system with boundary conditions A and B and all the dependence on the

boundary condition is encoded in them.

Let us now focus our attention to the second geometry, where the space-periodic

system evolves from boundary state |A〉 to boundary state |B〉. These states must

satisfy the condition
[

T (x) − T̄ (x)
]

|A〉 = 0 (∀x) (2.31)
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and this condition implies that |A〉 is a linear combination of Ishibashi states[61, 62]

|i〉 ≡
∑

α

|i;α〉 ⊗ |i;α〉 (2.32)

where α labels the states in the i-th conformal tower. State |A〉 may be written as

|A〉 =
∑

i

|i〉〈i, 0|A〉 (2.33)

where i labels the conformal towers and |i, 0〉 ≡ |i; 0〉 ⊗ |i; 0〉.
Using this expression for the boundary states we can rewrite (2.27) as

ZAB =
∑

i

〈A|i, 0〉〈i, 0|B〉〈i|e−lHβ
P |i〉. (2.34)

From the definition of the Ishibashi states we have that

〈i|e−lHβ
P |i〉 =

∑

α

e−2lEi
α(β) = χi(q̃) (2.35)

where Ei
α is given in (2.29) and q̃ = e−4πl/β .

We can now equate the two expressions (2.30) and (2.34) for the partition function

ZAB =
∑

i

ni
ABχi(q) =

∑

i

〈A|i, 0〉〈i, 0|B〉χi(q̃) (2.36)

and using the modular transformation of characters

χi(q) =
∑

j

Sj
i χj(q̃) (2.37)

where Sj
i is the modular S-matrix, we obtain a relation between the multiplicities

ni
AB and the matrix elements 〈i, 0|A〉 of the boundary states

∑

j

Si
jn

j
AB = 〈A|i, 0〉〈i, 0|B〉. (2.38)

This relation characterizes the possible boundary conditions of a problem but still

does not provide a systematic way to find all of them. Fortunately, there is a con-

struction that allows to generate from a known boundary condition a new boundary

condition satisfying (2.38). Given a system with boundary states |A〉 and |B〉 with

spectrum nj
AB and given a primary operator φi, a new boundary state |A, i〉 can be
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obtained by fusion of the state |A〉 with the operator φi. The spectrum of the system

with the new boundary condition is related to the old one by

nj
(A,i)B = N j

ikn
k
AB (2.39)

where N j
ik are the fusion rule coefficients obtained by the OPE. These coefficients

represent the number of times that the primary operator j appears in the OPE of

operators i and k, and in the minimal models they can assume only the values 0 or 1.

On the other hand the matrix elements of the new boundary states are given by

〈A, i|j, 0〉 =
Sj

i

Sj
0

〈A|j, 0〉 (2.40)

where the index 0 in the modular S-matrix refers to the identity operator.

It is easy to show that the new boundary condition satisfies relation (2.38). Using

the Verlinde formula[63] to relate the modular S-matrix to the fusion rule coefficients

∑

j

Sk
jN

j
il =

Sk
i S

k
l

Sk
0

, (2.41)

we obtain that, with the new boundary condition, the right hand side of (2.38) be-

comes

〈A, i|k, 0〉〈k, 0|B〉 =
Sk

i

Sk
0

〈A|k, 0〉〈k, 0|B〉 (2.42)

while the left hand side becomes

∑

j

Sk
j n

j
(A,i)B =

∑

jl

Sk
jN

j
iln

l
AB

=
∑

l

Sk
i

Sk
0

Sk
l n

l
AB . (2.43)

This construction suggest that in order to find all the conformally invariant bound-

ary conditions of a model we can start from a known boundary condition and generate

all the other conditions by fusion with the primary operators of the model.

In practice, in impurity models one is usually able to find by inspection a simple

boundary condition like for instance the one corresponding to free fermions. Then,

once the spectrum of that boundary condition is known, all the other conditions can

be generated by fusion. The problem is that this procedure does not tell us what is the
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new boundary condition generated by the fusion, hence one has to resort to physical

intuitions or comparison with other methods to identify the new fixed point.

In general one starts identifying the total symmetry of the bulk system. This will

be also the symmetry recovered by the system far from the boundary in presence

of the boundary condition. From that symmetry, one extracts those symmetries that

will survive after the insertion of the impurity at the boundary and then tries, starting

from some simple boundary condition, to “guess” what is the effect of fusion with the

various operators.

A simple example is the ordinary Kondo model. In that case the symmetries are

the SU(2) associated with the spin and the U(1) corresponding to the charge. Starting

from free boundary conditions on conduction electrons, corresponding to a non inter-

acting impurity, we want to obtain the strong coupling fixed point. Since the Kondo

interaction involves only the spin degrees of freedom it is obvious to “guess” that the

fusion must be done with an operator in the spin sector of the theory. Indeed, fusion

with the operator corresponding to the spin of the impurity generates the spectrum of

free fermions with a π/2 phase shift corresponding to the strong coupling fixed point.

2.2.1 Finite size spectrum and operator content

The bridge between CFT and NRG analysis is provided by the finite size spectrum.

As we saw in the previous Section, NRG produces the energy spectrum of the lowest

energy levels and the same quantity can be calculated by CFT. Indeed in the CFT

description there is a relation between finite-size spectrum and scaling dimensions of

operators. The energy of the i-th highest weight state is given by

Ei =
π

l
xi (2.44)

where l is the length of the system, xi is the scaling dimension of the field and we

omitted the term containing the conformal anomaly that depends on the geometry.

The other states in the i-th conformal tower differ in energy form the highest weight

state for integer multiples of π/l.

Suppose that the multiplicitiesni
ff of some trivial boundary condition f are known.

These multiplicities tell us which conformal towers are present in the spectrum and

hence determine completely the spectrum itself with that boundary condition. If we

now obtain a new boundary condition A by fusion with operator a, the spectrum of
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the new system is encoded in the multiplicities ni
Af determined through the fusion

rules of operators i with operator a.

At the same time it is also possible to extract the operator content of the theory

with a definite boundary condition simply by “double fusion”. It can be shown that

the operator content of the system in the semi-infinite plane geometry in presence of

boundary condition A is related to the finite size spectrum on a strip with boundary

condition A on both sides. Thus the allowed operators in presence of boundary con-

dition A can be obtained by the operators in presence of boundary condition f fusing

with operator a twice.

2.2.2 Scattering matrix

In the presence of a boundary condition, as we have seen previously, the left and right

components of the fields are no more independent.

For instance in the free fermion case the Green’s function 〈ψ†
L(z1)ψR(z̄2)〉 is zero

in the bulk while close to the boundary it becomes

〈ψ†
L(z1)ψR(z̄2)〉 =

ei2δ

z1 − z̄2
(2.45)

where δ is a phase shift and depends on the boundary conditions imposed to the free

fermions: ψR(z) = ei2δψL(z).

For an arbitrary conformally invariant boundary condition, (2.45) can be written

〈ψ†
L(z1)ψR(z̄2)〉 =

S(1)

z1 − z̄2
(2.46)

where S(1) is a complex number that depends on the boundary condition and represent

the scattering matrix S at zero energy restricted to the single-particle subspace.

If Fermi liquid theory holds, then |S(1)| = 1, meaning that on the Fermi surface

multi-particle scattering vanish. In general |S(1)| ≤ 1. In particular an absolute value

of S(1) smaller than one implies that the fixed point has non-Fermi liquid character.

In CFT the value of S(1) in presence of a boundary condition A can be calculated

by the general relation

〈φi
L(z1)φ̄

i
R(z̄2)〉 =

〈i, 0|A〉
〈I, 0|A〉

1

(z1 − z̄2)2xi
(2.47)

where φi is a primary field with scaling dimension xi and I is the identity operator.
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Suppose that the primary field φ is the electron operator, and f denotes its quan-

tum numbers, then in the presence of trivial free fermion boundary conditions |F 〉 we

have the relation

S(1) = 1 = 〈f, 0|F 〉/〈I, 0|F 〉. (2.48)

If we now obtain a new boundary condition |A〉 by fusion with operator φa, S(1) with

the new boundary condition is given by

S(1) =
〈f, 0|A〉/〈f, 0|F 〉
〈I, 0|A〉/〈I, 0|F 〉 . (2.49)

These matrix elements can be calculated using the relations (2.38), (2.39) and

(2.41). Indeed we have
∑

j

Sf
j n

j
FA = 〈F |f, 0〉〈f, 0|A〉 (2.50)

where Sf
j is the modular S-matrix and should not be confused with the scattering S

matrix of which S(1) is the single-particle component. We now substitute the relation

nj
FA = N j

akn
k
FF (2.51)

into (2.50) to obtain
∑

j

Sf
j N

j
akn

k
FF = 〈F |f, 0〉〈f, 0|A〉. (2.52)

Then we use (2.41) to arrive at the expression

(Sf
a/S

f
0 )
∑

j

Sf
kn

k
FF = 〈F |f, 0〉〈f, 0|A〉. (2.53)

Since
∑

j

Sf
kn

k
FF = 〈F |f, 0〉〈f, 0|F 〉, (2.54)

the final simplification gives

〈f, 0|A〉/〈f, 0|F 〉 = Sf
a/S

f
0 (2.55)

and the expression for the scattering matrix S(1) becomes

S(1) =
Sf

a/S
f
0

S0
a/S

0
0

. (2.56)
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These relations allow the calculation of the scattering matrix for an arbitrary

boundary condition obtained by fusion from the free fermion boundary condition,

requiring only the knowledge of the modular S-matrix of the theory.

The scattering matrix can then be related, using Fermi liquid theory, to some

properties of the spectral function of the impurity as we will see in the next Chapters.

2.2.3 Ground state degeneracy

The ground state degeneracy is a universal property of one-dimensional critical quan-

tum systems that depends only on the universality class of the boundary conditions.

It can be defined through the zero temperature residual entropy:

S(0) = ln g (2.57)

and in general depends on the boundaries of the system: g = gAgB.

For periodic (free fermion) boundary conditions g must be equal to one since there

is no boundary. In general g can be non-integer.

To calculate g we can use the partition function. Indeed if we consider the geome-

try in which the system is periodic in space and evolves between boundary states |A〉
and |B〉, we have that in the limit l/β → 0 Eq.(2.27) reduces to

ZAB = 〈A|0〉〈0|B〉 = gAgB. (2.58)

Using Eq.(2.38) in the same limit we have

gAgB =
∑

j

S0
jn

j
AB . (2.59)

Suppose now that we want to calculate the ground state degeneracy for a boundary

condition A that is obtained from free fermion boundary conditions F by fusion with

the primary operator a. First of all we must recall that

g2
F = 1 =

∑

i

ni
FFS

0
i . (2.60)

Then using Eq.(2.39), the Verlinde formula Eq.(2.41), and Eq.(2.60), we have that

gAgF =
∑

i

ni
AFS

0
i (2.61)
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=
∑

ij

N i
jan

j
FFS

0
i (2.62)

=
S0

a

S0
0

∑

j

S0
jn

j
FF =

S0
a

S0
0

. (2.63)

The ground state degeneracy is found to decrease under renormalization group

flow of the system from a less stable to a more stable critical point[59].



Chapter 3

Two-orbital model

In this Chapter we study a two-orbital Anderson impurity model that presents a non-

Fermi liquid unstable fixed point similar to the two-impurity Kondo model one. The

peculiarity of this particular model is the presence of inverted Hund’s rules, funda-

mental ingredient to provide the competition between the Kondo effect and a multiplet

splitting.

We pursue the analysis of this AIM by uncovering the spectral behavior across

the non-Fermi liquid fixed point. This is not only interesting for the AIM itself, being

one of the few cases where non-Fermi liquid dynamical properties may be accessed,

but also in the context of the DMFT mapping. The model is also sufficiently simple

to allow for an analytical description of the spectral function which reproduces well

the numerical results and provide new physical insight. Actually our model spectral

function has been quite useful in guiding the analysis of the DMFT solution presented

in Ref. [24].

3.1 The Model Hamiltonian

The AIM Hamiltonian we consider is

H = HU +HJ +Hc +Hhyb (3.1)

=
U

2
(nd − 2 + ν)2 + 2J

[

(T x)2 + (T y)2]

+
∑

kaα

εk c
†
kaαckaα +

∑

kaα

Vd

(

c†
kaαdaα + d†aαckaα

)

.
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Here c†
kaα creates a conduction electron in the band a = 1, 2 with momentum k,

spin α and energy εk, measured with respect to the chemical potential. d†aα is the

creation operator of an electron with spin α in the impurity orbital a = 1, 2, while

nd =
∑

aα d
†
aαdaα is the impurity occupation number. We have defined the orbital

pseudo-spin operators

T i =
1

2

∑

α

∑

a=1,2

d†aατ
i
abdbα, (3.2)

where i = x, y, z and τ i’s are the Pauli matrices in the orbital space.

We further assume that the conduction band density of states is symmetric with

respect to the chemical potential, set equal to zero, so that the behavior of the Hamil-

tonian under a particle-hole symmetry transformation is controlled by the parameter

ν in (3.1). For the time being we will take ν = 0, which implies that the Hamiltonian

is particle-hole symmetric. Afterwards we will release this constraint.

The model without the impurity exchange coupling J is SU(4) invariant. A fi-

nite J lowers the SU(4) symmetry down to SU(2)spin× O(2)orbit. In this case the

total charge, the total spin and the total z-component of the pseudospin are the only

conserved quantities.

It is convenient to start our analysis by the spectrum of the isolated impurity,

Vd = 0. In this case the impurity eigenstates, |n, S, Sz, T, T z〉, can be labeled by the

occupation number n, the spin S, pseudospin T and their z-components, Sz and T z,

respectively, with energies

E(n, S, Sz, T, T z) =
U

2
(n− 2)2 + 2J

[

T (T + 1) − (T z)2] . (3.3)

We assume U � |J |, so that the impurity ground state with ν = 0 has n = 2. In this

case the only configurations allowed by Pauli principle are a spin-triplet pseudo-spin-

singlet, S = 1 and T = 0,

|2, 1,+1, 0, 0〉 = d†1↑d
†
2↑ |0〉,

|2, 1, 0, 0, 0〉 = 1√
2

(

d†1↑d
†
2↓ − d†2↑d

†
1↓

)

|0〉,
|2, 1,−1, 0, 0〉 = d†1↓d

†
2↓ |0〉,

(3.4)

and a spin-singlet pseudo-spin-triplet, S = 0 and T = 1. The latter is split by J into

a singlet with T z = 0,

|2, 0, 0, 1, 0〉 =
1√
2

(

d†1↑d
†
2↓ + d†2↑d

†
1↓

)

|0〉, (3.5)



3.1 The Model Hamiltonian 45

and a doublet with T z = ±1,

|2, 0, 0, 1,+1〉 = d†1↑d
†
1↓ |0〉,

|2, 0, 0, 1,−1〉 = d†2↑d
†
2↓ |0〉.

(3.6)

If J > 0, the lowest energy configuration is the spin-triplet, S = 1 and T = 0, which

corresponds to the conventional Hund’s rules. On the contrary, for J < 0, the isolated

impurity ground state is the singlet (3.5) with quantum numbers S = 0, T = 1 and

T z = 0.

A finite hybridization, Vd 6= 0, induces valence fluctuations within the impurity,

which are controlled by the energy scale (hybridization width)

∆0 = π V 2
d ρc, (3.7)

with ρc the conduction electron density of states (DOS) at the chemical potential per

spin and band. These fluctuations are suppressed by a strong repulsion U � ∆0,

which we assume throughout this work. Although all our calculations refer to the

AIM (3.1), it is more insightful to discuss some physical properties in terms of the

effective Kondo model which describes the low-energy behavior when U � ∆0:

Heff = HJ +Hc +HK, (3.8)

where HJ and Hc have been defined in (3.1) and the Kondo exchange

HK = JK

[

~S · ~S + ~T · ~T + 4
∑

i,j=x,y,z

Wij Wij

]

, (3.9)

with

JK = 2V 2
d /U. (3.10)

Here ~S, defined by
~S =

1

2

∑

a

∑

αβ

d†aα ~σαβ daβ,

~T , which we introduced in Eq. (3.2), and Wij ,

Wij =
1

4

∑

ab

∑

αβ

d†aα τ
i
ab σ

j
αβ dbβ,

are impurity spin, pseudo-spin and spin-orbital operators, respectively, while ~S , ~T
and Wij are the corresponding conduction electron density operators at the impurity
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site. The impurity operators in (3.9) act only in the subspace with two electrons

occupying the d-orbitals, which, as we showed, includes six states. The Kondo model

(3.8) contains two competing mechanisms which tend to freeze the left-over impurity

degrees of freedom: (i) the Kondo exchange, with its associated energy scale, the

Kondo temperature TK; (ii) the intra-impurity exchange splitting J . As we already

mentioned, the Kondo exchange (3.9) gains energy by letting the impurity tunnel

coherently among all available six configurations, but it is hampered by J which

instead tends to trap the impurity into a well defined state.

If J � TK > 0, the positive exchange splitting dominates and the impurity is

essentially frozen into the lowest energy spin-triplet configuration. The Kondo ex-

change projected onto the triplet sub-space (3.4) is simplyHK = JK
~S · ~S , describing

a standard S = 1 two-channel Kondo model. This is known to be perfectly screened

at low energy[13, 53], yielding a scattering phase shift δ = π/2 in each spin and

orbital channel.

On the contrary, if J � −TK < 0, the impurity gets trapped into the S = 0,

T = 1 and T z = 0 configuration, Eq. (3.5). Since (3.5) is non degenerate, the

Kondo exchange is ineffective, so that asymptotically the impurity decouples from

the conduction bath. This implies a low energy phase shift δ = 0. The main question

which we want to address is how the model moves across the two limiting cases.

It is easy to recognize in this behavior a parallel with the two S = 1/2 impu-

rity Kondo model (2IKM) in the presence of a direct exchange between the impurity

spins[14–18]. In that case, if the two spins are strongly ferromagnetically coupled, the

model reduces to an S = 1 two-channel Kondo model, while, if they are strongly an-

tiferromagnetically coupled, the two spins bind together into a singlet and decouple

from the conduction electrons, exactly as in our model. The two channels corre-

spond in the 2IKM to the symmetric and antisymmetric combinations of the even and

odd scattering channels with respect to the midpoint between the impurities. It was

demonstrated by Ref. [18] that, provided a peculiar particle-hole symmetry holds,

the non-Fermi liquid unstable fixed point (UFP) found by Ref. [14–16] separates the

Kondo screened and unscreened regimes. In particular it was shown that while a

particle-hole symmetry breaking term

δHp−h = −µd

∑

aα

d†aαdaα −
∑

k,aα

µk c
†
kaαckaα, (3.11)
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does not wash out the UFP, the latter is instead destabilized by the perturbation

δHrel = −hd

∑

α

d†1αd2α +H.c.

−
∑

k,α

hk c
†
k1αck2α +H.c. . (3.12)

Translated into our two-orbital language, the dangerous symmetry which needs to be

preserved is just theO(2)orbit orbital symmetry. Therefore, unlike in the 2IKM, where

the two scattering channels are generically non degenerate, in our case the instabil-

ity towards O(2)orbit symmetry breaking does correspond to a physical instability.

Hence, if orbital symmetry is unbroken, we do expect to find an UFP in our model,

with similar properties as in the 2IKM. We notice that, in spite of the analogies, our

model has a larger impurity Hilbert space than the 2IKM. In fact the S = 0, T = 1

and T z = ±1 doublet of Eq. (3.6) is absent in the 2IKM, where it would correspond

to doubly occupied impurities (the labels 1 and 2 for the d-orbitals translate in the

2IKM into the two one-orbital impurities). Yet we can perturb our Hamiltonian by

adding to H of (3.1) the term

HG = G (T z)2 , (3.13)

with G > 0, which raises the energy of the doublet. If G � TK , the doublet effec-

tively decouples from the low energy sector, and our model should become equivalent

to the 2IKM. In Section 3.2 we show that indeed by increasing G our UFP smoothly

transforms into the 2IKM one.

3.2 NRG analysis

We restrict our analysis to large values of U , where valence fluctuations on the impu-

rity are substantially suppressed. Here, as we discussed, the AIM effectively behaves

like the Kondo model (3.8). We fix both U and ∆0 and span the phase space by

varying the exchange parameter J .

Following Section 2.1 we introduce the log-discretized Hamiltonian HN of the

system made up with the impurity and N + 1 sites:

HN = Λ(N−1)/2

{

N−1
∑

n=0

Λ−n/2ξn

(

f †
naαf(n+1)aα + f †

(n+1)aαfnaα

)
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+∆̃
1/2
0

(

f †
0aαdaα + d†aαf0aα

)

+
Ũ

2
(nd − 2 + ν)2 + 2J̃

[

(T x)2 + (T y)2]

}

. (3.14)

Here Ũ = CΛ U , J̃ = CΛ J , ∆̃0 = C2
Λ

2∆0

π
, see (3.7), where CΛ =

(

2Λ
1+Λ

)

and all

energies are measured in units of half the conduction bandwidth. ν for the time being

is set to 0.

The symmetries exploited in the calculations correspond to the group U(1)charge×
SU(2)spin×U(1)orbit. The three conserved quantities are the chargeQ, corresponding

to half the deviation of the number of particles from the half-filled condition, the

magnitude of the spin S and the z-component of the orbital momentum Tz. The

reason to define the charge in this way is that it can be seen as the z-component of

a vector. In some impurity problems this vector, called hypercharge, is a conserved

quantity and in general in CFT approach this symmetry can be used as a building

block to decompose the symmetry group of the bulk system.

3.2.1 Phase diagram

First of all we identify the fixed points by analyzing the low energy spectra (with N

typically up to one hundred). Since the conventional size-dependence of the level

spacing is absorbed by the factor Λ(N−1)/2 in front of (3.14), the low-lying energy

levels flow to constant values whenever the model is close to a fixed point. Fig. 3.1

shows that there are two different asymptotic regimes separated by a critical value

J∗ < 0. In order to facilitate the interpretation of that figure, we recall that the

ground state of a particle-hole symmetric free-chain with N + 1 sites is unique if N

is odd and degenerate if N is even.

For J > J∗ the low energy spectrum of a chain with even number, N + 1, of

sites flows towards that of a free chain with an odd number of sites and viceversa.

This is evident in the right panel of Fig. 3.1 where the ground state of the chain with

odd N (even number of sites) becomes asymptotically degenerate as for a chain with

even N (odd number of sites). Apart from the ground state degeneracy, also the low-

lying spectrum, i.e. degeneracy and quantum numbers of the levels as well as the

level spacings, coincides with that of a free chain. As usual, this is as if the first site

of the chain were locked to form a spin and orbital singlet with the impurity, hence
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Figure 3.1: Lowest energy levels versus the chain size N . The left/right panels cor-

respond to a deviation δJ/J∗ = ±4 · 10−3 from the fixed point value J∗. The levels

are labeled by the quantum numbers (Q, T z, S). [Λ = 3, J = −0.05057425 (left)

−0.05057375 (right), JK = 0.05]

becoming inaccessible to the conduction electrons which thus acquire a π/2 phase

shift per spin and conduction channel. It is a conventional Kondo screened phase.

For J < J∗ the situation is reversed: the low energy spectrum of an odd (even)

chain flows to that of an odd (even) free chain. Indeed, as shown in the left panel of

Fig. 3.1, the ground state with N odd remains non-degenerate for large N . This case

corresponds to an unscreened phase with the impurity asymptotically decoupled from

the conduction bath. The phase shift is consequently δ = 0.

In between the Kondo screened and unscreened phases we do find a non-trivial

fixed point, as it is visible in the intermediate cross-over region of the spectrum, see

Fig. 3.1. The peculiar non-Fermi liquid character of this intermediate coupling unsta-

ble fixed point (UFP) is clear by the non-uniform spacing of the low energy levels. A

careful analysis of the UFP spectrum reveals that it is just the same as that one found

in the particle-hole-symmetric 2IKM[18]. In Table 3.1 we compare the energies E of
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Figure 3.2: Average impurity quantum numbers as function of J/|J ∗|. In the inset

the behavior around the UFP is shown in detail. Notice that the average of (T z)2 is

multiplied by 4 to make it more visible. [Λ = 3, JK = 0.05]

the lowest-lying levels of the Wilson chain at the UFP, as obtained by NRG, with the

prediction x of Conformal Field Theory for the 2IKM[18]. The agreement is a clear

evidence that the UFP is indeed the same in both models.

3.2.2 Calculation of 〈~S2〉, 〈~T 2〉 and 〈T 2

z 〉 and interpretation in terms

of density matrix

Additional information are provided by the average values of the impurity spin, 〈~S2〉,
pseudospin, 〈~T 2〉, and its z-component, 〈(T z)2〉.

These quantities are shown in Figure 3.2. For large positive J the impurity freezes

into the S = 1 T = 0 configuration, while for J negative and large the preferred

configuration is the singlet with T = 1 T z = 0. At the SU(4)-symmetric point

J = 0 where spin and pseudospin are equivalent the averages mirror this additional

degeneracy being 〈~S2〉 = 〈~T 2〉 = 1. Eventually at the UFP the values are 〈~S2〉 = 1/2,
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Table 3.1: Energies E of the low energy levels and their degeneracy Deg at the un-

stable fixed point. The levels are labeled by the quantum numbers Q, half of the

deviation of the number of electrons with respect to the half filled state, S, total spin,

and T z, total z-component of the pseudo-spin. The value x is the prediction of Con-

formal Field Theory for the two-impurity Kondo model[18]. Notice the anomaly of

the member within the (1/2, 1/2, 1/2) multiplets identified by a ∗, which was also

found in Ref. [18]. There an explanation for the discrepancy was proposed.

Q T z S x E Deg

0 0 0 0 0.00000 1
1
2

1
2

1
2

3
8

0.37260 8

0 0 1 1
2

0.49615 3

0 1 0 1
2

0.49583 2

1 0 0 1
2

0.49631 2
1
2

1
2

1
2

7
8

0.88021 8

0 0 0 1 0.99714 1

1.00216 1

1.00311 1

0 0 1 1 1.00279 3

0 1 1 1 1.00248 6

1 0 1 1 1.00295 6

1 1 0 1 1.00264 4
1
2

1
2

1
2

1+3
8

1.38880 8

1.38945 8

1.51556∗ 8
1
2

1
2

3
2

1+3
8

1.38924 16
1
2

3
2

1
2

1+3
8

1.38859 8
3
2

1
2

1
2

1+3
8

1.38957 8

0 0 0 1+1
2

1.55944 1

0 0 1 1+1
2

1.50195 3

1.55863 3

1.55983 3

1.60582 3

0 1 0 1+1
2

1.50141 2

1.55943 2

1.60467 2

0 1 1 1+1
2

1.55904 6

1 0 0 1+1
2

1.50222 2

1.55883 2

1.60636 2

1 0 1 1+1
2

1.55964 6

1 1 1 1+1
2

1.55923 12
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〈~T 2〉 = 3/2 and 〈T 2
z 〉 = 1/4.

It is possible to give an interpretation of these results in terms of the impurity

density matrix. By symmetry, the impurity density matrix is diagonal in the six two-

electron configurations. The diagonal elements represent the occupation probabilities

P (S, Sz, T, T z) of states with quantum numbers S, Sz, T and T z. In the large U -limit,

where impurity configurations with n 6= 2 have negligible weight, we can write

P (0, 0, 1, 0) = cos2 θ,

P (0, 0, 1,+1) = P (0, 0, 1,−1) = 1
2

sin2 θ sin2 φ,

P (1,+1, 0, 0) = P (1, 0, 0, 0) = P (1,−1, 0, 0) = 1
3

sin2 θ cos2 φ,

(3.15)

from which we derive that

〈~S2〉 = 2 sin2 θ cos2 φ,

〈~T 2〉 = 2
(

cos2 θ + sin2 θ sin2 φ
)

,

〈(T z)2〉 = sin2 θ sin2 φ.

(3.16)

In Fig. 3.3 we plot the angles θ and φ as obtained through (3.16) by the average

values calculated numerically. The UFP is characterized by θ = φ = π/4, namely by

the value 1/2 of the occupation probability of the singlet state (3.5). The precise value

of the other occupation probabilities, in other words of φ, are instead not relevant,

apart from the obvious fact that their sum should be 1/2 too. In fact, if we add the

term (3.13) with G > 0, we do find the same UFP, which locations now depends

also on G, which is still identified by P (0, 0, 1, 0) = 1/2, i.e. θ = π/4, although

the weight of the spin-triplet is enhanced with respect to the doublet (3.6), φ < π/4.

For large G we do recover the 2IKM values θ = π/4 and φ = 0, see Fig. 3.4. This

represents another confirmation of the fact that the two UFP’s are indeed the same.

3.2.3 Fermi liquid effective Hamiltonian description

As we said the low energy spectrum both in the Kondo screened and unscreened

phases flows to that of free chains, with one less site in the former case. Hence in

both cases the low energy stable fixed point Hamiltonian is very simple and allows

for a Fermi liquid description.

In the Kondo phase the fixed point Hamiltonian

H∗
N = Λ(N−1)/2

N−1
∑

n=1

Λ−n/2ξn

(

f †
naαf(n+1)aα + f †

(n+1)aαfnaα

)

(3.17)
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Figure 3.3: The angles θ and φ as defined through Eq. (3.16). Notice that the fixed

point is identified by θ = φ = π/4. [Λ = 3, JK = 0.05]

is that of two decoupled non-interacting chains with site 0 removed from both; in the

unscreened phase the fixed point Hamiltonian

H∗
N = Λ(N−1)/2

N−1
∑

n=0

Λ−n/2ξn

(

f †
naαf(n+1)aα + f †

(n+1)aαfnaα

)

(3.18)

is that of two decoupled non-interacting chains with all the original sites, being this

the only difference with the previous case. Due to this similarity it is possible to use

the same description for the odd-N fixed point in the Kondo phase and for the even-N

one in the unscreened phase (and viceversa).

As seen in Section 2.1.1, the flow towards the asymptotic spectrum can be de-

scribed by the fixed point Hamiltonian (free chains) plus a term containing the most

relevant operators allowed by the symmetries of the problem. In this particular case

the most relevant operators can be at most marginally irrelevant in the renormaliza-

tion group sense, being both fixed points stable. In reality they are irrelevant and in

particular they amount to local perturbation terms[35, 36] acting on the first available



54 Two-orbital model

0 10 20

G
z
/|J

*
|

0

π/4

π/2

θ
ϕ

Figure 3.4: The UFP values of θ and φ along the path parameterized by the coupling

G from our to the 2IKM model. [Λ = 3, JK = 0.05]

site, denoted as site 0, of the conduction chain, which is actually the second site in

the Kondo screened phase.

The most general possible local term allowed by the symmetry can be written as

δH = −t∗
∑

aα

(

f †
0aαf1aα +H.c.

)

+
U∗
2

(n0 − 2)2

+JS∗ ~S0 · ~S0 + JT∗ ~T0 · ~T0 − 2 (JS∗ + JT∗) (T z
0 )2 . (3.19)

We choose this particular form because it has the advantage that the energy of the

center of gravity of each multiplet with given number of particles n0 is just U∗(n0 −
2)2/2.

In principle there are infinitely many other terms allowed by symmetry, but, as we

will see, they are less relevant than these.

Let us concentrate on the odd-N fixed point in the Kondo phase. The Hamilto-

nian (3.17) can be easily diagonalized numerically to obtain a set of eigenvalues and

eigenvectors. Due to particle-hole symmetry the spectrum is symmetric with respect
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to the Fermi energy and, since both chains have now an odd number of sites there are

two eigenvalues equal to zero. Thus the ground state of the fixed point Hamiltonian

is 16-fold degenerate.

In the large-N limit the lowest eigenvalues converge to limiting values that depend

on Λ. For instance for Λ = 2 these values are:

Eigenvalue Associated operators

η̂0 = 0 g†0aα

η̂1 = 1.2963854 g†1aα, h
†
1aα

η̂2 = 2.8259658 g†2aα, h
†
2aα

η̂3 = 5.6568515 g†3aα, h
†
3aα

(3.20)

where operators g†iaα create particles in orbital a with spin α while h†
iaα create holes

(annihilate particles) in orbital a with spin α.

The strategy now is to express the operators in (3.19) in terms of the eigenvectors

of the fixed point Hamiltonian gi, hi and calculate to first order in perturbation the-

ory the change in energy due to such terms. The discrepancy between any finite-N

spectrum and that of the fixed point can then be fitted using (3.19) with suitable pa-

rameters. This procedure gives the values for the effective couplings U∗, t∗, JS∗ and

JT∗ that in turn will allow us to extract the Wilson ratios and scattering amplitudes.

A subtlety arises at this point: due to the error introduced by the truncation proce-

dure in the calculation, the spectrum obtained numerically never approaches exactly

the fixed point spectrum of (3.17). This problem is solved using as limiting spectrum

the one obtained for very large N , where the contribution of the irrelevant operators

is eventually negligible.

The relations between the operators f0 and f1 appearing in (3.19) and the opera-

tors gi and hi are

f0aµ = Λ−(N−1)/4



α̂00g0aµ +

(N−1)/2
∑

j=1

α̂0j

(

gjaµ + h†jaµ

)



 (3.21)

f1aµ = Λ−3(N−1)/4





(N−1)/2
∑

j=1

α̂1j

(

gjaµ − h†jaµ

)



 (3.22)

where the coefficients α̂nj are extracted from the diagonalization of (3.17).
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Incidentally we notice that the part of the effective Hamiltonian that contains the

irrelevant operators scales like

Λ(N−1)/2δH ∼ Λ−(N−1)/2 (3.23)

due to the Λ factors in (3.21) and (3.22). The relation between f3 and (gi, hi) is

similar to (3.21) but the prefactor is Λ−5(N−1)/4 and similarly for higher fn. Hence

any operator involving fn with n > 1 is less relevant than those in (3.19).

To proceed we need to classify the states in the spectrum in terms of gi and hi

operators. Since the effective couplings to be fitted are just 4 we can use the lowest

energy states involving only operators g0, g1 and h1.

To build the full Hilbert space H it is easier to build first the Hilbert space, H(1),

of a single chain and then divide it in subspaces of given charge and spin. Indicating

a subspace as (Q, S) we have the following decomposition:

H(1) = (0, 3/2) ⊕ [8 × (0, 1/2)] ⊕ [3 × (±1/2, 1)]

⊕ [6 × (±1/2, 0)] ⊕ [3 × (±1, 1/2)] ⊕ (±3/2, 0). (3.24)

Now we compose the states of the first and second chain to construct states of the

full system with given charge and spin. For instance the subspace with Q = 0 and

S = 0 of the full system of two chains is given in terms of subspaces of the single

chains by (the subscript indicates the chain)

(0, 0) = (−3/2, 0)1 ⊗ (3/2, 0)2

⊕

(3/2, 0)1 ⊗ (−3/2, 0)2
⊕

9 × [(−1, 1/2)1 ⊗ (1, 1/2)2]S=0

⊕

9 × [(1, 1/2)1 ⊗ (−1, 1/2)2]S=0
⊕

36 × (−1/2, 0)1 ⊗ (1/2, 0)2

⊕

36 × (1/2, 0)1 ⊗ (−1/2, 0)2
⊕

9 × [(−1/2, 1)1 ⊗ (1/2, 1)2]S=0

⊕

9 × [(1/2, 1)1 ⊗ (−1/2, 1)2]S=0
⊕

64 × [(0, 1/2)1 ⊗ (0, 1/2)2]S=0

⊕

[(0, 3/2)1 ⊗ (0, 3/2)2]S=0 (3.25)

and similarly for the other subspaces.

We can restrict our analysis to those states that contain at most one operator of

the first excited level (g1 or h1) since the number of states obtained in this way is

more than enough to study the low energy properties of the system. In Table 3.2 is

shown as an example a summary of the lowest energy states for the (Q = 0, S = 0)

subspace. We analyze only subspaces with Q ≥ 0 and T z ≥ 0 since, due to the
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Table 3.2: States in the Q = 0 S = 0 subspace employed to fit the couplings of

the effective Hamiltonian. These states are a subset of the states contained in the

subspace. Notice that h†a↑ lowers the charge by 1 and the z component of the spin by

1/2

Q = 0, S = 0

Subspace1 ⊗ Subspace2 State T z

E = 0

(−1/2, 0)1 ⊗ (1/2, 0)2 g†02↑g
†
02↓ -1/2

(1/2, 0)1 ⊗ (−1/2, 0)2 g†01↑g
†
01↓ +1/2

(0, 1/2)1 ⊗ (0, 1/2)2
1√
2

(

g†01↑g
†
02↓ − g†01↓g

†
02↑

)

0

E = η̂1

(−1/2, 0)1 ⊗ (1/2, 0)2
1√
2

(

g†02↑g
†
12↓ − g†02↓g

†
12↑

)

-1/2

(−1/2, 0)1 ⊗ (1/2, 0)2
1√
2

(

g†01↑h
†
11↑ + g†01↓h

†
11↓

)

g†02↑g
†
02↓ -1/2

(1/2, 0)1 ⊗ (−1/2, 0)2
1√
2

(

g†01↑g
†
11↓ − g†01↓g

†
11↑

)

+1/2

(1/2, 0)1 ⊗ (−1/2, 0)2
1√
2

(

g†02↑h
†
12↑ + g†02↓h

†
12↓

)

g†01↑g
†
01↓ +1/2

[(0, 1/2)1 ⊗ (0, 1/2)2]S=0
1√
2

(

g†01↑g
†
12↓ − g†01↓g

†
12↑

)

0

[(0, 1/2)1 ⊗ (0, 1/2)2]S=0
1√
2

(

g†11↑g
†
02↓ − g†11↓g

†
02↑

)

0

[(0, 1/2)1 ⊗ (0, 1/2)2]S=0
1√
2

(

g†01↑g
†
02↑g

†
02↓h

†
12↑ + g†01↓g

†
02↑g

†
02↓h

†
12↓

)

0

[(0, 1/2)1 ⊗ (0, 1/2)2]S=0
1√
2

(

g†01↑g
†
01↓h

†
11↑g

†
02↑ + g†01↑g

†
01↓h

†
11↓g

†
02↓

)

0

particle-hole symmetry and to the O(2)orb symmetry, subspaces with Q and −Q or

with T z and −T z are degenerate. Once identified the relevant states we calculate the

matrix elements of (3.19) using a Fortran program due to the large number of states

involved and the lengthy expression of (3.19) in terms of g0, g1 and h1.

The last step consists in fitting the difference between the spectrum of a finite-N

iteration and the asymptotic one in terms of the parameters of the effective Hamilto-

nian.

To obtain the same information in the unscreened phase we apply the same pro-

cedure for N even.

The result is shown in Fig. 3.5. Upon approaching the UFP on both sides, we find
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Figure 3.5: J dependence of the effective couplings in Eq. (3.19) around the UFP.

Notice that the couplings have been properly rescaled to show the common behavior

approaching the UFP. [Λ = 3, JK = 0.05]

that U∗ ∼ JS∗ = γ → +∞, JT∗ ∼ −5γ → −∞ and t∗ ∼ 3γ/8 → +∞.

The behavior of t∗ implies a divergence of the impurity contribution to the specific

heat coefficient. Namely if δCV is the variation of the specific heat with respect to its

value CV in the absence of the impurity, then

δCV

CV

∼ ρc t∗ → ∞.

The knowledge of the couplings of the effective Hamiltonian allows the calcula-

tion of Wilson ratios and scattering amplitudes. In Appendix A we will introduce a

Fermi liquid theory that provide the natural framework to analyze these results.

3.2.4 Entropy and energy scales

The physics around and right at the UFP has been uncovered by Conformal Field

Theory and bosonization[17, 18, 45, 46, 64]. Due to the existence of two energy

scales, the Kondo temperature TK and the exchange splitting, J , the quenching of the
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impurity degrees of freedom takes place in two steps. First, around an energy scale

T+ ∼ max(TK, |J |), most of the ln 6 entropy of the two-electron impurity multiplets

is removed, leaving behind a residual entropy ln
√

2 which gets quenched only below

a lower energy scale T− ∼ 1/γ. The latter depends quadratically upon the deviation

from the UFP, namely T− ∼ |J − J∗|2/T+. The entropy has a low energy linear

behavior, S(T ) ∼ T/T−, followed above T− by another linear one, S(T ) − ln
√

2 ∼
T/T+[18, 46]. At the fixed point, T− = 0, there is a finite residual entropy S(0) =

ln
√

2 and S(T ) − S(0) ∼ T/T+.

3.2.5 Impurity spectral function

The impurity density of states (DOS), ρ(ε), is defined through

ρ(ε) = − 1

2π
lim
η→0

[G(ε + iη) −G(ε− iη)] , (3.26)

where G(iεn) is the impurity Green’s function in Matsubara frequencies, which, by

symmetry, is diagonal in spin and orbital indices, and independent upon them. In

general

G(iεn)−1 = iεn − ∆(iεn) − Σ(iεn) = G0(iεn)−1 − Σ(iεn), (3.27)

where G0(iεn) is the non-interacting, U = J = 0, Green’s function,

∆(iεn) = V 2
d

∑

k

1

iεn − εk
, (3.28)

is the hybridization function, and Σ(iεn) the impurity self-energy. Let us suppose to

follow the behavior of the DOS as the interaction is switched on. We will imagine to

increase slowly both U and |J | at fixed U/|J | � 1 with J < 0. When U is small, one

can show by perturbation theory that

ImΣ(ε) ∼ ε2,

which is the standard result that the quasiparticle decay rate vanishes faster than the

frequency. Therefore at the chemical potential, ε = 0, the impurity DOS is not af-

fected by a weak interaction, since

ρ(0) = − 1

π
lim
η→0

ImG(0 + iη) = − 1

π
lim
η→0

ImG0(0 + iη) =
1

π∆0
= ρ0, (3.29)
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Figure 3.6: Impurity DOS in the presence of particle-hole symmetry across the fixed

point. The temperature is set by the length of the chain; it is practically zero. In

black the DOS’s well inside the Kondo screened phase (J/J ∗ = 0) and in red the

unscreened one (J/J∗ = 5.75). Here U = 2, ∆0 = U/(6π) and J∗ turns out to be

' −0.0035, all in units of half the conduction bandwidth. [Λ = 2]

where ∆0 = −Im∆(0 + iη) was introduced in Eq. (3.7), and ρ0 denotes the non-

interacting DOS at the chemical potential. In a single-orbital AIM, the above result

remains valid even when the interaction is very large. In our case we may expect

that something non-trivial should instead occur. Indeed, upon increasing U , the AIM

enters the Kondo regime, with a Kondo temperature exponentially decreasing with

U . Therefore at some critical Uc, when TK ∼ |J |, the AIM has to cross the non-

Fermi liquid UFP. Namely the UFP of our AIM can also be attained by increasing the

interaction strength, signaling a breakdown of the conventional perturbation theory.

We now discuss how this criticality shows up in the spectral properties.

In Fig. 3.6 and 3.7 we show the outcome of the numerical calculation in the

particle-hole symmetric case.

For J > J∗, in the Kondo screened region of the phase space, the DOS presents
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Figure 3.7: Details of the impurity DOS close to the chemical potential across the

UFP. (From top to bottom J/J∗ = 0, 0.859, 0.945, 0.988, 1.002, 1.031, 1.146. The

other parameters are the same as in Fig. 3.6) Notice the narrow peak which transforms

into a narrow pseudo-gap.

the typical features of a Kondo screened impurity. At an energy of order ±U/2 there

are the so-called Hubbard peaks, representing charge fluctuations of the impurity, and

the Kondo resonance is pinned at the chemical potential. As predicted by simple

perturbation theory, the height at the chemical potential is ρ(0) = ρ0. As the system

gets closer to the UFP, the Kondo resonance becomes the sum of two resonances, a

broad one that remains almost constant as a function of J and a narrow peak that

shrinks progressively approaching the UFP.

In the unscreened region the two Hubbard peaks are still present but now, close

to the UFP, the narrow peak transforms into a narrow pseudo-gap within the broad

resonance, and ρ(0) = 0. Numerically we find that ρ(ε) ∼ ε2. As discussed before,

this implies that the conventional behavior ImΣ(ε) ∼ ε2 breaks down across the UFP.

Exactly at the fixed point, both the narrow peak and the pseudo-gap disappear,

leaving aside only the broad resonance. The calculated DOS at the chemical potential
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seems to be half of its non-interacting value, see Fig. 3.7. In other words our numeri-

cal results point to a DOS at the chemical potential which jumps across the UFP, being

ρ(0) = ρ0 everywhere in the Kondo-screened phase, ρ(0) = 0 in the unscreened one,

and ρ(0) = ρ0/2 right at the UFP.

3.2.6 Modeling of the spectral function

It is possible to infer an analytical expression of the impurity DOS. First of all we

notice that the values at the chemical potential in the screened and in the unscreened

Kondo regimes are compatible with general scattering theory. In both phases the

impurity has disappeared at low energy, either because it has been absorbed by the

conduction sea or because J has taken care of quenching the impurity spin and orbital

degrees of freedom. This in turns means that what remains at low energy is just

a potential scattering felt by the conduction electrons plus a local electron-electron

interaction term, as we saw in Section 3.2.3. The on-shell S-matrix at the chemical

potential has in general elastic and inelastic contributions (see Ref. [65]). At zero

temperature only the former survives. Since we considered just s-wave scattering,

the elastic component of the S-matrix is given by:

S(0) = 1 − 2πiρcT (0) = 1 − 2 π∆0 ρ(0), (3.30)

where ρc is the conduction electron DOS at the chemical potential per spin and band,

and the T -matrix is defined through the conduction electron Green’s function G by

G = G0 + G0 T G0. (3.31)

On the other hand the S-matrix is related to the scattering phase shift by

S(0) = e2iδ(0). (3.32)

In the Kondo screened phase, we know that δ(0) = π/2 which, through (3.32) and

(3.30) implies ρ(0) = 1/π∆0, namely its non-interacting value ρ0. On the other hand,

in the unscreened regime δ(0) = 0 hence ρ(0) = 0, as we indeed find. It has been

proposed that at the non-Fermi liquid fixed point of the over-screened S = 1/2 two-

channel Kondo model the S-matrix is instead purely inelastic[17, 66, 67]. That would

imply a vanishing elastic contribution, S(0) = 0 in (3.30), and in turn a DOS at the

UFP

ρ(0) =
1

2π∆0
=

1

2
ρ0, (3.33)
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which is indeed compatible with our numerical results[68]. Yet there is a difference

between the UFP of our model, equivalently of the 2IKM, and the non-Fermi liquid

fixed point of the S = 1/2 two-channel Kondo model. While in the latter the specific

heat has a singular temperature behavior right at the UFP, in our model it has a con-

ventional linear behavior. The singular behavior of the two-channel Kondo model is

due to the presence of a leading irrelevant operator at the fixed point with dimension

3/2. The same operator is not allowed in the 2IKM[18] as well as in our model due

to symmetry constraints and hence the specific heat in that case is linear.

For the same reason we do not expect any non-analytic correction to the electron

self energy[43] which leads us to a simple ansatz for the low-energy impurity DOS:

ρ±(ε) =
ρ0

2

(

T 2
+

ε2 + T 2
+

± T 2
−

ε2 + T 2
−

)

, (3.34)

where the plus sign refers to the Kondo screened phase and the minus to the un-

screened one. The two energy scales have the same meaning as in Section 3.2.4. In

particular T− controls the deviations from the UFP, so that right at the UFP, when

T− = 0, the DOS is

ρ∗(ε) =
ρ0

2

T 2
+

ε2 + T 2
+

. (3.35)

The model-DOS (3.34) also implies a model impurity Green’s function in Matsubara

frequencies:

G±(iεn) =
1

2∆0

(

T+

iεn + iT+ signεn
± T−
iεn + iT− signεn

)

. (3.36)

The fixed point Green’s function, G∗(iεn), is identified by T− = 0. The impurity

self-energy can then be extracted by the relation

Σ±(iεn) = iεn + i∆0 sign εn −G±(iεn)−1.

In particular, at low frequency we find that

iεn − Σ+(iεn) ' iεn
∆0

2

(

1

T+
+

1

T−

)

, (3.37)

in the Kondo screened phase, hence a standard linear behavior. On the contrary, in

the unscreened regime the self-energy is singular

iεn − Σ−(iεn) ' − 1

iεn

2∆0T+T−
T+ − T−

. (3.38)
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Figure 3.8: Fit values of T+ and T− close to the UFP. The lines are quadratic fits,

T− = A(δJ)2. [U = 2, ∆0 = U/(6π), J∗ ' −0.0035, Λ = 2]

Finally, at the fixed point the self-energy is finite at zero frequency, being given by

iεn − Σ∗(iεn) = i∆0
T+ + 2εn

T+
. (3.39)

We have checked that the model-self-energy gives indeed a good representation of the

actual numerical results. In Fig. 3.8 we draw the fit values of T+ and T− around the

UFP.

We can further test the consistency of the approach by invoking the scattering

theory which, by the Friedel’s sum rule, allows us to identify the scattering phase

shifts through:

δ(ε) = Im lnG(ε+ i0+). (3.40)

By means of our ansatz for the impurity Green’s function (3.36) we readily find that

the expression of the low-energy phase-shifts is

δ+(ε) ' π

2
+
ε

2

(

1

T+
+

1

T−

)

≡ π

2
+ α+ε (3.41)
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within the Kondo screened regime, and

δ−(ε) ' ε

(

1

T+
+

1

T−

)

≡ α−ε, (3.42)

in the pseudo-gap unscreened phase, consistent with our starting assumption. More-

over, by the energy dependence of the phase shifts, we can calculate the impurity

correction to the specific heat
δCV

CV
=
α±
πρc

. (3.43)

3.3 Fermi liquid theory

In Appendix A we have presented a Landau Fermi liquid description of a generic

AIM which generalizes the conventional theory, as for instance developed by Mihály

and Zawadowskii[75], to cases where Kondo screening does not take place, yet the

behavior is Fermi liquid like. This is just our case in the unscreened regime where the

phase shift at the chemical potential is zero.

In this Section we are going to use this theory to extract some physical properties

upon approaching the UFP for convenience from the Kondo screened side.

A suitable generalization of Fermi liquid theory is achieved by the introduction of

the quantity

ρ̄∗ =

∫ ∞

−∞

dε

π

∂f(ε)

∂ε
Im

{

G(ε+ iδ)

[

1 −
(

∂∆(iε)

∂iε

)

iε→ε+iδ

−
(

∂Σ(iε)

∂iε

)

iε→ε+iδ

]}

,

(3.44)

which plays the role of the quasiparticle density of states at the chemical potential and

does not vanish both in the Kondo screened and in the unscreened phases, in spite of

the fact that in the latter the impurity DOS ρ(ε) is actually zero at ε = 0. In the Kondo

screened phase, where ρ(0) 6= 0 and the self-energy is well behaved,

ρ̄∗ =
ρ(0)

Z
, (3.45)

where
1

Z
= 1 −

(

∂Σ(iε)

∂iε

)

iε→i0+

, (3.46)

is the conventional definition of the quasiparticle residue Z.
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An incoming pair can be a spin-triplet orbital-singlet, with a scattering vertex at

zero incoming and outgoing frequencies given by

Γ1 → Γ1σ,2σ;2σ,1σ ,
1

2
Γ1σ,2−σ;2−σ,1σ − 1

2
Γ1σ,2−σ;1−σ,2σ .

Here 1 and 2 label the two orbitals with T z = +1/2 and T z = −1/2, respectively.

Alternatively it can be a spin-singlet orbital-triplet with T z = 0, with scattering vertex

Γ0
0 →

1

2
Γ1σ,2−σ;2−σ,1σ +

1

2
Γ1σ,2−σ;1−σ,2σ,

or with T z = ±1, in which case

Γ0
± → Γ1σ,1−σ;1−σ,1σ, Γ2σ,2−σ;2−σ,2σ .

In reality it is more convenient to introduce for each scattering vertex the correspond-

ing dimensionless quantity through:

A1 = Z ρ(0) Γ1,

A0
0 = Z ρ(0) Γ0

0,

A0
± = Z ρ(0) Γ0

±,

(3.47)

valid in the Kondo screened regime.

As we discuss in Appendix A, only the susceptibilities of conserved quantities can

be expressed in terms of the Landau parameters (A.16), which are simply connected to

the scattering vertices at zero frequency. Yet we can still define Landau parameters for

non-conserved quantities, which, although do not serve to calculate susceptibilities,

may provide a qualitative estimate of their magnitude. Therefore we are going to

introduce the Landau parameters for the charge, AC , spin AS , the z-component of the

pseudo-spin ~T , A||
T , all being related to conserved quantities, but also for the x and y

components of ~T , A⊥
T , as well as for the spin-orbital components, A||

ST and A⊥
ST . In

terms of the dimensionless amplitudes (3.47) they can be shown, after some lengthy

algebra, to have the following expressions:

AC =
1

4

(

6A1 + 2A0
0 + 4A0

±
)

, (3.48)

AS =
1

4

(

2A1 − 2A0
0 − 4A0

±
)

, (3.49)

A
||
T =

1

4

(

−6A1 − 2A0
0 + 4A0

±
)

, (3.50)
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A⊥
T =

1

4

(

−6A1 + 2A0
0

)

, (3.51)

A
||
ST =

1

4

(

−2A1 + 2A0
0 − 4A0

±
)

, (3.52)

A⊥
ST =

1

4

(

−2A1 − 2A0
0

)

. (3.53)

Let us consider several possible cases.

• If J = 0, SU(4) symmetry holds. Then A1 = A0
0 = A0

± = A, leading to

AC = 3A,

AS = A
||
T = A⊥

T = A
||
ST = A⊥

ST = −A.

In the s-d limit, when the AIM maps onto an SU(4) Kondo model, the charge

compressibility in negligible, leading to 3A = 1. The Wilson ratios for the

conserved quantities are defined trough

Ri =
δχ(i)

χ0

CV

δCV
= 1 − Ai, (3.54)

where δχ(i) has been defined in (A.8), χ0 = ρc and CV are respectively the

conduction-electron susceptibility and specific heat in the absence of the impu-

rity, and

δCV =
ρ̄∗
ρc
CV ,

is the variation of the specific heat due to the impurity. Hence all Wilson ratios

have a universal value,

RS = RT = RST = 1 + A = 4/3, (3.55)

in agreement with Conformal Field Theory.

• If J � TK > 0 the impurity gets frozen in the Kondo limit into a spin S=1.

Then both AC = 1 and A||
T = 1, which implies

A0
± = 1,

A0
0 = −3A1.
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However one expects that, being the spin-triplet an orbital singlet, the SU(2)

orbital symmetry gets restored at the fixed point, much in the same way as spin

anisotropy is irrelevant at the Kondo fixed point. This further implies that

A0
0 = −3A1 = 1,

namely AS = −5/3, with a Wilson ratio RS = 8/3, in agreement with known

results.

• Let us now suppose to be close to the UFP within the Kondo screened regime.

As usual the charge degrees of freedom are suppressed already below U , so that

we can still assume AC = 1.

Moreover we expect that the spin and the orbital degrees of freedom related to

T z get quenched below T+. This is suggested by the regular behavior of the

susceptibilities associated to S and Tz at the UFP. Indeed, as we have seen,

in our UFP it is absent the leading irrelevant operator that generates singular

correction to the spin susceptibility in the S = 1/2 two-channel Kondo model.

The remaining degrees of freedom are freezed only below T− � T+.

Therefore at very low temperatures T < T−, we can safely assume that

T− δχS ∼ T− δχ
||
T ∼ T−

T+
∼ 0,

namely AS = A
||
T = 1. As a result we find that

A0
± = A1 = 1, (3.56)

A0
0 = −3. (3.57)

Eq. (3.57) implies a strongly attractive s-wave singlet channel. The other Lan-

dau parameters are thus given by

A⊥
T = A

||
ST = −3, (3.58)

A⊥
ST = 1. (3.59)

This further proves that the fixed point is equally unstable in the s-wave Cooper

channel Γ0
0, as well as in the T x, T y and ~S T z particle-hole channels.
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We finally notice that, although the Landau A-parameters would suggest that

the susceptibilities in the unstable channels, all of which correspond to non-

conserved quantities, diverge as 1/T−, in reality they only diverge logarith-

mically[18, 45, 46]. This is not incompatible with Fermi liquid theory, which

allows to express in terms of the A-parameters only those response functions

related to conserved quantities.

We can now use these Fermi liquid theory predictions to interpret the NRG re-

sults of Section 3.2.3. Indeed from the effective Hamiltonian couplings it is possible

to extract the scattering amplitudes and compare them with the Fermi liquid theory

results.

In Fig 3.9 we plot the Wilson ratios for spin (RS) and z-component of orbital

momentum (RT z) as obtained from NRG calculations. The first thing to notice is that

in the SU(4) regime with J = 0 and in the large J limit the results agree with Fermi

liquid picture and with know results. Close to the UFP instead both Wilson ratios

vanish as expected.

A deeper insight is provided by the scattering amplitudes shown in Fig 3.10.

Again the values calculated numerically agree with the Fermi liquid theory predic-

tion in the three cases considered.

The most relevant result is the behavior close to the UFP: in this region

A0
0 ' A⊥

T ' A
||
ST ' −3,

while all the other Ai’s tend to 1, implying vanishing Wilson ratios. The fixed point

seems therefore to display a large hidden symmetry, actually an SO(7) as identified

by Ref. [18]. The UFP is equally unstable in the s-wave Cooper channel with S = 0,

T = 1 and T z = 0, as well as in the particle-hole T x(y) and ~S T z channels. All of

them correspond to physical instabilities as we anticipated and unlike what happens

in the 2IKM. On the contrary any external field in the other channels do not spoil the

UFP, in particular in the charge, spin and T z particle-hole channels, which refer to

conserved quantities.

Let us now use our model self-energy to extract some additional information.

Through Eq. (3.37), we find that in the Kondo screened regime the expression (A.16)

holds with a quasiparticle residue

1

Z
=

∆0

2

(

1

T+
+

1

T−

)

. (3.60)
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Figure 3.9: Spin (RS) and z-component of orbital momentum (RT z) as functions of

J . [Λ = 3, JK = 0.05]

Indeed Z ∼ 2T−/∆0 → 0 upon approaching the unstable fixed point.

On the contrary, the general expression (A.14) has to be used inside the non-

Kondo screened pseudo-gap phase. Through Eq. (3.36) for G−(iεn) we find that at

low frequency

G−(ε+ iδ)G−(ε− iδ) ' 1

4∆2
0

ε2 (T+ − T−)2

T 2
+T

2
−

' π

2∆0

ρ−(ε)
T+ − T−
T+ + T−

.

By Eq. (3.38) the quasiparticle DOS at the chemical potential turns out to be finite,

ρ̄∗ =
1

π

T+ + T−
T+T−

, (3.61)

even though the impurity DOS vanishes. In conclusion, within the pseudo-gap phase

the Landau parameters have the following expression

Ai =
π

2

T+T− (T+ − T−)

(T+ + T−)2

∫ ∞

−∞
dε dε′

∂f(ε)

∂ε
ρ(ε)

∂f(ε′)

∂ε′
ρ(ε′)
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Figure 3.10: The scattering amplitudes in the various particle-particle channels as

function of J measured in units of the UFP J ∗. [Λ = 3, JK = 0.05]

∑

cd;γδ

Γaα,dδ;cγ,bβ(ε+ iδ, ε′ − iδ′; ε′ + iδ′, ε+ iδ)

(

M (i)
)γδ

cd

(

M (i)
)βα

ba
. (3.62)

In spite of the anomalous impurity Green’s function, the low-energy behavior should

still be described within a local Fermi liquid scenario by finite Landau parameters

Ai’s. Therefore, since the impurity DOS vanishes quadratically in the pseudo-gap

phase, then the scattering vertices must display a singular behavior

Γ(ε, ε′; ε′, ε) ∼ 1

(ε+ ε′)4
,

to compensate for the vanishing DOS’s and provide finite A’s.
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3.4 Particle-hole symmetry breaking

In this Section we analyze more in detail various symmetry breaking terms in the

particle-hole channel. In particular we are going to consider the three following per-

turbations to the original Hamiltonian (3.1) with ν = 0:

δHp−h = ν U nd ≡ hp−h

2
nd, (3.63)

δHz = hz T
z, (3.64)

δHx = hx T
x. (3.65)

The term (3.63) breaks particle-hole symmetry trying to occupy the impurity with

2 − ν electrons instead of two, see (3.1). The other terms, (3.64) and (3.65), split the

orbital degeneracy. It is convenient to decompose the orbital O(2) symmetry into the

continuous U(1) symmetry related to proper rotations around the z-axis, and a dis-

crete Z2, corresponding to interchanging the two orbitals. Then δHz breaks the orbital

Z2 while δHx breaks the orbital U(1). Among them, only the latter, δHx, is predicted

to be relevant and wash out the fixed point, at least according to bosonization[64]. Ac-

tually this looks a bit strange result if one invokes naïvely the argument of Ref. [18]

to demonstrate the existence of an UFP in the absence of any particle-hole symme-

try breaking term. This argument is based on the observation that, when O(2)orbit

symmetry holds, the phase shifts in both orbital channels have to be equal, δ1 = δ2.

By general particle-hole symmetry, this further implies that 2δ1 = 2δ2 = 0 mod(π).

Since for J � TK > 0 we know that δ1 = δ2 = π/2, while for J � −TK < 0,

δ1 = δ2 = 0, there must necessarily be a fixed point in between.

Let us assume now that the T z-term (3.64) is present and follow Ref. [18] to

demonstrate that the necessary condition for the existence of an intermediate fixed

point does not hold anymore. Since (3.63) is absent, there is still a residual particle-

hole symmetry according to which

δ1 + δ2 = 0 mod(π).

If δ1 = −δ2 then the two limiting cases, δ1 = δ2 = 0 and δ1 = −δ2 = π/2, can be

smoothly connected without requiring any critical point in between. This argument

thus proves that an intermediate fixed point does not need to exist, yet it does not

demonstrate its non-existence. Indeed we know by bosonization and we now show
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Figure 3.11: Lowest energy levels versus the chain size N in the presence of a finite

ν = 0.05. The left/right panels correspond to a deviation δJ/J ∗ = ±3 · 10−5 from

the fixed point value J∗. The levels are labeled by the quantum numbers (Q, T z, S)

as in Fig. 3.1. Notice that as a consequence of ν 6= 0 some degeneracies found in

the particle-hole symmetric case are lost. [Λ = 2, U = 2, ∆0 = U/(6π), J =

−0.0035985 (left), J = −0.0035984 (right)]

by NRG that both (3.64) as well as (3.63) do not wash out the UFP. On the contrary a

T x-term (3.65) does destabilize the fixed point, as shown later.

A direct way to prove that a particle-hole symmetry breaking perturbation of the

form (3.63) does not spoil the UFP is by analyzing the low energy spectrum. We

show in Fig. 3.11 the analogous of Fig. 3.1 in the presence of a finite ν = 0.05 which

breaks particle-hole symmetry. In spite of that, we still find evidences of an UFP

separating the Kondo screened from the unscreened regimes. Needless to say, this

fixed point is identified by the same spectrum we find in the particle-hole symmetric

case, as can be realized by comparing the intermediate cross-over region in Fig. 3.11

with that in Fig. 3.1. Yet one might object that this is not a rigorous proof since

numerically it is not possible to distinguish a true transition from a sharp cross-over.

Even though we did check that upon varying J we can approach as close as we want
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the UFP, eventually flowing in either of the two stable fixed points, we have found

more convenient to resort to an alternative proof which seems more free of numerical

uncertainties.

Let us go back to Eq. (3.30) and try to guess how would it change in the presence

of (3.63) and/or (3.64). We have now to introduce an S-matrix for each channel, Sa

with a = 1, 2, satisfying

Re Sa(0) = cos 2δa(0) = 1 − 2 π∆0 ρa(0). (3.66)

Let us assume that, across the UFP, the zero-frequency phase shifts still jump by π/2.

In other words, if we denote as

δ−,a(0) ≡ δa, (3.67)

the phase shift in the unscreened phase, in the Kondo-screened one the phase shift

should be

δ+,a(0) = δa +
π

2
.

Through (3.66) this would imply a jump of the DOS at the chemical potential given

by

ρ+,a(0) − ρ−,a(0) =
1

π∆0
cos 2δa = ρ0 cos 2δa. (3.68)

The above scenario predicts that although the pseudo-gap in the unscreened phase

is partly filled away from particle-hole symmetry, yet the DOS has a finite jump across

the UFP. This is indeed confirmed by NRG. In Fig. 3.12 we plot the DOS at fixed

ν = 0.05, see Eq. (3.63), across the UFP, clearly showing the jump.

We notice that if only (3.63) is present, then δ1 = δ2 in Eq. (3.67). If (3.63) is

absent but (3.64) is present, then δ1 = −δ2, yet the behavior across the UFP is similar,

which is the reason why we just show the results with finite ν.

This behavior is also compatible with the NRG result that the charge and T z Wil-

son ratios vanish around the UFP. Actually they all suggest that the model can absorb

a chemical potential shift, equal or different in the two channels 1 and 2, on a high

energy scale, at least of order T+, without having to modify what takes place at lower

energies of order T−: a kind of Anderson’s compensation principle for our conserved

quantities. Following these observations, we argue that the DOS for orbital a = 1, 2

in the presence of any of the two perturbations, (3.63) and (3.64), assumed to be weak,
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Figure 3.12: Impurity DOS across the UFP in the presence of a finite ν =

0.05 which breaks particle-hole symmetry. From top to bottom J/J ∗ =

0, 0.28, 0.57, 0.86, 1.14, 1.43, 1.71. Notice that the DOS at the chemical potential is

always finite, although very small hence not visible in the figure. [Λ = 2, U = 2,

∆0 = U/(6π), J∗ ∼ −0.0035985]

can be modeled as

ρ±,a(ε) =
ρa

2

[

T 2
+ + µ2

±,a

(ε+ µ±,a)2 + T 2
+

± cos 2δa
T 2
−

ε2 + T 2
−

]

, (3.69)

where again the plus refers to the Kondo screened phase, the minus to the unscreened

one, ρa = ρ+,a(0) is the value of the DOS at the chemical potential in the screened

regime, while

µ±,a = ±T+ sin 2δa.

According to the model DOS (3.69), the narrow peak and pseudo-gap remain pinned

at the chemical potential, ε = 0, while only the broad resonance moves away from

particle-hole symmetry.

Let us now study what happens if, starting from the particle-hole symmetric

pseudo-gap phase we move away by increasing ν, keeping all other Hamiltonian pa-
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Figure 3.13: Impurity DOS upon increasing the strength of particle-hole sym-

metry breaking ν starting from the unscreened pseudo-gapped phase (ν =

0, 0.05, 0.1) up to the Kondo screened one (ν = 0.15, 0.2). In the left in-

set it is shown the low energy part across the UFP (from top to bottom ν =

0.2, 0.175, 0.15, 0.125, 0.1, 0.075, 0.05, 0); notice the analogy with the p-h symmet-

ric case in Fig. 3.6 and 3.7. In the right inset we explicitly show the gradual filling of

the pseudo-gap upon increasing ν. [Λ = 2, U = 2, ∆0 = U/(6π), J = −0.004]

rameters fixed. As shown in Fig. 3.13, ν is able to drive the model across the UFP.

This result could be foreseen. Indeed ν forces the impurity to accommodate 2 − ν

electrons. If ν = 1, the impurity tends to be singly-occupied. Therefore in the Kondo

limit it behaves like a spin S = 1/2 and pseudo-spin T = 1/2 moment, which can be

perfectly Kondo-screened and it is moreover stable with respect to little changes of ν

with respect to ν = 1. Hence, if the model is at ν = 0 in the pseudo-gap phase, it

has to cross a fixed point to reach the large-ν Kondo screened regime. This behavior

is quite interesting in connection with DMFT lattice calculations, since it implies that

the lattice-model local critical regime, which reflects the single-impurity UFP, may

also be attained by doping, as recently confirmed[24].
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In conclusion we find that the UFP extends away from the particle-hole symmetric

point, ν = 0, giving rise to a whole critical line: J∗(ν,∆0, U) < 0 such that for

J > J∗(ν,∆0, U) complete Kondo screening takes place while for J < J∗(ν,∆0, U)

the impurity is in the unscreened pseudo-gap regime.

Let us briefly discuss the fate of this critical line as particle-hole asymmetry be-

comes very large. We find that J∗(ν,∆0, U) decreases by increasing ν, being of order

−TK for µ ' 0 and becoming of order −U for large |ν|, thus eventually going outside

the region U � |J |,∆0 we are interested in.

This result can also be physically understood. Let us suppose for instance that the

average impurity-occupancy is fixed to be one. Still we keep assuming U � ∆0, thus

preventing the occupancy from freely fluctuating around its mean value. We notice

that the effective Hubbard repulsion, Ueff , acting on the impurity is by definition

Ueff ≡ E0(0) + E0(2) − 2E0(1), where E0(n) is the ground-state energy for n-

electron configurations.

If J < 0, the n = 2 ground state has S = 0, T = 1 and Tz = 0, see Eq. (3.5), and

we find Ueff = U − 2|J |. Therefore, if U � |J |, the impurity effectively behaves

like a spin S = 1/2 and pseudo-spin T = 1/2 moment which, as we said, is Kondo

screened. On the contrary, if J � −U , Ueff � 0 hence the impurity prefers to

oscillate between zero and double occupancy to take full advantage of the inverted

Hund’s rules. In this unconventional mixed-valence regime induced by J , the DOS

actually develops a pseudo-gap at the chemical potential. Therefore the critical line

transforms for large particle-hole asymmetry into the critical point which separates

the local moment from the J-induced mixed valence regime.

A completely different behavior occurs if we introduce instead a T x perturbation

of the form (3.65). Here, as expected, we do not find any jump of the DOS, as clear in

Fig. 3.14 where we compare the DOS at the chemical potential in the presence either

of (3.63), hp−h 6= 0, or (3.65), hx 6= 0. This demonstrates that a perturbation in the

particle-hole channel which breaks the orbital U(1) symmetry is relevant at the UFP,

unlike (3.63) and (3.64) which instead do not break the U(1)orbit symmetry.
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3.5 Relevance of the single impurity results in connec-

tion with DMFT

Let us now discuss the above results in connection with DMFT. In reality a formal

correspondence between single-impurity and lattice models holds strictly only in the

limit of large lattice-coordination. Nevertheless we believe that this correspondence,

at least close to a Mott transition, may remain valid even beyond that limit, making the

single-impurity analysis of much broader interest. Therefore, although inversion of

Hund’s rules may indeed occur in realistic AIM’s or in artificially designed quantum

dot devices, here we rather focus on lattice models which map within DMFT into our

AIM.

Suppose there is a lattice model which maps in the limit of large lattice-coordination
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onto the AIM (3.1) with J < 0. If the model is driven towards a Mott metal-insulator

transition, the effective AIM is necessarily pushed into a regime in which TK ∼ |J |,
namely in the critical region around the UFP. As shown in Fig. 3.10, the s-wave scat-

tering amplitude A0
0 as well as the equally relevantA⊥

T andA||
ST are strongly attractive

in an entire interval around the UFP. This suggests that the impurity fixed-point in-

stability might transform by DMFT self-consistency into a whole pocket where the

model generates spontaneously a bulk symmetry breaking order-parameter along one

of the relevant channels. If nesting or Van Hove singularities are absent, it is most

likely that the dominant instability will occur in the Cooper channel, the only one

which is singular in any dimensions and for any band-structure with a finite density

of states at the chemical potential. This has been indeed confirmed by very recent

DMFT calculations in Refs. [24, 69].

The other interesting observation is that in the conventional Hund’s regime, the

Kondo screened phase with J > 0, an attraction in the spin-triplet T = 0 channel

develops, A1 < 0. In realistic lattice models which map onto the AIM with J > 0 in

the limit of large lattice-coordination, spin-triplet superconductivity would compete

with bulk magnetism. Yet, if magnetism is frustrated, spin-triplet superconductivity

might emerge. In particular, since increasing the Hubbard U in the lattice model im-

plies decreasing TK in the AIM, which is the same as increasing the effective strength

of J > 0, we should expect that spin-triplet superconductivity is enhanced near the

MIT. This has been recently observed by DMFT[69]. However the enhancement of

the spin-triplet amplitude is not as dramatic as for the spin-singlet one near the UFP

at J < 0.

3.5.1 Two-band Hubbard model in the presence of an e⊗E Jahn-

Teller coupling

Let us start by considering a two-band Hubbard model in which each site is Jahn-

Teller coupled to a doubly degenerate phonon. The Hamiltonian reads

H = − t√
z

2
∑

a=1

∑

σ

∑

<ij>

(

c†aiσcajσ +H.c.
)

+
U

2

∑

i

(ni − 2)2 + 2JH

∑

i

[

(T x
i )2 + (T z

i )2]
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+
ω0

2

∑

i

∑

a=x,z

(

q2
ia + p2

ia

)

− g
∑

i

(qix T
x
i + qiy T

z
i ) . (3.70)

Here −t/√z is the hopping matrix element between one site and its z-neighbors and

JH > 0 is a conventional Hund’s exchange. qix and qiz are the phonon coordinates

at site i, pix and piz their conjugate momenta, ω0 the phonon frequency and g the

Jahn-Teller coupling. The latter gives rise to a retarded electron-electron interaction

whose Fourier transform is

g2
∑

i

ω0

ω2 − ω2
0

[T x
i (ω)T x

i (−ω) + T z
i (ω)T z

i (−ω)] .

If the phonon frequency ω0 is much larger than the quasiparticle bandwidth we can

safely neglect the ω-dependence at low energy, so that the phonon-mediated interac-

tion becomes unretarded and given by

− g2

ω0

∑

i

[

(T x
i )2 + (T z

i )2] .

Within DMFT the Hamiltonian maps in the limit of large lattice-coordination onto

the same AIM model as in Eq. (3.1) upon interchanging the z and y components of ~T

and with

J = JH − g2

2ω0
, (3.71)

which may be either positive or negative. The case with J < 0 as well as the starting

model realistically including phonons have been recently studied by DMFT[24, 69].

We notice that the superconducting order parameter, in the representation in which

the phonon coordinates are x and z, is

〈c†1k↑c
†
1−k↓ + c†2k↑c

†
2−k↓〉 (3.72)

that does not break time-reversal symmetry if the energies of the band arising from

orbital 1 and 2 are not degenerate.

3.5.2 Two-band Hubbard model with single-ion anisotropy

Another realization which may also be physically relevant is the following lattice

model:

H = − t√
z

2
∑

a=1

∑

σ

∑

<ij>

(

c†aiσcajσ +H.c.
)
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+
U

2

∑

i

(ni − 2)2 − 2JH

∑

i

~Si · ~Si

+D
∑

i

(Sz
i )

2 . (3.73)

For JH > 0 and D 6= 0 this model describes a two-band Hubbard model with conven-

tional Hund’s rules, favoring a spin-triplet two-electron configuration, in the presence

of a single-ion anisotropy which splits the spin-triplet into a singlet with Sz = 0 and

a doublet with Sz = ±1. If D > 0, the Sz = 0 configuration is favored. Upon

interchanging ~S ↔ ~T , this model maps in the z → ∞ limit onto (3.1) with

J = −JH ,

G = D − 2JH .
(3.74)

Our analysis suggests that the lattice model with D > 0 would still enter a local

critical regime before the MIT. Here the tendency towards spontaneous generation of

a bulk order parameter should be dramatically enhanced in the particle-hole channels

Sx, Sy and ~T Sz as well as in the spin-triplet Cooper channel with Sz = 0: c†1↑ c
†
2↓ −

c†2↑ c
†
1↓.

3.5.3 Two coupled Hubbard planes

Finally let us consider two coupled single-band Hubbard planes described by the

Hamiltonian

H = − t√
z

2
∑

a=1

∑

σ

∑

<ij>

(

c†aiσcajσ +H.c.
)

+
U

2

∑

a,i

(nai − 1)2

+
∑

i

J ~S1i · ~S2i + V (n1i − 1)(n2i − 1), (3.75)

where a = 1, 2 labels the two planes and −t/√z is the in-plane hopping between one

site and its z-neighbors. In the limit z → ∞ the relations between the interaction

parameters of the AIM, (3.1) plus (3.13), and those of (3.75) are given in Table 3.3.

In reality it is more interesting to consider the model (3.75) with J = V = 0 but

in the presence of an inter-plane hopping

−t⊥
∑

iσ

(

c†1iσc2iσ +H.c.
)

. (3.76)
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Table 3.3: Mapping between the AIM interaction parameters and the two Hubbard

plane ones.

AIM Two Hubbard planes

U 1
2
(U + V ) − 1

8
J

J −1
4
J

G U − V + 1
4
J

In the limit of large lattice-coordination, this model maps close to the MIT onto a

two-orbital AIM with an hybridization width at the chemical potential much smaller

than U . Since by the Table 3.3 G = U , we can safely project out of the low energy

subspace the doublet (3.6). The effective AIM within the impurity subspace which

includes the singlet (3.5) and the spin-triplet is

HAIM = Hc + JK

(

~S1 + ~S2

)

· ~S

+ J ~S1 · ~S2 + JK
t⊥
U

T x, (3.77)

where Hc and JK have been defined in Eqs. (3.1) and (3.10), ~S1 and ~S2 are the im-

purity spin operators for the singly-occupied orbitals 1 and 2, while ~S and T x are

respectively the conduction-electron spin-density operator and x-component of the

pseudo-spin density operator, ~T , at the impurity site. The impurity antiferromagnetic

exchange, J = 4t2⊥/U , lowers the energy of the singlet (3.5) with respect to the spin

triplet. Therefore J alone might induce an UFP within the phase diagram, just like in

our model as well as in the 2IKM. However t⊥ also introduces a T x scattering poten-

tial at the impurity site, last term in the right hand side of Eq. (3.77), which is known

to be relevant at the UFP, as seen in Section 3.4. In this respect t⊥ plays an intriguing

role: on one hand it provides a mechanism, the antiferromagnetic exchange J , able

to stabilize a non-trivial fixed point, but, in the meantime, it also prevents that fixed

point from being reachable. Yet we might wonder whether the critical region around

the UFP is completely or only partially washed out. In the latter case we should ex-

pect that the physics of the lattice model close to the MIT is still influenced by the

UFP, with interesting consequences.

Since the UFP is never reachable, the model always flows to a Fermi liquid fixed
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point. In the presence of t⊥ it is more appropriate to introduce the even and odd

combinations of the orbitals 1 and 2:

deσ =
1√
2

(d1σ + d2σ) ,

doσ =
1√
2

(d1σ − d2σ) ,

and correspondingly the even and odd conduction-electron scattering channels. Ac-

cording to what we said in Section 3.4, we expect the phase shifts δe = −δo to be

smooth functions of J . If there were no remnant of the UFP, the DOS’s should sim-

ply show a resonance, the even channel above the chemical potential and the odd

channel below it. In reality the behavior of the DOS remains strongly influenced by

the UFP, even though never reachable. This is evident in Fig. 3.15, where we draw

the DOS of deσ, ρe(ε), (the odd one is simply obtained by reflection around zero en-

ergy) at fixed t⊥ upon varying the hybridization width ∆0. There is no point at which

the DOS jumps at the chemical potential, yet a partly filled asymmetric pseudo-gap

remains. In Fig. 3.16 we draw the low-energy difference between the even and odd

DOS’s, which is also the off-diagonal spectral function A12(ε). A12(ε) shows a low

energy feature which has a non-monotonic behavior in ∆0 and almost develops into

a singularity around ∆0 = 0.47. We think that these results bring to the fore that t⊥
alone is able to drive the model very close to the UFP. In other words the width of the

critical region is larger than the energy scale which cut-off the fixed-point singulari-

ties, although both are generated by the same t⊥.
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Figure 3.15: Impurity DOS of deσ, ρe(ε), for the AIM Eq. (3.77). The

different curves correspond from the top to the bottom to values of ∆0 =

0.5, 0.47, 0.45, 0.4, 0.3 with t⊥ = 0.05 and U = 8. These values correspond to

JK = 0.08, 0.075, 0.072, 0.064, 0.049 and J = 4t2⊥/U = 0.00125. We notice the

remnant of an asymmetric pseudo-gap of order J . [Λ = 2]



3.5 Relevance of the single impurity results in connection with DMFT 85

Figure 3.16: Off-diagonal spectral function, A12(ε), with t⊥ = 0.05. The different

solid curves correspond from the top to the bottom for ε > 0 to values of ∆0 =

0.47, 0.45, 0.4, 0.3, while the dashed curve corresponds to ∆0 = 0.5. We notice that

the low energy feature first moves towards zero energy when ∆0 increases from 0.3

to 0.47, but from 0.47 to 0.5 it goes back again. Moreover, around ∆0 = 0.47, A12(ε)

is almost singular. [Λ = 2]





Chapter 4

Three-orbital model

In this Chapter we study another Anderson impurity with a richer and more intriguing

phase diagram than that one studied in the previous Chapter. The model is the single-

impurity version of the lattice model which has been introduced in Refs. [20, 21]

as representative of alkali doped fullerides AnC60 (A=K,Rb,Cs,Na). Fullerenes are

molecular conductors made of C60 molecules. Each molecule has a threefold degen-

erate t1u LUMO which hosts the valence electrons of the dopant alkali atoms. Ac-

cording to band structure calculations, AnC60 should be metallic for any 0 < n < 6.

Indeed A3C60 are metals which become superconducting at relatively high tempera-

tures. On the contrary, the only other stable three-dimensional compound, A4C60, is

a non-magnetic insulator.

It has been proposed[20, 21] that the insulating behavior is due to the Mott phe-

nomenon, since the narrow molecular bandwidth, W ∼ 0.5 eV, is almost three times

smaller than the intra-molecule Hubbard repulsion U . The reason why the Mott in-

sulator is non-magnetic, as would derive from Hund’s rules, is believed to be the

Jahn-Teller effect. Indeed the t1u orbitals are strongly Jahn-Teller coupled to eight

fivefold degenerateHg molecular vibrational modes, which are thought to be the main

responsible for superconductivity in the trivalent compounds. Single molecule calcu-

lations predict that C−4
60 has a non-degenerate spin-singlet ground state just because

the Hund’s rules loose against the Jahn-Teller effect, which in an isolated molecule

stays always dynamical. The analysis of Refs. [20, 21] predict that in the Mott in-

sulating phase of A4C60 each C−4
60 essentially recovers its molecular singlet ground

state. Moreover, in accordance with the experimental evidences of no static molecu-
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lar distortion, it was argued that the Jahn-Teller effect remains dynamical also in the

lattice system.

Accordingly it was later studied by DMFT how the transition into a singlet Mott

insulator occurs through a simplified model where the Jahn-Teller effect was forced

to stay dynamical by assuming very high vibrational frequencies. In this limit, the

so-called anti-adiabatic regime, the Jahn-Teller coupling effectively reduces to a non-

retarded electron-electron interaction of the same form as the standard exchange split-

ting but with opposite sign, thus leading to an inversion of the conventional Hund’s

rules. Unexpectedly it was found that a superconducting phase intrudes between the

metal and the non-magnetic Mott insulator[22], with quite unusual properties[23].

It was actually conjectured[22] that this result might be intimately connected with

the Anderson impurity model onto which the lattice model maps by DMFT. Indeed

the Anderson impurity includes, besides the Kondo exchange, also a competing intra-

impurity screening mechanism, the inverted Hund’s coupling, just like the model we

studied in Chapter 3. In view of our previous results, which have been confirmed by

a DMFT calculation, this conjecture seems very plausible. Indeed we will show that

an Anderson impurity model for a C−4
60 has a very similar phase diagram as the two-

orbital model we have previously analyzed. Namely it includes a non Fermi liquid

fixed point separating a conventional Kondo screened phase from an unscreened one.

Much more intriguing is what we find for the more interesting case of a C−3
60 im-

purity. Here the inverted Hund’s coupling is not able to get rid of all the impurity

degeneracy, so that the phase diagram still includes an unstable fixed point which

separates a Kondo screened phase from a stable non-Fermi liquid phase, analogous of

an overscreened Kondo fixed point. This result should have interesting consequences

within a DMFT calculation, which has so far not been performed, and might be rele-

vant to explain the properties of superconducting A3C60 compounds.

Due to the higher degeneracy of the model the computational effort needed is

much higher and the complexity of some descriptions grows accordingly. For this

reason we did not perform an effective Hamiltonian description of the Fermi liquid

phases to support the Fermi liquid theory results on the scattering amplitudes as we

did in the two-orbital model but nevertheless we present the “guessed” scattering

amplitudes.
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4.1 The Model Hamiltonian

The model Hamiltonian is

H = HU +HJ +Hc +Hhyb (4.1)

=
U

2
(nd − n0)

2 − J

[

2~S · ~S +
1

2
~T · ~T

]

+
∑

kaα

εk c
†
kaαckaα

+
∑

kaα

Vd

(

c†
kaαdaα + d†aαckaα

)

.

where the notation is the same as for Eq. (3.1), with the difference that now the orbital

index runs over the three orbitals and represents the corresponding value of the z-

components of the orbital momentum a = −1, 0, 1. ~S is the total spin of the impurity

and ~T is the total orbital angular momentum. Instead of using a parameter ν to control

the deviations from the particle-hole symmetry as in Eq. (3.1), we introduce here

explicitly a parameter n0 which represents the average number of electrons on the

impurity. The particle-hole symmetric case corresponds to n0 = 3.

The symmetry of the problem in the absence of HJ is U(1)charge × SU(6) and

it is lowered down to U(1)charge × SU(2)spin × SU(2)orbit by HJ . Contrary to the

two-orbital model, the SU(2)orbit is not broken down.

As previously, the term HJ mimic the Hund’s rule or the dynamic Jahn-Teller

effect depending in the sign of J . In particular J > 0 corresponds to the usual Hund’s

rule coupling while J < 0 derives from a tu ⊗Hg Jahn-Teller effect.

4.2 Perturbative regimes

Before interpreting the NRG results we try to understand what will be the behavior

of the system in the large J limit, where we can use perturbation theory to guess the

answer. Due to the complication of the model with three orbitals this task is now more

complicated and requires a more systematic approach.

First of all, let us focus on the large U limit, such that the number of electrons on

the impurity is fixed by the parameter n0. We will analyze the cases n0 = 3 (particle-

hole symmetry) and n0 = 2 (equivalent also to n0 = 4). It is useful to change the

representation of the model to a tight-binding chain similar to the Wilson chain but
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without the logarithmic discretization of the band energy. To avoid confusion with

the symbol n0, indicating the average occupation of the impurity, the chain starts with

site 1. The procedure is the same as in Eqs. (2.4-2.7) and, if we assume a particle-hole

symmetric band, the transformed Hamiltonian is

H =
U

2
(nd − n0)

2 − J

[

2~Sd · ~Sd +
1

2
~Td · ~Td

]

+t
(

c†1,aαdaα + d†aαc1,aα

)

+
∞
∑

n=1

tn

(

c†n,aαcn+1,aα + h.c.
)

(4.2)

where we added the subscript d to impurity spin and orbital momentum for clarity.

Once the charge fluctuations are ruled out by the large value of U , we can perform

a Schrieffer-Wolff transformation and obtain an effective Kondo-like model

HK = −J
[

2~Sd · ~Sd +
1

2
~Td · ~Td

]

+
4t2

U

∑

ab

∑

αβ

c†1,aαc1,bβd
†
bβdaα

−2t2

U

∑

aα

(

c†1,aαc1,aα + d†aαdaα

)

(4.3)

H = HK +Hcond

= HK +

∞
∑

n=1

tn

(

c†n,aαcn+1,aα + h.c.
)

. (4.4)

The Kondo coupling can be written in terms of particle-hole operators with well

defined spin and orbital momentum of the impurity and of the first site of the chain.

These operators with orbital momentum l and z-component λ and with spin s and

z-component σ are defined through

{

c† ⊗ c
}

lλ,sσ
=
∑

(−1)k−1C lλ
1j,1−k(−1)β−1/2Csσ

1/2α,1/2−βc
†
jαckβ (4.5)

whereCcγ
aα,bβ are the Clebsh-Gordan coefficients and summation over repeated indices

is implied. The adjoint operator satisfies
(

{

c† ⊗ c
}

lλ,sσ

)∗
= (−1)−λ(−1)−σ

{

c† ⊗ c
}

lλ,sσ
(4.6)
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and the inverse of relation (4.5) is

c†jαckβ =
∑

(−1)1−kC lλ
1j,1−k(−1)1/2−βCsσ

1/2α,1/2−β

{

c† ⊗ c
}

lλ,sσ
. (4.7)

Making use of these definitions we can rewrite (4.3), apart from a constant, as

HK =
4t2

U
ĴK +

2t2

3U
(nd − 3)(n1 − 3)

−J
[

2~Sd · ~Sd +
1

2
~Td · ~Td

]

(4.8)

where ni =
∑

aα c
†
i,aαci,aα and

ĴK =

2
∑

l=0

l
∑

λ=−l

1
∑

s=0

s
∑

σ=−s

(1−δl0δs0)(−1)−λ−σ
{

c†1 ⊗ c1

}

lλ,sσ

{

d† ⊗ d
}

l−λ,s−σ
. (4.9)

Given this expression for HK , we can now further assume that |J | � TK . Hence

the impurity is frozen in the most favorable configuration (for that number of electrons

hosted) before the Kondo effect can take place. This implies that the Kondo exchange

can only involve the remaining degenerate degrees of freedom. At this stage we have

to fix n0 and the sign of J and find the lowest energy configuration of ĴK and its

degeneracy to guess the behavior of the system in the large |J | regime. To obtain

the energy of the various configurations we exploit all the symmetries of the problem

classifying the states by the following conserved quantities: number of electrons on

the impurity and on the first shell of the chain (represented through the chargesQd and

Q1 respectively, defined as the deviation of the number of particles from the half-filled

condition1), total orbital momentum T and corresponding z-component τ , total spin

S and corresponding z-component Σ, orbital momentum and spin of the impurity, Td

and Sd, and of the first shell, T1 and S1. A generic state is then labeled by

|Q1, Qd;T, τ, T1, Td;S,Σ, S1, Sd〉 =

=
∑

CTτ
T1τ1,Tdτd

CSΣ
S1Σ1,SdΣd

|Q1;T1τ1;S1Σ1〉|Qd;Tdτd;SdΣd〉. (4.10)

From this expression for the states it is possible to obtain the matrix elements of

ĴK

〈Q1, Qd;T, τ, T
′
1, T

′
d;S,Σ, S

′
1, S

′
d|ĴK|Q1, Qd;T, τ, T1, Td;S,Σ, S1, Sd〉 =

1Notice that in this Chapter we use a definition of the charge that corresponds to twice the charge

defined in Chapter 3. In the present case the z-component of the hypercharge vector will be Iz = Q/2.
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=
∑

(l,s)6=(0,0)

(−1)−T+3T1+2Td+T ′

1+2T ′

d

{

Td T1 T

T ′
1 T ′

d l

}

[(2T1 + 1)(2Td + 1)(2T ′
1 + 1)(2T ′

d + 1)]
1/4

(−1)−S+3S1+2Sd+S′

1
+2S′

d

{

Sd S1 S

S ′
1 S ′

d s

}

[(2S1 + 1)(2Sd + 1)(2S ′
1 + 1)(2S ′

d + 1)]
1/4

〈Q1;T
′
1, S

′
1||
{

c†1 ⊗ c1

}

l,s
||Q1;T1, S1〉〈Qd;T

′
d, S

′
d||
{

d† ⊗ d
}

l,s
||Qd;Td, Sd〉 (4.11)

where the symbols in curly brackets in the second and third rows are the 6j symbols

and the matrix elements in the last row are called reduced matrix elements and are

defined in Appendix B. A detailed derivation of this calculation is presented in that

Appendix.

Now we move to analyze the different possible cases.

4.2.1 Three electrons on the impurity

We fix n0 = 3 and consider the limits J � TK and J � −TK . If n0 = 3 the Hilbert

space Himp of the impurity contains the following subspaces (Td, Sd)

Himp =

(

2,
1

2

)

⊕
(

1,
1

2

)

⊕
(

0,
3

2

)

. (4.12)

If J � TK , corresponding to the conventional Hund’s effect, the impurity is

quenched in the states with Sd = 3/2 and Td = 0 that minimizes HJ . The only non-

vanishing reduced matrix elements of ĴK between these states are those involving
{

d† ⊗ d
}

0,1
and hence HK reduces to

HK =
8t2

3U
~Sd · ~S1. (4.13)

This means that in this regime the impurity behaves as a spin-3/2 local moment

antiferromagnetically coupled to the conduction electrons. Since three channels in-

teracting with a spin-3/2 realize a perfectly screened Kondo model, we expect a low-

energy Kondo screened phase with a phase shift δ = π/2 per spin and conduction

channel.

Instead if J � −TK , corresponding to the inverted Hund’s rule, the impurity

freezes in the configuration with Sd = 1/2 and Td = 1 and the allowed combinations

of (l, s) are (1, 0), (0, 1) and (2, 1). To understand what happens in this case we can
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assume that 4t2/U is much larger than the conduction bandwidth. Hence we can

diagonalize HK first and treat Hcond as a perturbation.

The ground state ofHK for J � −TK can be calculated from the matrix elements

of ĴK and is a total singlet T = 0, S = 0. This configuration is realized by screening

the impurity using first-site configurations with quantum numbers T1 = 1 and S1 =

1/2. States of the first shell with these quantum numbers can be realized in three

different ways, either with one, or with three or finally with five electrons. Let us

label the different states by the number of electrons hosted on the first shell:

|n1 = 1〉 ≡ |Q1 = −1, Qd = 0;T = 0, T1 = 1, Td = 1;S = 0, S1 = 1/2, Sd = 1/2〉

|n1 = 3〉 ≡ |Q1 = 0, Qd = 0;T = 0, T1 = 1, Td = 1;S = 0, S1 = 1/2, Sd = 1/2〉

|n1 = 5〉 ≡ |Q1 = +1, Qd = 0;T = 0, T1 = 1, Td = 1;S = 0, S1 = 1/2, Sd = 1/2〉

These states are degenerate in energy and can be viewed as realizing a spin-1 in

the charge sector. Indeed we can associate to each state a value of the z-component

of a hypercharge-1 vector ~I , |n1 = 1〉 = |−1〉, |n1 = 3〉 = |0〉 and |n1 = 5〉 = |+1〉.
This additional degeneracy that remains unscreened must then be screened by the

next shell of the chain. Indeed by second order perturbation theory in the hopping t1
connecting shell 1 to shell 2 we obtain an effective term proportional to

∝ t21
4t2

U

~I · ~I(2) (4.14)

where ~I(2) is the hypercharge operator on the second shell, defined by

Iz(2) =
1

2
(n2 − 3) ,

I+(2) = c†2,+1↑c
†
2,−1↓ + c†2,−1↑c

†
2,+1↓ − c†2,0↑c

†
2,0↓,

I−(2) =
(

I+(2)
)†
.

The procedure can be summarized in this way. Given the hierarchy of energy

scales U � |J | � 4t2/U � t1, the first effect that takes place is the quenching of

charge fluctuations due to the large Coulomb repulsion. After that, the interaction J

selects the ground state of the impurity and then the HK term forces the first shell of

conduction electrons to screen the remaining degrees of freedom. The last effect is the

screening of the left-over degrees of freedom by the remaining conduction electrons.



94 Three-orbital model

The low-energy effective Hamiltonian (4.14) corresponds to a Kondo Hamiltonian

in the charge sector and in particular to a spin-1 three-channel Kondo model, hence

an over-screened model. From this we can expect that, if the description is correct,

the low energy stable fixed point of the model has non-Fermi liquid character.

The procedure we employed to guess the result is not general but, as we will see,

it captures the essential physics of the model and what we find by NRG is indeed a

non-Fermi liquid stable phase in the negative J region in the particle-hole symmetric

case.

In addition, we can argue along the line of the two-orbital model and infer the

presence of at least one unstable fixed point separating the two regions of Kondo

screening and non-Fermi liquid. This UFP is again a non-Fermi liquid fixed point as

in the two-orbital model.

The last issue we can discuss in this preliminary and naïve approach is the sta-

bility against particle-hole symmetry breaking of this non-Fermi liquid phase. A

particle-hole symmetry breaking removes the degeneracy between the states |n1 = 1〉,
|n1 = 3〉 and |n1 = 5〉 and may correspond to adding two kind of terms. The first is

proportional to

Iz (4.15)

and is the analog of a local magnetic field acting on the impurity in the spin language.

The second term is proportional to

I2
z . (4.16)

It is known from [44] that, while a perturbation like (4.16) is not relevant near the

non-Fermi liquid fixed point of the multi-channel Kondo model, a magnetic field like

(4.15) is relevant and destroys the non-Fermi liquid nature of the system. From this

we can conclude that the non-Fermi liquid phase, if present, would be unstable with

respect to particle-hole symmetry breaking and would eventually flow to a Fermi

liquid fixed point. Yet we still expect that an UFP separates the two different Fermi

liquid fixed points.
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4.2.2 Two electrons on the impurity

Let us consider now the cases in which the impurity hosts two electrons and J � TK

or J � −TK . The impurity Hilbert space contains the subspaces (Td, Sd)

Himp = (0, 0) ⊕ (2, 0) ⊕ (1, 1) . (4.17)

The simpler case is when J � −TK , since the impurity is locked by J in the

total singlet configuration with Sd = 0 and Td = 0. Hence the Kondo coupling is

completely ineffective, there are no allowed combinations of (l, s) that give non-zero

matrix elements for ĴK . The Kondo effect cannot take place and only the potential

scattering

−2t2

3U
(n1 − 3) (4.18)

remains.

On the other hand, when J � TK the impurity is forced in the configuration

with Sd = 1 and Td = 1 and all the combinations (l, s) are allowed. We can argue

along the lines of the case n0 = 3, J � −TK , diagonalize HK first and then treat

the conduction Hamiltonian as a perturbation. Once again the ground state of HK

is a total singlet that can be realized with two different configurations of the first

shell electrons, namely using two or four electrons. These two configurations can

be interpreted as a hyperspin-1/2 in the hypercharge sector and this suggest that the

effective problem can be interpreted as a hyperspin-1/2 three-channel Kondo model.

As in the n0 = 3, J � −TK case, this model is over-screened but now there is also

a potential scattering term −2t2/3U(n1 − 3) that breaks explicitly the particle-hole

symmetry. As we have seen, this term corresponds to a local magnetic field applied

to the impurity and spoils completely the non-Fermi liquid fixed point of the over-

screened Kondo model. Thus we expect that the stable low energy fixed point is

again Fermi liquid-like.

The different properties of the two phases found for J � −TK and J � TK

suggests that there can be an UFP in between. If the UFP occurring in the three-

electron case is not spoiled by the particle-hole symmetry breaking it is reasonable to

argue that there is a line of fixed points connecting those at n0 = 3 and n0 = 2.
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4.3 Analysis of the three electrons case

The NRG analysis of the three-orbital model is similar to that performed in the two-

orbital model. The discretized Hamiltonian of the length N system is

HN = Λ(N−1)/2

{

N−1
∑

n=0

Λ−n/2ξn

(

f †
naαf(n+1)aα + f †

(n+1)aαfnaα

)

+∆̃
1/2
0

(

f †
0aαdaα + d†aαf0aα

)

+
Ũ

2
(nd − n0)

2 − J̃

[

2~S · ~S +
1

2
~T · ~T

]

}

. (4.19)

Here Ũ = CΛ U , J̃ = CΛ J , ∆̃0 = C2
Λ

2∆0

π
, CΛ =

(

2Λ
1+Λ

)

and the unit of energy is half

the conduction bandwidth. We restrict ourselves to the large U limit and, fixing ∆0,

we span the phase diagram varying J .

The outcome of the analysis can be summarized by Fig. 4.1, where the spectrum

of the system for oddN is plotted as a function of the length of the Wilson chain. The

phase space is divided in two regions separated by a critical value J ∗ < 0. In Fig. 4.1

the left panel corresponds to a value J smaller than J ∗ but close to it. Conversely,

the right panel describes the spectrum of the system close to the critical value with J

larger than J∗. It is immediately clear that the asymptotic behavior of the system is

completely different in the two phases.

For J > J∗ the asymptotic low temperature spectrum is that of a free chain with

a π/2 phase shift. This is the signature of the Kondo effect: the first shell screens

the impurity and becomes inaccessible to the conduction electrons. This is clear from

the large degeneracy of the ground state of the odd N chain (that has an even number

of sites). This asymptotic behavior characterizes the system for every J > J ∗ and

confirms the analysis based on the perturbative large J regime.

The phase we found for J < J∗ is immediately recognizable as a non-Fermi

liquid due to the non-uniform spacing of the levels. In this regime the naïve analysis

of the previous Section predicts that the fixed point should resemble that of an over-

screened Kondo model with hypercharge replacing the spin. Indeed this is the case,

further supporting our preliminary analysis.

As in the two-orbital case, for J close to J ∗ there is a crossover region in which

the system is close to an unstable fixed point. Also in this case the fixed point has
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Figure 4.1: Lowest energy levels versus the chain sizeN (odd). The levels are labeled

by the quantum numbers (Q, S, T ). The left/right panels correspond to a deviation

δJ/J∗ = ±2 · 10−4 from the fixed point value J∗. [Λ = 5, U = 2, ∆0 = U/(6π),

J = −0.03366 (left), J = −0.033655 (right)]

non-Fermi liquid properties but it is also clearly different from the stable fixed point

found for J < J∗.

From the NRG spectra we cannot extract more information, mainly due to the

presence of the non-Fermi liquid fixed points. Hence we resort to CFT to describe the

fixed point of this model. As we have seen, the power of CFT consists in the possibil-

ity of describing non-Fermi liquid fixed point in a rather natural way. To employ this

technique we have to identify the relevant symmetries of the model. The symmetries

of the Kondo model (4.4) onto which the model (4.1) transforms in the large U limit

correspond to the usual three sectors: charge, spin and orbital momentum. The first

sector is described by a U(1) theory with conformal anomaly c = 1. The spin sector

symmetry corresponds to SU(2)3 where the subscript indicates the Kac-Moody level

and is described by a theory with conformal anomaly c = 9/5. The orbital sector is

described by an SU(2)8 theory with c = 12/5.
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Since the conformal anomaly is an invariant of the theory, the sum of the building

block theories corresponding to the various symmetries must add up to the value of

the original theory. In this case the conformal anomaly of the full theory is c = 6

corresponding to a theory with six complex fermions. The sum of the conformal

anomaly of the theories in which we decomposed the original problem is less than 6,

hence we are missing some part of the description. The difference in the conformal

anomaly is equal to 4/5, meaning that the missing part is a minimal model.

A conformal anomaly c = 4/5 corresponds to the minimal model M(6, 5) whose

Kac table is

3 13/8 2/3 1/8 0

7/5 21/40 1/15 1/40 2/5

2/5 1/40 1/15 21/40 7/5

0 1/8 2/3 13/8 3

There are two theories with c = 4/5. One is the tetracritical Ising model that corre-

sponds to the diagonal theory of M(6, 5). The other is the three-state Potts model.

This theory has an additional symmetry connected with an extended W -algebra and

its primary fields form a subset of the primary fields of the M(6, 5) model[57, 70–72].

To decide which of the two is the correct theory we can notice that the sym-

metry of the free fermion system, i.e. the system where the impurity is absent, is

SO(12) or, equivalently, U(6). In order to describe this system in the presence of the

impurity we can decompose the total symmetry group into a product of lower sym-

metry groups. For instance, the U(6) group can be decomposed into SU(2)3,spin ×
SU(2)3,hypercharge × SU(2)8,orbit. The conformal anomaly of both the descriptions

correctly adds up to 6. This procedure is called “conformal embedding”.

This symmetry would survive after the introduction of the impurity if the Coulomb

term U/2(nd − 3)2 = 2UI2
z,d would not be present. Indeed the Coulomb term lowers

the hypercharge symmetry to the U(1) subgroup. We can thus further decompose the

hypercharge symmetry into the product of the U(1) subgroup and of the coset

SU(2)3

U(1)
= Z3 (4.20)

which is the Potts model.

We briefly summarize the operators in each of the theories together with their

scaling dimension
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• In presence of three conduction channels the U(1) theory has six primary fields

corresponding to charges Q = 0, . . . , 5 and dimensions xQ = Q2/12.

• The SU(2)3 spin theory has, apart from the identity, three primary fields φS
jS

with quantum numbers jS = 1/2, 1, 3/2 and dimensions

xjS
=
jS(jS + 1)

5
=

3

20
,
2

5
,
3

4
(4.21)

respectively.

• The SU(2)8 orbital sector has the identity and other four primary fields φT
jT

with quantum numbers jT = 1, 2, 3, 4 and dimensions

xjT
=
jT (jT + 1)

10
=

1

5
,
3

5
,
6

5
, 2 (4.22)

respectively.

• The primary operators of the Potts sector are listed here with their scaling di-

mensions

φP xP

I 0

W 3

ε 2/5

ε′ 7/5

σ 1/15

σ̄ 1/15

Z 2/3

Z̄ 2/3

The primary fields of the model correspond to fields in the odd columns of the

Kac table of M(6, 5). Notice that there are two operators (σ and Z) that appear

twice because they are related by charge conjugation. Furthermore operators

whose dimensions differ by integers belong to the same conformal tower. This

is the case for ε and ε′ and for I and W .
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The fusion rules for the SU(2)k primary fields are

φjφj′ =

min(j+j′,k−j−j′)
∑

l=|j−j′|
φl. (4.23)

For the Potts model we will need the fusion rules of the primary fields not only

among themselves but also with operators in the M(6, 5) Kac table that are not con-

tained in the theory (those lying in the even columns). Hence we list all the fusion

rules of all the fields in the M(6, 5) table. The operators in the even columns are

indicated by their scaling dimension.

1

8
× 1

8
= I + Z

1

8
× Z =

1

8
+

13

8
1

8
× 13

8
= Z +W

1

8
×W =

13

8
1

8
× ε =

1

40
1

8
× 1

40
= ε + σ

1

8
× σ =

1

40
+

21

40
1

8
× 21

40
= σ + ε′

1

8
× ε′ =

21

40

Z × Z = Z̄

Z × Z̄ = I +W

Z × 13

8
=

1

8
+

13

8
Z ×W = Z

Z × ε = σ

Z × 1

40
=

1

40
+

21

40
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Z × σ = σ̄

Z × σ̄ = ε + ε′

Z × 21

40
=

1

40
+

21

40
Z × ε′ = σ

13

8
× 13

8
= I + Z

13

8
×W =

1

8
13

8
× ε =

21

40
13

8
× 1

40
= σ + ε′

13

8
× σ =

1

40
+

21

40
13

8
× 21

40
= ε + σ

13

8
× ε′ =

1

40

W ×W = I

W × ε = ε′

W × 1

40
=

21

40
W × σ = σ

W × 21

40
=

1

40
W × ε′ = ε

ε× ε = I + ε′

ε× 1

40
=

1

8
+

21

40
ε× σ = σ + Z

ε× 21

40
=

1

40
+

13

8
ε× ε′ = ε +W

1

40
× 1

40
= I + σ + ε′ + Z
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1

40
× σ =

1

8
+

13

8
+

1

40
+

21

40
1

40
× 21

40
= σ + ε+ Z +W

1

40
× ε′ =

1

40
+

13

8

σ × σ = σ̄ + Z̄

σ × σ̄ = I + ε + ε′ +W

σ × 21

40
=

1

8
+

13

8
+

1

40
+

21

40
σ × ε′ = σ + Z

21

40
× 21

40
= I + σ + ε′ + Z

21

40
× ε′ =

1

8
+

21

40

ε′ × ε′ = I + ε′

Now that we identified the relevant symmetries we have to find a simple bound-

ary condition. The natural choice corresponds to the chain used in the Wilson NRG

when the impurity is decoupled. That system has open boundary conditions at the two

end of the chain and, if the Fermi level lies between two energy levels, it has a non-

degenerate ground state. Imposing these boundary conditions, the spectrum of the

free fermions can be easily obtained. In Table 4.1 we list the primary fields appear-

ing in the spectrum up to charge 3, the remaining can be obtained using particle-hole

symmetry. In the case of the free fermion boundary conditions the spectrum of the

system coincides with the scaling dimension of the allowed operators of the theory,

hence the same table lists both the operator content and the spectrum. These primary

fields correspond to the non-vanishing multiplicities ni
FF in the partition function of

the system with free boundary conditions. Notice that, in general, not all the possible

combinations of operators in the different sectors appear. This is due to the already

mentioned conformal embedding. Indeed the free fermion system is described by

a theory with larger symmetry (in this case the full symmetry is SO(12)), hence if

we want to describe it with a lower symmetry group in general we have to impose
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Table 4.1: Spectrum of free fermions with open boundary conditions.

Q S T Z3 x

0 0 0 I 0

0 0 2 ε 1

0 0 4 I 2

0 1 1 ε 1

0 1 2 I 1

0 1 3 ε 2

1 1/2 1 σ 1/2

1 1/2 2 Z 3/2

1 1/2 3 σ 3/2

1 3/2 0 Z 3/2

1 3/2 2 σ 3/2

1 3/2 4 Z 7/2

Q S T Z3 x

2 0 0 Z 1

2 0 2 σ 1

2 0 4 Z 3

2 1 1 σ 1

2 1 2 Z 2

2 1 3 σ 2

3 1/2 1 ε 3/2

3 1/2 2 I 3/2

3 1/2 3 ε 5/2

3 3/2 0 I 3/2

3 3/2 2 ε 5/2

3 3/2 4 I 7/2

additional constraints, known as “gluing conditions”[42, 53], on the possible com-

binations of fields of the lower symmetry group to select those combinations that

respect the higher symmetry.

To obtain the spectrum at the Kondo screened fixed point, where the impurity

behaves as a spin-3/2, we guess that we have to perform a fusion with the operator

in the spin sector φS
3/2. This “guess” is motivated by the observation that the strong

coupling fixed point of the Kondo model is obtained by fusion with the spin operator

S, where S is the spin of the impurity. This fusion corresponds to the absorption of

the impurity by the conduction electrons and the generation of the π/2 phase shift

that is characteristic of the strong coupling fixed point of the Kondo model. The

spectrum obtained by the fusion (again up to charge 3) is shown in Table 4.2. Notice

that in this case the ground state is degenerate. This spectrum reproduces precisely

the asymptotic spectrum found by NRG for J > J ∗. The allowed operators of the

theory at this fixed point are obtained by double fusion with φS
3/2. The result of the

second fusion with φS
3/2 gives an operator content described by the same table that

gives the spectrum of free fermions, Table 4.1. This was expected because the system

is still described by a Fermi liquid.
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Table 4.2: Spectrum at the Kondo screened fixed point for n0 = 3.

Q S T Z3 x− 3/4

0 1/2 1 ε 0

0 1/2 2 I 0

0 1/2 3 ε 1

0 3/2 0 I 0

0 3/2 2 ε 1

0 3/2 4 I 2

1 0 0 Z 0

1 0 2 σ 0

1 0 4 Z 2

1 1 1 σ 0

1 1 2 Z 1

1 1 3 σ 1

Q S T Z3 x− 3/4

2 1/2 1 σ 0

2 1/2 2 Z 1

2 1/2 3 σ 1

2 3/2 0 Z 1

2 3/2 2 σ 1

2 3/2 4 Z 3

3 0 0 I 0

3 0 2 ε 1

3 0 4 I 2

3 1 1 ε 1

3 1 2 I 1

3 1 3 ε 2

Following our simple perturbative analysis, to obtain the boundary condition cor-

responding to the non-Fermi liquid stable phase at J < J ∗ we should fuse the spec-

trum of the free fermions with an operator with S = 1/2 and L = 1. We encounter

a technical problem in this procedure because in the fusion process with two pri-

mary fields belonging to two different sectors, the spin and the orbital, we are not

sure to properly account for the Pauli principle and we could not find in the literature

any work facing this unusual situation. Indeed in this way we obtain states that are

not compatible with the statistics. To overcome the problem we can use the Kondo

boundary condition as the reference state and start the fusion process from there.

Physically this corresponds to applying a phase shift π/2 to the conduction channel,

hence removing from it one state. This decoupled state is then settled in the optimal

configuration that minimizes HK . After that, the effective interaction felt by the con-

duction electrons tends to screen the hypercharge degrees of freedom associated with

the three degenerate charge configurations. This process would correspond to fusion

with an operator I = 1 in the hypercharge sector but hypercharge is not a symmetry

of the theory, being broken by the Coulomb term. Nevertheless we can notice that if

we decompose the hypercharge symmetry SU(2)3 into U(1)×Z3, the operator I = 1
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corresponds either to Q = 0, Z3 = ε or to Q = 2, Z3 = σ. Hence we choose to fuse

with ε in the Z3 sector.

The result of the fusion is summarized in Table 4.3. For the lowest energy states

the CFT prediction is compared with the (suitably normalized) energy levels obtained

by NRG (for higher energy states the large degeneracy of the levels makes this com-

parison too complicated).

The agreement is fairly good, considered also the great computational effort of the

calculation. We can also compute the allowed operators to check the stability of the

fixed point. These are obtained fusing the operator content of the Kondo fixed point

twice with operator ε. The most relevant operators (those with dimension up to 7/5)

are listed in Table 4.4. There are no operators with dimension less or equal to one

that do not break the symmetry of the system, hence the fixed point is stable. This

Table can also provide information on the stability with respect to different symmetry

breaking. Indeed the pair of operators (0, 0, 0, ε) and (2, 0, 0, σ) of dimension ∆ =

2/5, as we have already seen, correspond to the operator I = 1 in a theory with

unbroken hypercharge symmetry. This means that the fixed point becomes unstable

to a local perturbation in the hypercharge channel of the form −~µ · ~I , where ~I is the

hypercharge operator e.g. of the impurity. After fusion, this operator will induce a

perturbation ∝ ~µ · ~φI
1, where ~φI

1 is the I = 1 primary field in the hypercharge sector. It

would correspond either to the particle-hole symmetry breaking channel, (0, 0, 0, ε),

when ~µ = (0, 0, µz), or to the Cooper channel (2, 0, 0, σ), when ~µ = (µx, µy, 0).

On the contrary, the behavior of the total hypercharge susceptibility is controlled by

the leading irrelevant operator compatible with the symmetry properties, which is the

Kac-Moody descendant ~JI · ~φI
1, where ~JI is the non abelian hypercharge current. The

dimension of this operator being 1 + ∆ = 1 + 2/5 = 7/5 leads to a total hypercharge

susceptibility, χI , which behaves in temperature like

χI ∼ T 2∆−1 = T−1/5,

hence being singular. In addition there exist other instability channels. Indeed the

operator (0, 0, 2, I) with dimension 3/5 represents a relevant instability towards a

field which breaks the orbital symmetry, while the operator (0, 1, 1, I) with the same

dimension corresponds to an instability in the ~S ~T channel.

For the unstable fixed point it is much more difficult to guess the correct fusion

rules. The only hint is that it is more likely that the sector involved is the Potts sector
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Table 4.3: Spectrum at the non-Fermi liquid stable fixed point for n0 = 3.

Q S T Z3 x− 3/20 ENRG

1 0 0 σ 0 0

0 1/2 1 I 1/5 0.199

0 1/2 1 ε 3/5 0.603

1 0 2 σ 3/5 0.599

1 1 1 σ 3/5 0.599

2 1/2 1 σ 3/5 0.603

0 1/2 2 ε 1 0.998

0 3/2 0 ε 1 0.998

1 1 2 σ 1 1.011

2 1/2 2 σ 1 0.998

2 3/2 0 σ 1 0.998

3 0 0 ε 1 0.998

0 1/2 3 I 6/5 1.204

0 3/2 2 I 6/5 1.204

1 0 2 Z 6/5 1.204

1 1 1 Z 6/5 1.204

2 1/2 1 Z 6/5 1.224

3 0 2 I 6/5 1.204

3 1 1 I 6/5 1.204

0 1/2 1 ε′ 8/5

0 1/2 3 ε 8/5

0 3/2 2 ε 8/5

1 1 3 σ 8/5

2 1/2 3 σ 8/5

2 3/2 2 σ 8/5

3 0 2 ε 8/5

3 1 1 ε 8/5

Q S T Z3 x− 3/20

0 1/2 2 ε′ 2

0 3/2 0 ε′ 2

1 0 4 σ 2

3 0 0 ε′ 2

3 1 2 ε 2

1 1 3 Z 11/5

2 1/2 3 Z 11/5

2 3/2 2 Z 11/5

3 1 3 I 11/5

0 1/2 3 ε′ 13/5

0 3/2 2 ε′ 13/5

3 0 2 ε′ 13/5

3 1 1 ε′ 13/5

3 1 3 ε 13/5

0 3/2 4 ε 3

2 3/2 4 σ 3

3 0 4 ε 3

3 1 2 ε′ 3

0 1/2 1 W 16/5

3 1 3 ε′ 18/5

0 3/2 4 ε 4

3 0 4 ε′ 4

0 1/2 3 W 21/5

0 3/2 2 W 21/5

3 0 2 W 21/5

3 1 1 W 21/5

3 1 3 W 26/5
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Table 4.4: Most relevant operators present at the non-Fermi liquid stable fixed point

for n0 = 3.

Q S T Z3 x

0 0 0 I 0

0 0 0 ε 2/5

2 0 0 σ 2/5

1 1/2 1 σ 1/2

0 0 2 I 3/5

0 1 1 I 3/5

1 1/2 2 σ 9/10

1 3/2 0 σ 9/10

0 0 2 ε 1

0 1 1 ε 1

0 1 2 I 1

2 0 0 Z 1

2 0 2 σ 1

2 1 1 σ 1

1 1/2 1 Z 11/10

3 1/2 1 I 11/10

0 0 0 ε′ 7/5

0 1 2 ε 7/5

2 1 2 σ 7/5
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due to the non-Fermi liquid character of the fixed point. The surprise is that the fusion

with any of the primary fields of the Potts sector does not describe the UFP. The puzzle

has to be solved considering that the primary operators of the Potts model are a subset

of the primary fields of the M(6, 5) minimal model. It has been demonstrated that in

order to obtain all the possible boundary condition for the three-state Potts model it is

necessary to consider the fusion also with those fields that are present in the M(6, 5)

Kac table but are not included in the Potts theory[56, 73, 74].

On inspection of the (few) possible cases we found that the UFP is described by

the fusion of the spectrum of the Kondo fixed point with the operator 1/8 of the Potts

sector. The spectrum predicted by CFT is presented in Table 4.5 together with the

NRG energies for the lowest states. This time the accuracy is lower mainly due to the

difficulty in arriving close enough to the fixed to get its very spectrum. Nevertheless

the degeneracies of the states are well reproduced, supporting the identification of the

UFP. The operator content of the fixed point is obtained by double fusion with oper-

ator 1/8. As for the stable non-Fermi liquid fixed point the most relevant operators

are reported in Table 4.6. The presence of the operator (0, 0, 0, Z) correctly implies

the instability of the fixed point, being relevant and allowed by the symmetry of the

problem. This is the operator that drives the system away from the unstable fixed

point either to the Kondo screened fixed point or to the non-Fermi liquid stable one.

It is also interesting to notice the presence of the operator (2, 0, 0, I) with di-

mension 1/3 that breaks the U(1)charge symmetry and indicates a superconducting

instability of the fixed point. The other relevant operators (0, 0, 2, σ) and (0, 1, 1, σ)

have dimension 2/3 and correspond to instabilities in particle-hole channels.

The ground state degeneracy of the various fixed points can be calculated from

the knowledge of the fusion processes that connect the fixed points as shown in Sec-

tion 2.2.3.

The outcome is that at the Kondo fixed point gK = 1 as expected for a perfectly

screened impurity. In the non-Fermi liquid stable phase

gSNFL =

√√
5 + 1√
5 − 1

' 1.618 (4.24)

The fact that gSNFL is larger than gK indicates that the non-Fermi liquid phase is

less stable than the Fermi liquid (either Kondo or unscreened) phase and this is in-

deed compatible with the instability of the former to particle-hole symmetry breaking.



4.3 Analysis of the three electrons case 109

Table 4.5: Spectrum at the unstable non-Fermi liquid fixed point for n0 = 3.

Q S T Z3 x− 5/24 ENRG

1 0 0 1/8 0 0

0 1/2 1 1/40 1/6 0.162

1 0 2 1/40 1/2 0.488

1 1 1 1/40 1/2 0.489

2 1/2 1 1/40 1/2 0.491

0 1/2 1 21/40 2/3 0.675

0 1/2 2 1/8 2/3 0.643

0 3/2 0 1/8 2/3 0.644

3 0 0 1/8 2/3 0.648

1 0 2 21/40 1 0.991

1 1 1 21/40 1 0.992

1 1 2 1/8 1 1.012

2 1/2 1 21/40 1 1.011

2 1/2 2 1/8 1 0.999

2 3/2 0 1/8 1 1.000

0 1/2 3 1/40 7/6

0 3/2 2 1/40 7/6

3 0 2 1/40 7/6

3 1 1 1/40 7/6

1 0 0 13/8 3/2

1 1 3 1/40 3/2

2 1/2 3 1/40 3/2

2 3/2 2 1/40 3/2

Q S T Z3 x− 5/24

0 1/2 3 21/40 5/3

0 3/2 2 21/40 5/3

3 0 2 21/40 5/3

3 1 1 21/40 5/3

3 1 2 1/8 5/3

1 0 4 1/8 2

1 1 3 21/40 2

2 1/2 3 21/40 2

2 3/2 2 21/40 2

0 1/2 2 13/8 13/6

0 3/2 0 13/8 13/6

3 0 0 13/8 13/6

3 1 3 1/40 13/6

1 1 2 13/8 5/2

2 1/2 2 13/8 5/2

2 3/2 0 13/8 5/2

0 3/2 4 1/8 8/3

3 0 4 1/8 8/3

3 1 3 21/40 8/3

2 3/2 4 1/8 3

3 1 2 13/8 19/6

1 0 4 13/8 7/2

0 3/2 4 13/8 25/6

3 0 4 13/8 25/6

2 3/2 4 13/8 9/2
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Table 4.6: Most relevant operators present at the non-Fermi liquid unstable fixed point

for n0 = 3.

Q S T Z3 x

0 0 0 I 0

2 0 0 I 1/3

1 1/2 1 σ 1/2

0 0 0 Z 2/3

0 0 2 σ 2/3

0 1 1 σ 2/3

1 1/2 1 ε 5/6

0 0 2 ε 1

0 1 1 ε 1

0 1 2 I 1

2 0 0 Z 1

2 0 2 σ 1

2 1 1 σ 1

2 0 2 ε 4/3

2 1 1 ε 4/3

2 1 2 I 4/3
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Figure 4.2: Impurity DOS in the particle-hole symmetric case n0 = 3 for J = 0. The

Kondo peak is cut off in order to make the two Hubbard bands more visible. The

temperature is set by the length of the chain and is practically zero. Here U = 2,

∆0 = U/(6π). [Λ = 3]

Eventually at the UFP we find that gUNFL =
√

3. As expected g decreases along the

renormalization group flow.

4.3.1 Impurity spectral function

From NRG we can extract the spectral function of the impurity, defined in (3.26).

Arguing along the lines of Section 3.2.5, we can guess that in the Kondo screened

region, where a perturbative expansion in U and J is valid, the value of the DOS at the

chemical potential is fixed by the relation (3.29). On the other hand, this perturbation

expansion clearly breaks down at the UFP where the value of the DOS at the chemical

potential changes. We show in Fig. 4.2 the impurity spectral function on a large scale

and in Fig. 4.3 the behavior in a region close to the chemical potential as obtained

from NRG. The results refer to the particle-hole symmetric case across the UFP.

In the Kondo screened phase the impurity DOS has the typical behavior with two
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Figure 4.3: Impurity DOS close to the chemical potential in the particle-hole symmet-

ric case n0 = 3 across the UFP. From top to bottom we find the DOS’s in the Kondo

screened phase (J/J∗ = 0, 0.48, 0.95, 1−), and then in the non-Fermi liquid stable

regime (J/J∗ = 1.02, 1.07, 1.31). The other parameters are as in Fig. 4.2. In the

three-orbital model, due to the high computational effort, it is more difficult to arrive

close to the fixed point. Hence we don’t have a precise determination of J ∗ and the

fourth curve is indicated with the value J/J ∗ = 1−. [Λ = 3, U = 2, ∆0 = U/(6π),

J∗ ' −0.042]

peaks at energy ±U/2 and the Kondo resonance at the chemical potential. As in the

two-orbital model, approaching the UFP the Kondo peak becomes the superposition

of a broad resonance, that remains almost constant across the UFP, and of a narrower

resonance that shrinks progressively and disappears exactly at the UFP. The value

of the DOS at the chemical potential in the Kondo screened phase as calculated by

NRG remains constant but it is quite far from the value expected from Eq. (3.29). We

postpone the discussion of this discrepancy.

As soon as the system crosses the UFP, entering the non-Fermi liquid regime, the

narrow resonance becomes a narrow dip within the broad resonance. Contrary to the
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two-orbital case, now the dip is not a real pseudogap and the value at the chemical

potential of the DOS is finite.

At the UFP we can expect that neither the narrow resonance nor the dip are present

and the DOS is given by the broad J-independent resonance.

We do not have an analytic ansatz for the spectral function of this model, but

we can still compare the value of ρ(0) obtained numerically by the NRG with that

predicted by CFT. Using relation (3.30) we can indeed relate ρ(0) to the value of the

S scattering matrix at zero energy.

The discrepancy found in the NRG calculation of the DOS in the Kondo screened

phase is around the 35% of the value predicted by Fermi liquid theory. This is most

likely due to the very large number of states required by the calculation to give reliable

results. Nevertheless we guess that this is a systematic error due to the numerical

procedure and does not depend on whether the model is in the Kondo screened phase

or in a non-Fermi liquid one. Hence we can consider the ratio between the values of

ρ(0) at the different fixed points as approximately independent on this error.

The scattering S matrix at the Kondo screened fixed point in presence of particle-

hole symmetry can be calculated with the method described in Section 2.2.2 giving

S(1) = −1 and agrees with the value given by the Fermi liquid expression (3.32) with

a phase shift of π/2. This in turns implies that ρ(0)Kondo = ρ0. If we calculate the

scattering S matrix at the stable non-Fermi liquid fixed point we obtain the value

SSNFL
(1) =

√
5 − 1√
5 + 1

(4.25)

that corresponds to ρ(0)SNFL = ρ0/(1 +
√

5) ∼ 0.31ρ0. This value gives a ratio

ρ(0)SNFL/ρ(0)Kondo which is indeed compatible with the NRG result. Eventually,

at the UFP, SUNFL
(1) = 0, implying that ρ(0)UNFL = ρ0/2. Once more the ratio

ρ(0)UNFL/ρ(0)Kondo obtained numerically is in reasonable agreement.

4.3.2 Particle-hole symmetry breaking

An important issue related to the study of lattice systems through DMFT is the stabil-

ity of both the non-Fermi liquid phase and the UFP to particle-hole symmetry break-

ing. In particular we expect from the preliminary analysis of Section 4.2 that the

non-Fermi liquid phase does not survive the particle-hole symmetry breaking. At



114 Three-orbital model

60 40 20 0 20 40 60
Iterations

(1,0,0)

(0,1/2,1)

(1,0,2) (1,1,1)

(2,1/2,1)

(0,1/2,2)(0,3/2,0)(3,0,0)

(0,1/2,1)

(1,1,1)

(1,1,2)

(1,1/2,2)
(0,3/2,2)

(1,0,0)

(0,1/2,1)

(1,0,2) (1,1,1)

(2,1/2,1)

(0,1/2,2)
(0,3/2,0)(3,0,0)

(0,1/2,1)

(1,1,1)

(1,1,2)

(1,1/2,2)
(0,3/2,2)

Figure 4.4: Lowest energy levels versus the chain size N (odd) for n0 = 2.99. The

levels are labeled by the quantum numbers (Q, S, T ). The left/right panels correspond

to a deviation δJ/J∗ = ±3 · 10−6 from the fixed point value J∗. [Λ = 5, U = 2,

∆0 = U/(6π), J = −0.0335918 (left), J = −0.0335916 (right)]

the same time we expect that the UFP instead is not spoiled away from particle-hole

symmetry.

The NRG calculations confirm this guess. In Fig. 4.4 is shown the spectrum of the

system for n0 = 2.99 for J close to J∗. This Figure must be compared with Fig. 4.1

which shows the particle-hole symmetric spectrum.

It is evident that the Kondo screened region is left unchanged while the non-Fermi

liquid phase is completely washed out and is substituted by a Fermi liquid phase

(notice the constant spacing of the lowest energy levels characteristic of a Fermi liquid

spectrum).

The UFP spectrum in the first iterations of the crossover region is the same as

in the particle-hole symmetric case but after a few iterations there is a change in

the energy levels. This is due to the particle-hole symmetry breaking. In the first

iterations the temperature is high and the symmetry breaking is not effective; as the
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length of the chain increases (and the temperature decreases) the system reaches an

energy scale comparable with the splitting of the levels due to the symmetry breaking

and the fixed UFP spectrum is modified. Eventually the system flows to one of the

stable Fermi liquid fixed points.

The UFP spectrum changes adiabatically as n0 is varied but retains its non-Fermi

liquid character. This analysis confirms the existence of a critical line of UFP’s in the

J-n0 phase space that connect the UFP found at n0 = 3 with the one that, as we will

see in the next Section, is found for n0 = 2.

The spectral function still presents the typical feature of the UFP, i.e. a jump in

the value of the DOS at the chemical potential from one phase to the other.

4.3.3 Fermi liquid theory

Even if a description of the system in terms of effective Hamiltonians was not per-

formed for the three-orbital model and we don’t have access to the various Wilson

ratios, nonetheless we can apply the Fermi liquid theory of Appendix A to check the

validity of the approach.

The allowed configurations (T, S) for an incoming pair of electrons are three:

(0, 0), (2, 0) and (1, 1).

On the other hand, as we have already seen, the particle-hole channels are six. The

(0, 0)-channel is the charge channel; (0, 1) and (1, 0) are respectively the spin and the

orbital channels; (2, 0) corresponds to excitations in the Hund’s channel; eventually

(1, 1) and (2, 1) mix spin and orbital.

We can define the corresponding dimensionless scattering vertices in particle-

particle channels A(0,0), A(2,0) and A(1,1) as in Section 3.3 and relate them to the

scattering vertices in particle-hole channels. The relations between the two sets are:

A(0,0) =
5

3
A(2,0) + 3A(1,1) +

1

3
A(0,0), (4.26)

A(0,1) = −5

3
A(2,0) + A(1,1) −

1

3
A(0,0), (4.27)

A(1,0) =
5

6
A(2,0) −

3

2
A(1,1) −

1

3
A(0,0), (4.28)

A(1,1) = −5

6
A(2,0) −

1

2
A(1,1) +

1

3
A(0,0), (4.29)

A(2,0) =
1

6
A(2,0) −

3

2
A(1,1) +

1

3
A(0,0), (4.30)
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A(2,1) = −1

6
A(2,0) −

1

2
A(1,1) −

1

3
A(0,0). (4.31)

As shown in Appendix A only the Landau parameters corresponding to conserved

quantities can be related to the susceptibilities of the model. The Landau parameters

in non-conserved channels can only give an estimate of the corresponding suscepti-

bility.

• When J = 0 the model is SU(6)-symmetric. Hence A(2,0) = A(1,1) = A(0,0) =

A. In the s − d limit the model maps onto an SU(6) Kondo model and the

charge compressibility is negligible. This implies that A(0,0) = 5A = 1 from

which we can calculate the other scattering amplitudes.

Given the larger symmetry of the model for J = 0 now all the particle-hole scat-

tering amplitudes correspond to conserved quantities and the associated Wilson

ratios, defined in Eq. (3.54), can be calculated from them. In particular they

have a universal value

R = 6/5 (4.32)

in agreement with known results[58].

• In the Kondo limit for J � TK the impurity is frozen in a S = 3/2 configura-

tion. In this regime both charge and orbital degrees of freedom are quenched,

A(0,0) = A(1,0) = A(2,0) = 1. This allows to extract the values for the three

particle-particle scattering amplitudes:

A(2,0) = 1,

A(1,1) = −1/3,

A(0,0) = 1.

From this we obtain the Wilson ration in the spin channel

R(0,1) = 10/3 (4.33)

which again agrees with known results[58].

• Close to the UFP we can assume that the charge degrees of freedom are frozen

below an energy scale of order U while spin and orbital one are frozen below
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TK , once again due to the lack of leading operators that generate singular be-

haviour at the UFP in these channels. Hence we can set A(0,0) = A(0,1) =

A(1,0) = 1. From this we get

A(2,0) = 1/2,

A(1,1) = 1/2,

A(0,0) = −4.

This means a dramatic enhancement of the susceptibility in the Cooper channel

corresponding to the total singlet. At the same time we find A(2,0) = A(1,1) =

−2 signaling a strong enhancement in the corresponding susceptibilities.

It is worth noticing that this result matches perfectly the result of the CFT anal-

ysis. Indeed in Table 4.6 the most relevant operator belongs to the total singlet

particle-particle channel (with dimension 1/3) while relevant operators in the

(2,0) and (1,1) channels have a larger dimension (2/3).

4.4 Analysis of the two electrons case

As expected from our preliminary analysis, the phase diagram of the model with

n0 = 2 is separated into two regions characterized by different properties as in the

three electron case. For J larger than a critical value J ∗ < 0 the low temperature

fixed point of the model is a Kondo screened fixed point described by a Fermi liquid.

For J smaller than J∗ the low temperature fixed point is again a Fermi liquid but with

different properties and without Kondo screening of the impurity. Once again the two

phases are separated by an UFP with non-Fermi liquid properties.

The spectrum of the system obtained by NRG is shown in Fig. 4.5 for values of

J close to J∗ in the two phases. The left panel shows the spectrum for J < J ∗ and

the right one the spectrum for J > J∗. The different character of the two phases is

evident.

For J > J∗ the spectrum is that of a chain with a π/2 phase shift and a potential

scattering term. The Kondo effect takes place and the impurity is screened by the first

shell of conduction electrons while the remaining conduction electrons experience a

potential scattering due to the breaking of particle-hole symmetry.
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Figure 4.5: Lowest energy levels versus the chain size N (odd) for n0 = 2. The levels

are labeled by the quantum numbers (Q, S, T ). The left/right panels correspond to

a deviation δJ/J∗ = ±4 · 10−6 from the fixed point value J∗. [Λ = 5, U = 2,

∆0 = U/(6π), J = −0.0142965 (left), J = −0.0142964 (right)]

For J < J∗ the spectrum is that of a free chain with the impurity completely

decoupled from the conduction band and quenched in a total singlet configuration.

In the crossover region J ∼ J∗ the system is initially close to an unstable fixed

point with non-Fermi liquid character.

The particle-hole symmetry breaking makes the CFT description and its compar-

ison with the numerical spectrum more involved than in the particle-hole symmetric

case. In addition there is the problem that particle-hole symmetry breaking induces a

splitting between charge-conjugated states and makes the comparison of the energy of

these states with the numerical spectrum very difficult. The only states whose energy

can be safely compared are those with Q = 0.

Starting from the free-fermion spectrum it is easy to find the spectrum of the fixed

point corresponding to the unscreened J < J ∗ region. Indeed in that region the phase

shift is zero and the spectrum is exactly that of free fermions in presence of potential
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scattering.

As we have seen in the parturbative analysis, for J > J ∗ the system would flow to

a non-Fermi liquid overscreened Kondo fixed point, but the presence of particle-hole

symmetry breaking drives the flow to a conventional Fermi liquid fixed point with the

first shell of conduction electrons quenched in a non degenerate configuration. The

low temperature fixed point found for J > J ∗ is hence correctly described by the

spectrum of free fermions with a π/2 phase shift and a potential scattering term.

The difficult task is now to guess the correct fusion to describe the UFP. An indi-

cation comes from the fact that the UFP found for n0 = 3 is stable under particle-hole

symmetry breaking and that a critical line starts from that point and joins the n0 = 2

UFP. Hence we can guess that, apart from the charge that will be affected when n0 is

varied, the spectrum must retain the same quantum numbers even if the energies will

differ.

By inspection of the possible fusions we find that the fixed point is described by

the fusion of the spectrum of the unscreened fixed point (free fermions) with operator

1/8 of in the Potts sector. Even if it is difficult to identify the states with charge

different from zero and the numerical agreement is not excellent, the fusion is the

only one that reproduces correctly the succesion of states and their degeneracy. The

spectrum obtained by CFT is presented in Table 4.7. It is interesting to notice that the

spectrum of this UFP is the same as that of the UFP found for n0 = 3 apart from the

charge sector that is reshuffled. Not surprisingly also the operator content is the same

of the UFP found for n0 = 3 (see Table 4.6).

The spectral function, shown in Fig. 4.6, presents the already encountered jump

in the value at the chemical potential in correspondence of the UFP.

4.5 Relevance of the single impurity results in connec-

tion with DMFT

The presence of symmetry breaking instabilities of the impurity model close to the

UFP is relevant for lattice systems that map by DMFT onto our three-orbital model.

Indeed, as we have seen in Section 3.5 for the two-orbital model, when such a lattice

system is driven close to the Mott transition the corresponding impurity model is

forced to enter the critical region TK ∼ −J . In this regime the impurity model is
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Table 4.7: Spectrum at the unstable non-Fermi liquid fixed point for n0 = 2.

Q S L Z3 x− 1/8

0 0 0 1/8 0

1 1/2 1 1/40 1/3

2 0 0 1/8 1/3

0 0 2 1/40 1/2

0 1 1 1/40 1/2

1 1/2 1 21/40 5/6

1 1/2 2 1/8 5/6

1 3/2 0 1/8 5/6

2 0 2 1/40 5/6

2 1 1 1/40 5/6

0 0 2 21/40 1

0 1 1 21/40 1

0 1 2 1/8 1

3 1/2 1 1/40 1

1 1/2 3 1/40 4/3

1 3/2 2 1/40 4/3

2 0 2 21/40 4/3

2 1 1 21/40 4/3

2 1 2 1/8 4/3

0 0 0 13/8 3/2

0 1 3 1/40 3/2

3 1/2 1 21/40 3/2

3 1/2 2 1/8 3/2

3 3/2 0 1/8 3/2

Q S T Z3 x− 1/8

1 1/2 3 21/40 11/6

1 3/2 2 21/40 11/6

2 0 0 13/8 11/6

2 1 3 1/40 11/6

0 0 4 1/8 2

0 1 3 21/40 2

3 1/2 3 1/40 2

3 3/2 2 1/40 2

1 1/2 2 13/8 7/3

1 3/2 0 13/8 7/3

2 0 4 1/8 7/3

2 1 3 21/40 7/3

0 1 2 13/8 5/2

3 1/2 3 21/40 5/2

3 3/2 2 21/40 5/2

1 3/2 4 1/8 17/6

2 1 2 13/8 17/6

3 1/2 2 13/8 3

3 3/2 0 13/8 3

0 0 4 13/8 7/2

3 3/2 4 1/8 7/2

2 0 4 13/8 23/6

1 3/2 4 13/8 13/3

3 3/2 4 13/8 5
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Figure 4.6: Impurity DOS close to the chemical potential for n0 = 2 across the UFP.

From top, the first three curves correspond to the Kondo screened phase and the last

three to the unscreened one. [Λ = 3, U = 2, ∆0 = U/(6π)]

unstable in different channels and the lattice system chooses the most divergent one

to develop a bulk symmetry breaking order-parameter to avoid the single impurity

instability.

In the particle-hole symmetric case with three electrons on the impurity, the in-

stabilities of the UFP are those associated to the relevant operators. From the list of

operators in Table 4.6 we see that the most relevant operator, corresponding to the

most divergent susceptibility close to the UFP, is (2, 0, 0, I) with dimension 1/3, i.e.

the Cooper particle-particle channel. This implies that a lattice system at half filling

that maps onto the three-orbital model, when driven towards the Mott transition, will

develop a superconducting phase right before the transition.

Contrary to the two-orbital case, where the Cooper instability was competing with

several other instabilities in different particle-hole channels, in this case the supercon-

ducting instability is the strongest. Indeed the other relevant operators (0, 0, 2, σ) and

(0, 1, 1, σ), corresponding respectively to a Jahn-Teller and to a spin-orbit instability,
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have dimension 2/3.

The robustness of the UFP to particle-hole symmetry breaking implies that the

superconducting region should extend in the phase diagram also to lattice systems

away from half filling.

It is interesting to analyze also the stability of the non-Fermi liquid phase found

for J < J∗. We have seen that this low temperature fixed point is stable only if

particle-hole symmetry is preserved, disappearing from the phase diagram for n0 6= 3.

This is demonstrated by the presence in Table 4.4 of the operator (0, 0, 0, ε) with

dimension 2/5. Nevertheless there are other symmetry breaking unstable channels

at this fixed point. The most relevant is the Cooper channel and (2, 0, 0, σ) with

dimension 2/5, and next the particle-hole channels (0, 0, 2, I) and (0, 1, 1, I) with

dimension 3/5. They all indicate that, were particle-hole symmetry be preserved,

the fixed point would be unstable towards a perturbation in the S = T = 0 Copper

channel and, to a lesser extent, in the particle-hole channels corresponding to a Jahn-

Teller distortion and to a spin-orbit coupling.

The corresponding lattice model, once crossed the superconducting phase gener-

ated by the UFP instability, should enter a phase in which the dominant instability is

towards a local particle-hole symmetry breaking. On the other hand, if the particle-

hole symmetry is enforced, the lattice has still other instabilities at its disposal to

avoid the non-Fermi liquid fixed point, namely the Cooper instability, the cooperative

Jahn-Teller distortion or finally a spin accompanied by an orbital ordering of the bulk.



Perspectives

In this thesis we have studied the phase diagram of two Anderson impurity models

which are characterized by an opposite sign of the conventional exchange splitting,

namely by inverted Hund’s rules. This interaction, which favors low degenerate im-

purity configurations, provides an alternative mechanism for freezing the impurity

degrees of freedom which competes against the ordinary Kondo effect and may give

rise to peculiar effects.

Indeed the impurities studied, having respectively two and three orbitals at dis-

posal, thus representing the simplest models showing this competition, share the pres-

ence in the phase diagram of an unstable fixed point with non-Fermi liquid properties

which separate the ordinary Kondo screened phase from an unscreened one where the

inverted exchange splitting takes responsibility of quenching the impurity degeneracy.

The two-orbital model unstable fixed point is the analog of that found in the two-

impurity Kondo model by Jones and Varma[14–16] and analyzed with conformal

field theory by Affleck and Ludwig[17] and with bosonization by Sire, Varma and

Krishnamurthy[45] and by Gan[46].

The three-orbital model phase diagram is even richer since, besides the already

mentioned unstable fixed point, we find also a stable non-Fermi liquid phase when

particle-hole symmetry holds. In the framework of boundary conformal field the-

ory the various fixed points are described by a critical theory involving the two-

dimensional three-state Potts model with different boundary conditions.

Beyond the interest for the impurity models per se, these results may also be of

relevance for strongly correlated lattice models which are mapped by dynamical mean

field theory on those Anderson impurity models.

In any strongly correlated system the competition between different energy scales,

already encoded in our impurity models, is at the heart of a correct description close

to a Mott transition. In the idealized picture of a Mott insulator, an integer number of
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electrons is localized on each site irrespectively of the particular electronic configura-

tion. This state would have a finite residual entropy per site, since there always exist

more than a single state with that fixed number of electrons. Obviously in any realistic

situation the Mott insulator will get rid of this entropy below an energy scale typically

much smaller than the Mott-Hubbard gap. This scale, which we keep denoting as J ,

is controlled by a variety of mechanisms. For instance, in the single band Hubbard

model, this mechanism is provided by the antiferromagnetic exchange, which may

induce magnetic ordering of the residual spin degrees of freedom. In our multiband

models it is the inverted exchange splitting which plays this role, which has the ad-

vantage of being an intra-site effect which is suitable to a DMFT analysis, unlike the

inter-site antiferromagnetic exchange in the single-band Hubbard model.

When the metal is driven towards the Mott transition the coherent quasiparticle

bandwidth goes to zero. Hence, before the Mott transition, it has to become of the

same order as J . Translated by DMFT into the Anderson impurity language, this

implies that the effective impurity model reaches a regime where the Kondo temper-

ature is of order J . This is just the critical region around the impurity unstable fixed

point, where all susceptibilities in the instability channels get hugely enhanced. This

translates within DMFT into strongly enhanced local susceptibilities. We have ar-

gued that, unlike the single impurity, the lattice model may respond to this singular

behavior by spontaneously generating an order parameter in any of the equivalent in-

stability channels. Which of them is going to prevail may depend on band structure

details. Therefore our conjecture is that, just before the Mott transition, a realistic

model should undergo a transition from a correlated normal metal into an ordered

phase which can be smoothly transformed into the zero-entropy Mott insulator. This

phase should be quite anomalous in the sense that the ordering temperature should

have the same order of magnitude as the energy scale below which the Mott insulator

quenches its residual entropy. In our cases with inverted Hund’s rules the ordered

phase is likely to be superconducting. Indeed in our two-orbital model the suscepti-

bility in the Cooper channel diverges in the same way as the susceptibilities in other

particle-hole channels, mirroring a hidden symmetry of the unstable fixed point. In

this case the superconducting instability of a lattice model corresponding to this im-

purity is expected to be favored in absence of band structure singularities or nesting.

In the three-orbital model instead the superconducting susceptibility is the most di-

verging one close to the unstable fixed point. These speculations have indeed been
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confirmed in the two-orbital model by DMFT[24] and agree with the DMFT analysis

of the three-orbital model with two electrons per site[23]. On the other hand it would

be extremely interesting to understand within the DMFT approach the role of the non

Fermi-liquid stable phase in the three-orbital model at particle-hole symmetry.

Even though our analysis has been limited to models where the mechanism of

entropy-quenching acting in the Mott insulator is on-site, thus allowing a DMFT cal-

culation, we are tempted to believe that the outcoming scenario is more generic. In

particular we think that the existence of a broad incoherent resonance at the chemical

potential, whose typical energy scale smoothly transforms into the previously defined

J-scale of the Mott insulator, on top of which there may be a narrow quasiparticle

resonance or a narrow deep/pseudo-gap is a quite simple and appealing scenario for

many realistic strongly correlated systems.





Appendix A

Fermi liquid theory for the Anderson

model

We introduce in this appendix a Fermi liquid theory for generic multi-orbital Ander-

son models that will provide a useful framework to analyze NRG results and will

allows us to introduce within DMFT the concept of a local Fermi liquid description

in addition to the conventional one, which refers instead to low frequency and mo-

mentum scattering amplitudes. In particular this approach will prove very useful to

interpret the data obtained in Section 3.2.3.

Let us consider more generally a multi-orbital Anderson impurity model. We

assume that besides spin rotational symmetry also orbital degeneracy is preserved,

so that the fully interacting impurity Green’s functions are diagonal and independent

either upon spin and orbital indices.

The variation of the electron number with orbital symmetry a and spin α associ-

ated with the presence of the impurity is given by[75]

∆naα = nd aα +
∑

k

(nk aα − n0
k aα)

= − 1

π

∫ +∞

−∞
dε f(ε) Im

{

Gaα(ε+ iδ)

+
∑

k

[

Gkk aα(ε + iδ) − G(0)
kk aα(ε+ iδ)

]

}

(A.1)

where δ is a positive infinitesimal number, f(ε) is the Fermi distribution function,

Gkk aα and G(0)
kk aα are respectively the interacting and non-interacting conduction elec-



128 Fermi liquid theory for the Anderson model

tron Green’s function, and Gaα is the impurity single-particle Green’s function given

by

Gaα(ε) =

(

ε−
∑

k

|Vk|2G(0)
kkaα(ε) − Σaα(ε)

)−1

. (A.2)

Plugging (A.2) in the expression (3.31) for the T-matrix, we have

Gkk aα(ε) = G(0)
kk aα(ε) +

(

G(0)
kk aα(ε)

)2

|Vk|2Gaα(ε) (A.3)

and after some manipulations expression (A.1) can be also transformed into

∆naα = − 1

π

∫ ∞

−∞
dε
∂f(ε)

∂ε
Im lnGaα(ε + iδ). (A.4)

The impurity density of states is further determined through

ρaα(ε) = − 1

π
ImGaα (iωn → ε + iδ) . (A.5)

If we introduce a source field in the Hamiltonian by

δĤ = −
∑

aα

haα naα,

where

naα =
∑

k

c†
k aαck aα + d†aαdaα,

then

Gaα(iωn)−1 → iωn + haα − ∆aα(iωn, haα) − Σaα(iωn, {hbβ}),

where

∆aα(iωn, haα) =
∑

k

|Vk|2
1

iωn − εk + haα
,

is the hybridization function in the presence of the source. Therefore the derivative

with respect to the external field of the variation of the electron number associated

with the impurity is given by
(

∂∆naα

∂hbβ

)

h=0

=

∫ ∞

−∞

dε

π

∂f(ε)

∂ε
Im

{

G(ε + iδ)

[

δabδαβ

(

1 −
(

∂∆(z)

∂z

)

z=ε+iδ

)
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−
(

∂Σaα(ε+ iδ)

∂hbβ

)

h=0

]}

, (A.6)

where Σaα(iωn) is the impurity self-energy and we made use of

(

∂∆aα(z, haα)

∂hbβ

)

h=0

= δabδαβ
∂∆(z)

∂z
,

being ∆(z) the hybridization function in the absence of h. On the other hand

(

∂Σaα(iωn)

∂hbβ

)

h=0

= − 1

β

∑

m

∑

bβ

Γaα,bβ;bβ,aα(iωn, iεm; iεm, iωn)

G(iεm)2

(

1 − ∂∆(iεm)

∂iεm

)

, (A.7)

where we used the property that, at h = 0, the Green’s function does not depend on a

and α. The interaction vertex is the reducible one.

Let us assume that there exists a set of conserved operators

M(i) =
∑

k

∑

abαβ

c†
k aα (M̂ (i))αβ

ab ck bβ

+
∑

abαβ

d†aα (M̂ (i))αβ
ab dbβ,

where M̂ (i) are Hermitean matrices and the suffix i identifies the particular conserved

operator. For convenience we adopt the normalization Tr
(

M̂ (i) · M̂ (i)
)

= 1. Then,

if we add a source field

δĤ = −h(i) M(i),

we can use the basis which diagonalizes M̂ (i) and apply the above results to find the

variation of 〈M(i)〉 associated with the presence of the impurity at first order in the

applied field. Going back to the original basis, we would find the following expression

of the difference δχ(i) between the susceptibilities in the presence and absence of the

impurity:

δχ(i) = δ

(

∂〈M(i)〉
∂h(i)

)

h=0

=

∫ ∞

−∞

dε

π

∂f(ε)

∂ε
Im

{

G(ε+ iδ)
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[

1 −
(

∂∆(iε)

∂iε

)

iε=ε+iδ

+
1

β

∑

n

∑

abcd

∑

αβγδ

Γbβ,dδ;cγ,aα(ε+ iδ, iεn; iεn, ε+ iδ)

(

M̂ (i)
)αβ

ab

(

M̂ (i)
)γδ

cd
G(iεn)2

(

1 − ∂∆(iεm)

∂iεm

)]}

. (A.8)

Hereafter we drop the suffix i. One can demonstrate that the following Ward

identities hold for the impurity

[Σ(iε + iω) − Σ(iε)] Mαβ
ab

= − 1

β

∑

n

∑

cd;γδ

Γaα,dδ;cγ,bβ(iε + iω, iεn; iεn + iω, iε)

Mγδ
cd G(iεn + iω)G(iεn) [iω − ∆(iεn + iω) + ∆(iεn)] . (A.9)

It then follows that

∂Σ(iε)

∂iε
Mαβ

ab = − 1

β

∑

n

∑

cd

∑

γδ

Γaα,dδ;cγ,bβ(iε, iεn; iεn, iε)M
γδ
cd G(iεn)2

− lim
iω→0

1

β

∑

n

∑

cd;γδ

Γaα,dδ;cγ,bβ(iε + iω, iεn; iεn + iω, iε)

Mγδ
cd G(iεn + iω)G(iεn)

[−∆(iεn + iω) + ∆(iεn)]

iω

= − 1

β

∑

n

∑

cd

∑

γδ

Γaα,dδ;cγ,bβ(iε, iεn; iεn, iε)M
γδ
cd G(iεn)2

(

1 − ∂∆(iεn)

∂iεn

)

+

∫ ∞

−∞

dε′

2π

∂f(ε′)

∂ε′

∑

cd;γδ

Γaα,dδ;cγ,bβ(iε, ε′ − iδ′; ε′ + iδ′, iε)

(

M (i)
)γδ

cd

(

M (i)
)βα

ba
G(ε′ + iδ′)G(ε′ − iδ′) Im [∆(ε′ − iδ′) − ∆(ε′ + iδ′)] .

(A.10)

Let us define the quantity

ρ̄∗ =

∫ ∞

−∞

dε

π

∂f(ε)

∂ε
Im

{

G(ε + iδ)

[

1 −
(

∂∆(iε)

∂iε

)

iε→ε+iδ

−
(

∂Σ(iε)

∂iε

)

iε→ε+iδ

]}

,

(A.11)

which plays the role of the quasiparticle DOS at the chemical potential. Then, through

(A.8), (A.10) and (A.11), the following equation is readily found

ρ̄∗ =
∑

ab

∑

αβ

ρ̄∗

(

M̂ (i)
)βα

ba

(

M̂ (i)
)αβ

ab
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= δχ(i) − 1

2π2

∫ ∞

−∞
dε dε′

∂f(ε)

∂ε

∂f(ε′)

∂ε′
Im

{

G(ε+ iδ)

[

∑

cd;γδ

Γaα,dδ;cγ,bβ(ε+ iδ, ε′ − iδ′; ε′ + iδ′, ε+ iδ)

(

M (i)
)γδ

cd

(

M (i)
)βα

ba
G(ε′ + iδ′)G(ε′ − iδ′) Im [∆(ε′ − iδ′) − ∆(ε′ + iδ′)]

]}

= δχ(i) +
1

2π

∫ ∞

−∞
dε dε′

∂f(ε)

∂ε

∂f(ε′)

∂ε′
ρ(ε)

∑

cd;γδ

Γaα,dδ;cγ,bβ(ε+ iδ, ε′ − iδ′; ε′ + iδ′, ε+ iδ)

(

M (i)
)γδ

cd

(

M (i)
)βα

ba
G(ε′ + iδ′)G(ε′ − iδ′) Im [∆(ε′ − iδ′) − ∆(ε′ + iδ′)]

(A.12)

The last expression is obtained by noticing that only the imaginary part of G(ε +

iδ) contributes, where Im G(ε + iδ) = −πρ(ε). Eq. (A.12) allows to express any

susceptibility to fields coupled to conserved quantities. If the hybridization function

is smooth at low energies, then

∆(ε′ − iδ′) − ∆(ε′ + iδ′) ' 2i∆0,

hence we can rewrite (A.12) as follows

δχ(i) = ρ̄∗

[

1 − ∆0

ρ̄∗π

∫ ∞

−∞
dε dε′

∂f(ε)

∂ε
ρ(ε)

∂f(ε′)

∂ε′
∑

cd;γδ

Γaα,dδ;cγ,bβ(ε+ iδ, ε′ − iδ′; ε′ + iδ′, ε+ iδ)

(

M (i)
)γδ

cd

(

M (i)
)βα

ba
G(ε′ + iδ′)G(ε′ − iδ′)

]

,

≡ ρ̄∗ [1 − Ai] , (A.13)

which allows to identify local Landau A-parameters through

Ai =
∆0

ρ̄∗π

∫ ∞

−∞
dε dε′

∂f(ε)

∂ε
ρ(ε)

∂f(ε′)

∂ε′
∑

cd;γδ

Γaα,dδ;cγ,bβ(ε + iδ, ε′ − iδ′; ε′ + iδ′, ε+ iδ)

(

M (i)
)γδ

cd

(

M (i)
)βα

ba
G(ε′ + iδ′)G(ε′ − iδ′)

]

. (A.14)
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The above expression is quite general but simplifies substantially when the imaginary

part of the impurity self-energy vanishes at low real frequency. In this case

G(iεn → ±i0+) =
1

−εd ± i∆0
,

where εd = ε
(0)
d + ReΣ(0) is the actual position of the d-resonance. Then, through

(A.5),

ρ(0) =
1

π

∆0

ε2d + ∆2
0

=
∆0

π
G(i0+)G(i0−). (A.15)

Analogously

ρ̄∗ =
ρ(0)

Z
,

1

Z
= 1 −

(

∂Σ(iε)

∂iε

)

iε→i0+

hence

Ai =
∑

abcd

∑

αβγδ

[

Z2 ρ̄∗ Γaα,dδ;cγ,bβ(0, 0; 0, 0)
]

(

M̂ (i)
)βα

ba

(

M̂ (i)
)γδ

cd
, (A.16)

which is the more conventional expression of the Landau parameters[75].



Appendix B

Matrix elements for the three-orbital

model

In this appendix we introduce the proper notation and demonstrate Eq. (4.11). The

various formulas used in this Appendix can be found for instance in Ref. [76]

Let us recall the definition (4.5) of the particle-hole operators with orbital mo-

mentum l and z-component λ and with spin s and z-component σ

{

c† ⊗ c
}

lλ,sσ
=
∑

(−1)k−1C lλ
1j,1−k(−1)β−1/2Csσ

1/2α,1/2−βc
†
jαckβ (B.1)

whereCcγ
aα,bβ are the Clebsh-Gordan coefficients and summation over repeated indices

is implied.

The reduced matrix elements are defined through the identity

〈Q;T, τ ;S,Σ|
{

c† ⊗ c
}

lλ,sσ
|Q;T ′, τ ′;S ′,Σ′〉 = (−1)T ′+S′

[

(2T ′ + 1)(2S ′ + 1)

(2T + 1)(2S + 1)

]1/4

CTτ
lλT ′τ ′CSΣ

sσS′Σ′〈Q;T, S||
{

c† ⊗ c
}

l,s
||Q;T ′, S ′〉. (B.2)

To simplify the notation let us drop the charge index from now on and define the

symbol

Πl =
√

2l + 1 (B.3)

as well as Πl1...ln = Πl1 . . .Πln .

The matrix element in (4.11) can then be written

〈T, τ, T ′
1, T

′
d;S,Σ, S

′
1, S

′
d|ĴK|T, τ, T1, Td;S,Σ, S1, Sd〉 =
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∑

τ1τdτ ′

1
τ ′

d

∑

Σ1ΣdΣ′

1
Σ′

d

∑

lλsσ

(1 − δl0δs0)C
Tτ
T1τ1Tdτd

CSΣ
S1Σ1SdΣd

CTτ
T ′

1
τ ′

1
T ′

d
τ ′

d
CSΣ

S′

1
Σ′

1
S′

d
Σ′

d
(−1)−λ−σ

〈T ′
1, τ

′
1;S

′
1,Σ

′
1|
{

c† ⊗ c
}

lλ,sσ
|T1, τ1;S1,Σ1〉

〈T ′
d, τ

′
d;S

′
d,Σ

′
d|
{

d† ⊗ d
}

lλ,sσ
|Td, τd;Sd,Σd〉 =

=
∑

τ1τdτ ′

1
τ ′

d

∑

Σ1ΣdΣ′

1
Σ′

d

∑

lλsσ

(1−δl0δs0)
√

ΠT1Td

ΠT ′

1
T ′

d

(−1)−λ+T1+TdCTτ
T1τ1Tdτd

CTτ
T ′

1
τ ′

1
T ′

d
τ ′

d
C

T ′

1τ ′

1

lλT1τ1
C

T ′

d
τ ′

d

l−λTdτd

√

ΠS1Sd

ΠS′

1
S′

d

(−1)−σ+S1+SdCSΣ
S1Σ1SdΣd

CSΣ
S′

1
Σ′

1
S′

d
Σ′

d
C

S′

1
Σ′

1

sσS1Σ1
C

S′

d
Σ′

d

s−σSdΣd

〈T ′
1, S

′
1||
{

c† ⊗ c
}

l,s
||T1, S1〉〈T ′

d, S
′
d||
{

d† ⊗ d
}

l,s
||Td, Sd〉. (B.4)

We now make use of a formula to sum the various Clebsh-Gordan coefficients

∑

βγεφη

(−1)−η+e+fCaα
bβcγC

aα
eεfφC

bβ
gηeεC

cγ
g−ηfφ =

=
∑

η

(−1)2e+2f+g−b−c(−1)g−η
∑

kκ

ΠabckC
kκ
gηg−ηC

aα
aαkκ











a b c

a e f

k g g











(B.5)

where the symbol in curly braces is a 9 − j coefficient. Since

∑

η

(−1)g−ηCkκ
gηg−η = Πgδk0 (B.6)

and

Caα
aα00 = 1 (B.7)

Eq. (B.5) reduces to

(−1)2e+2f+g−b−cΠabcg











a b c

a e f

0 g g











=

= (−1)2e+2f+g−b−cΠabcg
(−1)a+c+e+g

Πag

{

f e a

b c g

}

=

= (−1)−a+b+2c+3e+2f+2gΠbc

{

f e a

b c g

}

(B.8)
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Applying this identity to both the orbital and the spin part of Eq. (B.4) we get for

the orbital

∑

τ1τdτ ′

1
τ ′

d

√

ΠT1Td

ΠT ′

1
T ′

d

(−1)−λ+T1+TdCTτ
T1τ1Tdτd

CTτ
T ′

1
τ ′

1
T ′

d
τ ′

d
C

T ′

1
τ ′

1

lλT1τ1
C

T ′

d
τ ′

d

l−λTdτd
=

√

ΠT1TdT ′

1
T ′

d
(−1)−T+T ′

1+2T ′

d
+3T1+2Td+2l

{

Td T1 T

T ′
1 T ′

d l

}

(B.9)

and for the spin

∑

Σ1ΣdΣ′

1
Σ′

d

√

ΠS1Sd

ΠS′

1
S′

d

(−1)−σ+S1+SdCSΣ
S1Σ1SdΣd

CSΣ
S′

1
Σ′

1
S′

d
Σ′

d
C

S′

1
Σ′

1

sσS1Σ1
C

S′

d
Σ′

d

s−σSdΣd
=

√

ΠS1SdS′

1
S′

d
(−1)−S+S′

1+2S′

d
+3S1+2Sd+2s

{

Sd S1 S

S ′
1 S ′

d s

}

. (B.10)

Combining Eqs. (B.4), (B.9) and (B.10) we obtain as a result Eq. (4.11).
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