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Chapter 1

Introduction

In the near future a new window on the Universe will be opened thanks to the
birth of gravitational-wave (GW) astronomy.

Gravitational waves are one of the last and more “exotic” predictions of Einstein
theory of General relativity that still awaits direct verification. Although some relativists
were initially skeptical about their existence (Eddington once said “Gravitational waves
propagate at the speed of thought”) in 1993 the Nobel prize for physics was assigned to
Hulse and Taylor for their experimental observations and subsequent interpretations of the
evolution of the orbit of the binary pulsar PSR 1913416 [75, 140], the decay of the binary
orbit being consistent with angular momentum and energy being carried away from this
system by gravitational waves [153].

Gravitational waves will give us the possibility to collect several information that
cannot be obtained from direct observations by electromagnetic signals or by neutrinos.
During gravitational collapse, for example, electromagnetic radiation interacts strongly with
the matter and thus carries information only from lower density regions near the surface of
the star, and it is weakened by absorption as it travels to the detector. On the contrary
gravitational waves interact only weakly with matter and can travel directly to us from the
high-density regions inside the star providing us useful information about those zones.

Measurements of the GW signal may also give direct proof of the existence of black
holes [55, 56], will provide new information about the early universe (through the cosmic
GW background radiation), will be used to test gravitational theories by the measure of
GW speed (predicted to be equal to the light velocity by General Relativity but not by
other theories [154]). It may also happen that new sources, not known at the moment, will
be discovered as it happened for example with the first observations in the radio and -y
frequencies.

It is then easy to understand the importance of the detection of this new kind
of signal and why so much effort is being spent by several groups in the world in the de-
velopment of new GW detectors both on earth and in space. The current progress in the
field of GW detection will also require more realistic and detailed predictions about the
expected signal in order to benefit of the use of matched filtering analysis techniques which
increase considerably the amount of information that can be extracted from the observa-
tions. The first generation of ground based interferometric detectors (LIGO [96],VIRGO [151],
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GE0600 [65], TAMA300 [139]) is indeed beginning the search for GWs and in the next ten
years LIGO and VIRGO will also complete a series of improvements that will increase their
sensitivity. A space-based interferometric detector, LISA [97], is expected to be launched
in 2015 or shortly thereafter. LISA is a space-based Michelson interferometer composed by
three identical spacecrafts positioned 5 million kilometers apart in an equilateral triangle.
The high sensitivity in the range of frequencies between 10~*Hz and 107'Hz will permit
the detection of GW originated from the formation and the coalescence of massive black
holes and galactic binaries.

The most promising sources of gravitational waves for the detectors presently in
operation are coalescing compact binary systems composed by two neutron stars (NS) or
by a NS and a black hole (BH), binary black holes, gravitational collapses (to black-holes
or neutron stars) and pulsars. Because all of these involve very compact objects, such as
neutron stars and black holes, and strong gravitational fields, it is necessary to solve the
full set of Einstein equations without approximations to obtain an accurate prediction on
the GW signal.

Given the high non-linearity and complexity of these equations is then necessary to
solve them through the use of parallel numerical codes and over the last years several groups
in the world started the development of multipurpose numerical codes able to study the
sources listed above, even if still not including all the physical process that may be present.
One of these, the Whisky code [16], was developed to solve the full set of general relativistic
hydrodynamics equations in 3 spatial dimensions. It made it possible the computation,
for the first time and without approximations, of the GW signal coming from the collapse
of uniformly rotating neutron stars [17]. It has also been recently applied to the study of
the dynamical barmode instability [14], of the head-on collision of two NS or of a mixed
system composed of a NS and a BH [98]. Even if the progress made with this code are
increasing our understanding of different astrophysical systems, we are still limited by the
use of non-realistic equations of state (even if some work in progress is being done in this
direction), by the lack of a treatment of radiative processes and by the absence of magnetic
fields, which are known to be present and to have a relevant influence in many situations.

Magnetic fields play, for example, a key role in phenomena like y-ray bursts (GRB)
which are thought to be associated to the collapse of the core of massive magnetized
stars [73, 138] (these are the so called “long” GRB) or to the merger of NS [49, 26] (these
are the so called “short” GRB), see ref. [103] for a review on GRB. GRB are an example
of the importance of doing astrophysical observations in all the possible frequencies and
they are also very good candidates for GW [149]. Furthermore it is not possible with the
current observations to obtain direct information about the inner parts of the central engine
powering the GRB. The electromagnetic signal is in fact emitted from regions far away from
the center and so gravitational waves will be the only way to unveil the structure of the
central part and to confirm the expected presence of a Kerr black hole. In addition, a coin-
cidence between a GW signal and a ~-ray signal would be of great help with data analysis
techniques in increasing significantly the signal to noise ratio (SNR) of the detectors in this
case [54, 79].

Magnetic fields can also have an effect on the gravitational waves emitted by other
sources affecting both the frequencies and the amplitude of the signals. It has been claimed
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that they can lower the amplitude even by an order of 10% in supernova core collapse [87] or
that they can even suppress the r-mode instability in neutron stars [121, 102] or considerably
lower the amplitude of the GW signal generated by this instability [119, 120].

In order to increase our theoretical understanding of all these objects we have
developed WhiskyMHD, a new numerical code that solves the equations of general relativistic
magnetohydrodynamics in three spatial dimensions on a generic and time-varying spacetime.
Like the Whisky code, it is conceived as an astrophysical laboratory in which to investigate
the physics of compact objects in presence of magnetic fields. Our main aim is then to extend
all the work done so far with the Whisky code to include the effects of magnetic fields and
also to study interesting astrophysical scenario that cannot be simulated with Whisky, such
as the sources of y-ray bursts in connection with gravitational waves emission.

This thesis is essentially composed of two parts. In the first we concentrate on the
use of the Whisky code to study the collapse of differentially rotating neutron stars without
magnetic fields. Differentially rotating NS are thought to be the results of the mergers
of binary neutron stars and they have been proposed as candidates for short y-ray burst.
Here we start the study without the presence of a magnetic field in order to have a first
description of the dynamics and of the gravitational waves emitted by them. We recall that
this problem, i.e. the study of the GW emission from the collapse to BH of differentially
rotating NS, has not been yet discussed in the literature and the results presented here
represent the first steps in the investigation of this process. In particular, in Chapter 2
we describe the formulation adopted to solve Einstein equations in both the Whisky and
the WhiskyMHD codes. In Chapter 3 we introduce the Whisky code and we give details
about the equations of general relativistic hydrodynamics (GRHD) and their numerical
implementation in a conservative formalism. Then in Chapter 4 we present new results
from the collapse of strongly differentially rotating neutron-stars. We consider models with
different values of J/M?, where J is the angular momentum and M the mass of the system.
We find that a black-hole forms only if J/M? < 1 and that the dynamics looks similar to
what already observed for uniformly rotating stars. We studied the final fate of a star with
J/M? > 1 when its collapse is caused by a large pressure depletion and we observe a very
different dynamics with the development of nonaxisymmetric instabilities and the formation
of a stable, differentially rotating NS. In all the cases we present also the gravitational wave
signal emitted from these sources.

In the second part we focus on the development of our WhiskyMHD code. In Chap-
ter 6 we describe the equations of general relativistic magnetohydrodynamics (GRMHD)
and the formulation used to rewrite the system in a conservative form. The use of this
formulation is particularly useful because it permits to extend to GRMHD the use of con-
servative schemes, such as the high resolution shock capturing methods, already used in
GRHD codes like Whisky. Being these methods based on the solutions of Riemann prob-
lems, in Chapter 5 we discuss the procedure for the exact solution of the Riemann problem
in special relativistic magnetohydrodynamics. We consider both initial states leading to
a set of only three waves analogous to the ones in relativistic hydrodynamics, as well as
generic initial states leading to the full set of seven MHD waves. This solution represents
as important step towards a better understanding of the complex dynamics of nonlinear
waves in relativistic MHD. Because of its generality, the solution presented here is now
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becoming a standard tool used by different groups in the world to test both special and
general relativistic MHD codes. In Chapter 7 we give the details of our new numerical code
WhiskyMHD and the results of the tests with some preliminary applications to the study of
the oscillations of magnetized neutron stars. Finally, Chapter 8 will collect our conclusions
and the prospects of future work.

Notation

We use a spacelike signature (—, +,+,+) and a system of units in which ¢ = G = Mg = 1.
Greek indices are taken to run from 0 to 3, Latin indices from 1 to 3 and we adopt the
standard convention for the summation over repeated indices. Finally we indicate 3-vectors
with an arrow and use bold letters to denote 4-vectors and tensors.

Computational resources

All the numerical computations discussed in this thesis were performed on clusters Albert100
and Albert2 at the Physics Department of the University of Parma (Italy), on the cluster
CLX at CINECA (Bologna, Italy) and on the cluster Peyote at AEI (Golm, Germany).



Chapter 2

Spacetime formulation

2.1 Introduction

In this chapter we describe the formulation adopted for the numerical solution of
Einstein equations:

1
Guw =Ry — §gm,R =811 , (2.1)

where T}, is the stress energy tensor, G, is the Einstein tensor, R = R}, is the Ricci scalar,
R, = R}, is the Ricci tensor,

R, = 0,17, — 0,17, +T7,17, -T2, , (2.2)

is the Riemann tensor and

QUT (a,ugpf + 8pg,u7' - 8Tg,up) s (2'3)

are the Christoffel symbols expressed in terms of the metric g,,. All these objects are
4-dimensional, that is they are defined on the 4-dimensional spacetime manifold M.

The ability to perform long-term numerical simulations of self-gravitating systems
in general relativity strongly depends on the formulation adopted for the Einstein equations
(2.1).

Over the years, the standard approach has been mainly based upon the “3+1”
formulation of the field equations, which was first introduced by Arnowitt, Deser and Misner
(ADM) [13]. In the following section we will give an outline of this formalism, while in
Section 2.3 we will present a better formulation which is implemented in the codes we use.

2.2 The Arnowitt Deser Misner “341” formalism

According to the ADM formalism, the spacetime manifold M is assumed to be
globally hyperbolic and to admit a foliation by 3-dimensional spacelike hypersurfaces 3 4
parameterized by the parameter ¢t € R: M = R x ;. The future-pointing 4-vector n
orthonormal to 3, is then proportional to the gradient of t: n = —aVt, where « is chosen
following the normalization n-n = —1. Introducing a coordinate basis {e (,)} = {e(), e}
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Figure 2.1 The foliation of spacetime according to the “3 + 1”7 formalism.

of 4-vectors and choosing the normalization of the timelike coordinate basis 4-vector e (g
to be e(g) - Vi =1, with the other three basis 4-vectors to be spacelike (i.e. tangent to the
hypersurface: n-e; =0 Vi), then the decomposition of n into the basis {e )} is

n=20,58 (2.4)
o @

where 3 = ﬁie(i) is a purely spatial vector called the shift vector, since it describes how
the spatial coordinates shift when moving from a slice ¥ ; to another ;. The function «
is called lapse and describes the rate of advance of time along the timelike unit-vector n
normal to a spacelike hypersurface ¥; (see figure 2.1). Defining ., = g, + n,n, to be the
spatial part of the 4-metric, so that « is the projector orthogonal to n (i.e. v -n = 0) and
7i; is the 3-metric of the hypersurfaces, the line element in the 3+1 splitting reads

ds? = —(a? — B'6:)dt? + 26;dz'dt + ~i;da’da’ . (2.5)

The original ADM formulation [13] casts the Einstein equations into a first-order-
in-time second-order-in-space quasi-linear system of equations [124] and a set of elliptic
equations (the constraint equations). The dependent variables for which there is a time
evolution are the 3-metric «y ;; and the extrinsic curvature

K;; = —fyf’yg»vk.nl ) (2.6)

where V; denotes the covariant derivative with respect to the 3-metric v ;;. By construction,
the extrinsic curvature is symmetric and purely spatial. The extrinsic curvature describes
the embedding of the 3-dimensional spacelike hypersurfaces ¥ ; in the 4-dimensional mani-
fold M. The first-order evolution equations are then given by

,Dt’)/z‘j = —QOzKZ‘j y (27)
1
Dth'j = —VZ-Vja + Rij + K Kij —2K; K]m — 87 <SZ] — 5’%]'5') — 47Tp%j] .

(2.8)
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Here, Dy = 0; — Lg, L is the Lie derivative! with respect to the vector 3, R;; is the Ricci
tensor of the 3-metric, K = ~% K;; is the trace of the extrinsic curvature, p = n,n,T""
is the total energy density as measured by a normal observer (i.e. the projection of the
stress-energy tensor on the normal to the spatial hypersurface ), Si; = iy TH is
the projection of the stress-energy tensor onto the spacelike hypersurfaces and S = v% Sij
(for a more detailed discussion, see ref. [162]). Equation (2.7) illustrates the intuitive
interpretation of the extrinsic curvature as the “time derivative” of the spatial metric v ;;.
The spatial metric on two different slices may still differ by a coordinate transformation, of
course. In this intuitive framework, equation (2.8) represents the “acceleration”, i.e. the
variation of the variations of the spatial metric.

In addition to the evolution equations, the Einstein equations also provide four
constraint equations to be satisfied on each spacelike hypersurface. The first of these is the
Hamiltonian constraint equation

R+ K?— KKV —16mp =0, 2.9
J

where R denotes the Ricci scalar of the 3-metric. The other three constraint equations are
the momentum constraint equations

VK% —4V;K — 815" =0, (2.10)

where S' = —~#pY w1 the momentum density as measured by an observer moving
orthogonally to the spacelike hypersurfaces.

The system of equations (2.7)—(2.10) is not closed; in fact, we are free to specify
additional gauge conditions to determine the coordinate system. These are usually imposed
as equations on the lapse and the shift.

Finally, we give here the expressions of the total mass and of the total angular
momentum as measured at infinity in an asymptotically-flat spacetime

1 ) )
Mypu = Ton VIV Y Yt — YVitm) 2 Si (2.11)
r=00
1 k Jem j2
(Jam)i = g-eij o Ki'd”Sp (2.12)
T=00

where S is a closed surface in an asymptotically-flat region and ¢ ijk is the flat-space Levi-
Civita tensor.

2.3 Conformal transverse traceless formulation

The ADM formalism was widely used in the past but it soon revealed to lack the
stability properties necessary for long-term numerical simulations. At the end of the last

'For an arbitrary tensor o

.....
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century a new scheme based on a conformal traceless reformulation of the ADM system was
developed by Nakamura, Oohara and Kojima [114] and successively improved in refs. [130,
24]. Its stability properties make this formulation the most used in numerical relativity and
it is commonly known with the name of BSSN (or BSSNOK).

2.3.1 Evolution of the field equations

Here we briefly introduce the set of equations we use to solve Einstein equa-
tions (2.1), but more details on how this formulation is actually implemented in our numer-
ical codes can be found in refs. [6, 4].

The conformal traceless reformulations of the ADM equations (2.7)—(2.10) make
use of a conformal decomposition of the 3-metric and of the trace-free part of the extrinsic
curvature. Here we follow the presentation made in ref. [6].

The conformal 3-metric 7;; is defined as

Fij = e 5, (2.13)
with the conformal factor chosen to be
el = A1/3 = det(v;;) /3 . (2.14)

In this way the determinant of 7;; is unity. The trace-free part of the extrinsic curvature
K ;;, defined by

1

is also conformally decomposed:

Ay =e 104, . (2.16)

The evolution equations for the conformal 3-metric ¥ ;; and the related conformal factor ¢
are then written as

Diyij = —2aA , (2.17)
1
Dip = —éaK. (2.18)

The evolution equation for the trace of the extrinsic curvature K can be found to be
ij o Lo 1
DK = —'yJVZ-Vja—i—a AijAj + gK +§(p+8) R (219)
where the Hamiltonian constraint was used to eliminate the Ricci scalar. For the evolution

equation of the trace-free extrinsic curvature flij there are many possibilities. A trivial
manipulation of equation (2.8) yields:

Dy — e[V Va+a(Ry - 5™ +a (K/Lj - 2&121;) . (220

where [T;;]TF refers to the trace-free part of a 3-dimensional second-rank tensor Ty, i.e.,
[T;;)™" = T,; — v,;TF/3. Note that, as shown in refs. [130, 24], there are many ways
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to write several of the terms of (2.20), especially those involving the Ricci tensor; the
expression which proved more convenient for numerical simulations consists in conformally
decomposing the Ricci tensor as

R;; = Rij + R?

’ (2.21)

where the “conformal-factor” part Rf;- is given directly by straightforward computation of
the spatial derivatives of ¢:

RZQ; = —26iﬁj¢ — Qiij@lﬁlqb + 4@Z¢ @]qb — 45/ij@l¢ 6l¢) , (2.22)

while the “conformal” part RZ-]- can be computed in the standard way from the conformal
3-metric 7;5. To simplify the notation, it is convenient to define what Baumgarte et al. [24]
call the “conformal connection functions”

I N (2.23)

where the last equality holds if the determinant of the conformal 3-metric 4 is unity (note
that this may well not be true in numerical simulations). Using the conformal connection

function, the Ricci tensor can be written as?
- 1. ~ ~ - S ~ - -
Rij = —5 lmalam%j + vk(iaj)Fk + F"T(mk + Wlm (QFf(iFj)km + F?mrklj) .

Also in this case there are several different choices of how the terms involving the confor-
mal connection functions I are computed. A straightforward computation based on the
Christoffel symbols could be used (as in standard ADM formulations), but this approach
leads to derivatives of the 3-metric in no particular elliptic form. Alcubierre et al. [6] found
that if the I are promoted to independent variables, then the expression for the Ricci
tensor retains an elliptic character, which is positive in the direction of bringing the system
a step closer to being hyperbolic. The price to pay is that in this case one must evolve three
additional quantities. This has, however, net numerical advantages, which will be discussed
below.

Following this argument of promoting the I to independent variables, it is straight-
forward to derive their evolution equation

.. o . L2 -
or = -0, (QOzAZJ —27"00,,8" + 257708 + ﬁlalfw) . (2.24)
Here too, there are different possibilities for writing these evolution equations; as pointed
out in ref. [24] it turns out that the above choice leads to an unstable system. Alcubierre et

al. [6] found that a better choice can be obtained by eliminating the divergence of A" with
the help of the momentum constraint

. o ) T » o
o' = —248;0 + 2(T4 AN - IO K — 55, + 6410;0)

y A N
—9; (5laﬁw _o5mlig, gD + gf?”alﬁl> . (2.25)

*We define T;;) as the symmetrized part of the tensor T5;.



10 Chapter 2: Spacetime formulation

With this reformulation, in addition to the evolution equations for the conformal 3-metric
%5 (2.17) and the conformal traceless extrinsic curvature variables A;; (2.20), there are
evolution equations for the conformal factor ¢ (2.18) and the trace K of the extrinsic
curvature (2.19). If the I' are promoted to the status of fundamental variables, they can be
evolved with (2.25). We note that, although the final first-order-in-time and second-order-
in-space system for the 17 evolved variables {qb, K, %j,flij,fi} is not in any immediate
sense hyperbolic, there is evidence showing that the formulation is at least equivalent to a
hyperbolic system [128, 28, 113].

In references [6, 3] the improved properties of this conformal traceless formu-
lation of the Einstein equations were compared to the ADM system. In particular, in
ref. [6] a number of strongly gravitating systems were analyzed numerically with convergent
high-resolution shock-capturing methods with total-variation-diminishing schemes using the
equations described in ref. [59]. These included weak and strong gravitational waves, black
holes, boson stars and relativistic stars. The results showed that this treatment led to a
numerical evolution of the various strongly gravitating systems which did not show signs of
numerical instabilities for sufficiently long times. However, it was also found that the confor-
mal traceless formulation requires grid resolutions higher than the ones needed in the ADM
formulation to achieve the same accuracy, when the foliation is made using the “K-driver”
approach discussed in ref. [19]. Because in long-term evolutions a small error growth-rate
is the most desirable property, we have adopted the conformal traceless formulation as our
standard form for the evolution of the field equations.

In conclusion of this section, we report the expressions (2.11) and (2.12) of the total
mass and of the total angular momentum as measured in an asymptotically-flat spacetime,
expressed in the variables introduced in this formulation and transformed, using the Gauss
law, in volume integrals, which are better suited to Cartesian numerical computations [159]:

1 ~ .. 1 1 ~. o~ 1—e® -
M = 56 — A ;AT - — K?) — — TV + ——R|d® 2.26
/v[e <p e T g ) 60 % Tor 7 (2.26)

1 -~ . 1 . 1 . -
k ~1 60 13
ho= e /V<87Ai+ﬂ5k +vak‘16—ﬁ”mv’“Alm>e¢”' (227

2.3.2 Gauge choices

Here we give the details about the specific gauges used in the simulations reported
in Chapter 4. In particular, we have used hyperbolic K-driver slicing conditions of the form

(0 — B0 = —f(a) *(K — Ky) (2.28)

with f(a) > 0 and K¢ = K(t = 0). This is a generalization of many well-known slicing con-
ditions. For example, setting f = 1 we recover the “harmonic” slicing condition, while, by
setting f = g/, with ¢ an integer, we recover the generalized “1+log” slicing condition [29].
In particular, all of the simulations discussed in this thesis are done using condition (2.28)
with f = 2/a. This choice has been made mostly because of its computational efficiency,
but we are aware that “gauge pathologies” could develop with the “l1+log” slicings [2, 8].
As for the spatial-gauge, we use one of the “Gamma-driver” shift conditions pro-
posed in ref. [7] (see also ref. [4]), that essentially act so as to drive the I' to be constant.
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In this respect, the “Gamma-driver” shift conditions are similar to the “Gamma-freezing”
condition @ ,I'* = 0, which, in turn, is closely related to the well-known minimal distortion
shift condition [136]. The differences between these two conditions involve the Christof-
fel symbols and, while the minimal distortion condition is covariant, the Gamma-freezing
condition is not.

All of the results reported here have been obtained using the hyperbolic Gamma-
driver condition,

O3 =Fol' —nop, (2.29)

where F' and 7 are, in general, positive functions of space and time. For the hyperbolic
Gamma-driver conditions it is crucial to add a dissipation term with coefficient 1 to avoid
strong oscillations in the shift. Experience has shown that by tuning the value of this
dissipation coefficient it is possible to almost freeze the evolution of the system at late
times. We typically choose F' = 3/4 and n = 3 and do not vary them in time.



Chapter 3

The Whisky code

3.1 Introduction

As already pointed out in Chapter 1, in order to study the dynamics of compact ob-
jects, such as the collapse of neutron stars, and to accurately extract the gravitational wave
signal emitted from different astrophysical sources, several European institutions (SISSA,
AEI University of Thessaloniki, University of Valencia) worked together to develop the
Whisky code.

The Whisky code [15] solves the general relativistic hydrodynamics equations on
a three dimensional (3D) numerical grid with Cartesian coordinates. The code makes
use of the Cactus framework (see ref. [32] for details), developed at the Albert Einstein
Institute (Golm, Germany) and at the Louisiana State University (Baton Rouge, USA). The
Cactus code provides high-level facilities such as parallelization, input/output, portability
on different platforms and several evolution schemes to solve general systems of partial
differential equations. Clearly, special attention is dedicated to the solution of the Einstein
equations, whose matter-terms in non-vacuum spacetimes are handled by the Whisky code.

In essence, while the Cactus code provides at each time step a solution of the
Einstein equations [5]

Gy =811y, , (3.1)

where G, is the Einstein tensor and T}, is the stress-energy tensor, the Whisky code
provides the time evolution of the hydrodynamics equations, expressed through the conser-
vation equations for the stress-energy tensor and for the matter current density J*#

V,.IH = 0,
V. = 0. (3.2)

For a perfect fluid, as the one considered in this thesis, the matter current density and the
stress-energy tensor are

JE = put (3.3)
™ = phutu” + pgh” (3.4)

12
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where p is the rest-mass density, u* the four-velocity of the fluid, p the gas pressure, h =
1+ €+ p/p the specific relativistic enthalpy and e the specific internal energy.
In what follows we discuss in more details the most important features of the code.

3.2 Quasi-linear hyperbolic systems

A system of partial differential equations is said to be in conservative form when
it is written as:

ou  oF

o o
where U is the set of conserved variables and F the fluxes. The system can then be easily
rewritten in a quasi-linear form:

0 (3.5)

ou ou
a5 + Aa—x =0 (3.6)
with A being the Jacobian of the flux vector, i.e. 9F/9U.

A quasi-linear system of equations will be said to be hyperbolic if the matrix A’
has N real eigenvalues (where N x N is the dimension of the matrix) and admits a complete
set of eigenvectors. The system is said to be strictly hyperbolic if the eigenvalues are all real
and distinct.

To better appreciate the importance of having a quasi-linear hyperbolic system of
equations let us start with the simplest conservative and hyperbolic equation, i.e. the linear

advection equation:
ou ou

with initial conditions:

U(z,t =0) =Up(x) (3.8)
The solution of this equation is easy to compute and it is simply

U(z,t) = Uy(x — at) (3.9)

for t > 0. In other words the initial data simply propagates unchanged to the right (if
a > 0) or to the left (if a < 0) with velocity a. The solution U(z,t) is constant along each
ray x — at = xg, which are known as the characteristics of the equation. To see this we can
differentiate U(z,t) along one of the curves z/(t) = da/dt to obtain

dU(z(t),t) _ oU U
at = o Tt
_ U _ U
ot ox
— 0 (3.10)

confirming that U is constant along these characteristics.

This notation can be easily extended to system of equations like (3.6). If the
system is hyperbolic it admits a full set of N right eigenvectors R! with [ = (1,...,N). If
we indicate with Q the N x N matrix whose columns are R!, then

A=Q'AQ (3.11)
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where

A = diag(A1,...,AN) (3.12)

Introducing the characteristic variables

v=Qlu (3.13)
system (3.6) becomes
A% A%
+ A— = 3.14
ot Oz ( )
Since A is diagonal, this decouples into N independent scalar equations
OVZ oV,
+ A =0 (=1,....N 3.15
8t la 3 ) ( )
whose solutions are given by
Vi(z,t) = Vi(x — \it, 0) (3.16)

The solution of the original system (3.6) can then be computed inverting equation (3.13),
i,e. U= QYV or, in components,

N
=> Vi(z— \t,0)Q (3.17)
=1

We can then view the solution as being the superposition of N waves, each of which prop-
agates undistorted with a speed given by the corresponding eigenvalue.

3.3 Equations of General Relativistic hydrodynamics

An important feature of the Whisky code is the implementation of a conservative
formulation of the hydrodynamics equations [99, 22, 76], in which the set of equations (3.2)
is written in the following hyperbolic, first-order and flux-conservative form:

L{3t[\/’71:'0(U)] +9,[V=gFY(U)]} = S(U) (3.18)
V=9
where F()(U) and S(U) are the flux-vectors and source terms, respectively [57]. Note that
the right-hand side of (3.18) depends only on the metric, and its first derivatives, and on
the stress-energy tensor.
As shown in ref. [22], in order to write system (3.2) in the form of system (3.18),

the primitive hydrodynamical variables U = (p, v, €) are mapped to the so called conserved
variables FO(U) = (D, S;, 7) via the relations

D = pW,
S; = phW?y; (3.19)
T = phW?—p—D,
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where v® is the fluid three-velocity (as measured by an Eulerian observer), € is the specific
internal energy and W = (1 — ;;v'v/ )~1/2 is the Lorentz factor. The explicit expression for
the fluxes and for the source terms are given by:

FO = [D(' = §'/a), 80" = B'/a) + pst, 7(v' = B /) + pv']" (3.20)

S = [0,T"(dugv; +T0955), a(T" 9, Ina — T*TY )" (3.21)

In order to close the system of equations for the hydrodynamics an equation of

state (EOS) which relates the pressure to the rest-mass density and to the energy density

must be specified. The code has been written to use any EOS, but all of the simulations so
far have been performed using either an (isentropic) polytropic EOS

p = Kp", (3.22)
b
_ 2
or an “ideal-fluid” EOS
p=(—=1)pe. (3.24)

Here, e is the energy density in the rest-frame of the fluid, K the polytropic constant and
I" the adiabatic exponent. In the case of the polytropic EOS (3.22), I' = 1+ 1/N, where N
is the polytropic index and the evolution equation for 7 needs not be solved. In the case of
the ideal-fluid EOS (3.24), on the other hand, non-isentropic changes can take place in the
fluid and the evolution equation for 7 needs to be solved.

Additional details of the formulation used for the hydrodynamics equations can
be found in ref. [57]. We stress that an important feature of this formulation is that it has
allowed to extend to a general relativistic context the powerful numerical methods developed
in classical hydrodynamics, in particular high resolution shock-capturing (HRSC) schemes
based on linearized Riemann solvers (see ref. [57]). Such schemes are essential for a correct
representation of shocks, whose presence is expected in several astrophysical scenarios. Two
important results corroborate this view. The first one, by Lax and Wendroff [90], states
that if a stable conservative scheme converges, then it converges toward a weak solution
of the hydrodynamical equations. The second one, by Hou and LeFloch [74], states that,
in general, a non-conservative scheme will converge to the wrong weak solution in the
presence of a shock, hence underlining the importance of flux-conservative formulations. In
the following section we will give some details of HRSC schemes; for a full introduction to
these methods the reader is also referred to refs. [89, 143, 94]

3.4 Numerical methods

Details about all the numerical methods implemented in the Whisky code can be
found in refs. [15, 16]; here we summarize the most important ones.

3.4.1 High-Resolution Shock-Capturing methods

Having written the system of equations in the conservative form (3.5) we can use
numerical schemes based on the characteristic structure of the system. It is demonstrated
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that if a numerical scheme written in conservative form converges, it automatically guar-
antees the correct Rankine-Hugoniot conditions across discontinuities, for example shocks
[93, 143]. This means that the code is able to assure the conservation of quantities like
mass, energy and momentum also in presence of strong shocks.

High-Resolution Shock-Capturing schemes are conservative numerical methods
that consist in the numerical solution of equation (3.5) in its integral form, guaranteeing
the conservation of the set of conserved variables (if the sources are zero).

First of all let us consider a single computational cell of our discretized spacetime
and let € be a region of spacetime bounded by two space-like hypersurfaces ¥y and ;1 Ay
and by six timelike surfaces ¥,i_azi/o and X,iq agi/o- The integral form of equation (3.18)
can then be expressed as

/at(ﬁFO)dQ = —/6i(\/—_gFi)dQ+/\/—_ngQ (3.25)

where d) = dtdxdydz. This equation can then be rewritten in the following conservation
form:

(AVFO) |t+At - (AVFO) |t -
_ / (v/—gF®)dtdydz + / (vV—gF*)dtdydz
Ez+Az/2 ZI*AI/2
_/ (\/—ng)dtdq:dz—l—/ (v/—gFY)dtdzdz
Ey-&-Ay/? Ey—Ay/2
—/ (\/—ng)dtdazdy—k/ (v/—gF?)dtdzdy
2z+Az/2 Ez—Az/Q

+ / V—9SdQ (3.26)

where FO is defined as )
F'= NG /A y VAFdedydz (3.27)

with

z+Az/2  py+Ay/2  pz+Az/2
AV = / Vydedydz (3.28)

—Az/2 Jy—Ay/2 Jz—Az/2

At this point we introduce the numerical fluxes defined at the boundaries between the
numerical cells and defined as the time averages of the fluxes

1 t+AL

Fi= _— —gF'dt 3.29
Al e (3.29)

If we now divide equation (3.26) by AV and ignore the source term we obtain
- ), e Py ()
(FO)‘H-At B (FOMt ( zt—Azt/2 Ti4Azt/2

At - i;g Azl (3:30)
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u(x,t): continuous

uj”(xJ ,): piecewise constant

Figure 3.1 Schematic picture of the process of discretization. The continuous function
U(z,t) is approximate by a piecewise constant function U ]" on the numerical grid. As a
result, a series of Riemann problems is set up at each interface between the cells. (Figure
courtesy of L. Rezzolla)

In order to compute the numerical fluxes used in equation (3.30), the primitive variables
are reconstructed within each cell (see figures 3.1 and 3.2). This gives two values at the
left and at the right of each cell boundary which define locally a Riemann problem whose
solution is then used to compute the numerical flux.

3.4.2 Reconstruction methods

For the reconstruction procedure, the Whisky code implements several different
approaches, including slope-limited TVD methods, the Piecewise Parabolic Method [34]
and the Essentially Non-Oscillatory method [67]. By default we use PPM as this seems to
be the best balance between accuracy and computational efficiency, as shown, for example,
in ref. [60].

The PPM method of Colella and Woodward [34] is a composite reconstruction
method that has special treatments for shocks, where the reconstruction is modified to
retain monotonicity, and contact surfaces, where the reconstruction is modified to sharpen
the jump. PPM contains a number of tunable parameters, but those suggested by Colella
& Woodward [34] are always used. Another important characteristic of PPM is that it is
third-order accurate for smooth flows.

3.4.3 Riemann solvers

Once the reconstruction procedure has provided data on either side of each cell
boundary, this is then used to specify the initial states of the semi-infinite piecewise constant
Riemann problems. The solution of a Riemann problem consists indeed of determining the
evolution of a fluid which has two adjacent uniform states characterized by different values
of velocity, density and pressure. Because of the complexity of the equations the solution
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I
Xj Xj+1/2 Xj+1

Figure 3.2 A schematic picture of the reconstruction procedure. The values at the left
UjLJrl /2 and at the right Uﬁkl /2 of the interface between cells j and j + 1 define the initial
left and right state of a Riemann problem whose solution gives the value of the fluxes at

j+1/2.

cannot be found in general analytically, but requires the numerical solution of a system of
algebraic nonlinear equations.

The exact solution of the Riemann problem in relativistic hydrodynamics was
found for the first time by Marti & Miiller [100] when the velocity tangential to the initial
discontinuity are zero and then extended to the more general case by Pons et al. [116].
These solutions were then extensively used to test special and general relativistic codes.
Even if these exact solvers were recently improved incrementing their computational effi-
ciency by Rezzolla et al. [122, 123], their computational cost remains still too high to be
currently implemented in a numerical code. For this reason the computation of the fluxes
in HRSC schemes is done using an approximate solution of the Riemann problems at the
cell boundaries.

Whisky implements different approximate Riemann solvers but the one used by
default to compute the numerical fluxes in our simulations is the Marquina flux formula [44,
43, 9]. This approximates the solution of the Riemann problem by only two waves with
the intermediate state given by the conservation of the mass-flux; at possible sonic points a
Lax-Friedrichs flux is used, ensuring that the solution does not contain rarefaction shocks.

The Marquina flux formula requires the computation of the eigenvalues and eigen-
vectors of the linearized Jacobian matrices A, and A, givenby F, = A, U, andF, = A_ U,.
The analytic expressions for the left eigenvectors [76] are implemented in the code, thus
avoiding the computationally expensive inversion of the three 5 x 5 matrices of the right
eigenvectors, associated to each spatial direction.
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3.4.4 Time update: the method of lines

The reconstruction methods guarantee that a prescribed order of accuracy is re-
tained for the discretized representation of a given spatial differential operator. However,
the need to retain a high-order accuracy also in time can complicate considerably the evo-
lution from a time-level to the following one. As a way to handle this efficiently, a method
of line (MoL) approach [89, 143] is followed. Here, the continuum equations are consid-
ered to be discretized in space only. The resulting system of ordinary differential equations
(ODEs) can then be solved numerically with any stable solver. This method minimizes the
coupling between the spacetime and hydrodynamics solvers and allows for a transparent
implementation of different evolution schemes.

In practice this is achieved by considering the numerical values of the conserved
variables at each point of the numerical grid F?, ik = FO(U, ;1) as the cell average Fg ik
defined in equation (3.27). We know already from the integral form of our equations, see
equation (3.30), that the cell average FY evolves according to:

e Bl
dFO dFO ( mé,j,k_Axl/2 xé,j,k—l—Aml/Z

0,5,k 0,5,k
dt dt 121 . Al +Sijk (3.31)

where S; ;. are the sources computed from the primitive variables U, ;. The system
written in this way is reduced to a set of ordinary differential equations (ODE) that can be
now integrated with standard ODE solvers, such as the third-order TVD Runge-Kutta.

The calculation of the right hand side of equation (3.31) in the Whisky code splits
into the following parts:

1. Calculation of the source terms S(U) at all the grid points.
2. For each direction x':

e Reconstruction of the data U to both sides of a cell boundary. In this way, two
values U and U, of Ui a,i/0 are determined at the cell boundary.

e Solution at cell boundary of the approximate Riemann problem having the values

U, . as initial data.

e (Calculation of the inter-cell flux f‘l, that is, of the flux across the interface.

After the conserved variables FO(U) are evolved, the primitive variables are recov-
ered and the stress-energy tensor is computed for use in the Einstein equations.

3.4.5 Treatment of the atmosphere

At least mathematically, the region outside the stellar models studied in Chapter
4 is assumed to be perfect vacuum. Independently of whether this represents a physically
realistic description of a compact star, the vacuum represents a singular limit of the equa-
tions (3.18) and must be treated in a different way. Whisky adopts a standard approach
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in computational fluid-dynamics and a tenuous “atmosphere” is added filling the computa-
tional domain outside the star. The evolution of the hydrodynamic equations in grid zones
where the atmosphere is present is the same as the one used in the bulk of the flow. Fur-
thermore, when the rest mass in a grid zone falls below the threshold set by the atmosphere,
that grid zone is simply not updated in time.

3.4.6 Hydrodynamical excision

Excision boundaries are usually based on the principle that a region of spacetime
that is causally disconnected can be ignored without this affecting the solution in the re-
maining part of the spacetime. Although this is true for signals and perturbations traveling
at physical speeds, numerical calculations may violate this assumption and disturbances,
such as gauge waves', may travel at larger speeds thus leaving the physically disconnected
regions.

A first naive implementation of an excision algorithm within a HRSC method could
ensure that the data used to construct the flux at the excision boundary is extrapolated
from data outside the excision region. This may appear to be a good idea since HRSC
methods naturally change the stencils depending on the data locally. In general, however,
this approach is not guaranteed to reduce the total variation of the solution and simple
examples may be produced that fail with this boundary condition.

An effective solution, however, is not much more complicated and can be obtained
by applying at the excision boundary the simplest outflow boundary condition (here, by
outflow we mean flow into the excision region). In practice, a zeroth-order extrapolation
is applied to all the variables at the boundary, i.e. a simple copy of the hydrodynamical
variables across the excision boundary (see figure 3.3). If the reconstruction method requires
more cells inside the excision region, the stencil is forced to consider only the data in the
exterior and the first interior cell. Although the actual implementation of this excision
technique may depend on the reconstruction method used, the working principle is always
the same.

The location of the excision boundary itself is based on the determination of the
apparent horizon which, within the Cactus code, is obtained using the fast apparent horizon
finder of Thornburg [142]. More details on how the hydrodynamical excision is applied in
practice, as well as tests showing that this method is stable, consistent and converges to
the expected order can be found in ref. [69].

!Gauge waves are disturbances of the metric components which do not correspond to physical perturba-
tions. These gauge waves are often the result of improper gauge conditions.
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the excised region are required.

Copy to set up reconstruction.

Figure 3.3 A schematic view of the excision algorithm. The excision boundary is represented
by the vertical dotted line while the shaded gray region represents the excised cells. On
the left panel is shown how the reconstruction method is modified. In the right panel the
characteristic curves. (Figure courtesy of F. Loffler)



Chapter 4

Collapse of differentially rotating
neutron stars

4.1 Introduction

In ref. [16] the case of the collapse of uniformly rotating neutron stars was studied,
where a specific set of dynamically unstable models was constructed (D1 to D4) for a
polytropic index of N=1.0. The region of instability to axisymmetric perturbations was
found by constructing constant angular-momentum sequences and applying the turning
point criterion of Friedman, Ipser and Sorkin [62]. Models D1 to D4 were then chosen to
be near the line of marginal stability, but with somewhat larger central density, in order to
ensure dynamical (and not just secular) instability (see Table 1 and Figure 1 of ref. [16]).
Our main goal is to study the effect of differential rotation on the collapse of dynamically
unstable rotating neutron stars. There are several reasons to believe this is an important
step towards a more realistic description of this problem.

Differentially rotating neutron stars can be the results of several astrophysical
scenarios such as core collapse or binary neutron stars mergers when the mass of the system
is below a certain threshold depending on the equation of state (see refs. [135, 133, 134]).
Because of their differential rotation these stars can support masses higher than uniformly
rotating neutron stars (see ref. [25]) and they can reach very high values of J/M?2 even
larger than 1, which was not possible in the case of uniform rotation (e.g. in ref. [16] the
fastest uniformly rotating model D4 has J/M? = 0.54). These objects are particularly
interesting because they can be related to events like short ~-ray burst, which are thought
indeed to originate from the merger of two neutron stars, and can be powerful sources of
gravitational radiation.

4.2 Initial stellar models
We construct our initial stellar models as isentropic, differentially rotating rela-

tivistic polytropes, satisfying the EOS (3.22). We further assume they are stationary and
axisymmetric equilibrium models so that the spacetime geometry is described by a metric

22
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of the form
ds® = —edt* + € (dp — wdt)® + e (dr? + r*d6?), (4.1)

where v, ¥, 1 and w are functions of the quasi-isotropic coordinates r and € only. The degree
of differential rotation as well as its variation within the star are essentially unknown and
because of this we here employ the usual “j-constant” law of differential rotation

(- w)e?
A%(Q, — Q) = o) (4.2)

where A is a constant (with dimension of length) that represents the length scale over
which the angular velocity changes. In the remainder of this Chapter, we will measure the
degree of differential rotation by the rescaled quantity A=A /Te, where r, is the equatorial
coordinate radius of the star. For A — oo uniform rotation is recovered while a low value
of A indicates an high degree of differential rotation.

4.2.1 Supra-Kerr and Sub-Kerr models

When studying the collapse to a Kerr black hole, an interesting question is what
happens to a configuration with J/M? > 1 (supra-Kerr). It is indeed expected that such
models will not show a simple transition to Kerr black hole because they have to loose
angular momentum in order to reduce the value of J/M? below 1. We recall in fact that
Kerr black holes can not exist with values of J/M? greater than one. In previous studies [48],
such initial configurations were constructed starting from a dynamically stable supra-Kerr
model and then induced to collapse by dramatically depleting the pressure support. Here, we
investigate the question whether dynamically unstable supra-Kerr models (as exact initial
data) exist for a wide range of polytropic indices. We have constructed a large set of initial
models for various values of the polytropic index N and degree of differential rotation A,
reaching close to the mass-shedding limit and spanning a wide range of central densities.

Figure 4.1 shows the value of J/M? as a function of central rest-mass density p..
for the three different EOSs with N = 0.5, N = 0.75 and N = 1.0. In these sequences the
rotation law and the polar to equatorial axes ratio are fixed to A =1.0 and rp/Te = 0.35,
respectively. The choice of A=10is a typical one representing moderate differential
rotation, while the axis ratio of 0.35 refers to very rapidly rotating models near the mass-
shedding limit (when the limit exits). Along each sequence, we mark the model which
roughly separates stable models (at lower central densities) from unstable models (at higher
central densities) by a circle. As we do not know precisely what are the marginally stable
models (no simple turning point criterion exists in the case of differential rotation) we use
as a reference the stability limit of the non-rotating models and thus we mark with a circle
the central rest-mass density of the non-rotating model having the maximum mass for each
EOS. Stated differently, all models to the right of the circles are expected to be dynamically
unstable or very close to the instability threshold.

As becomes clear from this figure, all unstable models we were able to construct
are sub-Kerr (i.e. J/M? < 1). In fact, in order to find supra-Kerr models, one must
reach very low densities, where equilibrium models are very stable against axisymmetric
perturbations. The evidence that for the particular sequences we constructed the value of
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J/M? in the unstable region becomes nearly constant for each EOS, is a strong indication
that all unstable models are indeed sub-Kerr.

In order to investigate further the effect of the value of the differential-rotation-law
parameter A and of the EOS on the above conclusion, we have investigated a large number
of rapidly rotating models, spanning a wide range of values for A (between 0.6 and 1.8) and
a wide range of polytropic indices (between 0.5 and 1.5). In all cases, we have computed the
value of J/M? of the most rapidly rotating models we could construct with our numerical
method (which was normally close to the mass-shedding limit, when it exists) for a central
density equal to that of the maximum-mass non-rotating model (i.e. for the models marked
by circles in fig. 4.1). Fig. 4.2 shows that all the models with a central density equal to
the maximum-mass non-rotating stars have J/M? < 1 and we point that fig. 4.1 shows
that all the unstable models (i.e. the ones with an higher central density) have a value of
J/M? lower than the models shown in fig. 4.2. It is therefore evident that no combination
of N and A could yield an unstable supra-Kerr model. This result, combined with the
tendency of the lines in fig. 4.1 at densities larger than the central density of the maximum-
mass non-rotating model, provide strong evidence that all supra-Kerr model found are not
dynamically unstable.

It should be noted that because our numerical method does not reach exactly the
mass-shedding limit for any degree of differential rotation (it is difficult to achieve conver-
gence at very small values of the axes ratio r,/r.) and since the existence of a bifurcation
between quasi-spheroidal and quasi-toroidal models with the same axes ratio! and central
density has not been investigated yet, we cannot strictly exclude the existence of supra-Kerr
unstable models.

The rapidly rotating models shown in fig. 4.2 are also shown in fig. 4.3 (dotted
lines) in a diagram plotting their mass versus the maximum energy density. Since the most
rapidly rotating models with differential rotation and small axes ratio are quasi-toroidal,
the maximum energy density is larger than the central energy density within a factor of
roughly two, depending on the degree of differential rotation. It is not yet known whether
the value of the central energy density or of the off-center maximum energy density is
more important in determining the stability to axisymmetric perturbations of quasi-toroidal
models. Therefore, the models shown in figs. 4.2 and 4.3 could either be only marginally
stable or unstable or strongly unstable. Nevertheless, the fact that the central density of
models in fig. 4.1 with J/M? > 1 is at least a factor of three smaller than the central density
of the corresponding maximum-mass non-rotating models, indicates that even if all models
in fig.4.3 are well inside the dynamically unstable region, there should still be no supra-Kerr
unstable models for the parameter range examined.

4.2.2 Initial data

We investigate the dynamics of differentially rotating collapsing compact stars by
focusing on three (sub-Kerr) dynamically unstable models and one (supra-Kerr) artificially
pressure-depleted model. All models are constructed for the polytropic EOS with N=K=1.

We define quasi-spheroidal models those having the central and maximum rest-mass density being co-
incident, while we define quasi-toroidal models those having the maximum of p not located in the center.
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Figure 4.1 J/M? as a function of central rest-mass density p. for N = 0.5, N = 0.75 and
N = 1.0, when the rotation law and the polar to equatorial axes ratio are fixed to A = 1.0
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and 7,/r. = 0.35, respectively. The circle denotes roughly the separation between stable
(at the left of the circle) and unstable (at the right) models along each sequence. (Figure
courtesy of N. Stergioulas)

Table 4.1. Initial data for the different stellar models
Model Pe rp/Te M/Ms R Q. T/W|  J/M> A
Al 0.30623 0.23 1.7626 0.62438 5.1891 0.18989 0.75004 0.6
A2 0.30623 0.33  2.2280 0.78684 2.1752 0.21705 0.81507 1.0
A3 0.30623 0.33  2.6127 1.07410 1.0859 0.23163 0.88474 14
B1 0.04630 0.39 1.9009 1.67630 0.3723 0.21509 1.08650 1.0
Note. — The different columns refer, respectively, to: the central rest-mass den-

sity pe, the ratio of the polar to the equatorial coordinate radii rp, /7., the total mass
M rescaled to K = 100 (see ref. [35] for scaling to arbitrary K'), the circumferential
equatorial radius R., the central angular velocity €., the ratio of rotational kinetic
energy to gravitational binding energy 7/|W/|, the ratio J/M? where J is the an-
gular momentum, the degree of differential rotation A where for A — oo uniform
rotation is recovered. All the initial models have been computed with a polytropic

EOS with K =1 and N = 1.
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fig. 4.1) as a function of the rotation law parameter A and for different values of N. All
models have J/M? < 1 indicating the difficulty of finding unstable supra-Kerr models.
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Figure 4.3 The dotted lines represent the total mass M of some of the unstable models
shown in figure 4.2 as a function of the maximum energy density for N = 0.5,0.75,1.0; the
different values of A are reported near each model. The solid lines instead show the mass
of the non-rotating models for different values of N. (Figure courtesy of N. Stergioulas)
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Figure 4.4 Comparison between our initial models (see table 4.1) and the uniformly rotating
models studied in ref. [16]. Here we plot the gravitational mass M as a function of the central
energy density e.. Our initial models, marked with filled triangles, are rescaled to K = 100
(see ref. [35] for scaling to arbitrary K) for comparison with the others. The solid, dashed
and dotted lines correspond to the sequence of non-rotating models, the sequence of models
rotating at the mass shedding limit and the sequence of uniformly rotating models that
are at the onset of the secular instability to axisymmetric perturbations. Also shown are
the secularly (open circles) and dynamically unstable (filled circles) initial models used in
ref. [16].
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The three dynamically unstable models are labeled as Al to A3 and are shown as filled
dots in fig 4.3 while their detailed properties are displayed in table 4.1. The central rest
mass density of the three models is chosen to be the same as the central rest mass density
of the maximum mass non-rotating model for this EOS. The degree of differential rotation
varies from A = 0.6 to A = 1.4. The maximum density increases with respect to the
central density, as differential rotation becomes stronger (i.e. as the relative length scale
A becomes smaller). All three models have comparable values of J/M? (0.75 to 0.88),
T/|W| (0.19 to 0.23) and M (0.18 to 0.26), while they differ significantly in radius (0.64 to
1.1) and central angular velocity (5.2 to 1.1). Even though the axisymmetric stability of
these models could not be known from a turning-point method, our numerical simulations
showed that these models are indeed dynamically unstable and collapse without the need
of a pressure depletion.

The fourth model we studied (model B1 in table 4.1) is a stable supra-Kerr model,
with comparable mass and T'/|W| as models Al to A3, but with much smaller central density
and J/M? = 1.09. As this model is far into the stable region, the only way to achieve a
collapse is by artificial pressure depletion. This was already done for this particular model
in ref. [48]. In spite of the fact that these initial data are unphysical (due to the large
artificial pressure depletion) we chose to study this model in order to compare with the
findings in ref. [48], who observed the onset of a non-axisymmetric instability towards the
end of their simulation. Note that, to our knowledge, all previous studies of “supra-Kerr
collapse” of compact stars were performed with artificially pressure-depleted stable models.
However, it has not yet been demonstrated that the actual collapse of differentially rotating
compact stars could follow a path that, through some physical effect, comes close to the
initial data with strong pressure depletion.

In fig. 4.4 we also compare the gravitational mass M and central energy density
e of our initial models with the uniformly rotating models studied in ref. [16].

4.3 Challenging excision

As already pointed in Section 3.4.6 the Whisky code implements an excision algo-
rithm which consists essentially in ignoring a portion of the grid contained in the apparent
horizon (AH) and applying suitable boundary conditions. This technique made possible the
simulation of collapsing neutron stars to black holes but it has revealed to be not sufficiently
strong or to be even the cause of possible instabilities.

In order to improve the duration of numerical simulations involving the forma-
tion of black holes, a new technique, not based on the excision mechanism described in
Section 3.4.6, was implemented and tested in ref. [18]. Baiotti et al. [18] demonstrated
indeed that the absence of an excised region improves dramatically the long-term stability
in their simulations of the collapse of uniformly rotating NS, allowing for the calculation of
the gravitational waveforms well beyond what previously possible and past the black-hole
quasi-normal-mode (QNM) ringing.

Another important ingredient for the stable evolution of the Einstein equations
in the absence of an excision algorithm is the introduction of an artificial dissipation of
the Kreiss-Oliger type [88] on the right-hand-sides of the evolution equations for the field
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variables (no dissipation is introduced for the hydrodynamical variables). The dissipation
is needed mostly because all the field variables develop very steep gradients in the region
inside the AH. Under these conditions, small high-frequency oscillations (either produced by
finite-differencing errors or by small reflections across the refinement boundaries) can easily
be amplified, leave the region inside the AH and rapidly destroy the solution. In practice,
for any time-evolved field variable u, the right-hand-side of the corresponding evolution
equation is modified with the introduction of a term of the type Ly (u) = —sAac?@ﬁiu,
where ¢ is the dissipation coefficient, which is allowed to vary in space. In ref. [18] different
configurations were used in which the coefficient was either constant over the whole domain
or larger for the gridpoints inside the AH without noticing significant difference between
these two cases.

In the results reported here for the collapse of sub-Kerr models Al, A2 and A3 a
value of ¢ = 0.01 was used over all the domain except for few grid points inside the inner
apparent horizon where ¢ was allowed to increase linearly with a slope equal to 2 up to a
maximum value of 0.2. Other possible choices, such as the use of a constant value of € over
all the domain and with lower values are currently under investigation.

4.4 Dynamics of the collapse

Here we report the dynamics of the matter during the collapse of the initial stellar
models described in the preceding section. All the models were studied with different resolu-
tions but, because of the different dynamics, the sub-Kerr models (A1, A2, A3) were studied
using progressive mesh refinement techniques in order to be able to extract gravitational-
wave signal in a region of space sufficiently distant from the sources. The supra-Kerr model
(B1) instead was studied using only one grid because the dynamics of this model is not lim-
ited to the central regions of the computational domain (the process follows several bounces
and subsequent collapses) and so we have maintained a single refinement level and moved
the outer boundaries at those distances that were computationally affordable. An ideal-fluid
EOS (3.24) with I' = 2 (i.e. N =1) was used during the evolution of all the models.

4.4.1 Sub-Kerr Collapse

All the three sub-Kerr models considered (A1, A2, A3) show the same qualitative
dynamics, with the gravitational collapse leading to a central black hole in vacuum. All of
them were evolved in bitant and 7/2 symmetry (i.e. we considered the region {z > 0,y >
0,z > 0} applying reflection symmetry at z = 0, so that U(z,y, —z) = U(z,y, 2), and a
rotating symmetry at z = 0 and y = 0) and they did not show the development of any
nonaxisymmetric instability, in a way similar to the uniformly rotating models studied in
ref. [16].

Because of the similar behavior we concentrate here on the description of model
A2, which was studied both with fixed and progressive mesh refinement; in the former the
region inside the apparent horizon was excised while in the latter we made use of the Kreiss-
Oliger dissipation on the field components obtaining a longer and more stable simulation.
The results showed here were produced with the latter on a grid with boundaries located
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at [0,86.2M] x [0,86.2M] x [0,86.2M] with a resolution ranging from Az’ = 1.4M on the
coarsest grid to Az’ = 0.02M on the finest level. At the end of the run a total of seven
refinement levels were active. Reflection symmetry was used on the equatorial plane and
/2 symmetry on x = 0 and y = 0. The collapse was triggered reducing the pressure by 2%
as done in the case of uniformly rotating models in ref. [16].

As one can see in the first frame of figure 4.5, where we plot the isodensity contours
in the equatorial and zz plane, the star has a toroidal shape due to its strong differential
rotation. Its evolution is rather similar to what was already observed for the uniformly
rotating models and especially for model D4 in ref. [16]. The collapse is axisymmetric
and leads to the formation of a black hole. The apparent horizon (AH), represented by
a dashed line in figure 4.6, is found at t = 5.9P, ., where P, . is the initial rotational
period at the center of the star and is equal to 13M. It is important to stress that the
AH may not coincide with the event horizon (not shown here) which has to be necessarily
computed analyzing the data at the end of the simulation. At the time the apparent horizon
is formed, the star has assumed the shape of a disk which rapidly accretes until no matter is
left outside, as one can see from the last frame of figure 4.6. Even if an ideal-fluid equation
of state is used we did not see the formation of strong shocks during the collapse. This can
be also seen looking at fig. 4.7 where we plot the maximum of the rest-mass density and of
the internal energy normalized at their initial values. In this figure the time at which the
apparent horizon is found is denoted by a vertical dotted line. In fig. 4.8 we also plot the
minimum of the lapse function o which “collapse” to 0 indicating the formation of a black
hole. The simulation was halted at a time ¢ &~ 220M after there was no matter, except for
the atmosphere (see Section 3.4.5), left outside the black hole. We stress again that these
results were obtained without the use of the excision technique described in Section 3.4.6
but with the introduction of the Kreiss-Oliger dissipation on the field variables. This makes
possible to have a longer simulation while the run done with the use of excision crashed
after few iterations after the formation of the apparent horizon.

In fig. 4.9 we compare the total rest-mass and the total angular momentum of
all the three models (A1,A2,A3) normalized to their initial values. Note that as expected
models with a lower value of J/M? collapse earlier than the others.

4.4.2 Supra-Kerr Collapse

Model B1 has J/M? = 1.1 and shows a very different dynamics with respect to
the sub-Kerr stars. Here we report the results obtained with a grid of 120 x 240 x 250 points
and boundaries located at [0,34M] x [—34M,34M] x [0,13.2M] where we used equatorial
and m-symmetry (this means that we evolved only the region {z > 0,z > 0} applying a
rotational symmetry boundary condition at = 0 and reflection symmetry at z = 0).

Model B1 is a very stable configuration so we had to force its collapse by reducing
the initial pressure by 99% as done by Duez et al. [48]. Without its pressure support
the star immediately flattens along the z-direction and collapses toward the center on the
equatorial plane producing a strong shock. After a first bounce, due to the centrifugal
barrier produced by the high angular momentum, a torus 2 forms which rapidly fragments

2For torus we mean a configuration in which the maximum of p is not located in the center and p. <
max(p) but still p. # 0, where p. is the value of the rest-mass density at the center.
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Figure 4.5 Snapshots of the rest-mass density p in the equatorial plane (left column)

and in the xz plane (right column) for model A2.

The contour lines are drawn for
p = 10702+0Dmax(p) for j = 0,1,...,8. Time is normalized to the initial central ro-
tation period of the star, Pt . = 13M. Time in ms is rescaled to K = 100.
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Figure 4.9 Total rest mass My and angular momentum J normalized at ¢t = 0 for the three
different models A1 (solid line), A2 (short dashed line) and A3 (long dashed line). The
angular momentum is shown until the formation of the AH.

into four small clumps (see the snapshot at time ¢t = 0.373P,4. in figure 4.10) whose
formation was observed also in ref. [48]. We have also extracted the Fourier modes of the
rest-mass density p by computing azimuthal averages using the numerical equivalent of

km = / p(w cos(¢), wsin(¢))e™?dep (4.3)
z2=0

where @w = /22 + y2. The mode power P,, is then simply given by

1 Wout
Pp=— / | dor (4.4)

Wout — Win Jw,,

where @, and wy,; are chosen to cover the whole domain (see also ref. [38]). The presence
of a m = 4 mode at the beginning can be then seen looking also at the modes’ power
plotted in figure 4.11 but it is not clear at the moment whether the fragmentation has to
be considered physical or simply related to the use of a Cartesian grid. Truelove et al. [148]
have proved that spurious fragmentation can occur if the Jeans length is not well resolved,
i.e. if the ratio Axz/\; is greater than 0.25. The Jeans length A is given by

Ay~ (”;§> (4.5)

where ¢ is the sound speed. Duez et al. [48] estimated the minimum of the Jeans length
to be Ay &~ 1.3M for a model similar to our model Bl and using a polytropic EOS (for an
ideal EOS, as the one used in our simulations, c? is larger). In their simulation the value
of Ax/)\; was then lower than 0.25 (this is also true in our case) and so they claimed that
this fragmentation is physical and it is due to physical nonaxisymmetric instabilities. In
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ref. [148] the “Jeans” condition Az/A; < 0.25 was reported as necessary but not in general
sufficient to avoid the formation of spurious fragmentation. Even if the resolutions used
in our simulation and in the one reported in ref. [48] respect the “Jeans” condition, we
think that the origin of this m = 4 mode is due to the use of a Cartesian grid. Further
investigations with higher resolutions and different systems of coordinates will be necessary
in order to verify this statement.

At time t ~ 1.5F,4 . the four fragments merge and a new collapse and bounce
follows with the formation of a new torus. The effects of these bounces on the maximum
of the rest-mass density p and specific internal energy e are shown in figure 4.12. At
t ~ 1.6P,, . the torus collapses toward the center forming a new configuration which does
not collapse further; even if at this time the loss of angular momentum is of the order of 10%
(see figure 4.13), the star does not collapse to a black hole but starts to develop a barmode
instability. At this point the model seems to have reached a new stable configuration as
one can easily see from the world-line of the maximum of the rest-mass density p (fig. 4.14)
and from its evolution (fig. 4.12, left panel).

The loss in the angular momentum cannot be accounted for by the emission of
gravitational waves and it represents a numerical error probably related to the loss of mass
through the external boundaries. What is interesting is that we were not able to force this
model to collapse to a black-hole even if we reduced the pressure by 99% and the loss of
angular momentum at the end is about 30%. This seems to confirm that supra-Kerr models
are stable and cannot collapse to a black hole.

4.5 Gravitational-wave emission

We now concentrate on the emission of gravitational waves from the sub-Kerr and
supra-Kerr models with the aim of comparing our results with those obtained in ref. [17]
for the collapse of uniformly rotating neutron stars.

4.5.1 Sub-Kerr Models

While several different methods are possible for the extraction of the gravitational-
radiation content in numerical spacetimes, we have adopted a gauge-invariant approach in
which the spacetime is matched with the non-spherical perturbations of a Schwarzschild
black hole (see refs. [126, 33| for applications to Cartesian coordinates grids). In practice, a
set of “observers” is placed on 2-spheres of fixed coordinate radius rex, where they extract
the gauge-invariant, odd Ql(frz and even-parity \Ill(fr)L metric perturbations [108, 111, 112].

In figure 4.15 we show the even and odd parity perturbation

Qf, = vl (4.6)
QL = Q) (4.7)

where A = /2(1 + 2)!/(I — 2)!, for the [ = 2,3,4,5 modes extracted at a radius r = 40.4M
for model A2. Being the collapse essentially axisymmetric the modes with m # 0 are
essentially zero and they are not shown here. In the first panel of figure 4.15 we also
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Figure 4.11 Logarithm of modes’ power versus time for model B1. The modes not shown
in this plot are zero during all the evolution.
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compare the signal obtained at different radii in order to verify that we are sufficiently
far-away from the star, i.e. in the wave zone.

The same quantities are plotted also for the other two sub-Kerr models Al, in
fig. 4.16, and A3, in fig. 4.17, while in fig. 4.18 we show all the data together. From these
plots and especially from fig. 4.18 one can see how the amplitude of the gravitational-wave
signal increases with the degree of differential rotation. For example between model Al
(first row of figure 4.18), which has A = 0.6, to model A3 (last row of figure 4.18) the
amplitude of mode [ = 2,m = 0 decreases of one order of magnitude.
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Using these quantities it is also possible to compute the gravitational-wave ampli-
tudes in the two polarizations hy and hy as

) 1 |t m
e =i = 5 3 (@b [ Qiutar) L (48)
I,m —o©

where 72Ylm is the s = —2 spin-weighted spherical harmonic.

In fig. 4.19 we show h4 and hy for model A2 extracted at a distance r = 40.4M =
11.4R.4, where R, is the equatorial radius of the star at ¢ = 0. Comparing with the
waveforms reported in ref. [17] we see that the amplitudes are higher by a factor 10. This
was expected as the amplitude of gravitational waves seems to increase with the ratio of
J/M?. Also the energy carried away from the system by gravitational waves is higher:
AE/M =~ 2.9 x 1074

In figure 4.20 we plot the power spectrum density of the two polarizations; the h
shows two peaks, one at around 4.3kHz and the other one at around 5.7kHz. In order to
compare these values with those obtained in ref. [17] we have rescaled these frequencies by
the factor 1/v/K, where K = 100 is the value of the polytropic constant used in ref. [17],
while we remind that we used K = 1 (polytropic units, see ref. [35] for scaling to arbitrary
K) to build our initial models. Considering the optimal sensitivity of VIRGO we can also
set an upper limit for the characteristic amplitude produced in the collapse of differentially
rotating NS at 10kpc to be h. = 2.97 x 107'9(M /M) at a characteristic frequency f. =
5280Hz. The signal-to-noise ratio is S/N ~ 12.4. In the case of LIGOI we obtain h. =
2.95 x 107¥(M/Myg) at f. = 5095Hz with S/N ~ 7.2 while for advanced LIGO we have
he = 2.01 x 10719 (M /M) at f. = 3863Hz with S/N =~ 55.4. Interestingly these amplitudes
and SNR are 2—3 order of magnitudes larger than the ones reported in ref. [17] for uniformly
rotating stars. In fig. 4.21 we finally report the energy carried away by gravitational waves
AE/M for all the three models as a function of A and of .J/M?2.

4.5.2 Supra-Kerr Model

As the position of the boundary is still too close to the source, we were not able to
extract the gravitational-wave signal in the wave zone as done in the previous section but
we have simply computed some estimates using the standard quadrupole [106] formula. In
this approximation the observed wave-form and amplitude for the two polarization for an
observer situated at infinity along the z-axis are approximately given by

I - 1)

hy =
,
. (4.9)
I"Y(t
P i U
r
where
7k = /dgx D zizk . (4.10)

is the quadrupole moment of the matter distribution. The results for the gravitational-wave
amplitudes hy and hx are finally reported in figure 4.22.
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Figure 4.19 The gravitational-wave amplitudes hy and hyx for the collapse of model A2
extracted at a radius r = 40.4M.
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Figure 4.20 Power spectrum of h (left panel) and hy (right panel) for the collapse of model
A2 extracted at a radius r = 40.4M. These quantities are rescaled by a factor 1/v/K, where
K =100 is the value of the polytropic constant used in ref [17] to build their initial models.
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Figure 4.21 The energy AE /M carried away by gravitational waves during the collapse of
the three sub-Kerr models as a function of the degree of differential rotation A (left panel)
and of J/M? (right panel). We recall that for A — oo uniform rotation is recovered.
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Figure 4.22 The gravitational-wave amplitudes hy and hyx for the collapse of model Bl
computed with the quadrupole formula.
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4.6 Summary

We have presented here new results about the collapse of differentially rotating
neutron stars. We confirm that black holes are formed only in the collapse of sub-Kerr
models and not for supra-Kerr. We especially performed a detailed study of the initial
configurations in order to study the properties of the unstable models and we found that
they are all sub-Kerr while we were not able to find supra-Kerr unstable models.

For the first time, thank to the use of the Whisky code and of fixed and progressive
mesh refinement techniques, we were also able to extract the gravitational-wave signal from
the sub-Kerr models that as expected revealed to be much stronger that the one emitted
by uniformly rotating stars. We have indeed found that differential rotation can increase
considerably the energy emitted making these sources much more interesting because de-
tectable at large distances. For these reasons, we consider these models important sources
for gravitational waves detectors even at their current sensitivity.

Anyway a more detailed study including more realistic equations of state and
magnetic fields is necessary in order to predict a more realistic signal. Magnetic fields
can indeed strongly affect the dynamics of these objects reducing the degree of differential
rotation and so reducing the gravitational waves amplitudes.



Chapter 5

The exact solution of the Riemann
problem in relativistic MHD

5.1 Introduction

As already pointed out in Chapter 3, high-resolution shock-capturing schemes
are based on the numerical solution of Riemann problems at the interfaces between each
numerical cell. It is then natural that Riemann problems have assumed an important role
in the testing of numerical codes based on HRSC schemes. Clearly, to have an idea of the
accuracy of a numerical algorithm one needs to compare the numerical results with the
exact ones. In both Newtonian and relativistic hydrodynamics this was already possible
and, for example, the exact solution of the Riemann problem in relativistic hydrodynamics
was used to test the Whisky code [15]. In the case of magnetohydrodynamics however the
exact solution was found only quite recently in the Newtonian case while no general solution
was available in relativistic MHD when we started to think about the development of our
WhiskyMHD code.

A direct and important consequence of the absence of an exact solution is that
the validation of modern complex relativistic MHD codes for the most elementary and yet
demanding tests has not been made in a quantitative manner for generic initial conditions.
Rather, it has taken place through the qualitative comparison with the large set of test-
problems in relativistic MHD meticulously collected over the years (see, for instance, ref. [84]
and ref. [20]). It should be recognized, however, that for non-generic initial states it is
sufficient to have exact solutions for MHD shocks and rarefactions as this covers all types
of basic hyperbolic waves of the system and indeed exact solutions of this type were used
by Komissarov [84] for quantitative testing.

On the other hand, the purpose of this work is to present the procedure for the
exact solution of the Riemann problem in relativistic MHD with generic initial conditions.
Our approach considers both initial states with a zero component of the magnetic field
along the flow and leading to a set of only three waves analogous to the ones in relativistic
hydrodynamics, as well as generic initial states leading to the full set of seven MHD waves.
The approach discussed for the numerical solution is based on a “hybrid” approach which
adopts different sets of equations according to the values of the normal magnetic field and

48
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that has turned out to be crucial for a successful solution.

The exact solution presented here is now a standard tool used by several groups
in the world to test both special and general relativistic MHD codes. Even if the use of this
solution inside numerical codes would improve their accuracy, it is still limited by its high
computational cost.

5.2 A short review of the Riemann problem

As first formulated by Riemann more than a hundred years ago, the solution
of the one-dimensional Riemann problem in hydrodynamics consists of determining the
temporal evolution of a fluid which, at some initial time, has two adjacent uniform states
characterized by different values of uniform velocity, pressure and density. These initial
conditions completely determine the way in which the discontinuity will decay after removal
of the barrier separating the initial “left” and “right” states.

In general, the Riemann problem requires the solution of a nonlinear algebraic sys-
tem of equations written as a function of a single unknown quantity (e.g. the total pressure
at the contact discontinuity in purely hydrodynamical problems). With the exception of
few trivial initial configurations, the solution of the Riemann problem cannot be obtained
analytically but requires a numerical approach. The solution found in this way is referred to
as the “exact” solution of the Riemann problem, to distinguish it from the “approximate”
solution of the Riemann problem, which is instead obtained when the system of equations is
reduced to a locally-linear form (an exhaustive discussion of approximate Riemann solvers
can be found in ref. [143]). It is therefore useful to stress that although named “exact”, the
solution of the Riemann problem is necessarily obtained with a small but nonzero truncation
error.

The exact solution of the Riemann problem in relativistic hydrodynamics has been
obtained only rather recently and was proposed by Marti et al. [100] for flows that are purely
along the direction normal to the initial discontinuity. This work has then been extended
to the case in which tangential velocities are present ([116]) and improved in efficiency
by exploiting the relativistic invariant relative velocity between the two states to predict
the wave pattern produced ([122] and [123]). The relevance of these calculations has not
been restricted to fundamental issues of relativistic hydrodynamics. Quite the opposite,
these solutions have been of great importance for the testing of complex multidimensional
codes implementing High Resolution Shock Capturing methods, and that are based on the
approximate or exact solution of Riemann problems at the interfaces between the numerical
cells ([93]). These codes have then been used in various simulations in either fixed ([9, 58,
163]) or dynamical spacetimes ([48, 132, 16]).

This intense and recent development of numerical codes for the solution of the
relativistic hydrodynamic equations has been accompanied by an equally intense develop-
ment of codes solving the equations of magnetohydrodynamics in relativistic regimes. The
reason behind this activity is the widespread expectation that strong magnetic fields are
crucial in the study and explanation of several puzzling astrophysical phenomena such as
relativistic jets or «-ray bursts. As a result, and in the hope of clarifying issues in relativistic
astrophysics which cannot be described satisfactorily through analytic techniques, several
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groups have recently constructed numerical codes solving the equations of relativistic MHD
on either fixed spacetimes (see, for example, ref. [42] and ref. [84] for a flat background and
refs. [64, 39, 86, 107, 61, 12] for a black-hole background) or in fully dynamical spacetimes
([47, 131)).

Just like their hydrodynamical counterparts, some of these codes are based on
the solution of a local Riemann problem suitably formulated for a magnetized fluid, and
all are meant to be used for ultrarelativistic flows. However, unlike their hydrodynamical
counterparts, these codes cannot benefit from the comparison with the exact solution of
the Riemann problem in relativistic MHD. The literature on the Riemann problem in MHD
is, in fact, much more limited and a general exact solution was found rather recently and
for a Newtonian fluid only ([127, 53]). The background knowledge in this area is even
more scarce for a relativistic fluid and while no general exact solution has been proposed
yet, recent work has been made to derive an exact solution in the particular case in which
the magnetic field of the initial states is tangential to the discontinuity and orthogonal
to the fluid velocity ([125]). Besides having a larger set of equations when compared to
the corresponding problem in relativistic hydrodynamics, a considerable addition to the
complexity of the Riemann problem in relativistic MHD is represented by the fact that the
mathematical structure of the problem itself is modified and the system of equations is no
longer strictly hyperbolic ([95]). The possibility of having coincident eigenvalues poses the
question of the uniqueness of the solutions and this represents then a problem within the
problem. As we will comment also later on, a lively debate on these issues is presently
ongoing and progress is starting to be made, although first results are known in Newtonian
MHD only (see ref. [145]). Because the focus of this work is the exact solution of the
Riemann problem in relativistic MHD as an aid to the development of numerical codes,
hereafter we will adopt the working assumption that the Riemann problems considered here
have a solution and that this solution is unique. Clearly, this hypothesis avoids the issue
rather than solving it, but it allows for a marked progress at least in those cases in which
compound waves are not found in numerically approximate solutions.

5.3 Equations of Special Relativistic MHD

Consider an ideal magnetized relativistic fluid with an energy-momentum tensor
given by
T = (p+ pe + pg + 2pm) u''u” + (pg + pm) " — UV, (5.1)

where p is the rest mass density, € the specific internal energy, p, the gas pressure L pm the

magnetic pressure, ut = W(1,v", oY, v*) the four-velocity, W = 1/4/1 — viv; = 1/v/1 — v?
the Lorentz factor and the 4-vector b has components

b = {W(a- B), % W 5)17} . (5.2)

n this chapter, and only in this one, we will use p to denote the total pressure given by the sum of the
gas pressure pg and of the magnetic pressure pm.
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Here B is the magnetic field 3-vector and
2 j B’ 52

The equations of special relativistic MHD are then obtained after requiring the conservation
of baryon number

8H(pu‘u) =0, (5.4)
the conservation of energy and momentum
0,T" =0, (5.5)

together with the relevant pair of Maxwell equations. If the fluid is assumed to have
an infinite electrical conductivity (i.e. ideal MHD limit), the Maxwell equations reduce to
OjaF3, = 0, where F is the Faraday tensor and the square brackets refer to antisymmetrised
indices. Using the definition (5.2), the Maxwell equations can be written as

Op(Vu” —uhb”) =0. (5.6)

The system of equations (5.4)—(5.6) is completed with an equation of state relating the
pressure to the rest-mass density and/or to the energy density. Although hereafter we
will use an ideal-gas EOS, py = pe(I' — 1), the procedure described for the solution of the
Riemann problem is valid for a generic EOS.

We assume that the system (5.4)-(5.6) has a planar-symmetry, i.e. that in a
Cartesian coordinate system (t,z,y, z) all the variables depend only on ¢ and z. In this
case, the complete set of MHD equations can be written as a set of first-order partial
differential equations in a flux-conservative form

ou OF
B + e 0, (5.7)
where U and F are respectively the vectors of conserved quantities and fluxes, defined as
D Dv*
7 — bOp0 ST — O® — Do®
ST _ popz ST +p— brhHE
U=| SY - , F= SYv® — b*bY ) (5.8)
9% — bObz SZuT — hrH?
BY BYvy* — B¥vY
B* B*v* — B*v*
and where the following definitions have been used
T = wW?—-p-D, (5.9)
D = pWw, (5.10)
ST = phW2 | (5.11)
1
P = Petpm=petgh’, (5.12)
w = ph, (5.13)
b2 P b2
h = hgt—=1+e+=2+—, (5.14)
P P p
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FW D FW

Left State
R1

Figure 5.1 Spacetime structure of the MHD Riemann problem in the case in which the
magnetic field has tangential components only, i.e. B* = 0. The “Riemann-fan” in this
case is composed of only two fast-waves (FW) and of a central tangential discontinuity (TD),
thus resembling the structure of the Riemann problem in pure hydrodynamics. Indicated
with R1-R4 are the 4 different regions into which the Riemann problem can be decomposed,
each representing a different state.

where h is the total specific enthalpy and hg the one of the gas only.

Note also that the divergence-free condition for the magnetic field and the Maxwell
equation for the evolution of the x-component of the magnetic field imply that 9;B* =0 =
0, B*, i.e. B" is uniform in space, constant in time and thus always maintains its initial
value.

5.4 Strategy of Solution

The general Riemann problem in relativistic MHD consists of a set of seven non-
linear waves: two fast-waves (FW), two slow-waves (SW), two Alfvén-waves (AW), and a
contact discontinuity (CD) at which only the density may be discontinuous. The fast and
slow nonlinear waves can be either shocks or rarefaction waves, depending on the change in
the pressure and in the norm of the magnetic field across the wave.

Building on the experience with relativistic hydrodynamics, our general strategy
in the search for the solution consists of expressing all of the variables behind each wave as
functions of the values of the same variables ahead of the wave and of an unknown variable
behind the wave. When considering the Riemann problem in relativistic hydrodynamics, in
fact, the solution is found after expressing all of the quantities behind the wave as functions
of the value of the pressure at the contact discontinuity. In this way, the problem is reduced
to the search for the value of the pressure that satisfies the jump conditions at the contact
discontinuity.
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When considering the Riemann problem in relativistic MHD, on the other hand,
two different cases need to be distinguished. Assuming the initial discontinuity to have
normal along the z-axis, the initial magnetic field in this direction can either be zero (i.e.
B* = 0) or not (i.e. B" # 0). In the first case, the structure of the solution is very
similar to the hydrodynamical one, with only two fast waves and a tangential discontinuity
along which only the total pressure and the x component of the velocity are continuous.
The spacetime structure of the Riemann problem in this case is sketched in Figure 5.1,
where the “Riemann-fan” is shown to be composed of only two fast-waves (FW) and of
a central tangential discontinuity (TD). Because of this analogy, the numerical solution of
the Riemann problem when B* = 0 follows the same procedure implemented in relativistic
hydrodynamics. We refer to this as the “total-pressure approach” or simply, the “p-method”.

A detailed investigation of the exact solution of the Riemann problem with tan-
gential magnetic fields and when the additional condition ¥ - B=0is imposed, has been
recently proposed by Romero et al. [125]. Among the many points discussed, this work has
shown that when B® =0 = 7+ B the Riemann problem in relativistic MHD can be assimi-
lated to the one in relativistic hydrodynamics and that all of the corrections introduced by
the magnetic field can be incorporated in the definition of a new, effective EOS.

In the second case, on the other hand, the Riemann problem is considerably more
complex and all of the seven waves are allowed to form when the initial discontinuity is
removed. The spacetime structure of the Riemann problem in this case is sketched in
Figure 5.2, where the “Riemann-fan” is shown to be composed of two fast-waves (FW),
of two Alfven waves (AW), of two slow-waves (SW) and of a central contact discontinuity
(CD).

It is important to bear in mind that across the Alfven discontinuities only the total
pressure, the gas pressure and the density are continuous, while there could be jumps in the
other quantities. As a result, if the total pressure is used as unknown, there would be three
different values for the total pressure (two between the fast and the slow-waves and one
between the two slow-waves) but five conditions to be satisfied at the contact discontinuity:
the continuity of the three components of the velocity and the continuity of the tangential
components of the magnetic field. The resulting system of five equations in three unknowns
is over-constrained and there is no guarantee that a global convergent solution is found at
the contact discontinuity. Indeed, experience has shown that small numerical imprecisions
at the level of round-off errors are in general sufficient to prevent the simultaneous solution
of the five constraints.

To circumvent this difficulty and inspired by the procedure followed in the exact
solution of the corresponding Riemann solver in nonrelativistic MHD ([127]), when B* #
0 we have implemented a “hybrid” approach in which the total pressure is used as the
unknown variable between the fast and the slow waves (i.e. in regions R2-R3, and R6-
R7 of Figure 5.2), while the tangential components of the magnetic fields (BY and B?)
are used between the slow waves (i.e. in regions R4-R5 of Figure 5.2). In this way, the
continuity of the tangential components of the magnetic field BY and B is automatically
guaranteed through the contact discontinuity and only the continuity of the total pressure
and of the three components of the velocity needs to be satisfied. The resulting system
consists of four equations in four unknowns and, being closed, it can be solved numerically



54 Chapter 5: The exact solution of the Riemann problem in relativistic MHD
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Figure 5.2 Spacetime structure of the MHD Riemann problem in the general case in which
the magnetic field has also a normal component, i.e. B* £ 0. The “Riemann-fan” is here
composed of two fast-waves (FW), of two Alfven waves (AW), of two slow-waves (SW) and
of a central contact discontinuity (CD). Indicated with R1-R8 are the 8 different regions
into which the Riemann problem can be decomposed, each representing a different state.
Indicated are also the different methods used to compute the solutions in the different
regions (i.e. By-method in regions R4 and R5 and p-method in regions R2-R3 and R6-R7).
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through root-finding techniques for nonlinear system of equations (e.g. using a Newton-
Raphson method). We refer to this as the “tangential magnetic field approach” or simply,
the “B;-method”.

As mentioned in Section 5.2, hereafter we will assume that the Riemann problem
has a solution and that this is unique. As a result, we will not discuss in any detail compound
waves which seem to develop in the numerical solution of some special initial states (one of
these is shown in Section 5.7.2) and whose admissibility as solution of the Riemann problem
is still debated.

5.5 Total-Pressure Approach: “p-method”

In the following Sections we describe in detail the approach in which we calculate
all of the variables in the Riemann fan using as unknown the total pressure, i.e. the p-
method. Different set of equations will be derived according to whether the solution is
across a shock or a rarefaction wave.

5.5.1 Solution across a shock front

Consider ¥ to be a hypersurface in flat spacetime across which p, u and T are
discontinuous. Let also n be the unit 4-vector normal to ¥ so that the Rankine-Hugoniot
conditions for relativistic MHD can be expressed as

[[pu*]lna = 0, (5.15)
HTO‘ﬁHna -0, (5.16)
Hbo‘uﬁ—uo‘bﬂﬂna - 0, (5.17)

where we use the double-bracket notation to express the jump of a quantity F' across the
hypersurface ¥, i.e.

([F]] = Fo— F .

where F, and F} are respectively the values ahead (a) and behind (b) the shock.

In particular, if ¥ is the 4-dimensional hypersurface describing the evolution of
a shock wave normal to the x-axis, the unitary condition on n can be used to derive the
components

n® = W,(Vs,1,0,0) , (5.18)

where V is the coordinate velocity of the shock, W = (1 — VSQ)*l/ 2 its Lorentz factor, and
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we can rewrite equations (5.15)—(5.17) explicitly as

[J]] = [[pW (Vs —v")W(]] = 0,

[[6%° — 7]] Vi + [[S* — %" — Dv"]] = 0,
[[6%" — S*]] Vi + [[S™v" +p— b"b"]] = 0,
[[boby—sy]]v+[[sy -] = 0,
[6°° = S7]] Vi + [[S*0” = 6"b7)) = 0,
[[ 1 = 0,

[BY]] Vs + [[B"vY —v*BY]] = 0,

Il 0

(B Vs + [[B*v* = v" B

where J is the (rest) mass flux across the shock.

After a number of tedious but otherwise straightforward algebraic manipulations,

equations (5.19)—(5.26) can be recast as

5]

B and exploited the property

F - =5 || 5]]

valid for any scalar quantity F'.

where we have defined n = v

0, (5.27)
0, (5.28)
0, (5.29)
0, (5.30)

0, (5.31)
0, (5.32)
0, (5.33)

0, (5.34)

Next we express all of the variables as functions of J and p; only. We start by

using equation (5.27) to obtain
r o W 1
Db_(va vb) J +Da7
so that equation (5.28) yields

oo Weng | Womg W

-
+ —2[B* (e — mp) — Pavi + pyvi] + D—a 7
a

(5.35)

(5.36)
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which depends on v}, p, but also on BY, B, ’ug, vg. To remove the dependence from these
latter quantities we employ equations (5.33) and (5.34) to obtain B} and B} as functions
of vf, vf v and py, i.e.

BY W, W

B! = D=+ —=B"Y - —B"/ .

b b(Da+ J J > ’ (5:37)
B W, W,

B = Dy =%+ —=B"— —B"| . :

5 b(Da+J ¥i v> (5.38)

We can now solve equation (5.29) and finally obtain v} as a function of v}, v{, py and J

vE = Da {B%WS + W(12 [Ws(pb — pa) — BgWS(l — Ug’l)g — ’Ujvlf) + Uczz(‘] + Bstna)] } N
b WE{DalJ — We(B2+ pa — po)vi + B*Wenna] = J(B2 — py + W2n2 — 1)}

J [B*(Bivy + BZvi — na) + vE(pa — WZn2 + 74)]
Da[J - WS(B% + Pa _pb)v(f + Bstna] - J(B% — Dyt WQQ"??E - Ta) ’
(5.39)

where it should be noted that equation (5.39) reduces to the corresponding hydrodynamical
expression in the limit of B = 0 [¢f. equation (4.12) of Pons et al. [116] or equation (3.13)
of Rezzolla et al. [123]]. Note also that using equations (5.30) and (5.31) it is possible
to obtain expressions for v; and vf in terms of the post-shock quantities p and J; the
corresponding expressions are rather lengthy and uninspiring; for this reason we report
them in Appendix A.

When all of the post-shock quantities are expressed as functions of only p; and J
(i.e. V), it is still necessary to express Vs as function of the post-shock pressure p;,. To
do this we follow Pons et al. [116] and use the original jump conditions (5.15), (5.16) and
(5.17) to obtain

i+ || %]] = 0. Ga)

p

- (o 5] e f] - o

where ((F)) = F, + F, and H = B2/J? —b?/p? is a shock invariant quantity (i.e. [[H]] = 0,
[11]). Note that B,, is not just the normal component of the magnetic field but, rather, the
projection of b along n, i.e.

W,

anb"nu:—ﬁl]—i— W
p

(5.42)
Equation (5.41) is also known as the Lichnerowicz adiabat, and represents the relativistic
MHD counterpart of the Hugoniot adiabat.

A couple of remarks should be made. Firstly, equations (5.40)—(5.41) can be used
for fast and slow shocks but not for an Alfven discontinuity. In this case, in fact, [[h/p]] = 0,
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equations (5.40)—(5.41) are simple identities and the shock velocity Vi is trivially given by
the local Alfven velocity V,. Secondly, for purely hydrodynamical shocks it is possible to
find an analytic expression for V; as a function of the post-shock pressure [cf. equation (4.14)
of Pons et al. [116]]. In relativistic MHD, however, the corresponding analytic expression
has not been found and equation (5.40) needs to be solved numerically using a standard
root-finding algorithm, which increases the computational costs considerably. To guarantee
that we are using the right shock velocity, the root is searched in the appropriate physical
interval, i.e. |Vs| € (|Val,1) for fast shocks and |Vy| € (Jv®],|Va4]) for slow shocks.

5.5.2 Solution across a rarefaction wave

Rarefaction waves are self-similar solutions of the flow equations, i.e. equations
in which all of the fluid quantities depend on z and ¢ through the combination £ = x/t.
Using ¢ as the independent variable, the set of partial differential MHD equations can be
rewritten as the following set of ordinary differential equations (ODEs)

5%_‘1(%5’6) — (5.43)

G (—igbobo) G bzg —Dv) . (5.44)
5d(8md_gb0bx) _d(sme J;é? —V) g, (5.45)
5cl(syd—;ﬂl)y) B d(Syviug_ b)) 0, (5.46)
5d(szd_§bObZ) B d(Szv”; g_ ) (5.47)
5ddB; . (5.48)

gdiy B d(BWd; BT _ . (5.49)

5ddiz B d(Bvadg B*v®) (5.50)

Equation (5.43) can be further decomposed as

d dv® duY dv*
(vx—f)d—§+p (0" — W™ + 1] d—vg+(v$—§)pw%yd—2+(vz—§)pw%zd—2 —0, (5.51)
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while combining equation (5.44) with equations (5.45)—(5.47) provides us with the relations

R Cdp LAY A(B0T)  d(bThT)
wW#(v —f)d—€+(1—§v )d—f—vf i + (" +§) Q& — Q&

w2 00 dp AR A0 A d(brh)
wW?(v* =€) i &v i &v i +v a +¢ a @

o o dvt o dp o Ld@O)  _d@%)  d(b)  d(bFbF)
wW=(v* =) a€ —&v d_f_fv i +w i +¢ & ae

Finally, rewriting the definition of the local sound speed

Opg

2= 1 Ope
S )
hg P s

where s is the specific entropy, in terms of the self-similar variable

a Mg

(5.55)

(5.56)

and collecting the different terms in equations (5.43)—(5.50), we obtain the following system
of seven ODEs in the seven variables p, p,v®,vY, v*, BY, B?, fully determining the solution
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across a rarefaction wave

0= (" =5 +p[(07 — W™ 1] o+ (07 = 9P G+ (07 = oW
(5.57)
d d dov® dov¥ dv?
0= d—]g - hgczd—g (B*v" — B™) d—vg + (B*Y — B¥p) d—vg + (B*”* — B*n) dvf -
BY y dBY B* .\ dB*®
(W” ”)d_s_ (W””) i
(5.58)
d do®
0= (=€) 5 + [BIO7 +€) = 2B+ W2 —)w —P)] g +
9 BY(£ —v*)] doY . BFE—v")] dv* (v =€) dBY ,dB?
QB@‘{[”” 257 }d_ﬁ [ T ape }d_g_ 257 [”y ag "V ag H |
(5.59)
T
T T 20, 2
Bsz{[(’Ux—i-f)—%} Cli%_’_ |:2’Uy—|—By(€B$U )+W (’U Bf;(yw Ui ) _%:| C;_U;}_
T,z z T dv” Bx+W2(Uz_£)(Byvy+77) dBY Z(,T dB*
BY[2B*v +B(§—v)]d§—l—[ e a@ + BYv*(v" —¢§) i
(5.60)
0 —fvzj—g -

T P T 20,0 2 z
BmBz{[(vx+§)_%}%+[2vz+B (;xv ) W Bi);(zw n)_%} O}ivg}_
I sodv o dABY [BT 4+ W2(v® — €) (B +1)] dB*
BB + B~ )| o + B - + - |45

(5.61)

dv® L do? - dBY

Ldv” L dv? . dB*
0=B G — BT e + (" O (5.63)

The system of equations (5.57)—(5.63) can be recast into a simple matrix form and

non-trivial similarity solutions exist only if the determinant of the matrix of coefficients is
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zero. This condition leads to a quartic equation in the self-similar variable &
b2c? — W — (2 - Dt 4 [QCQUIWZ — 20%,¢2 + 4(¢% - 1)U§W4} £ +
(B = B (B + by)e? + (o2 = W2 = 6(C2 = W] €2+
2B, — 20, W+ 4(C = Do W] €+ W W2 (1-w?) — (@02 ¢ = 0,
(5.64)

where

b

2=

, and C=32+0*1-6Y, (5.65)

and whose roots coincide with the eigenvalues of the original system of equations (5.7).
When B* = 0, equation (5.64) reduces to a second-order equation whose roots provide the
velocities of the left and right-going fast-waves. In the more general case when B* # 0,
however, the quartic cannot be recast as the product of two quadratic equations (as it
is the case in Newtonian hydrodynamics) and the solution must be found numerically.
The corresponding roots provide the velocities of the left and right-going slow and fast
magnetosonic rarefaction waves, respectively.

Using the appropriate root for £, the system of ODEs (5.57)—(5.63) can be rewritten
in terms of the total pressure to obtain a new system of six ODEs to be integrated from the
value of pressure ahead the rarefaction to the one behind it?. The explicit expressions of
these equations are rather lengthy and do not provide any important information; for this
reason we report them in Appendix B.

5.5.3 Solution across an Alfven discontinuity

The solution across Alfven discontinuities is found by imposing the continuity of p
and p and then solving the system of equations (5.29)-(5.31) and (5.33)-(5.34), using Vs =
Va, where Vi = v, + B, /[W?(nF+/w)] is the Alfven velocity for left (—) and right (+) going
waves, respectively. Since p and p are continuous across the Alfven discontinuity, a solution
needs to be found only for the three components of ¥ and for the tangential components of
the magnetic field B, and B.. In general, and because no analytic solution was found, we
solve the corresponding system of equations (5.29)-(5.31), (5.33)-(5.34) numerically with a
Newton-Raphson scheme. No major difficulties have been found in determining an accurate
solution provided that the waves are all well separated and that a sufficiently accurate initial
guess is provided (cf. solution in Figure 5.12). For the latter we have used an approximate
Riemann solver based on the Harten-Lax-van Leer-Einfeldt (HLLE) algorithm ([68, 50])
and a moderate truncation error (i.e. using about 800 gridpoints for the tests reported
here). However, considerable difficulties have been encountered if the waves are very close
to each other. This is the case, for instance, of test number 5 of Balsara [20], in which the
left-going Alfven discontinuity and the left-going slow rarefaction wave have very similar
propagation velocities (cf. solution in Figure 5.11). The exact solution found in this case

2The number of equations to be solved reduces from seven to six because when using the total pressure
as the self-similar variable one equation becomes then trivial, i.e. dp/dp = 1.
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has a truncation error which is small, but larger that those reached in the other tests (cf.
data in table 5.11).

5.6 Tangential Magnetic Field Approach: “B;-method”

As done in Sect. 5.5, in what follows we describe in detail the approach referred
to as the By-method, in which we calculate all of the variables in the Riemann fan using as
unknowns the values of the tangential components of the magnetic field, i.e. BY and B~.
As already mentioned, much of the inspiration in the development and use of this method
comes from the corresponding approach developed by Ryu and Jones [127] in nonrelativistic
MHD. However, important differences are also present.

In particular, in Newtonian MHD the problem can be solved using the norm of

the tangential component of the magnetic field B; = 1/Bg + B2 and the rotation angle

1 = arctan(B?*/BY) across Alfven discontinuities. This is because B; is conserved across
Alfven discontinuities and v is constant across fast and slow-waves (see ref. [77]). As a
result, the relevant system of equations is solved using as unknowns the values of B; in
regions R2-R3, R4-R5, R6-R7 of the Riemann fan in Figure 5.2 and the angle v in regions
R3-R6. At the contact discontinuity it is then necessary to solve a system of four equations,
given by the continuity of ¥ and of p, in the same four unknowns. This can be solved using
root-finding techniques such as the Newton-Raphson method. Finally, when B, = 0, the
presence of only two fast waves and a tangential discontinuity makes the solution of the
problem even simpler (see ref. [127] for details).

In relativistic MHD, on the other hand, the value of B; can be discontinuous across
Alfven waves and the angle ¢ can vary across fast and slow-waves; it is then not possible
to solve the system using the same method. Note also that the equations reported below
both for shock and rarefactions waves are strictly valid only if B* # 0 and indeed should be
used only in regions R4 and R5 of the Riemann fan shown in Figure 5.2. In these regions,
only slow-waves are present and these do not appear when B* = 0.

5.6.1 Solution across a shock front

To calculate the solution across a shock front within the Bi;-method we start by
considering the same system of equations in Section 5.5.1, but we solve equations (5.15)—
(5.17) considering BY and B* as the unknown quantities. From equations (5.33) and (5.34)
we express the post-shock values of v¥ and v*:

1 J

vl = o { gm - B/ <W3Da + v — vff) + B%g} , (5.66)
1 J J

% = B [Bg W.D, B <W5Da e Ug) " B%‘Z‘} ' (5.67)

Using now equation (5.27) to obtain the post-shock value of D

B D,J
N J+ D W, (vg — vl”f) ’

Dy (5.68)
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and calculating the post-shock value of the total pressure using the invariance of hyB,, i.e.
[[hgBn]] = 0 (see ref [11]), we can express all of the quantities as a function of the post-shock
values of v*, BY, B?, and of the shock-velocity V;. An analytic solution for the post-shock
value of v® in terms of the other post-shock quantities was sought but not found, forcing
to the numerical solution of one of the equations (5.29)—(5.31). Furthermore, in analogy
with what done in the p-method, we calculate the value of the shock velocity by solving
numerically equation (5.40).

Finally, it may be useful to point out that the numerical solution of equation (5.40)
is at times complicated by the existence of two acceptable roots in the interval of velocities
in which the value of the slow shock velocity has to be found (i.e. between the value of
v* and the value of the Alfven velocity). Because only one of these two roots will lead to
a convergent exact solution, a careful selection needs to be made. The existence of these
two roots could be related to a known problem in Newtonian MHD where the use of the
tangential components of the magnetic field as the post-shock independent variables can lead
to the presence of more than one solution (cf., for instance, ref. [78]). This problem seems
to be present also in relativistic MHD ([85]), but it has not represented a serious drawback
for the approach followed here. More work is needed to determine whether the use of the
tangential components of the magnetic field as the post-shock independent variables is really
optimal or whether different choices are preferable.

5.6.2 Solution across a rarefaction wave

To calculate the solution across a rarefaction wave within the B;-method we use
the same set of ODEs (5.43)—(5.50) discussed in Section 5.5.2, with the only but important
difference that we do not use £ as self-similar variable but, rather, the norm of the tangential
components of the magnetic field B;. More specifically, we use equations (5.43)—(5.45)
together with equations (5.49)—(5.50) and substitute the derivative with respect to £ with
the one with respect to B;. In addition to these equations, which provide a solution for
variables p,p,v®,vY and v*, we express explicitly the relation between the norm and the
tangential components in terms of the angle 1

BY = cosyB , (5.69)

B* = sinyB, (5.70)

and rewrite them as ODEs having B; as the self-similar variable

dBY

_ = 71
a5, cos , (5.71)
BZ
iBt — sing . (5.72)

Note that in deriving equations (5.71)—(5.72), an implicit assumption has been made: i.e.
that the angle v is constant across the rarefaction wave and thus that the tangential mag-
netic field does not rotate across the rarefaction wave. With the use of the supplementary
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equations (5.71)—(5.72), the resulting system of ODEs is complete and can be solved numer-
ically using standard techniques for the solution of a system of coupled ODEs. In practice,
the integration is started ahead of the rarefaction and is progressed toward the contact dis-
continuity, where By is given by the values of BY and B* chosen at the contact discontinuity.
In all of the tests reported here (with the exception of test number 5 of Balsara [20]; see
Section 5.7.2 for a discussion), the assumption 1) = const. is valid. This is probably related
to the choice of the initial conditions used in these tests and in particular to the fact that
vy =03, BY = B3, or v = B3 =0, where A = (left, right), so that the initial states are
essentially invariant after the exchange of y with z or the z components of v and B remain
equal to zero in all the regions.

It should be noted that also in relativistic hydrodynamics the velocity components
tangential to a nonlinear wave can change their norm across the wave, in contrast with what
happens in Newtonian hydrodynamics. Considering for simplicity the case for a shock wave
in the limit of zero magnetic field, equations (5.30)—(5.31) reduce to [[SY/D]] = 0 = [[S*/D]],
indicating that the ratio v¥/v® remains unchanged through shocks so that the tangential
velocity 3-vector can change its norm but does not rotate. This property, which applies
also across rarefaction waves, is not present across Newtonian nonlinear waves, in which the
tangential 3-velocity vector does not rotate, nor changes its norm: [[v¥]] =0 = [[v*]].

Although the condition ¢ = const. is exact in nonrelativistic MHD, it may not
be valid in relativistic regimes, where the tangential magnetic field is instead free to rotate
across the slow rarefaction. In this case, a new strategy needs to be implemented and the
simplest one consists of using the angle 1 as the self-similar variable so that the system
of equations (5.43)—(5.50) can be expressed in terms of this new integration variable. In
addition, the supplementary differential equation for one of the components of the tangential
magnetic field can be obtained through the algebraic relation

v CO8Y pe (5.73)

siny
and its derivative with respect to v

dBY  cosvy dB? o1
dy - siny dy sin2¢

B* . (5.74)

The integration of the system of ODEs is done starting from the value of ¥ given by the
ratio of the tangential components of the magnetic field ahead of the rarefaction wave, up to
the value given by the amplitudes of BY and B~ at the contact discontinuity. Furthermore,
as for the p-method, also within the B;-method the values of the variable £ are obtained
from the quartic equation (5.64).

A representative example of this effect is shown in Figure 5.13, where we plot
the exact solution of the generic Alfven test at time t = 1.5 (¢f. Table 5.4 for the initial
conditions of this test). In particular, the left panel of Figure 5.13 shows the norm of the
tangential magnetic field By, while the right panel the angle ¢ = arctan (B#/BY). Note how
both quantities vary across all the fast, slow and Alfvén waves.
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5.7 Numerical Implementation and Representative Results

Since the properties of the magnetic field components in the initial states lead to
considerably different Riemann problems (c¢f. the two Riemann fans in Figures 5.1 and 5.2),
we will discuss separately the numerical solution in the cases in which B* = 0 and B* # 0,
emphasizing the properties of some of the most representative tests.

5.7.1 Tangential Initial Magnetic Field: B* =0

As discussed in Section 5.4, when B* = (0 the Riemann problem consists of only two
fast-waves and of a tangential discontinuity across which only v* and p are continuous (cf.
Figure 5.1). It should be noted that the condition of continuity of the total pressure across
the tangential discontinuity does not necessarily extend also to the gas pressure and, indeed,
the latter is in general discontinuous (cf. Figures 5.3 and 5.4). In essence, the numerical
solution of the Riemann problem when B* = 0 proceeds as follows: given the initial left
and right states (i.e. regions R1 and R4 of Figure 5.1), we follow the procedure used in
relativistic hydrodynamics and determine two unknown states as function of the common
total pressure in regions R2 and R3 (p-method). The jump in the normal component of
the velocity at the tangential discontinuity is then checked and a new guess for the total
pressure found. This procedure is iterated until the solution is found with the desired
accuracy. The numerical approach used is a combination of Newton-Raphson and bisection
methods, starting from a value for the total pressure which is the average of the initial
left and right states. Furthermore, to decide whether the wave considered is a shock or
a rarefaction, we compare the values of the total pressure ahead of and behind the wave,
solving the set of equations across a shock if the guessed value is larger than the total
pressure ahead of the wave and thus in the initial state. We note that this procedure could
be improved if an approach similar to the one discussed by Rezzolla et al. [122, 123] is
implemented, which would exploit the values of the initial relative velocity to predict the
wave-pattern produced.

It is also worth noting that even though the numerical strategy discussed so far
is very similar to the one used in relativistic hydrodynamics, the equations to be solved in
MHD are much more complex and, more importantly, their computational cost is markedly
larger. This is essentially because an analytic expression for the shock velocity was not
found, so that the latter must be determined numerically.

Representative Tests for B* = (

Because initial states with a zero normal magnetic field lead to a Riemann problem
that is comparatively much simpler to solve, an independent numerical code has been built
for this case and it has been tested to reproduce known results in relativistic hydrodynamics,
as well as a test proposed by Komissarov [84] (this is referred to as the “shock-tube” test
2). We have also considered an additional, more generic shock-tube test in which all of the
quantities in the initial states are nonzero and in which - B # 0 (this is referred to as the
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Table 5.1. Initial conditions for the tests of the exact Riemann solver when the magnetic

field has zero normal component, i.e. B* = 0.

Test type o De vt WY w* B  BY B*
Komissarov: Shock-Tube 2 (I'=4/3)
left state 1.0 300 0.0 0.0 0.0 0.0 20.0 0.0
right state 0.1 1.0 0.0 00 0.0 00 0.0 0.0
Generic Shock-Tube (I'=5/3)
left state 1.0 001 01 03 04 00 6.0 2.0
right state 0.01 5000 0.5 04 03 0.0 50 200

Table 5.2. First significant digits for the exact solution of the test shock-tube 2 of
Komissarov [84] computed with an accuracy of 107!2. The left column indicates the
regions in which the solution is computed (c¢f. Fig. 5.1).

p D v oY v? BY B*

R1
R2
R3
R4

0.1000E+-01
0.2410
0.6426
0.1000

0.2300E4-03
0.1611E4-02
0.1611E4-02
0.1000E4-01

0.0000
0.8497
0.8497
0.0000

0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000

0.2000E+-02

0.9141E4-01
0.0000
0.0000

Table 5.3. The same as Table 5.2 but for the generic shock-tube test computed with an

accuracy of 10711,

p

p

VY

v* BY

BZ

R1
R2
R3
R4

0.1000E+-01
0.1581E4-01
0.5489E-03
0.1000E-01

0.1819E4-02
0.4459E4-02
0.4459E4-02
0.5138E4-04

0.1000
-0.3073
-0.3073
0.5000

0.3000
0.3082
0.7488
0.4000

0.4000
0.2927
0.5556
0.3000

0.6000E+-01
0.9582E4-01
0.1023E+4-01
0.5000E4-01

0.2000E+-01
0.3194E4-01
0.4092E4-01
0.2000E4-02
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“generic shock-tube” test)3.

Because the procedure for calculating the solution in this case is particularly simple
and well tested from relativistic hydrodynamics, the algorithm employed has shown to be
very robust and no failures were encountered in the calculation of any quantity. We list in
Table 5.1 the set of initial conditions used in the tests solved, while we report in Tables 5.2
and 5.3 the first significant digits for the exact solution of the same tests, reporting in all
cases the accuracy obtained (which usually is < 107!). Finally, the full solutions in space
of the various Riemann problems listed in Table 5.1 and for the quantities p, v*, pg, p, v¥,
v, BY, and B? are shown in Figures 5.3 and 5.4 at the indicated representative times.

5.7.2 Generic Initial Magnetic field: B* # 0

As discussed in Section 5.4, when B” # 0 the Riemann problem consists of seven
different waves: two fast-waves, two slow-waves, two Alfvén discontinuities and a central
contact discontinuity across which only the density can be discontinuous (¢f. Figure 5.2). In
essence, the numerical solution of the Riemann problem when B¥ = 0 proceeds as follows:
starting from the initial left and right states (i.e. regions R1 and R8 of Figure 5.2), we
compute the states after the fast-waves (regions R2 and R7), then we determine the jumps
across the Alfven discontinuities (regions R3 and R6) and finally we solve the equations for
the slow-waves (regions R4 and R5). As a result of this sequence, the jump conditions in
all the physical variables in the two states across the contact discontinuity are computed
and if the solution obtained in this way does not reach the desired accuracy, the procedure
is iterated.

We also recall that when B* # 0, the numerical solution is found using a hybrid
method which adopts different sets of equations according to the region in which the Rie-
mann problem has to be solved. In particular, to compute the states after the fast-waves
and across the Alfven discontinuities we use as unknown the total pressure (p-method; Sec-
tion 5.5) and to discriminate between shocks and rarefaction waves we evaluate the jump
in the total pressure in a way similar to the case when B* = 0. To compute the states after
the slow-waves, on the other hand, we use the the tangential components of the magnetic
field (B;-method; Section 5.6) and to decide whether a wave is a shock or a rarefaction we
evaluate the jump in the norm of the magnetic field bearing in mind that it must decrease
across slow shocks and increase otherwise. Then at the contact discontinuity we compute
the jumps in the total pressure and in the components of three-velocity and if they are
above a certain accuracy we iterate by changing the values of the total pressure, used in
regions R2-R3 and R6-R7, and of the tangential components of the magnetic field, used in
regions R4-Rb.

It is worth underlining that the solution of the Riemann problem with generic
initial states is considerably more demanding than when B* = 0 and not only because
of the more numerous waves present. Indeed, the most severe difficulty is due to the
fact that the set of equations to be solved becomes particularly stiff near the solution. A
careful investigation of the several cases considered has in fact revealed that, in general,

3We note that a Riemann problem with B* = 0, but with & - B # 0 cannot be solved with the exact
solution recently proposed by Romero et al. [125]
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Figure 5.3 Exact solution of the test shock-tube 2 of Komissarov [84] at time ¢ = 1.0.
The solution is composed of a left-going rarefaction wave, a tangential discontinuity and a
right-going shock.
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Figure 5.4 Exact solution of the generic shock-tube test at time ¢
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the functional behavior of the quantities whose roots are sought, changes very rapidly near
the roots, stretching the ability of standard root-finding algorithms. As a result, it is not
uncommon that the solution cannot be found if the iteration for the search of the root starts
from a guess which is not sufficiently close to the exact solution. To avoid such failures and
to provide a first guess which is reasonably accurate, we have used as a guide the solution
provided by the HLLE approximate Riemann solver?. In practice, the approximate solution
should be accurate to a few percent in the regions away from the waves, where the states
are almost constant (very close to the waves the errors are of course much larger). Using
this guess has proved to be sufficient to obtain a solution in all of the cases considered, but
of course there is no guarantee that a solution will be straightforwardly found for all of the
possible initial states. Our experience when the solution could not be immediately obtained
is that an increase in the accuracy of the approximate Riemann solver is in general sufficient
to yield a convergent and accurate solution.

Representative Tests for B* £ (

Although the numerical code developed for the exact solution of the Riemann
problem in relativistic MHD could in principle be used for generic initial data, we have
used it in particular to calculate the exact solutions of those less trivial initial states that
over the years have become standard references (e.g. ref. [84], or ref. [20]). Table 5.4 collects
the set of initial conditions used in the tests solved, while we report in Tables 5.5-5.12 the
first significant digits for the exact solution of the same tests, reporting in all cases the
accuracy obtained (which usually is ~ 1071°). Finally, the full solutions in space of the
various Riemann problems listed in Table 5.4 and for the quantities p, v*, pg, p, v¥, v*, BY,
and B* are shown in Figures 5.5-5.12 at the indicated representative times. In addition,
Figure 5.13 offers a quantitative view of the changes in the tangential magnetic field B;
and of the rotation angle 1 across the fast, slow and Alfven waves in the case of a generic
Alfven test.

In all of the tests reported in Table 5.4, the HLLE solver with about 800 gridpoints
was able to track rather well the exact solution in all of its waves. The only exception to
this has been test number 1 of Balsara [20] which represents the relativistic version of the
test proposed by Brio and Wu [31] in Newtonian hydrodynamics ([150]). The approximate
numerical solution of this test, in fact, shows the development of a left-going slow compound-
wave, that is a wave composed by a slow shock adjacent to a slow rarefaction. Since we
assume that a slow or fast-wave can either be a pure rarefaction or a pure shock, compound
structures of this type cannot be found by construction and thus are not present in the
exact solution found (¢f. Table 5.7 and Figure 5.7). We remark that it is not yet clear
whether compound waves have to be considered acceptable physical solutions of the ideal
MHD equations and a debate on this is still ongoing (see, for instance, refs. [109, 110,
52, 144, 145, 146]). We here prefer to adopt the standpoint of Ryu and Jones [127] in
the development of their exact Riemann solver in nonrelativistic hydrodynamics and not
comment further on this until a commonly accepted view has emerged.

4Note that this is not necessary when B® = 0 since in this case the solution can also be quite far from
the exact one and yet the iterative scheme does not show problems in converging to it.
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Table 5.4. Initial conditions for the tests of the exact Riemann solver when the magnetic
field has nonzero normal component, i.e. B* # 0.

Test type p De v¥ v vF BT BY B*
Komissarov:
Shock-Tube Test 1 (I' =4/3)
left state 1.0 1000.0 0.0 00 00 10 0.0 00
right state 0.1 1.0 0.0 0.0 00 10 0.0 00
Komissarov:
Collision Test (' =4/3)
left state 1.0 1.0 5/v/26 0.0 0.0 10.0 100 0.0
right state 1.0 1.0  —5/v/26 0.0 00 10.0 -10.0 0.0
Balsara Test 1 (T'=2)
left state 1.000 1.0 0.0 0.0 0.0 0.5 1.0 0.0
right state 0.125 0.1 0.0 00 00 05 -1.0 0.0
Balsara Test 2 (I' =5/3)
left state 1.0 30.0 0.0 0.0 0.0 5.0 6.0 6.0
right state 1.0 1.0 0.0 0.0 00 50 07 07

Balsara Test 3 (I’ =5/3)
left state 1.0  1000.0 0.0 0.0 00 100 7.0 7.0
right state 1.0 0.1 0.0 0.0 00 10.0 0.7 0.7

Balsara Test 4 (I'=5/3)
left state 1.0 0.1 0.999 0.0 0.0 100 7.0 7.0
right state 1.0 0.1 -0.999 0.0 00 100 -70 -7.0

Balsara Test 5 (I’ =5/3)
left state 1.08 0.95 0.40 03 02 20 03 03
right state 1.00 1.0 -0.45 -0.2 02 20 -07 0.5

Generic Alfvén Test (I'=5/3)
left state 1.0 5.0 0.0 03 04 1.0 6.0 2.0
right state 0.9 5.3 0.0 0.0 00 1.0 5.0 2.0
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Table 5.5. First significant digits for the exact solution of the test shock-tube 1 of
Komissarov [84] computed with an accuracy of 1071, The left column indicates the
regions in which the solution is computed (cf. Fig. 5.2).

P D ¥ vY v? BY B*

R1 0.1000E+01 0.1001E404 0.0000 0.0000 0.0000 0.0000 0.0000

R2 0.6984E-01 0.2927E402 0.9115 0.0000 0.0000 0.0000 0.0000

R3  0.6984E-01 0.2927E402 0.9115 0.0000 0.0000 0.0000 0.0000

R4 0.6984E-01 0.2927E+02 0.9115 0.0000 0.0000 0.0000 0.0000

R5 0.8846 0.2927E+02 0.9115 0.0000 0.0000 0.0000 0.0000

R6 0.8846 0.2927E+02 0.9115 0.0000 0.0000 0.0000 0.0000

R7 0.8846 0.2927E+02 0.9115 0.0000 0.0000 0.0000 0.0000

R8 0.1000 0.1500E+01 0.0000 0.0000 0.0000 0.0000 0.0000
Table 5.6. The same as Table 5.5 but for the exact solution of the test Collision of

Komissarov [84] computed with an accuracy of 1076.
P P 7 vY v? BY B*

R1 0.1000E+01 0.5292E+02 0.9806 0.0000  0.0000  0.1000E+02  0.0000
R2 0.6331E401 0.2571E403 0.4380 0.4069 0.0000 0.1960E+02 0.0000
R3 0.6331E401 0.2571E403 0.4380 0.4069 0.0000 0.1960E+02  0.0000
R4 0.2742E402 0.2819E4-03 0.2453E-07 -0.6811 0.0000  0.2250E-06  0.0000
R5 0.2742E+02 0.2819E+403 -0.2810E-07 -0.6811 0.0000  0.2250E-06  0.0000
R6 0.6331E4+01 0.2571E+03 -0.4380 0.4069 0.0000 -0.1960E+02 0.0000
R7 0.6331E4+01 0.2571E+03 -0.4380 0.4069 0.0000 -0.1960E+02 0.0000
R8 0.1000E+4-01 0.5292E4-02 -0.9806 0.0000  0.0000 -0.1000E+02 0.0000

Another test which deserves a special comment is test number 5 of Balsara [20],
in which the left-going Alfven discontinuity and the left-going slow rarefaction wave have
very similar propagation velocities. Indeed they are so close to each other that not even the
HLLE approximate Riemann solver with 40000 gridpoints was able to capture the precise
location of the discontinuity. As a consequence, the initial guess for the jumps across the
left-going Alfven discontinuity was sufficiently good to yield a convergent solution, but not
good enough to provide an exact solution with a truncation error comparable with the one
reached in all of the other tests (¢f. data in Table 5.11). In addition, another distinctive
feature of this test and which has not been found in any of the others, is the rotation of
the angle ¥ across the left-going slow rarefaction. To handle this we have followed the
procedure discussed in Section 5.6.2 and used equation (5.74) to compute the changes in
the tangential magnetic field across the rarefaction wave.
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Figure 5.5 Exact solution of the test shock-tube 1 of Komissarov [84] at time ¢ = 1.0. The
solution is composed of a left-going fast rarefaction, of a contact discontinuity and of a
right-going fast shock.
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Figure 5.6 Exact solution of the collision test of Komissarov [84] at time ¢ = 1.22. The
solution is composed of a left-going fast shock, of a left-going slow shock, a right-going slow
shock and of a right-going fast shock.
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Figure 5.10 Exact solution of the test number 4 of Balsara [20] at time ¢ = 0.4. The
solution is composed of two left-going fast and slow shocks and of two right-going fast and
slow shocks.
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Figure 5.11 Exact solution of the test number 5 of Balsara [20] at time ¢ = 0.55. The
solution is composed of a left-going fast shock, of a left-going Alfven discontinuity, of a
left-going slow rarefaction, of a contact discontinuity, of a right-going slow shock, of a right-
going Alfven discontinuity and of a right-going fast shock. Note that the accuracy in this
test is only rather low: 3 x 1072
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Figure 5.12 Exact solution of the generic Alfven test at time ¢ = 1.5. The solution is
composed of a left-going fast rarefaction, of a left-going Alfvén discontinuity, of a left-going
slow shock, of a contact discontinuity, of a right-going slow shock, of a right-going Alfven
discontinuity and of a right-going fast shock.
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Figure 5.13 Exact solution of the generic Alfven test at time ¢ = 1.5. The left panel
shows the norm of the tangential magnetic field B;, while the right panel the angle ¢ =
arctan (B?/BY). Note that both quantities vary across all the fast, slow and Alfvén waves
as a result of a relativistic effect.

Table 5.7. The same as Table 5.5 but for the exact solution of the test number 1 of
Balsara [20] computed with an accuracy of 1071, This test represents the relativistic
version of the test proposed by Brio & Wu [31]

p p v* vY v? BY B
R1 0.1000E+01 0.1625E401 0.0000 0.0000 0.0000 0.1000E+01  0.0000
R2 0.6257 0.6989 0.3742 -0.3561E-01  0.0000 0.6594 0.0000
R3 0.6257 0.6989 0.3742 -0.3561E-01  0.0000 0.6594 0.0000
R4 0.7092 0.7062 0.2555 -0.6804 0.0000 -0.4285 0.0000
R5 0.2695 0.7062 0.2555 -0.6804 0.0000 -0.4285 0.0000
R6 0.1223 0.6976 -0.2080E-01 -0.3460E-02 0.0000 -0.9769 0.0000
R7 0.1223 0.6976 -0.2080E-01 -0.3460E-02 0.0000 -0.9769 0.0000

R8 0.1250 0.7250 0.0000 0.0000 0.0000 -0.1000E+01 0.0000
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Table 5.8. The same as Table 5.5 but for the exact solution of the test number 2 of
Balsara [20] computed with an accuracy of 10710,
P p V¥ VY v* BY B*
R1 0.1000E401 0.7850E+02 0.0000 0.0000 0.0000 0.6000E+01 0.6000E+01
R2 0.4300 0.2321E402 0.6344 -0.9981E-01 -0.9981E-01 0.3045E+01 0.3045E+01
R3 0.4300 0.2321E4+02 0.6344 -0.9981E-01 -0.9981E-01 0.3045E+01 0.3045E+01
R4 0.3830 0.2284E4+02 0.6770 -0.5566E-01 -0.5566E-01 0.3205E+01 0.3205E+01
R5  0.2828E+01 0.2284E+02 0.6770 -0.5566E-01 -0.5566E-01 0.3205E+01 0.3205E+01
R6 0.1582E+01 0.2072E+02 0.4688 -0.2538 -0.2538 0.3971E+01 0.3971E+01
R7 0.1582E+01 0.2072E+02 0.4688 -0.2538 -0.2538 0.3971E4+01 0.3971E+01
R8 0.1000E+01 0.1399E-+02 0.0000 0.0000 0.0000 0.7000 0.7000
Table 5.9. The same as Table 5.5 but for the exact solution of the test number 3 of
Balsara [20] computed with an accuracy of 10~19.
P p V¥ VY v* BY B*
R1 0.1000E401 0.1099E+4+04 0.0000 0.0000 0.0000 0.7000E+01 0.7000E+01
R2 0.1381 0.8604E+4+02 0.9246 -0.3513E-01 -0.3513E-01 0.2238E+01 0.2238E+01
R3 0.1381 0.8604E4+02 0.9246 -0.3513E-01 -0.3513E-01 0.2238E+01 0.2238E+01
R4  0.9798E-01 0.7653E+02 0.9529 0.4366E-01 0.4366E-01 0.4670E+01 0.4670E+01
R5 0.1010E4+02 0.7653E+02 0.9529 0.4366E-01 0.4366E-01 0.4670E+01 0.4670E+01
R6 0.1218E+01 0.6363E+02 0.4670 -0.4270 -0.4270 0.9408E+01 0.9408E+01
R7 0.1218E+01 0.6363E+02 0.4670 -0.4270 -0.4270 0.9408E+01 0.9408E+01
R8 0.1000E+4+01 0.5059E+02 0.0000 0.0000 0.0000 0.7000 0.7000

Table 5.10. The same as Table 5.5 but for the exact solution of the test number 4 of
Balsara [20] computed with an accuracy of 1077,

p P V7 vY v? BY B*
R1 0.1000E+01 0.5020E4-02 0.9990 0.0000 0.0000 0.7000E+4-01  0.7000E+01
R2 0.5175E+02 0.1184E+04 0.4408E-01 0.3263E-01 0.3263E-01  0.1668E+02  0.1668E+02
R3 0.5175E+02 0.1184E+04 0.4408E-01 0.3263E-01 0.3263E-01  0.1668E+02  0.1668E+02
R4 0.6148E+402 0.1188E+404 0.1086E-07 -0.2877 -0.2877 0.8042E-09 0.8036E-09
R5 0.6148E+402 0.1188E+404 -0.1089E-07 -0.2877 -0.2877 0.8042E-09 0.8036E-09
R6 0.5175E+4+02 0.1184E+404 -0.4408E-01 0.3263E-01 0.3263E-01 -0.1668E+02 -0.1668E+02
R7 0.5175E+4+02 0.1184E+404 -0.4408E-01 0.3263E-01 0.3263E-01 -0.1668E+02 -0.1668E+02
R8 0.1000E+01 0.5020E+-02 -0.9990 0.0000 0.0000 -0.7000E+01 -0.7000E+01
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Table 5.11. The same as Table 5.5 but for the exact solution of the test number 5 of
Balsara [20] computed with an accuracy of 3 x 1074,
p P ¥ vY v? BY B*

R1 0.1080E+01 0.2885E+01 0.4000 0.3000 0.2000 0.3000 0.3000

R2 0.2447E401 0.5908E401 -0.1331 0.2111 0.1751 0.2662 0.5076

R3 0.2447E401 0.5908E401 -0.1215 0.1264 0.1158 -0.1182 0.2302

R4 0.2050E+01 0.5616E+401 -0.4547E-01 -0.1463 0.2146 -0.1175E+01 0.5852

R5 0.1884E+01 0.5616E+01 -0.4543E-01 -0.1462 0.2149 -0.1175E+01 0.5850

R6 0.1642E+01 0.5488E+01 -0.1129 -0.4606E-01 0.1601 -0.1429E401 0.7320

R7 0.1642E401 0.5488E+01 -0.1155 -0.8536E-01 0.1027 -0.1272E401 0.9468

R8 0.1000E4-01 0.2918E401 -0.4500 -0.2000 0.2000 -0.7000 0.5000
Table 5.12. The same as Table 5.5 but for the exact solution of the generic Alfven test

computed with an accuracy of 10710,
p p v* vY v® BY B*

R1 0.1000E4-01 0.2376E402 0.0000 0.3000 0.4000 0.6000E401  0.2000E+01
R2 0.9219 0.2083E4-02 0.6232E-01 0.3050 0.4193 0.5622E401 0.1892E4-01
R3 0.9219 0.2083E402 0.7109E-01 0.3669 0.2429 0.5691E4-01 0.8502
R4 0.1263E+01 0.2087E+402 0.3886E-01 0.1147 0.2054 0.5130E4-01 0.7680
R5 0.1099E+401 0.2087E402 0.3886E-01 0.1147 0.2054 0.5130E4-01 0.7680
R6 0.9130 0.2085E+402 0.1607E-01 -0.5009E-01 0.1813 0.5505E4-01 0.8195
R7 0.9130 0.2085E+402 0.1341E-01 -0.6599E-03 -0.2640E-03 0.5073E+401 0.2029E+01
RS 0.9000 0.2030E+-02 0.0000 0.0000 0.0000 0.5000E+4-01  0.2000E+01
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5.8 Summary

In this chapter we have presented the procedure for the solution of the exact
Riemann problem in special relativistic MHD. Special care has been paid in treating both
degenerate initial states (i.e. with zero normal magnetic field) leading to a set of only three
waves analogous to the ones in relativistic hydrodynamics, as well as generic initial states
(i.e. with nonzero normal magnetic field) leading to the full set of seven MHD waves.

The approach discussed for the numerical solution of the exact Riemann problem
reflects this distinction and different sets of equations are used according to the values
of the normal magnetic field. In particular, when B* = 0, all of the equations needed
for the solution of the Riemann problem are written as a function of the total pressure,
thus following a procedure which is logically equivalent to the one adopted in relativistic
hydrodynamics (we have referred to this as to the p-method). When B? # 0, on the other
hand, an hybrid approach is adopted in which the solution across fast-waves and Alfven
discontinuities is still computed using the p-method, but the one across slow-waves and
the contact discontinuity is computed using equations which are written in terms of the
tangential components of the magnetic field (we have referred to this as to the B;-method).
The use of a combined approach for the general case of B* # 0 has turned out to be crucial
for a successful solution of the problem.

Because of its generality, the solution presented here could serve as a useful if not
indispensable test for those numerical codes that solve the MHD equations in relativistic
regimes. As the astronomical observations become increasingly more accurate, such numer-
ical codes will become increasingly more important to explain and describe in detail the
complex physics of astrophysical compact objects.

As a final remark we note that despite the considerable improvements in the per-
formance of modern computers, the exact solution of the Riemann problem at each grid
interface is still computationally too expensive to be used routinely in sophisticated multi-
dimensional numerical codes solving the equations of relativistic hydrodynamics or MHD in
either stationary or dynamical spacetimes (see, for instance, Baiotti et al. 2005 [16], Duez
et al. 2005 [47]). While a numerical code based on exact Riemann solvers may represent
at least in principle the most accurate approach to the solution of the hydrodynamics and
MHD equations, considerable work it still required to make it competitive with less accu-
rate but more computationally efficient methods. A first step in this direction would be,
for instance, the search for an analytic solution for the shock velocity and this will be the
subject of future work. Another important problem deserving equal attention is that of the
uniqueness of the solution. While a global consensus on this issue still needs to be reached,
it will remain essential in order to construct a complete and consistent picture of the exact
solution of the Riemann problem in relativistic MHD.



Chapter 6

The equations of General
Relativistic M HD

6.1 Introduction

As already pointed out in Chapter 1 magnetic fields play a very important role in
many astrophysical scenario, such as y-ray bursts. Most of these involve also very compact
objects, such as neutron stars and black holes, and strong gravitational fields making neces-
sary the solution of the equations of general relativistic magnetohydrodynamics (GRMHD).
As done in the hydrodynamical case, in order to solve numerically these equations and to
have long and stable simulations, it is necessary to recast them in a conservative form
adopting a suitable formulation.

Before starting with the description of the formulation used to solve the set of
equations implemented in our numerical code, we will summarize the work done so far in
the formulation of the equations of general relativistic magnetohydrodynamics in the 3 4 1
formalism.

After the pioneering work by May & White [101] with the development of the first
numerical code for the solution of general relativistic hydrodynamics equations in spherical
symmetry and Lagrangian coordinates, several groups in the world started the development
of new numerical codes. In ref. [57] one can find an overview of all the different approaches
that have been introduced to solve numerically GRHD equations.

On the other hand, the inclusion of magnetic fields in the simulations is still
in a development phase and only recently full GRMHD codes have been built after the
first attempt made in ref [156] more than 30 years ago. That work made use of the so
called “Wilson formulation” already used in the first general relativistic hydrodynamic
simulations [155, 157] and which is based on the use of an Eulerian system of coordinates
and on the extension of the equations of Bardeen & Wagoner [23] to include a perfect
conducting fluid with a magnetic field. In this formulation the equations for the fluid
motion were simply written as:

1 A
08, + ——=0,(vV—gV'S,) =
ron V=9 V=g 2

(augaﬂ> e + I oy (6.1)

1
2 S0
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with
S, = (p+p+pe)uuu’, (6.2)
Vio= uljub
JH = i(\/—gFO‘“) , (6.4)

oz

and where p is the gas pressure, p the rest-mass density, € the specific internal energy, u* the
four-velocity of the fluid, ¢ the determinant of the four-metric ¢®* and F*¥ is the Faraday
electromagnetic tensor field. The magnetic field was described by the two functions H 4 and
Ay where axisymmetry was assumed. The magnetic field equations of motions were then
simply given by:

6tH¢ = —(H¢VZ)7Z — (Hd)VT),T + Q,ZA¢>,1~ — Q,rAqﬁ,z , (6.5)
0t Ay —Ay V' — A¢7ZVZ , (6.6)

where € is the angular velocity.

This approach, however, sidestepped an important guideline for the formulation
of nonlinear hyperbolic systems of equations, namely the preservation of their conservation
form. This is a necessary condition to guarantee a correct evolution when shocks are present.
Furthermore, some amount of numerical dissipation must be used to stabilize the solution
across discontinuities. The first GRMHD numerical code based on this formulation [156]
implemented indeed a finite difference scheme with an artificial viscosity to handle the for-
mations of discontinuities, such as shocks. After this first attempt several codes followed
based on the same kind of formulation but most of them were built to solve the GRMHD
equations on a fixed background, limiting their applications to accretion disks around black
holes. In ref. [160, 161] the effects of a Kerr black hole on magnetohydrodynamical accretion
were studied with particular attention to the transfer laws of the energy and angular mo-
mentum. Koide et al. [82] developed a new numerical code based on the use of an artificial
viscosity based scheme proposed by Davis [36]. The code was then used to perform the
first simulations of jet formation in general relativity [81] and to study the validity of the
so-called MHD Penrose process to extract rotational energy from a Kerr black hole [83, 80].
De Villiers and Hawley [39] built another code based on the same formulation adopted in
refs [70, 71] to carry a series of studies on accretion flows around Kerr black-holes [40, 72, 41].

Only very recently different groups started to recast the system of GRMHD equa-
tions in a conservative form in order to benefit of the use of high-resolution shock-capturing
schemes. However the first codes [64, 86, 12] developed using HRSC methods in GRMHD
were still used on fixed spacetime backgrounds and their application was again limited to
the study of accretion processes around Schwarzschild and Kerr black holes. The first codes
able to solve the full set of GRMHD equations on a dynamical background were developed
recently by [47, 131] and they were used to perform the first study, still in axisymmetry,
of the collapse of magnetized differentially rotating neutron stars [45, 129, 46] which are
thought to be good candidates for short v-ray bursts.
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Figure 6.1 The “Valencia formulation”. The three-velocity of the fluid ¥ is obtained from
the projection of its four-velocity w on the space-like hypersurface ¥; orthogonal to the
four-velocity n of the Eulerian observer. (Figure courtesy of L. Rezzolla)

6.2 Formulation of the equations

In our code we make use of the so-called “Valencia formulation” [99, 22] which was
originally developed as a 3 + 1 conservative Eulerian formulation of the general relativistic
hydrodynamic equations but it has been recently extended to the case of GRMHD [12].
Following ref. [12] we define the Eulerian observer as the one moving with four velocity n
perpendicular to the hypersurfaces of constant ¢ at each event in the spacetime (see fig. 6.1).
This observer measures the following three-velocity of the fluid:

. hi ut ui
vt = M —

—ukny W +

o=

: (6.7)

where h,, = g, + n,n, is the projector orthogonal to m, wu is the four-velocity of the
fluid and —utn, = au® = W is the Lorentz factor which satisfies the usual relation W =
1/v1 — 02, where v? = %jvivj. The covariant components of the three-velocity are simply
given by v; = u;/W.
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6.2.1 Maxwell equations

The electromagnetic field is completely described by the Faraday electromagnetic
tensor field F* obeying Maxwell equations (cfr ref. [11]):

v, FH 0, (6.8)
vV, = AxJH, (6.9)

where V is the covariant derivative with respect to the four-metric g,,, J# is the charge
current four-vector and *F'*¥ is the dual of the electromagnetic tensor defined as

1
T = o0 Fys (6.10)

7" being the Levi-Civita pseudo tensor. We can also introduce the magnetic induction
field B* and electric field £ as measured by a generic observer with four-velocity U

E~ FPUy (6.11)
B® = FPU,. (6.12)

The charge current four-vector J* can be in general expressed as
Jt = qut + o F*u,, (6.13)

where ¢ is the proper charge density and o is the electric conductivity. We will assume that
our fluid is a perfect conductor (ideal MHD condition) and so that 0 — oo. In order to
keep the current finite we need to impose F*u, = 0, i.e. that the electric field measured
by the comoving observer is zero.

In this case the electromagnetic tensor can be written in terms of the magnetic
field b* measured in the comoving frame:

F"7 = n*"%bquy, (6.14)
and taking the dual of this expression we obtain

R = bru” — bYut . (6.15)
As a results, the Maxwell equations become:

v, T = \/L__gay (V=g (b"u” —b"u)) = 0. (6.16)

In order to express these equations in terms of quantities measured by an Eulerian
observer, we need to compute the relation between the magnetic field measured by the
comoving and by the Eulerian observers, respectively b and B. To do that we introduce
the projection operator P, = g,,, +u,u, orthogonal to u. If we apply this operator to the
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definition of the magnetic field B measured by an Eulerian observer, we can easily derive
the following relations:

Biv;
o = WBu (6.17)
o
A Bi 0,
o= +T0‘b“ (6.18)
B2 2(p0)2
2 = b“bM:L() (6.19)

w32 ’

where B2 = B'B;. The time component of equation (6.16) gives the divergence-free condi-
tion:

B =0, (6.20)

where Bi = V7B'. The spatial components of equation (6.16) give instead the induction
equations for the evolution of the magnetic field:

8y(B?) = 8;(v'Bi — v BY) (6.21)

where vi = av® — B'. Note that ¥ is equivalent to the definition of the three-velocity used
in the Wilson formulation [155, 157] and also used by other GRMHD codes [64, 131, 47].

6.2.2 Conservation equations

We need now to determine the evolution equations for the rest mass density p, the
specific internal energy e and for the three-velocity v*. These equations can be computed,
as done in relativistic hydrodynamics, from the conservation of the barion number

V.(pu”) =0, (6.22)
from the conservation of the energy-momentum
vV, T =0, (6.23)

and from an equation of state relating the pressure p to the rest mass density p and to the
specific internal energy €. The energy-momentum tensor T#” can be splitted in two parts:
one for the fluid T}, and one for the electromagnetic field Thy: TH = Tjw, + Tly. We
also assume that the fluid is perfect and so we recall that the first part is simply given by:

Thia = phutu” + pgh” (6.24)

where h = 1 + € + p/p is the specific relativistic enthalpy.
The electromagnetic field Ty can be computed directly from the electromagnetic
tensor F as:

1 A 1 A8
Thn = In (F” F5 - ZQWF F)\5> ; (6.25)
and using the definition of the magnetic field b measured by a comoving observer we obtain

1
Th = <u”u” + 59‘“’) b — b . (6.26)
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Overall, the total energy-momentum tensor is given by

b2
TH = (ph + b%) uu” + <p + 5) g — by . (6.27)

Following ref. [12] and to benefit of the use of High Resolution Shock Capturing
methods we rewrite equations (6.22), (6.23) and (6.21) in the following conservative form:

= [0(TF) + UV =gF] =S (6.28)

where F is the vector of the conserved variable measured by the Eulerian observer
FO = e (6.29)
F are the fluxes N
Dvt/a
Sjvifa+ (p+b%/2) 8: — b;B /W

F! i , (6.30)
vl /a+ (p+b%/2) v — abBY /W

Brvi/a — Bivk
and S are the source terms:
0

T4 (Duguj = T0,95)
S = , (6.31)
o (TH9, Ino — T"”Fgu)

ok
where
D = pWw, (6.32)
S; = (ph+b*)W?v; — ab®b; , (6.33)
T = (ph+)W?—(p+ ﬁ) — 22 - D, (6.34)

2

and 0¥ = (0,0,0)T. The system is then closed by an equation of state relating the pressure
to the rest-mass density and to the specific internal energy p = p(p, €).

The hyperbolic character of relativistic magneto-hydrodynamics was exhaustively
studied by Anile and collaborators (see ref. [11] and references therein) by applying Friedrichs’
definition of hyperbolicity [63] which is the extension to a covariant framework of the defi-
nition given in Section 3.2.
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The WhiskyMHD code

7.1 Introduction

The Whisky code was built to be an astrophysical laboratory to study the physics
of compact objects in order to predict the dynamics and the gravitational signal emitted.
As already mentioned, this code has been applied to the study of the collapse of uniformly
and differentially rotating neutron star, head-on collisions of NSs, mixed binary systems
composed by a NS and a BH, barmode instability and many others. In all these astrophysical
scenarios, magnetic field can play an important role modifying both the dynamics both the
gravitational waves signal. In order to investigate these effects and to extend the range of
possible applications, including for example phenomena like y-ray bursts, we have developed
WhiskyMHD, a new general relativistic MHD code which is the “natural” extension of the
Whisky code to GRMHD.

7.2 Numerical methods

The WhiskyMHD code benefits as Whisky of the use of the Cactus framework [32]
which provides the drivers used for the parallelization of the code, several routines for the
output in different formats and collect several useful routines for numerical relativity codes.
It especially provides several methods for the solution of the Einstein equations so that our
code has to solve the MHD equations while Cactus provides the evolution of the metric
quantities at each timestep.

First of all, as done in the Whisky code, the evolution equations are integrated in
time using the method of line, as described in Section 3.4.4. We recall that the equations
are reduced to a set of ODEs that can be evolved using standard numerical methods, such
as second-order TVD Runge-Kutta or iterative Cranck-Nicholson schemes [141, 91].

The Einstein equations for the metric variables are written using the conformal
traceless formulation described in Section 2.3 (see also refs. [130, 24]); details about the
numerical implementation used in our code can be found in refs. [5, 16].

91
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7.2.1 Approximate Riemann solver

The WhiskyMHD code makes use as Whisky of the High-Resolution Shock-Capturing
schemes based on the use of Riemann solvers to compute the fluxes between the numerical
cells as already described in Section 3.4.3. It would have been interesting to try to use
our exact solver, but its computational cost is still too high to be implemented efficiently
in a numerical code. So we opted for an approximate Riemann solver. There are several
possible choices and we decided to implement the Harten-Lax-van Leer-Einfeldt (HLLE)
approximate Riemann solver [68] because it is simply based on the knowledge of the eigen-
values and it does not require the computation of a basis of eigenvectors. Anton et al. [12]
have claimed that the accuracy of HLLE is similar to other methods based on the use of the
eigenvectors, such as the Roe solver, but they did not provide any quantitative measurement
of this statement, also because at that time an exact solution was not available. It would
be then interesting to compare in a more precise way the different approximate Riemann
solvers used in numerical relativistic MHD codes and our exact solvers could be particular
useful, if not necessary, for that purpose.

In the HLLE formulation the flux at the interface between two numerical cells is
computed in the following way

. . 0 0
sznFZr + Cmaa:F} — CmazCmin (F r F l)

F' = , (7.1)
Cmaz T Cmin

where F#, and F#; are computed from the values of the primitive variables reconstructed
at the right and left side of the interface, respectively P, and Py, ¢inee = max(0, ¢4, c4 ),
Cmin = —min(0,c_ ,,c_;) and ¢4, and cy; are the maximum left- and right-going wave
speeds computed from P, and P;. If ¢ee = ¢ the flux becomes the so-called Lax-
Friedrichs flux: . . 0 0

) e (F, - FY) (7.2)

Computation of the eigenvalues

One of the difference with relativistic hydrodynamic codes is the computation
of the eigenvalues required by HLLE which is complicated by the presence of a quartic
equation. The characteristic structure of GRMHD equations is analyzed in detail in ref. [11]
and we simply report here the expression for the computation of the seven wave speeds
associated with the entropic, Alfvén, fast and slow magnetosonic waves. The characteristic
speed X of the entropic waves is simply given by @ = av® — 37, while for the Alfvén wave we
get the two following possible values for the left- and right-going waves

. b ph P
200+ S(ph + 020
The four speeds that are associated with the fast and slow magnetosonic waves

and that are required in the computation of the fluxes can be obtained by the solution of
the following quartic equation in each direction ¢ for the unknown A

1 b?
ph (C—2 - 1> at — <ph + 0—2) a®’G+B’G =0, (7.4)

S S

(7.3)
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where
a = g (—)\ +avt — 5i) , (7.5)
B = b -1\, (7.6)
1 i ii
¢ = [+ AY +a] (7.7)

and c; is the sound speed. Note that in the last term of the expression for G, i.e. v%, the
Einstein summation convention must not be used. In the degenerate case in which B* = 0
equation (7.4) can be reduced to a simple quadratic equation that is solved analytically.
In the more general case equation (7.4) cannot be reduced to the product of two quadratic
equations as in Newtonian MHD and different methods are implemented in the code in
order to solve it: an analytic one based on the scheme described in ref. [1], a Newton-
Raphson method and the numerical routine zrhqr [118] which implements an eigenvalue
method. The Newton-Raphson method has shown to be the most accurate and it is the
one used by default in our code. We have also implemented an approximate method for
the computation of the eigenvalues associated with the fast magnetosonic waves (which are
the only two roots needed by HLLE) which was introduced in ref. [92] and which reduces
the original quartic to a quadratic equation, that can be solved analytically, by imposing
B =0 and Bv; = 0 in eq. (7.4). The values computed in this way differ by less than 1%
with respect to the exact values. This method is used in those situations in which the exact
solution of the original quartic can be complicated by the presence of degeneracies or when
in general two of the roots are close to each other.

7.2.2 Reconstruction methods

A second order TVD slope-limited method is used to obtain P, and P; from the
values of the primitives at the zone center:

1

Pi(zit12) = Pitgoi, (7.8)
1

Pr(zi_12) = Pi— 570 (7.9)

The use of a slope limiter is necessary in order to avoid oscillations in regions of large
variation (for example where shocks are present) and at the same time to guarantee second
order convergence where the functions are smooth. In WhiskyMHD one can choose one of the
following limiters:

e minmod
o; = minmod(PZ- - Pi—17 ]Di—i—l - ]DZ) , (710)

where minmod(a,b) = 1(sign(a) + sign(b)) min(|al, |b])

e MC
o; = minmod (P41 — P;_1,2(P; — Pi_1),2(Piy1 — B)) (7.11)
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e Van Leer

0; =2ab/(a+b) if sign(a) = sign(b) and a +b # 0
. (7.12)
0 otherwise

where a = P, — P,_1 and b = P41 — P

7.2.3 Constrained Transport Scheme

Although the analytic solution of equations (6.21) exactly guarantees the con-
straint (6.20), this may not be true for the numerical solution of these equations. The
violation of this constraint may lead to unphysical results and to the development of insta-
bilities in the codes as firstly illustrated by Brackbill & Barnes [30]. To avoid this problem
several numerical methods were developed in the past starting from the so-called “staggered
mesh magnetic field transport algorithm” first proposed by Yee [158] and then implemented
in an artificial viscosity based scheme with the name of “constrained transport” scheme (CT)
by Evans & Hawley [51]. In the following years the development on new MHD codes based
on Godunov schemes required a new implementation of this method. A version of the CT
scheme based on the use of the fluxes computed with the base conservative scheme was
introduced by Balsara & Spicer [21]. This algorithm is known as “flux-CT” and it is the
one implemented in our code; other possible choices can be found in ref. [147]. We decided
to implement the “flux-CT” because of its simplicity and computational efficiency.

This method is based on the relation that exists in ideal MHD between the fluxes of
the magnetic field B and the value of the electric field E = —7 x B. If we define Fi = aﬁFi
then the following relations hold:

BT = f* (By) — _fv (BZ) , (7.13)

EY = _F* (va) = F" (BZ> , (7.14)

o o (Bw) — _f® (By) , (7.15)
where F' (BJ> = ¢"BJ — ¢/ B'. The induction equation (6.21) can then be written as:

OB+VxE=0. (7.16)

If we take now the integral of this equation across a surface ¥ between two numerical cells
and apply Stokes theorem we obtain:

8t/f~3-df]+ E-1=0, (7.17)
by [9)))

where [ is the normal vector parallel to 0%, i.e. the boundary of . Let us now consider
the x direction for simplicity and the surface ¥ located at (i + %, J, k); we denote by (i, j, k)
the cell centers on our discrete grid (see fig. 7.1). If we define

~ 1 = _
BY, =——— [ B-dX 1
it+3.5k AyAZ/Z ’ (7.18)
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Figure 7.1 The evolution of Bfﬂ 12,5k is determined by the values of the electric field E at

the edges of the surface ¥ located at (i +1/2, j, k).

and take the discrete version of equation (7.17) we obtain:

Yy _ Ey
5B _ itggk—g  Titggktg
PPit gk T Az
E?,. ., —E*,.
itg.dtgk  Titgi—gk

1
X , (7.19)

where the values of the electric field on the edges of the surface are simply computed
taking the arithmetic mean of the fluxes across the surfaces that have that edge in common
(cf (7.13)-(7.15)), e.g.:

1/ - /. -
EY | — Z(F® (BZ) jaz (BZ)
i+g.5ktg 4 ( i+1 .5k * i+, k+1

_F* (va) _ B (fsm)
0.kt i+1.j.k+5

(7.20)

where the fluxes F" (Bj ) are the ones computed with the approximate Riemann solver

described in Sec. 7.2.1.
Since we are using an HRSC method, all the quantities are located at cells centers

but in equation (7.19) we are evolving the magnetic field at the surfaces between the cells.
The relation between these two different values of the magnetic field is given by a simple
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average:
Blix = %(Bﬁ%u}ﬁréf—%,j,k) ) (7.21)
. %(Bﬁﬁ;ﬁéi-’j;,k) : (7.22)
By = 5 (B +Boy) (7.23)

It is easy to demonstrate that this method guarantees that V - B will not grow in
time. If we integrate over the volume of a numerical cell this constraint and then use the
Gauss theorem we obtain

— 6 —
V. BdV = /B-di, 7.24
/AV ZZI b3 ( )

where the sum is taken over all the six faces X; that surround the cell.
If we take now the time derivative of this expression and make use of equa-
tion (7.17) we have

. 6
) V- BdV = — / E.-T, 7.25
! AV ZZ; 0%, ( )

and the sum on the right-hand side gives exactly zero since the value of E -l for the common
edge of two adjacent faces has a different sign.

Note that this method preserves the divergence of B when the magnetic field is
located at the cell surfaces. Anyway there is no need to use a staggered magnetic field, also
because in HRSC all the variables are located at cell centers, and so the problem now is

how to check the divergence-free property of the cell centered B. The CT approach indeed

does not conserve the usual centered difference definition of V - B:

(V ) é) Bﬁrl,j,k - B;'Dfl,j,k B B B

y _ z - Bz
_ + i,j+1,k i,j—1,k + 1,7,k+1 i,5,k—1
ik 2Ax 2Ay 2Az '

It turns out, however, that the following cell corner-centered definition of the divergence

(v-5)

nx R R R R R R R
Bi+1,j,k - Bz‘,j,k + Bi+1,j+1,k - Bi,j+1,k + Bz‘+1,j,k+1 - Bi,j,k+1 + Bi+1,j+1,k+1 - Bi,j+1,k+1

(7.26)

i+3.0+5.k+3

+
4Ax
RY nRY RY RT RY RY RY R
Bijriw = Bijw t Bivijrie = Blige T Bijrien = Bijen ¥ By — Blijen N
4Ay
NZ NZ ~Z ~Z NZ NZ ~Z NZ
Bl i1 = Bije ¥ Bl — Bivign T Bljrin — Bl ¥ Blrien — Bl
4Az
(7.27)

is conserved from the flux-CT scheme implemented here. Our code checks the divergence

of B at the end of each iteration using both the expressions above and it has been verified
that (7.27) is constant in time while (7.26) is in general not conserved.



Chapter 7: The WhiskyMHD code 97

7.2.4 Primitive variables recovering

Because the fluxes F? depend on the primitive variables P and not on the evolved
conservative variables F?, one needs to recover after each timestep the primitive variables.
Due to the complexity of the system there is no analytic expression that relates the primitive
to the conservative (with the exception of the magnetic field variables B*) and one has to
solve numerically the system of equation. There are several methods: one can simply try
to solve the full set of 5 equations given by the expressions for (D, S;,7) in the 5 unknowns
(p,v*,€), we call this the 5D method, or one can try to reduce this system to a smaller
set of equations. In our case we implemented two methods: in the first one we reduce the
system to a couple of non-linear equations (2D method), while in the second one we need
to solve only 1 equation (1D method). A review of other possible methods can be found in
ref. [115].

2D method

The following procedure is the same used in ref. [12] and it is an extension to
full general relativity of the method developed in ref. [84] in special relativity. The idea
is to take the modulus S? = Sij of the momentum instead of the expression for its
three components reducing the total number of equations that one has to solve. Using the
relations (6.17)-(6.19) it is possible to write S? as

ZW?2—1
W2

(B'Si)

S% = (Z + B?) o

—(2Z + B?)

(7.28)

where Z = phW?2. It is also possible to rewrite the equation for the total energy in a similar
way
B> (B'S;)?
2W2 272
Using then the definition of D = pW, equations (7.28) and (7.29) form a closed
system for the two unknowns p and W, assuming the function h = h(p,p) is provided,
which means that this method does not assume the use of a particular equation of state.
For a polytropic EoS the integration of the total energy equation can be avoided and the
system reduce to the numerical solution of the equation (7.28). Once the roots for W, p
and p = D/W are found, it is possible to compute the values of v; using the definition of
the momentum S;

T=2+B*—p-— -D. (7.29)

Bi(BiS;) + S;Z
Vi =
Z(B2+2)

(7.30)

1D method

The basic idea of this method is to consider also the gas pressure p as a function
of W reducing the total number of equations that must be solved numerically. Assuming
that we are using an ideal equation of state, Z can in fact be rewritten as

T
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Using equation (7.31) it is possible to rewrite (7.29) as a cubic equation for p(W') which
admits only one physical solution. So at the end we need only to solve equation (7.28) for
the only unknown W. Having obtained W, we can then compute p = p(W) and the other
quantities in the same way as done in the 2D method.

7.2.5 Excision

As mentioned in 3.4.6 many interesting astrophysical scenarios involve the presence
of black hole and so of regions of space-time where singularity are present. These regions
are causally disconnected from the rest of the physical domain and the values of the fields
inside should not affect the zone outside the event horizon. This is not true in numerical
codes where it can happen that some information from inside the event horizon is used
to compute the values of the variables outside. In order to avoid this, excision algorithms
were developed in general relativistic hydrodynamics and they are based on the use of some
kind of boundary condition applied to the boundary between the excised zone, where the
equations are no more solved, and the domain outside. As already done in the Whisky code
we apply a zeroth-order extrapolation to all the variables at the boundary, i.e. a simple
copy of the MHD variables across the excision boundary. Authors in [47] have instead
implemented a different method based on the use of a linear extrapolation. In Section 7.3
we will show that even if this condition give better and more accurate results in some
particular tests, it can produce wrong results when shocks are present. For completeness
we have decided to include both the algorithms in our code.

It is important also to note that also other methods, not based on excision tech-
niques, are being developed to improve the stability of numerical codes when black hole are
present in the domain. One of these is based on the use of a Kreiss-Oliger dissipation inside
the excision region avoiding the formation of steep gradients in the metric components [18].
Our code is already able to use this new technique but it has not been tested yet.

7.3 Tests

Here we report the results for a series of test done to check all the different algo-
rithms implemented. Validation indeed represents an important aspect of the development
of any numerical code because it is necessary to be sure that all the algorithms are imple-
mented correctly before starting to do real simulations, especially if one wants to trust the
results.

7.3.1 Riemann problems

It is important to stress the fact that the exact solution of the Riemann problem
in relativistic MHD is becoming a standard tool for those groups that are developing new
special and general relativistic MHD codes. As our code is based on the use of approximate
Riemann solvers we first tested the code against a set of Riemann problems in Minkowsky
space-time proposed by Balsara [20]. All these tests were run on a grid of unit length with
1600 grid points with the initial discontinuity located at the center of the grid. An ideal
equation of state with I' = 5/3 were used with the exception of the first test with I' = 2.
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Table 7.1. Initial conditions for the Riemann problems used to test the code.
Test type p P v® v ¥ B* BY B*
Balsara Test 1 (Brio & Wu) (I'=2)
left state 1.000 1.0 0.0 00 00 05 1.0 0.0
right state 0.125 0.1 0.0 0.0 00 05 -1.0 0.0
Balsara Test 2 (I' =5/3)
left state 1.0 30.0 0.0 0.0 0.0 50 6.0 6.0
right state 1.0 1.0 0.0 0.0 00 50 07 07
Balsara Test 3 (I' =5/3)
left state 1.0 1000.0 0.0 0.0 00 100 70 70
right state 1.0 0.1 0.0 0.0 0.0 100 0.7 0.7
Balsara Test 4 (I' =5/3)
left state 1.0 0.1 0999 00 00 100 70 7.0
right state 1.0 0.1 -0.999 0.0 0.0 10.0 -7.0 -7.0
Balsara Test 5 (I’ =5/3)
left state 1.08 0.95 040 03 02 20 03 03
right state 1.00 1.0 -045 -02 0.2 20 -0.7 0.5

The initial conditions for all the tests are reported in table 7.1. For the first time we have
also compared the numerical solution with the exact one computed with our exact Riemann
solver [66]. The use of exact solution is particularly useful because it allows to check in a
quantitative way the ability of our code to solve all the different waves that can form in
relativistic MHD and especially shocks. In all the figures the exact solution is represented
with a solid line, while the numerical one with points.

The first test is the relativistic analog of the classical Brio-Wu shock tube prob-
lem [31] as adapted to the relativistic MHD case by Van Putten [150]. The initial discon-
tinuity develops a left-going fast rarefaction, a left-going slow compound wave, a contact
discontinuity, a right-going slow shock and fast rarefaction. In analogy with what Anton
et al. [12] did we have also repeated the test with a value of the lapse different from unity,
i.e. @ =2 and also with a different value for the x component of the shift, 3% = 0.4. The
numerical results are showed in figure 7.2 with the exact solution (solid line). The differ-
ence between the numerical code and the exact solution at the compound wave is due to
the fact that our exact solver, as already pointed out in Chapter 5, is based on the working
assumption that compound waves never forms.

All the other four Riemann problems proposed by Balsara were solved in the
standard Minkowsky space-time, i.e. o = 1 and E = 0. As shown in figures 7.3-7.6 our
code is able to resolve all the different waves present in MHD with a very high agreement
with the exact solutions. In figure 7.7 we also show for the test number 2 of Balsara the
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Figure 7.2 Numerical solution of the test number 1 of Balsara with different values for
the lapse « and the shift 8. The solid line represents the exact solution, the crosses the
numerical one at time ¢ = 0.4, the open triangle at time ¢t = 0.2 but with o = 2 and the
open squares at ¢ = 0.4 but with 8% = 0.4, in this last case the solution is shifted on the
z-axis by the amount 5%¢. Note that the exact solution was computed with our exact solver
which does not assume the presence of compound waves in the wave pattern, so it shows a
slow shock instead of the compound wave. (Only 160 of the 1600 data points used in the
simulation are drawn)
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Li-norm of the relative error on the rest mass density p

6_/) Zi?jvk |pi=j7k — Pexact (Ti, Yj, 2k)|
p Z@ng Pexact (-Ti, Yj, Zk;)

(7.32)

as a function of the number of point IV and for the three different slope limiters implemented
in our code.

7.3.2 Excision tests on a flat background

We next show our code’s ability to accurately solve shocks also when an excision
region is present in the domain. To this scope, we have used the test number 2 of Balsara
excising the region [0.25,0.5] and using the zeroth-order extrapolation scheme. In this case
the fast and slow shocks moving to the right go inside the excised region and the solution
outside is not affected at all (see figure 7.8).

We have also tried the scheme implemented in ref. [47], i.e. a linear extrapolation,
but we have discovered that it can produce wrong results when shock waves are present (see
figure 7.9). This happens because this type of boundary conditions is not adequate with
non-smooth flows. Indeed before the fast right-going shock hits the excision boundary the
two different methods give the same results but the solution is clearly incorrect after the
shock has crossed the excision boundary when an extrapolation is used.

7.3.3 Magnetized spherical accretion

This second test proves the ability of the code to maintain a static solution in
a curved space-time. We consider the spherical accretion of a perfect fluid with a radial
magnetic field onto a Schwarzschild black hole. The solution to this problem is already
known for the unmagnetized case but it can be demonstrated that the solution is not
affected if one adds a radial magnetic field [39]. The initial setup is the same used in
refs. [39, 64, 47, 12] and consists of a perfect fluid obeying a polytropic EOS with I" = 4/3.
The critical radius of the solution is located at r. = 8.0 and the rest mass density at
re is pe = 6.25 - 1072, These parameters are sufficient to provide the full description of
the accretion onto a solar mass Schwarzschild black hole as described in ref. [104]. We
solve the problem on a cartesian grid going from z? = 0 to ' = 11. To avoid problems
at the horizon, located at r = 2, we write the metric in ingoing Eddington-Finkelstein
coordinates. The excision boundary has the shape of a cubical box of length 1 so that the
domain [0, 1] x [0,1] x [0, 1] is excluded from the evolution. In this case we use the same
boundary condition adopted by Duez et al. [47], i.e. a linear extrapolation, which in this
case gives better results than the zeroth-order extrapolation; e.g for a run with b2/p ~ 25
the latter gives an error ~ 3% larger. The order of accuracy of the code is measured using
the Li-norm of the relative error on the rest mass density (7.32).

In figure 7.10 we plot dp/p computed at time ¢t = 100M for two different resolu-
tions, 100 and 1503; the error form the latter is multiplied by 1.5% so that if the code were
second order convergent the two curves should overlap. From this figure one can easy see
that the code is not perfectly second-order convergent especially for values of b2/p greater
than 4, as already found by Duez et al. [47]. We have investigated the origin of this problem
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Figure 7.3 Numerical solution of the test number 2 of Balsara at a time ¢ = 0.4. The solid
line represent the exact solution while the open squares the numerical one. The solution is
composed of two left-going fast and slow rarefactions, of a contact discontinuity and of two
right-going fast and slow shocks. (Only 160 of the 1600 data points used in the simulation
are drawn)
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Figure 7.4 Numerical solution of the test number 3 of Balsara at a time ¢ = 0.4. The solid
line represent the exact solution while the open squares the numerical one. The solution is
composed of two left-going fast and slow rarefactions, of a contact discontinuity and of two
right-going fast and slow shocks. (Only 160 of the 1600 data points used in the simulation
are drawn)
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Figure 7.5 Numerical solution of the test number 4 of Balsara at a time ¢ = 0.4. The solid
line represent the exact solution while the open squares the numerical one. The solution is
composed of two left-going fast and slow shocks and of two right-going fast and slow shocks.
(Only 160 of the 1600 data points used in the simulation are drawn)
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Figure 7.6 Numerical solution of the test number 5 of Balsara at a time ¢ = 0.55. The solid
line represent the exact solution while the open squares the numerical one. The solution is
composed of a left-going fast shock, of a left-going Alfvéen discontinuity, of a left-going slow
rarefaction, of a contact discontinuity, of a right-going slow shock, of a right-going Alfven
discontinuity and of a right-going fast shock. (Only 160 of the 1600 data points used in the
simulation are drawn)
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Figure 7.7 Li-norm of the relative error on the rest mass density p for test number 2 of
Balsara as a function of the number of points N and for the three different slope limiters
implemented in our code.

and we discovered that most of the deviation from the second order convergence is present
in the gridpoints near the excision boundary, i.e. for z € [1,2], while in the rest of the
domain the code is second order convergent as expected (see figure 7.11).

7.3.4 Evolution of a stable magnetized Neutron Star

We now consider the evolution of a stable magnetized neutron star. As this is a
static solution, no evolution is expected; however small truncation errors can perturb the
initial data producing small oscillations as already shown in ref. [16] for the unmagnetized
case.

The initial conditions are computed using the code developed by Bocquet et al. [27]
which exactly solves the full set of Einstein and Maxwell equations assuming that the model
is axisymmetric and with a poloidal magnetic field with the dipole moment aligned along
the rotation axis. This code is used to build initial configurations for uniformly rotating
magnetized neutron stars with different angular velocities and magnetic field strengths.
Figures 7.12 and 7.13 show the magnetic field lines for the two non-rotating models described
in table 7.2. In the case of star C2, where the magnetic field is more intense with pya9/Dgas =
0.1, the structure of the star deviates from spherical symmetry.

In this test we consider star C1 which is a non rotating magnetized neutron star
with mass M = 1.3M, and with a central value of the magnetic field B, = 2.4 x 104G,
corresponding to 5 = Pmag/Pgas = 107%. A polytropic equation of state with I' = 2 and
K = 372 was used both for the computation of the initial model both during the evolution.
We performed two series of runs, in the first one we did not evolve the metric using the
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Figure 7.8 Numerical solution of the test number 2 of Balsara at a time t = 0.4 with an
excision boundary (dashed vertical line) located at = 0.25; the region at the right of this
boundary is not evolved. The solid line represent the exact solution while the open squares
the numerical one. The solution is composed of two left-going fast and slow rarefactions, of
a contact discontinuity and of two right-going fast and slow shocks. (Only 160 of the 1600
data points used in the simulation are drawn)
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Figure 7.9 Numerical solution of the test number 2 of Balsara at a time ¢t = 0.4 with an
excision boundary (dashed vertical line) located at = = 0.25; the region at the right of this
boundary is not evolved. In this case the values of the different variables at the excision
boundary were obtained with a linear extrapolation. The solid line represents the exact
solution while the open squares the numerical one. The solution is composed of two left-
going fast and slow rarefactions, of a contact discontinuity and of two right-going fast and
slow shocks. (Only 160 of the 1600 data points used in the simulation are drawn)

Table 7.2. Initial data for the different magnetized stars

Model Pe rp/Te M R. B.(GT) 8

C1 9.74x 107> 1.00 1.33 20.7 23.7 1.14 x 10~ 6
C2 9.74x 107 0.87 1.44 21.5 7534 1.15 x 1071

Note. — The different columns refer, respectively, to: the central
rest mass density p., the ratio of the polar to the equatorial coordinate
radii r,/r., the total mass M, the equatorial radius R., the value of
the magnetic field at the center B, (in GT), the value of 8 = pPmag/Pgas
computed at the center of the star. All thee initial models have been
computed with a polytropic EOS with K =372 and N = 1.
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Figure 7.10 Relative error of the rest mass density for the magnetized spherical accretion
test with different values for the magnetic field. Results from 100 and 1503 grid runs are
compared at time t = 100M. The 6p/p computed with 1503 is multiplied by 1.5% so that
in the second order convergence regime the two line should overlap.
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Figure 7.11 Values on the x axis of the relative error on p for b2/p = 3. From this plot it
is possible to see that the code is not second-order convergent only in the first few points
outside the excision zone located at x = 1.



Chapter 7: The WhiskyMHD code

110

Magnetic field

20

—-20

—20 0 20

x [km]

Figure 7.12 Magnetic field lines of star C1. The solid thick line represents the star surface.
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Figure 7.13 Magnetic field lines of star C2. The solid thick line represents the star surface;
note the effect of the intense magnetic field, pyag/Pgas = 0.1, on the star surface. Even if

the star is not rotating, its shape is far from being spherical.
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Figure 7.14 Maximum of the rest-mass density p normalized at ¢ = 0 as a function of time
for star C1. The different lines refer to different resolutions: N = 60° (long dashed line),
N =90 (dashed line), N = 120% (solid line). The Cowling approximation was used.

Cowling approximation, i.e. we hold the metric fixed to its initial value. In the second
one we solved also the Einstein equations for the spacetime and we compared the results
between the two runs.

In figure 7.14 we show the maximum of the rest-mass density p normalized at ¢t = 0
for three different resolutions, N = 603, 903, 1203 in the Cowling approximation. Because
the oscillations are triggered by truncation errors one expects that these should be lower
as the resolution increases and indeed we observe that the amplitude decrease increasing
the resolution. The three different resolutions show also a similar behavior with the same
location of the first oscillations indicating that we are in a convergent regime. In fig. 7.15
we plot the result for a longer run with a resolution of N = 903.

We performed also another series of run with the same model C1 and the same
resolutions in the case in which also the Einstein equations for the metric are solved. The
maximum of the rest-mass density for the three different resolutions is showed in figure 7.16,
while in figure 7.17 we show only the result obtained with N = 903. To give a better view
of the convergence of our code we also show in figure 7.18 the Lo norm of the Hamiltonian
constraint as a function of time for the three resolutions used. As expected it decreases for
higher resolutions.
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Figure 7.15 Evolution of the maximum of the rest-mass density p normalized at ¢ = 0 for
star C1 with a resolution of N = 902 points. The Cowling approximation was used.
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Figure 7.16 Maximum of the rest-mass density p normalized at ¢ = 0 as a function of time
for star C1. The different lines refer to different resolutions: N = 60° (long dashed line),
N =90? (dashed line), N = 1203 (solid line). In this case also the spacetime was evolved.
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Figure 7.17 Evolution of the maximum of the rest-mass density p normalized at ¢ = 0 for
star C1 with a resolution of N = 902 points. In this case also the spacetime was evolved.
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Figure 7.18 The Lo norm of the Hamiltonian constraint for star C1 with three different
resolutions: N = 60% (long dashed line), N = 903 (dashed line), N = 1203 (solid line).
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Conclusions

The last years have seen a number of breakthroughs in numerical relativity both
in vacuum and non-vacuum spacetimes and the progress in this field has never been as
promising as it is now. This is related to the strong effort made by several groups in the
world with the aim of obtaining a more realistic description of the dynamics of a large set
of astrophysical objects and of predicting the gravitational-wave signal emitted by them.

In general relativistic hydrodynamics several improvements in our understanding
of different astrophysical scenario were made possible by the development and use of the
Whisky code which is now a well known numerical code used by different groups (among
them AEI, SISSA, Universities of Parma, Thessaloniki and Valencia). As already mentioned
in the Introduction, it has been applied to the study of the collapse of uniformly rotating
neutron stars [16, 17], of head-on collision of two neutron stars or of a neutron star with a
black hole [98] and of dynamical barmode instability [14].

In this Thesis we have extended the results obtained in refs. [16, 17] for the gravita-
tional collapse of uniformly rotating neutron stars to the case in which differential rotation
is included in the initial models. We have performed a study of the unstable configurations
and we discovered that supra-Kerr models, i.e. with J/M? > 1, seem to exist only in
dynamically stable configurations; conversely, all configurations that are dynamically un-
stable have been found to be sub-Kerr, i.e. with J/M? < 1. We have performed numerical
simulations of the collapse of unstable sub-Kerr models to black-holes and extracted for the
first time the gravitational-wave signal emitted by them. Interestingly, it has been found
to be at least one order of magnitude larger than the one generated by the collapse of uni-
formly rotating neutron stars. We consider this a very important and promising result as
it proposes these sources as detectable also at larger distances and thus with larger event
rates. These objects are indeed thought to be formed by the merging of binary NS systems
and the event rate for this kind of events is considerably low, i.e. ~ 107> per year, if we
limit to observations in our Galaxy but it can grow to up = 1 event per year if we include
a region of space within a distance of about 100Mpc (see for example refs. [117, 152, 37]).

Future investigations will be also dedicated to a more detailed study of the re-
lation between the energy AE/M carried away from gravitational waves and the degree
of differential rotation A and angular momentum .J /M?. We have also studied the final
fate of the collapse of a supra-Kerr model when its pressure is artificially reduced by 99%,
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observing a different dynamics with the formation of strong shocks and non-axisymmetric
instabilities, eventually leading to a stable and differentially rotating neutron star. We have
also confirmed that black holes are formed only in the gravitational collapse of sub-Kerr
models and not for supra-Kerr ones.

With the aim of extending all the work done so far in general relativistic hydro-
dynamics with the Whisky code to the case in which magnetic fields are present, we have
developed WhiskyMHD, a new full general relativistic magnetohydrodynamical code based on
the conservative formulation of GRMHD equations and on the use of HRSC methods. As
already pointed out in the Introduction magnetic fields play a very important role in many
astrophysical scenarios, such as «-ray bursts, and this code will then extend the range of
possible astrophysical applications that were already possible with the Whisky code.

Being code validation an important aspect of the development of any numeri-
cal code, we grew concerned about the fact that most of the numerical codes solving the
GRMHD equations were not tested in a quantitative way. This was essentially due to the
lack of a general exact solution of the Riemann problem in relativistic MHD. This was to
be contrasted with the corresponding situation in GRHD, where a number of different ap-
proaches to the exact solution of the Riemann problem were known and they were of great
importance, for example, in testing Whisky.

The exact solution of the Riemann problem in relativistic MHD was searched by
different groups for a long time and only recently it was possible to obtain an exact solution
but in a very special case only [125]. The work presented in this Thesis provides for the first
time a procedure for the exact and general solution of the Riemann problem in relativistic
MHD. Our method is based on the important idea of using a mixed approach in the search
for the solution, using not only the total pressure, as done in the relativistic hydrodynamical
case, but also the tangential components of the magnetic field as the set of unknowns that
determines the solution. With this method we were able to compute the exact solutions
of most of the Riemann problems already used as standard tests in relativistic MHD. The
version of the code used to compute the exact solution is public available and it is now used
by several groups in the world to test both special and general relativistic MHD codes (for
the first applications see for example refs. [105, 10]).

The exact Riemann solver has been a valuable tool also to test our WhiskyMHD
code which has proved to be able to solve the full set of Riemann problems with a good
agreement with our exact solution for all the type of waves present in MHD. One of these
solutions was also used to test our excision algorithm which has proved to work also in
curved spacetime in the case of spherical accretion onto a Schwarzschild black hole.

Because one of the main future applications of WhiskyMHD will be the study of
the dynamics of magnetized neutron stars, we have also coupled WhiskyMHD with the code
developed in ref. [27] and which exactly solves the full set of Einstein and Maxwell equations
for axisymmetric models with a poloidal magnetic field with the dipole moment aligned
along the rotation axis. With this code we were able to compute several initial data for
uniformly rotating neutron stars with different magnetic field strengths. As a last test of
our code, which can be also considered as a first astrophysical application, we have started
a study of the oscillation of a stable magnetized NS. This test was performed both in a fixed
spacetime, i.e. using the so called Cowling approximation, and evolving also the Einstein
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equations for the field variables. We have shown that in both cases our code is convergent
and able to evolve magnetized NS with a magnetic field not confined only to the interior of
the star.

In future we plan to extend the study on the oscillations of rotating and non-
rotating neutron stars with a detailed analysis of the effect of magnetic fields on the fre-
quency of oscillations. It is important to note that only recently some results were obtained
with perturbative studies [137], even if with the use of the Cowling approximation, and
so our code may provide the first full general relativistic computation of these frequencies.
The comparison between the numerical results and the frequencies observed in objects such
as the soft gamma repeaters can provide useful information on the mass and magnetic field
intensity of magnetars.

We will concentrate also on the study of the collapse of uniformly rotating mag-
netized neutron stars with the aim of extending further the work done in refs. [16, 17] and
highlight the role that this process may have in the phenomenology of short GRBs. We
will especially provide the gravitational-wave signal emitted by these sources and we will
investigate the influence the magnetic field may have on it.

Another important application will be the extension of the study, presented in
this thesis, of the collapse of differentially rotating neutron stars to include the effects of
magnetic fields. These objects are particularly interesting not only because they are very
good candidates for short «-ray bursts but also because, as we have shown in this thesis,
they are very powerful sources of gravitational waves. It is then important to study the
effects that magnetic field can have both on the frequencies and on the amplitudes of GW
and also to relate them with «-ray bursts signals.

Overall, we expect that the WhiskyMHD code, just like the Whisky code, will be an
useful “astrophysical laboratory”, increasing significantly our current knowledge among the
most fascinating objects in the Universe.
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Appendix A

We here report the expressions of the tangential components of the velocity behind

the shock (i.e. vg, v7) when expressed as function of post-shock p and J. Firstly, we consider
vy as function of p,, J and vj.

1

Ny

BE{ (Bz(pa + Ta)vg + B;(pb + Ta)vlf - na(pb + Ta) -

{ngf [Ug(Da + Pa + Ta — Ung)(Da + Db+ Ta — B:% - Ung) +

Da(ta = Bovs = Bivi) + miW2 = n2(Bovg + Bri)W2) | -

J2D.W2| (2B2navl + B2I(Da + pa + 7a)0Y — 2BYna) +

Vg (Pa = Po)[2(Da + Pa + Ta)vg + Bi(Bgvy — 2n0a)] = Be{na(3Da + 2pa + po + 37a)vg —
B;(pa — po) v} + BYl(pa + 1) (05 — 1) = 311 + 2B nav} + (py + 7a)J0i0] — MDa]}) g -
B, BY(Da + py+ 7a) + 121200y — pa)uiel — BREvl + By(3nav) — MBYW,| W, -
JDIWZ | Bvi(BY + 2n,0iW2) - Bivl +

Byvg (pa — ) [2BY + (2008 + BEvivi + Bvivi)WE] +

Ql(Da + pa + 7a)0l = Na(BY + naviW7)] +

B2(BY(B:v; — 31 + 2M1aW2) + 04D+ pa + 7a — (302 + (0o — pa)viof) WE]) [ W2 +

B, D3 (BIvEoi W2 = Bu(pa — po)vivivsui Wi = QUBY + naviW2) —

BBy + (navy — MBOWZ) W2}
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where we have defined M = (1 — v¥? — vZv7), Q = W2(p, — pp)(v%% — 1) and

N, = Wf{BxDaWGZWS (ﬂ [2BY2, —
3na(Da + po + 7a) + 30We + BLoY(Da — pa + 206 + Ta — ;W3] +
2D (pa — 1)V (210 — BYo)Ws + D2na(pa — o) (032 = HIWE) -
By DaW2(J + DavgWe) = WElJ (Do + py + Ta — W) +
Da(py — pa)VEWS][J*(Da + py + Ta — n12W2) + 2D J (py — pa) v Wy —
BY?J? + D (py — pa)(vi? — DWZ] + BEDaW[20, J* W5 +
2D JVEWE W + D (na — BYoY)W2| + B | JPWZ (Do + py + 7o — 1aW3) +
Do J*WEW2(Dg — 2pa + 3py + Ta — MEW2H W, +
DﬁJ(Da +po — BY? + 10 + [2BInavy — 307 — (pa — po) (3057 — 1+ v32)]W3)W32 -
D3vszQWaZ(pb - pa)ng] } .

a~-a-a

We next consider the expression of vj as function of post-shock p and J

1
v = o { PV 0E (D 4 pat 7a — EWE(D — BT - BY +
z

P+ o = W) + B ((pa + 7a) (B0 + BYvk) = ma(py +7a) +

Da(Bv5 + BYvl — o) + W2 —n2(B™vg + BLol)WZ )| +

Do J*W2|B*B(Da+ py + 7a) + (B Bi2BYnavt — 32 +

D2 + 4% = 1) + (pa + 7a) (037 + 047 = 1)] -

2B%n,v; — BY[2BY*1a = 1a(3Da + 2pa + pp + 374) +

BY(Da + pa + 7a)0J0; = BE02[(Da + pa + Ta)vi — 2B304] -

2(pa = Py VE((Da + pa + 7a)0g — Bina) ) W2 +

(BB (3 + v = 1) — (B™0f — 3B, + 2pavs — 20} + BEBU g ) WA W, -
D2JW2 (2B (pa — o)t (BE + nav;W2) = B*'v; + BT (BS + 2na0iW2) +
B**{v;[Da — BY? + pa + Ta — 11a (314 — 2BYvY)W7] +

B [BYvY = 3na — 2na (05 +vi* = YW} +

(P — o) (3% = DW2((Da + pa + Ta)0g = na(BE + naviW2)] ) W2 +

BD3 [ B3viv; W2 — (pa — po) (0 = YW2(B; + i W2) -

B2(B; + [Bi(v3® + vi? = 1) + (1 — Bio)oiw2) | Wi},
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where
N, = Wf{B‘”DaWC?WS{JQ 2BY2n, + 2B2%1, — 31a(Da + py + ) + 3EW2 +

Bgvg(Da — Pa t 2pb + 7o — nch?) + B;vz(Da — Do + 2pb + Ta — ﬁch?)] +
2Da<](pa - pb)vcf(Qna - Bgvg - BCZL/UCZL)WS + D?J?a(pa - pb)(vg2 - 1)W32} -
BJ%DCQLWSQ(J + DavcaiWs) - Waz[J(Da +py+ Ta — ﬁch?) -

D.(pa — pb)ngS][JQ(Da — Bg{Q — BULZ2 4+ pp+ Ty — ngwj) —

2D,J (pa — po)vEWs — D2(pa — pp) (vE* — HW2] +

By DoWi[200J*W§ + 2Dan1a Jug WiWss + D (e — BYvy — Bivi)WZ] +

B2 (J3W3(Da 4y Ta — PW2) + Do W2(Dg — 2pa + 3py + Ta — EWS)W; +
D2J{D, — BY*> — BZ* + py + 7o + [20a(BYvY + BZvZ) — 3n2 —
(pa = po) (3052 + vl + w22 = DIWZIWE) |



Appendix B

The explicit form for the system of ODEs to be solved numerically to determine
the solution across a rarefaction wave within the p-method is given by the following set of
equations in which the total pressure p plays the role of the self-similar variable

dp
dp

dvg
dp

dvy
dp

dv,
dp

d,
dp
dB,
dp

dv,
dp ’

—p (WQUJ; + ! ) dvs _ pW? doy _ oW, (B.1)

v — &) dp vy@

. —1
R{(Pth2 + B2)(& —vg)(ve€ — 1) + B%m
Bolp(€ = 1) - Bova(1 - 20,6 + )]} (B:2)

+ B2¢(vp +v2) +

R{2vay(77 - Bzvz)f - Bgvyf(ﬁ + UJL“) +

’Uy[Bg + W2(772 - w)](v - f)g + BZUy(Uxf - 1) + Bsz'Uz(€2 - 1) +

where we have defined

pp, Wt D (e = 2t (L oD ]
(va: - f)

R{QB;E(’I? - Byvy)vzé- - Bgvz&(vz +&) +

v:[By + W20 — w))(vz — )€ + ByBavy (6% — 1) + v:B2 (v, — 1) +

g, TP D (v = 2000 (Lm0 0B —wa? | (B.4)
(Uw - 5)

B W2(By — Byvs€ + Byv,€) (B.5)
B2 +2B,nW2(v, — &) + W2 — w)(v, — €)? '
B W2(B, — B,v,€ + Byv.£) (B.6)
B2+ 2B, W2 (v, — &) + W2 —w)(vg — €)2 '

R= ! (B.7)

phgWi(n? —w)(V —(Vy =€)
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with
B,

t T
W2(n £ yw)
being the Alfven velocities in the two directions. Note that the set of ODEs has a sin-
gular point if the characteristic velocity of the slow or fast magnetosonic waves is equal

to the Alfven velocity [c¢f. eq. (B.7)] and cannot be solved in this case without a proper
regularization. This procedure is not included in the numerical code made available upon

V=, (B.8)

request.



