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Abstract 
 

The main purpose of this research project was to investigate the monitoring function of 

the right dorsolateral prefrontal cortex using different tasks in two domains. To that 

purpose, the architecture of the cognitive processes required to perform each task was 

extracted by means of different approaches of functional dissociation. 

A variable foreperiod (FP) task was initially adopted. In such a task, simple/choice 

RTs are required while FPs of different duration vary on a trial-by-trial basis equiprobably 

in a rectangular distribution but randomly. As a result, the conditional probability is higher 

later in the FP range and RT is faster as the FP increases. This is the variable FP effect, 

which a recent neuropsychological study shows to be impaired in right lateral prefrontal 

patients. Another phenomenon usually obtained with such a paradigm is that of the 

sequential effects: RT becomes slower as the FP on the preceding trial gets longer. 

Contrasting views in the literature propose either multi-process strategic accounts, or a 

single-process conditioning account. In the project, these alternative theories were tested 

using behavioural studies on adults and children. The findings of these studies were not 

fully compatible with the previous views. A composite dual-process account, which shares 

some aspects with the previous accounts, was put forward and discussed. On this account, 

sequential effects are due to automatic processes acting on the arousal level, whereas the 

FP effect is due to a strategic process monitoring the conditional probability of stimulus 

occurrence.  

Results of two TMS experiments confirm that the right dorsolateral prefrontal cortex is 

responsible for the FP effect, but not for the sequential effects. A neuropsychological study 

on tumor patients further corroborates this finding and suggests that left premotor areas are 

more likely to be the locus of the sequential effects. 

In order to test whether the explicit temporal judgment has an influence on the nature 

of the FP phenomena, a series of behavioural experiments was conducted using a modified 

version of the variable FP paradigm. In the basic task, explicit judgments about the FP 

length were required. No modulation of the FP phenomena was obtained. However, a new 

stimulus-response compatibility effect was found: RT was faster when short and long FPs 

had to be responded to with left and right response-keys, respectively, than with the 

opposite stimulus-response mapping. This effect suggests that elapsing time is represented, 

in some circumstances, by means of spatial coordinates. Control experiments enable us to 

reject accounts based on hand/hemispheric asymmetries, but not accounts based on more 
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categorical factors such as the linguistic markedness of the words used to label the stimuli 

and the responses. 

The last part of the project aimed at extending results about a monitoring role 

(intended in a broad sense) of the right prefrontal cortex to a domain different from non-

specific preparation. Two experiments in the source memory domain were run recording 

ERPs in the retrieval phase. The results show that prefrontal ERPs are not modulated by 

retrieval success, but by retrieval confidence, with low-confidence responses being 

associated with more positive waves than high-confidence ones, bilaterally, in the anterior 

prefrontal sites. Moreover, prefrontal waves were asymmetrically more positive in the right 

than in the left scalp regions, independently of confidence and accuracy. On the basis of 

these results, we could reject accounts linked to retrieval success. The results are instead 

interpreted in terms of different prefrontally-located monitoring processes in source 

memory retrieval. 

Overall, the project represents an instantiation of the fractionation approach recently 

adopted to study the supervisory functions of the prefrontal cortex. This approach was used 

here in order to understand the differential role of a particular prefrontal area (i.e., the right 

dorsolateral prefrontal cortex) in a rather specific function (i.e., monitoring). This goal was 

developed in synchrony with the attainment of a better functional description of the tasks 

employed. 

 
 
 

 
The author retains all proprietary rights. The author also retains the right to use in future 
works (such as articles or books) all or part of this thesis.  
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Chapter 1 
 
1.1. The frontal lobes: Anatomo-functional considerations 

The frontal lobes are the most anterior part of human brain. They are separated from 

the parietal lobes by the central sulcus, and from the temporal lobes by the Sylvian fissure. 

A broad distinction within the frontal lobes is between the rostral part, the so-called 

prefrontal cortex (PFC), and the more posterior part, namely the motor, premotor and 

supplementary motor areas. A simple anatomical classification of PFC comprises three 

frontal surfaces of the pyramid formed by the PFC (Fuster, 1999): the curved lateral wall, 

which corresponds to the so-called lateral PFC (Brodmann areas (BA) 8, 9, 10, 11, 44, 45, 

46, and 47), the flat floor orbital surface, that is the orbitofrontal cortex (BA 10, 11, 13, 

and 47), and the flat medial wall, the medial PFC (BA 8, 9, 10, 11, 12, 25, and 32).  

The special status of the PFC with respect to other brain areas appears on many 

aspects. Phylogenetically, it has undergone a substantial expansion across mammals, being 

mainly present in the neocortex of primates, and culminating in great apes and humans 

(e.g., Semendeferi & Damasio, 2000), where it reaches more than one third of the whole 

cerebral cortex. Ontogenetically, it is the last part of the brain to develop in humans, 

reaching full maturation during early adulthood (Fuster, 1997; Krasnegor, Lyon, & 

Goldman-Rakic, 1997; Thatcher, 1997). This unique evolutionary destiny suggests the 

great importance of this area for mental functions which are typically considered as human 

(Amati & Shallice, in press). However, the frontal lobes, especially in the right 

hemisphere, were considered in the past as the ‘silent’  portion of the brain, since 

dysfunctions in this area were not straightforward to be identified clinically. Electrical 

stimulation of the PFC, for instance, did not result in clearly detectable motor or perceptual 

symptoms (Fritsch & Hitzig, 1870). 

 A first Kuhnian paradigm shift in the study of frontal cortex is historically represented 

by the well-known case report of Phineas Cage (Harlow, 1848). In 1847, this Irish 

workman was involved in a rock blasting accident during which an iron bar passed through 

the frontal region of his brain. Amazingly enough, he survived the incident, but not without 

consequences. Indeed, marked changes occurred in his personality after the bar run through 

his brain. Where before the accident Cage had a well-balanced mind and was considered a 

very efficient and capable foreman, he had now become irreverent, aggressive, and unable 
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to select and execute any of the plans he developed for future action (Damasio, Grabowski, 

Frank, Galaburda, & Damasio, 1994; Harlow, 1869).  

After that, the number of reports on the clinical consequences of prefrontal lesions has 

increased (e.g., Bianchi, 1895; Ferrier & Yeo, 1884; Feuchtwanger, 1923; Welt, 1888), and 

the idea that PFC is at the top of any hierarchical classification of mental functions began 

to spread in the neuroscientific community (e.g., Donath, 1923; Franz, 1907). However, 

little was known about the PFC, and this region, although acknowledged to be important 

for human behaviour, was considered less accessible to investigation than many other areas 

of the cortex, such as the primary visual cortex, which were easier to study both 

behaviourally and anatomically.  

A second important discovery in the study of PFC can be identified in the early work 

by Jacobsen (1936), who found that monkeys with large bilateral frontal lobe lesions show 

a specific deficit in performing a delayed response task. A typical trial from this task 

consists of first showing a target stimulus, then presenting a delay during which the target 

is hidden, and finally prompting the subject to respond according to relevant information 

about the target. The importance of Jacobsen’s work was the demonstration that the PFC is 

critical to a specific cognitive function, or set of functions, which he called ‘ immediate 

memory’ , and corresponds to what is nowadays known as ‘working memory’ , that is the 

capacity to retain information in memory for on-line cognitive processing (e.g., Stuss & 

Knight, 2002; Warren & Akert, 1964; see Paragraph 1.1.2.1.). With the development of 

single-cell recording techniques, it was additionally shown that many neurons in the 

dorsolateral prefrontal cortex (DLPFC) remain active during the delay (e.g., Fuster & 

Alexander, 1971; Fuster, 1997; Goldman-Rakic, 1987).  

Another important finding was that the PFC had a modular structure, as several areas 

are differentiated on the basis of cyto-architectonic criteria (Brodmann, 1905; 1909; Preuss 

& Goldman-Rakic, 1991; Petrides & Pandya, 1994), and of distinct connections with other 

cortical and subcortical regions (e.g., Jones, 1985; Schmahmann & Pandya, 1997). These 

findings led to the testable working hypothesis that different parts of the PFC might also 

have different functions. These functions, in turn, can therefore be studied in a similar 

fashion as the functions carried out by other portions of the brain (e.g., Goldman-Rakic, 

1987). 
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1.1.1. Supervisory Attentional System 

One of the models which have been used to explain the functions of the PFC is the 

Supervisory Attentional System (SAS) model (Norman & Shallice, 1980). The theoretical 

background from which this model derives is represented by the distinction between 

automatic and controlled processes, which some authors put forward in the domain of 

attention research (Posner & Snyder, 1975; Shiffrin & Schneider, 1977a, 1977b).  

The terms ‘automatic’  and ‘controlled’  were initially defined as mutually exclusive. 

For automatic processes, authors intended processes which are initiated by appropriate 

inputs and then proceed automatically, without requiring effort or suffering from dual-task 

interference (i.e., parallel processing). Conversely, for controlled processes, they intended 

those processes which begin with an act of the will, are effortful and consequently suffer 

from dual-task interference (i.e., serial processing), and can be stopped while they are still 

going on (Shiffrin & Schneider, 1977a). Since then, the dichotomy between automatic and 

controlled processes has been also extended to domains different from attention, like for 

instance memory (e.g., Hasher & Zacks, 1979). Subsequently, they have been broadened in 

order to explain how the whole human information processing system works (e.g., Jonides, 

Naveh-Benjamin, & Palmer, 1985). Although the tough distinction between automatic and 

controlled processes has been smoothed by many subsequent empirical works (e.g., Naveh-

Benjamin, 1987; Jonides et al., 1985, Kahneman & Treisman, 1984; Pritchard & Warm, 

1983), it has given rise to fruitful theoretical modelling and empirical research. 

The SAS model developed by Norman and Shallice (1980; 1986; Shallice, 1988; 

Burgess & Shallice, 1994) represents an influential framework inspired by the difference 

between controlled and automatic processes (see Baddeley, 1986; 1990, for a related 

model). The main assumption of this model is that there exist two systems underlying 

cognitive processing: a low-level system, the contention scheduling, which produces 

automatic processes, and a high-level system, the SAS, which is critical for controlled 

processes. 

The contention scheduling is a mechanism by which over-learned and highly familiar 

responses, the so-called schemata, compete against each other for the control of perceptual 

and motor systems. The winner schema depends on the level of activation of each schema 

relative to all possible competitors. The level of activation, in turn, depends on the 

associative strength of each schema with internal or external triggers, on the one hand, and 

with particular patterns of behaviour, on the other. On this model, even complex activities, 
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such as playing a musical instrument or driving a car, can be executed appropriately 

although in a rather automatic fashion (viz., without demanding attention). These 

‘hardwired’  schemata are advantageous because they allow routine behaviours to be 

executed rapidly and automatically (Miller & Cohen, 2001). However, schemata are rigid 

reactions elicited by just the proper trigger cue, need extensive time and practice to 

develop, and do not generalize well to novel situations.  

The second component of Norman and Shallice’s (1980) model, the SAS, biases the 

selections of the contention scheduling in novel or non-routine situations. In other words, 

the role of the SAS is to build up, implement and monitor new schemata (Shallice & 

Burgess, 1996), on the one side, and to adjust or inhibit activation of prepotent schemata 

which are unsuitable for a current purpose, on the other side (Burgess & Shallice, 1996c; 

Norman & Shallice, 1980; 1986). Some examples of the SAS functions will be described 

in the next paragraph. 

 

1.1.1.1. Supervisory Attentional System and Frontal Lobes 

Not only the SAS model, but also a number of models related to it, postulate the 

existence of an anterior attentional system with a set of high-level functions, mainly 

located in the PFC, which receives input from and modulates more specific lower-level 

functions, centred in other brain areas, such as the parietal lobes (e.g., Posner & Petersen, 

1990a; Shallice, 1982), the temporal lobes (e.g., Moscovitch, 1992), and the basal ganglia 

(e.g., Alexander, Delong, & Strick, 1986).  

The correspondence between SAS and frontal lobes has been assumed since the first 

proposal of the SAS model (Norman & Shallice, 1980). The prediction was made that the 

disruption of the SAS after damage in the PFC should lead to behaviour controlled by 

contention scheduling. Evidence from different domains supports this prediction. Some 

examples, mainly taken from the neuropsychological literature, follow. 

Patients with PFC dysfunction may show deficits related to the loss of SAS 

functionality (e.g., Luria, 1966; Norman et al., 1980; Reverberi, Lavaroni, Gigli, Skrap, & 

Shallice, 2005; Stuss & Benson, 1986; but see Andrés & Van der Linden, 2001). For 

instance, if the SAS fails to inhibit schemata triggered by strong external stimuli or internal 

tendencies, a disinhibition deficit is observed. A dramatic example of such a deficit is 

‘utilization behaviour’  first described by Lhermitte (1983; Shallice, Burgess, Schon, & 

Baxter, 1989). When prefrontal patients undergo a tactile, visuo-tactile or visual 
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presentation of objects, they are compelled to grasp and use them, even if this behaviour is 

contextually and socially inappropriate, and they have been told by the experimenter not to 

do so (Lhermitte, 1983). Historically, it has been shown that patients with frontal lobe 

lesions fail to switch flexibly between different tasks or rules (Burgess & Shallice, 1996c; 

Drewe, 1974; Milner, 1964; Stuss, Floden, Alexander, Levine, & Katz, 2001). In the 

Wisconsin Card Sort Task (WCST), for instance, participants are asked to match test cards 

to reference cards according to a rule which changes cyclically but without notice. Thus, 

the WCST measures, among other functions, the ability to change a well-acquired response 

schema when contingencies vary. Prefrontal patients are able to acquire the initial rule 

without much difficulty, but are unable to adapt their behaviour when the rule changes. In 

other words, they show perseverative behaviour, remaining stuck to a rule, once they have 

discovered it, even if this rule is no longer valid (e.g., Drewe, 1974; Milner, 1963; 1964; 

Nelson, 1976). Monkeys with PFC lesions are impaired in a task analogue to the WCST 

(Dias, Robbins, & Roberts, 1996; 1997; see also Rossi, Rotter, Desimone, & Ungerleiden, 

1999).  

Another example is represented by performance of the random number generation task 

(Spatt & Goldenberg, 1993). This task requires participants to randomly generate strings of 

numbers. Among other processes assumed to be involved to perform well this 

‘ randomization’  task, one is particularly challenging (Baddeley, 1986). This process 

consists of inhibiting the most familiar strategy of counting upwards or downwards in ones 

which, in the terminology of the SAS model, is the strongest schema in the contention 

scheduling mechanism (e.g., Ginsburg & Karpiuk, 1994; (Ginsburg & Karpiuk, 1994; 

Baddeley, Emslie, Kolodny, & Duncan, 1998; Shallice, 2004). Prefrontal patients (Spatt  & 

Goldenberg, 1993), and healthy participants undergoing TMS over the left DLPFC 

(Jahanshahi et al., 1998; see also Jahanshahi et al., 1998; Jahanshahi, Dirnberger, Fuller, & 

Frith, 2000), show an increase in the frequency of counting up or down in ones, and a 

decrease in the rate of counting in twos. This pattern is also interpreted as a failure of the 

SAS in inhibiting strong routine schemata within the contention scheduling (i.e., counting 

in ones) in favour of less common schemata (i.e., counting in twos), necessary to 

accomplish the task requests. 

On the other hand, in situations where planning is required, that is when the SAS have 

to generate new schemata in the absence of a discrete internal or external trigger that 

signals the appropriate action, apathy, disengagement, and loss of initiative are observed if 

the SAS is disrupted by a PFC lesion (Duncan, 1986; Shallice, 1982; Stuss & Benson, 
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1986). One of the most representative examples of this deficit is abulia, which in its 

extreme form is called ‘akinetic mutism’, a clinical syndrome characterized by a loss of 

spontaneous motor and speech activity in patients with bilateral lesions of anterior 

cingulate and SMA or interruptions of sub-cortical circuits connected with these frontal 

structures (e.g., Alexander, 2001; Mega & Cohenour, 1997; Nagaratnam, Nagaratnam, Ng 

& Diu, 2004; Plum & Posner, 1980; Tengvar, Johansson, & Sorensen, 2004). Reflexes and 

routine actions seem to be well-preserved. Patients, who usually lay in their bed without 

moving or speaking, may suddenly brush a fly away from their face, pick their nose, 

continue singing or reciting verses when others have started well-known songs or poetries, 

and even dance (e.g., Fisher, 1983; Grotjahn, 1936; Von Economo, 1926). A paradoxical 

phenomenon, known as the telephone effect (Fisher, 1983), is that some patients, who do 

not speak or follow commands when the experimenter is present in the room, may in fact 

answer to a number of questions when spoken to on a telephone, supposedly because the 

telephone ring sound triggers the conversation. 

As another example, in a recent neuropsychological study (Daffner et al., 2000), 

frontal patients were asked to look at line-drawings which were a frequent non-target 

stimulus (70%), an infrequent target stimulus (15%), or a novel non-target item (15%). 

They had to respond to the target stimulus by pressing a foot pedal. They controlled the 

viewing duration of each item by pressing a button. Frontal patients have on average 

shorter viewing durations on novel stimuli than healthy controls, demonstrating a deficit in 

the engagement of attention to novel stimuli.  

A final example comes from brain imaging field. In a PET study (Jueptner et al, 1997; 

see also Jenkins et al. 1994), new sequences of finger movements had to be learned and re-

executed after learning. These conditions were contrasted to previously over-learned 

sequences of finger movements, which could then be executed automatically. PFC was 

activated during new learning and, to a minor extent, when participants had to attend again 

to the performance of the just learned sequences, but not during the execution of over-

learned sequences, demonstrating a strong association between PFC and acquisition of new 

or ill-learned schemata, which is a typical SAS process. 

 

1.1.1.2. The study of frontal lobes: a difficult enterprise 

Although in its initial formulation the SAS model did not go into much detail about the 

precise processes involved and the prefrontal sub-regions underlying them (Norman & 
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Shallice, 1980), it was however a very influential framework, inspiring a long tradition of 

empirical research.  

At the time of writing, a scientific database such as PubMed provides more than 

14,930 papers when the word ‘prefrontal’  is inserted as a keyword. Despite the impressive 

amount of empirical studies, however, there is still little agreement on which specific 

processes are performed and where within the PFC. There are many possible reasons for 

this relative failure. One of them could be that the nature of the subprocesses implemented 

within the PFC is too abstract to be captured by the stimulus-response constructs of 

traditional experimental psychology (Shallice, 2001).  

However, it could be argued that the measures adopted to study PFC functions, and not 

the functions of the PFC per se, are too vague and imprecise. A terminological and 

conceptual ambiguity might have been partially responsible for the massive use of tests 

that emphasize complexity and novelty in order to study PFC functions (Stuss & Benson, 

1984, 1986; Rabbitt, Lowe, & Shilling, 2001). Indeed, terms like ‘supervisory’ , ‘executive’  

or ‘control’  functions have been usually left ill-defined and are too general to be tested 

properly  (e.g., Stuss & Alexander, 2000). As Stuss and Alexander (2000) pointed out, 

frontal-type tasks are usually multi-factorial, in the sense that many processes conceivably 

underlie the performance of these tasks.  

This would explain, for instance, the low correlation among frontal lobe tasks, and the 

low specificity of these tasks in measuring the ‘ frontal’  function. For example, the WCST 

has been thought as a typical PFC-related task. However, there is no doubt that this is a 

multi-componential task (Stuss, et al., 2000), with some components probably not relying 

on PFC. Indeed, impairment on this task could be found after lesions in many brain regions 

different from the frontal lobes (Andres, 2003; Corcoran & Upton, 1993; Grafman, Jonas, 

& Salazar, 1990; Upton & Corcoran, 1995). Moreover, some patients with definite frontal 

lobe damage perform well on the WCST (e.g., Anderson, Damasio, Jones, & Tranel, 

1991). 

In reaction to this kind of heuristic impasse, two different approaches have been 

adopted, as we will describe in more detail later. Some researchers have identified the 

‘ frontal function’  with general intelligence, stressing the high adaptability of PFC to a wide 

range of cognitive tasks (e.g., Duncan, 2005; see Paragraph 1.1.2.2.). In a quite opposite 

direction, other groups of researchers have moved to simpler measures and tests to map 

various elementary processes ascribable to the SAS within the frontal lobes (e.g., Decary & 
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Richer, 1995; Godefroy, Cabaret, Petit-Chenal, Pruvo, & Rousseaux, 1999; Stuss, Shallice, 

Alexander, & Picton, 1995; see Paragraph 1.1.2.3). 

 

1.1.2. Different scientific attacks for the study of Dorsolateral 

Prefrontal Cortex 

The DLPFC has attracted historically relatively more research interest with respect to 

other prefrontal areas (Shallice, 2004). A number of cognitive processes of the SAS have 

been linked to this brain region (e.g., Norman & Shallice, 1986; Shallice, 1988). From the 

beginning of the last century onward, many approaches have been adopted to study the 

different functions of the PFC in general, and of the DLPFC in particular (Shallice, 2004). 

The earliest of these theoretical frameworks is the working memory approach (e.g., 

Goldman-Rakic, 1987). More recently, DLPFC has been studied within the already 

mentioned frameworks of the general intelligence approach (e.g., Duncan, 2005) and the 

fractionation approach (e.g., Stuss et al., 2005). We will describe in more detail each of 

these approaches in the following sub-paragraphs. 

 

1.1.2.1. Working memory 

As mentioned earlier in this chapter, a key step in the study of frontal lobe functions 

was Jacobsen’s (1936) discovery that lateral PFC of monkeys is important for the 

performance on the delay-response task. These results were then extended by single-cell 

recording studies, which demonstrated that many DLPFC neurons remain active during the 

delay phase of this paradigm (e.g. Fuster & Alexander, 1971). Similar results were found 

in human DLPFC (e.g., Cohen, et al., 1997; Courtney, Ungerleider, Keil, & Haxby, 1997). 

 The approach became more detailed with the work by Goldman-Rakic (1987), who 

made the specific hypothesis that discrete regions of PFC each support working memory of 

different stimulus domains. Specifically, it was supposed that the ‘where’  and ‘when’ 

visual streams (Ungerleider & Mishkin, 1982) had a corresponding functional-anatomical 

prolongation in the lateral PFC, with a dorsal area within the caudal part of sulcus 

principalis, important for spatial working memory, and a ventral area in the inferior 

convexity of ventrolateral PFC, dedicated to working memory for object information 

(Wilson, Scalaidhe, & Goldman-Rakic, 1993). Evidence in favour of this hypothesis, 

known as the ‘ labeled-line model’ , is however controversial. In agreement with the model, 

neuropsychological studies show that lesions of the DLPFC impair spatial working 



 15 

memory (Gross, 1963; Lewy & Goldman-Rakic, 1999), whereas lesions of more ventral 

lateral PFC impair non-spatial working memory (Passingham, 1975; Mishkin & Manning, 

1978). Other studies using functional Magnetic Resonance Imaging (fMRI) confirmed that 

lateral PFC in humans is active during maintenance of information across short delay 

epochs of delayed recognition tasks (e.g., Courtney et al., 1997; Zarahn, Aguirre, & 

D'Esposito, 1997; 1999). However, brain imaging data were controversial regarding the 

labeled-line model, with some of them consistent with it (e.g., Courtney, Ungerleider, Keil, 

& Haxby, 1996; Courtney, Petit, Maisog, Ungerleider, & Haxby, 1998) and some others 

not (e.g., Postle, Berger, Taich, & D'Esposito, 2000). A meta-analysis (D’Esposito et al., 

1998) demonstrated no evidence for a clear dorsal/ventral dissociation of PFC activity by 

‘where’  and ‘what’  stimulus information. 

An additional fractionation model for domain specificity within working memory 

hypothesized asymmetry along the two hemispheres, with left PFC more involved in non-

spatial, analytic (especially verbal) working memory and right PFC more involved in 

spatial, image-based working memory (Courtney et al., 1998). Also this model received 

controversial evidence with some studies corroborating (McCarthy et al., 1996; Smith et 

al., 1995; Smith, Jonides, & Koeppe, 1996) and some others disconfirming it (D'Esposito 

et al., 1998; Owen et al., 1998; Postle, Stern, Rosen, & Corkin, 2000).  

Another complementary approach in the working memory domain is more centred on 

the processes involved instead of the material used, and holds that multiple working 

memory-related processes rely upon different prefrontal areas. Initially, it was thought that 

DLPFC was related to the storage of working memory because its activity was found to 

increase proportionally to the working memory load (Manoach et al., 1997; Rypma, 

Prabhakaran, Desmond, Glover, & Gabrieli, 1999). However, these data may be 

interpreted as an indication that when information to be maintained in memory exceeds 

working memory capacity, additional encoding demands are required, and these demands 

engage DLPFC more (Rypma et al., 1999). More recent evidence shows that even if 

DLPFC activity increases with the working memory load, this activity is enhanced to a 

larger extent when working memory content has to be manipulated. In a fMRI study by 

Rowe and colleagues (Rowe, Toni, Josephs, Frackowiak, & Passingham, 2000), for 

instance, DLPFC was activated only when the information being held in working memory 

was response-relevant and not when it had to be merely maintained. Moreover, the PFC 

neurons have been demonstrated also to respond selectively to many non-delay portions of 

the response delay task, such as to target and probe presentation and response, indicating a 



 16 

broader role of this area in various sub-components of working memory tasks, such as 

stimulus encoding (D’Esposito & Postle, 2002; Waugh & Norman, 1965), shifting of 

attention among stored items (McElree & Dosher, 1987), manipulation and selection of 

working memory content (e.g., Rowe et al., 2000), and decision about the probe and 

response preparation (Rowe et al., 2000; Jha & McCarthy, 2000). 

 

1.1.2.2. Equipotentiality hypothesis 

This lack of clear evidence about specialization of working memory within PFC 

according to different stimulus domains or processes was somehow preparatory to the 

emergence of an alternative approach, assuming that various PFC areas have an 

equipotential and undifferentiated role (e.g., Duncan, Burgess, & Emslie, 1995; Duncan, 

2001; 2005; Duncan & Miller, 2002; Duncan & Owen, 2000). At first glance, this 

approach may be viewed as provocative. However, it also fits with converging evidence 

from both animal neurophysiology and imaging data on humans.  

Thus, in the lateral PFC of monkeys, a considerable amount of neurons will usually 

respond to whatever information is critical for the performance of any task (e.g., Asaad, 

Rainer, & Miller, 2000; Fuster, 2002; Wallis, Dias, Robbins, & Roberts, 2001). Moreover, 

single-cell recording studies in animals have demonstrated that even a specific neuron in 

the lateral PFC may adapt its activity in order to code different information, depending on 

the specific task demands (e.g. Everling, Tinsley, Gaffan, & Duncan, 2002; Freedman, 

Riesenhuber, Poggio, & Miller, 2001; Sakagami & Niki, 1994). 

In Duncan and colleagues’  view, this high adaptability of the PFC is also suggested by 

functional imaging research, where comparison across studies adopting tasks with different 

cognitive demands shows, despite of some anatomical specificity, very little cognitive 

specificity (i.e., a specific pattern of prefrontal activation is observed for very different 

cognitive tasks). Indeed, very similar activation patterns have been observed for different 

task conditions, in line with an interpretation of the role of lateral PFC in terms of general 

intelligence (see Duncan & Owen, 2000, for a meta-analysis; and Duncan, 2005, for a 

review; Fassbender et al., 2006). On the strongest version of this approach, the flexibility 

of neural properties within the prefrontal region, which is considered a “general 

computational resource”  (Duncan & Miller, 2002), makes any attempt of localization of 

functions within this region unproductive. 
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Problems for the equipotentiality hypothesis 

As reported in the previous paragraph, the neurophysiological evidence in support of 

the equipotentiality hypothesis is straightforward (e.g., Freedman et al., 2001). However, 

evidence derived from fMRI results is less convincing, given that fMRI data only show 

whether a given brain region is merely active when a process occurs, that is only 

correlational conclusions can be drawn.  

Moreover, even authors sustaining the general intelligence approach (e.g., Duncan, 

2005) admit that there should be some relative specializations. In the episodic memory 

domain, for instance, neuropsychological, TMS and brain imaging evidence shows that 

encoding and retrieval activate PFC asymmetrically: encoding tends to be left lateralized 

and whereas retrieval tends to be right lateralized, a pattern known as hemispheric 

encoding/retrieval asymmetry (HERA) (e.g., Rossi et al., 2001; Schacter et al., 1996b; 

Tulving, Kapur, Craik, Moscovitch, & Houle, 1994). As another example, semantic 

encoding and even retrieval usually produce stronger activity in left PFC than in right 

(Demb et al., 1995; Fletcher, Shallice, & Dolan, 1998; Thompson-Schill, D'Esposito, 

Aguirre, & Farah, 1997; Wagner, Pare-Blagoev, Clark, & Poldrack, 2001; but see 

MacLeod, Buckner, Miezin, Petersen, & Raichle, 1998). 

An assumption of the equipotentiality hypothesis is that the more complex a function 

is, the more likely it is that this function is located within the frontal lobes, whose main 

characteristic is their high adaptability. This has been demonstrated not to be the case at 

least in some circumstances. In a study by Stuss and colleagues (Stuss et al., 1999), for 

instance, a patient group with left posterior lesions showed more impairment with 

increasing complexity of a task on a measure of an attentional phenomenon known as 

inhibition of return (Posner & Cohen, 1984), whereas left frontal patients showed a general 

impairment not modulated by task complexity. Even harder to explain from the point of 

view of the equipotentiality approach, right frontal patients were not impaired at all on the 

inhibition of return. 

 

1.1.2.3. Fractionation approach 

In early studies on the frontal lobes, patients were merely classified as frontal if they 

had a lesion anywhere in the frontal lobes, and were usually contrasted with patients 

suffering from generic posterior lesions (e.g., Della Malva, Stuss, D'Alton, & Willmer, 

1993). A progress in the study of frontal lobes was represented by the development of 

methods to carry out fine-grained lesion analyses (e.g., Shammi & Stuss, 1999; Stuss et al., 



 18 

2005). This methodological improvement favoured research adopting an approach focused 

on the fractionation of the SAS. 

This approach has been developed in order to overcome a conceptual lack of 

specification on how the SAS works (e.g., Stuss et al., 1995; Shallice & Burgess, 1996), 

present in the original version of the SAS model (e.g., Norman & Shallice, 1980). On the 

fractionation approach, the multi-factorial nature of the SAS is stressed, proposing a 

deconstruction of its high-level functions used to face non-routine situations, each of which 

is computationally different from the others. Moreover, it is supposed that a functional 

specialization of each of these functions existed within at least partially separable networks 

involving PFC areas (Shallice & Burgess, 1996; see also Baddeley, 1996; Faw, 2003; 

Shallice, 2004; Stuss et al., 2005).  

The methodological implications of this approach have changed the way in which 

functions of the PFC are studied. It is now clear that different processes are required to 

perform single tasks, each of which may rely on different brain areas (e.g., Stuss et al., 

1995). A correct specification of the subprocesses involved in a given task (e.g., Sternberg, 

1975; 2001), and the use of simplified tasks that allow comparisons based on specific 

rather than overall performance measures (e.g., Stuss et al., 2005), are then important tools 

in order to understand the fractionated nature of the PFC supervisory operations. On the 

other hand, functional-anatomical differentiation of PFC may, in turn, be informative about 

which cognitive processes are involved in a given task, as shown, for instance, by the 

method of neuropsychological dissociations (e.g., Shallice, 1988; see also McCloskey, 

2003). 

The fractionating approach has received considerable empirical support. For instance, 

both attention-deficit/hyperactivity disorder (ADHD) and autism show substantial deficits 

in SAS functions, despite the fact that very different clinical hallmarks characterize the two 

disorders. Apparently, one might then expect SAS dysfunction to be somewhat unspecific, 

in line with the equipotentiality approach. However, studies that adopt an information-

processing analysis have revealed both quantitative and qualitative distinctions between 

SAS impairments in these two syndromes. When compared on tasks tapping on different 

cognitive demands, for instance, the autistic patients are more impaired on response 

selection/monitoring in a cognitive estimates task, whereas the ADHD group shows greater 

inhibitory problems on a Go-no-Go task (Happe, Booth, Charlton, & Hughes, 2006; but 

see Shallice et al., 2002). A broader range of examples of studies adopting the fractionation 

approach will be summarized in the next subparagraph. 
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Fractionation of attention within the prefrontal cortex: empirical evidence 

Evidence for the fractionation of attentional processes within PFC can be extensively 

found in the neuropsychological literature (Milner, 1963, 1964; Godefroy et al., 1999; 

Burgess, Veitch, de Lacy, & Shallice, 2000; Mirsky & Duncan, 2001). An example of the 

fruitfulness of the fractionation approach for the study of frontal lobes is represented by the 

works of Stuss and his collaborators (Alexander, Stuss, & Fansabedian, 2003; Alexander, 

Stuss, Shallice, Picton, & Gillingham, 2005; Picton et al., in press; Stuss et al., 1995; Stuss 

et al., 1999; Stuss, Binns, Murphy, & Alexander, 2002; Stuss et al., 2005), who have 

provided over years a considerable amount of evidence in favour of a deconstruction of 

processes within PFC. 

These authors precisely defined which attentional processes may characterize the SAS 

(e.g., Stuss et al., 1995; Stuss, 2006). Some of the identified processes are: energizing 

schemata, which can be considered as the allocation of arousal’s energy to the neural 

systems required to perform a given task; monitoring environmental contingencies and 

behaviour in order to adjust the level of activity in schemata accordingly; task-setting, that 

is the process of representing the task demands in an early stage of performance in order to 

accomplish them appropriately; inhibiting task-irrelevant schemata, as required, for 

instance, when an infrequent but prepotent response should not be executed. These 

processes do not coincide with precise tasks, but underlie performance of several 

apparently different tasks (e.g., Stuss et al., 2005). 

The model derived from this cognitive analysis was then tested on a broad group of 

patients with different focal frontal lesions, caused by various aetiologies. Patients 

underwent various tasks composing a neuropsychological battery, the so-called Rotman-

Baycrest Battery to Investigate Attention (ROBBIA). To isolate the distinct processes 

involved, the tests were designed by progressively modifying the same basic RT paradigm. 

For instance, three of these tasks were: simple RT, choice RT, and prepare RT task (Stuss 

et al., 2005). These 3 paradigms provide the opportunity to isolate the most basic processes 

related to the SAS. Simple RT task required a constant response to a target occurring at 

random intervals, called foreperiods (FPs), between 3 and 7 sec (i.e., variable FP 

paradigm). Choice RT task, which adopted the same variable FP paradigm, required the 

same response to the target, which now appeared randomly intermixed with other stimuli 

requiring a different response. The variable FP paradigm used in these two tests is known 

to produce the so-called FP effect: RTs decrease with the FP length. This effect is held to 
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be a measure of the efficiency of a monitoring process, held to check the increasing 

conditional probability of stimulus occurrence as the FP elapses (e.g., Näätänen, 1970; see 

Paragraph 1.2.1.1.). 

A third test, the prepare RT task, was the same as the choice RT task with the insertion 

of a warning signal occurring either 1 or 3 sec prior to the stimulus (i.e., short and long 

FPs), this time administered in fixed blocks. On this paradigm, known as the fixed FP 

paradigm, participants are held to use the warning signal to estimate the time at which the 

target should occur in order to optimize response preparation (Niemi and Näätänen, 1981). 

As time estimation is only optimal for relatively short FPs (see the scalar theory of time 

perception, Gibbon et al., 1984), when a fixed FP paradigm is used, RTs are typically 

faster with relatively short FPs than with long ones (Mattes & Ulrich, 1997; Teichner, 

1954; Woodrow, 1914), which is the opposite of what is found with the variable FP task. 

In another study (Alexander et al., 2005), a continuous rapid performance task was 

administered. On this task 5 LEDs, with a button response under each, were randomly 

illuminated, with the requirement to respond by pressing the button spatially corresponding 

to the illuminated LED. This task examined the ability of the patients to concentrate and 

set up appropriate schemata. 

Another task used was the feature integration task (Stuss et al., 2002), which was 

similar to the simple and choice RT tasks, with the exception that there was an additional 

level of difficulty derived from the complexity of feature integration required to perform 

the task. In this more complex task, indeed, patients had to identify and respond to a target 

according to 3 distinct features (color, shape, and orientation of lines within the shape). 

Progressive complexity was reached in this task by using non-targets with none, 1, or 2 

features similar to the target.  

The results of the performance of the various prefrontal patient groups on the ROBBIA 

battery were straightforward. The most replicable finding was that patients with lesions of 

the superior medial frontal regions had the greatest slowing in RT in all the tests 

administered. Moreover, this group did not show the advantage of a warning signal with a 

fixed FP paradigm. Instead medial frontal patients showed a significant decline in 

preparatory activation from 1 to 3 sec after a warning stimulus (Stuss et al., 2005). These 

results were interpreted as an indication of a deficit in the energization process 

hypothesized in the ROBBIA model (e.g., Stuss et al., 2005). More precisely, this deficit is 

interpreted as decreased energizing (SAS-like process) of the neural systems in parietal 

cortex, supplementary motor areas, or motor cortex, that are needed to select and/or initiate 
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(contention scheduling processes) the responses (schemata) when relevant input is 

provided. A clearer example of defective energization process is represented by akinetic 

mutism, which has been described earlier (see Paragraph 1.1.1.1).  

Another attentional process related to a specific region within the frontal lobes was 

revealed through both the continuous rapid performance task and the feature integration 

task. On the first task, only patients with lesions in left lateral frontal regions made 

significantly more errors, and the increase was only observed in the first 20% of the trials. 

This pattern was interpreted as a deficit in setting up specific stimulus-response 

contingencies (Alexander et al., 2005). On the feature integration task, the same group of 

patients showed an impaired bias or criterion setting, with an increased rate of false alarms, 

again interpreted as a task-setting deficit (Stuss et al., 2002). In support of this 

interpretation, a PET study found that activation of left DLPFC was associated with the 

production and execution of strategies in the organization of a to-be-remembered list of 

items (Fletcher et al., 1998; see also Frith, 2000). 

Finally and more relevant for the present purposes, a monitoring process was impaired 

in patients with damage in the right PFC. These patients had a significant decline in 

sensitivity in the feature integration task (Stuss et al., 2002), where they generally had low 

accuracy (increased frequency of misses and false alarms). This pattern was interpreted as 

a deficit in monitoring the difference between targets and non-targets in order to reduce 

errors. A similar deficit was also demonstrated using the variable FP paradigm. As already 

mentioned earlier in this paragraph, this paradigm usually produces the FP effect, defined 

as decreasing RT with increasing FPs (Niemi & Näätänen, 1981; see also Paragraph 1.2.). 

This effect was selectively absent in right lateral frontal patients. According to the 

proposed interpretation (Stuss et al., 1995), this deficit would be due to decreased 

monitoring. More specifically, right PFC patients failed to check whether a stimulus has 

occurred over a few seconds, not increasing their readiness to respond as time elapsed, if it 

had not yet occurred.  

This account fits a range of neuropsychological and functional imaging paradigms 

which assign a monitoring role to the right dorsolateral prefrontal cortex (rDLPFC; e.g., 

Coull, Frith, Buchel, & Nobre, 2000; see Fletcher & Henson, 2001; Shallice, 2002; 2004 

for reviews; Posner & Peterson, 1990, for a somewhat related position). An involvement of 

the right DLPFC has been documented, for instance, in the episodic memory domain, 

especially during retrieval, in situations where checking/monitoring was required. These 

situations, according to Shallice (2006), occur under conditions of uncertainty, such as 
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when valid alternatives need to be excluded (e.g., Henson, Shallice, Josephs, & Dolan, 

2002) or when a solution has already been sketched and its consequences need to be 

evaluated, implying that they occur late in time (e.g., Wilding & Rugg, 1996). These 

situations cannot merely coincide to conditions requiring unspecific cognitive effort. 

Moreover, a disruption of the checking process would lead to more capture errors and false 

positive errors, suggesting a problem in criterion setting (e.g., Rossi et al., 2001).  

As shown by this short review, the fractionation approach is therefore a valuable 

framework, because it is guiding research by suggesting testable hypotheses, which have 

been shown to be empirically plausible, and by increasing our knowledge about frontal 

lobes. A common taxonomy derived by a detailed analysis of all the specific components 

of executive functions is far from being reached yet (e.g., Smith & Jonides, 1999). 

Moreover, fractionating functions relying on PFC may complicate matters multiplying the 

number of processes labelled as ‘executive’  or ‘prefrontal’ .  

However, in contrast to the traditional unitary executive function view, the process of 

SAS fractionation overcomes the anti-heuristic problem known as the ‘homunculus’  

problem (Dennett, 1998), that is the assumption of the existence of a suitably intelligent 

but not clearly defined agent (Monsell & Driver, 2000). Instead, trying to deconstruct the 

SAS into small components makes this set of high-level functions more understandable 

and scientifically attackable (e.g., Hommel, Daum, Kluwe, 2004; Hommel, Ridderinkhof, 

& Theeuwes, 2002).  

 

1.2. The FP phenomena 

As anticipated in the introduction, the main paradigm on which the current project 

focuses, in order to study the monitoring role of DLPFC, is the variable FP paradigm. It is 

thus propaedeutic to the comprehension of the whole dissertation to illustrate in more 

detail this paradigm, the behavioural effects usually found analyzing the performance on 

this task, and the cognitive processes supposed to underlie these effects. 

Preparation is an important ability required in virtually all cognitive tasks. In cognitive 

terms, preparation is the ability to prepare an optimized response to forthcoming stimuli. It 

can take advantage of human capacity of anticipating future events, reducing uncertainty 

about them, and thus optimizing processes necessary for responding to them (Brunia & 

Van Boxtel, 2000). In particular, unspecific preparation over time usually implies the 

reduction of uncertainty about ‘when’ a response (regardless of ‘what’  specific response) 
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should be executed. This capacity is used in everyday life. In soccer, for instance, a 

goalkeeper does not know in advance when an opponent will kick the ball towards the 

goal; as time elapses, however, the probability that the other player will decide to kick the 

ball increases and the goalkeeper has to increase his readiness consequently. In a more 

common situation, when a driver waits in her car for the traffic light to turn green, 

especially if she is in a hurry, her right foot is more and more prepared to push the 

accelerator as time goes on with the traffic light still displaying red. In spite of its ubiquity, 

preparation is a poorly understood aspect of human cognition (Sanders, 1998). 

Specifically, the way in which preparation evolves over time and the factors modulating it 

are yet unresolved issues. 

Experimentally, temporal preparation has been extensively investigated in studies 

using the variable FP paradigm. In this paradigm, the FP is the unfilled time-interval 

between a neutral warning stimulus and the stimulus requiring a response, the so-called 

Imperative Stimulus (IS). The warning stimulus is a signal (typically visual or auditory) 

informing the participant about the forthcoming IS; it might also be omitted as its function 

can be represented by the participant’s last response (e.g., Stuss et al., 2005). In a typical 

variable FP paradigm, a range of different FPs randomly occurs over trials, so that it is 

impossible for the participants to know in advance when the IS will occur on the next trial. 

Participants are usually instructed to respond as fast as possible to the IS by obeying the 

task rule (e.g., simple and choice RT tasks). 

When the range of FPs used is randomly drawn from a rectangular distribution, so that 

every FP in a given range has the same a priori probability of occurring on a trial, RTs vary 

as a negatively accelerating function of the current FP: they are slower for shorter FPs and 

faster for middle and longer FPs. This is the variable FP effect (Drazin, 1961; Karlin, 1959; 

Klemmer, 1956; Woodrow, 1914; see Niemi & Näätänen, 1981, for a review).  

A second phenomenon occurring in this paradigm concerns asymmetric sequential 

effects: slower RTs are found for a given FP when it is preceded by a longer FP than when 

it is preceded by an equally long or shorter one (Drazin, 1961; Karlin, 1959). This is 

particularly the case for the shortest FPs in a block of trials.  

Thus, even if the unspecific preparation required to perform the variable FP task is 

apparently simple, it probably includes several more elementary processes, which produce 

separable but interacting behavioural effects. However, a strong point of this paradigm is 

that the effects produced are highly replicable and robust within a wide variety of 

experimental conditions. According to the literature (e.g., Niemi & Näätänen, 1981) and to 
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the experience accumulated within our lab, these two effects are highly replicable across 

subjects and are found across a number of experimental conditions. Indeed, they have been 

replicated, without substantial qualitative differences, for different FP averages and ranges, 

at least within certain lower and upper limits (e.g., Alegria, 1975; Bevan, Hardesty, Avant, 

1965; Karlin, 1959; Niemi & Näätänen, 1981), using both simple RT and choice RT tasks 

(Bertelson & Boons, 1960; Frith & Done, 1986; Sanders, 1980), with and without warning 

stimuli (e.g., Drazin. 1961; Stuss et al., 2005). 

In spite of the high replicability of the FP phenomena, there is to date no agreement on 

which cognitive mechanisms are responsible for these behavioural effects. Indeed, as we 

will show in the next paragraphs, several contrasting theories have been developed in order 

to explain the FP and the sequential effects. 

 

1.2.1.1. The strategic accounts 

Traditionally, the FP effect has mainly been attributed to strategic processes (Niemi & 

Näätänen, 1981). In a typical variable FP paradigm, each FP in the range occurs equally 

often across trials, so that the a priori probability of stimulus occurrence is equal across the 

various FPs. This, in principle, makes it impossible to predict the exact moment at which 

the imperative stimulus will occur on each trial. However, the elapsing time itself provides 

information about the next occurrence of the stimulus (Elithorn & Lawrence, 1955). 

Indeed, as time flows during the FP without the imperative stimulus occurring, the 

conditional probability of the imperative stimulus being presented in the next time-interval 

increases. This increase in the conditional probability of stimulus occurrence during 

relatively longer FPs is held to compensate for the disadvantageous effects of the 

concurrently lengthening of the FP observed in the fixed design (e.g., Woodrow, 1914). 

The cognitive system presumably learns this changing conditional probability during the 

experimental session and exploits it to endogenously increase response preparation (e.g., 

Elithorn & Lawrence, 1955; Näätänen, 1970; Nickerson, 1967; Sanders, 1966; Thomas, 

1967). In the context of temporal cueing studies, Coull and Nobre (1998; see also Nobre, 

2001) provide a clear definition of an analogous endogenous process, which the authors 

term ‘attentional orienting in time’. This process is described as the ability to exploit any 

information about time intervals to orient attention to a point in time at which a relevant 

event is expected, in order to achieve optimal performance as, for instance, in producing a 

speeded response to that event. In the case of the variable FP task, this top-down process 
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exploits the information derived from the increasing conditional probability of the IS 

occurring as time elapses, in order to enhance preparation. 

However, despite its simplicity, this account has a major limitation, in that it fails to 

recognize that the shape of the FP effect derives, at least in part, from the sequential FP 

effect (Baumeister & Joubert, 1969; Karlin, 1959; Woodrow, 1914): RTs on the current 

trial (FPn) are slower when preceded by a longer FP on the previous trial (FPn-1) than when 

preceded by an equally long or shorter one. Such effects are usually asymmetric, being 

mainly present with the shortest FPn in a block of trials.  

To explain the sequential effects, traditional theories have to make further 

assumptions. One of these assumptions is that the participant expects a repetition of the 

previous FPn-1, so that peak preparedness is reached at the same FP as that which occurred 

on the previous trial (e.g., Drazin, 1961; Karlin, 1959). If FPn is shorter than FPn-1, then 

peak preparedness will not have been reached when the IS occurs and a relatively slow RT 

will result. When instead the expectancy is disconfirmed because FPn is longer than FPn-1, 

it is assumed that participants can voluntarily extend the period of optimal preparation or 

cyclically reprepare, so accounting for the asymmetry in the sequential effects (e.g., 

Alegria, 1975; Karlin, 1959; Thomas, 1967).  

A difference between the conditional probability monitoring and the 

repreparation/maintenance hypothesis is that the former is a stand-alone process (which 

however does not account for sequential effects), whereas the latter can hold only if the FP 

repetition expectancy account also holds. At first glance, the traditional accounts of the FP 

effect seem in fact redundant, as the contribution of the repreparation/maintenance process 

to the FPn-RT function is qualitatively similar to that derived from the process of 

monitoring the conditional probability. However, although the two processes have the 

same consequences on RTs if one considers the effect of FPn only, the 

repreparation/maintenance account has the additional advantage of explaining the 

asymmetry of the sequential effects. A shortcoming of such traditional accounts of the 

sequential effects is that they propose two entirely different strategically mediated 

processes to explain different aspects of the same results. 

 

1.2.1.2. The conditioning view 

Los and den Heuvel (2001) argue that the strategic positions have both conceptual and 

empirical problems. Conceptually, if preparation is fully strategic in nature, it would be 

more convenient for  participants to choose the most successful strategy of fully preparing 
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for the earliest FP on each trial and then initiating the repreparation cycle if the IS does not 

occur. Moreover, from an empirical point of view, it has been demonstrated that people 

tend to consciously expect an alternation rather than a repetition of events (Hale, 1967; 

Soetens, Boer, & Hueting, 1985) as illustrated, for instance, by the gambler’s fallacy. For 

these reasons, Los and van den Heuvel (2001) proposed an alternative account, which 

would also integrate both the FP and the sequential effects in the same theoretical 

framework. The starting point of their theory is that there is a similarity between the basic 

FP design and that used in trace conditioning with animal models (Gallistel & Gibbon, 

2000; Machado, 1997). They therefore state that it is plausible that similar underlying 

mechanisms could also apply to the FP effect (Los, Knol, & Boers, 2001). Los and co-

workers suggest that, for each FP, a state of conditioning is adjusted in a way that obeys 

the learning rules of trace conditioning (Machado, 1997). They assumed that to each 

possible FP there corresponds a conditioned strength of activation, and that during a trial 

the participants’  readiness to respond tracks these strengths. They further assume that, on 

any trial, the conditioned strength corresponding to a FP is: 1) increased if that FP occurs, 

2) unchanged if a shorter FP occurs; 3) decreased if a longer FP occurs. This final 

assumption is motivated by a supposed need to reduce the tendency to respond ahead of 

time; this is held to be strong when the current FP is longer than the preceding one (Los & 

van den Heuvel, 2001, p. 372; see also Ollman & Billington, 1972). Indeed, Näätänen 

(1971, p. 324) wrote that “to restrain the intensive cumulative tendency of motor readiness 

from flowing over into motor action, with a resulting relief from tension, is both exhaustive 

and provocative of aversion” . It follows that the conditioned strength of activation 

corresponding to the longest FPs can never decrease as no even longer FP can occur. 

Hence, the sequential effects, if present, should be asymmetrically biased towards the 

shortest FP. This single-process view has the advantage of making  the FP effect a direct 

consequence of the sequential effects, because the RT on trial n is a function of the 

conditioning influences produced on trial n-1. 

Los and colleagues also challenged the strategic positions on the basis of findings 

obtained using valid and invalid temporal cues with variable FP tasks (e.g., Los & van den 

Heuvel, 2001; Los et al., 2001). Several studies using a temporal cueing paradigm initially 

supported the strategic accounts of preparation over time. This paradigm is built using a 

temporal version of the Posner’s spatial cueing procedure (Posner, 1980). In a typical 

temporal cueing paradigm, the warning stimulus could be either a neutral cue providing no 

information, or a symbolic cue providing information about the duration of the 
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forthcoming FP. This information could be either valid or invalid. By increasing the 

frequency of valid cues with respect to invalid ones, participants are encouraged to exploit 

the information provided by the cue. Cueing studies have shown that responding at short 

FPs is faster for valid cues than for neutral cues, and faster for neutral cues than for invalid 

cues. By contrast, responding at long FPs is not affected by the cue validity (e.g., Correa, 

Lupianez, & Tudela, 2006; Coull et al., 2000; Coull & Nobre, 1998; Griffin, Miniussi, & 

Nobre, 2002; Miniussi, Wilding, Coull, & Nobre, 1999). These findings are consistent with 

the view that temporal orienting is initially directed to the moment specified by the cue, 

and may be redirected if IS appears later than when specified, but not vice versa (e.g., 

Alegria, 1975; Coull & Nobre, 1998). 

A shortcoming of these temporal cueing studies is that they have not usually 

investigated sequential effects of the FP, which are also obtained in the temporal cueing 

paradigm (but see Correa et al., 2006). On the other hand, Los & van den Heuvel (2001), 

focusing their attention on these effects, found a dissociation between effects due to 

temporal orienting and sequential effects, supposedly due to trace conditioning. In 

particular, they designed 3 experiments using a temporal cueing paradigm. The 

experimenters used FPs of 0.5, 1 and 1.5 sec, presented randomly in a rectangular 

distribution. Thus, in their experiment 2, they used valid (80%) and invalid (20%) signals 

to cue the FP interval. With a valid cue the sequential effects were drastically attenuated 

because participants could intentionally prepare for the cued FP. The most impressive 

results, however, were obtained with an invalid cue for the FP duration. In particular, when 

an invalid cue for a long FP preceded an actual current short FP, the cost of not having 

prepared in advance for that short FP was not constant. It varied as a function of the FP 

that occurred on the preceding trial (i.e., according to the sequential effects). Sequential 

effects were stronger as compared with those occurring after a validly cued FP. If 

sequential effects were fully strategic in nature, as some traditional accounts claim (e.g., 

Alegria, 1975; Karlin, 1959), there would be no reason for them to influence costs after 

invalid cues. Corroborating these findings, other recent studies also revealed that validity 

effects, which are supposed to reflect intentional preparation processes, do not interact with 

sequential effects, which are supposed to be more automatic in nature (e.g., Correa, 

Lupiáñez, Milliken, & Tudela, 2004; Correa et al., 2006). 

In conclusion, the work by Los and colleagues demonstrates a dissociation between 

intentional processes (valid cue-related effects of accelerating RTs) and unintentional ones 

(stronger invalid cue-related sequential effects) to non-specific response preparation, in the 
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context of temporal cueing paradigms. In the next chapter, we will try to address the issue 

of the relative contribution of intentional and unintentional mechanisms in the context of 

more basic variable FP paradigms without temporal cueing. The prediction of the Los & 

van den Heuvel’s (2001) model would be that in such situation, conditioning mechanisms 

alone would suffice to explain the effects found. We tried to investigate whether, even in 

such situations, other mechanisms, such as intentional or strategic ones, may also play a 

role. 

 

1.3. The present project 

The aim of cognitive neuroscience, as suggested by its name, is essentially twofold. 

From the ‘cognitive’  point of view, scientists in this field try to uncover and identify the 

elementary processes that may contribute to the overt behaviour (e.g., Gazzaniga, Ivry, & 

Mangun, 2002; Sternberg, 2001). From the ‘neuroscientific’  point of view, the aim of 

cognitive neuroscience is to find the neural mechanisms that underlie these processes. 

Noticeably, as it will be shown in the current research project, the two aims are strictly 

interrelated and one can benefit from the other (cf., Shallice, 1988; Umiltà, 2006). 

The specific aim of this thesis mirrors to some extent the general aim of cognitive 

neuroscience. In the limits of a 3-years PhD project, we chose to study a specific function 

of a particular PFC area. This area is the right DLPFC. Specifically, we were interested to 

explore implications of findings of Stuss and colleagues (Stuss et al., 2005), who found 

that lesions to this area result in a selective deficit in the performance of RT tests using a 

variable FP paradigm. At the same time, from the cognitive point of view, we were 

interested in finding out which processes are involved in this paradigm. As already shown, 

in order to explain performance on this task, contrasting views in the literature have 

invoked either strategic multi-process accounts (see Niemi & Näätänen, 1981, for a 

review), or a single-process account derived from the trace conditioning tradition (e.g., Los 

& van den Heuvel, 2001).  

These contrasting theories have been tested here using different approaches. The 

phenomena involved in the variable FP task were first investigated through behavioural 

studies (experiments 1, 2, 5 and 6, chapter 2). Localization of functions in the brain by 

means of Transcranial Magnetic Stimulation (TMS) and neuropsychology were then used, 

with the aim of disentangling these two theories by means of the dissociation logic (e.g., 

Shallice, 1988; experiments 7, 8 and 9, chapter 3). These methods are indeed useful for 



 29 

discriminating between contrasting psychological theories, as stated elsewhere (e.g., Jones, 

1983; Pascual-Leone, Walsh, & Rothwell, 2000; Sack, 2006; Shallice, 1988). With a 

similar aim, we conducted 3 experiments on children, using a dissociative method which 

we called developmental dissociation, in analogy to the neuropsychological dissociations 

(experiments 3a, 3b and 4, chapter 2). 

Starting from a related but independent scientific question, that is the role of explicit 

temporal judgment on the FP phenomena, we conducted a series of behavioural 

experiments using a modified version of the variable FP paradigm (experiments 10-14, 

chapter 4). These experiments did not show a clear modulation of the FP phenomena by an 

explicit temporal judgment, at odds with the initial prediction. However, they produced a 

new stimulus-response compatibility effect, relevant to infer how temporal information is 

cognitively represented. 

As will be shown later, results of experiments on the variable FP paradigm, especially 

those adopting TMS and neuropsychological methods, support the involvement of right 

PFC in strategic processes, and particularly monitoring processes, at least in the domain of 

temporal preparation. Therefore, we were also interested in extending these results in a 

different domain. To this aim, we conducted 2 additional experiments in the source 

memory domain, this time using the technique of Event-related Potentials (ERPs). Results 

of these 2 experiments will be exposed in chapter 5.  

Finally, in chapter 6 conclusions will be drawn about the overall study, exposing the 

methodological, empirical and theoretical considerations which can be derived from this 

project. 
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Chapter 2 
 

In this chapter the cognitive aspects of the FP phenomena will be investigated and 

characterized better. In the first 2 experiments, 2 groups of adults were given a variable FP 

paradigm using different ranges and lengths of FPs, in order to test the hypothesis that the 

sequential effects and the FP effect derive from a common mechanism, as follows from the 

Los and van den Heuvel’s theory (2001; discussed in paragraph 1.2.1.2., chapter 1) but not 

from traditional views assuming different underlying mechanisms (paragraph 1.2.1.1., 

chapter 1). In a second set of experiments (experiments 3a, 3b and 4), the aim was to 

investigate the developmental time-course of those two effects, under the assumption that, 

if they derive from independent underlying processes, there is no need for them to develop 

with the same trajectory. The hypothesis that a monitoring process is responsible for the 

appearance of the FP effect was tested in the experiment 5. In this experiment, the 

conditional probability of stimulus occurrence was kept constant to remove a possible 

influence of the monitoring process on the FP effect. In experiment 6, an n-back task has 

been adopted in the context of a variable FP paradigm, in order to functionally dissociate 

the FP and the sequential effects. The rationale of this experiment consists of testing the 

hypothesis that the sequential effects are more automatic than the FP effect. If this is the 

case, increasing the working memory load should influence the latter but not the former 

(cf. Shiffrin & Schneider, 1977a). 

 

2.1. Testing the conditioning view of the FP phenomena: a 

behavioural study 

The general aim of the experiments 1 and 2 is to investigate the feasibility of the 

conditioning model by testing predictions derived from it. Specifically, a first purpose of 

the next 2 experiments is to assess the existence of an intra-experimental learning period 

for the FP phenomena. Even if the conditioning model per se is agnostic about the 

existence of a learning phase (Los & van den Heuvel, 2001), the more general conditioning 

framework from which it originates is not (e.g., Machado, 1997). Both the classical and the 

operant conditioning theories entail a learning period during which associations between 

the unconditioned and the conditioned stimuli and/or responses are gradually established 

through extinction and reinforcement (Ferster & Skinner, 1957; Pavlov, 1927; Watson & 

Rayner, 1920). For instance, in animal studies of time-based conditioning schedules, it is 
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usually possible to detect a developing behavioural trajectory followed by the subject 

before the achievement of a steady state (e.g., Machado, 1997; see also Gallistel & Gibbon, 

2000; Miller & Barnet, 1993).  

For this reason, the existence of a learning period would provide evidence in favour of 

the conditioning model (Los & van den Heuvel, 2001), basically supporting its derivation 

from the trace conditioning theoretical framework. On the other hand, absence of a long-

term learning phase, even if not directly in conflict with the conditioning model, would 

take the phenomenon away from the tradition of the trace conditioning, or at least would 

require further explicit assumptions and detailed adjustments. The strategic views are 

instead more agnostic with respect to the existence of a learning phase. 

However, a more crucial purpose of the experiments 1 and 2 is the assessment of the 

within-subject correlation between the sequential effects and the FP effect. The prediction 

of a positive correlation between the two effects derives from the assumption of the 

conditioning model that the FP effect is a side effect of the sequential effects. On that 

model, indeed, the FP effect originates from the interplay between the processes of 

extinction and reinforcement taking place before the current trial (Los & van den Heuvel, 

2001). On the contrary, from the strategic positions it does not follow that there should be 

any correlation between the sequential effects and the FP effect, as it is assumed that the 

two effects originate from different, albeit interacting, processes. A lack of a correlation 

would thus indirectly support the strategic model. 

 

2.1.1. Experiment 1 

The experiment 1 was designed to be as similar as possible as far as material and 

timing are concerned to those in the Los and van den Heuvel’s study (2001). However, it 

had a simpler design, in order to study the FP phenomena in their simplest context, without 

other (possibly) confounding variables. Thus, a simple RT task was used instead of a 

choice RT task. In addition, no temporal cue or feedback was employed, as FP phenomena 

were to be studied in a standard WS-IS paradigm.  

 

Method 

Participants 

Fifteen volunteer participants took part in the experiment. They were 26 years old on 

average (range = 19-30); 7 were males and 9 females; 14 were right- and 2 left-handed 
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(writing hand). All had normal or corrected-to-normal vision, no auditory impairment, and 

were in apparent good health. Approval from the local ethical committee was obtained for 

the study.  

 

Apparatus and Materials 

The experiment was conducted on a PC, with responses collected from a keyboard. 

Participants viewed the display at a distance of about 50-60 cm from the centre of the 

computer screen, with the index finger of their dominant hand resting on the spacebar. 

They wore headphones (Sony, MDR-CD280) over which the auditory WS was repeatedly 

presented at a comfortable level (constant across participants) during the whole 

experiment. All visual stimuli were presented on a black background. A centrally presented 

cross, consisting of two yellow crossed bars 1.0 x 0.5 cm in size, served as fixation 

stimulus. The WS was a 1500 Hz pure tone, presented for 50 ms. The IS was a downward 

pointing white arrow 2 cm long that consisted of a 1.5 x 1 cm bar attached to a 0.5 cm 

arrowhead with a maximum width of 2 cm. Four different quasi-random lists of 360 trials 

were prepared to have a large enough number of trials per condition. Each list was 

presented to 1/4 of the participants. In each list, three FPs of 0.5, 1.0 and 1.5 sec1, 

respectively, were presented randomly on an equal number of trials (i.e. 120 trials each), 

drawn from a rectangular a priori probability distribution.   

 

Procedure and Task 

Participants were tested individually in a silent and dimly lit room. They received 

written instructions explaining both the course of events and the simple RT task. The 

experiment began only after the participant was confident that she/he understood the task. 

A trial started with the presentation of the fixation cross together with the WS. The onset 

of WS marked the beginning of the FP. When the FP ended, the fixation cross disappeared, 

and the IS appeared at the centre of the screen. Participants were instructed to respond as 

fast as possible to the IS only by pushing the spacebar with their writing hand. The IS was 

removed by the response key-press or after a deadline of 1.5 sec. After a blank interval of 2 

sec, a new trial started. No practice trials were given because the task was very easy but 

                                                
1Strictly speaking, the FP is a continuous variable. In the current study, we decided to treat the FP as a 
categorical variable, using only two or three discrete values of the FP. This choice was aimed to allow 
comparison with the existing literature on the FP effect, where this variable has been almost always treated as 
categorical (see Niemi and Näätänen 1981, for a review), apart from a few exceptions (e.g., Drazin, 1961). 
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above all because we were interested in the time course of the development of any FP 

effect from the beginning to the end of the experiment. The experiment consisted of 6 

blocks of 60 trials each. At the end of each block, participants were encouraged to take a 

short break. They started a new block of trials by pushing the spacebar. The whole 

experimental session lasted about 25 minutes. 

 

Design and Data Analysis 

The within-subject independent variables considered in the experimental design 

included FP on the current trial (FPn = 0.5, 1.0 and 1.5 sec), FP on the preceding trial n-1 

(FPn-1), and experimental block (from 1 to 6). 

Trials on which the RT was outside the 100-1000 ms range and trials where anticipated 

responses were made (viz. ones occurring before the IS) were discarded from further 

analyses. In addition, the first two trials of each block were eliminated. Mean RTs for each 

subject and condition were analysed by repeated measures ANOVAs. For the significant 

effects, post hoc Tukey honestly significant difference comparisons were performed, in 

order to see which comparisons accounted for the effects. An effect was defined as 

significant if its corresponding α-level was below .05. This criterion was chosen for all the 

experiments in the study. 

 

Results 

The first two trials of each block (3.3%), trials involving anticipated responses, that is 

RT before IS onset (2.7%), trials involving premature responses (RT < 100 ms: 1%), and 

trials with delayed responses (RT > 1000 ms) or without responses (0.3%), were discarded 

from further analyses. Less than 8% of trials were excluded. 

 

Basic FP effect and sequential effects 

In order to assess whether extinction and reinforcement were plausible processes 

underlying the RT differences in this FP design, we examined the FP effect and the 

sequential effects carrying out a 3x3 ANOVA, involving FPn (0.5, 1.0, 1.5 sec) and FPn-1. 

The following effects were significant (see Figure 1). First, the main effect of FPn was 

obtained [F(2, 28) = 39.1, p < .001]. The post hoc Tukey tests indicated that RTs for the 

shortest FP were reliably longer than RTs for the other two FPs (for both, p < .001), but 

there was no difference between the RTs for the medium and longest FPs, replicating the 

typical negatively accelerating FP-RT function. Second, a significant main effect of FPn-1 
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indicated that RT increased as a function of the length of the preceding FP [F(2, 28) = 

48.8, p < .001], all the post hoc comparisons also being significant (for all, p � .001). More 

interestingly, there was a significant FPn x FPn-1 interaction [F(4, 56) = 18.9, p < .001], 

which occurred because the effect of FPn-1 was strongest on the shortest FPn (RT = 302, 

341 and 364 ms for the FPn-1 of 0.5, 1 and 1.5 ms, respectively, for all, p < .001), 

attenuated on the medium FPn (RT = 275, 288 and 304 ms; FPn-1 = 0.5 vs. 1.0, n.s.; 0.5 vs. 

1.5, p < .001; 1.0 vs. 1.5, p < .001), and very small on the longest FPn (275, 277 and 291 

ms, FPn-1 = 0.5 vs. 1.0, n.s.; 0.5 vs. 1.5, p < .01; 1.0 vs. 1.5, p < .05).  

In addition, the RT on the shortest FPn was slower than the RT on the medium FPn if 

they were each preceded by the shortest FPn-1 (302 vs. 275 ms, p < .001). The RT on the 

shortest FPn was also slower than the RT on the longest FPn if they were each preceded by 

the shortest FPn-1 (302 vs. 275 ms, p < .001). These effects are in conflict with predictions 

from the original theory of Los and van den Heuvel (2001) but not with their revised model 

(Los & van den Heuvel, 2001, p. 382-384, see discussion on page 41). 

 

 

Figure 1. Mean reaction times as a function of current FP (x-axis) and preceding FP (lines), in 
experiment 1. FP = foreperiod. Vertical lines depict standard errors of the means; asterisks indicate 
significant post hoc Tukey comparisons (only for neighbours).  

 

Long-term learning effects 

A 6x3x3 repeated measures ANOVA was also performed with block, FPn and FPn-1 as 

the within-subject variables, in order to see how the FP and sequential effects developed 

during the course of the experiment. The only significant effects were again those of FPn 
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[F(2, 28) = 37.2, p < .001] and FPn-1 [F(2, 28) = 38.3, p < .001], while the main effects of 

block and the interactions involving it were far from significant (for all, p > .8, see Figure 

2).  

 

 

Figure 2. Mean reaction times as a function of current FP (x-axis), preceding FP (lines), and block 
(panels), in experiment 1. FP = foreperiod. Vertical lines indicate standard errors. 
 

The lack of any interaction involving block demonstrates that sequential effects as well 

as the FP effect do not change during the course of the experiment. However, learning 

effects might have already occurred rapidly during the first block of 60 trials. 

Unfortunately, further dividing the first block into smaller blocks with a roughly equal 

number for each of the 3 FPn x 3 FPn-1 conditions was not planned in advance. For this 

reason, when the first block was divided into two mini-blocks of 30 trials each, a full 

factorial 2 mini-block x 3 FPn x 3 FPn-1 ANOVA could not be conducted because some 

participants had not an adequate number of trials per condition. We therefore conducted 

two separate ANOVAs: one with a 2 mini-block x 3 FPn design and another with a 2 mini-

block x 3 FPn-1 design, in order to check if learning effects occurred in the first block. 

These two ANOVAs produced a main effect of FPn [F(2, 28) = 9.9, p < .001] and FPn-1 

[F(2, 28) = 10.4, p < .001], respectively and no other effect. Thus, the absence of a 

learning phase, at least for the main effects of FPn and FPn-1, was demonstrated even 

considering such a small amount of trials as 30. 

 

Correlational analysis 

In order to assess the correlation between FP and sequential effects, the following 

formula was used as a comprehensive measure of the sequential effects: 
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A = [(RT | FPn = 0.5 ^ FPn-1 = 1.5) – (RT |  FPn = 0.5 ^ FPn-1 = 0.5)]  

B = [(RT | FPn = 1.5 ^ FPn-1 = 0.5) – (RT |  FPn = 1.5 ^ FPn-1 = 1.5)] 

C = A – B 

 

where A is a measure of ‘extinction’  during the shortest FP, B is a measure of 

‘ reinforcement’  during the longest FP, and C is a measure of the difference between the 

first two, that is a measure of the sequential effects calculated from the point of view of the 

conditioning model (all the values are expressed in seconds). FP effect was defined as the 

difference between mean RT after the shortest FPn and mean RT after the longest one2. A 

product-moment correlation coefficient, Pearson r, was calculated between the FP effect 

and the sequential effects computed as above for each participant. As results showed (see 

Figure 3, left panel), correlation coefficient was negative and not significant (r = -.27). 

 

 

Figure 3. Results of the correlational analysis between FP effect (x-axis) and sequential effects 
(y-axis), in experiments 1 (left) and 2 (right).  

 

2.1.2. Experiment 2 

In experiment 2, three FPs longer than those employed in experiment 1 were used, in 

order to investigate whether the relationship between the FP effect and the sequential 

effects, and the supposed underlying conditioning processes, are stronger with relatively 

longer FPs. It is obvious that, with a longer average FP, temporal difference between one 

FP and another must be enough wide to permit discrimination among the various FPs, 

despite the increase in time uncertainty due to longer intervals used (Näätänen, Muranen, 

                                                
2To calculate the FP effect using only the same trials as the sequential effects, trials with the shortest and 
longest FPsn preceded by a medium FPn-1 were not included in the calculation of the FP effect. However, 
results did not change when these further trials were included. 
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& Merisalo, 1974). Therefore a wider FP range was used in experiment 2. The three FPs 

were 3, 5 and 7 sec, respectively. A second reason for using this FP range was to compare 

our results with the neuropsychological study by Stuss and colleagues (2005), which used a 

similar FP range.  

 

Method 

Participants 

There were 12 participants, all different from those who carried out experiment 1. 

They were 24 years old on average (range = 20-32); 6 were males and 6 females, 10 were 

right- and 2 left-handed (writing hand). All had normal or corrected-to-normal vision and 

no auditory impairment, and all were in apparent good health. They participated in the 

experiment as volunteers.  

 

Apparatus and Materials 

The apparatus and stimuli were the same as in the Experiment 1. As in Experiment 1, 

four different quasi-random lists of trials were prepared to have enough trials to analyse 

sequential effects. Each list was presented to 25% of the participants.  

 

Procedure and Task 

The task and procedure were the same as in Experiment 1. As a consequence of the 

longer FP intervals used, the experimental session lasted about 35 instead of 25 minutes. 

 

Design and Data Analysis 

The experimental design was the same as in Experiment 1, except that the FPs had 

durations of 3, 5 and 7 sec. To compensate for the longer duration there was a reduction in 

the number of trials (300 instead of 360) and so in the number of blocks (5 instead of 6). 

Thus, the within-subject variables were FPn (3, 5 or 7 sec), FPn-1, and block (from 1 to 5). 

The same procedure used in the analyses of the experiment 1 was also applied to the 

results obtained in the experiment 2. 

 

Results 

The first two trials of each block (3.3%), trials involving anticipated responses, that is 

the response being made before the onset of the IS (0.7%), trials involving premature 



 39 

responses (RT < 100 ms: 0.25%), and trials with delayed responses (RT > 1000 ms) or 

without responses (0.6%), were discarded from further analyses. In total, less than 5% of 

trials were excluded. 

 

Basic FP effect and sequential effects 

As in the previous study, we performed a 3 (FPn) x 3 (FPn-1) ANOVA.  First, a 

significant main effect of the FPn was obtained [F(2, 22) = 39.3, p < .001]. As in 

experiment 1, post hoc Tukey tests demonstrated that RTs after the shortest FP were 

significantly slower compared with RTs after the medium and longest FP (for both, p < 

.001), while there was no difference between RTs after the medium and the longest FPs. 

Also the main effect of the FPn-1 was replicated [F(2, 22) = 24.3, p < .001], indicating that 

RTs increased as a function of the length of the preceding FP, all the post hoc comparisons 

being significant (for all, p < .05). The FPn x FPn-1 interaction [F(4, 44) = 3.9, p < .01] was 

principally due to the fact that sequential effects became weaker as the current FP duration 

increased. With the shortest current FP (3 sec), RTs were slower when the preceding FP 

was the longest (7 sec) than when it was the same shortest FP (p < .001). When the current 

FP was the medium one (5 sec), there was a trend for RTs to be slower if the preceding FP 

was the longest one rather than the shortest one (p < .07). However, for the longest current 

FP (7 sec), there was no effect of the preceding FP at all (for all, p > 0.9). As in experiment 

1, the RT on the current shortest FP is slower than the RT on the current medium FP if they 

are each preceded by the shortest FPn-1 (p < .01).  

 

 

Figure 4. Mean reaction times as a function of current FP (x-axis) and preceding FP (lines), in 
experiment 2. Details as in Figure 1. 
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Long-term learning effects 

The same type of analysis over blocks as in experiment 1 was carried out, using a 

5x3x3 repeated measures ANOVA with block (from 1 to 5), FPn (3, 5 and 7 sec), and FPn-1 

(3, 5 and 7 sec) as the within-subject variables. Apart from the not surprising main effects 

of FPn and FPn-1, and their interaction (already shown in the previous analysis), this 

analysis revealed a significant main effect of block [F(4, 44) = 4.5, p < .01], reflecting the 

fact that RTs slowed from the first to the last block. Post hoc tests demonstrated that this 

effect was mainly due to differences between the first block on the one hand, and the 3rd, 

4th and 5th blocks on the other (for all, p < .05). As in the first experiment, the block factor 

did not interact either with FPn (p = .9) or with FPn-1 (p = .08), and there was no 3-way 

interaction (p = .2, see Figure 5). 

 

 

Figure 5. Mean reaction times as a function of current FP (x-axis), preceding FP (lines), and 
block (panels), in experiment 2. Details as in Figure 2. 

 

Two similar ANOVAs as in the experiment 1 were conducted also here in order to 

check if learning effects occurred within the first block of trials. A 2 mini-block x 3 FPn 

and a 2 mini-block x 3 FPn-1 ANOVAs were conducted. As in experiment 1, these two 

ANOVAs produced only a main effect of FPn [F(2, 22) = 20.2, p < .001] and FPn-1 [F(2, 

22) = 11.2, p < .001]. The main effect of mini-block was also significant [F(1, 11) = 6.7, p 

< .05], due to RTs increasing from the first 30 trials to the subsequent ones. Importantly, 

no interaction was observed in either ANOVA, again demonstrating no learning phase 

even with such a small amount of trials as 30. 
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Correlational analysis 

The same formula as in experiment 1 was used as a comprehensive measure of the 

sequential effects for each participant. The correlation between FP and sequential effects 

was non-significant also in the experiment 2, with a slope that, if anything, was negative (r 

= -.34; see Figure 3, right panel). 

 

Discussion: experiments 1 and 2 

The present study aimed to assess whether the conditioning account, as proposed by 

Los and co-workers (Los et al., 2001; Los & van den Heuvel, 2001), is likely to underlie 

the FP phenomena. In 2 experiments employing two different FP ranges (i.e., 0.5, 1, 1.5 

sec and 3, 5 and 7 sec, respectively) with a variable FP paradigm, we replicated the 

variable FP effect as it is known from the early literature (e.g., Niemi & Näätänen, 1981; 

Woodrow, 1914). Sequential effects, consisting of a lengthening of the RT as the preceding 

FPn-1 increases, were also replicated. As expected from the literature, these effects are 

asymmetrically biased towards the shortest current FP, because they become increasingly 

small as the current FP duration increases.  

The pattern of sequential effects predicted in the original version of Los and van den 

Heuvel’s theory (2001; Los et al., 2001) has been only partially obtained. First, on this 

model RTs should be relatively slow when FPn-1 is longer than FPn, as extinction would be 

occurring in this condition; this is indeed found in the current experiments. Second, to 

account for the finding that RTs on the shortest FPn are slower when they are preceded by 

the longest FPn-1 than by the medium one, a further assumption was put forward that the 

conditioning processes have a gradual effect across the time-scale (Los & van den Heuvel, 

2001). With this assumption, the sequential effects, especially those obtained in experiment 

1, are not incompatible with the conditioning model, albeit with some adjustments. 

However, no result supports the presence of reinforcement. The conditioning model, in 

fact, would also predict that RT should be relatively fast when the same FP is repeated as 

compared with the condition in which a shorter FP is presented before, as reinforcement 

should be occurring in the former case, and neither reinforcement nor extinction should 

occur in the latter. In the current experiments, as well as in Los and van den Heuvel’s 

experiments (2001), this prediction is not supported: current RTs following preceding trials 

with shorter FPs are equally fast or faster than RTs after trials with equal FPs. In their 

revised model, Los and van den Heuvel (2001, p. 384) explain this finding by assuming 
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that when a short FP occurs on trial n-1, subsequent reinforcement also extends to the 

adjacent longer FP. Then, if this longer FP occurs on trial n, RT will be faster than if a 

longer FP had occurred on trial n-1. In the latter case, extinction of the state of activation 

associated with shorter FP, still acting during the final phase of the current longer FP, may 

outweigh the advantage of stronger subsequent reinforcement associated to this FP. 

However, even with such theoretical adjustment, it is noteworthy that if there are 

conditioning processes, their overt effect on RTs is observed only or mostly in the negative 

direction (extinction) and not in the positive one (reinforcement).  

Two aspects of experiments 1 and 2 give new insights to the understanding of the FP 

phenomena, namely, the lack of a long-term learning phase for the FP and the sequential 

effects, and the lack of a within-subject correlation between them. The lack of learning 

effects represents an additional finding that does not fit with some predictions of the trace 

conditioning framework from which the theory of Los and colleagues derives. Animal 

conditioning models generally assume, either explicitly or implicitly, the existence of an 

acquisition phase, in which the consolidation of the associations into long-term memory 

structures occurs (Gallistel et al., 2000; Machado, 1997; Pavlov, 1927). In fact, the 

trajectory of the acquisition phase can usually be empirically observed (e.g., Ferster & 

Skinner, 1957). A simple way of assessing if the acquisition phase also occurs in human 

subjects performing the variable FP paradigm is to examine the time-course of the FP 

phenomena over the experiment. As the results of experiments 1 and 2 show, the 

magnitude of the FP and the sequential effects does not change during the experiment.  

However this observation, even if still theoretically interesting, is not crucially 

problematic from the point of view of the conditioning account. This is because the 

learning phase may have occurred during a smaller number of trials than those considered 

here (i.e., before the first 30 trials). This possibility was not tested as current experiments 

were not designed to analyse such a few trials. Moreover, absence of an acquisition phase, 

even if unusual, has been observed in some ‘ trace conditioning’  experiments with animals. 

For instance, in some circumstances of high motivation, pigeons adjust virtually 

immediately to changes in inter-reinforcement intervals (Higa, Wynne, & Staddon, 1991). 

If a learning phase for the appearance of the FP and sequential effects does not exist or is 

too short to be detected, the conditioning model needs to account for this feature, for 

instance by explicitly assuming that. Further studies should test if the conditioning laws act 

in a very rapid time-window, without evolving during the experiment or, alternatively, if 

the conditioned associations are already present from the subject’s history. 
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A more problematic result to account for from the point of view of the conditioning 

model is the lack of a correlation between sequential effects and FP effect. The 

conditioning view predicts a strong positive correlation between the FP effect and the 

sequential effects, as both arise from common conditioning processes (Los et al., 2001; Los 

& van den Heuvel, 2001). The lack of a significant correlation between the FP and the 

sequential effects suggests instead that what produces the decreasing slope of the FP-RT 

function is not, or not mainly, the magnitude of the supposed conditioning effects 

occurring on the preceding trial, as reflected by the sequential effects. This evidence is in 

contrast with the conditioning view, while it suggests that the FP effect (and the underlying 

processes) is at least partially independent from the sequential effects, as expected by the 

strategic accounts. 

Experiments 1 and 2, despite the different FP ranges and values used, produced 

patterns of results which were quite similar, with some minor differences. For instance, 

unlike experiment 1, there was an increase in the RTs in experiment 2 as a function of the 

block, which could be easily interpreted as a consequence of the decrease in the subjects’  

vigilance, due both to the longer FPs on each trial and the longer overall duration of the 

experimental session. However, this result is not relevant to the main purpose of this study, 

which is concerned with evaluating the conditioning account of the FP effect and the 

sequential effects. Importantly, increasing the absolute difference between FPs in the 

experiment 2, did not influence the (non-significant) correlation between FP effect and 

sequential effects. 

A longer interval is available in experiment 2 than in experiment 1 for participants to 

reach an acceptable level of preparation at the shortest FP. However, despite this, 

sequential effects seem to be ubiquitous. These findings document that sequential effects 

hold as the available time for the minimum FP increases, at least for the FP range 

considered here, although for yet greater average FP values it is known that both FP and 

sequential effects can be attenuated and even disappear (Drazin, 1961; Elliott, 1973; 

Requin & Granjon, 1969).  

In conclusion, the first two experiments bring evidence against a single-process, 

conditioning account of the FP phenomena. Contrary to what it is predicted by the 

conditioning view, the FP effect and the sequential effects seem to be two rather 

independent phenomena. However, the results of these experiments are not useful to 

understand the nature of the processes underlying the two effects. In particular they are not 
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relevant for evaluating strategic accounts, as the latter are basically agnostic about the 

effects found in this study. The following experiments will address more directly this issue. 

 

2.2. Developmental dissociations in preparation: deconstructing 

variable foreperiod phenomena 

In cognitive research, neuropsychological dissociations can be useful in providing 

evidence on the functional architecture of normal cognition, given that the effects involved 

do not differ in the quantitative levels of the cognitive resources needed to produce them 

(Shallice, 1988). An analogous logic could apply to dissociations observed in the 

developmental time-course. In the present study, such a developmental perspective has 

been adopted in order to disentangle different accounts of the variable FP effect, a well-

known phenomenon which has traditionally been studied in adults. 

A recent neuropsychological study (Stuss et al., 2005; see paragraph 1.1.2.3., chapter 

1) shows that the FP effect depends upon the functioning of the rDLPFC. Other imaging 

studies have documented that this area also has a more general role in time processing  

(e.g., Lewis & Miall, 2003a) and in attention to time (e.g., Coull, Frackowiak, & Frith, 

1998; Coull et al., 2000; Coull, 2004). Hence, the FP effect might be expected to follow 

the neuro-developmental curve of the rDLPFC. It is known that this region myelinates and 

its number of synapses decreases in an accelerated fashion from 6-7 years of age (Delalle, 

Evers, Kostovic, & Uylinghs, 1997; Huttenlocher & Dabholkar, 1997). Moreover, a 

number of tasks which rely on frontally located processes begin to be performed well at 

this age (e.g., Archibald & Kerns, 1999; Davidson, Amso, Anderson, & Diamond, 2006; 

Drummey & Newcombe, 2002). On the other hand, little is known about the anatomical 

basis of the sequential effects.  

From a functional point of view, if the same process underlies the two different 

behavioural effects in this paradigm, then they would be expected to show the same 

developmental trajectory. If instead two different processes underlie them, then there is no 

reason why they should develop in a parallel fashion. More specifically, by exploring the 

ontogenetic development of the FP phenomena, the current study assessed the viability of 

the conditioning view as opposed to strategic models. The conditioning view of Los and 

van den Heuvel (2001), indeed, predicts a parallel ontogenetic development of the 

sequential effects with respect to the FP effect as, on this account, the FP effect occurs as a 

side effect of the interplay between reinforcement and extinction which gives rise to the 
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asymmetric sequential effects. According to this view, therefore, if no FP effect is shown 

by the youngest children, no sequential effects should be observed either.  

On the traditional strategic accounts, a different prediction can be made. If no FP effect 

is observed in a group of children, that might indicate that the repreparation/maintenance 

process (e.g., Alegria, 1975) does not fully operate. On these dual-process accounts, there 

is no need for the FP effect to follow the same developmental trajectory of the sequential 

effects, as they rely upon different processes. However, if the sequential effects are 

observed without the FP effect, the FP repetition expectancy account (e.g., Drazin, 1961) 

would predict faster RTs for short-short and long-long FP sequences rather than for long-

short and even short-long ones (namely, a crossover FPn x FPn-1 interaction).  

 

2.2.1. Experiment 3a 

A few studies in the literature have examined the FP effect in children, usually 

showing a slightly smaller FP effect than adults (e.g., Adams & Lambos, 1986; Ozmun, 

Surburg, & Cleland, 1989). To our knowledge, the only study to investigate sequential 

effects in children is one by Elliott (1970). The results of that study failed to show any 

modulation of the FP phenomena as a function of age. However, the youngest group of 

children in that study were 6 year old on average. Therefore, studying the FP phenomena 

from a younger age could reveal more about their ontogenetic time-courses. Experiment 3a 

was designed to investigate the ontogenetic time-course of the FP effect and the sequential 

effects in young children from 4 years of age on. This has been done by administering a 

variable FP paradigm to children from 4 to 11 years of age as well as to a control group of 

adults. 

 

Method 

Participants 

Children (4-11 years) were mainly recruited in a summer camp and grouped into 4 age 

groups, with each group comprising two years (see Table 1). A control group of adults was 

also enrolled. A total of 106 participants took part in the experiment. Parents had 

previously signed informed consent for all the children participating in the study. The 

study was previously approved by the SISSA Ethical Committee 
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Apparatus and Materials 

Each participant was tested individually in a silent and dimly lit room. Participants 

viewed a 17”  computer monitor at a distance of ~60 cm. The index finger of their 

writing/drawing hand rested on the keyboard spacebar. Materials were the same as in the 

experiment 1, apart from the following exceptions. The chosen FP range lay between those 

used in the earlier two experiments, namely FP durations of 1, 3 or 5 sec. This choice was 

made to avoid, on the one hand, children not having enough time to prepare for the shortest 

FP (0.5 sec in experiment 1) because of an immature perceptual-motor system and, on the 

other hand, becoming distracted though waiting too long for the longest FP (7 sec in 

Experiment  2). Only a single block of 60 trials was used, in order to prevent the children 

from becoming tired or bored, and as no change was observed across the blocks of trials in 

the previous 2 experiments. 

 

Table 1 

Main demographical characteristics of the five age groups in experiment 1a 
 

 Gendera  Handedness  

Groupb Mean Age (min-max) Females Males  Left Right N 

4-5c 61 months (48-71) 11 10  1 20 21 

6-7d 83 months (72-94) 10 12  2 20 22 

8-9 107 months (96-119) 10 15  1 24 25 

10-11 130 months (120-142) 5 12  1 16 17 

Adults 25 years (19-30) 7 14  1 20 21 

Notes. aInitial ANOVAs did not reveal any significant effect of gender. Therefore, the results 
were collapsed across gender. bEach age group, apart from adults, is defined by the range of 
years spanned. cThree children from this groups refused to participate. dOne child from this 
group refused to participate. 
 

Procedure and Task 

Children were accompanied by the experimenter one at a time, from their playing 

place to the experimental room. On the way, the experimenter spoke for a few minutes 

with each child to obtain her/his collaboration and to avoid fear and shyness. When a 

friendly atmosphere had been established, the experimenter asked if she/he would take part 

in the experiment. If she/he agreed, he explained the task, consisting of pressing the 
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spacebar when an arrow appeared. This task was presented as a ‘velocity game’, but the 

need to avoid anticipations was also highlighted. Apart from this initial phase, the 

experimental conditions were completely comparable for children and adults. Preceding 

the 60 test trials, 3 learning trials were run and repeated until the participant performed the 

warm-up without errors or hesitation. However no more than 2-3 learning cycles were 

necessary for any participant.  

 

Data Analysis 

The familiarization trials and the first test trial were not analysed. Trials were treated 

as errors and discarded from the RT analyses if a response was made during the FP or the 

first 100 ms after IS onset (anticipated responses), or if the RT was slower than 1500 ms or 

no response was detected (delayed and null responses). For the RT analyses, the within-

subject independent variables included FPn (1, 3, or 5 sec) and FPn-1. The between-subjects 

variable involved 5 age groups: 4-5, 6-7, 8-9, 10-11 and adults. The dependent variable 

chosen was the median RT3. The RT data were normally distributed but the ANOVA 

assumption of homoschedasticity was occasionally violated (significant Levene test). For 

that reason, a log-transformation was applied to make the variances more homogeneous. 

After applying this transformation, the assumption of homoschedasticity was always 

achieved. Greenhouse-Geisser � corrections were used when appropriate. Post-hoc Tukey’s 

HSD comparisons were performed to evaluate pairwise differences among the means. 

 

Results 

Accuracy 

Table 2 shows the error percentages for each group. For the accuracy analysis, non-

parametric tests were used because the distributions of most variables were non-Gaussian 

by the Kolmogorov-Smirnov test and because some participants did not make any error. 

Overall anticipated responses decreased as a function of age [Kruskal-Wallis test: H 

(4, N=106)=17.8, p < .01]. Anticipated responses increased significantly as a function of 

FPn in the 4-5 year old children [Page’s L = 266, p < .05] and, as a tendency, in the 6-7 

year old ones [Page’s L = 274.5, critical L for p < .05 = 275]. Anticipated responses 

decreased significantly as a function of the previous FPn-1 in 4-5 year old children [Page’s 

                                                
3Median RTs (instead of mean RTs) were used here, in the two subsequent experiments 3b and 4, and also in 
the patient study presented in chapter 3 (experiment 9), in order to reduce the intra-subject variability 
(Keppel, Saufley, & Tokunaga, 1992), which was due to the low number of trials per condition used with 
these special populations (young children and patients). 
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L = 264, p .05], and also in 6-7 and 8-9 year old ones [Page’s L = 280 and 319, 

respectively, for both, p < .01].  

Overall delayed and null responses decreased as a function of age [Kruskal-Wallis test: 

H (4, N=106) = 37.7, p < .001]. Delayed and null responses generally decreased as a 

function of FPn and increased as a function of FPn-3but these tendencies, although constant, 

never reached significance for any group with the Page’s L test. 

 

Table 2 

Mean error percentages (+ SE) as a function of type of error, current foreperiod (in seconds), 
preceding foreperiod (in seconds) and group of age (in years) in experiment 3a (above) and in 
experiment 3b (below, see page 52, for details). 
 

Age   Foreperiod n  Foreperiod n-1 

  1 3 5  1 3 5  1 3 5  1 3 5 

  
Anticipated  
Responses 

 
Delayed + Null 

Responses 
 

Anticipated  
Responses 

 
Delayed + Null 

Responses 
Exp. 3a                

4-5  
5.3 

(1.3) 
9.2 

(1.7) 
11.2 
(2.4)  

7.3 
(1.8) 

7.9 
(2.1) 

6 
(1.4) 

 
 

10.6 
(2.3) 

9.7 
(2.3) 

5.5 
(1.2)  

5.2 
(1.8) 

5.9 
(1.3) 

10.2 
(2.5) 

6-7  
6.7 

(1.5) 
9.9 

(1.4) 
10.5 
(2.2)  

2.5 
(0.7) 

3.8 
(1.1) 

3 
(1.1) 

 
 

10.8 
(2.3) 

10.4 
(2.1) 

5.9 
(1.5)  

2.8 
(0.7) 

1.9 
(0.5) 

4.5 
(1.2) 

8-9  
4.8 

(1.4) 
4.1 

(0.9) 
6.2 

(1.6)  
2.1 

(0.9) 
0.4 

(0.4) 
0.4 

(0.3) 
 
 

8.5 
(2.1) 

4.7 
(1.1) 

2 
(0.9)  

0.2 
(0.2) 

0.4 
(0.3) 

2.2 
(0.9) 

10-11  
3.6 

(1.5) 
5.2 

(1.6) 
7.4 

(2.3)  
0.6 

(0.4) 
0 

(0) 
0.3 

(0.3) 
 
 

7.4 
(2.3) 

4.6 
(1.9) 

4.1 
(1.5)  

0.3 
(0.3) 

0.6 
(0.4) 

0 
(0) 

Adults  
1.7 

(0.5) 
2.6 

(1.0) 
4.3 

(1.3)  
1 

(0.5) 
0 

(0) 
0 

(0) 
 
 

3.4 
(1.3) 

3.1 
(0.9) 

2.1 
(0.7)  

0 
(0) 

0.3 
(0.3) 

0.7 
(0.4) 

Exp. 3b 
                

Age                

4-5 
 

4.6 
(2) 

10.4 
(2.3) 

12.9 
(3.8)  

12.1 
(3.1) 

13.8 
(4.4) 

12.1 
(3.2) 

 
 

10.8 
(3.2) 

11.3 
(3.4) 

5.8 
(1.8)  

9.2 
(2.7) 

13.8 
(3.5) 

15 
(3.9) 

5-6 
 

1.7 
(0.9) 

5.4 
(1.9) 

9.2 
(1.9)  

4.2 
(1.5) 

4.2 
(2.1) 

5 
(2.5) 

 
 

4.6 
(1.1) 

5 
(1.6) 

6.7 
(1.7)  

5.4 
(2.9) 

2.1 
(1) 

5.8 
(2.6) 

 

Reaction Times 

A 3x3x5 mixed ANOVA was performed with FPn and FPn-1 as the within-subject 

variables and age as the between-subjects variable (see Figure 6). This produced a 

significant main effect of age [F(4, 101) = 83.7, p < .001]. Tukey tests demonstrated that 

for any two groups, responding was faster in the older group, except for the comparison 
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between the 8-9 and 10-11 groups, which was non-significant (for all the other 

comparisons, p < .05).  

 

FP effect and Sequential effects 

The main effect of FPn was significant [F(1.7, 169.8) = 95.48, corrected p < .001]. 

Tukey comparisons showed that RTs were slowest for the shortest FP of 1 sec as compared 

to the medium (p < .001) and longest FPs (p < .001), but there was no difference between 

the RTs for FPs of 3 and 5 sec. Critically, a significant age x FPn interaction was present 

[F(6.7, 169.8) = 9.67, corrected p < .001]. A FP effect (i.e., RTs slower for the shortest FP 

than for the longest one) was present in all groups apart from the 4-5 year old one. For this 

group, the difference between the mean RT on shortest and longest FPsn was non-

significant (Tukey p > .99, for all the other groups, p < .01). 

To evaluate the difference in the magnitude of the FP effect across groups, planned 

comparisons were performed contrasting RTs on FPs of 1 sec with those on FPs of 5 sec 

for each age group and for each pair of age groups. The FP effect found in the 4-5 year old 

children (-13 ms) was significantly smaller than in all the other groups (for all planned 

comparisons between 4-5 years group and each other group: p < .001). The 6-7 year old 

group had a smaller FP effect compared with the 10-11 year old (p < .05) and the adults (p 

< .001). No other difference was found. Additionally, polynomial contrasts were used to 

obtain an overall picture after exclusion of the qualitatively different 4-5 year old group: 

the linear model contrasting the RTs on FPn of 1 vs. 5 sec, for the other four groups, fitted 

the results well [F(1, 81) = 17.87, p < .001], indicating that the FP effect grows linearly as 

a function of age from 6-7 years to adulthood. 

The main effect of FPn-1 was significant [F(2, 202) = 103.86,  p < .001]. Current RT 

was slower following a longest FPn-1 trial than a medium FPn-1 trial (Tukey, p < .001). 

This, in turn, was slower than RT following a shortest FPn-1 trial (p < .01). The FPn x FPn-1 

interaction was also significant [F(3.7, 371.5) = 13.88, corrected p < .001], replicating 

results concerning the asymmetry of the sequential effects known from the literature. This 

interaction indicates that the effect of FPn-1 was greatest for the shortest FPn and smallest 

for the longest FPn. When the FPn was the shortest one (1 sec), RTs were slower if the   

FPn-1 was the longest (5 sec) than if it was the medium one (3 sec; Tukey, p < .001). In 

turn, RTs were slower when the FPn-1 was the medium one than when it was the shortest 

one (p < .001). When the current FPn was the medium one (3 sec), the same pattern was 

observed but to a more minor extent (for both 5 vs. 3 sec FPsn-1 and 3 vs. 1 sec FPsn-1, 
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Tukey p < .05). Finally, for the longest FPn (5 sec), no modulation by FPn-1 was observed. 

Most critically, no sequential effect involving the FPn-1 was significantly different between 

any of the groups (see Figure 6). This demonstrates that sequential effects are present with 

the same relative magnitude in adults at least by 4-5 years of age. The age x FPn x FPn-1 

interaction was not significant. However, visual inspection of the Figure 6 suggests that the 

youngest children did not produce asymmetric sequential effects. 

 

 

Figure 6. Median reaction times as a function of the current FP (x-axis) and preceding FP 
(lines) in Experiment 3a. Vertical lines indicate standard errors of the mean. FP = foreperiod. 
Panels from A to E show the raw data separately for each Group of Age = A: 4-5 year old 
children; B: 6-7; C: 8-9; D: 10-11; E: Adults. Note that the ANOVAs reported in the text and in 
Table 3 were performed using log-transformed data while the figure shows raw data for 
reasons of clarity. 
 

To statistically corroborate this observation, subsequent 3x3 repeated measures 

ANOVAs were performed separately on each group, with FPn and FPn-1 as the within-

subject variables. For all groups, apart from the 4-5 year old one, these analyses confirmed 

results from the previous analysis, as all of them showed a significant main effect of FPn, 

FPn-1, and the FPn x FPn-1 interaction (see Table 3). It is noteworthy that only 4-5 year old 

children completely failed to show the FPn effect and, as critically, there was absolutely no 
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FPn x FPn-1 interaction. On the other hand, they showed significant sequential effects at the 

.001 � level (i.e., main effect of FPn-1; see Table 3).  

The lack of FPn x FPn-1 interaction for this group was due to RTs being exclusively 

modulated by the previous FPn-1 with no effect of the current FPn, even when the latter was 

the longest one (Figure 1, Panel A). 

 

Table 3 

Outputs of the separate ANOVAs for each of the 5 age groups of experiment 1a. SS = Sum of 
Squares; df = Degrees of Freedom; MSE = Mean Square Error. 
 

Group Effect SS df MSE F p < 

FPn 0.001 2; 40 0 .07 .93 

FPn-1 0.124 1.5; 30.8 .062 13.46 (Adj.p) .001*  4-5 
FPn*FPn-1 0.011 2.6; 52.5 .003 .65 (Adj.p) .57 
FPn 0.098 1.5; 32.4 .049 8.49 (Adj.p) .01*  

FPn-1 0.072 2; 42 .036 16.97 .001*  6-7 
FPn*FPn-1 0.05 4; 84 .013 3.33 .05*  

FPn 0.26 1.5; 35.3 .13 31.59 (Adj.p) .001*  
FPn-1 0.137 2; 48 .068 38.85 .001*  8-9 
FPn*FPn-1 0.063 3; 72.5 .016 5.45 (Adj.p) .01*  

FPn 0.275 2; 32 .138 28.84 .001*  

FPn-1 0.109 2; 32 .054 29.54 .001*  10-11 
FPn*FPn-1 0.032 4; 64 .008 3.58 .01*  

FPn 0.519 2; 40 .26 107.9 .001*  

FPn-1 0.079 2; 40 .04 21.7 .001*  Adults 
FPn*FPn-1 0.035 4; 80 .009 5.4 .001*  

Note. For each age group, a 3 (FPn = foreperiod on the trial n) x 3 (FPn-1 = foreperiod on the 
trial n-1) Repeated measures ANOVA was performed. Greenhouse-Geisser corrections were 
applied when appropriate.  

 

Discussion 

In the present experiment, a variable FP paradigm was administered to a 

developmental population with the aim of exploring the ontogenetic time-course followed 

by the FP and the sequential effects. The results show a general reduction of the RTs with 

age, which can be ascribed to the fact that processing speed is slower in young children 

and progressively increases during development (e.g., Salthouse & Kail, 1983). More 

relevant for the present purposes, a developmental dissociation has been observed between 

the two effects: sequential effects are already present at least from 4-5 years of age, while 

the FP effect appears gradually from 6-7 years on. The different developmental trajectories 

followed by the two effects already provide evidence in favour of a dual-process account 

and are difficult to explain on a single-process account. A potentially useful additional 
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result, in order to understand which mechanism underlies the sequential effects, is the 

observation that, in the 4-5 years children, these effects were symmetrical across all the 3 

current FPsn
4. However, this observation is weakened by a lack of age x FPn x FPn-1 three-

way interaction.  

 

2.2.2. Experiment 3b 

A possible reason for the lack of the age x FPn x FPn-1 3-way interaction, which would 

demonstrate qualitative differences in the shape of the sequential effects in youngest 

children with respect to older, could be the variability across and within groups in 

experiment 3a. A within-subject approach would be of use in order to reduce the variability 

across groups. To that purpose, a follow-up approach was adopted in the experiment 3b. 

To our knowledge, no other developmental study has previously investigated the FP 

phenomena longitudinally.  

 

Method 

Participants 

Twelve participants from the 4-5 year old group of the experiment 3a (9 females, 1 

left-handed) were retested 14 months after the first study. In the first session, children were 

61 months old on average (range: 50-71). 

 

Apparatus and Procedure 

The apparatus and procedure of the second session were kept as similar as possible as 

those in the first session (see method session of experiment 3a), apart from the fact that 

now children were tested in their homes instead of in the summer camp. 

 

Data Analysis 

The same criteria were adopted as in experiment 3a for the accuracy and RTs here. For 

RT analyses, a 2x3x3 within-subject ANOVA was employed with test session (first vs. 

second session), FPn (1, 3, or 5 sec) and FPn-1 as the independent variables. The ANOVA 

                                                
4We use the expression symmetric sequential effects here and hereafter, meaning that there is a symmetric 
influence of the FPn-1 on the RTs whatever FPn has occurred. This influence consists of RT being slower as 
the preceding FPn-1 gets longer. Strictly speaking, also a cross-over FPn x FPn-1 interaction would be 
symmetric, but not in the sense explained above. 



 53 

assumption of normality was not violated by the median RT data, which were then used as 

the dependent variable. 

 

Results 

Accuracy 

The accuracy results for experiment 3b are presented in the second part of the Table 2. 

There was a tendency for a reduction of the overall percentage of anticipations from the 

first to the second session [Wilcoxon: Z > 1.73, p = .08]. The rate of anticipations 

increased as a function of FPn, both in the first session [Page’s L = 154, p < .05] and in the 

second one [Page’s L = 157, p < .01]. The number of anticipations did not change 

significantly as a function of FPn-1 in either session. The rate of overall delayed and null 

responses decreased from the first to the second session [Wilcoxon: Z > 2.49, p < .05]. The 

number of such responses did not vary significantly as a function of FPn in either session. 

This type of error increased significantly as a function of FPn-1 in the first session only 

[Page’s L = 153.5, p < .05]. 

 

Reaction Times 

The main effect of session [F(1, 11) = 4.9, p < .05] demonstrated that median RTs 

were slower in the first session than in the second one (770 vs. 670 ms). There was a main 

effect of FPn [F(2, 22) = 3.5, p < .05] but it was qualified by a FPn x session interaction 

[F(2, 22) = 3.8, p < .05]. The latter was in accordance with that FPn effect being present in 

the second session but absent in the first one. Subsequent planned comparisons contrasting 

RTs for the shortest FPn of 1 sec and for the longest FPn of 5 sec were not significant in the 

first session (p > .7) but were significant in the second session (p < .01). As far as 

sequential effects were concerned, the main effect of FPn-1 was significant [F(2, 22) = 11.4,  

p < .001], indicating that RT was faster as FPn-1 was shorter. No other effect reached 

significance. However, when data from the 2 testing sessions were analysed separately, the 

FPn x FPn-1 interaction showed a tendency towards significance in the second session only 

[F(4, 44) = 2.3, p < .07; for the first session, p = .46], suggesting the presence of 

asymmetric sequential effects at 5-6 years of age.  

In order to control for possible learning effects, the results from the 12 children of the 

second session of the longitudinal study (5-6 years old) were compared with those of 5 and 

6 years old children of experiment 3a (considered as a single group). After the exclusion of 

the children participating in the longitudinal study from the latter group, a 2x3x3 mixed 
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ANOVA was performed with group as the between-subjects variable (21 children of 

experiment 3a vs. 12 children of experiment 3b, second session), and FPn and FPn-1 as the 

repeated measures variables. This analysis did not show a significant main effect or any 

interaction concerning the group factor, indicating that no learning effects had occurred for 

the children re-tested in the second session of experiment 3b. 

 

Discussion 

The experiment 3b confirmed results of experiment 3a from a longitudinal point of view, 

by demonstrating that a population of young children did not show the FP effect when they 

were 4-5 years old, but showed the effect 14 months after the first test. Moreover, no 

difference was observed between sequential effects in the two sessions. Sequential effects 

were basically symmetric in this population, as no FPn by FPn-1 interaction was observed at 

either session. A limit of experiments 3a and 3b was that the difference between the 

symmetric sequential effects in 4-5 year old children and the asymmetric sequential effects 

in older children and adults was not statistically corroborated. This may be due to a lack of 

power in the experiment 3b, in which it was possible to re-test only 12 participants in the 

second session. As far as experiment 3a is concerned, detailed analyses of RT data 

performed on the 4 and 5 year old children (N = 8 and 13, respectively) as separate groups, 

demonstrated that 4 year old showed symmetric sequential effects whereas 5 year old did 

not [age x FPn x FPn-1 interaction: F(4, 76) = 2.8, p < .05]. In addition, within each age 

group, a Pearson correlation analysis was carried out between months of age and an index 

of asymmetry of sequential effects. This index was obtained for each participant as 

follows. First, sequential effects on the shortest FPn were calculated through the RT 

difference between the shortest FPn given a longest FPn-1 and given a shortest FPn-1. Then, 

sequential effects on the longest FPn were calculated through the RT difference between 

the longest FPn given a longest FPn-1 and given a shortest FPn-1. To estimate the degree of 

asymmetry of the sequential effects, the difference between the two RT differences was 

calculated. A positive value would indicate asymmetry towards the shortest FPn, a negative 

one would indicate asymmetry towards the longest FPn, with values near to 0 indicating 

symmetric sequential effects. A positive correlation was obtained between the asymmetry 

index and months of age within the 4-5 years old children only (Pearson’s r = .63, p < .05), 

suggesting that sequential effects became gradually more asymmetric from 4 to 5 years of 

age. This suggested that the 4-5 year old group consisted of two heterogeneous 

populations, which would be worthwhile to consider separately. However, given the small 
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number of 4 year old children (i.e., 8), we replicated the experiment with a new and larger 

sample size for each group, considering 4 and 5 year old children as two separate groups. 

 

2.2.3. Experiment 4 

In the experiment 4, we concentrated on the most sensitive ages of 4, 5 and 6 years old, 

both because the main developmental changes in the FP effect found in previous 

experiments were observed during this critical period, and because this permitted us to 

reduce the variability across-ages in the magnitude of the absolute RTs, which is observed 

when older groups are also included. In addition, a more fine-grained approach was 

adopted in this experiment, in that 4 and 5 year old children were treated as separate 

groups.  

A limit of experiments 3a and 3b was the small number of trials used. The choice of 60 

trials, although sufficiently small in number to avoid distraction and tiredness in children 

as young as 4 years old, was not optimal from the statistical point of view, given the high 

number of conditions involved in the analysis. For this reason, we doubled the number of 

trials in the experiment 2 (120 vs. 60). However, in order to run more trials roughly in the 

same time, the range of FPs used was narrowed to 1, 2 and 3 sec instead of 1, 3 and 5 sec, a 

manipulation which, if one extrapolates from the literature on adults (e.g., Niemi & 

Näätänen, 1981), should not qualitatively affect the occurrence of the basic FP phenomena.  

 

Method 

Participants 

Sixty-eight children were recruited for experiment 4, mostly in a kindergarten. They 

belonged to 3 age groups: 4 year old (N = 26, 9 Females, 1 left-handed, mean age: 55 

months), 5 year old (N = 24, 12 Females, 1 left-handed, mean age: 65 months), and 6 year 

old (N = 18, 7 Females, 2 left-handed, mean age: 76 months). Parents had previously 

signed informed consent for all the children participating in the study. Two other 4 year old 

children refused to participate. One further 4 year old child refused to complete the test. 

 

Apparatus and Materials 

The apparatus and materials were the same as in the experiment 3a, apart from a few 

exceptions. Children were tested in a quite room of a kindergarten and not of a summer 

camp. The FPs employed were 1, 2 and 3 sec instead of 1, 3 and 5 sec.  
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Procedure and Task 

Procedure and task were the same as in the experiment 3a, except that 120 test trials 

were administered to each participant instead of 60. A short rest was given after the first 

block of 60 trials. 

 

Data Analysis 

The same criteria were adopted to analyse data in the experiment 4 as in experiment 

3a, apart from the following exceptions. For the RT analyses, a 3x3x3 mixed design 

ANOVA was used, with FPn (1, 2, 3 sec) and FPn-1 as the within-subject independent 

variables and age group (4, 5 and 6 year old children) as the between-subjects variable. No 

assumptions underlying ANOVA was violated. This permitted the use of median RTs as 

the dependent variable. 

 

Results 

Accuracy 

The percentage of errors in experiment 2 is shown in the Table 4. The rate of overall 

anticipated responses was comparable across age groups [Kruskal-Wallis test: H (2, N=68) 

= 4.1, p = .13]. The rate of anticipated responses increased significantly as a function of the 

FPn for the 4 and 5 year old groups [Page’s L = 386.5 and 348.5, respectively, for both, p > 

.001], but this tendency was not significant for the 6 year old group. Anticipated responses 

decreased significantly as a function of the FPn-1 in the 4 and 5 year old groups [Page’s L = 

332, p > .01 and Page’s L = 350, p > .001, respectively], and there was a similar tendency 

in the 6 year old group [Page’s L = 226.5, critical L for p < .05 = 227].  

The rate of overall delayed and null responses decreased as a function of age [Kruskal-

Wallis test: H (2, N=68) > 15.8, p < .001]. Delayed and null responses decreased 

significantly as a function of FPn in the 4 and 5 year old groups [Page’s L = 392, p > .001 

and Page’s L = 305, p = .01, respectively], and there was a similar tendency in the 6 year 

old ones [Page’s L = 225.5, critical L for p < .05 = 227]. Delayed and null responses 

increased reliably as a function of FPn-1 in the 4 and 5 year old groups [Page’s L = 336.5, p 

< .001 and Page’s L = 302, p < .05, respectively] but this tendency was not significant in 

the 6 year old group.  
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Table 4 

Mean error percentages (+ SE) as a function of type of error, current foreperiod n (in seconds), 
preceding foreperiod n-1 (in seconds), and group of age (in years), in experiment 4. 
 

  Foreperiod n  Foreperiod n-1 

  1 2 3  1 2 3  1 2 3  1 2 3 

  
Anticipated  
Responses 

 
Delayed + Null 

Responses 
 

Anticipated  
Responses 

 
Delayed + Null 

Responses 
Age                

4  
3.2 

(0.8) 
10.3 
(1.6) 

12.7 
(1.6)  

18.4 
(2.5) 

18.9 
(2.7) 

16.5 
(2.5) 

 
 

11.6 
(1.4) 

8.6 
(1.3) 

6 
(0.9)  

14.3 
(2.7) 

18.5 
(2.2) 

21 
(2.8) 

5  
4.5 

(1.6) 
8.8 
(2) 

13.4 
(2.1)  

13.3 
(2.7) 

12.4 
(2.4) 

9.5 
(2.3) 

 
 

13.1 
(2.3) 

8.3 
(1.6) 

5.3 
(1.5)  

9.5 
(2.1) 

11.9 
(2.5) 

13.8 
(2.7) 

6  
4.9 

(0.9) 
5.4 

(1.2) 
6.9 

(1.5)  
8.1 
(2) 

4.2 
(1.3) 

3.2 
(1.2) 

 
 

8.5 
(1.4) 

4.2 
(1.1) 

4.6 
(1)  

4.2 
(1.3) 

5 
(1.2) 

6.3 
(1.9) 

 

Reaction Times 

The median RTs in experiment 4 are shown in Figure 7. A significant main effect of 

age was obtained [F(2, 65) = 17.4, p < .001]. Tukey tests demonstrated that, for any 2 age 

groups, responding was faster in the older group (for all comparisons, p < .01).  

 

FP effect and Sequential effects 

The main effect of FPn was significant [F(1.9, 124.3) = 24.1, corrected p < .001]. 

Critically, also a significant age x FP interaction was present [F(3.8, 124.3) = 3, p < .05]. 

Post-hoc comparisons demonstrated that the FP effect (i.e., RTs slower for the 1 sec FP 

than for the 3 sec FP) was present in the 5 and 6 year old group only (for both, p < .01). 

The main effect of FPn-1 was significant [F(1.8, 119.3) = 46.6,  corrected p < .001]. 

RTs were slower following a longest FPn-1 or a medium FPn-1 than a shortest FPn-1 (for 

both, p < .01). The FPn x FPn-1 interaction was also significant [F(3.6, 231.8) = 4.1, p < 

.01], indicating that the effect of FPn-1 was greatest for the shortest FPn and smallest for the 

longest FPn. However, this interaction was qualified by an age x FPn x FPn-1 interaction 

[F(8, 260) = 2, p < .05]. This last finding fitted with sequential effects being symmetric in 

the 4 year old children and asymmetric in the older groups. This was supported by 

subsequent ANOVAs (3 FPn x 3 FPn-1) performed separately on each group. The 4 year old 

children did not show a significant FPn x FPn-1 interaction (p = .49), whereas this 
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interaction was significant in older children [for the 5 years old, F(3.5, 81.6) = 3.7, 

corrected p < .01; for the 6 years old, F(4, 68) = 6.3, p < .001]5. 

 

 

Figure 7. Median reaction times as a function of the current FP (x-axis) and preceding FP 
(lines) in Experiment 2. Vertical lines indicate standard errors of the mean. FP = foreperiod. 
Panels from A to C show data of the 4, 5 and 6 year old groups, respectively. 

 

Discussion 

The results of experiment 4 basically confirm those of experiment 3a and 3b with 

respect to the developmental curve shown by the FP effect. The 4 year old children again 

do not show the FP effect, whereas this effect is fully present in the 6 year old group, with 

the 5 year old one in between. More interestingly, the picture of the sequential effects 

obtained in this experiment is clearer than that obtained in the experiment 3a, as the 

significant age x FPn x FPn-1 3-way interaction obtained here reveals that sequential effects 
                                                
5We wanted to further check if the performance of 4 year old children, who made more errors with respect to 
the other two groups, could be explained by speed-accuracy trade-off. Due to the relatively high number of 
errors made by the youngest children (normally distributed), it was possible to perform two 3 FPn x 3 FPn-1 
full factorial ANOVAs on the percentage of their anticipations and delayed and null responses, respectively. 
These ANOVAs did not show any FPn x FPn-1 interaction [anticipated responses: F(4, 100) = 1.3, p = .26; 
delayed and null responses: F(4, 100) = 2.1, p = .09], mirroring the RT analysis. This result clearly discards 
the possibility that symmetric sequential effects found in the RT data of youngest children are an artefact of 
errors, as their performance cannot be attributed to speed-accuracy trade-off. 
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change qualitatively with age. The sequential effects are symmetrically present across all 

the 3 FPsn in the 4 year old children, while they become asymmetrically biased towards the 

shortest FPn in 5 and 6 year old ones. This could explain the lack of 3-way interaction 

when 4 and 5 year old children are considered as a single group, as they seem to belong to 

2 different populations, as far as the pattern of their sequential effects is concerned. 

 

General Discussion: experiments 3a, 3b and 4 

The present set of developmental experiments reveals for the first time a dissociation 

between the FP effect and the sequential effects from an ontogenetic perspective. As 

shown consistently in all the 3 experiments (3a, 3b and 4), the ontogenetic time-course of 

the FP effect gradually develops as one goes from 4 or 4-5 years of age to older ages, 

whereas sequential effects are already present in their typical magnitude even in the 

youngest children considered here.  

In the literature, a study by Elliott (1970) has already investigated the sequential 

effects together with the FP effect in children. As for our findings, the results of that study 

showed the presence of sequential effects in children, but, unlike our study, there was only 

a slight and non-significant modulation of the FP effect as a function of age. The difference 

in results between the two studies can be attributed to the different ages of the youngest 

groups of children tested (5-7 year old in the Elliott’s study vs. 4-5 year old here). 

However, even when comparable age groups are considered, the results still remain 

partially incongruent. It is possible that the differences in a number of experimental details 

could explain the remaining differences across studies. These include the use of different 

stimulus modalities (auditory, in Elliott’s study vs. visual, here), different social 

backgrounds (upper middle-class children with parents in academic and medical 

occupations, there vs. children chosen randomly from a wider range of social contexts, 

here) and, probably most important, the different ranges of FPs used (1-16 sec, with an 

exponential distribution, in Elliott’s case, vs. 1-5 sec and 1-3 sec, with a rectangular 

distribution, here). In particular, a possible influence of different FP ranges and distribution 

on the developmental time-course of the FP phenomena needs further investigation. 

A closer examination of the sequential effects showed by the youngest children in the 

current study can help to clarify their nature further, and to discriminate between different 

existing accounts of these phenomena. Despite the usual pattern of asymmetric sequential 

effects found in adults, sequential effects were symmetric for the youngest children in all 
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the 3 experiments of the study. In other words, the RTs become slower when the previous 

FPn-1 is increasingly long, whatever the current FPn is. However, the pattern of sequential 

effects observed in the youngest children was significantly different from that found in 

older children in the experiment 4 only, when the 4 year old were considered separately 

from the 5 year old children. This discrepancy suggests that the mechanism responsible for 

an asymmetrization of the sequential effects, whatever it is, begins to mature between 4 

and 5 years of age. As a further support for this hypothesis, even in the experiment 3a, 

when performance of 4 year old children was compared to that of 5 year old children, a 

significant difference in the pattern of sequential effects (i.e., age x FPn x FPn-1 interaction) 

was obtained (see discussion of experiment 3b). 

On the traditional view (e.g., Drazin, 1961), the sequential effects per se are due to an 

expectation of FP repetition being carried over from one trial to the next. Their asymmetry 

is due to a complementary repreparation/maintenance mechanism operating when this 

expected repetition does not occur for short FPn-1-long FPn sequences (e.g., Alegria, 1975). 

It follows that if the latter process does not work, no FPn effect should occur, whereas a 

FPn x FPn-1 crossover interaction should emerge. That is, RTs should be faster when FPn is 

the same as FPn-1 than when it is longer or shorter. Contrary to this prediction, although 

youngest children did not show a FPn effect, they did not show any interaction either, but a 

significant main effect of FPn-1 only.  

Symmetric sequential effects would also not be expected on the conditioning view 

(Los & van den Heuvel, 2001). On this single-process account, the FP effect should have 

occurred together with the sequential effects in ontogenetic development, as both are held 

to originate from common conditioning processes. In other words, if no FPn effect occurs, 

neither a FPn-1 effect nor a FPn-1 x FPn interaction are to be expected. No interaction was 

actually obtained but the FPn-1 did modulate RTs even in the youngest children considered 

here. The presence of sequential effects without a FP effect suggests that they have at least 

partially different functional origins. This makes it unlikely that conditioning mechanisms 

alone could explain the empirical results of the present study. 

There is recent evidence in support of a dual-process interpretation of the FP 

phenomena. Los and Agter (2005), for instance, obtained changes in the slope of the FP-

RT function by contrasting different distributions of FPs within blocks of trials (i.e., 

uniform, exponential, and peaked). According to a pure conditioning model, the shape of 

the FP-RT function, obtained under a given distribution of FPs, might be predicted by re-

weighting sequential effects as a function of the different frequency of occurrence of the 
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various FP sequences under the other distributions. However, this was shown not to be a 

critical factor, as re-weighting sequential effects accounted for little variance of the 

difference between the FP-RT functions obtained in the three distributions, suggesting that 

processes other than conditioning ones could have been also engaged with the various 

distributions. As the authors suggested, these critical processes are likely to be intentional 

ones. 

Therefore, the sequential effects found in the youngest children are theoretically 

relevant. As an alternative to the previous accounts, they can be better explained by 

assuming an enhancement in arousal following a short FPn-1 and a decrease in arousal 

following a long FPn-1, independently of the current FPn. It is as if the preparation process 

benefits if the previous preparation has been maintained for only a short interval, but 

becomes refractory when preparation has previously been maintained over a long time-

interval. This may be because to keep prepared for a long interval is cognitively expensive 

and exhausts processing resources (see Näätänen, 1971). This account is also supported by 

the accuracy data of experiment 4. In that experiment, children (especially 4 and 5 years 

old) were more likely to give a very slow response (i.e., > 1500 ms), or even not to 

respond, as the FPn-1 gets longer, suggesting a long-lasting inhibitory effect of long FPsn-1 

on the preparation level during the current trial. The fact that a similar pattern of errors was 

not statistically corroborated in older children and adults may well be attributed to ceiling 

effects derived by the ease of the task. Moreover, all children performing experiment 4 

(i.e., 4-6 years old) were more likely to give anticipated responses as the FPn-1 gets shorter, 

suggesting a facilitation on their preparation level after a short FPn-1. It is notable that the 

trend in the accuracy data for the youngest groups of the experiment 3a and 3b (sometimes 

even for older children) goes in the same direction (see Table 2), even if this is not always 

statistically detectable. 

There is recent electrophysiological evidence which may be interpreted in favour of 

this hypothesis of preparation modulation by the previous FP. Using temporal cueing 

paradigms with variable FPs on adults, Los and Heslenfeld (2005) found symmetric 

sequential effects in the Contingent Negative Variation (CNV), a negative ERP component 

whose amplitude is considered a marker of non-specific preparation and is known to be 

modulated by arousal level (e.g., Kamijo et al., 2004). Specifically, when the FPn-1 was 

short, the CNV amplitude was tonically greater throughout the FPn than when the FPn-1 

was long. Moreover, the effect of FPn-1 did not interact with the effect of cueing. In other 

words, the effect of FPn-1 on the CNV was additive with effects of the status of the cue 
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(valid vs. neutral) and of the information provided by a valid cue (short vs. long). 

Moreover, at least one electrophysiological effect found by Los and Heslenfeld (2005) 

does not fit the conditioning model of the sequential effects in its first version (Los et al., 

2001; Los & van den Heuvel, 2001). According to the conditioning model, there is no 

reason for the preparation to be lower when a long FPn follows an equally long FPn-1. In 

this case reinforcement should act enhancing, and not tonically diminishing, the non-

specific preparation reflected by the CNV amplitude. This should be especially the case 

with a neutral cue condition when the effect of conditioning mechanisms, if present, should 

be observed more clearly without interfering effects of informative cueing.  

The sequential effects observed in older children and adults in the present study and in 

the literature would seem to require an additional process of endogenous preparation, 

analogous to that already described by some traditional accounts (e.g., Coull & Nobre, 

1998; Miniussi et al., 1999; Niemi & Näätänen, 1981). In a variable FP task, this process 

checks for the non-occurrence of the imperative stimulus; in this case it uses the increasing 

conditional probability of the imperative stimulus occurring as time elapses to enhance 

preparation (Näätänen, 1970). In this way, it would partially compensate for and attenuate 

the process of tonic arousal modulation producing the sequential effects at longer FPs, thus 

generating sequential effects asymmetrically biased towards the shortest FPs. With respect 

to the previous versions of the conditional probability checking account, this explanation 

emphasizes more the role of this process, by relating it with the sequential effects. On this 

account, indeed, the conditional probability monitoring, not only determines the FP effect, 

but does it also by contrasting the negative influence of a previous long FP on RTs.   

In an analogous fashion to findings in neurological patients after lesions to the 

rDLPFC (Stuss et al., 2005), this checking process would be assumed not to work in the 

youngest children. The reason would be that the rDLPFC region controlling such a process 

is damaged in right frontal patients and not yet adequately mature in 4 year old children.  

However, the occurrence of this endogenous process, although it may attenuate the 

influence of FPn-1 at longer FPsn, does not eliminate such influence. Indeed, in studies 

employing variable FP paradigms with catch trials (i.e., when no imperative stimulus 

appears across the trial), RTs at the longest FPn are slower after a catch trial than after a 

respond trial (e.g., Correa, et al., 2004; Correa, et al., 2006; Los & Agter, 2005), 

demonstrating an effect of the events occurring during the preceding trial.  

From a broader point of view, the results of the current study may be interpreted in the 

context of other studies of executive functioning in childhood. There is evidence showing 
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that the executive processes supposed to underlie the tasks at study, and not task difficulty 

or complexity per se, may explain the developmental dissociations found in children (e.g., 

Davidson et al., 2006). A prediction derived from the supervisory attention system model 

(Norman & Shallice, 1986) is that known as age-of-acquisition principle, according to 

which processes involved in lower-level systems, such as automatic processes (i.e., 

contention scheduling, in Norman & Shallice’s terminology) are acquired before processes 

belonging to the higher-level supervisory system (e.g., Shallice, 2004; see also Karmiloff-

Smith, 1994; Zelazo et al., 1996), as the latter are mainly localized in the prefrontal cortex, 

which is known to mature at a slower rate with respect to other portions of the brain (e.g., 

Delalle, et al., 1997; Huttenlocher & Dabholkar, 1997). On this view, the fact that 

sequential effects are acquired before the FP effect suggests that underlying processes are 

more automatic than those involved in the FP effect (see Houdé, Angard, Pillon, & Dubois, 

2001, for a similar approach).  

In conclusion, the present results suggest that the process of endogenous preparation, 

thought to produce the FP effect, appears later in cognitive development than the processes 

underlying the sequential effects. The observation that FP and sequential effects can be 

dissociated across different ages, both between- and within-subjects, demonstrates that at 

least partially different processes underlie the two FP phenomena.  
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2.3. FP phenomena with equal conditional probability for each FP 

The results of the developmental experiments already described are useful for 

understanding the processes underlying the FP phenomena. In particular, they support the 

hypothesis that the processes underlying the sequential effects consist of automatic 

influences from the preceding trials (see also Los & van den Heuvel, 2001). On the other 

hand, the mechanism responsible for the FP effect would appear to work on a higher 

cognitive level (possibly a strategic one), because it obeys the age-of-acquisition principle 

typical of SAS processes (Shallice, 2004). Even if evidence provided by the developmental 

study is useful for discarding single-process accounts, this study does not help explain 

what specific mechanism causes the FP effect. Nevertheless, other studies in the literature 

have shed some light on these processes, suggesting that they are likely to be monitoring 

processes (see Niemi & Näätänen, 1981, for a review; see paragraph 1.2.1.1., chapter 1).  

One influential explanation of the FP effect is the strategic account, which basically 

suggests that non-specific  preparation develops in accordance with the conditional 

probability of IS occurrence (e.g., Elithorn et al., 1955; Jurkowski, Stepp, & Hackley, 

2005; Luce, 1986; Näätänen, 1970; Sperling & Dosher, 1986). With a rectangular FP 

distribution, this conditional probability is low immediately after the warning signal, 

increases as possible short FPs are bypassed without an IS occurring, and is maximal just 

prior to the last FP. Under the assumption that increased preparation is reflected by 

decreased RT, as preparation increases with the lengthening of the FP, RTs become faster 

giving rise to the classical FP effect. 

The manipulation of the FP distribution has effects on the rate of increase of 

conditional probability of stimulus occurrence during a FP. If one assumes that what is 

critical for the generation of the FP effect is the process checking for the non-occurrence of 

the imperative stimulus along the FP, and the consequent increase in subjective expectancy 

of its forthcoming occurrence as the conditional probability of this event increases (see 

paragraph 1.2.1.1., chapter 1), then the typical shape of the FP-RT function should be also 

modified. This seems to be the case (e.g., Baumeister & Joubert, 1969; Los & Agter, 

2006).  

For instance, if the frequency of the shortest FPs is increased (i.e., positively skewed 

distribution), the conditional probability of stimulus occurrence is kept constant because 

the a priori probability of shorter FPs is higher than that of longer ones. Such a priori 

distribution is called a ‘non-aging’  distribution (Nickerson & Burnham, 1969) because the 
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corresponding subjective FP distribution is supposed to become rectangular (Niemi & 

Näätänen, 1981). In other words, a high probability of short FPs induces an early 

expectancy, so that the preparation process is already at its maximum even for short FPs 

(Zahn & Rosenthal, 1966). As a consequence, a flat FP-RT function is usually observed 

(e.g., Baumeister & Joubert, 1969; Trillenberg, Verleger, Wascher, Wauschkuhn, & 

Wessel, 2000). If instead the frequency of the longest FPs is increased (i.e., negatively 

skewed distribution), a steeper FP-RT function is produced (Baumeister & Joubert, 1969; 

Griffin et al., 2002; Zahn & Rosenthal, 1966).  

An implementation of this procedure is to program the time at which the stimulus may 

occur according to a Bernoulli process, so that the probability of stimulus occurrence at a 

given FP is not influenced by what has happened in the preceding FPs. In other words, the 

FPs employed are distributed according to a negative power (see Näätänen, 1971, for 

details). In such conditions, the time after the warning stimulus no longer carries any 

information about the probability of the upcoming stimulus. Experiments using such a 

paradigm showed that RT either slowly increases or remains constant with increasing FPs 

(Granjon, Requin, Durup, & Reynard, 1973; Näätänen, 1971; Nickerson & Burnham, 

1969). All these results are taken as evidence in favour of the monitoring account of the FP 

effect (e.g., Näätänen, 1970; Niemi & Näätänen, 1981). 

Another method of keeping the conditional probability constant across each FP is to 

space FP values so that the interval between two consecutive possible FPs is exponentially 

delayed towards the longest FP in the range. In this way, once more, the conditional 

probability of stimulus occurrence is non-aging across FPs. The typical result of this 

paradigm is again a slightly increasing mean RT as FP increases (e.g., Green & Luce, 

1971; Hermelin, 1964). 

In the following experiment, we tried to further test whether a monitoring process is 

responsible of the FP effect, in order to corroborate the literature briefly reviewed above. 

For this reason, we used a procedure in which the imperative stimulus could occur with the 

same a priori probability at each of two possible FPs within a trial. Moreover, the 

probability of occurrence of the stimulus at the late FP did not change according to 

whether it had already occurred at the early FP or not. In other words, IS could appear 

never, once (during either the short or the long FP), or even twice in a single trial. The 

rationale of such a paradigm is that monitoring of the conditional probability of stimulus 

occurrence would be useless here, as this probability is kept constant. Under the 

assumption that this monitoring process is critical for occurrence of the typical FP effect, 
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the prediction is made the FP-RT function obtained with this procedure will have a nearly 

flat shape.  

The procedure employed in this study is different from that used in previous studies 

manipulating the conditional probability of stimulus occurrence. The earlier experiments 

reported here and in the literature showed that the sequential effects are an important factor 

influencing the RT in variable FP paradigms. Hence, as a secondary aim, the sequential 

effects produced in this new paradigm were also explored. 

 

2.3.1. Experiment 5 

Method 

Participants 

Fourteen healthy volunteers (9 females and 5 males) took part in the experiment in 

return for payment. They were 25 years old on average (range = 19-29). Apart from 2 left-

handed participants, all the others were right-handed (writing hand). All of them were 

naïve to the purpose of the experiment.  

 

Apparatus and Materials 

An E-prime PST Serial Response Box was used to collect responses. At the beginning 

of each trial, an auditory warning stimulus (a 1500 Hz pure tone) was presented for 50 ms 

through speakers. The visual stimuli were presented on a black background. A centrally 

presented cross (as in the previous experiments), which appeared together with the 

warning, served as fixation stimulus. The fixation lasted 500 ms and was replaced by a 

blank screen for other 500 ms. The IS was an arrow (as in the previous experiments). There 

were 4 equiprobable conditions (see Figure 8):  

 

(i) IS appeared after a short FP of 1000 ms only (present-absent, PA);   (1) 

(ii) IS appeared after a long FP of 3000 ms only (AP);  

(iii) IS appeared twice in a trial, after a short FP of 1000 ms (PP1) and then after a long 

one of 3000 ms (PP2);  

(iv) catch trials: IS never appeared for all the duration of the trial (i.e., 4500 ms; AA).  

 

Whenever the arrow appeared, it then disappeared after 500 ms, and was replaced by 

the blank until the next event would occur. The time limit for the response was 1500 ms 
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after the arrow onset. Four white circles (visual angle: 1°) presented in each corner of the 

screen constantly marked the duration of a trial from the warning onset to the end of the 

second FP (i.e., 4500 ms). An ITI of 1000 ms separated one trial from one other. During 

the ITI, a blank screen (without the four circles) appeared. 

 

Procedure and Task 

Each participant was tested individually in a silent and dimly lit room. Participants 

viewed a 17”  computer monitor at a distance of ~60 cm. A trial started with the central 

fixation cross, replaced after 500 ms by a blank screen and possibly by 1 or 2 subsequent 

arrows. Four FP conditions as specified in (1) alternated in a random fashion, on an equal 

number of trials. The task was to press the middle button (out of 5) of the response box 

with the index finger of the writing hand as soon as an arrow was seen. There was a short 

familiarization phase with 8 trials at the beginning of the experiment. Two blocks of 100 

trials each (1/4 per each condition) were then administered for the test phase. A short break 

separated one block from the other. 

 

 

Figure 8. A representation of the 4 possible event flows in each trial of experiment 5 (see text, 
for details). FP = foreperiod. AA = target absent; AP = target presented after the long FP of 3 
sec; PA = target presented after the short FP of 1 sec; PP = repetition trial, with the target 
presented after both the short and the long FPs; PP = repetition trial where: PP1 indicates the 
target presented after the short FP and PP2 indicates the target presented after the long FP. 
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Data Analysis 

Trials were treated as errors and discarded from the RT analyses if a response was 

made during the FP or the first 100 ms after imperative stimulus onset (anticipated 

responses), if the RT was slower than 1500 ms or absent (delayed and null responses). 

Four FPn conditions were included in the design: PA, PP1, AP, PP2 (PP1 and PP2 denote a 

stimulus presented during a repetition trial PP, in the short FP and in the long one, 

respectively). However, for the analyses PP1 and PA were collapsed, as they are equivalent 

from the participant’s point of view. The AA condition was not considered among the 

levels of the variable FPn because no response was required on that condition. Thus, a 3 

FPn condition (PP1+PA, AP, PP2) x 4 FPn-1 condition (AA, PA, AP, PP) repeated 

measures ANOVA was employed, with RTs as the dependent variable. 

 

Results 

Accuracy 

Anticipated responses were 1.13% for the short FP and absent for the long one. The 

low percentage of anticipated responses may be due to the presence of catch trials (e.g., 

Correa et al., 2006). Delayed responses were 0.69 and 0.38% for the short and the long 

FPs, respectively. These data were discarded from further analyses. 

 

Reaction Times 

Reaction times are displayed in Figure 9. The main effect of the FPn showed a small 

tendency [F(2, 26) = 2.6, p = .089], suggesting that RTs were slightly slower for a PP2 

condition than for the other two FPn conditions. There was a significant effect of the 

preceding FPn-1 condition [F(3, 39) = 6.4, p = .001], because RTs were faster after a PP 

condition than after all the other conditions, as demonstrated by a t-test contrasting RTs in 

the PP condition with the average of the three other conditions (p < .01). Moreover, the FPn 

x FPn-1 interaction was significant [F(6, 78) = 9.4, p <.001]. Post-hoc Tukey tests revealed 

that responding to the current PP1+PA conditions was slower after an AP condition than 

after PA and PP conditions (for both, p < .05). Noteworthy, this effect resembles the 

classical sequential effects on the short FP. Moreover, responding to a current PP2 

condition was faster after a PP condition than after all the other conditions (for all, p < 

.001). 
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Figure 9. Mean reaction times as a function of the current FP condition (x-axis) and preceding 
FP condition (histograms) in Experiment 5. Vertical lines indicate confidence intervals. Labels 
as in figure 8. 

 

Discussion 

The current experiment replicates results known from the literature with respect to the 

disappearance of the FP effect when the conditional probability of stimulus occurrence is 

kept constant across the trials (e.g., Baumeister & Joubert, 1969; Näätänen, 1971; 

Nickerson & Burnham, 1969). This pattern demonstrates once again that the conditional 

probability of stimulus occurrence is a critical variable for the FP effect. With a rectangular 

FP distribution, a monitoring process is supposed to operate, which checks the conditional 

probability of stimulus occurrence as time elapses, so as to increase the level of preparation 

and to produce the FP effect (e.g., Näätänen, 1970). If the conditional probability is kept 

constant, the process cannot be effective, leading to the disappearance of the FP effect as 

observed here and elsewhere (Granjon et al., 1973; Green et al., 1971; Hermelin, 1964; 

Näätänen, 1971; Nickerson et al., 1969).  

Moreover, a new effect has been found in this study as far as the sequential effects are 

concerned. This consists of a RT cost paid when the current FP condition is a repetition of 

the target stimulus in the 2 possible FPs within the same trials (PP2 condition). This effect 
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is however abolished if a PP condition has just occurred in the preceding trial, as RTs are 

faster in this condition with respect to conditions in which a single target or a catch trial 

has been presented. 

A phenomenon which could be a candidate for an analogy with the repetition costs 

found here is the attentional inhibition of return (Posner & Cohen, 1984), even if the 

theoretical backgrounds are very different. RTs to targets appearing at previously (>300 

ms) attended locations are longer than to targets appearing at new locations. However, 

inhibition of return manifests itself with exogenous (e.g., peripheral) cueing of spatial 

attention, and it is usually reported as a phenomenon of shifting attention (e.g., Hooge, 

Over, van Wezel, & Frens, 2005), whereas here spatial attention if kept constant on the 

fovea. 

A further possible explanation could be derived from the reasoning literature. The 

cognitive system is held to use inferential processes in order to keep representations 

isomorphic with environmental contingencies (Newell, 1990). In our paradigm, a repetition 

of targets within a single trial is a relatively infrequent phenomenon, as it occurs in only ¼ 

of the trials. In such a situation, the inferential system was not prepared to expect a 

repetition of targets, so that a slowing in the response is observed as a consequence of this 

‘surprise effect’  (see Cherubini, Burigo, & Bricolo, 2006, for somewhat similar RT 

repetition costs with visuo-spatial and numerical material). Only when a PP condition has 

just occurred on the previous trial, the surprise effect is suppressed, as if the inferential 

system temporarily becomes more aware of the possibility that a repetition event may 

occur. To test this hypothesis, one could increase the probability of occurrence of a 

repetition trial. If this probability is a critical factor, one should observe a decrease of the 

costs along with the increasing probability. Therefore, the interpretation of the repetition 

costs is worthwhile being addressed by further ad hoc studies. 

A possible criticism of the novelty of this paradigm could be that it resembles 

paradigms employing positively skewed FP distributions. Indeed, when a repetition trial 

occurs, it is as if there are two relatively short FPs which are occurring one after the other, 

so increasing the conditional probability of stimulus occurrence at short FPs. However, in 

order to avoid this problem, each trial was marked by circles appearing after the ITI in the 

four corners of the screen. With such trial markers, it is more likely that each target in a 

repetition trial is perceived as occurring in the short or in the long FP of that precise trial. 

In conclusion, this study supports accounts of the FP effect concerning monitoring of 

the conditional probability of stimulus occurrence, as it shows that keeping it constant 
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within the trial, the FP effect is nullified. The pattern of sequential effects in repetition 

trials represents another key finding of this study, which is worthwhile to be investigated in 

more detail by future studies. 
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2.4. A functional dissociation between the FP and the sequential 

effects 

In the developmental study (experiments 3a, 3b and 4), a dissociation between the FP 

effect and the sequential effects has been obtained in children. In the present study, a 

different approach has been adopted in order to test whether the FP and the sequential 

effects can also be dissociated in healthy adults. The basic variable FP paradigm has been 

modified by embedding a spatial n-back task, with the following rationale.  

In the developmental study, a dual-process model of the FP phenomena has been put 

forward. On this model, the sequential effects are held to be more automatic than the FP 

effect. If this is the case, then interference by a secondary task, obtained by increasing the 

working memory load in the n-back paradigm, should modulate the FP effect and should 

not alter the sequential effects (cf. Shiffrin & Schneider, 1977a; see paragraph 1.1.1., 

chapter 1). 

A relationship was expected between the magnitude of the FP effect and the working 

memory load. First, the hypothesis that the FP effect should interfere with the n-back 

condition is anatomically plausible. In the n-back paradigm load-sensitive activity has been 

found in the rDLPFC (Casey et al., 1998; see also Braver et al., 1997; Jansma, Ramsey, 

Coppola, & Kahn, 2000). The rDLPFC seems also to be involved in the FP effect (Stuss et 

al., 2005).  

Moreover, from a cognitive point of view, the relationship between size of the FP 

effect and the n-back condition could take one of two opposite directions. The FP effect 

could decrease if similar (monitoring) processes are responsible for the performance on the 

n-back task and for the speeding up of the RTs on the longest FPn. In contrast, the size of 

the FP effect could be expected to increase if the optimal preparation level reached in the 

longest FPn can be used cognitively to carry over the processes underlying the spatial n-

back task, on the one hand, whereas the effort to reach this preparation level on the shortest 

FPn does not allow the efficient completion of the n-back task in such a short time, on the 

other hand. 

A reason for choosing the spatial n-back paradigm was to manipulate working memory 

load without altering the general response preparation level according to the conditions of 

this task. In contrast to other non-spatial variants of the n-back task, only in the spatial 

version of the task error rate is a measure of workload or performance. On the other hand, 

RTs remain constant because in all levels, except for the 0-back level, participants know 
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what the next response will be before the next IS is presented, as it is determined by 

preceding stimuli (e.g., Gevins & Cutillo, 1993; see Procedure and Task). This choice was 

made in order to avoid difficulty in the interpretation of possible effects on RT.  

 

2.4.1. Experiment 6 

 

Method 

Participants 

Fifteen healthy volunteers (8 females and 7 males) took part in the experiment in 

return for payment. They were 26 years old on average (range = 20-35). Apart from one 

left-handed participant, all the others were right-handed (writing hand). All of them were 

naïve to the purpose of the experiment.  

 

Apparatus and Materials 

Participants viewed the screen at a distance of about 60 cm. There were four possible 

positions where the IS could appear (see Figure 10). These positions were marked by 4 

white squares (each side: 3.5 cm) placed horizontally in the middle of the screen at a 

distance of 2 cm from each other. The extreme sides of the leftmost and rightmost squares 

were 10 cm distant from the center. A central fixation cross (each bar: 1 cm) and the 4 

squares remained in a black background during all the trials. Layout of the four response-

keys (from left to right: the keys ‘V’ , ‘B’ , ‘N’ , and ‘M’ of the computer keyboard) 

corresponded spatially to the four possible positions in which the IS could appear. The IS 

was a white circle (diameter: 1.5 cm, thickness: 0.3 cm) appearing in the center of one of 

the squares. 

 

Procedure and Task 

A trial started with the 4 white squares and the fixation cross on a black background. 

After the FP elapsed (FPs: 1000 vs. 2000 ms, random presentation), a circle was displayed 

randomly but equiprobably in the middle of one of the 4 squares, provided that the position 

of the circle was not repeated at least before 1, 2 or 3 trials in the 0-, 1- and 2-back 

conditions, respectively.  

The instruction of the spatial n-back task (3 levels: 0-, 1- and 2-back) were as follows 

(see Figure 10). In all the n-back conditions the task was to press one of the 4 keys 
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spatially corresponding to the location of the circle in a given trial. More specifically, 

participants had to press the key corresponding to the spatial position occupied by the 

circle on the current trial n, on the preceding trial n-1, and on the trial n-2, in the 0-, 1-, and 

2-back conditions, respectively.  

 

 

Figure 10. Illustration of the spatial n-back paradigm (Panel A). In this paradigm, a circle was 
randomly presented in one of four adjacent box locations. Participants were required to 
perform a spatial compatibility task. The possible keys used for the response were, from left to 
right, the letters ‘V’ , ‘B’ , ‘N’  and ‘M’ , from the computer keyboard (Panel B). With a 0-back 
condition, the response should have been as follows. Trial n-2: ‘N’ , trial n-1: ‘M’ , trial n: ‘B’ . 
With a 1-back condition, participants should respond by pressing ‘N’  on the trial n-1, and ‘M’  
on the trial n (according to the position occupied by the circle on the trial before). With a 2-
back condition, participants had to press ‘N’  on trial n (according to the position occupied by 
the circle on the trial n-2). 
 

All participants were instructed to maintain their gaze at the fixation cross on the 

middle of the screen during performance of the task. A trial ended with the participant’s 
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keypress or after 2000 ms had elapsed without response. No response was required on the 

first trial for the 1-back condition, and on the first 2 trials for the 2-back condition. 

Each n-back condition consisted of a block of 164 trials. A practice phase of 10 trials 

was administered before each test block. The order of presentation of the 3 n-back 

conditions was counterbalanced across participants. 

 

Data Analysis 

Trials with the RT outside the 100-1500 ms range and with anticipated responses (viz. 

ones occurring before the IS) were discarded from further analyses. In addition, the first 1, 

2 or 3 trials of each block were eliminated for the 0-, 1- and 2-back conditions, 

respectively. For the RT analysis, also errors were discarded. For both mean RTs and 

accuracy analyses, a 3x2x2 within-subject ANOVA was employed with n-back condition 

(0-back, 1-back, 2-back), FPn (1000 vs 2000 ms)6 and FPn-1 (1000 vs 2000 ms) as the 

independent variables.  

 

Results 

Accuracy 

The only significant effect concerning the accuracy was the main effect of n-back 

condition [F(2, 28) = 5.9, p < .01]. As planned comparisons showed, accuracy was lower 

for the 2-back condition than for the 0- and for 1-back conditions (p < .01 and p < .05, 

respectively), with no difference between the 0- and 1-back conditions. 

 

Reaction Times 

Mean RTs are displayed in the Figure 11. The main effect of n-back condition was 

significant [F(2, 28) = 8.8, p < .01]. Post hoc tests were not significant. Less conservative 

paired t-tests showed that mean RT was faster for the 1-back condition than for the 0-back 

(p < .05) and for the 1-back condition than for the 2-back one (p < .01). The main effect of 

the FPn [F(1, 14) = 46.3, p < .001] was due to RT being slower on a short FPn than on a 

long one. The effect of the FPn-1 [F(1, 14) = 10.2, p < .01] indicated that mean RT was 

faster after a short FPn-1 than after a long one. The classical FPn x FPn-1 interaction was also 

significant [F(1, 14) = 18.3, p < .001]. For the short FPn, RT was slower after a long FPn-1 

                                                
6Only two FPs were employed here. Medium FPs have been previously included in order to explore gradient 
effects in the RT function. Thus, medium FPs were not included as they were not relevant for the aim of the 
present study. 
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than after a short one (planned comparison, p < 001). As expected, this sequential effect 

was asymmetric as it was not observed for the long FPn.  

Critically there was a significant FPn x n-back condition interaction [F(2, 28) = 21.9, p 

< .001]. Post-hoc Tukey comparisons demonstrated that RT on the short FPn was slower 

for the 2-back condition than for the 0- and 1-back conditions (for both, p < .001). 

Moreover, RT on the long FPn was slower on the 0- and the 2-back conditions than on the 

1-back condition (for both, p � .01). Interestingly, the FP effect (i.e., the difference 

between the short FPn and the long one) was present for the 1- and 2-back conditions (for 

both, p < .01) and virtually absent for the 0-back condition (p = .89). 

No other effect was significant. In particular, the sequential effects were not modulated 

by the n-back condition (n-back condition x FPn-1, p = .53; n-back condition x FPn x FPn-1, 

p = .13). 

 

 

Figure 11. Mean reaction times as a function of the current FPn (x-axis), the preceding FPn-1 
(lines), and the n-back condition (panels) in Experiment 6. Vertical lines indicate standard 
errors of the mean. 

 

Discussion 

Contrary to other studies using the spatial n-back task (e.g., Gevins & Cutillo, 1993), 

in this experiment we obtained a modulation of basic RTs by the n-back condition: RTs 

were slower in the 2-back condition than in the other 2 conditions. This may be due to the 

embedment of this task in a variable FP paradigm, which may have made the task more 

difficult, especially for the 2-back condition. This could be taken as a suggestion that the 
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processes underlying the FP phenomena interfere with those underlying the spatial n-back 

task. This is anatomically plausible, given that both are known to involve the same brain 

area, namely the rDLPFC. 

The absence of FP effect for the 0-back condition was not predicted. It could however 

be tentatively interpreted as due to the difficulty of the response selection stage in a 4-

choice RT task, which may have absorbed the advantage of being more prepared on the 

long FP in the stage preceding IS onset. Additionally, participants may have decided not to 

prepare optimally during the longest FP in order to avoid the execution of wrong 

responses. 

More relevant for the purposes of the study, the FP effect was modulated by the task 

demands as it increased more with the working memory load. The influence of the n-back 

condition on the FP effect manifests itself mainly by increasing RTs on the short FP in the 

2-back condition with respect to the other two conditions. This result may be interpreted as 

an indication that, in a variable FP paradigm, reaching an appropriate level of preparation 

on the short FP is demanding, especially in a situation where processing resources have to 

be devoted to another challenging process.  

More critically, a dissociation has been found between the FP and the sequential 

effects. As already discussed, the FP effect was modulated by the n-back condition, 

whereas the sequential effects remained constant independently of the n-back condition. 

This pattern of results confirms that sequential effects are a robust phenomenon, as they 

remain virtually unchanged independently of task demands. This can be also taken as 

evidence of the unintentional nature of processes underlying them (cf., Los & van den 

Heuvel, 2001). Moreover, this finding demonstrates once again that processes underlying 

FP and sequential effects are not the same, and they are dissociable not only 

ontogenetically (see experiments 3a, 3b and 4) but also functionally in adult participants. 
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Chapter 3 
 

In the previous chapter, processes underlying the FP effect and the sequential effects 

have been investigated in detail. Evidence provided both in chapter 2 and in the literature 

suggests a dual-process account: an automatic priming effect from the FP occurring on the 

previous trial seems to be the basis for the sequential effects of the FP, whereas a process 

monitoring the conditional probability of stimulus onset on the current trial seems more 

appropriate to account for the occurrence of the FP effect. 

Besides of an enduring interest of cognitive psychology in investigating the nature of 

the processes underlying preparation over time (e.g., Correa et al., 2006; Los & van den 

Heuvel, 2001; Los & Agter, 2005; Niemi & Näätänen, 1981), there is a renewed interest in 

elucidating which brain areas may be responsible for such processes (e.g., Coull & Nobre, 

1998; Janssen & Shadlen, 2005; Lewis & Miall, 2003a; Stuss et al., 2005). 

The aim of the studies reported in the current chapter is twofold. A first purpose is to 

contribute to the investigation of the brain sources of preparation over time. A second aim 

is to further corroborate the dual-process account by means of neuropsychological tools. 

Neuropsychological dissociations found on the behavioural level can be taken as a proof 

for the existence of different processes underlying overt performance (e.g., Shallice, 1988). 

Evidence from both healthy participants undergoing TMS, as a technique to transiently 

interfere with localized neural activity (experiments 7 and 8), and tumor patients, 

undergoing a surgical removal of the tumoral brain tissue (experiment 9), will be used to 

infer the nature of the processes responsible of the FP phenomena produced during the 

performance of a variable FP task. A more general aim of these studies is to test directly 

the viability of the fractionation approach in the study of PFC functionality (e.g., Stuss et 

al., 2005) as opposed to the equipotentiality approach (e.g., Duncan, 2005), by using TMS 

and neuropsychology as tools to achieve the localization of functions within PFC. 

 
3.1. Role of the prefrontal cortex in the foreperiod effect: TMS 

evidence for dual mechanisms in temporal preparation 

As shown in a recent neuropsychological study (Stuss et al., 2005, paragraph 1.1.2.3., 

chapter 1), patients with lesions in the rDLPFC fail to show the typical FP effect, unlike 

both control participants and other subgroups of prefrontal patients. Stuss and colleagues 

suggest that the rDLPFC is likely to be the region responsible for the strategic process 
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producing the FP effect, which controls the state of preparedness by checking the 

conditional probability of IS occurrence. This account fits a range of studies which 

attribute a monitoring role to the rDLPFC (Coull et al., 1998; see Fletcher & Henson, 

2001; Shallice, 2004, for reviews). Unfortunately, the sequential effects were not 

considered in Stuss and colleagues’  (2005) study. Hence, without an additional 

investigation of the sequential effects produced by the patients, the lack of FP effect shown 

can alternatively be interpreted as a failure in the conditioning processes, according to the 

conditioning view (Los & van den Heuvel, 2001).  

The aim of the present study is twofold, concerning both the anatomical and the 

functional bases of the FP phenomena. From an anatomical point of view, the aim was to 

investigate whether the neuropsychological results (Stuss et al., 2005) could be reproduced 

in healthy adults by means of TMS. In addition, however, the study could allow one to 

establish the role of the rDLPFC not only in the FP effect, but also with respect to the 

sequential effects, which have not been investigated neuropsychologically. In addition, the 

role of the right angular gyrus (AG) in the FP phenomena was investigated here, since this 

area is often associated with temporal processing found in fMRI and TMS studies (Coull et 

al., 1998; Rao, Mayer, & Harrington, 2001; Lewis & Miall, 2003a; Alexander, Cowey, & 

Walsh, 2005). It can be argued that these studies utilize tasks which require explicit time 

processing while the time processing required in a FP paradigm is implicit. However, a 

recent study has also demonstrated anticipatory activity revealing an internal representation 

of both elapsed time and the probability of the stimulus occurrence in the macaque parietal 

lobe during an implicit time processing task similar to the variable FP paradigm (Janssen & 

Shadlen, 2005; see also Onoe et al., 2001).  

From the functional point of view, TMS can provide a strong test of the various 

cognitive models of the FP phenomena. If both the FP and the sequential effects are 

influenced by the TMS on rDLPFC, a common mechanism is likely to underlie them, as 

predicted by the conditioning view (e.g., Los et al., 2001). If instead the FP effect only is 

modulated by the TMS on this area, this would be evidence for a dual-process theory of the 

FP phenomena (see paragraph 2.2., chapter 2). In order to test these possibilities, 2 

experiments were designed with a simple and a choice RT task (experiments 7 and 8, 

respectively) and a theta burst stimulation (TBS) off-line paradigm of repetitive TMS, 

which has been demonstrated to transiently reduce cortical activity in the stimulated area 

(Huang, Edwards, Rounis, Bhatia, & Rothwell, 2005). Moreover, the range of FPs used in 

Stuss and colleagues’  (2005) study (i.e., 3-7 seconds), might suggest the alternative 
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explanation of a deficit of the vigilance system in maintaining attention over a long period 

of time, instead of a monitoring process, in the case of right prefrontal lesions. For this 

reason, a much shorter FP range was used (i.e., 0.5, 1 and 1.5 sec), to discard vigilance-

related accounts of a possible modulation of the FP effect. 

 

3.1.1. Experiment 7 

In experiment 7 a simple RT task was used in order to study the FP phenomena in their 

simplest form. For this purpose, a range of FPs (i.e. 0.5, 1.0 and 1.5 sec) was employed in a 

standard variable FP paradigm. A repetitive TMS paradigm was adopted to investigate the 

role of the rDLPFC in the FP phenomena. In order to control the specificity of any effect 

obtained to the rDLPFC, two additional areas were stimulated during different sessions, 

namely a site in the left DLPFC and another in the right AG. 

 

Method 

Participants 

Nine volunteer participants, 3 females and 6 males, took part in the experiment. They 

were 31 years old on average (range = 24-43). All of them were right-handed with an 

average score of 92 on the Edinburgh Handedness Inventory (EHI, Oldfield 1971). All had 

normal or corrected-to-normal vision, and no auditory or neurological impairment. This 

study was approved by the UCL Committee on the Ethics of Human Research. 

 

Apparatus and Materials 

The experiment was conducted on a PC. Stimuli were presented on a 19” monitor with 

a 100-Hz refresh rate. Participants viewed the display at a distance of about 60 cm from the 

centre of the monitor, with the index finger of their dominant hand resting on the keyboard 

spacebar. Stimuli were the same as those used in the experiment 1 (paragraph 2.1.1. 

chapter 2). Two blocks were presented during each session to each participant, one before 

and the other after TMS. In each block, 3 FPs of 0.5, 1.0 and 1.5 sec, respectively, were 

presented for an equal number of trials (i.e. 48 trials each), randomly drawn from a 

rectangular probability distribution. Each FP was preceded with the same probability by a 

FP of 0.5, 1.0 and 1.5 sec.  
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Procedure and Task 

Figure 11 displays the hierarchical organization of the experiment 7. The experiment 

consisted of 3 sessions performed in 3 different days within one week, one for each area 

stimulated (see below). Each session consisted of 2 blocks of 144 trials each. The first 

block was run before the TMS to measure the baseline performance. The second block was 

run after the TMS to measure its effects on the behavioural performance. Experiments 1 

and 2 (chapter 2) have shown that the learning period for the FP phenomena, if any, is very 

brief, as after an initial block of 60 trials the FP and sequential effects are already present 

with the same magnitude as in subsequent blocks. For this reason, we could be confident 

that the performance of the baseline block would not influence the performance on the 

post-TMS block.  

 

 

Figure 1. Hierarchical organization of experiment 7. See the Method section for details. 
 

Participants were tested individually in a silent and dimly lit room. They received 

written instructions explaining the simple RT task. Within each block, the procedure and 

task were the same as in the experiment 1 (chapter 2). Nine practice trials were given at the 

beginning of the test. An experimental session lasted about 25 minutes each day (i.e., 6-7 
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minutes per block plus some minutes after the baseline block needed to find the site 

coordinates in the brain). 

 

TMS protocol 

Locations for TMS were determined using the Brainsight TMS-MRI co-registration 

system (Rogue Research, Montreal, Canada), through conversion of the MNI stereotaxic 

coordinates to participant’s normalised brain using the software SPM2. For each session, 

participants underwent the co-registration in the interval between the 2 pre- and post-TMS 

blocks, in order to find the coordinates of the area of interest in their real brain. These 

coordinates were taken from an fMRI study by Lewis and Miall (2003b), in which 

activation of the right and left DLPFC and of the right AG was found during a temporal 

discrimination task for both sub- and supra-second intervals. For each participant and 

session, one area was stimulated after the performance of the pre-TMS baseline block. The 

areas to be stimulated were located in the rDLPFC (MNI stereotaxic coordinates: 48, 42, 

24), in a control area on the left DLPFC (the mirrored contralateral site, i.e., -48, 42, 24) 

and in the right AG (48, -45, 48), respectively (see Figure 12). The order in which the 3 

areas were stimulated was counterbalanced across participants, such that each area was 

stimulated in the first day session on an equal number of participants. 

 

 

Figure 12. Brainsight localizations showing stimulation sites of the brain of a single 
participant, identified in co-registration with the TMS coil position. Panels A, B and C show 
the targeted sites in the right DLPFC, left DLPFC and right AG, respectively. In each panel, 
the regions in the crosshairs of the coronal, sagittal and axial views are based on the 
coordinates reported in Lewis and Miall (2003b) (48, 42, 24 for the right DLPFC; the mirrored 
contralateral coordinates -48, 42 24 for the left DLPFC; 48 -45 48 for the right AG). 
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Participants wore a latex swimming cap on which the location found in the co-

registration procedure was marked with a phosphorescent spot. Stimulation was produced 

through a MagStim Super Rapid stimulator with 4 external boosters with a maximum 

output of approximately 2 Tesla (MagStim, Whitland, UK). A figure-of-eight 50-mm coil 

was used for the stimulation with the center of the coil positioned over the marked spot 

such that the windings were at 90° to the scalp and the handle pointed vertically.  

An offline TMS paradigm was chosen rather than an on-line one to prevent any 

exogenous influence of the sound and the proprioceptive sensation given by the TMS on 

the RTs (e.g., Terao et al., 1997) and hence on the FP phenomena. In each session, the 

TMS parameters were those of the continuous TBS, consisting of a burst of 3 pulses at 50 

Hz (i.e., 20 ms between each stimulus), which was repeated at intervals of 200 ms for 20 

seconds (giving a total of 300 pulses). The output strength of the TMS was set to 80% of 

the participant’s active motor threshold, defined as the minimal intensity of stimulation 

capable of inducing a visible twitch of the contralateral first dorsal interosseus in at least 6 

trials out of 10, by means of a single pulse delivered at the best scalp position over motor 

cortex. During the calculation of the active motor threshold, the participant’s dominant 

hand was in a moderately contracted position and the thumb and index fingers were in 

opposition. Previous studies (Di Lazzaro et al., 2005; Huang et al., 2005) have 

demonstrated that this TBS protocol temporarily produces reduced excitability of motor 

cortex outlasting the period of actual TMS. With 20 seconds stimulation, the time window 

of reduced excitability was estimated to last up to 20 minutes (see also paragraph 6.3., 

chapter 6). 

 

Data Analysis 

Trials on which the RT was outside the 100-1000 ms range and trials where anticipated 

responses were made (viz. ones occurring before the IS) were discarded from further 

analyses. In addition, the first trial of each block was eliminated. Mean RTs for each 

participant and condition were analysed by repeated-measures ANOVAs.  

As a first step, three separate repeated-measures ANOVAs have been conducted 

contrasting baseline against post-TMS blocks separately for each site stimulated during 

each session (right DLPFC, left DLPFC, right AG). The within-subject independent 

variables considered in these preliminary analyses included FP on the current trial (FPn = 

0.5, 1.0 and 1.5 sec), FP on the preceding trial n-1 (FPn-1) and the TMS block (baseline vs 

post-TMS). The dependent measure was the mean RT.  
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In order to investigate differences across TMS sessions, a subsequent overall repeated-

measures ANOVA was then performed with FPn, FPn-1, and TMS site (right DLPFC, left 

DLPFC and right AG) as the within-subjects variables. The dependent variable chosen in 

this overall ANOVA was the degree of change in mean RTs as a result of stimulation at 

each site compared with the mean RTs of the pre-TMS baseline block of the same session 

(with 100% representing no RT change, a value >100% representing a slowing down, and 

one <100% indicating a speeding up)7. 

For the significant effects, post-hoc Tukey honestly significant difference comparisons 

were performed, in order to see which comparisons accounted for the effects. An effect 

was defined as significant if its corresponding α-level was below .05. The F-test was 

adjusted by the Greenhouse-Geisser � correction when the Mauchley sphericity test was 

significant. 

 

Results 

The first trial of each block (0.7 %), trials involving anticipated responses (RT before 

IS onset: 1.9 %), trials involving premature responses (RT < 100 ms: 0.5 %), and trials 

with delayed responses (RT > 1000 ms) or without responses (0.03 %), were discarded 

from further analyses. Fewer than 3.2 % of trials were excluded, with no difference across 

conditions. 

 

Behavioural Results 

The FP and sequential results were produced as expected. The following effects were 

significant in ANOVAs conducted on the 3 sessions separately (see Figure 13). First, the 

main effect of FPn was obtained [F(2, 16) = 28.7, p < .001; F(1.1, 9.1) = 40.1, Adj. p < 

.001; F(2, 16) = 34.1, p < .001, for right DLPFC, left DLPFC and right AG, respectively]. 

Post-hoc Tukey HSD comparisons showed that RTs were slowest for the shortest FP of 0.5 

sec as compared to the medium and longest FPs (for all, p < .001), but there was no 

difference between the RTs for FPs of 1.0 and 1.5 sec in any session. The main effect of 

                                                
7We chose this dependent variable as it directly estimates the direction of any change of the post-TMS RTs 
with respect to the baseline RTs (i.e., slowing or speeding). However, alternative ANOVAs were also 
conducted on the raw RTs, with FPn, FPn-1, TMS site (right and left DLPFC and right AG) and block 
(baseline and post-TMS block in experiment 7; baseline, first and second post-TMS blocks in experiment 8). 
These ANOVAs gave exactly the same results as those reported here, in both experiments. Specifically, the 
FPn x TMS site x block interaction was significant [F(4, 32)=3.4, p < .05; F(8, 64) = 2.3, p < .05, for the 
experiments 7 and 8, respectively], confirming the selective reduction of the FP effect after stimulation of the 
right DLPFC. 
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FPn-1 also reached significance [F(1.1, 8.8) = 5.5, Adj. p < .05; F(1.2, 9.9) = 15.3, Adj. p < 

.01; F(1.3, 10.1) = 17.2, Adj. p = .001, for right DLPFC, left DLPFC and right AG, 

respectively]. The post-hoc comparisons showed that current RTs were slower following a 

longest FPn-1 trial than a shortest FPn-1 trial (for all, p � .01). The FPn x FPn-1 interaction, 

concerning asymmetry of sequential effects, was also significant [F(4, 32) = 23.6, p < .001; 

F(4, 32) = 11.4, p < .001; F(2.4, 19.6) = 6.5, Adj. p < .01, for right DLPFC, left DLPFC 

and right AG, respectively]. This effect was primarily due to the differential contribution 

of the FPn-1 to the RT at each of the 3 current FPs, being greatest for the shortest FPn and 

smallest, virtually absent, for the longest FPn, as confirmed by post-hoc comparisons.  

 

TMS effects: separate ANOVAs for each TMS site 

No TMS block main effect was observed for any site of stimulation, indicating that 

RTs were not non-specifically modified by the TBS. More critically, the TMS block x FPn 

interaction was significant only for the right DLPFC session [F(2, 16) = 7.2, p <  .01], 

indicating that the FP effect was reduced in the post-TMS block as compared with the 

baseline block during the right DLPFC session. This conclusion was corroborated 

contrasting the RT difference between the shortest and the longest FPn in the baseline 

block (43 ms) and the same RT difference in the post-TMS (26 ms) by means of planned 

comparisons (p < .001). In addition, there was a tendency for a TMS x FPn-1 interaction in 

the right DLPFC session [F(2, 16) = 3.5, p =  .054], suggesting that the effect of the FPn-1 

was slightly reduced after TMS with respect to the baseline block. However, the TMS 

block x FPn x FPn-1 three-way interaction was not significant in any session (for all, p > 

.3), indicating that the sequential effects were not significantly modulated by the TMS. 

 

TMS effects: overall ANOVA 

The only significant effect obtained in the overall ANOVA was the interaction 

between TMS site and FPn [F(4, 32) = 2.8, p < .05], indicating that the FP effect was 

selectively modulated after TMS over the right DLPFC (see Figure 14). In this case only, 

indeed, the RTs on the longest FPn were slower with respect to the baseline (104%) while 

the RTs on the shortest FPn were faster (97%), the difference between these two values 

being significant following post-hoc Tukey comparisons (p < .01). It is noteworthy that 

this modulation goes in the opposite direction with respect to the FP effect itself, slowing 

RTs down on the longest FPn and speeding them up on the shortest FPn. Notably, no TMS 
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modulation was found for the sequential effects, as indicated by the lack of significance for 

the TMS site x FPn x FPn-1 three-way interaction (p = .45). 

 

 

Figure 13. Mean RTs (and standard errors) in experiment 7, as a function of FP on the current 
trial (x-axis), FP on the preceding trial (parameter), and experimental block (panels). Panels A, 
C and E refer to the baseline blocks before TMS on the right DLPFC, left DLPFC and right 
AG, respectively. Panels B, D and F refer to the blocks after TMS on the right DLPFC, left 
DLPFC and right AG, respectively.  

 

Discussion 

The FP effect and the asymmetric sequential effects, usually found in a variable FP 

paradigm, were replicated in experiment 7. Moreover, a role of the right DLPFC was 

demonstrated for the FP effect. Following TMS over the left DLPFC and the right AG, no 

significant changes were observed with respect to the baseline. On the other hand, after 
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TMS over the right DLPFC, a reduction in the FP effect was observed, confirming the role 

of this area in the occurrence of this effect, as already shown by a recent 

neuropsychological study (Stuss et al., 2005). This result is interesting per se but cannot be 

used to corroborate any dual-process model of the FP phenomena. A dissociation between 

the FP and the sequential effects was not clearly obtained in this experiment, because the 

effect of the FPn-1 also showed a tendency towards being reduced after the TMS over the 

right DLPFC, even if the critical FPn x FPn-1 x TMS interaction was far from significance.  

As the reduction of the cortical excitability of the motor cortex reaches a maximum 

from 7 to 14 min after TBS (Di Lazzaro et al., 2005; Huang et al., 2005), a similar time 

course can be expected in the case of the right DLPFC. For this reason, in the second 

experiment two blocks of trials were performed by participants in order to cover, apart 

from an initial 6 min period similar to experiment 7, an additional subsequent period when 

the stimulation effects are supposed to be at their greatest.  

 

 

Figure 14. Degree of change (in percentage) in mean RTs collected during the post-TMS block 
with respect to RTs collected during the pre-TMS baseline block (i.e., post-TMS RT/baseline 
RT x 100), in experiment 7. Bars indicate standard errors of the mean. Data are plotted as a 
function of the stimulation site (x-axis) and of the current FP (parameter). Panels A, B and C 
refer to the blocks after TMS on the right DLPFC, left DLPFC, and right AG, respectively. *p 
< .01. 
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3.1.2. Experiment 8 

Experiment 8 was designed to be similar to experiment 7, with two exceptions. First, 

there were two blocks of trials instead of one after the TMS. This change was made in 

order to cover the whole period in which the long-lasting effects of TBS operate, including 

the most critical interval of 7-14 min post-TMS, possibly increasing the sensitivity of 

experiment. Second, a two-choice RT paradigm was chosen in order to avoid anticipation 

and ceiling effects which might occur during a simple RT task, such as that used in 

experiment 7; such effects could have partially obscured any TMS effects. It should be 

noted that, although the additional stage of response selection is required by a choice RT 

task, FP effect is held to involve non-specific preparation processes only. Indeed, the 

typical FP phenomena are basically similar for both simple and choice RT tasks (e.g., Los 

& van den Heuvel, 2001), and the right prefrontal lesion effect is found for both paradigms 

(Stuss et al., 2005). 

 

Method 

Participants 

Nine volunteer participants, 4 females and 5 males, took part in experiment 8. They 

were 30 years old on average (range = 22-43). All of them were right-handed (with an 

average score of 83 at the EHI). All had normal or corrected-to-normal vision, and no 

auditory or neurological impairment. Three of them had participated in the experiment 7 

(at least one month before). 

 

Apparatus and Materials 

The apparatus and materials were the same as in experiment 7 except that, on each 

trial, the IS appeared with the same probability to the right or left of the fixation cross at a 

distance of 7.5 cm (center to center).  

 

Procedure and Task 

The task was to perform a spatially compatible response to the IS by pressing a right or 

left key on the computer keyboard (‘F’  or ‘J’ , respectively) as fast as possible. The 

experiment consisted of 3 sessions performed on 3 different days within a maximum 

period of a week. Each session consisted of 3 blocks of 144 trials each. During each 

session, the first block was run before the TMS to measure the baseline performance and 
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the second and third blocks were run consecutively after the TMS. A whole experimental 

session lasted about 35-40 minutes. 

 

Data Analysis 

The same criteria as in experiment 7 were used for the analysis of the data obtained in 

experiment 8. In addition, only trials with correct (spatially compatible) responses to the 

imperative stimulus were considered for the RT analyses. Moreover, preliminary analyses 

including the spatial position of the IS (and of the response) did not give rise to any 

interaction between this factor and that of the TMS site factor. For this reason, the spatial 

position factor was collapsed in the following analyses. 

As a first step, 3 separate repeated-measures ANOVAs were conducted, one for each 

stimulated site (right DLPFC, left DLPFC and right AG). The within-subject independent 

variables considered in these preliminary analyses included FP on the current trial (FPn = 

0.5, 1.0 and 1.5 sec), FP on the preceding trial n-1 (FPn-1) and the TMS block (Baseline, 

first and second post-TMS blocks). The dependent measure was the mean RT.  

A subsequent overall repeated-measures 3x3x2x3 ANOVA was also performed with 

FPn, FPn-1, TMS block (first and second post-TMS blocks) and TMS site (right DLPFC, 

left DLPFC, right AG) as the within-subjects variables. The dependent variable chosen in 

this overall ANOVA was the percentage of change of mean RTs collected after the first 

and second post-TMS blocks in each session compared to the mean RTs of the pre-TMS 

baseline of the same session. As in the experiment 7, the F-test was adjusted by the 

Greenhouse-Geisser procedure when appropriate. 

 

Results 

The first trial of each block (0.7 %), trials involving anticipated responses (RT before 

IS onset: 0.08 %), trials involving premature responses (RT < 100 ms: 0.02 %), and trials 

with delayed responses (RT > 1000 ms) or without responses (0.02 %), and trials with an 

incorrect response on the spatial compatibility task (0.8 %) were discarded from further 

analyses. Fewer than 1.8 % of trials were excluded. 

 

Behavioural Results 

The following effects were significant in ANOVAs conducted on the 3 sessions 

separately (see Figure 15). A main effect of FPn was obtained [F(2,16) = 10.1, p = .001; 
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F(1.3, 10.1) = 15.8, Adj. p < .01; F(2, 16) = 17.3, p < .001, for the right DLPFC, left 

DLPFC and right AG, respectively]. Post-hoc comparisons showed that RTs were slowest 

for the shortest FP of 0.5 sec as compared to the medium and longest FPs (for all, p < .01). 

Moreover, the main effect of FPn-1 was also significant [F(2,16) = 16, p < .001]. The post-

hoc comparisons showed that current RTs were slower following a middle FPn-1 trial than a 

shortest FPn-1 trial and, in turn, following a longest FPn-1 trial than a middle one (for the 

right AG,  the difference between the middle FPn-1 and the longest one was not significant, 

for all the other comparisons, p < .05). The FPn x FPn-1 interaction, concerning the 

asymmetric sequential effects, was also significant [F(1.8, 14.8) = 5.1, Adj. p =  .02; F(4, 

32) = 12.7, p < .001, for the right DLPFC and left DLPFC, respectively; and a tendency for 

the right AG, F(1.5, 12) = 3.9, Adj. p = .059]. This effect was principally due to the 

differential contribution of the FPn-1 to the RT on each of the three current FPs, being 

greatest for the shortest FPn and smallest for the longest FPn, as confirmed by post-hoc 

comparisons. 

 

TMS effects: separate ANOVAs for each TMS site 

No TMS block main effect was observed for any site of stimulation, indicating that 

RTs were not non-specifically modified by the TBS. As for experiment 7, the TMS block x 

FPn interaction was significant for the right DLPFC session only [F(4, 32) = 4.5, p < .01]. 

The FP effect was reduced in the first and second post-TMS block with respect to the 

baseline, as demonstrated by subsequent planned comparisons. Significant planned 

comparisons were obtained contrasting the RT difference between the shortest and the 

longest FPs in the baseline condition and the same RT difference in the first and in the 

second blocks post-TMS of the right DLPFC (for all, p <  .001). However, post-hoc 

comparisons indicated that the differences between RTs in any of the FPs in the baseline 

contrasted with the same FPs in the post-TMS blocks were not significant (for all, p > .1). 

As in experiment 7, this pattern indicates that the reduction of the FP effect was not due to 

a specific effect on RTs for the shortest, medium or longest FP, but instead to an overall 

effect which acts by attenuating the FP effect as a whole. Thus, the difference between the 

RT on the shortest FPn and on the longest FPn decreased from 33 ms in the baseline block 

to 22 ms in the first post-TMS block, to reach 15 ms in the last post-TMS block. No other 

effect was significant. In particular a lack for a three-way TMS block x FPn x FPn-1 

interaction in all the 3 sessions (for the left DLPFC, p > .8; for the right AG, p >  .6; for the 

right DLPFC, p > .2) suggested that TMS did not modulate sequential effects. 
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Although no three-way interaction was observed in any analysis, visual inspection of 

Figure 15 suggests, for the right DLFPC session, the presence of more symmetric 

sequential effects in the last TMS block with respect to the baseline. The three-way 

interaction may be hidden by the number of conditions introduced in the ANOVA. To 

statistically assess this possibility, a subsequent 3x3x2 ANOVA was performed for the 

right DLPFC session, with FPn, FPn-1 and TMS block as within-subjects variables, 

contrasting the baseline block with the second TMS block only. This analysis was justified 

by the fact that the TMS effect was expected to reach a maximum during this second block 

(i.e., from 7 to 14 minutes post-TMS; cf. Huang et al., 2005).  

 

 

Figure 15. Mean RTs (and standard errors) in experiment 8, as a function of FP on the current 
trial (x-axis), FP on the preceding trial (parameter) and experimental block (panels). Panels A, 
B and C refer to baseline, first and second blocks after TMS on the right DLPFC. Panels D, E 
and F refer to baseline, first and second blocks after TMS on the left DLPFC. Panels G, H and I 
refer to baseline, first and second blocks after TMS on the right AG. 

 

Apart from the main effects of FPn and FPn-1 and the interaction between these two 

factors, which confirm the previous analysis, this analysis produced a significant three-way 

interaction [F(4, 32) = 2.7, p < .05]. To confirm that the difference was due to the presence 
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of symmetric sequential effects in the second post-TMS block, further planned 

comparisons have been carried out. Specifically, these comparisons contrasted the 

difference between the RT on the longest FPn preceded by the longest FPn-1 and the RT on 

the same longest FPn preceded by the shortest FPn-1 in the baseline with the same 

difference in the second post-TMS block. This analysis was significant (F(1, 8) = 13.9, p < 

.01), confirming that, in the second post-TMS block, sequential effects were basically 

symmetric, as they were also present on the longest FPn.  

 

TMS effects: overall ANOVA 

The main effect of the FPn was significant [F(2, 16) = 5.1, p < .05]. Post-hoc 

comparisons indicated that post-TMS RTs were slower after a long FPn and faster after a 

short FPn with respect to the baseline values (101% vs. 99%; p < .05). More importantly, 

an interaction between TMS site and FPn was obtained [F(4, 32) = 3.5, p < .05], indicating 

that the FP effect was selectively attenuated after TMS on the right DLPFC (see Figure 

16). In this case only, the RTs on the longest FPn were slower with respect to the baseline 

block (103%) while the RTs on the shortest FPn were slightly faster (99%), the difference 

between these two values being significant on post-hoc Tukey comparisons (p < .05). This 

effect demonstrates a reduction of the FP effect selectively after the TMS to the right 

DLPFC, replicating the results of experiment 7. No other effect was significant. As in that 

experiment, the left DLPFC and the right AG turned out to act as TMS control sites 

because no effect involving TMS was observed in these analyses. 

 

Discussion 

The results of experiment 8 confirm those of experiment 7. In particular, the reduction 

of the FP effect as a consequence of TMS acting specifically on the right DLPFC was 

replicated while no TMS effect was obtained on the left DPLFC and the right AG. This 

result confirms the role of the rDLPFC for the occurrence of the FP effect (see Stuss et al., 

2005).  

On the other hand, the sequential effects were not reduced by the TMS in the rDLPFC, 

clearly suggesting that the non-significant tendency found in experiment 7 was likely to be 

due to noise. As a dissociation between the two effects has been obtained, the hypothesis 

of a common mechanism underlying both effects is not supported. Interestingly, the 

sequential effects become more symmetric during the second post-TMS block of trials on 

the same area. This was confirmed by the presence of a significant FPn x FPn-1 x TMS 
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block interaction, although this was obtained only for a direct comparison between the 

baseline block and the second post-TMS one, namely the block in which the effects of the 

TBS would be expected to be stronger (see Huang et al., 2005). Such evidence, although 

not confirmed by the analysis across TMS sessions, corroborates the pattern found in the 

developmental study of the FP phenomena (see Experiments 3a, 3b and 4, chapter 2; see 

also general discussion below). As in the youngest children of that study (i.e., 4-5 years 

old), whose DLPFC is presumably not yet mature, after 6-7 minutes from TMS of the 

rDLPFC the sequential effects become more symmetric while the FP effect decreases. 

 

 

Figure 16. Degree of change (in percentage) in mean RTs collected during the two post-TMS 
blocks with respect to RTs collected during the pre-TMS baseline block, in experiment 8. Data 
are plotted as a function of the stimulation site (x-axis) and of the current FP (parameter). Bars 
indicate standard errors of the mean. Upper and lower panels indicate results of the first and 
second post-TMS sessions, respectively. Panels A, B and C refer to the blocks after TMS on 
the right DLPFC, left DLPFC, and right AG, respectively. *p < .05. 
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General discussion 

The FP effect can be briefly described as a negatively accelerating FP-RT function, 

obtained when a range of FPs is randomly administered with the same a priori probability 

in simple or choice RT tasks. The present study was primarily designed to investigate the 

anatomical basis of the FP effect by means of TMS. To this purpose, in the experiment 7 a 

variable FP paradigm with a simple RT task was performed by 9 volunteers in two blocks, 

before and after TMS of three sites, right DLPFC, left DLPFC and right AG (one per each 

session day). A possible limitation of experiment 7 was that testing did not take place in 

the most critical period of the TMS effect when the TBS is employed (i.e., 7-14 min, see 

Huang et al., 2005). This limitation was overcome in the second experiment, where 9 

participants carried out two experimental blocks following TMS. Stuss and colleagues 

(2005) found a right frontal lesion effect on variable FP paradigms using choice RTs as 

well as simple RTs. So, another change introduced in the second experiment was the use of 

a choice RT task instead of the simple RT task used in the experiment 7.  

Both experiments of the present study provide clear evidence for a role of the rDLPFC 

in the production of the FP effect. Specifically, a 20 sec off-line repetitive TMS (i.e., TBS) 

over this area, compared to the pre-TMS baseline level and to an analogous stimulation on 

two other sites (i.e., left DLPFC and right AG), is enough to significantly reduce the size of 

the FP effect for the post-TMS period investigated. This period was about 6 minutes long 

for the simple RT task in experiment 7, and 15 minutes long for the choice RT task in 

experiment 8. These results fit well with existing neuropsychological literature. As 

suggested by Stuss and colleagues (2005), the rDLPFC seems to be the location of a 

process critical for the FP effect, because patients with lesions of this region do not show 

the typical FP effect. Moreover, a link between the FP effect and dopaminergic activity has 

been demonstrated in neuropsychological studies. The dopaminergic system is a 

neurotransmitter system massively present within the DLPFC. Drug-free schizophrenic 

patients, for example, who have increased levels of dopamine (see Kapur, 2003, for a 

review), show an exaggerated variable FP effect (Zahn, Rosenthal, & Shakow, 1963), 

whereas Parkinsonian patients, who suffer from deficiencies in dopamine levels (e.g., 

Rakshi et al., 1999), have a reduction of this effect (Jurkowski et al., 2005). 

The short FP range used in the present study (i.e., 0.5, 1 and 1.5 sec) allows us to 

discard accounts relating the reduction of FP effect after TMS of the rDLPFC to vigilance 

or alertness (e.g., see Posner & Petersen, 1990), such as a deficit in maintaining a high 

level of preparation for a long time interval. This account would be also in contrast to the 
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results obtained by Stuss and colleagues (2005) on prefrontal patients. In that study, 

indeed, right frontal patients showed no FP effect with a variable FP paradigm. 

Noteworthy, with a fixed FP paradigm, their performance was comparable, even for the 

longest FPs in the range, to that of other frontal patients, apart from medial frontal ones.  

The FP effect is probably due to a process of endogenous preparation, analogous to 

that already described by some traditional accounts (e.g., Näätänen 1970). This process 

checks the non-occurrence of the IS, using the information derived from the increasing 

conditional probability of the IS occurrence as time elapses in order to enhance 

preparation. As in right lateral prefrontal patients (Stuss et al., 2005), it is likely that this 

checking process does not operate efficiently after TMS over this area. The rDLPFC region 

controlling such process would be permanently damaged in the neuropsychological 

patients studied by Stuss and colleagues and compromised transiently in the present study 

using TMS. 

In partial support of this view, activation of the rDLPFC has already been 

demonstrated in a number of brain imaging and TMS studies during tasks dealing with 

temporal processing, such as time discrimination tasks (e.g. Rao et al., 2001; Lewis & 

Miall, 2003b) and time reproduction tasks (e.g. Basso, Nichelli, Wharton, Peterson, & 

Grafman, 2003; Koch, Oliveri, Torriero, & Caltagirone, 2003; Jones, Rosenkranz, 

Rothwell, & Jahanshahi, 2004). It can be argued that these tasks are different in nature 

from the variable FP task, in that the former overtly require temporal processing while the 

latter do not. However, what the two kinds of tasks may have in common is the monitoring 

of temporal information, which is explicitly required by time reproduction and 

discrimination tasks, and implicitly exploited during the variable FP paradigm in order to 

reach an optimal level of preparation (Näätänen 1970). As the results of the present study 

and of the literature empirically suggest, this monitoring process is conceivably subserved 

by the rDLPFC.  

The present study also investigated the role of the rDLPFC in the sequential FP effects. 

These well-known effects consist of an increase in RT as the preceding FP becomes 

longer. The sequential effects are usually asymmetrically more pronounced for the shortest 

FPs in the range employed, while they are virtually absent for the longest FPs. A tendency 

(p = .054) for a reduction of the effect of FPn-1 was found after stimulation of the rDLPFC 

in the experiment 7, which used a simple RT task. This tendency was, however, not 

different following TMS of rDLPFC from that of the other two sites employed (see results 

of the overall ANOVA). Moreover, in the experiment 8, a dissociation between the FP 
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effect and the sequential effects was obtained after stimulating the rDLPFC: the FP effect 

was significantly reduced while the sequential effects were not influenced in magnitude. 

Thus, we obtained site controls (i.e., rDLPFC vs. all other sites and no TMS) and a task 

control for our effects (i.e., FP vs. sequential effects dissociation).  

In addition, in the second block after TMS of the rDLPFC, when the TMS effects are 

supposed to be at their strongest (Huang et al., 2005), the sequential effects were more 

symmetric with respect to the baseline block, as confirmed by a subsequent ANOVA. 

Symmetric sequential effects would not be expected according to the conditioning view 

(Los & van den Heuvel, 2001). This account predicts that the sequential effects, if present, 

must inevitably be asymmetric, due to a main role of extinction on the activation strength 

of the shortest FPs, and of reinforcement on the activation strength of longest FPs. The 

observation of symmetric sequential effects when the FP is attenuated may be tentatively 

accounted for by the dual-process model proposed in the general discussion of the 

developmental study (paragraph 2.2., chapter 2). According to this model, the sequential 

effects per se can be explained by assuming an enhancement in arousal following a short 

FPn-1 and a decrease following a long FPn-1, whatever the current FPn (cf., Los & 

Heslenfeld, 2005). It is likely that sequential effects are usually compensated for during 

long FPs by the processes underlying the FP effect, thus accounting for their asymmetry. 

However, given the lack of a significant interaction between the sequential effects and the 

TMS site, further investigation is required to test the relationship between FP effect size 

and degree of symmetry of the sequential effects suggested by the pattern of the present 

results. 

To the best of our knowledge, this was the first study in which an effect of the TBS 

parameters was demonstrated on behavioural variables (i.e., RTs) not directly linked to the 

measure of the motor cortex excitability, indicating its usefulness in cognitive 

neuroscience, as a feasible alternative to other kinds of off-line stimulation (see also 

paragraph 6.3., chapter 6). 

In conclusion, the present study demonstrated that the rDLPFC is a critical locus of the 

FP effect, as a reduction in this effect is obtained after TMS over that area. Moreover, the 

dissociation between the FP effect and the sequential effects produced by TMS of the 

rDLPFC, especially in experiment 8, suggests a dual-process account, according to which 

the two (usually interacting) effects are likely to be dissociable both functionally and 

anatomically. 
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3.2. The neural basis of the foreperiod phenomena: insights from 

brain tumor patients 

The recent neuropsychological study by Stuss and colleagues (Stuss et al., 2005) found 

that right lateral prefrontal patients were selectively impaired in a variable FP task, as they 

did not show the classical FP effect. According to the traditional account concerning 

conditional probability monitoring (e.g., Näätänen, 1970; Niemi & Näätänen, 1981), right 

prefrontal patients fail to check whether a stimulus has occurred over a few seconds, and 

are not able to increase their readiness to respond as time goes on (Stuss et al., 2005). This 

account fits a range of neuropsychological (e.g., Rueckert & Grafman, 1996; Wilkins, 

Shallice, & McCarthy, 1987) and functional imaging studies  (e.g., Coull et al., 2000; 

Henson, Shallice, & Dolan, 1999), which assign a monitoring role to the rDLPFC (see 

Fletcher & Henson, 2001; Shallice, 2002; 2004 for reviews; cf. Posner & Peterson, 1990). 

Another possible explanation for the deficit of right frontal patients, however, may be 

that the FP effect vanishes as a consequence of reduced or absent sequential effects. The 

conditioning single-process account, indeed, would predict this possibility (Los & van den 

Heuvel, 2001). On this view, the FP effect is entirely a side effect of the conditioning 

mechanisms operating on the preceding trial and generating the sequential effects. 

Unfortunately, sequential effects were not investigated in Stuss and colleagues’  study 

(Stuss et al., 2005; but see our TMS study, paragraphs 3.1.). Therefore, it is not possible to 

disentangle this possibility directly from the data reported in that study. 

TMS experiments 7 and 8 replicate the neuropsychological finding (Stuss et al., 2005) 

on healthy participants. As results showed, when rDLPFC was temporarily inhibited by the 

TMS, a reduction in the FP effect was observed with respect to a pre-TMS baseline and 

with the stimulation of other control areas, such as the left DLPFC and the right angular 

gyrus. Fortunately enough, that study also checked the sequential effects, which were 

however not influenced in magnitude by the TMS of any of the three areas under study. In 

other words, the FP effect was reduced in the presence of normal size sequential effects. 

To our knowledge, no study has found the opposite dissociation, namely reduced or absent 

sequential effects in the presence of an unchanged FP effect. Thus, it is not possible to 

know from that study whether the two effects derive from entirely independent processes, 

as the possibility exists that the sequential effects are a necessary but not sufficient 

condition for the occurrence of a normal-size FP effect. In other words, the FP effect may 

have been reduced because of the impairment of an unknown process, whose contribution 
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to the FP effect may be additional to that made by the sequential effects. On the other 

hand, the presence of a normal FP effect in the absence of sequential effects, if found, 

could be taken as evidence for the complete independence of the processes underlying the 

two effects, according to the logic of double dissociations (Shallice, 1988).  

In this study, an approach similar to that developed by Stuss and colleagues (e.g., Stuss 

et al., 1995; Stuss et al, 2005) was adopted to analyse attentional deficits derived from 

lesions in different cortical areas. On this approach, a careful task analysis may provide 

valuable insights about the fractionation of cognitive functions (Stuss, 2006). This 

approach was specifically employed here on a cohort of patients with unilateral brain 

tumors performing a variable FP task. An anatomically-driven analysis was performed on 

patients grouped into different anatomical regions, according to the tumor location. As it 

arises from the brief review above, an open issue, which still remains to be investigated, is 

the neural locus of the sequential effects. For this reason, investigation of the neural bases 

of the FP phenomena has been extended, in this study, to lesions outside the prefrontal 

cortex. Therefore, the six tumor locations of patients tested here were: right and left 

prefrontal, right and left premotor, right and left parietal. Prefrontal patients have been 

tested with the specific purpose of replicating previous neuropsychological and TMS 

studies on the role of lateral PFC in the variable FP effect (Stuss et al., 2005; see also our 

TMS study, paragraph 3.1.). The investigation of patients with tumors in premotor and 

parietal regions was justified by the fact that several fMRI studies on temporal preparation 

or temporal processing have consistently shown activations of areas within these regions 

(e.g., Basso et al., 2003; Coull et al., 2000; Lewis & Miall, 2003a; Macar et al., 2002). 

A clear advantage of the study of tumor patients with respect to other categories of 

neuropsychological patients is that baseline performance may be measured within-subject 

before tumor resection. As it is still unclear whether and to what extent tumors, especially 

high-grade ones, have deleterious effects on the cognitive system, we also investigated 

whether the baseline performance of tumor patients on the variable FP paradigm was 

already defective, due to the tumor per se, by comparing it with the performance of a 

control group of hospitalized (orthopaedic) patients without any cerebral disease. 
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3.2.1. Experiment 9 

Method 

Assignment to patient group 

The pre-operative location of the tumor was determined using a digital format T1-

weighted MRI scan obtained 1-2 days before surgery. The post-operative MR scans were 

available 3-4 months after surgery, about one month from the end of the radiotherapy. As 

by this time the area of removed brain tissue was partially replaced by healthy brain, pre-

operative MR scans have been used for localization purposes. Each patient’s lesion was 

referred to an anatomical template image AAL (automated anatomical labeling; Tzourio-

Mazoyer et al., 2002), that is a macroscopic anatomical partition of Montreal Neurological 

Institute (MNI) volume (Collins et al., 1998).  MRIcro software was used to extrapolate a 

3D representation of the lesion from digital MR scans (Rorden & Brett, 2000). The tumor 

contour was drawn as a region of interest (ROI) on each sagittal slide. Afterwards, the 

scans and ROIs were normalised using Statistical Parametric Mapping (SPM2, Wellcome 

Department of Cognitive Neurology, London, UK) with a human-assisted process. In 

collaboration with the neurosurgeon and, for low grade tumors, also with the 

neuroradiologist, who did not know the behavioral results, the tumor boundary was limited 

to the brain tissue effectively removed during the surgical operation, therefore excluding 

the oedema. 

Patients were assigned to the parietal group if the tumor involved the parietal and 

occipito-parietal cortices or posterior temporal cortex (posterior to BA 4). Patients with 

tumors in either or both the motor and premotor areas (BA 4 and 6) have been included in 

the premotor group. Patients with tumors involving areas anterior to BA 6 have been 

included in the prefrontal group. Patients with tumors located in the anterior portion of 

Sylvian fissure, fronto-insular and fronto-temporal areas have been excluded.  

 

Patient selection 

One-hundred and eleven patients had initially been tested with tumors of the following 

types: gliomas, mav, meningiomas and metastases. Fifty-three patients have been excluded 

from the analysis reported in the current study for the following reasons: they were left-

handed (2 cases), the operation was for a recurrence of the tumor (4 cases), they were only 

available for testing in one of the two sessions (11 cases), they had multiple metastatic 

lesions (2 cases), or the lesions involved white matter almost entirely (2 cases) or were 
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intra-ventricular (2 case), bilateral (8 cases), predominantly insular with frontal-temporal 

involvement (11 cases), involved roughly equally two of the three brain regions under 

study (7 cases), because of marked diffused cognitive deficits (1 case), because of the 

absence of a 3D scan (1 case), because the patient suffered from alcoholism (1 case) or 

mental retardation (1 case).  

 

 

Figure 17. Display of the tumor overlap for the 6 groups of tumor patients. The percentage of 
overlapping tumors in each voxel is illustrated using a grey-scale within the region of interest: 
the lighter is a point on that scale, the higher the percentage of patients within that group with 
that voxel damaged. The white colour indicates voxels with maximal percentage of tumors 
within each patient group. Maximal percentage of overlap was 67, 43, 63, 43, 56, 36, for the 
left and right prefrontal, left and right premotor and left and right parietal groups, respectively. 
The z-coordinates of each transversal section in Montreal Neurological Institute space are -8, 0, 
8, 16, 24, 32, 40, 50, 60, 70. LPF = left prefrontal; RPF = right prefrontal; LPM = left 
premotor; RPM = right premotor; LP = left parietal; RP = right parietal.  
 



 102 

The remaining 58 patients were divided into 6 groups with the following sample sizes: 

6 left prefrontal, 14 right prefrontal, 8 left premotor, 7 right premotor, 9 left parietal, 14 

right parietal (see Figure 17). The histological examination of the tumors of the included 

patients were: 20 high grade gliomas, 20 low grade gliomas, 15 meningiomas, 3 

metastasis. Mean tumor volume was 36.4 ml (on a total of 1352 ml), SD 29.8 ml. 

Patients having tumors which show pronounced involvement of a defined region but a 

small involvement of other critical regions have been included in the study. This was the 

case for the 8 following patients: tumors of 3 right prefrontal patients extended to right 

premotor regions; tumor of another right prefrontal patient extended to the anterior portion 

of Sylvian fissure; one left prefrontal patient had an involvement of the anterior portion of 

Sylvian fissure; tumor of another left prefrontal patient had compressive effects on a small 

portion of the right hemisphere (however, only the tumor in the left hemisphere was 

surgically removed); tumors of 2 premotor patients, one left and one right, involved a small 

amount of left and right prefrontal cortex, respectively. Occasionally patients had oedema 

involving other critical brain regions under study: two right parietal patients had oedema in 

the premotor and motor areas; one right premotor patient had an involvement of parietal 

and prefrontal cortex; two right prefrontal patients had oedema involving premotor areas.   

A control group of 12 hospitalized orthopedic patients without neurological problems 

or cognitive impairment (Corrected Mini-Mental State Examination > 24) was also tested 

in order to check for learning effects, and for the baseline performance of tumor patients on 

the pre-surgery session. The demographic characteristics of each patient group are reported 

in Table 5. 

When the 7 groups were compared in one-way ANOVAs, there were no significant 

differences between the groups with respect to age [F(6, 63) = 1.38, p = .23] and to years 

of education [F(6, 63) = 1, p = .4]. Among the 6 groups of tumor patients there was a 

tendency towards significance for location on lesion volume [F(5, 52) = 2.19, p = .07]. The 

lesion volume for the premotor groups tended to be smaller than that for the parietal and 

prefrontal groups. Forty participants underwent surgery under general anesthesia, whereas 

the other 18 were awake during operation. Preliminary analyses did not reveal any effect of 

interaction between gender, volume size or anesthesia, on the one side, and the variable FP 

phenomena and the testing session, on the other side. Therefore, data were collapsed with 

respect to these factors. The study has been performed in accordance with the ethical 

standards laid down in the 1964 Declaration of Helsinki and was previously approved by 

SISSA ethical committee.  
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Table 5 

 Main demographical characteristics of the seven patient groups included in the experiment 9. 

 Mean Agea  Mean 
Educationa 

Gender  Anaesthesia  Tumor 
Volumeb 

 Sample 
size 

Group (min-max) (SD)  F M G L (SD)  

Left Parietal 53 (31-70) 9 (3) 3 6 6 3 40 (32) 9 

Right Parietal 54 (30-70) 10 (4) 6 8 13 1 40 (37) 14 

Left Premotor 45 (31-60) 11 (3) 5 3 2 6 15 (11) 8 

Right Premotor 39 (18-58) 12 (3) 2 5 2 5 18 (14) 7 

Left Prefrontal 45 (33-62) 11 (4) 3 3 5 1 45 (20) 6 

Right Prefrontal 45 (23-72) 12 (4) 5 9 12 2 48 (30) 14 

Controls 47 (23-73) 11 (4) 6 6 ---- ---- -------- 12 

Notes. aIn years. bIn millilitres (total volume: 1352 ml). SD = standard deviation; F = female; M = 
male; G = general; L = local. 

 

Stimuli and Procedure 

Each patient was tested individually with her/his gaze ~55 cm from the screen. Patients 

were tested twice: 1-3 days before operation and 2-6 days after it. The control participants 

were also tested twice with a comparable time-range between the two testing sessions (i.e., 

4-8 days) but without any surgical intervention in between. In addition to the test reported 

here, tumor patients carried out 20 other neuropsychological tests: 5 on perception, 5 on 

praxis and 8 on executive functions and working memory, 1 on optic ataxia, and 1 on 

neglect. For the variable FP task, participants are required to fixate a cross in the centre of 

a 15”  VGA monitor (composed by 2 black lines, 4 cm each). The onset of the fixation 

cross served as a warning signal. The cross was displayed on the screen until the FP 

expired. The imperative stimulus was a central yellow rectangle (width: 5.5, height: 4 cm). 

Participants were instructed to press the spacebar as soon as they would see the rectangle. 

The imperative stimulus disappeared when the response was detected. The FPs between 

the cross onset and the rectangle onset were: 3, 4, 6 and 7 sec, respectively. These 

relatively long FPs were chosen in order to use similar experimental conditions as those 

used by Stuss and colleagues (Stuss et al., 2005), who administered a very similar FP range 
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to the frontal patients. The 4 FPs were administered randomly and equiprobably across 

trials. The inter-trial interval between the response detection and the next fixation onset 

was 1 sec. All the stimuli were presented against a white background. During each session, 

the experiment consisted of 36 trials (9 per each FP) presented in a different pseudo-

random order for each patient. A familiarization phase with 4 trials (one per each FP) 

preceded the test phase. The recorded variable was the RT. 

 

Data Analysis 

RTs outside the 100-3000 ms range, the first trial of the test block and data from the 

initial familiarization phase were excluded from analyses. Initial analyses comprehend all 

the 7 groups, typically using a 7x2x2x2 mixed ANOVA. This ANOVA involved patient 

group as the only between-subject factor (left and right prefrontal, left and right premotor, 

left and right parietal, and controls), and 3 within-subject factors: FPn (short vs. long, i.e., 

3-4 vs. 6-7 sec), FPn-1 (3-4 sec vs. 6-7 sec), and testing session (first and second session, 

which means pre- vs. post-surgery for tumor patients).  

 

Results 

Accuracy 

Less than 0.6% of trials were discarded because of RTs being outside the 100-3000 ms 

range. This percentage tended to be significantly different across patient groups, as 

demonstrated by a non-parametric Kruskal-Wallis test [H(6, N: 70) = 12.4, p = .054]. This 

could be due to the fact that virtually no trial was excluded for the controls and the 

premotor groups. However, the percentage of excluded trials was low also in the other 4 

groups (0.7, 0.6, 1.3 and 1.5%, for the left and right parietal, and left and right prefrontal 

groups, respectively). 

 

Reaction Times 

The results are presented in Figures 18 and 19. The overall ANOVA produced the 

following significant effects. The main effect of FPn was significant [F(1, 63) = 87.2, p < 

.001], indicating that RTs were slower on the short FPn than on the long one (i.e., the 

classical FP effect). The main effect of FPn-1 was also significant [F(1, 63) = 47.5, p < 

.001]: RTs were slower after a long FPn-1 than after a short one. The effect of FPn-1 was 

modulated by the testing session [F(1, 63) = 6.9, p = .01], being stronger in the first testing 

session than in the second one. The sequential effects were asymmetric as indicated by the 
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significant FPn x FPn-1 interaction [F(1, 63) = 5, p < .05]. However, the latter two 

interactions were better qualified by a tendency toward significance of the testing session x 

FPn x FPn-1 interaction [F(1, 63) = 3.7, p < .056]. This tendency suggested that sequential 

effects were present in the first session, but absent in the second session, a pattern mainly 

observed on the short FPn.  

More critically, the patient group x testing session x FPn interaction was also 

significant [F(6, 63) = 2.5, p < .05]. Visual inspection of Figure 18 suggests that this 

interaction was due to a reduction of the FP effect selectively after removal of tumoral 

tissue in right lateral PFC. In order to statistically corroborate this observation, separate 

ANOVAs for each group were conducted with testing session, FPn and FPn-1, as repeated 

measures. As predicted (cf. Stuss et al., 2005), the testing session x FPn interaction was 

significant for the right prefrontal patients only [F(1, 13) = 8.2, p = .01], due to a reduction 

of the FP effect after surgery (12 ms) with respect to the pre-surgery effect (57 ms). We 

further checked if there was a correlation between this effect and lesion extension. Neither 

the pre- nor the post-surgery FP effect in right prefrontal patients correlated with lesion 

size. 

These separate ANOVAs had also been carried out to find the source of the testing 

session x FPn-1 and testing session x FPn x FPn-1 interactions in the overall ANOVA. 

Although these interactions are not significantly modulated by the patient group in the 

overall ANOVA, visual inspection of Figure 19 suggests that the premotor and prefrontal 

groups are principally responsible for these effects. This was only partially confirmed as 

the testing session x FPn-1 interaction was a tendency for the right prefrontal group (p = 

.06) and for the left premotor group (p = .08). 

To find the source of the testing session x FPn x FPn-1 interaction, we chose a 

Bonferroni correction of a critical significance level of .0083, as this 3-way interaction was 

only a trend in the overall ANOVA. The only individual patient group showing a 

significant testing session x FPn x FPn-1 interaction, when analyzed separately from the 

other groups, was the left premotor one [session x FPn x FPn-1 3-way interaction: F(1, 7) = 

22.1, p = .002], indicating that the sequential effects, which were present before surgery 

mainly on the short FPn, had disappeared after it. This was observed in this patient group 

despite the standard FP effect being present with the same magnitude before and after the 

operation, as shown by a significant main effect of FPn [F(1, 7) = 55.4,  p < .001], which 

was not modulated by the testing session (session x FPn interaction, p = .36).  
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Figure 18. The foreperiod effect (reaction time difference between foreperiods of 3-4 and 6-7 
seconds) as a function of patient group and testing session, experiment 9. FP = foreperiod. 
Tumor group labels as for figure 17. 
 

The main effect of testing session was also reliable in this group [F(1, 7) = 31.7, p < 

.001], due to RTs being slower after the operation than before, which could conceivably 

arise from a motor effect, given that these patients were all right-handed.  

 

Discussion 

In this study, we aimed to investigate the variable FP phenomena on tumor patients, 

when tested before and after surgical removal of the tumor located in different cortical 

areas. The most important finding was a reduction of the FP effect after surgical removal 

of tumoral portions of the right prefrontal cortex. This finding corroborates recent studies 

on FP phenomena obtained in chronic patients with predominantly other etiologies such as 

stroke (Stuss et al., 2005), and in healthy participants undergoing inhibitory TMS over 

rDLPFC (experiments 7 and 8).  
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Figure 19. The sequential effects as a function of patient group and testing session, experiment 
9. Short = 3-4 seconds. Long = 6-7 seconds.  
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Although obtained in such a simple experimental task, the FP effect is generally 

considered as a marker of high-level monitoring processes (e.g., Näätänen, 1970; Niemi & 

Näätänen, 1981; Stuss et al., 2005; but see Los & van den Heuvel, 2001). On this view, 

this result supports the hypothesis that right lateral PFC is the seat of the critical process 

producing the FP effect, that is monitoring of the increasing conditional probability of 

stimulus occurrence along the FP (e.g., Näätänen, 1970).  

Unlike the previous neuropsychological work (Stuss et al., 2005), the current study 

additionally investigated the effect of the preceding FP, which is known to generate 

asymmetric sequential effects: RTs are slower for long FPn-1 than for short ones, but only 

when the current FP is a short one. In the overall ANOVA, there was a reduced effect of 

the FP occurring on the preceding trial, when performance in the second session was 

compared to that in the first session. This effect is difficult to interpret from the 

localizational point of view, as we did not found clear statistical evidence for the 

specificity of the tumor site.  

More critically, a zoom on the behavior of the left premotor group could give some 

additional clue about the localization of the sequential effects and their underlying 

cognitive mechanisms. Despite the presence of an unchanged FP effect, sequential effects 

disappeared after operation when performance was compared within-group with the pre-

surgery performance, as indicated by the significant session x FPn x FPn-1 interaction in this 

group only. Specifically, there was no RT reduction after a short FPn-1 in the post-surgery 

session. This result may be interpreted suggesting a pre-motoric/motoric locus of a 

facilitatory effect carried over when a short FP had occurred in the previous trial. Left 

premotor areas are directly involved in the preparation of the manual key-press, which is 

the response required in this task. Supporting this hypothesis, an electrophysiological study 

on monkey premotor and motor cortex (Riehle & Requin, 1993) revealed that activity of 

neurons within this region may be predictive for performance speed in tasks were a 

preparation period was administered. During the delay period of a delayed-reach task, 

moreover, micro-stimulation of neurons within premotor cortex lead to a highly-specific 

lengthening in reach RT (Churchland & Shenoy, 2007). Nevertheless, prudence regarding 

localizational conclusions is imposed by the lack of interaction with the other patient 

groups in the overall ANOVA. Thus, this finding should be seen as a suggestion for further 

studies rather than as evidence fully supported by the current data. 

However, functional conclusions can be drawn even in the absence of strong 

anatomical localization. Indeed, this finding represents the second component of a double 
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dissociation between FP and sequential effects. On the one hand, we found a reduction in 

the FP effect as an effect of inhibitory TMS on the rDLPFC in the absence of a modulation 

in the sequential effects (see experiments 7 and 8). On the other hand, here it has been 

shown that sequential effects disappear after surgery in left premotor patients despite an 

intact FP effect. This pattern supports dual-process accounts of the FP phenomena (e.g., 

experiments 3a, 3b and 4, chapter 2; see also Los & Agter, 2005), and is much difficult to 

account for in single-process accounts (e.g., Los & van den Heuvel, 2001). 

The functional meaning of sequential effects, therefore, needs to be revised. According 

to the dual-process account put forward in chapter 2 (experiments 3a, 3b and 4), the 

sequential effects may be due to a tonic arousal modulation by the FPn-1. As maintaining a 

high level of preparation for a long FP is effortful, a long FPn-1 decreases arousal 

(refractoriness) and lengthens RTs on trial n, whereas a short FPn-1 increases arousal 

(facilitation) and produces relatively faster RTs on trial n (see Los & Heslenfeld, 2005, for 

electrophysiological evidence). This arousal modulation is especially detectable on the 

shortest current FP, when the compensatory effect of the conditional probability 

monitoring cannot take place. After tumor removal in frontal patients here, and especially 

left premotor patients, the second process (facilitation) seems to be impaired, so that RTs 

on a short FPn do not benefit from a short FPn-1, conceivably because the brain area where 

this arousal modulation should produce its effects (i.e., left premotor cortex) is not working 

properly due to the surgical lesion. 

The effects of tumor per se on cerebral functionality are still almost unknown. 

However, there are a few studies investigating cognitive functioning of brain tumor 

patients before any treatment and surgical intervention, which found cognitive deficits 

caused by the presence of tumor (e.g., Rabbitt & Page, 1998; Tucha, Smely, Preier, & 

Lange, 2000). Therefore, a baseline evaluation of cognitive abilities before surgery is 

methodologically desirable in any study of tumor patients undergoing surgery. To that 

purpose, the use of a matched control group of orthopedic patients allowed us to exclude, 

at least before surgery, any particular deficit of our sample of tumor patients in performing 

the variable FP paradigm.  

A critical aspect of the present results is that the effects found are selective and are 

generally robust across etiologies. Indeed, resection of a right prefrontal tumour gives the 

same reduction in the FP effect as in a cohort of patients primarily suffering from stroke in 

the same region (Stuss et al., 2005). From a methodological point of view, this study 

supports the one by Shallice and colleagues on optic ataxia (Shallice, Mussoni, D’Agostini, 
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& Skrap, submitted), demonstrating that the effects of operation for resection of tumors 

can be a valuable method for localizing cognitive processes.  

In conclusion, the present findings confirm the studies on the anatomical basis of the 

FP effect (Stuss et al., 2005) and additionally provide surprising new neuropsychological 

results on the sequential effects. The latter are best explained by a dual-process account of 

the FP phenomena. Finally the findings strongly support the utility of using acute tumor 

patients as a source of evidence about the localisation and fractionation of cognitive 

functions.  
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Chapter 4 
 

4.1. Spatial-temporal association of response codes (STARCO): a 

new stimulus-response compatibility effect 

In a variable FP paradigm, FP duration is a task-irrelevant feature, because the 

participant is not explicitly required to attend to it in order to perform the task. When 

validly cued by an external signal for a short FP, participants do not produce sequential 

effects (e.g., Los & Heslenfeld, 2005; Los & van den Heuvel, 2001, see paragraph 1.2.1.2., 

Chapter 1). This shows that attention to the time in which a stimulus will occur may 

enhance the process of getting prepared and compensate for the sequential effects that 

typically occur after a short FP. In the first experiment of the study presented in this 

chapter (experiment 10), we wanted to test whether the explicit requirement of monitoring 

the FP length could produce a similar disappearance of the sequential effects as that 

obtained with cueing paradigms. The assumed reason for the disappearance of the 

sequential effects after valid cues is that participants know in advance the duration of the 

forthcoming FP, and they intentionally get prepared for it. In this way, they can 

compensate for the influences from the preceding FP. In a similar manner, we expected 

that, if participants would be required to respond according to the length of the FP, as a 

task-relevant feature, they would compensate for the influence of the preceding FP, not 

only on long current FPs but also on short ones (i.e., no FPn x FPn-1 interaction). Although 

in this case participants are not explicitly cued by an external signal occurring at the 

beginning of each trial, they are implicitly cued by the initial task instructions 

symmetrically towards both the short and the long FPs. 

 
4.1.1. Experiment 10 

Experiment 10 was specifically intended to test whether, in a situation where elapsing 

time is task-relevant, the costs of not being fully prepared for the short FPs (i.e., the 

sequential effects) would be attenuated. To that purpose, a modified version of the variable 

FP task was designed, in which the participant was explicitly required to judge the FP 

duration. 
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Method 

Participants 

Twenty healthy volunteers (11 females and 9 males) took part in experiment 10. They 

were 25 years old on average (range = 18-32). All the participants were right-handed. The 

average score on the EHI (Oldfield, 1971) was 82 (range: 55-100). All participants 

volunteering in the whole study were Italian-speakers (mother tongue) and had a medium-

high educational level (years of education ≥ 13). All of them were naïve to the purpose of 

the experiment and were paid 6 euros per hour. 

 

Apparatus and Materials 

Participants were tested individually in a quiet and normally illuminated room. A 

personal computer was used for stimulus presentation and response sampling. Visual 

stimuli were presented through a 19-inch VGA-display at a distance of ~60 cm. A central 

cross (2 yellow crossed bars, 1.0 x 0.5 cm) was used as fixation. The imperative stimulus 

consisted of a downward pointing white arrow (a 1.5 x 1 cm bar attached to a 0.5 cm 

arrowhead with a maximum width of 2 cm). 

 

Procedure and Task 

Before beginning the experiment, each participant was required to fill the Edinburgh 

Handedness Inventory (EHI). A trial started with the central fixation cross, lasting for a FP 

of 1 or 3 sec. The 2 values of the FP were presented randomly on an equal number of trials. 

After the FP elapsed, the arrow requiring a response was presented. The task consisted of 

pressing ‘Z’  for a short cross duration (i.e., 1 sec) and ‘ /’  for a long cross duration (i.e., 3 

sec). The stimulus duration/response key assignment was inverted after 160 trials. The 

order of presentation of the 2 possible S-R mappings was counterbalanced across 

participants. After a response was detected, a 1 sec blank separated one trial from the other. 

A familiarization block, consisting of 20 trials, preceded each experimental block with 

opposite S-R mappings (160 trials each). During this phase, a visual feedback was 

displayed for 1 second soon after the response. The feedback provided during the initial 

practice phases consisted of the green string (in Italian): “good! Go on with the next trial!” , 

for correct responses, the red string: “wrong response, be careful!”  plus a sound (a 1500 Hz 

pure tone lasting 50 ms) for incorrect responses, and the red string: “too slow, try to be 
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faster!”  (plus the 1500 Hz sound) for slow responses (>1500 ms) or null responses. The 

familiarization phase was repeated until participants would make 2 errors or less. All 

participants, however, reached this criterion after 1-2 familiarization phases. 

 

Data Analysis 

Trials were treated as errors and discarded from the RT analyses if a response was 

made during the FP or the first 100 ms after the arrow onset (anticipated responses), if the 

RT was slower than 1500 ms or no response was detected (delayed and null responses), 

and if the FP judgment was incorrect. A preliminary 2x2 repeated measures ANOVA was 

performed both for accuracy and mean RTs of correct trials, with FPn (1 vs. 3 sec) and FPn-

1 as the within-subjects factors. As this interaction was significant in the initial analysis 

(contrary to the predictions), we introduced the factor of response side (left vs. right) as a 

new within-subjects factor for a 2 FPn x 2 FPn-1 x 2 response side within-subject ANOVA, 

in order to check whether the FP effect and the sequential effects were differentially 

present in the two hands. Being the FPn x response side cross-over interaction significant 

(see results), we wanted to test whether the opposite effects of response side on the short 

and long FPsn correlated. To that purpose, the RT differences between left and right hand 

responses on the short and long FP durations were also analyzed by using a Pearson’s 

correlation. 

 

Results 

Accuracy 

There were virtually no anticipated responses (0.1%) and delayed or null responses 

(0.7%). Moreover errors in judging the cross duration were less than 4.4%. No significant 

effect was observed in the ANOVA concerning accuracy. 

 

Reaction Times 

Reaction times are shown in Figure 20. The effect of FPn (i.e., cross duration) was 

significant [F(1, 19) = 182.6, p < .001], indicating that RTs were faster for the long FPn 

than for the short one (381 vs. 507 ms). The effect of FPn-1 was also significant [F(1, 19) = 

30.1, p < .001], indicating that RTs were faster after a short FPn-1 than after a long one (426 

vs. 462 ms). Critically, there was a significant FPn x FPn-1 interaction [F(1, 19) = 30.1, p < 

.001, see Figure 20, panel A], demonstrating the classical sequential effect. RT was faster 

after a short FPn-1 than after a long one (476 vs. 541 ms; t-test, p < .001), but this difference 
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was asymmetrically present only on the short FPn and virtually absent on the long FPn (376 

vs. 384 ms). The FP x response side interaction was also significant [F(1, 19) = 6.1, p < 

.05; see Figure 20, panel B].  

 

 

Figure 20. Mean reaction times in experiment 10. Panel A: mean reaction times shown as a 
function of the duration of the foreperiod occurring in the trial n (FPn, x-axis) and in the trial n-1 
(FPn-1, histograms). Panel B: mean reaction times shown as a function of foreperiod duration in 
the trial n (x-axis) and of responding hand (histograms). 
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This interaction indicated that responding to the short FP was faster with the left hand 

than with the right one (499 vs. 516 ms), and responding to the long FP was faster with the 

right hand than with the left one (366 vs. 396 ms). T-tests comparing left vs. right hand 

RTs for the short duration and for the long duration were significant (for both, p < .05). 

If the effects of response side on short and long FPs are due to different mechanisms, 

there is no reason why they should be correlated. On the other hand, if they are due to a 

common underlying mechanism, they should be correlated. To disentangle these 

hypotheses, a Pearson’s correlation analysis was conducted between the effect size (i.e., 

RT difference between left and right response side) in the short and long duration 

conditions. This analysis showed a significant positive correlation (r = .44, p < .05, see 

Figure 21). 

 

 

Figure 21. Pearson’s correlation scatterplot (and confidence intervals) in experiment 1. Y-axis 
indicates Reaction Time differences between left and right responses for long foreperiods, whereas 
x-axis indicates Reaction Time differences between right and left responses for short foreperiods. 

 

Discussion 

The results of experiment 10 confirm the literature on the FP effect, and replicate this 

effect in a task where the FP duration is explicitly evaluated. This finding does not support 

our prediction that explicitly judging the FP could have had beneficial influences on the 

shortest FPn. Specifically, we had predicted that, in a similar manner to when a valid 

temporal cue is used before the FP, sequential effects could disappear for the shortest FPn 

if participants’  attention had to be directed there because of the task demands (i.e., FP 

judgment). Critically, there was no influence of the task instructions on the sequential 
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effects, as the FPn x FPn-1 interaction was significant in the direction predicted by the null 

hypothesis (i.e., sequential effects asymmetrically biased towards the shortest FPn with no 

effect of the task-relevant FP; see also Footnote 10, on page 131). Therefore, the 

alternative hypothesis of an influence of the explicit FP judgment on the sequential effects 

should be rejected. In other words, the information given by the initial instructions about 

the relevance of both the short and long FPs for the response was not sufficient to 

overcome the sequential effects. These effects, being a rather automatic and robust 

phenomenon (Los & van den Heuvel, 2001; see also experiment 6, paragraph 2.4.1.), did 

not disappear with the task-relevant FP length, probably because reaching an optimal 

preparation level for the shortest FP in the range is effortful (especially after a long FP in 

the preceding trial), and can be achieved only when participants are prompted to get 

prepared for the shortest FP, in a phasic fashion, at the beginning of each trial (and not 

tonically, through the initial task instructions). Indeed, a trial by trial temporal cueing 

procedure has been demonstrated to be more effective, for valid cue conditions, to reach a 

rather optimal preparation level even for short FPs (e.g., Coull & Nobre, 1998; Coull et al., 

2000). In such a condition, sequential effects are significantly attenuated (Los & van den 

Heuvel, 2001). 

An intriguing finding of this experiment is that the speed in judging the FP length 

(operationalized with the duration of the fixation cross) is not constant, but depends on the 

side of the response: responding to a short FP with the left key and to a long FP with the 

right key is faster than responding with the opposite S-R mapping. The opposite effects of  

using left and right hands on the short and long durations correlated across subjects, 

suggesting (although not demonstrating) a common underlying mechanism.  

A possible interpretation of the S-R compatibility effect found here is that elapsing 

time is cognitively represented by a spatial vector running from left to right. Spatial 

attention would shift accordingly from left to right as time elapses, producing an 

‘ irrelevant’  response code, which develops continuously according to the spatially 

represented mental timeline, namely from left to right. This in turn may produce effects 

similar to some well-known spatial S-R compatibility effects, like the Simon effect (e.g., 

Hommel & Prinz, 1997). Thus, performance would be facilitated during the blocks in 

which the relevant response code (given by the instructions associating duration to a 

response) corresponds to the formally irrelevant directionality code, and delayed during the 

blocks in which the relevant and the irrelevant response codes go in opposite directions. In 

the latter case, indeed, the irrelevant response code would need to be inhibited before the 
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‘ relevant’  correct response can be executed slowing RTs down. However, before 

developing this explanation further, alternative interpretations need to be carefully 

considered. 

 

4.1.2. Experiment 11 

A variable FP paradigm (e.g., Niemi & Näätänen, 1981) was used in the experiment 

10. In this paradigm, different FPs (i.e., cross durations) alternate randomly and 

equiprobably across trials. As a result, RTs are faster for longer FPs than for shorter ones. 

This is the so-called FP effect (Woodrow, 1914). Therefore, an alternative explanation of a 

compatibility phenomenon between FP duration and response side found in experiment 10 

could be due to the presence of a greater FP effect on either responding hand. This 

explanation would fit results of other compatibility effects, such as the Simon effect, which 

is known to be larger with the dominant hand than with the non-dominant one (e.g., 

Rubichi & Nicoletti, 2006). It is not possible to test this specific hypothesis directly from 

experiment 10 because, in each mapping, the FP effect was given by the combination of 

right and left hand responses within the same block. Experiment 11 directly investigated 

this explanation by using a variable FP paradigm embedded in a simple RT task, where 

only one hand had to respond in each block.  

 

Method 

Participants 

Fourteen healthy participants (10 females and 4 males) volunteered in experiment 2. 

They were 26 years old on average (range = 21-35). Apart from 2 left-handed participants 

(EHI: -55 and -80, respectively), all the others were right-handed. The average score on the 

EHI was 63.6 (range from -80 to 100).  

 

Apparatus and Materials 

Apparatus and materials were basically the same as in the experiment 10. The only 

difference was that participants had to keep the index finger of the responding hand on the 

keyboard spacebar.  

 

 

Procedure and Task 
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A trial started with the presentation of the fixation cross, which marked the beginning 

of the FP (i.e., 1 vs. 3 sec, 50% each, random presentation). When the FP ended, an arrow 

replaced the fixation. Participants were required to respond as fast as possible to the arrow 

by pressing the spacebar, with their right index finger in one block, and with their left 

index finger in the other block. The order of presentation of the 2 blocks was 

counterbalanced across participants. The arrow was removed by the response key press. 

After a blank interval of 1 sec, a new trial started. Two blocks of 80 trials (40 per each FP) 

were presented during each session to each participant. Ten practice trials preceded each 

experimental block. 

 

Data Analysis 

Trials were treated as errors and discarded from the RT analyses if a response was 

made during the FP or the first 100 ms after imperative stimulus onset (anticipated 

responses), or if the RT was slower than 1500 ms or no response was detected (delayed 

and null responses). Mean RTs were submitted to a 2 FP (1 vs. 3 sec) x 2 responding hand 

(left vs. right) repeated measures ANOVA8. 

 

Results 

Accuracy 

Anticipated and delayed responses were 1% and 0.14% of the total, respectively. 

 

Reaction Times 

The FP effect was the only significant effect found in the ANOVA concerning RTs 

[F(1, 13) = 37.2, p < .001, see Figure 22], due to RTs being faster for the long FP than for 

the short one (314 vs. 361 ms). In particular, the FP x responding hand interaction was far 

from significant [F(1, 13) = .2, p > .88]. After the exclusion of the 2 left handed 

participants, the pattern of ANOVA results was basically the same. Moreover, the EHI 

score did not correlate with the RT difference between the left and right hand responses for 

short and long FPs [r = -.37, p = .2; r = .49, p = .08, respectively].  

 
Discussion 

                                                
8Although the FP on the preceding trial is known to interact with FP on the current trial (i.e., sequential 
effects; e.g., Niemi & Näätänen, 1981), analyses  of experiment 10 did not show any significant interaction 
between the FP on the preceding trial and response side, which is relevant for the present purposes. For this 
reason, the preceding FP factor was not included in the subsequent analyses (also in the next experiments).  
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Experiment 11 was designed to test whether the FP effect was greater when 

responding with the right hand than with the left one. No difference between hands was 

observed at all (even when the 2 left-handed participants were excluded) and the EHI score 

did not correlate with any between-hands RT difference either in the short or long FP 

condition. This pattern of results does not support the possibility that the FP by hand 

interaction found in the experiment 10 can be explained in terms of a greater FP effect with 

either hand. However, experiment 11 did not require competition between the 2 hands, as 

responses had to be given with one hand at a time in 2 separate blocks of a simple RT task.  

 

 

Figure 22. Mean reaction times (and standard errors) in experiment 11 as a function of foreperiod 
duration (x-axis) and responding hand (histograms).  

 

4.1.3. Experiment 12 

Results of experiment 11 excluded an account of the compatibility effect found 

between temporal duration and responding hand concerning a differential FP effect size in 

either hand. However, the possibility remains that the mechanism underlying the critical 

interaction in the experiment 10 derives from a within-trial competition between 

responding hands/hemispheres. For instance, it might be supposed that left hand/right 

hemisphere is better in responding to rapid temporal durations, and right hand/left 

hemisphere is better in responding to slower temporal durations, and that this differential 

ability would appear only when the selected response side switches within-trials. 

In order to choose between an explanation of the superiority of the left-short/right-long 

mapping in terms of the response spatial position (i.e., left vs. right response key), and 

another in terms of the responding hand (i.e., right vs. left hand), in experiment 12 a 
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manipulation was adopted, which is well-known in the spatial compatibility literature (e.g., 

Dehaene, Bossini, & Giraux, 1993; Rubichi & Nicoletti, 2006; Wallace, 1971): participants 

had to respond with their hands crossed, so that the right hand should press a left key and 

the left hand should press a right key. In this case, the response position and the anatomical 

identity of the effector do not correspond.  

If the interaction observed in the experiment 1 arises from asymmetric proprioceptive 

or motor skills between the two hands/hemispheres, we should observe an inversion of the 

compatibility effect with respect to the keys. If the interaction is instead due to some 

preferred association between the left visual hemispace with short FP and the right visual 

hemispace with long FPs, no change should be observed in the interaction for the response 

keys compared to experiment 10. 

 

Method 

Participants 

Seventeen healthy volunteers (11 females and 6 males) took part in experiment 12. A 

male participant was excluded because he did not follow the instructions throughout, as he 

used an anatomical hand position for one block (i.e., left hand on the left key and right 

hand on the right key). The final sample used for the analyses therefore consisted of 16 

participants. They were 27 years old on average (range = 21-32). All participants apart 

from one were right-handed (mean EHI score: 65; range from -75 to 100). 

 

Apparatus and Materials 

The apparatus and materials were the same as in the experiment 1 apart from the 

following exception. For the responses, participants had to keep their hands crossed. The 

key located to the left of the body midline (‘Z’) was pressed by the right index finger, 

whereas the key located to the right (‘ /’ ) was pressed by the left index finger.  

 

Procedure and Task 

Two blocks of 160 trials each were administered. In one block, the ‘Z’  key had to be 

pressed by the right hand after a short cross duration, and the ‘ /’  key had to be pressed by 

the left hand after a long cross duration. The opposite S-R mapping was applied in the 

other block. The order of presentation of the 2 blocks was counterbalanced across 

participants. Half of each block was performed with the right hand standing on the top of 
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the left one and the other half was performed with the left hand on the top of the right one. 

Half of the participants started each block with one position and then switched position 

after 80 trials. The opposite order was used for the other half of the participants. A practice 

phase with 20 trials (10 per each FP) was given at the beginning of each block. Similar 

feedback to that employed in experiment 1 was displayed at the end of each trial during the 

practice phase. 

 

Data Analysis 

The same criteria as in experiment 1 were used to exclude incorrect trials. Accuracy 

and mean RTs of correct trials were analysed by means of a 2 FPs (short vs. long) x 2 

response side (left vs. right key) repeated measures ANOVA.  

 

Results 

Accuracy 

There were virtually no anticipations during the FP. The FP x response side interaction 

was significant [F(1, 15) = 8.4, p < .01; see Figure 23]. Participants tended to make less 

errors when they had to respond to the short FP duration by pressing the key on the left 

side than by pressing the key on the right side (96.9 vs. 95.8 %, respectively; t-test n.s.), 

whereas the pattern was inverted when they had to respond to the long FP duration (98.2 

vs. 96.2 %, with the right and left keys, respectively; t-test, p < .05). 

 

Reaction Times 

The FP effect was the only significant effect found in the ANOVA for RTs [F(1, 15) = 

67.6, p < .001, see Figure 23], due to RTs being faster for the long FP than for the short 

one (348 vs. 471 ms). In particular, the interaction between FP and response side was far 

from significant [F(1, 15) = .87, p = .37].  

 

Discussion 

The only difference in the procedure with respect to experiment 10 was that in 

experiment 12 participants responded with crossed hands. Results showed a complete lack 

of interaction between responding hands (and response keys) and FP duration in terms of 

RTs, although an interaction was present in terms of accuracy. The RT null effect shows 

that, when hands are crossed, so that right hand is used with the left key and left hand with 
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the right key, the S-R compatibility effect between response side and FP duration found in 

experiment 10 totally disappears, suggesting that this effect requires hands anatomically 

positioned on the spatially corresponding response key in order to occur in terms of speed. 

However, the null effect is uninformative about whether a key-related or a hand-related 

explanation applies to the compatibility effect found in experiment 10. Indeed, to be 

compatible with the first account, the results should have been the same as in experiment 

10, when response keys are considered. Conversely, to be compatible with a hand-related 

account, the results should have been the opposite of those obtained in experiment 10, 

when response keys are considered.  

 

 

Figure 23. Mean percentage of correct responses (bars: standard errors) and reaction times in 
experiment 12 as a function of foreperiod duration (x-axis) and response-key position (histograms). 

 

However, the compatibility effect was present here for accuracy, as responses to the 

short FP tended to be more accurate when the left key (right hand) was pressed rather than 

the right key (left hand), whereas responses to the long FP were significantly more 

accurate with a right key-press than with left one. The shift of the S-R compatibility effect 

from speed to accuracy could suggest a change in the task difficulty and especially in the 

participants’  strategy. Specifically, participants may have decided to perform the 

ergonomically challenging task at a relatively high speed (409 ms here vs. 443 ms in 

experiment 10, where hands were anatomically positioned), with the result of making more 
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errors in the more difficult conditions (i.e., left and right key-presses for long and short 

FPs, respectively). Notably, the direction of this interaction, although only partially 

supported by subsequent t-tests, is in line with an account relating the compatibility effect 

to the spatial position of the response target (i.e., keys) rather than of the responding 

effectors (i.e., hands), in analogy with other spatial compatibility effects (e.g., Riggio, 

Gawryszewski, & Umiltà, 1986). 

 

4.1.4. Experiment 13 

Experiment 12 tested whether asymmetries between hands/hemispheres could be 

responsible for the compatibility effect found in experiment 10 using crossed hands. This 

manipulation, however, failed to produce a clear compatibility effect between responding 

hands (or keys) and FP duration, at least in terms of RTs, such that it was impossible to 

choose between accounts related to manual/hemispheric asymmetries and accounts related 

to the spatial positions of the response keys. Following an analogue rationale, in 

experiment 13 two fingers of the dominant hand were used for the response, in order to 

check if there is a temporal S-R compatibility effect between temporal duration of the 

stimulus and spatial position of the response even within one hand. Thus, the index and 

middle fingers of the dominant hand were used to give the responses. If the response key 

relative positions (and not hands) matter, there should be a similar compatibility effect as 

that found in the experiment 10 even within a single hand. In other words, if the effect 

found in experiment 10 manifests itself even within one hand, any explanation concerning 

hemispheric asymmetries should be discarded.  

 

Method 

Participants 

Eighteen healthy volunteers (11 females and 7 males) took part in experiment 13. They 

were 26 years old on average (range = 21-35). All participants were right-handed (EHI: 75; 

range 20-100). Two extra participants were previously discarded from the analyses because 

they declared to have systematically counted in order to estimate the cross duration (see 

Procedure). 

 

 

Apparatus and Materials 
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The same apparatus and materials were used as in experiment 10, apart from the fact 

that responses were not bimanual but should be given using the index and middle fingers 

of the dominant hand. 

 

Procedure and Task 

The procedure and task were similar to those adopted in experiment 10. The only 

difference was that the response should be given by pressing a key (‘B’) with the index 

finger of the dominant hand and another key (‘N’) with the middle finger of the same hand. 

The ‘B’  and ‘N’  keys were labeled and referred to in the instructions with a red and green 

color, respectively, in order to avoid linguistic biases. Indeed, a couple of pilot participants 

reported that it was difficult to associate the ‘B’  label to a long duration because ‘B’  is the 

initial letter of the word ‘brief’  (in Italian: ‘breve’). The red and green keys were inverted 

for half of the participants (i.e., ‘N’  = red; ‘B’  = green). In one block, participants had to 

press the key labeled with one color for a short cross duration, and the key labeled with 

another color for a long cross duration. In another block, the key-duration associations 

were inverted. The order in which the 2 key-duration mappings were administered was 

counterbalanced across participants. A familiarization phase (20 trials) with a feedback 

procedure similar to that used in experiment 10 was adopted also here at the beginning of 

each block. After each familiarization phase, a test phase followed with 80 trials with a 

cross duration (i.e., FP) randomly varying between 1 and 3 seconds (50% each). Upon 

completion of the study, participants received a post-experimental questionnaire. In a first 

question, participants were asked if they had counted or used other strategies to perform 

the task. In a second multiple choice question, they were asked to choose a directionality 

for their representation of elapsing time. The available response choices were: left-right, 

right-left, top-down, bottom-up, clockwise, counterclockwise. The order with which these 

alternatives appeared varied randomly across participants. The option ‘other’  was also 

provided. 

 

Data Analysis 

Trials were treated as errors using the same criteria as in experiment 1. A 2 FP 

duration (1 vs. 3 sec) x 2 response side (left vs. right) ANOVA was employed for both 

accuracy and mean RTs on correct trials.  

 

Results 
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Accuracy 

Anticipated responses were the 0.13%, delayed and null responses were the 0.27%, 

incorrect FP judgments were the 5%. No effect was significant in the ANOVA concerning 

accuracy of the FP judgment. 

 

Reaction Times 

The main effect of FP was significant [F(1, 17) = 73.4, p < .001], due to RTs being 

faster for a long FP than for a short one (340 and 427 ms, respectively). Critically, the FP x 

response side interaction was also significant [F(1, 17) = 9.3, p < .01, see Figure 24]. This 

interaction was due to RTs being faster when the short FP (i.e., short cross duration) was 

responded to with the left key (i.e., ‘B’) rather than with the right key (411 vs. 443 ms, t-

test, p = .01), and when the long FP was responded to with the right key (i.e., ‘N’) rather 

than with the left key (328 vs. 352 ms, t-test, p < .05).  

 

 

Figure 24. Mean reaction times (and standard errors) in experiment 13 as a function of foreperiod 
duration (x-axis) and response side (histograms). 

 

As in experiment 10, a further Pearson’s correlation analysis was conducted between 

the effect size (i.e., RT difference between left and right response side) in the short and 

long duration conditions. This analysis showed a trend for a positive correlation (r = .42, p 

= .078), partially confirming results of experiment 10. 

Debriefing 
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As reported above, 2 participants out of 20 stated that they systematically used a 

strategy to give their response. This strategy consisted of counting how many seconds each 

FP lasted (sub-vocal pronunciation). More importantly, when asked to give a directionality 

to elapsing time by choosing one of 6 alternative answers, 18 participants chose the left-to-

right option, 1 participant chose the clockwise option, and another participant chose the 

top-to-down option.  

 

Discussion 

The key result of experiment 13 was the response side by FP interaction, which 

showed that the compatibility effect found in experiment 10 using 2 hands can be also 

replicated when 2 fingers of only one hand are used for the response. Indeed, during the 

block in which the left key had to be pressed after a short cross duration and the right key 

had to be pressed after a long duration, RTs were faster than during the block in which the 

key-duration mapping was reversed (i.e., left key = long duration; right key = short 

duration). It should be noted that response keys were never labeled as ‘ left’  and ‘ right’  

during the instructions given to the participants, but only through labels corresponding to 

their color (i.e., ‘ red’  and ‘green’, assignment to the left and right response keys 

counterbalanced across participants).  

The pattern of data obtained in the experiment 13 suggests that the compatibility effect 

between response keys and FP durations found in the experiment 10 cannot be accounted 

for with explanations concerning hemispheric asymmetries, competitions between hands, 

or handedness (all the participants were right-handed here). During the post-test 

questionnaire, 18/20 participants declared they represented elapsing time from left to right. 

Although the possibility exists that they developed this representation because it was 

suggested by the modality of response (left vs. right key), this result is in line with other 

studies (e.g., Traugott, 1975; Zwaan, 1965, quoted by Winn, 1994; Tversky, Kugelmass & 

Winter, 1991), where no analogous task was performed by participants before the 

questionnaire. Moreover, 3 participants spontaneously declared during the post-

experimental debriefing to have had the subjective feeling that the short-left/long-right 

association was more natural and easier.  
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4.1.5. Experiment 14 

Recently, Nuerk and colleagues (Nuerk, Iversen, & Willmes, 2004) showed that 

linguistic markedness may account for S-R compatibility effects in different domains. In 

many languages, there are pairs of complementary words one of which is marked and the 

other unmarked. Markedness may depend on lexical factors (Zimmer, 1964), such as the 

presence of prefixes (e.g., ‘clear’  vs. ‘un-clear’), or on so-called distributive and semantic 

factors (e.g., ‘ right’  vs. ‘ left’ , Lyons, 1969). According to the linguistic markedness 

account, performance would be facilitated when the adjectives used to label the stimulus 

and the response have a congruent markedness status (i.e., both are marked or unmarked), 

and hindered when their markedness is incongruent (one is marked and the other 

unmarked). This hypothesis has been proposed for instance to explain the parity effects 

with numbers (Nuerk et al., 2004). As an example, in a parity judgment task, left hand 

responses are faster for odd numbers than for even ones because, according to the 

markedness account, ‘ left’  and ‘odd’  are both marked linguistic labels; by contrast, right 

hand responses are faster for even numbers than for odd ones, as ‘ right’  and ‘even’ are 

both unmarked. Incongruent combinations (marked-unmarked), instead, are held to lead to 

interference. It is possible that a similar account also applies for the S-R compatibility 

effect found in experiment 10. In other words, the linguistic label ‘short’  might be 

associated to the ‘ left’  because both are marked, whereas the label ‘ long’  might be 

associated to ‘ right’ , both being unmarked. If this linguistic explanation is the only factor 

accounting for the data, a categorical relationship should be predicted between ‘short’  

durations and ‘ left’  hand responses and ‘ long’  durations and ‘ right’  hand responses, even if 

the FP durations to be judged as ‘short’  and ‘ long’  are not just two (categorical), but are 

parametrically varied along a continuum. On the other hand, if other factors influence this 

effect like, for instance, a continuous spatial representation of elapsing time from left to 

right, a gradual influence of the FP duration should be observed on the S-R compatibility 

effect found in the experiment 10, such that the RT difference between left and right hand 

responses should increase with duration. Experiment 14 aims to assess these alternative 

hypotheses. 
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Method 

Participants 

Data from 27 healthy volunteers (17 females and 10 males) were included in the 

analyses of experiment 14. These participants were 26 years old on average (range = 21-

34). All were right-handed. The average score on the EHI was 78.2 (range: 30-100). One 

extra female participant was previously discarded from the analyses because she declared 

to have systematically counted in order to estimate the cross duration (see Procedure). 

 

Apparatus and Materials 

Apparatus and materials were the same as in experiment 10, with the following 

exception: the fixation cross lasted for a FP of 0.5, 1 or 1.5 sec (‘short’  duration) and for a 

FP of 2.5, 3 or 3.5 sec (‘ long’  duration). 

 

Procedure and Task 

The procedure and task were basically similar to those used in the experiment 10, apart 

from the following exceptions. The 6 values of the FP (i.e., cross duration) were presented 

randomly on an equal number of trials (30 per each). The task consisted of pressing ‘Z’  for 

a short cross duration (i.e., 0.5, 1 and 1.5 sec), and ‘ /’  for a long cross duration (i.e., 2.5, 3, 

and 3.5 sec). The stimulus duration/response key assignment was inverted after 180 trials. 

The order of presentation of the 2 possible S-R mappings was counterbalanced across 

participants. A familiarization block, consisting of 24 trials (4 per each cross duration), 

preceded each experimental block with opposite S-R mappings (180 trials each). During 

this practice block, similar feedback to that used in the previous experiments was provided 

at the end of each trial. The familiarization block was repeated until a criterion of 3 errors 

or less was reached. No more than 3 familiarization cycles were necessary for any 

participant. As for experiment 13, after the completion of the test, participants were asked 

whether they had counted or used other strategies in order to perform the task. 

 

Data Analysis 

The same criteria as in experiment 10 were used for the analysis of the errors. A 6x2 

repeated measures ANOVA was performed both for accuracy and mean RTs of correct 

trials, with FP (0.5, 1, 1.5, 2.5, 3, and 3.5 sec) and response side (left vs. right) as the 

within-subject factors. 
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Results 

Accuracy 

Anticipated and delayed responses were 0.53% and 1.6%, respectively. Overall errors 

in judging the cross duration were 10.9%. The ANOVA concerning accuracy showed only 

the main effect of the FP duration [F(5, 130) = 15.8,  p < .001]. Percentage of accurate 

trials was 96, 94, 84, 77, 89, 94, respectively, for the six FPs from 0.5 to 3.5 sec. Post-hoc 

Tukey tests indicated that accuracy was lower on the FP of 2.5 sec than on all the other FPs 

except for that of 1.5 sec (for all the other comparisons, p < .05). Moreover, accuracy was 

lower on the FP of 1.5 sec than on the FPs of 0.5 and 1 sec (for both, p < .05). No other 

effect was significant. 

 

Reaction Times 

There was a main effect of FP [F(5, 130) = 39.4, p < .001]. Subsequent planned 

comparisons showed that RTs were different for every two adjacent FPs apart from FPs of 

0.5 and 1 sec (for all the other comparisons, p < .05). RTs were 552, 557, 602, 524, 461, 

and 425 ms, respectively, for each FP from 0.5 to 3.5. More relevant for the present 

purposes, there was a significant FP x response side interaction [F(5, 130) = 6.7, p < .001]. 

This interaction indicated that responding to the short FP was faster with the left hand than 

with the right one, while responding to a long FP was faster with the right hand than with 

the left one (see Figure 25).  

In order to discriminate whether the RT difference between left and right hand 

responses varies as a stepwise or as a linear function of the FP duration, subsequent paired 

t-tests were carried out to evaluate the significance of this difference on each FP. These 

tests revealed that this difference was significant (with opposite directions) in the extreme 

FPs only (for the FP of 0.5 sec: p < .05; for the FP of 3 and 3.5 sec: p < .01 and .05, 

respectively). This pattern was compatible with a linear function9. However, in order to 

reject a description of the data in terms of a stepwise function, the between-hands RT 

difference within the 3 short FPs on one side, and within the 3 long FPs on the other, 

should show a significant increase within each FP subset as the FP gets longer. We 

                                                
9A possible confound in the interpretation of these data is represented by the fact that judging intermediate 
FP durations was more difficult than judging extreme FP durations, as demonstrated by the fact that 
responses to a FP of 1.5 sec were the slowest and responses to a FP of 2.5 sec were the less accurate. This 
difficulty (i.e., floor effect) could partially explain why the RT difference between responding hands did not 
appear at intermediate FPs. Nonetheless, this explanation does not suffice to account for all the data, as it 
would not explain why the compatibility effect is absent even for the FP of 1 sec, where accuracy and RTs 
are perfectly comparable to those for the FP of 0.5 sec (where the effect is present). 
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performed two subsequent separate one-way ANOVAs to test this, with the FP as the only 

within-subject factor (3 levels: 0.5, 1 and 1.5 sec for the short FPs, and 2.5, 3, 3.5 sec for 

the long ones), and the between-hands RT difference as the dependent variable. Only the 

ANOVA for the long FPs showed a significant effect of the FP [F(2, 52) = 5.8, p < .01], 

which was due to a difference between the FP of 2.5 sec and that of 3 sec (p < .01; any 

other difference was not significant). On the other hand, the results of the ANOVA for the 

short FPs were far from significant (p = .5). Given this outcome, a stepwise function seems 

to better account for the present data. 

 

 

Figure 25. Mean reaction time difference between left and right hand responses (and standard 
errors) in experiment 14 as a function of foreperiod duration (x-axis). Reaction time differences 
between left and right hands for each foreperiod were evaluated by means of paired t-tests: * = t-
test p < .05; ** = p < .01. 

 

Discussion 

Experiment 14 was designed to test whether the compatibility effect between 

responding hand and FP duration was present as a continuum when the FP length was 
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parametrically varied, or it was categorical for ‘short’  vs. ‘ long’  FP ranges. We found that 

the compatibility effect was present as an advantage of the left hand for the shortest FP and 

of the right hand for two longest FPs only, with similar effects being in the same direction 

but not significant for more intermediate FP values. This pattern cannot be accounted for 

by the linguistic markedness hypothesis, which instead predicts that the effect would 

follow a stepwise function of the FP: an advantage of ‘ left’  hand responses for all the three 

‘short’  FPs (0.5, 1, and 1.5 sec), and an advantage of ‘ right’  hand responses for all the three 

‘ long’  FPs (2.5, 3, and 3.5 sec). More critically, however, the RT difference between the 

left and the right hand did not increase linearly along the 3 short and the 3 long FPs. This 

pattern is more in accord with the hypothesis that the compatibility effect follows a 

stepwise function. 

Therefore, data of the present experiment support only partially our original hypothesis 

that elapsing time is progressively represented from left to right, and that this dynamic 

representation would be responsible of the S-R compatibility effect found in the 

experiment 10. On the contrary, the data of experiment 14 suggest that this compatibility 

effect is due to more categorical factors, as predicted, for instance, by the linguistic 

markedness hypothesis put forward in other domains (Nuerk et al., 2004; but see General 

Discussion).  

 

General Discussion 

This study started from the prediction that explicitly judging the FP could attenuate 

sequential effects on the shortest FPn. According to this hypothesis, in a similar fashion to 

what happens when a valid temporal cue is used before the FPn, sequential effects could 

disappear for the shortest FPn. In a temporal cuing paradigm (with a higher rate of valid 

cues than of invalid ones), participants orient their attention on the shortest FPn when they 

know in advance that the imperative stimulus will occur just after it (e.g., Los and van den 

Heuvel, 2001). In the current experiment, we expected that participants’  attention should 

be oriented already on the shortest FP, as the FP length is the feature critical for the 

response. The results did not fit with this hypothesis, as the FPn x FPn-1 interaction was 

significant, indicating that sequential effects were not affected by the task demands10. 

                                                
10It could be that the sequential effects, even if present, were attenuated in this task. To test this possibility, 
experiment 11 provides a baseline condition (no explicit temporal judgment was required). It should be 
pointed out that the two experiments are not perfectly comparable, because also the task was different (choice 
vs. simple RT task). However, it is known that sequential effects are not influenced by the number of 
alternative responses (e.g., Los & van den Heuvel, 2001). Thus, we performed a 2x2x2 mixed ANOVA with 
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A new effect was found, instead, which can be ascribed to the S-R compatibility 

phenomena (e.g., Hommel & Prinz, 1997). In a series of experiments it has been shown 

that when a response is given according to the temporal duration of a stimulus, the 

response side affects performance. Specifically, participants are faster if they respond 

‘short’  with the leftmost response and ‘ long’  with the rightmost response than vice versa 

(e.g., experiment 10). This pattern suggests that elapsing time is internally mapped onto 

spatial representations.  

The mechanism responsible for this phenomenon seems to be independent of 

asymmetries between hands in the magnitude of the variable FP effect, because when the 

responses are given by only one hand per block, the FP effect produced by the two hands 

was comparable (experiment 11). When participants cross their hands (experiment 12), the 

effect disappears in terms of speed, but manifests itself in terms of accuracy with respect to 

key position. In addition, any simple interpretation based on handedness or hemispheric 

asymmetries also has problems because the effect is also found (if response keys are 

considered) when two fingers of only one hand are used for the response (experiment 13).  

Experiment 14 tested whether the RT difference between left and right hand responses 

varied categorically with the FP label (‘short’  vs. ‘ long’) or parametrically with the FP 

effective duration (i.e., FPs from 0.5 to 3.5 sec). The results were only partially compatible 

with a parametric modulation of the S-R compatibility effect found (see Figure 25). On the 

one hand, the RT difference between left and right hand responses was significant only for 

extreme FP values, compatible with the hypothesis that passing time is continuously 

represented from left to right, at least in this task. On the other hand, this compatibility 

effect was not significantly different within the three short FPs, and the only difference 

found within the long FPs was that between the shortest and the medium one (i.e., 2.5 and 

3 sec). This pattern is better fitted by a stepwise function between temporal duration and 

the between-hands RT difference. One way to account for this stepwise function is by 

attributing the compatibility effect to the linguistic categories used to label S-R features 

according to the linguistic markedness hypothesis (cf., Nuerk et al., 2004). On this 

hypothesis, ‘ left’  and ‘short’  would be marked words (possibly at the semantic level), 

whereas ‘ right’  and ‘ long’  would not. That would explain why the left-short/right-long 

mapping is more advantageous than the opposite mapping (i.e., compatibility between the 

                                                                                                                                              
FPn and FPn-1 as repeated measures and experiment (experiment 10 vs. 11) as the between-subject factor. The 
results critically show a significant three-way interaction [F(1, 36)=6.6, p < .01], but in the opposite direction 
than that predicted: the sequential effects were greater in the experiment 10 (explicit temporal judgments) 
than in the experiment 11 (simple RT paradigm). 
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markedness status of stimulus and response categories). The reason why some words 

should be marked whereas others should not is however somewhat arbitrary (but see 

Lyons, 1969; Zimmer, 1964). Moreover, the alternative possibility still exists that elapsing 

time is represented from left to right progressively even if not linearly (but following a 

stepwise function), independently of the linguistic categories used to label stimuli and 

responses11. This could be due to the fact that the response is dichotomic (left vs right) 

whereas the stimulus is continuously varied (but again with the need of a categorical 

definition of the parametrically varied feature, i.e., ‘short’  vs. ‘ long’  FPs). Thus, it could be 

that representing stimuli in a dichotomic way depends on the categorical nature of the 

response required. Further studies parametrically varying not only the stimulus duration 

but also the response required (e.g., using 4 response alternatives for 4 different FP 

durations) could be helpful in solving this issue. 

The convention of representing time from left to right is likely to derive from the 

Roman writing system, which adopts a left-to-right directionality. Consistent with this 

hypothesis, Zwaan (1965) found that Dutch people, who read and write from left to right, 

associate the left side of the page with the idea of ‘past’ . In contrast, Israeli people, who 

read and write from right to left, relate this idea with the right side (see also Tversky et 

al.,1991, for developmental evidence).  

The left-to-right directionality seems to be a consistent feature of how the cognitive 

system represents ordered material also in other domains. As an example, the cognitive 

representation of numbers has been shown to be to some extent spatial in nature (Dehaene 

et al., 1993). Even when number magnitude is irrelevant for the task (e.g., parity 

judgement), RTs tend to be faster when relatively small numbers are responded to with a 

left key, and large numbers are responded to with a right key, respectively, than vice versa, 

at least in cultures using the Roman writing system (Dehaene et al., 1993; Zebian, 2005). 

This is the so called Spatial Numerical Association of Response Codes (i.e., SNARC) 

effect (Dehaene, et al., 1993; see also Gevers, Verguts, Reynvoet, & Fias, 2006). 

According to the authors’  interpretation, Arabic numerals automatically activate a 

magnitude code. This code is represented in terms of left and right parts of an analogical 

                                                
11This possibility is currently under study in our laboratory. In a pilot experiment, the cross color changes 
from white to yellow during the short FP, and from yellow to red during the long FP. Participants are 
instructed to answer according to the final color of the cross (responding to ‘yellow’  with a ‘ left’  key and to 
‘ red’ with a ‘right’  key). Preliminary data show that the same S-R compatibility effect as in experiment 10 is 
also found in this condition. Unless one supposes that participants use the (disadvantageous) strategy to re-
label ‘yellow’  and ‘red’  as ‘short’  and ‘ long’, these data suggest that the effect found is independent of the 
linguistic labels used for the stimulus features. 
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mental number line. The left and right codes generated by the representation of magnitudes 

cause facilitation in the case of compatible responses and interference in the case of 

incompatible ones (see Dehaene, 2003, for a review). Furthermore, other non-numerical 

materials with ordinal properties, such as sound pitches (Rusconi, Kwan, Giordano, 

Umiltà, & Butterworth, 2006), letters and months (Gevers, Reynvoet, & Fias, 2003; but see 

Dehaene et al., 1993, experiment 4), have also been demonstrated to have some form of 

spatially coded representation as, in some conditions, they show S-R compatibility effects 

similar to the SNARC effect. 

Gevers and colleagues (2003) have argued that the convergence of evidence from such 

different domains suggests that the spatial representation of ordered information is a 

general feature of the cognitive system, rather than being specific for the number-domain, 

as previously supposed (Dehaene et al., 1993). The results reported in this paper add 

support to this view, extending it also to the temporal domain. However, the present study 

does not clearly determine whether temporal duration is spatially represented because of its 

special nature or because it is just an example of ordered information such as numbers, 

which the cognitive system organizes on a left-to-right mental line when particular task 

demands make it advantageous to do so. This issue needs to be investigated more 

thoroughly, for instance, by using different ordered materials (e.g., temporal and 

numerical) in the same task, and testing whether the compatibility effect obtained for the 

two domains is additive, suggesting different underlying processes, or interactive, 

suggesting a common mechanism (cf., Mapelli, Rusconi, & Umiltà, 2003). 

From a functional point of view, in the temporal judgment task used in the experiments 

presented here (i.e., experiments 10, 12, 13 and 14), it is possible to know reasonably well 

in advance which response should be executed at the end of the short FP as well as at the 

end of the long one. Although this information is available in advance, however, 

interference on motor performance occurs anyway, suggesting that the locus of the effect 

should be somehow after response selection and during response preparation. A fruitful 

line of investigation of the functional locus of the phenomenon may be represented by the 

analysis of electrophysiological components, such as the Lateralized Readiness Potential, 

an index of covert response selection, preparation and execution, which has been 

successfully used to investigate processing stages involved in other S-R compatibility 

effects (e.g., Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988; Keus, Jenks, & Schwarz, 

2005; Vallesi, Mapelli, Schiff, Amodio, & Umiltà, 2005).  
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We will refer to the behavioural effect found here as the Spatial-Temporal-

Association-Between-Response-Codes (STARCO) effect, in analogy with similar 

compatibility effects found in other domains, like numbers (SNARC effect; e.g., Dehaene 

et al., 1993) or sound pitches (SMARC effect; Rusconi et al., 2006). It is worth noting that 

some differences already seem to exist from one domain to another. For instance, contrary 

to numbers, sound pitches, months or letters, which show the S-R compatibility effects 

even when the information presented is irrelevant for the task, the STARCO effect has 

never been observed when duration is not task-relevant; an example would be that of 

standard variable FP paradigms with bimanual responses (see experiment 8, chapter 3). 

This suggests that, although the mental representation of time can be spatially organized, 

this spatial representation, unlike for other ordered materials, is not accessed automatically, 

but rather requires awareness of the passage of time, which is task-relevant when the 

STARCO effect is observed (i.e., present experiments 10, 13 and 14)12.  

In conclusion, our approach indicates that it is possible to infer aspects of how the 

cognitive system represents a concept like time, by analyzing the costs paid when the 

incongruence between response tendencies triggered by such a representation and task-

relevant responses has to be resolved. Specifically, the present study shows a new S-R 

compatibility effect, consisting of an improvement in performance when short and long 

durations have to be responded to on the left and right side of space, respectively, rather 

than when the association between temporal duration and response side is reversed. This 

effect suggests that one way in which the amount of elapsed time is cognitively represented 

is by the use of a spatial coordinate reference frame from left to right, in a similar fashion 

to other ordered material such as numbers, letters, months and pitches. However alternative 

explanations of the data such as the linguistic markedness cannot be excluded at present. 

                                                
12This assertion is partially weakened by preliminary results of an experiment of our lab, which shows that 
the STARCO effect is also observed when the task-relevant feature is not time but a color continuously 
changing with time (see footnote 11). The condition in which the relevant and the irrelevant stimulus features 
co-vary together is however different from that of other S-R compatibility effects, such as the Simon effect 
and the SNARC effect, where the relevant and the irrelevant features vary orthogonally. Thus, whether time 
should be task-relevant (or co-vary with the task relevant feature) for the STARCO effect to occur is a point 
that deserves to be addressed by future research.  
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Chapter 5  
 

The results of previous experiments on the variable FP paradigm, in particular those 

adopting TMS and neuropsychological approaches (experiments 7-9, chapter 3), support 

the involvement of right lateral (in particular dorsolateral) PFC in monitoring. The FP 

effect, which was reduced after TMS or surgical lesions on this region, is indeed 

considered as a marker of a monitoring process. In a typical variable FP task, the 

conditional probability of stimulus occurrence increases in the long FPs. The rDLPFC is 

supposed to be the seat of a process which basically checks the stimulus non-occurrence as 

time elapses in order to increase preparation over time (e.g., Stuss et al., 2005; Näätänen, 

1970; see also experiment 5, chapter 2). These findings confirm that this region of the 

brain is involved in monitoring environmental contingencies in the time domain in order to 

optimize behaviour (e.g., Coull et al., 2000; cf., Fuster, 1990). Similar results have also 

been obtained in other domains (see paragraph 1.1.2.3., chapter 1).  

The monitoring role of right lateral PFC has been documented, for instance, in the 

problem-solving domain. In a study by Reverberi and colleagues (Reverberi et al., 2005), 

various subgroups of prefrontal patients carried out the Brixton task, a visuo-spatial 

version of the WCST (Burgess & Shallice, 1996a). In the first part of the test, the 

participant was presented in each trial with a card containing a 2×5 matrix of circles, one 

of which was blue. The position of the blue circle changed from one trial to another, 

obeying a rule unknown to the participant. The participant had to discover this rule in order 

to predict where the blue circle would appear on the next card. In the second part, an 

interfering task was administered before the end of the blue series. A sequence of 4 cards 

with a red circle was presented, which always followed a rule different from that of the 

preceding blue series. Participants had to just touch the red circle until a blue circle would 

appear again. In this case, participants had to ignore the ‘ red’  rule implicitly acquired, and 

redirect their attention to the last ‘blue’  rule which was active before the interfering task. 

The results of that study showed that acquiring an implicit rule in the blue series is more 

impaired in left lateral prefrontal patients, whereas checking that the most primed rule (the 

‘ red’  rule) is irrelevant for the current situation, in order to choose the less primed relevant 

rule (the previous ‘blue’  rule), is more impaired in the right lateral prefrontal patients.  

Another example comes from the semantic domain. In a PET study, MacLeod and 

colleagues (MacLeod et al., 1998) scanned participants while they were listening to 
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English words and monitoring for the occurrence of names of dangerous animals in order 

to either estimate the percentage of occurrences or to report their number at the end. 

Although usually semantic tasks activate left prefrontal areas, in this particular task, 

relatively greater right prefrontal activation was obtained (BA 9 and 10) with respect to the 

baseline condition (i.e., passive word viewing), further supporting the role of this region in 

monitoring.  

Domain-based approaches have been successfully applied to the study of the 

functionality of primary and secondary cortical areas, such as V1 and V2. In the light of 

the evidence briefly discussed above, one can conclude that a process-centred approach is 

instead more fruitful for the investigation of the PFC. The individuation of a specific 

process, with a good task analysis, is indeed more important than the use of a given task or 

domain in order to understand the role of a particular prefrontal area (see also paragraph 

1.1.2.3., chapter 1). Specifically, the monitoring function, intended in a broad sense as the 

capacity to monitor internal and external contingencies, in order to check if they satisfy a 

given goal (e.g., Shallice, 2006), seems to be relatively more right-lateralized in the PFC 

independently of the task administered (e.g., Shallice, 2004; Stuss et al., 2002; Stuss et al., 

2005; see also Petrides, 1994).  

The current chapter aims to extend results showing a monitoring role of the rDLPFC 

(chapter 3), in a field different from that of attention and motor preparation over time. 

Among the literature investigating the role of the right PFC, the episodic memory domain 

(and in particular source memory) has traditionally received particular attention (e.g., 

Henson, Rugg, Shallice, & Dolan, 2000; Schacter, Curran, Galluccio, Milberg, & Bates, 

1996; Tulving et al., 1994). Moreover, episodic memory is a domain where the conditions 

described by Shallice (2006) as critical for an involvement of right DLPFC are usually 

fulfilled (see paragraph 1.1.2.3., pages 21-22). Thus, the next 2 experiments will further 

investigate the role of PFC in monitoring endogenous events, such as the status of a 

mnemonic trace during source memory retrieval.  

The methodological approach will also be different. The limited information offered 

by dependent variables such as response accuracy or speed makes it difficult to reveal the 

processing levels that are modulated. Hence, ERPs have been used in the 2 experiments 

reported below. Such technique offers the advantage of tracking covert cognitive 

processing with a high temporal resolution (virtually in real time), and provides at least a 
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rough estimate of lateralization and localization of cortical activity13. Therefore, ERP 

technique is complementary to other methods, such as those adopted in the previous 

experiments, in order to infer functional dissociations among different cognitive processes 

(cf. Rugg & Coles, 1995). 

 

5.1. Prefrontal involvement in source memory: an 

electrophysiological investigation of accounts concerning confidence 

and accuracy 

The mapping of functionally distinct processes onto different neural substrates is a 

central objective for memory investigation. According to a commonly accepted 

neuropsychological model of episodic memory (Moscovitch, 1992), medial 

temporal/hippocampal areas mediate modular processes like encoding, storage and 

retrieval processes, while frontal areas mediate higher strategic and control functions. 

However, the specific roles the frontal lobes play in episodic memory is still a matter of 

debate. The issue has been addressed by means of various approaches.  

 

Empirical background 

In the neuropsychological domain, it has been reported that damage to the PFC can 

cause impairment in episodic memory tasks. With the exception of patients with lesions to 

the inferior medial regions (Gilboa & Moscovitch, 2002), the resulting impairment is 

usually mild and not as dramatic as that found in amnesic patients with temporal lesions. 

Patients with frontal lesions show mild deficits in item memory per se (Stuss et al., 1994), 

usually in the form of failures of organization at encoding (e.g., Mangels, 1997), or an 

increased probability of false alarms at retrieval (e.g., Curran, Schacter, Norman, & 

Galluccio, 1997; Swick & Knight, 1999), which suggests a deficit in the checking or 

monitoring processes (Shallice, 2002). Moreover, prefrontal patients perform poorly on 

tasks requiring retrieval of the memory context (source memory), such as memory for 

spatial position or temporal order (Janowsky, Shimamura, & Squire, 1989; Shimamura, 

Janowsky, & Squire, 2000). This may well be because these tasks greatly rely upon 

checking processes. 

                                                
13However, the comparison with the TMS and neuropsychological studies would be limited from the 
localizational point of view, as the spatial resolution of the latter techniques is much higher than that offered 
by ERPs. 
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Another source of evidence comes from functional neuroimaging studies, which have 

consistently documented prefrontal activations during the performance of various memory 

tasks. In a review of PET studies, Tulving and colleagues proposed the Hemispheric 

Encoding/Retrieval Asymmetry (HERA) model (Tulving, Kapur, Craik, Moscovitch, & 

Houle, 1994; see also Shallice et al., 1994). According to this model, left and right 

prefrontal lobes have partially different functions in episodic memory. For verbal stimuli, 

left and right prefrontal cortical areas are differentially more involved in encoding and in 

retrieval, respectively.  

In this study we will focus on the processes involved during retrieval. A theoretical 

model for the retrieval processes mediated by frontal lobes, based on the theory of Norman 

and Bobrow (1979), has been proposed by Burgess and Shallice (1996b; see also 

Moscovitch, 1992; Schacter, Norman, & Koutstaal, 1998, for related models). This model 

includes two main processes. The first process specifies search parameters and cues, and 

updates and maintains working memory contents. The second process manipulates and 

monitors the products of memory search. An fMRI study by Henson, Shallice and Dolan 

(1999b) brings anatomical evidence in favour of this model. In that study, the critical 

comparison was between two word recognition tasks that differed only in whether 

responses required retrieval of the spatiotemporal context of words at study (exclusion) or 

an old/new judgement only (inclusion). A right ventral prefrontal region (BA 47) was 

activated during retrieval without distinction between exclusion and inclusion conditions, 

consistent with the concept of search cues specification (see also Fletcher, Shallice, Frith, 

Frackowiak, & Dolan, 1998). The contrast between the exclusion and the inclusion 

conditions revealed activation in the left and right DLPFC (BA 46). According to the 

authors’  interpretation, these areas are associated to monitoring demands, which are 

particularly heavy during the exclusion condition. That work, together with many others, 

shows that the left prefrontal areas can also be involved during retrieval and not only 

during encoding, contrary to the simplest form of the HERA model (e.g., Nolde, Johnson, 

& D’Esposito, 1998; Ranganath & Paller, 1999). The debate about right-left prefrontal 

asymmetry in episodic retrieval is far from resolved. Another open question concerns 

which specific products of memory search are the object of the monitoring processes 

associated to the prefrontal regions.  

A promising line of evidence on this point comes from the electrophysiological 

domain. Some studies have shown a larger late prefrontal (more right) ERP positivity 

elicited by successful retrieval (e.g., Allan & Rugg, 1998; Donaldson & Rugg, 1998; 
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Graham & Cabeza, 2001; Wilding & Rugg, 1996; see Rugg, Fletcher, Frith, Frackowiak, 

& Dolan, 1996; Rugg, Henson & Robb, 2003, for neuroimaging related evidence), or by 

well-recollected test items rather than by items judged old on the basis of familiarity in the 

remember-know paradigm (e.g., Rugg, Schloerscheidt, & Mark, 1998). Wilding & Rugg 

(1996), for instance, recorded ERPs during the retrieval phase of a source memory task. 

Participants first made old/new judgements to visually presented words, and then, for 

words judged old, indicated in which of two voices (male vs. female) the words had been 

presented at study. ERPs were more positive for words correctly judged old (hits) than for 

correct rejections at the left parietal sites and also at the right frontal ones (old/new effect), 

where they were also more sustained over time. Importantly, the right frontal component 

was more positive for hits followed by a correct source judgement (hit/hit) than by 

incorrect ones (hit/miss). Consequently, the authors proposed a relationship between right 

frontal ERP effect and the monitoring of the products of successful retrieval.  

Nevertheless, the results achieved in this field are rather controversial, as other studies 

fail to show any modulation of the prefrontal ERPs by successful recollection (e.g., Duzel, 

Yonelinas, Mangun, Heinze, & Tulving, 1997; Ranganath & Paller, 1999; Senkfor & Van 

Petten, 1998; for related neuroimaging evidence, see Kapur et al., 1995; Buckner, 

Koutstaal, Schacter, Wagner, & Rosen, 1998). As an example, in the study by Senkfor & 

Van Petten (1998) ERPs were recorded during recognition tasks for spoken words alone 

(items) or for both words and the voice of the speaker (sources). In both tasks, correctly 

recognized old words elicited more positive ERPs than new words. Only in the source task, 

old words also elicited a late prefrontal positivity. The prefrontal effect, however, did not 

differ between trials with accurate voice judgments and those with inaccurate ones. The 

discrepancy across studies in whether a modulation of the late prefrontal ERPs by retrieval 

accuracy occurs suggests that activity in these regions is not related to, or not restricted to, 

successful retrieval of the episodic information.  

 

The current study 

The present study aims to investigate which variables modulate the ERPs recorded 

over the prefrontal areas during memory retrieval, in order to better understand their role 

not only in episodic memory14, but also and more generally in the cognitive system.  

                                                
14We chose source memory tasks for a couple of reasons. First, we aimed to compare our results with the 
conflicting electrophysiological literature on the role of the successful source retrieval in influencing late 
prefrontal ERP components (e.g., Senkfor & Van Petten, 1998; Wilding & Rugg, 1996). Second, as pointed 
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In experiment 15, a design similar to that used in earlier ERP studies of source 

memory (e.g., Senkfor & Van Petten, 1998; Wilding & Rugg, 1996) was adopted in order 

to test a prediction derived from the retrieval success account by means of the ERPs. This 

account would predict that, in a task involving both item recognition and source 

judgements, hit/hit waves recorded in the right frontal sites should be more positive than 

hit/miss ones, since they would provide an electrophysiological correlate of the processes 

operating on successfully retrieved information. If this prediction could not be confirmed, 

another explanation, not dependent on the accuracy but linked to more subjective aspects 

of the memory retrieval, like confidence (e.g., Henson, Rugg, Shallice, & Dolan, 2000), is 

likely to account for the frontal ERP effects usually observed in source memory retrieval 

tasks. This hypothesis will be tested in the Experiment 16. The results of these experiments 

will then be discussed in comparison with results concerning the variable FP phenomena in 

order to detect communalities and differences between the two fields. 

 

5.1.1. Experiment 15 

Method 

Participants 

Sixteen volunteer participants took part in the experiment 15. They were 25.4 years old 

on average (range = 20-33); 8 were males and 8 females; all of them were right-handed. 

All had normal or corrected-to-normal vision, no auditory impairment, and had no history 

of neurological problems. Each participant gave written informed consent prior to 

participation in the study and received 10 euros at the end of the experimental session. 

Approval from the local ethical committee was obtained for the study.  

 

Experimental Material 

Stimuli at study consisted of 320 Italian words (low/middle frequency, length = 4-10 

letters, mean = 7). The list contained words with either male or female semantic 

associations (50% of each), as indicated by a prior pilot study. For example, words with a 

male semantic meaning were ‘soccer’  and ‘plumber’ ; words with a female semantic 

meaning were ‘skirt’  and ‘ jewel’ . These 320 words were divided into two paired sub-lists 

of 160 different words, with comparable frequency, length and meanings.  

                                                                                                                                              
out before, frontal activity is often held to be more related to the source memory than to item memory (e.g., 
Henson et al., 1999b; Janowsky et al., 1989) and this would increase the likelihood of obtaining a prefrontal 
engagement detectable with ERPs (e.g., Ranganath & Paller, 1999; Senkfor & Van Petten, 1998). 
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At study, words from one of the two sub-lists were presented, half pronounced by a 

male voice and half by a female voice. Of the words pronounced by each one of the voices, 

half had a congruent male meaning and half an incongruent female meaning. Study words 

were presented in 4 blocks of 40 items, with a pause of a few minutes between blocks. The 

order of presentation of items within each block was determined randomly.  

The test list was formed by merging all 320 words of the initial database. This means 

that half of the test items were old, in that they had already been auditorily presented at 

study, and half were new. Of the 160 old words composing each test list, 80 had been 

spoken in the male voice and 80 in the female voice at study. Test words were presented in 

5 sub-lists of 64 items each. The assignment of words to sub-list and the order of 

presentation of items within each block were determined randomly.  

Test stimuli were presented visually on the center of a 17”  monitor. Test words (12-

point Courier New font) subtended approximate visual angles of 1.4° to 2.5° (horizontally) 

and 0.6° (vertically) from a viewing distance of 45 cm. Stimuli were exposed in white 

letters on a black background. The auditory study words were digitally recorded in two 

voices, male and female, at 22 kHz, 16-bit resolution, Stereo mode. They were edited so 

that the beginning of the stored sound segment corresponded to the onset of the spoken 

word. The mean duration of these stimuli was 815 ms, and did not differ significantly 

according to the gender of the voice. Auditory stimuli were presented binaurally at a 

comfortable hearing level through two earphones. Stimulus presentation was controlled by 

a PC. Responses were collected from an external four-button response box connected to 

the PC. 

 

Procedure and Task 

Participants were tested individually in a silent room. Each 1-hour experimental 

session began with instructions about the general aim of the experiment and some advice 

on how to avoid producing artefacts during the EEG recording. Participants were asked to 

relax, to avoid muscular and eye movements and blinks as much as possible, with the 

exception of when the fixation point was present on the screen. Following channel 

placement (see below) participants were seated in front of the stimulus presentation 

monitor. The index and middle fingers of their hands rested on each of the 4 buttons of a 

response box. The task in the study phase consisted of a gender voice judgement followed 

by a gender stereotype judgement in order to increase the depth of the encoding. In this 

first phase, a fixation point (an asterisk) appeared for 400 ms at the beginning of each trial, 



 144 

and was removed from the screen 100 ms prior to stimulus presentation. The word was 

auditorially presented with a blank screen appearing at the same time and lasting 1100 ms. 

A visually presented question ‘Voice?’  (in Italian: ‘Voce?’) lasting 1500 ms indicated to 

the participants the period in which they had to perform the decision on the gender of the 

voice. Another blank screen subsequently appeared for 400 ms. Then a second question 

‘Stereotype?’ (in Italian: ‘Stereotipo?’) lasting 1500 ms indicated to the participants when 

to perform the judgement of the gender stereotype. A final blank of 400 ms separated the 

current trial from a new one. Each participant was instructed to press one of the two 

external buttons on which her/his index fingers rested, which depending upon whether the 

item was spoken in the male or the female voice. They then had to indicate, using the same 

buttons, whether its meaning was associated with the male or the female sphere. The finger 

to be used associated to the gender of the voice and of the stereotype was kept constant for 

each participant. The correspondence between hand and voice gender was counterbalanced 

across participants. Accuracy and speed were equally stressed for the voice judgement. 

Participants were instructed that there was no absolutely correct response for the stereotype 

judgement. Participants were aware that the subsequent task would be a memory task for 

the voice. A practice session consisting of 4 items preceded the study phase per se. The 

total duration of a study trial was 5400 ms. Responses faster than 200 ms, or slower than 

2000 ms were treated as errors.  

After a short pause of 5 minutes, during which the status of the net was checked and 

readjusted if needed, the test phase began. An asterisk lasting for 400 ms again preceded 

presentation of each word; it was removed 100 ms prior to stimulus onset. A test word 

appeared in the centre of the screen for 300 ms followed by the fixation point (asterisk) for 

1700 ms. The onset of the word served as the cue for the first decision. This consisted of an 

old/new judgement. Participants had to press an external button with their left or right 

middle finger according to whether they remembered hearing the word at study or not. One 

index finger could be used to press a middle button when the participants were not sure 

about the old/new status of the word. The index finger used for the ‘don’ t know’ response 

was the right one for half of the participants and the left one for the other half. This 

additional response alternative was introduced in order to obtain a cleaner separation 

between hits and misses (e.g., Wilding & Rugg, 1996), thereby reducing the possibility that 

some trials contributing to the hit ERPs could have been lucky guesses. Accuracy and 

speed were equally emphasized for this first decision. After a blank interval of 400 ms, a 

row of four question marks appeared on the screen for 2000 ms. For words judged old 
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only, the question marks present during the 2000 ms interval were a cue to report the voice 

in which the word had been presented at study. The voice judgement was also made using 

the two external buttons on which the participants’  middle fingers rested, with the option 

of pressing the ‘don’ t know’ middle button with one of the two index fingers (again 

counterbalanced across participants) in order to further separate trials on which study voice 

was successfully recollected and those on which it was not, by also reducing the number of 

lucky guesses for the source judgement. The association between hand and response for the 

two judgements was also counterbalanced across participants. A further blank interval of 

400 ms separated the current trial from the following one. The total duration of a test trial 

was 5300 ms. A practice session consisting of 8 items preceded the test phase per se. Four 

of those practice items had already been auditorily presented at study and 4 were new. 

Initial old/new judgements quicker than 300 ms, or slower than 2000 ms were discarded 

from the analyses. Subsequent voice judgements slower than 2000 ms were also discarded.  

 

EEG recordings 

Scalp voltages were collected with a 128-channel Geodesic Sensor NetTM (Tucker, 

1993) connected to an AC-coupled, high input impedance amplifier (200 MΩ, Net Amps, 

Electrical Geodesics, Eugene, OR). Amplified analog voltages were filtered online (0.1-

100 Hz band-pass) and digitalized at 250 Hz. Individual channels were adjusted until 

impedances were below 50 KΩ. Recording voltages were referenced online to a vertex 

channel but re-referenced after ERP extraction to the average voltage of all channels (see 

next section).  

 

EEG Data Reduction and Analysis 

The EEG was continuously recorded during the test phase. The ERPs were extracted 

off-line triggered by the test word onset and segmented for a temporal period extending 

from 100 ms pre-stimulus to 2200 ms post-stimulus. Trials were dropped from the analyses 

(i.e., automatically rejected prior to averaging) if they contained eye movements (eye 

channel differences greater than 50 µV) or more than 40% bad channels (fast average 

amplitude > 150 µV between samples, differential average amplitude > 150 µV, zero 

channel variance). Data from individual channels which were consistently bad for a given 

participant were replaced using a spherical interpolation algorithm if bad channels were 

less than 20% (Srinivasan, Nunez, Tucker, Silberstein, & Cadusch, 1996). The ERP data 
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from 3 participants (out of 16) were discarded because of an insufficient number of 

artefact-free trials per condition (< 15).  

The ERPs were baseline-corrected with respect to the 100 ms interval prior to word 

presentation and digitally band-pass filtered at 0.3-30 Hz. An average-reference 

transformation was used to minimize the effects of reference-site activity and to estimate 

accurately the scalp topography of the measured electrical fields (Dien, 1998; Picton, Lins, 

& Scherg, 1995). A spherical spline interpolation was also used to estimate the voltages of 

the scalp surface that was not covered by channels and to correct the polar average 

reference effect (Junghofer, Elbert, Tucker, & Braun, 1999).  

On the basis of the literature and of preliminary analyses, eight regions were selected 

from the measured head space for analysis of the spatial scalp topography of the ERP 

effects (see figure 26).  

 

 

Figure 26. Approximate locations of the 128 channels in the Geodesic Sensor Net. Sets of 
Channels within anterior and lateral regions of the frontal and parietal lobes used in ANOVAs are 
shown in black and grey, respectively. LLF, LAF, RAF, RLF, LLP, LAP, RAP, RLP signify left 
lateral frontal, left anterior frontal, right anterior frontal, right lateral frontal, left lateral parietal, left 
anterior parietal, right anterior parietal, right lateral parietal. For purposes of comparison, also the 
approximate electrode location in the 10/20 system is shown. 
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The selected regions can be classified according to their topographical coordinates as 

follows: 2 hemisphere (left vs. right) x 2 lobe (frontal vs. parietal) x 2 regions within each 

lobe (anterior, lateral). Waveforms were obtained averaging ERPs from a pool of four 

adjacent channels for each region (see Curran, Schacter, Johnson, & Spinks, 2001, for a 

similar approach). Thus, the selected regions were the following: left anterior frontal (LAF, 

channels: 23, 24, 26, 27), right anterior frontal (RAF: 2, 3, 8, 9), left lateral frontal (LLF: 

28, 29, 34, 35), right lateral frontal (RLF: 117, 118, 122, 123), left anterior parietal (LAP: 

42, 43, 47, 48), right anterior parietal (RAP: 94, 99, 103, 104), left lateral parietal (LLP: 

59, 60, 65, 66), right lateral parietal (RLP: 85, 86, 91, 92). The outcomes of analyses 

performed including the midline channel sites are not described unless they clearly conflict 

with the conclusions derived from analyses of the data concerning the lateral regions. In 

addition, ANOVAs focusing on a sub-set of regions are reported to corroborate and extend 

results from the overall ANOVAs. Main effects of ERP analyses for both experiments are 

not reported as they are not relevant for the purposes of the study. All the significant 

behavioural and electrophysiological effects were analysed further through post hoc 

comparisons if necessary (i.e., Tukey Honestly Significant Difference). 

 

Results 

Behavioural Data 

Study Phase 

Ninety-seven percent of the words were correctly judged according to the voice, with 

no difference between items spoken in the two voices. Mean reaction time (RT) for correct 

voice decisions was 497 ms, again with no difference between words pronounced by the 

two voices.  Mean RT for the stereotype judgement was 431 ms. There was no difference 

according to the gender of the stereotype and of the voice. 

 

Test Phase 

Accuracy 

Percentages of the various response categories for both the old/new judgement and the 

source one are displayed in the Table 6. The old and new items were initially classified as 

correct, incorrect and ‘don’ t know’ according to the old/new judgement. A discrimination 

estimate of ‘Phit – (Pfalse alarm + Pdon’ t know/new)’  was calculated for the recognition task (see 

Wilding and Rugg’s study, 1996). Discrimination was above chance for words spoken in 

each of the two voices [male: t(15) =  15.1, p <  0.001; female: t(15) = 12.7, p < 0.001] and 



 148 

the two indices for the two genders did not differ significantly. An ANOVA comparing the 

probabilities of incorrect responses to old male, old female and new words also revealed no 

significant differences.  

 

Table 6 

Percentages of response according to the accuracy of the response (correct, incorrect, and 
‘don’ t know’ responses) for the Old/New judgement and for the source judgement in the test 
phase of experiment 15.  
 

 Voice  

Accuracy (%) Male Female New 

  

Old/New Judgement 

 

  

P (correct) 77.3 74.1 73.9 

P (incorrect) 15.9 18.1 15.4 

P (don't know) 2.6 2.8 4.8 

    

Source Judgement  

(for words judged old) 

 

 

P (correct) 62.8 56.9  

P (incorrect) 29.4 34.9 13.2 

P (don't know) 7.8 8.2 2.2 

Note. Old words are separated according to study voice. The total percentage of old/new 
judgements for each voice category, collapsing accuracy, is always less than 100% because 
trials with no response and with reaction times out of the range 300-2000 ms have been 
discarded. Percentage of correct source judgement is not shown for new words because no 
voice had pronounced new words at study. 
 

For words spoken in each of the two voices, the probability of a correct voice 

judgement was reliably higher than the probability of an incorrect judgement [male: t(15) = 

5.64, p < .001; female: t(15) = 2.47, p < .05 ]. An ANOVA comparing the probability of a 

‘don’ t know’ response to correctly judged old words (male versus female voice) and to 

false alarms revealed a main effect of the type of initial response [F(2, 30) = 6.6, p <  .01]: 

the probability of a ‘don’ t know’ response to old words was significantly lower than the 

probability of a ‘don’ t know’ response to false alarms (post hoc Tukey comparisons, p < 

.05; no difference between the two voices).  
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Reaction Times 

The RTs for the various response categories in both the old/new judgement and the 

source one are presented in the Table 7. Given the low number of ‘don’ t know’ responses, 

analysis of RTs is restricted to the correct and incorrect judgements. For the old/new 

judgements, an ANOVA was carried out with the factors of accuracy and word type (old 

male vs. old female vs. new). The only effect obtained was that RTs for correct judgements 

were reliably faster than RTs for incorrect judgements [F(1, 15) = 26.7, p <  .001].  

 

Table 7 

Mean Reaction Times (in Milliseconds) of Response According to the Accuracy of the 
Response (Correct, Incorrect, and ‘don’ t know’  Responses) for the Old/New Judgement and 
for the Source Judgement in the test phase of Experiment 15.   
 

 Voice 

 

 

 

 Male Female New 

RT (ms) 

 

   

Old/New Judg.   

RT (correct) 1154 1180 1218 

RT (incorrect) 1300 1299 1296 

RT (don't know) 1481 1667 1599 

    

 

Source Judgement 

 

 

RT (correct) 642 632  

RT (incorrect) 665 728 736 

RT (don't know) 853 779 794 

Note. Old words are separated according to study voice. Mean reaction time of correct source 
judgement is not shown for new words because no voice had pronounced new words at study. 
 

After re-classifying old words according to the subsequent voice judgement, an 

ANOVA involving the factors of voice judgement accuracy (hit/hit vs. hit/miss) and word 

type (male vs. female voice at study) gave only a main effect of accuracy [F(1, 15) = 5.1, p 

<  .05], with RTs for later correct judgements being reliably faster than the RTs for later 

incorrect ones (hit/hit: 1145; hit/miss: 1174).  
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For the voice judgement, an ANOVA involving accuracy and word type (male vs. 

female) gave no significant effects (for all, p > .15), probably because participants withheld 

responses about voice judgements until the response cue ‘????’ appeared. At test, no effect 

of the congruence between the voice at study and the gender meaning of the words was 

found. 

 

Event-related Potentials 

Only trials which resulted in hits for the old words and correct rejections for the new 

words were included in the ERP analyses. Trials associated with other categories of 

responses were discarded, due to insufficient trials for adequate analyses. The hits were re-

classified a posteriori as hit/hit or hit/miss, depending upon the subsequent voice 

judgement. Only 13 participants contributed sufficient trials to permit the formation of 

reliable, artefact-free ERPs. As no behavioural difference had been observed between the 

two voices at study, the factor ‘voice’  was collapsed for the ERP averaging and analysis.   

The mean number of trials entering into each participant’s waveform analysis was 47, 

24, and 77, for the hit/hit, hit/miss and correct rejection categories, respectively. ERPs 

concerning the test phase were averaged from 100 ms prior to the visual word onset to the 

occurrence of the 4 question marks, that is they included the time interval used for the 

old/new judgement before the voice judgement (2300 ms). As one can see from visual 

inspection of the grand average (see figure 27) and could be expected from the literature, 

the ERPs related to hit/hit and hit/miss show two positive-going modulations compared 

with the ERPs related to correct rejections: an early phasic left parietal one15, and a late 

long-lasting right frontal one. As we were interested in the latter effect, the subsequent 

analyses will focus on mean amplitudes of ERPs from the eight chosen regions in two late 

consecutive latency-windows (i.e., 1400-1800 and 1800-2200 ms). 

 

Middle and late frontal effects (1400-1800 and 1800-2200 ms latency-windows). 

Two parallel 3x2x2x2 ANOVAs were conducted on the mean amplitudes obtained for 

the two middle and late subsequent latency-windows of 1400-1800 and 1800-2200 ms, 

respectively. Each ANOVA employed the factors of response category, hemisphere, lobe 

and regions.   

                                                
15The analyses concerning parietal effects are reported in the Appendix, from page 121, as they are not 
relevant for the present purposes. The interested reader can also find a full report in Vallesi & Shallice 
(2006), Brain Research, 1124(1), 111-25. 
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The lobe x hemisphere interaction was significant only for the 1400-1800 ms latency-

window [F(1, 12) = 5.3, p < .05]; this interaction derived from the right regions being more 

positive than left ones for the frontal lobes (p < .001), but not the parietal lobes (p = .08). 

Moreover, response category modulated this effect as the category x lobe x hemisphere 

interaction indicated [1400-1800 ms: F(2, 24) = 7.5, p < .01; 1800-2200 ms: F(2, 24) = 5.7, 

p < .01]. Indeed, the hit/miss waves were significantly more positive than correct rejection 

waves only in the right frontal regions (for both latency-windows, p < .01). No significant 

difference was obtained between the RAF and the RLF regions. The hit/hit waves too were 

more positive than correct rejections in the right frontal regions but the post hoc Tukey test 

gave a significant result for the latency-window of 1800-2200 ms only (p < .01). No 

difference at all was observed between the different conditions in the left hemisphere.   

 

 

Figure 27. Grand average of ERPs associated with the hit/hit, hit/miss, and correct rejection 
response categories in Experiment 15 Labels of the Scalp Regions as for Figure 26.  

 

Discussion 

The results of experiment 15, apart from an early left parietal old/new effect (see 

Appendix, from page 121), replicate the late right frontal old/new effect (e.g., Donaldson 

& Rugg, 1998; Wilding & Rugg, 1996), with waves for hit/hit and hit/miss trials being 

more positive than those for correct rejections in two late latency-windows. However, the 

hit/miss waves were slightly, although not significantly, more positive than the hit/hit ones 

in the right prefrontal region. Hence, in the current experiment, the late positive frontal 

component is independent of the successful retrieval of a full memory trace. This pattern is 

in conflict with the retrieval success account of the late right frontal old/new effect (e.g., 
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Wilding & Rugg, 1996). It is noteworthy that, in this experiment, RTs for old/new 

judgements were significantly slower for hit/miss than for hit/hit, while in the Wilding and 

Rugg’s study (1996) there was no difference between RTs for the two types. Moreover, the 

percentage of correct source judgments was higher in our study than in their experiment 

16, which was more similar to our design (60% vs. 50%), probably because our study 

involved a deeper encoding than their lexical decision. 

Similar results to ours have been usually explained as reflecting monitoring of search 

operations in general (e.g., Kapur et al., 1995; Senkfor & Van Petten, 1998) rather than of 

the products of memory retrieval. A more specific interpretation of the prefrontal role in 

memory retrieval, which provides a clear alternative to the retrieval success accounts, is 

that this area is more involved when the response is less certain and hence needs additional 

monitoring (Henson et al., 1999a). In order to test this hypothesis more directly, an fMRI 

study by Henson and colleagues (Henson et al., 2000) adopted a procedure in which 

old/new judgements were required together with confidence ratings of these judgements. 

Results showed that correct low-confidence responses to old items activated DLPFC 

bilaterally. There is therefore enough evidence to suppose that the evaluation or checking 

of the response could be a good candidate for the modulation of the prefrontal ERP effects 

during source memory judgements (e.g., Shallice, 2002).  

 

5.1.2. Experiment 16 

The hypothesis of a possible influence of confidence on prefrontal ERPs during a 

source memory task was investigated directly in experiment 16. The ERP technique is a 

useful tool to temporally characterize an effect of retrieval confidence on the cortical 

electrical activity and to possibly dissociate it from the effect of retrieval accuracy. A 

procedure similar to that used in the fMRI study by Henson and colleagues (Henson et al., 

2000) was therefore adopted in the present experiment.  

Late ERP positivity is generally considered an electrophysiological hallmark of 

prefrontal engagement during retrieval (e.g., Wilding & Rugg, 1996). Thus, the prediction 

was made that late prefrontal waveforms associated with low-confidence judgments will be 

more positive than those associated with high-confidence ones, as the former are supposed 

to require more frontal-type processes (e.g., monitoring processes; see Henson et al., 2000, 

for fMRI evidence). 
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Method 

Participants 

Eighteen participants volunteered for experiment 16, all different from those who 

carried out experiment 16. They were 27 years old on average (range = 22-40); 12 were 

females and 6 males. All were right-handed, had normal or corrected-to-normal vision, no 

auditory impairment, and no history of neurological problems. Each participant gave 

written informed consent prior to participation in the study and received 10 euros at the 

end of the experimental session. One female participant was discarded from the analyses as 

she did not use some response categories at all (i.e., no ‘high-confidence’ responses).  

 

Experimental Material 

The stimuli were the same as in the experiment 15. The only difference was that the 

same 160 words auditorily presented at study were subsequently visually displayed at test, 

without new words. The 160 words presented were different for half of the participants. 

 

Procedure and Task 

The procedure was basically the same as in the experiment 15, apart from the 

following changes. Each experimental session lasted roughly 35-40 minutes. During the 

study phase, the task was limited to the gender stereotype judgement only, and so the time 

used for encoding of each word was decreased (a study trial lasted 4300 ms instead of 5400 

ms). These manipulations were designed to increase the number of low-confidence 

judgements, in order to have enough trials per condition (i.e., > 15) to allow effective 

averaging of waves.  

Following net placement, participants were seated in front of the stimulus presentation 

screen with the index fingers of each hand resting on a button. They wore earphones 

through which the auditory stimuli were presented binaurally. As a considerable number of 

trials had been discarded in experiment 15 because of ocular artefacts, a different 

procedure was adopted here. At study, an explicit request ‘Blink!’  (in Italian: ‘Ammicca!’ ) 

instead of the fixation asterisk appeared for 400 ms at the beginning of each trial, and was 

removed from the screen 400 ms prior to stimulus presentation. During that period 

participants had to blink if necessary. This procedure was adopted following guidelines by 

Picton and colleagues (Picton et al., 2000). Participants were required to maintain their 

gaze fixed on the centre of the screen and to avoid blinks for the rest of the trial. They were 

asked to relax and to avoid muscular movements as far as possible. Each word was 
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auditorily presented and a blank screen appeared at the same time and lasted 1400 ms. 

Following the blank screen period, a question ‘Stereotype?’ (in Italian: ‘Stereotipo?’) 

appeared for 2000 ms. This question prompted the participants to perform the gender 

stereotype judgement. The instruction for this task were the same as in the experiment 15. 

After a further blank of 100 ms a new trial began. Participants were aware that all the test 

visual words would have already been presented auditorily at study. A practice session 

consisting of 8 items preceded the study phase per se. A short pause was given after each 

block of 40 trials both during the study phase and during the test phase. 

After a short pause of 5 minutes, during which the status of the net was checked and 

readjusted if needed, the test phase began. The request ‘Blink!’  lasting for 400 ms preceded 

presentation of each word, and was removed 400 ms prior to stimulus onset. A test word 

appeared in the centre of the screen for 300 ms followed by the four letters ‘MmfF’ for 

2000 ms. The onset of the word served as the cue for ‘voice retrieval’ , namely the retrieval 

of the voice in which the word had been presented at study. The voice retrieval responses 

had to be made on a four-point confidence scale. If the participants were highly confident 

about their decision they had to press one of the two external buttons with a middle finger. 

Instead, if participants were less confident they had to press one of the two inner buttons 

using an index finger. In both cases, which button they should press depended on the voice 

in which they thought the word had been presented. The order of the responses associated 

with each of the four buttons from leftmost to rightmost was male/high-confidence, 

male/low-confidence, female/low-confidence, female/high-confidence (reversed for half of 

the participants). A further blank of 100 ms separated the current trial from the next one. A 

practice session consisting of 8 items (all old) preceded the test phase per se. The total 

duration of a test trial was 3200 ms. Voice judgements quicker than 300 ms, or slower than 

2200 ms were excluded from analyses.  

 

EEG recordings 

The same settings were used as in the experiment 15 for the online recording of the 

EEG during task execution.  

 

EEG Data Reduction and Analysis 

The same criteria were adopted for the data reduction and analyses of the ERPs as in 

the experiment 15. Five participants did not reach the minimal criterion of 15 trials per 

category when 4 categories were created for a full 2 (confidence) x 2 (accuracy) factorial 
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design. ERPs were therefore averaged twice, dividing trials according to confidence (high- 

vs. low-confidence) one time, and according to accuracy (hits vs. misses) the other time16. 

The mean numbers of trials used for the analyses of each subject’s waveforms were 55, 58, 

63 and 50, for the high-confidence responses, low-confidence responses, hits, and misses, 

respectively. The ERP latency windows analysed in the experiment 16 were different from 

those analysed in the experiment 15 as the procedure and task adopted were changed. As 

for experiment 15, the early parietal effects are reported in the Appendix (from page 121). 

 

Results 

Behavioural Data 

Study Phase 

The mean RTs for stereotype judgement were 622 ms, with no difference between 

words pronounced by the two voices (paired t-test: t(16) = 1.49, p = 0.15). There was no 

effect of congruence between voice and gender stereotype.  

 

Test Phase 

Accuracy 

Percentages of responses classified according to response confidence, voice at study 

and accuracy are shown in the Table 8.  

A 2x2x2 ANOVA was performed with accuracy, confidence and study voice as the 

within-subjects variables and the percentage of responses as the dependent variable. There 

were significantly more hits than misses [F(1, 16) = 27.4, p < .001]. The accuracy x 

confidence interaction was also significant [F(1, 16) = 13.9, p < .01], due to the percentage 

of highly confident responses being greater for hits than for misses (post-hoc, p < .001), 

while the percentage of low-confidence responses did not differ reliably between hits and 

misses (p = .36). A voice x accuracy interaction was also observed [F(1, 16) = 9.7, p < 

.01]. This was due to the difference between hits and misses being greater for words 

                                                
16ERPs of the 12 participants with enough artefact-free trials per category were averaged according to a 2 
confidence x 2 accuracy full factorial design. Five-way ANOVAs were conducted on these ERPs, with 
accuracy (hit vs. miss), confidence (high vs. low), lobe (frontal vs. parietal), side (left vs. right), and region 
(anterior vs. lateral) as the independent variable, and mean amplitude on selected time-windows (i.e., 500-
700, 1000-1500 and 1500-2000 ms) as the dependent variable. These ANOVAs were more conservative than 
those conducted on ERPs of all the 17 participants averaged separately for confidence and accuracy and 
reported in the text (see Results), as some of the effects detected with the latter analyses were not significant 
with the full factorial ANOVAs. Moreover, the full factorial ANOVAs did not produce any additional 
interaction between confidence and accuracy. For these reasons, results of these ANOVAs will not be 
reported.  
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presented at study in the male voice than ones presented in the female voice. No other 

effects were significant.  

 

Table 8 

Mean Reaction Times (in Milliseconds) and Percentages of the Source Judgement Classified 
According to the Voice at Study (Male versus Female), Accuracy (Hit versus Miss) and 
Confidence (High- versus Low-Confidence) in the test phase of Experiment 16. 

 Voice 

 Male 

 

Female 

Percentage  High Conf. 

 

Low Conf. High Conf. Low Conf. 

Hit 1375 

31% 

1459 

25% 

1379 

28% 

1484 

22% 

 

Miss 

 

1464 

16% 

 

1485 

20% 

 

1412 

21% 

 

1472 

22% 

 

Reaction Times 

Mean RTs are presented in Table 8. The same 2x2x2 ANOVA as for accuracy was 

performed with the mean RT as the dependent variable. The RTs for hits were faster than 

the RTs for misses [F(1, 16) = 5.7, p < .05]. There was a main effect of confidence [F(1, 

16) = 7, p < .05] with RTs for high-confidence responses being faster than for low-

confidence ones. There was a significant accuracy x confidence interaction [F(1, 16) = 5.6, 

p < .05], through the RTs for highly confident judgements being faster for hits than for 

misses, with no such effect on RTs for low-confidence judgements. No effects involving 

voice were found.  

 

Event-related Potentials 

Confidence analysis 

ERPs elicited by the high- versus low-confidence voice judgements are displayed in 

figure 28.  

 

Middle and late Anterior Frontal effects (1000-1500 and 1500-2000 ms) 

Two 2x2x2x2 ANOVAs (confidence, lobe, hemisphere and region) were performed on 

the mean amplitudes in the 1000-1500 and 1500-2000 ms latency-windows. A lobe x 
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hemisphere interaction was observed principally in the middle latency-window [1000-1500 

ms: F(1, 16) = 7.3, p < .05; 1500-2000 ms: F(1, 16) = 3.1, p = .09], due to more positive 

waves in the right frontal regions than in all the other regions (for all, p < .001). However, 

a lobe x region interaction was also obtained for the late 1500-2000 ms latency-window 

[F(1, 16) = 5.8, p < .05], due to there being more positive waves in the anterior frontal 

regions than elsewhere (for all, p < .05). The confidence x lobe x region interaction 

occurred in both time-windows [1000-1500 ms: F(1, 16) = 9.5, p < .01; 1500-2000 ms: 

F(1, 16) = 7.9, p < .05]. Post-hoc comparisons indicated that low-confidence responses 

elicited more positive waves than high-confidence responses selectively over the anterior 

frontal and the lateral parietal regions during the 1000-1500 ms time-window (for all, p < 

.05), with similar trends during the 1500-2000 ms time-window over the anterior frontal 

regions only (p =  .07).  

 

Figure 28. Grand average of ERPs associated with the High- and Low-confidence source 
judgments in experiment 16. Labels of the scalp regions as for Figure 26.  

 

Given the results of the overall ANOVA and the existing literature on late prefrontal 

effects, two separate 2x2x2 ANOVAs were run, for the middle and the late latency-

windows, respectively; they were restricted to the prefrontal regions only, involving the 

factors confidence (high- vs. low-confidence responses), hemisphere (left vs. right frontal) 

and region (anterior vs. lateral). These two analyses led to very similar findings. A main 

effect of hemisphere was obtained [1000-1500 ms: F(1, 16) = 27.6, p < .001; 1500-2000 

ms: F(1, 16) = 20, p < .001], due to right frontal ERPs being more positive than left ones. 

The main effect of region was also significant [1000-1500 ms: F(1, 16) = 4.4, p = .05; 

1500-2000 ms: F(1, 16) = 6, p < .05], due to there being more positive waves in the 
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anterior prefrontal regions than in the lateral ones. The only significant interaction was the 

confidence x region one [1000-1500 ms: F(1, 16) = 7, p < .05; 1500-2000 ms: F(1, 16) = 9, 

p < .01]. ERPs for low-confidence judgements were more positive than those for high-

confidence ones, this difference being more pronounced in the bilateral anterior frontal 

regions than in the lateral frontal ones, as planned comparisons demonstrated (p < .05 and 

p < .01 for the middle and late latency-windows, respectively). The results of the more 

specific analysis therefore confirmed those from the more general one. 

 

Accuracy analysis 

Similar ANOVAs were conducted replacing the factor confidence with that of 

accuracy. However, no effect of accuracy was observed in the ERPs, as can be seen in the 

figure 29. 

 

 
Figure 29. Grand average of ERPs associated with the correct versus incorrect source judgments 
(Hits versus Misses) in experiment 16. Labels of the scalp regions as for Figure 26. 

 

Discussion 

Experiment 16 confirms the general involvement of right frontal regions in two late 

time-windows during a source memory task already shown in previous memory studies 

(e.g., Wilding & Rugg, 1996) and in the experiment 15 of the present study. In particular, 

waves in the right frontal regions were the most positive in the subsequent latency-

windows of 1000-1500 and 1500-2000 ms. However, the present results again do not 

corroborate the successful retrieval account of the prefrontal involvement during a source 

memory task. The accuracy of the source judgement did not influence ERPs at all (as 
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shown in the figure 29), confirming the results of experiment 15, even though the 

paradigms adopted in the two experiments were different.  

The aim of experiment 16 was primarily to evaluate the role of confidence in 

modulating late frontal ERPs during a source memory task. Previous ERP experiments 

requiring confidence rating of memory judgements did not examine late frontal effects in 

detail (Rugg & Doyle, 1992) and usually did not analyse low-confidence ERPs because of 

the low number of trials available for the averaging (Rubin, Van Petten, Glisky, & 

Newberg, 1999; Rugg, Cox, Doyle, & Wells, 1995). In the current study, the production of 

confidence ratings by the participants influenced their ERPs in two dissociable ways. First, 

ERPs are more positive for low-confidence ratings than for high-confidence ones. This 

pattern is observed over anterior prefrontal regions (i.e., 1000-2000 ms). It has been 

supposed that when low-confidence responses are given, more monitoring is dedicated to 

the retrieval processes before a decision is made (Henson et al., 2000), consistent with the 

longer RTs observed in the present experiment for low-confidence judgements. Our results 

would fit with such a long-lasting monitoring process occurring over the anterior prefrontal 

regions.  

A second dissociable effect found in the present experiment consists of ERPs being 

specifically more positive over right prefrontal sites (i.e., anterior and lateral) than 

elsewhere in the middle latency-window (1000-1500 ms), during which participants were 

performing their judgement (mean RT = 1441 ms). This effect suggests that, in the present 

experiment, right prefrontal positivity is associated with the online confidence evaluation 

of the source judgement, independently of the accuracy and confidence of such judgement 

(but see General Discussion).  

 

General Discussion 

The specific aim of the present study was to elucidate the role of prefrontal areas in 

source memory retrieval and, specifically, to electrophysiologically dissociate the 

prefrontal ERP effects of the objective performance (viz., accuracy) from that of more 

subjective aspects of memory search processes (viz., confidence) during source retrieval. 

We tried to address these issues by means of ERPs measured with a high-density (128 

channel) recording apparatus. By pursuing this specific purpose, we also wanted to bring 

evidence in favour of the hypothesis that the monitoring/checking function of right lateral 
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prefrontal cortex is not only present in the temporal domain (FP effect) but also in other 

domains such as the source memory one.  

In particular, our first interest was to test whether accuracy of source retrieval was 

linked to the frontal ERP old/new effect, as suggested by some ERP studies (e.g., Graham 

& Cabeza, 2001; Wilding & Rugg, 1996) but not confirmed by others (e.g., Senkfor & Van 

Petten, 1998; Ranganath & Paller, 1999). In the experiment 15, late ERPs evoked by 

hit/miss trials over the right frontal regions were if anything more positive, albeit not 

significantly, than ERPs evoked by hit/hit ones. In the light of the inconsistency of the 

effect of source retrieval accuracy on late frontal waves across studies (cf. Senkfor & Van 

Petten, 1998; Wilding & Rugg, 1996), this finding suggests that retrieval accuracy is not a 

critical variable influencing the late frontal ERPs. This is compatible with recent accounts 

ascribing the frontal contribution to memory to more general processing capacities which 

can be applied to non-memory tasks as well (e.g., Stuss & Alexander, 2005). 

An issue then arises regarding the specific content of the monitoring processes 

supposed to occur during retrieval within the prefrontal areas (e.g., Burgess & Shallice, 

1996b). A suggestion deriving from the fMRI study by Henson and colleagues (2000) is 

that prefrontal areas are modulated by variables which are more subjective than accuracy 

per se, such as the confidence level of the memory judgement. Experiment 16 aimed to 

extend these findings, investigating the electrophysiological correlates of confidence self-

ratings during a source memory task. Specifically, in the retrieval phase of the second 

experiment, voice judgements were embedded together with response confidence 

evaluation. 

According to a schematic analysis of this task, the following processes should occur, 

among others, during any trial in order to give an appropriate response: (a) After reading 

the test word, attention should be focused on memory products reactivated by this cue in 

order to start the memory search (attentional shift towards retrieval specification); (b) 

Attention needs to be maintained on these retrieval products so as to continue the memory 

search (maintenance of attention); (c) Memory retrieval products elicited by the cue are 

possibly brought to consciousness (ecphory); (d) To perform a correct source judgement, a 

further process is required which scans the products of memory search for information 

concerning voice. Accuracy of these products is then checked especially when the voice is 

not confidently recollected (monitoring process); (e) Finally, given the specific nature of 

this task, which additionally requires confidence judgements, another meta-level process is 
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needed. This process is held to monitor the ongoing memory search itself, in order to 

evaluate the confidence status of the current source judgement (metamemory process).  

Apart from a lack for any effect of accuracy on ERPs (process c, in our task analysis), 

which corroborates the results of experiment 15, the results of experiment 16 showed a 

number of specific ERP effects which might correspond to some of the processes already 

specified in the schematic task-analysis. Those effects can be distinguished on the basis of 

their temporal and topographical distribution, on the one hand, and of their sensitivity to 

the confidence level, on the other hand. Earlier parietal effects, which are relevant for 

processes a and b, have been discussed elsewhere (see footnote 15), whereas effects 

concerning later frontal waves will be discussed in detail in the following sections. 

 

Anterior frontal effects: process (d) 

An anterior-more-than-lateral prefrontal pattern was found in experiment 16 but not in 

experiment 15. In experiment 15, only one operation at a time had to be performed, namely 

an old/new judgement followed by a source judgement. Conversely, in experiment 16, two 

different operations had to be carried out rather simultaneously, namely a source 

judgement and a confidence evaluation, and the different processes underlying them had to 

be coordinated so as to give a response.  

One possible explanation is suggested by the idea that a specific role for the anterior 

prefrontal region is to integrate the results of two or more separate cognitive operations in 

the pursuit of a more general behavioural goal (Ramnani & Owen, 2004; see also 

Reynolds, McDermott, & Braver, 2005). The electrophysiological dissociation between the 

two present experiments supports this model, if not strictly anatomically, due to the low-

spatial resolution of the ERPs, at least functionally. However, in order to explain the effect 

of confidence on anterior prefrontal waves, this account needs to be extended by 

postulating further operations conceivably more engaged during a low-confidence 

judgement than during a high-confidence one. According to signal detection models of 

recognition in memory (Juola, Fischler, Wood, & Atkinson, 1971), low-confidence 

judgements are those in which the memory strength is close to the decision criterion. These 

situations are likely to involve more monitoring of the retrieved products, consistent with 

the longer RTs obtained here for low-confidence judgements. In the fMRI study by Henson 

and colleagues (2000), low-confidence responses selectively activated bilateral prefrontal 

cortex. In the present study, low-confidence responses evoked more positive waves on the 

bilateral anterior prefrontal scalp regions in a long-lasting fashion (i.e., middle and late 
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time-windows). This ERP pattern might be considered as a marker of retrieval verification 

processes, which monitor the appropriateness of retrieved information, especially when the 

retrieval process is difficult (process d, in our task analysis; editing or mediator processes 

according to the model specified by Burgess & Shallice, 1996b; see also Henson et al., 

1999b, 2000; Sandrini, Cappa, Rossi, Rossini, & Miniussi, 2003). It would be difficult to 

interpret these findings from the point of view of alternative interpretations, such as the 

retrieval mode account (e.g., Kapur et al., 1995; Lepage, Ghaffar, Nyberg, & Tulving, 

2000).  

 

Right frontal effect: process (e) 

Finally, another clearly localized electrophysiological effect was found in this study. 

ERPs were more positive over the right prefrontal sites (both anterior and lateral) than 

elsewhere, especially in the middle latency-window, independently of source memory 

accuracy (experiments 15 and 16) and confidence (experiment 16). It is possible to 

interpret this asymmetry in the light of our task demands. Noteworthy, during the latency-

window in which the right prefrontal asymmetry is more evident (i.e., 1000-1500 ms), 

participants were actually performing the source-plus-confidence judgement. As pointed 

out in our previous task analysis, these task demands of the experiment 16 explicitly 

require a metamemory process monitoring the state of confidence of the response (process 

e). The right frontal ERP effect in this interval, thus, may be accounted for by attributing a 

role in metamemory evaluation of retrieval processes to the right prefrontal regions. This 

inference about possible brain sources of the right frontal ERP effect fits with the results of 

neuropsychological studies showing evidence for a possible metamemory role of the right 

PFC (e.g., Vilkki, Servo, & Surma-aho, 1998; Vilkki, Surma-aho, & Servo, 1999). 

However, the right-more-than-left effect was also found in our experiment 15 and in other 

ERP studies of episodic retrieval not requiring a confidence evaluation (e.g., Wilding and 

Rugg, 1996). This asymmetry also fits various functional imaging findings which widely 

document a right-more-than-left prefrontal involvement during retrieval (e.g., Lepage et 

al., 2000; Shallice et al., 1994; Tulving et al., 1994; but see Nolde et al., 1998).  In recent 

fMRI studies, activity of right dorsolateral and fronto-polar prefrontal areas during 

retrieval has been linked to familiarity monitoring (e.g., Henson et al., 1999a; Dobbins, 

Rice, Wagner, & Schacter, 2003; Dobbins, Simons, & Schacter, 2004). On this account, 

the process thought to engage the right prefrontal regions consists of monitoring a 

familiarity signal in order to make a decision according to an internal criterion (cf. Banks, 
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1970). Assuming an anatomical correspondence between scalp potentials and sources, the 

latter interpretation seems more appropriate to account for the right frontal ERP effect 

found not only in our experiment 16, but also in the experiment 15 and in other studies of 

episodic memory which do not explicitly require metamemory processes. In our 

experiment 16, this familiarity monitoring could be functional not to achieve an old/new 

judgment (not required) but to decide how confidently one remembers the voice 

pronouncing the word. 

 

Conclusions 

The lack of any modulation of the ERPs throughout the scalp by accuracy of the 

source judgments, in both experiments of the current study, is very difficult to account for 

with the successful source retrieval hypothesis. The results of experiment 16 show a clear-

cut dissociation among the prefrontal scalp regions of interest analyzed, along the anterior-

lateral and left-right topographical dimensions, respectively. This pattern of results 

suggests a fractionation of memory functions within the underlying prefrontal areas. 

Anterior prefrontal ERPs were tonically modulated by the confidence rating of the source 

retrieval (i.e., more positivity for low- than for high- confidence ratings) during middle and 

late latency-windows. This pattern brings converging evidence for the role of confidence in 

modulating prefrontal involvement in memory retrieval and may well be ascribed to extra 

monitoring demands, necessary in order to achieve a source memory judgement during 

uncertain situations. On the other hand, the more general right-more-than-left prefrontal 

ERP positivity, also found in the experiment 15, could be attributed to the process of 

familiarity monitoring.  

 

5.2. Monitoring in the FP and in the source memory domains: same 

or different processes? 

With the source memory study we wanted to extend results about the monitoring role 

of right lateral PFC to a domain different from temporal preparation. Notwithstanding that 

a number of processes may differ between the two domains and tasks, some of the 

demands of these tasks are similar and may require some specific processes which are 

likely to be located in the rDLPFC.  

One of the hypotheses regarding the role of right lateral PFC was that it is involved in 

non-evident error detection (Shallice, 2006; see also Petrides, 1994), that is “the process of 
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detecting a discrepancy between the situation resulting from the implementation of the 

strategy and the requirements of satisfying a goal” . One of the most important criteria 

which Shallice (2006) put forward in order to describe situations which are likely to 

involve such a process is uncertainty. Situations in which the information relevant for the 

task is not externally presented but should be internally recovered are likely to be 

uncertain. An example of uncertain situations where an involvement of the right DLPFC 

has been found is represented by tasks in which the task-relevant sensory information is 

presented in a degraded manner (e.g., Sharp, Scott, & Wise, 2004). 

In the source memory tasks used in experiments 15 and 16, the task-relevant 

information was the source memory trace, a kind of information which does not have a link 

with the external environment, but should be internally checked once the memory trace has 

been reactivated (hence, the late time-window of the related prefrontal ERP effects). In the 

variable FP paradigm, the relevant information is the (uncertain) moment of occurrence of 

an imperative stimulus. In this case, what is likely to be checked is the non-occurrence of 

the stimulus as time elapses and the conditional probability of its forthcoming occurrence 

increases. The endogenous information should be continuously checked in order to satisfy 

a specific goal. This goal would be to establish its appropriateness for the response in the 

source memory task, and to increase preparation level in the variable FP task. In the light 

of what stated above, it is worthwhile testing if the process called non-evident ‘error’  

detection in Shallice (2006) is part of a more general non-evident ‘ information’  detection 

and checking function. 

However, the disparity between the two domains (i.e., FP and source memory) and of 

the techniques of functional/anatomical investigation used here (TMS and 

neuropsychology, on the one side, and ERP, on the other side) makes it desirable to find 

other sources of evidence for the hypothesis that these tasks engage the same monitoring 

process in the same brain region. 

A possible test of this hypothesis, at the behavioural level, could be a dual-task in 

which the two domains are combined. A suitable task can be a source memory retrieval test 

in which the period between the onset of the item of which the source (e.g., the voice 

gender of a word) should be retrieved and the appearance of the imperative stimulus (i.e., a 

go-signal such as an arrow) would be varied according to a variable FP design. The 

monitoring demands of the source retrieval could also be parametrically manipulated. 

However, a possible outcome of this task is an increased FP effect due to the fact that the 

time available for the source memory judgment would be less for the short FP than for the 
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long one and, at least in some cases, participants could not have completed the retrieval 

when a short FP would occur, with a consequent RT lengthening on the short FP.  

Alternatively, in order to avoid this possible drawback, an autobiographic task could 

be used, in which a word is presented at the beginning of each block (e.g., “Christmas”), as 

a cue for starting to mentally retrieve as many autobiographic details as possible 

concerning the event specified by the word. At the same time, participants could be 

required to perform a simple RT task with variable FPs. In this case, the probability that a 

given process related to the memory retrieval is engaged during a short or a long FP would 

be the same, as the participants have to spontaneously produce their own memories, 

without an externally given go-signal. After each block, a brief report of the 

autobiographic memory could be asked to the participants to check that they are actually 

performing the dual-task adequately. Moreover, at the end of all the blocks, participants 

may be required to sort the cue words initially provided according to some criteria which 

could be used as indirect measures of how much monitoring was required. Some criteria 

could be the quantity of the retrieved information, the precision of the perceptual details, 

the precision of the temporal context information, and the level of confidence. For the 

analysis, each word may receive a score according to its order in the classification for each 

parameter (for instance, a word receives a score of 1 when retrieved events evoked by that 

word were the most numerous, detailed, temporally precise, and retrieved with the highest 

confidence). The scores obtained by each word for each parameter might be summed 

together and used to classify the words according to a memory index (the higher the index, 

the more the monitoring conceivably required). 

Whether the two monitoring processes required by the variable FP task and by the 

memory retrieval have same functional locus could be tested by applying the logic of the 

Additive Factor Method proposed by Sternberg (1969). According to this logic, two given 

task variables are held to affect different processing stages when their effects combine 

additively, whereas an interaction suggests that they affect a common processing stage. In 

other words, a common mechanism would be suggested if the magnitude of the FP effect 

interacts with the memory index calculated as described above. 
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Chapter 6 
Concluding remarks 

 

6.1. A brief historical overview 

In the Creation of Adam, the marvellous Sistine Chapel painting by Michelangelo 

Buonarroti, God’s mantle and other background figures and shapes resemble an anatomical 

image of the human brain (Meshberger, 1990). God’s feet lay on the encephalic trunk, 

whereas his head is painted within the frontal lobe. God’s index finger, coming out of the 

PFC, points at Adam, and makes him human (Goldberg, 2001).  

Although extremely amazing, the interpretation of this Michelangelo’s famous 

painting is likely to have been done only a posteriori. PFC was treated as the ‘silent’  

portion of the brain until the mid-nineteenth century (e.g., Fritsch & Hitzig, 1870). The 

view according to which PFC is the seat of the typically human, high-level functions is 

indeed relatively recent, originating from pioneer clinical reports of patients with frontal 

lesions from the mid nineteenth century on (e.g., Bianchi, 1895; Donath, 1923; Ferrier & 

Yeo, 1884; Harlow, 1869; Welt, 1888). 

The study of the specific functions of the PFC through more scientifically-based 

methodologies, however, started much more recently. As a consequence, a number of 

models in the eighties postulated the existence of a high-level cognitive system located in 

the PFC with a set of supervisory functions. However, in the first version of the SAS 

model (Norman & Shallice, 1980; 1986), but also in similar early models, such as the 

Central Executive (Baddeley, 1986), the central processor (Umiltà, 1988), the precise 

localization of functions within PFC was left undetermined, mainly because of a lack of 

detailed evidence at that time.  

As empirical evidence accumulated over years, a more detailed view has emerged, 

which suggests a fractionation of these high-level functions within a network of different 

functional prefrontal areas (Shallice, 2004), even if the details of this view are far from 

being entirely specified (e.g., Smith & Jonides, 1999). A number of scientists, mainly on 

the basis of neuropsychological (Godefroy et al., 1999; Stuss et al., 2005) and brain 

imaging (e.g., Burgess, Simons, Dumontheil, & Gilbert, 2005) findings, have indeed 

hypothesized distinct localizations of different high-order functions within the PFC.  
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A particular role emerged for the DLPFC. Faw (2003), for instance, put forward a 

hierarchical model where PFC is metaphorically defined as the ‘ five-member Executive 

Committee’ . This organizational metaphor was aimed to highlight both the interactivity 

and the domain-specificity of different areas of the prefrontal lobes. This ‘committee’  

represents the prefrontally-controlled expansion of five sub- and posterior-cortical systems. 

On this model, the DLPFC has the special status of a Coordinator (Faw, 2000a, 2000b), as 

it is dominant in directing attention, working memory, and willed action. A more specific 

monitoring role for the lateral PFC (especially right) has emerged from the work by 

Donald Stuss and his colleagues (e.g., Stuss et al., 1995; Stuss, Binns et al., 2002; Stuss et 

al., 2005).  

However, according to an opposite view, each prefrontal area (right lateral PFC 

included) has an undifferentiated and equi-potential role, as different cognitive demands 

usually involve common, or at least overlapping, prefrontal regions, sometimes even at the 

single neuron level (e.g., Duncan & Owen, 2000). Based on a work by Stuss and 

colleagues (Stuss et al., 2005), in the present project we tried to provide a specific 

contribution to this more general debate, by investigating the prefrontal involvement in a 

basic cognitive capacity supposed to be seated in the rDLPFC, namely the monitoring of 

external and internal contingencies.  

 

6.2. Summary of the current project 

In the remainder of the chapter, the results of the project will be discussed in the light 

of their contribution to the understanding of the processes underlying the performance of 

some cognitive tasks and of the role that PFC seems to play in some of these processes. 

Specifically, in the following paragraphs, the main results of the project will be reviewed, 

following the order adopted in the experimental part of the thesis (chapters 2-5). We will 

start from the behavioural and developmental experiments on the basic FP phenomena 

(chapter 2). We will then discuss results of the TMS and neuropsychological studies 

(chapter 3). A paragraph will be dedicated to the STARCO effect (chapter 4). After that, 

results of the ERP study on source memory will be reviewed (chapter 5). Finally, the 

general implications of the overall project, the limits and the suggestions for future 

research will be discussed.  
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The FP phenomena: behavioural evidence 

The first aim of this project was to better characterize the processes underlying the 

behavioural effects usually produced in a variable FP paradigm, starting from the 

neuropsychological finding that right lateral prefrontal patients are impaired in this task 

(Stuss et al., 2005). In a variable FP paradigm, the FP is defined as the waiting time 

between a warning and an imperative stimulus (i.e., the stimulus requiring a response). In a 

typical variable FP paradigm, a range of different FPs vary randomly but equiprobably 

across trials. In this paradigm, RT follows a negatively accelerating function of the FP (i.e., 

the variable FP effect). Another phenomenon, which was not investigated by Stuss and 

colleagues (2005), but which is however usually observed in a variable FP paradigm, are 

the sequential effects: RTs are slower when long FPs occur in the preceding trial than 

when short ones do (Drazin, 1961; Karlin, 1959). The sequential effects are usually 

asymmetric as they are mainly present with the shortest FPs in the range used.  

Initially, we tried to obtain a fine-grained analysis of the task under study (i.e., the 

variable FP task). To that end, we investigated in detail which processes may be 

responsible of the FP and the sequential effects usually found in this task. Despite the 

simplicity of the variable FP paradigm, defining which processes underlie the behavioural 

effects obtained in this paradigm is puzzling. Contrasting views in the literature have 

proposed either multi-process strategic accounts (see Niemi & Näätänen, 1981, for a 

review), or a single-process account derived from the trace conditioning tradition (Los & 

van den Heuvel, 2001).  

A strategic account attributes the FP effect to a process checking that the imperative 

stimulus has not occurred in order to increase the preparation level as time elapses and the 

conditional probability of stimulus occurrence increases (Näätänen, 1970). However, 

sequential effects are not explained by this account. A more detailed strategic account 

assumes that participants expect a repetition of the previous FP in the current trial, so that 

maximal preparation level is achieved at the same FP as occurred on the previous trial 

(e.g., Drazin, 1961). If FPn is shorter than FPn-1, then maximal preparation will not have 

been reached when the imperative stimulus occurs and a relatively slow RT will result. The 

asymmetry of the sequential effects is explained by postulating a strategic 

repreparation/maintenance process when the current FP is longer than the expected 

preceding FP (e.g., Alegria, 1975; Karlin, 1959). A disadvantage of these dual-process 

strategic accounts is that they propose two entirely different strategic processes to explain 

different aspects of the data. On the conditioning single-process account, instead, both the 
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FP and the sequential effects arise from the same conditioning laws which act on the 

preceding trial, basically by reinforcing FPs that occur on that trial and extinguishing 

shorter FPs (Los & van den Heuvel, 2001). 

In the project, these divergent theories have been tested using different approaches. 

First, the phenomena involved in the variable FP task, and the underlying processes, were 

investigated through behavioural studies on adults. A prediction of the single-process 

conditioning view is that the FP and the sequential effects should correlate, as they derive 

from the basic conditioning mechanisms. Results of experiments 1 and 2 (chapter 2) show 

instead that the FP effect and the sequential effects do not correlate, independently of the 

FP range used.  

To further investigate whether the FP and the sequential effects derive from a common 

mechanism or from different ones, a broader version of the dissociation logic (e.g., 

Shallice, 1988) was applied to children’s data. A developmental approach was indeed used 

to track the ontogenetic time-course of the FP and sequential effects (experiments 3a, 3b 

and 4, chapter 2). If a common process underlies the FP and the sequential effects, as 

predicted by the conditioning view, a parallel ontogenetic time-course should have been 

observed. However, the results suggest different developmental trajectories for the two 

effects: the sequential effects are already present in the youngest group (especially 4 year 

old children) while the FP effect appears more gradually some years later. The pattern of 

sequential effects obtained on the RTs of the youngest children was also qualitatively 

different from the sequential effects obtained in older children and adults. For the latter, 

sequential effects are asymmetrically biased towards the shortest FPn and disappear for the 

longest FPn. For 4 year old children, instead, sequential effects were symmetrically present 

for every current FP.  

Neither dual-process strategic accounts (e.g., Alegria, 1975) nor the conditioning view 

(e.g., Los & van den Heuvel, 2001) suffice to account for these observed data. Thus, a 

composite dual-process account, which shares some aspects with the previous accounts of 

the FP phenomena, was put forward to explain the data. For the sequential effects, an 

explanation concerning modulation of the arousal level by the preceding FP was proposed: 

arousal is enhanced following a short FPn-1 and decreased following a long FPn-1. This 

explanation gains support from different sources. First, the accuracy pattern obtained from 

young children (mainly from the 4-5 year old ones) shows that delayed and null responses 

are more likely to occur after a long preceding FP, compatible with a decrease in the 

arousal level. On the other hand, anticipated responses mainly occur after a short preceding 
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FP, compatible with an increase in the arousal level. This result is not found in older 

children and in adults in terms of accuracy, probably because of the ceiling effects of the 

variable FP paradigm. However, when a covert measure of arousal such as the CNV 

electrophysiological component has been used, similar evidence is also found for adults 

(Los & Heslenfeld, 2005). As results of that study show, despite the fact that sequential 

effects are asymmetric at the RT level, the CNV amplitude is symmetrically modulated by 

the preceding FP, indirectly supporting our account of sequential effects in terms of arousal 

modulation.  

This account, however, does not explain the FP effect. In order to account for the FP 

effect, we tested the traditional conditional probability monitoring explanation. On this 

account, the FP effect is the marker of a mechanism checking the stimulus non-occurrence 

as time elapses, and raising the level of preparation as the conditional probability of 

stimulus occurrence increases for the long FPs. Evidence for this account derives from 

various studies showing that changing the conditional probability of stimulus occurrence 

also changes the shape of the FP-RT function (e.g., Baumeister & Joubert, 1969; 

Nickerson & Burnham, 1969). We adopted a similar approach in the experiment 5 (chapter 

2), where conditional probability of stimulus occurrence was kept equal along the FPs. No 

FP effect was observed in this condition. This finding confirms similar results in the 

literature and further supports the monitoring account of the FP effect.  

An assumption of the dual-process explanation offered to account for the results of the 

developmental study is that the sequential effects and the FP effect are due to an automatic 

and to a controlled process, respectively. According to the traditional classification by 

Shiffrin and Schneider (1977a; see also Hasher & Zacks, 1979), automatic processes do 

not require attentive resources. Thus, they are not affected by interference from other 

processes (either automatic or voluntary), and do not change significantly with age. The 

idea here is that attentional resources require cortical maturation to be fully devoted to 

tasks. Thus, they are vulnerable to aging. This assumption, in turn, derives from the 

hypothesis that attentional resources are mainly located in the PFC (e.g., Posner & 

Peterson, 1990), which is the last region to mature and the first to decline on average. On 

this view, sequential effects are due to automatic processes, as they do not change 

quantitatively with age, whereas the FP effect should be instead considered as a controlled 

process, as it changes significantly with age.  

Experiment 6 (chapter 2) aimed to further investigate the hypothesis that automatic and 

controlled processes may be responsible of the FP and the sequential effects, respectively. 
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In that study, a variable FP paradigm was embedded in a spatial n-back task. In this task, 

various levels of working memory load are administered in different blocks. The 

assumption was made that if a process is controlled in nature (and hence resource-

demanding), it should be impaired when a concomitant process compete for the same 

resources, whereas if it is automatic (i.e., not resource-demanding), it should not be 

affected by the interference from another process. Results showed that the FP effect 

interacts with the difficulty of the task (with the increasing working memory load), 

whereas the sequential effects remain unchanged across the various conditions of working 

memory load (experiment 6, chapter 2). 

Thus, the mechanism underlying sequential effects (the process of arousal modulation, 

in our dual-process account), can be considered essentially automatic, confirming results 

from cuing experiments (e.g., Los & van den Heuvel, 2001). These effects, indeed, are not 

subject to interference from another task (e.g., n-back task, experiment 6, chapter 2) and 

are relatively constant in size from 4 year of age to adulthood (e.g., developmental 

experiments 3-4, chapter 2). On the contrary, the FP effect seems to originate from a more 

controlled process (the conditional probability monitoring, in our dual-process account), 

since it is subject to interference from other processes and to ontogenetic maturation, as it 

is shown by the results of the n-back task and of the developmental study, respectively. 

 

The FP phenomena: TMS and neuropsychological evidence 

Studies on the variable FP paradigm were also carried out with more traditional 

dissociative methods, namely TMS and neuropsychology (chapter 3). The aim was 

twofold: further characterizing the cognitive processes underlying the variable FP 

phenomena, and finding the neural bases of these processes.  

A recent neuropsychological study shows that the FP effect is impaired in patients with 

lesions in the right lateral PFC (Stuss et al., 2005). We conducted a TMS study 

(experiments 7 and 8, chapter 3) in order to test whether this finding could be also 

reproduced in healthy adults by means of TMS. In addition, we also studied the sequential 

effects, which have not been investigated neuropsychologically. We investigated these 

effects also for theoretical reasons. If the FP and the sequential effects arise from a 

common conditioning mechanism (Los & van den Heuvel, 2001), the disruption of the area 

responsible for this mechanism should affect both effects at the same time. If instead they 

originate from different processes, as predicted, for instance, by the dual-process account 
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put forward in the developmental study, there is no reason to expect that disruption of the 

area responsible for one of these processes should affect both effects. 

The TMS parameters used in the study were those of theta burst stimulation (TBS), an 

off-line stimulation paradigm which was demonstrated to temporarily depress cortical 

activity in the targeted area for 20-60 minutes after stimulation (depending on the TBS 

duration; Huang et al., 2005). Results of both experiments show that the FP effect is 

reduced after TBS of rDLPFC with respect to the pre-TMS baseline condition and to two 

control areas (i.e., left DLPFC and right angular gyrus). From a neuropsychological point 

of view, this finding confirms that the rDLPFC is responsible for the FP effect, whereas 

temporarily inhibiting this area with TMS does not affect quantitatively the sequential 

effects. From a cognitive perspective, these results cannot be explained by single-process 

accounts, whereas they are compatible with the dual-process explanation put forward to 

explain the developmental data (experiments 3a, 3b and 4, chapter 2). As a further support 

of this account, the pattern of sequential effects obtained in the block where TBS was 

supposed to be stronger (second TMS block, experiment 8, chapter 3) was analogous to 

that of youngest children: sequential effects were indeed basically symmetric while the FP 

effect was strongly reduced. This pattern was accounted for by supposing a compensatory 

effect of the process underlying the FP effect on the process underlying the sequential 

effects. In other words, the sequential effects do not usually appear for a long FPn because 

the process of conditional probability monitoring accelerates RTs on this FP, even after a 

long FPn-1, when a low level of arousal should occur. When the monitoring process is 

impaired because the brain area responsible for it is not yet mature or temporarily 

inhibited, the sequential effects appear also for long FPs. 

The TMS results were complemented by those of a neuropsychological study on tumor 

patients (experiment 9, chapter 3). In that study, a variable FP paradigm was performed by 

patients with a tumor located in six different cortical regions and by a control group of 

orthopaedic patients. The six regions were: right and left prefrontal, right and left 

premotor, and right and left parietal cortices. Tumor patients performed the task both 1-3 

days before surgical removal of tumoral tissue and 2-6 days after it. The control 

participants performed the task twice with the same temporal distance between the two 

sessions as the tumor patients, but without surgery in between. Results of that study show a 

significant reduction of the FP effect selectively after excision of tumors in right PFC. 

With respect to the sequential effects, results obtained with the right prefrontal tumor 

patients are more puzzling, as a certain degree of reduction was found for the sequential 
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effect after excision of the right PFC. This reduction in the sequential effects, documented 

by a 2-way interaction between the FPn-1 and the testing session, was common to all the 4 

frontal groups and was not present with the two parietal groups and the control group. The 

generality of this effect within all frontal lesions may be attributed to the fact that spatial 

localization in tumor studies is less selective as compared to TMS studies.  

However, the sequential effects were reliably reduced after surgical removal of tumors 

located in the left premotor region (as documented by a 3-way FPn x FPn-1 x testing session 

interaction, which was significant even after a Bonferroni correction). This reduction in the 

sequential effects was attributed to an impairment of the mechanism of arousal regulation 

by the length of the FPn-1. Left premotor patients showed instead no change in the 

magnitude of the FP effect after the surgical operation. The dissociation between the two 

effects within the left premotor group has an opposite direction with respect to that found 

in young children and in healthy adults after TMS of rDLPFC, where the FP effect was 

reduced while the sequential effects were normal-sized. This pattern further supports the 

dual-process account of the variable FP phenomena.  

 

The STARCO effect 

FP phenomena have been traditionally studied with elapsing time (FP) as a task-

irrelevant feature. In a typical variable FP task, indeed, participants have to detect or 

discriminate a target stimulus regardless of the length of the FP that precedes its 

occurrence. We wanted to explore whether the pattern of interaction between the current 

FP and the preceding one may change when the participant is explicitly required to monitor 

the FP. The specific hypothesis was made that when participants were explicitly asked to 

be aware of the FP length (also for the short FPs), they could compensate for the sequential 

effects, in a similar manner as it happens in validly cued short FPs (e.g., Los & van den 

Heuvel, 2001). To that purpose, a behavioural experiment was designed using a modified 

version of the variable FP paradigm, where an explicit temporal judgment was required 

(experiment 10, chapter 4). In the basic task, when the imperative stimulus appeared 

participants had to judge if the FP on that trial was short or long. The usual interaction 

between the current and the preceding FPs was found (i.e., asymmetric sequential effects), 

supporting the view that the sequential effects are a robust phenomenon which resists even 

to the fact that participants’  attention is oriented to the shortest FP, because it is a task-

relevant feature.  
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Critically, this experiment produced a new S-R compatibility effect: RTs were shorter 

when short and long FPs had to be responded to with left and right hands (anatomically 

positioned), respectively, than with the opposite stimulus-response mapping. Control 

experiments (experiments 11-13) allowed us to exclude that hemispheric/manual 

asymmetries could explain the data. The compatibility effect found (i.e., STARCO effect) 

suggests that elapsing time is represented, in some circumstances, by means of spatial 

vectors, such as other ordered material (e.g., numbers and alphabetic letters). In view of the 

results of experiment 14, which show that the STARCO effect follows a stepwise function 

of the FP duration, explanations related to categorical factors (e.g., markedness hypothesis) 

cannot be excluded.  

 

Prefrontal cortex involvement in source memory:  

electrophysiological evidence 

From a general point of view, the last two experiments (experiment 15 and 16, chapter 

5) aimed to extend results showing a monitoring role of the rDLPFC (chapter 3) beyond 

the domain of non-specific preparation. We chose the episodic memory retrieval domain 

(and in particular source memory), as it has been the focus of a number of studies 

investigating the role of the right PFC (e.g., Henson et al., 2000; Schacter et al., 1996a; 

Schacter et al., 1996b; Tulving et al., 1994), and it has been suggested to involve a 

monitoring process (e.g., Shallice, 2006).  

The task was to retrieve the word and the voice of the speaker at study (experiment 15, 

chapter 5) or the voice of the speaker together with confidence ratings about the source 

judgement (experiment 16, chapter 5). ERPs were not modulated by the success of the 

voice retrieval, discarding accounts linked to retrieval success. Critically, a right-more-

than-left late prefrontal positivity was found in both experiments. This late positivity has 

been attributed to a process monitoring the status of the source memory trace (i.e., 

familiarity monitoring). Moreover, results of experiment 16 show that confidence 

influences a neural circuit, presumably anteriorly located, as reflected by ERPs recorded 

from the bilateral anterior frontal sites: waves associated with low confidence judgments 

were more positive than those associated with high confidence ones. This pattern was 

interpreted as showing an engagement of anterior prefrontal regions when the source 

memory trace is weak and extra-monitoring is required to retrieve the item. Thus, the 

dissociable effects found within the prefrontal scalp regions, specifically along the 
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anterior-posterior and right-left dimensions, are interpreted as markers of qualitatively 

different monitoring processes, probably subserved by different prefrontal circuits. 

 

6.3. Methodological considerations 

In the attempt to characterize the functions of different areas of PFC, the DLPFC has 

historically received relatively more attention (Shallice, 2004). This has not always 

corresponded to a linear progress in the understanding of its function. In brain imaging 

studies conducted in the early nineties, for instance, virtually every task was reported to 

activate left and/or right DLPFC. For instance, the rDLPFC was reported to be activated in 

tasks based on willed action (Frith, Friston, Liddle, & Frackowiak, 1991; Jahanshahi et al., 

1995), working memory (Petrides et al., 1993), episodic memory retrieval (e.g., Tulving et 

al., 1994), classical conditioning extinction (Hugdahl et al., 1995) and so on. The tasks 

employed in these studies were multi-componential and it can be assumed that many 

processes underlie them.  

To know which of these processes was critically associated to the DLPFC activation 

was rather arbitrary (Frith, 2000). A solution could be represented by the use of a fine-

grained analysis of the task under study (cf. Stuss et al., 1995; 2005), with the aid of 

methods belonging to different disciplines, such as experimental psychology, 

developmental psychology and cognitive neuropsychology. Such analysis may reveal 

which cognitive processes are engaged during a task and permit a better localization of 

such processes in the brain. Once it is hypothesized that a cerebral area is critical for a 

given process, it is possible to devise a set of complementary experiments with different 

methods to test this hypothesis. To be completely process-driven, these experiments should 

employ various tasks in different domains, all of which are supposed to require the process 

under study.  

The present project can be summarized in the way described above. The project, 

indeed, started from the purpose of testing the monitoring role of rDLPFC. To achieve this, 

a range of different methodologies and approaches have complemented each other, as 

described in the previous chapters. This multi-disciplinary approach, typical of cognitive 

neuroscience, has offered cumulative evidence in favour of the initial hypothesis, on the 

one side, and has contributed to better specify the processes underlying different tasks in 

two distinct domains, such as temporal preparation and source memory retrieval, on the 
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other side. Thus, this approach demonstrates the heuristic value of a constant interaction 

between the neural level and the cognitive level of investigation. 

Among the methodological approaches adopted in the project, three deserve further 

consideration here, not only because they have been quite recently introduced, but also for 

the potential value added to cognitive neuroscience by their use. These approaches are: 

developmental dissociations, TMS theta burst stimulation, and acute tumor patient studies. 

In the 3 sub-paragraphs below, we will discuss the methodological and theoretical 

implications of each of them. 

 

Developmental Dissociations 

Developmental dissociations occur when different effects produced in one or more 

tasks are shown to appear diachronically in cognitive development, as revealed either 

longitudinally in the same group of children, or across different age groups. The rationale 

underlying their use in cognitive neuroscience is analogous to that underlying dissociations 

in neuropsychology (e.g., Shallice, 1988). When two effects have different developmental 

trajectories, it may be provisionally assumed that they do not depend upon the same 

system. This assumption is subject to the same caveat as that applying to simple 

neuropsychological dissociations. Suppose that the onset of two behavioural effects A and 

B occurs at different ages, with effect A appearing some years before effect B. It is in fact 

possible to interpret this developmental dissociation as due to a resource artifact: the 

process underlying the two effects may be the same but the two effects need different 

levels of processing resources. The qualitatively equivalent processing resources of young 

children may suffice for the effect A to appear, but they may be insufficient for the effect 

B, which would appear when maturation will make more resources available. This caveat 

should be taken seriously when inferences are drawn from a developmental dissociation. 

One way to overcome this problem is to check whether there is a double dissociation with 

data obtained from adults. If the effect A is less pronounced than effect B in adults 

(contrary to what happens in children), the account in terms of artifact of resources is likely 

to be inappropriate. Davidson and colleagues (Davidson et al., 2006) found exactly this 

pattern. In that study, different tasks were administered to children from 4 to 13 years of 

age and to young adults. Young children and adults showed a double dissociation. In 

children, performance on a cognitive flexibility task (i.e., switching between rules) was 

more impaired than performance on a working memory task (with increasing working 
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memory load). For adults, the working memory task was relatively more difficult than the 

cognitive flexibility task. In that case, it was not possible to interpret the impairment of 

children in the task dealing with cognitive flexibility as due to the fact that it was generally 

more difficult than the working memory task. This hypothesis is indeed disconfirmed by 

the fact that adults found the working memory task relatively more difficult. On the other 

hand, it is possible to assume that the cognitive flexibility task was more impaired in 

children because the prefrontal areas (and processes) critical for this task are not yet 

mature.  

However, even when this fortunate pattern is not found in adults, the heuristic value of 

developmental dissociations in testing specific hypotheses still holds. In our developmental 

study (experiments 3a, 3b and 4, chapter 2), the specific hypotheses to be tested were the 

conditioning view (Los & van den Heuvel, 2001) and the strategic accounts (e.g., Alegria, 

1975) of the FP and the sequential effects. It should be noted that neither of these accounts 

predicts that the FP effect and the sequential effects differ on the required resources. On 

the conditioning view, the resources necessary for the two effects should be identical, just 

because the two effects are due to the same conditioning process. Moreover, since the 

strategic views assume that the two processes underlying the FP phenomena are both 

strategic (FP repetition expectation and maintenance/repreparation), there is no evident 

reason for these two processes to differ in the amount of the resources required. Two 

specific predictions about the developmental time-course of the two effects could be 

derived from the two accounts: a parallel development of the two effects was expected by 

the conditioning view, whereas a crossover FPn x FPn-1 interaction was predicted by the 

strategic views. Neither of them was confirmed by the pattern of symmetric sequential 

effects found in the 4 year old children. Therefore, the method of developmental 

dissociations was useful to disconfirm two hypotheses and to put forward a new testable 

hypothesis which was then corroborated by means of other more traditional dissociative 

methodologies such as TMS (experiments 7 and 8, chapter 3) and neuropsychological 

dissociations (experiment 9, chapter 3). 

 

Theta Burst Stimulation (TBS) 

In the TMS experiments (experiments 7 and 8, chapter 3), the new TBS technique was 

adopted (Huang et al., 2005). The TBS consists of a triplet of 3 pulses at 50 Hz which is 

repeatedly delivered at a frequency of 5 Hz (like the EEG ‘ theta’  rhythm, hence its name). 
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The output strength of the TMS is usually set to 80% of the participant’s active motor 

threshold. This technique is an off-line TMS paradigm, as it is applied before the 

administration of a task in order to see the inhibitory effects of the stimulation on the 

performance, and not during the performance of a task (within-trials, on-line TMS 

stimulation). The depressing effect of 20 and 40 seconds of TBS has been demonstrated to 

last at least 20 and 60 minutes after stimulation, respectively, on the activity of the motor 

cortex (Huang et al., 2005).  

A limit of the off-line stimulation with respect to other on-line stimulation parameters 

(above all, the single-pulse TMS) is the lack of temporal information. However, there are 

experimental paradigms, such as the variable FP paradigm, where it is not advisable to use 

on-line stimulation, because of the confounding interference produced by the auditory and 

proprioceptive TMS effects on arousal and RTs (e.g., Nikouline, Ruohonen, & Ilmoniemi, 

1999).  

TBS represents the last-generation of a set of possible TMS designs which have been 

used to temporarily inhibit a cortical area. For instance, low-frequency off-line TMS 

designs, such as stimulation at 0.9/1 Hz for 15 minutes, have also been proved to 

effectively inhibit the targeted area for 15 minutes after the end of the stimulation (e.g., 

Chen et al., 1997). These alternative methods have the disadvantage of being time-

consuming and of producing effects lasting less than those produced by the TBS, so being 

no suitable for experiments which require a great number of trials (e.g., in ERP studies).  

A shortcoming of the use of TBS, but also of the other stimulation designs, is that 

results concerning inhibitory or excitatory effects obtained in one area, such as the primary 

motor cortex, cannot be easily generalized to other brain areas. It should be pointed out 

that the TBS has different degrees of effectiveness even within the same Brodmann area. 

For instance, TBS has been demonstrated to be more effective for the primary motor cortex 

representing the first dorsal interosseus muscle than for that representing the biceps 

(Martin, Gandevia, Taylor, 2006). This problem is even more serious when the targeted 

areas are ‘silent’  (e.g., DLPFC), in the sense that their excitability cannot be assessed with 

a direct measure (e.g., the MEP for motor cortex) but only indirectly inferred from the 

behavioural outcomes. In our TMS study, we studied an effect (the FP effect), which was 

already neuropsychologically demonstrated to be located in this area (Stuss et al., 2005, as 

confirmed by experiment 9, chapter 3). We obtained exactly the result which is expected if 

the TBS is assumed to inhibit the functionality of the targeted area (i.e., a decrease in the 

FP effect). This study then supports the reliability of TBS inhibitory effects, even if 
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indirectly, for the investigation of the cognitive functions of areas different from the 

originally assessed primary motor cortex. 

Moreover, some ethical issues need to be raised. Stimulation intensity in TBS is 

usually kept 20-40% lower than in other more traditional stimulation parameters. No 

participant particularly complained about TBS and no side-effects were observed in our 

study or reported in the literature, to the best of our knowledge. Despite these 

considerations, having been only recently introduced, TBS is not among the parameters 

recommended by the conventional guidelines (Wassermann, 1998). Attention should then 

be devoted to its use in future research, for instance by means of studies combining TBS 

with EEG spectral analysis (e.g., Fuggetta & Walsh, in preparation), which could permit to 

assess the excitability (and to detect any possible epileptogenic activity) of different 

cortical areas as a function of changes in the parameters of the TBS applied (e.g., intensity 

and duration). 

 

Tumor patient studies 

The study of tumor patients in the neuropsychological research has been treated with a 

certain degree of scepticism from the scientific community. This scepticism derives from 

several sources (Shallice et al., subm.). It is not known, for instance, which is the effect of 

tumors per se on the cognitive system. Especially for high-grade gliomas, it is unclear 

whether the tumoral nervous tissue is fully functioning or not before the operation. As a 

further complication, low-grade gliomas, which grow slowly, may lead to reorganisation of 

function. Following the operation, there may be a certain amount of oedema, whose effects 

on the nervous tissue are in turn mostly unknown.  

At least some of these concerns may be bypassed by adopting the approach that we 

used in our study (experiment 9, chapter 3). The use of a matched control group is effective 

in overcoming at least the criticism concerning the pre-operative baseline performance. 

Provided that no pre-surgery difference between the tumor patients and the control 

participants in a given task is documented, it can be assumed that the process under study 

is not affected by the tumor per se.  

Moreover, the use of a within-subject approach, which is possible with tumor patients 

who are scheduled for a surgical operation, is not conceivable for other brain lesions such 

as brain trauma or stroke. The within-subject approach is more sensitive in detecting a 

cognitive deficit, provided that the following two conditions are observed: (i) the baseline 
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performance should be a true baseline, which means that a pre-surgery deficit should not 

be present, as checked comparing tumor patients’  data with those of a control group; (ii) 

the test under study is not subject to learning effects17. 

From a broader methodological point of view, this study demonstrates the usefulness 

of testing groups of acute brain tumor patients as an alternative neuropsychological method 

to obtain a picture of deconstruction and a localization of cognitive processes in the brain 

(see also Shallice et al., subm.). 

 

6.4. Limits and suggestions for future research 

“The scientist, by the very nature of his commitment, creates more and more questions, 

never fewer”  (Allport, 1955). This is the case also with the present work. It would be hard 

to be exhaustive in exposing all the possible research avenues opened by the project, some 

of which would arise from the need to overcome the limits of the project itself. Some 

suggestions for future work have been already proposed in the previous chapters. Some 

other suggestions have not been reported within the discussion of each experiment for 

reasons of space. In the next paragraphs, these other suggestions will be presented 

schematically, roughly following the order of the experiments as they have been described 

earlier. 

 

Suggestions for the project on the FP phenomena 

A prediction can be derived straightforward from the developmental study on FP 

phenomena. It is known that PFC is the last part to reach maturity in childhood and 

undergoes an early deterioration in elderly people, particularly the DLPFC (Andrés, 

Parmentier, & Escera, 2006; Raz, Williamson, Gunning-Dixon, Head, & Acker, 2000; 

West, 1996). It should then be possible to detect an ontogenetic curve for the FP effect 

which spans all the life. In other words, it should be likely to find that the FP effect follows 

an inverted U-shaped function of age: increasing in young children, reaching a steady-state 

in adults, and then decreasing in elderly people. The sequential effects, if it is confirmed 

that they rely more on premotor than on PFC (see experiment 9, chapter 3), which is 

supposed to be less vulnerable to age (e.g., Shaw et al., 1984; Raz et al., 1997), should 

instead be less sensitive to age. This prediction is also supported by cognitive 

                                                
17The occurrence of the latter condition in our study was also indirectly supported by results of experiments 1 
and 2 of chapter 2, showing that there was no change in the FP phenomena from one block of trials to 
another. 
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considerations: if sequential effects are due to automatic processes, it is known that the 

latter are relatively insensitive to age (e.g., Hasher & Zacks, 1979).  

Care should be taken about the choice of a correct FP range and, above all, the shortest 

FPs employed. It is possible that, for particularly short FPs (e.g., < 1000 ms), elderly 

people are less capable to reach an appropriate level of preparation due to the general 

slowing of their cognitive system (e.g., Der & Deary, 2006). In this case, an increase in the 

FP effect may be predicted in elderly people as a consequence of defective preparatory 

processes acting on the shorter FPs (with an RT increase). This increase of the FP effect by 

lengthening RTs on the short FP effect would be in contrast with a supposed decrease of 

the FP effect as a consequence of the defective process increasing RTs on the longer FPs 

(i.e., defective monitoring of the conditional probability). The result would be an 

unchanged FP effect despite of the fact that the underlying processes would be impaired. 

The use of different FP ranges may help in keeping the two kinds of processes separated. 

Brain imaging techniques such as event-related fMRI could be useful to corroborate 

results linking the FP effect to functionality of rDLPFC, and to further test the suggestion 

derived from the study on tumor patients that left premotor cortex may be the locus of the 

sequential effects, at least in right-handers. In order to further test the latter hypothesis, 

TMS studies would also be useful as well as studies with single-neuron recordings in the 

premotor cortex of animals, such as monkeys or rats. It could be investigated whether, in a 

variable FP task, the activity of cells within the premotor cortex is modulated by the length 

of the FP occurring in the preceding trial, to further assess whether this brain area is part of 

a circuitry responsible for the sequential effects. 

The explanation of the FP effect offered in the dual-process model (see chapters 2 and 

3) relates this effect to the process checking the non-occurrence of the imperative stimulus 

during longer FPs. As already supposed (chapter 2), an additional process, following the 

detected absence of the imperative stimulus, is likely to endogenously tune the level of 

preparedness as a function of the conditional probability of its subsequent presentation. 

With respect to this account, a further issue needs to be discussed. The FP effect usually 

follows a negatively accelerating function (i.e., RTs on short FPs are slower than RTs on 

medium and long ones) while, if RTs linearly depended on the a posteriori conditional 

probability of stimulus occurrence, it would have to follow a positively accelerating 

function (i.e., RTs on short and medium FPs should be slower than RTs for long ones), 

because the conditional probability of stimulus occurrence varies as a positively 
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accelerating function18. In other words, the RTs follow a non-linear function of the 

conditional probability of stimulus occurrence. A possibility is that this non-linearity could 

occur because other factors may interfere with the conditional probability monitoring. One 

may speculate that this could be because a ceiling effect is achieved after the medium FP. 

However, a ceiling effect account is not plausible as the negatively accelerating RT-FP 

function is also observed when RTs are relatively slow, as in the experiment 2 of chapter 2. 

Alternatively, it could be supposed that the process of enhancing preparation is 

compensated by a tendency to reduce the effortful holding of the preparedness state as time 

elapses; this tendency would play the main role, together with an increase in time 

uncertainty, when a blocked FP design is administered, when slower RTs correspond to 

longer FPs (Klemmer, 1956; Teichner, 1954; Woodrow, 1914). A further possibility is that 

the subjective FP distribution shows a strong tendency toward overrepresentation of the 

medium FP (cf., Näätänen, & Merisalo, 1977). Nonetheless, these possibilities cannot be 

disentangled by the present results and require further investigation.  

An aim of the project concerning the FP phenomena was to test the hypothesis that a 

monitoring process underlies the FP effect. A possible drawback is represented by the fact 

that this aim was pursued directly only in experiment 5. However, there is already a rich 

literature, using complementary approaches, which strongly suggests that the size of the FP 

effect directly depends on the conditional probability of stimulus occurrence and thus on a 

process which monitors this information (Granjon, Requin, Durup, & Reynard, 1973; 

Green & Luce, 1971; Hermelin, 1964; Näätänen, 1970; 1971; Nickerson & Burnham, 

1969). More effort was here devoted to test whether a recently proposed single-process 

model, according to which no monitoring process is required, such as the conditioning 

view (Los & van de Heuvel, 2001; Los et al., 2001), could explain all the effects found in a 

variable FP paradigm (FP effect included) without implying any monitoring process. 

 

Suggestions for the project on the STARCO effect 

As pointed out in chapter 4, there are a number of open issues which should be solved 

in order to better characterize the new STARCO effect. Among them, we can list: 

linguistic and cultural influences, functional locus of the effect in the processing stream, 

continuous vs. discrete nature of the FP-STARCO effect function, automatic vs. voluntary 

                                                
18For instance, if there are 3 FPs of 1, 2, and 3 sec occurring randomly and equiprobably across trials, the 
conditional probability of stimulus occurrence on each of them is 0.33, 0.5, and 1, respectively. 
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access to the left-to-right spatial representation of time. Moreover, from this project and 

from evidence in the literature, a relationship can be predicted between rDLPFC and the 

STARCO effect found in the experiments exposed in the chapter 4. This project, indeed, 

supports the view that the rDLPFC is functionally linked to the monitoring of temporal 

information (at least implicitly) required in the variable FP task. On the other hand, the 

literature shows a clear role of this area also in explicit temporal estimation (e.g., Coull et 

al., 2000; Lewis & Miall, 2003b; Rao et al., 2001). If and how DLPFC modulates the 

STARCO effect should be addressed by further research, possibly by means of a TMS 

study. Results of such a study may be relevant to disentangle whether the STARCO effect 

is related to temporal estimation processes (in this case a reduction of the effect is 

predicted with inhibitory TMS on the rDLPFC; see, for instance, Lewis & Miall, 2003a) or 

to other factors such as linguistic markedness (which should not be affected by TMS on the 

rDLPFC).  

 

Suggestions for the project on source memory 

Among the questions still left open in the project on source memory (chapter 5), some 

will be briefly discussed here. The first three issues are cognitive, as they concern the 

functional meaning of the prefrontal ERP effects found in the study, whereas the last issue 

is more localizational.  

An important effect found in that study was that low confidence ERPs were more 

positive than high confidence ones in the anterior prefrontal sites. Considering this finding, 

one may question whether the anterior prefrontal involvement in confidence is typical of 

source memory tasks or, as suggested by the process-based approach adopted here for the 

study of prefrontal functions, more domain-independent. To test this issue, it would be 

useful to design ERP studies which investigate the role of anterior prefrontal areas during 

low vs. high confidence judgments in domains different from the source memory retrieval, 

such as perception of peri-liminar stimuli or cognitive estimation tasks. If the involvement 

of anterior prefrontal regions during low confident judgments is domain-independent, the 

same ERP modulation should be observed in the anterior prefrontal sites even with 

different tasks and domains.  

Another effect found in both experiments of the source memory study (chapter 5) was 

a right lateral ERP positivity during retrieval. This component has been attributed, among 

other processes, to the familiarity monitoring. To study this process, a judgment of 
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frequency task has also been used (e.g., Dobbins et al., 2004). In this task, participants 

have to perform a judgement about the frequency of occurrence of a picture (2 vs. 6 times). 

This task is supposed to rely heavily on a process which monitors the familiarity of the 

items, and not on the recollection of contextual information alone. A recent fMRI study 

(Dobbins et al., 2004) found that, compared to an item memory task, the judgement of 

frequency was associated with more activation in the right but not in the left DLPFC. To 

explain their empirical results, authors of that study (Dobbins et al., 2004; see also 

Yonelinas, 1999; Ranganath, Johnson, & D'Esposito, 2000) proposed the so-called 

systematic/heuristic account. According to this account, left DLPFC is more likely to be 

activated when a contextual recollection is critical for the task. In this case a systematic 

processing, involving monitoring of more specific information, is held to occur. 

Conversely, rDLPFC activation is required when it is necessary just to monitor closely the 

familiarity of the item. In the latter case, a more heuristic processing is assumed to occur, 

that is relatively simple processes which suffice for tasks that do not have reflective 

demands, such as memory retrieval judgments based on familiarity (e.g., Nolde et al., 

1998). 

This is partially consistent with what we found in source memory experiments reported 

in chapter 5, where a right more than left prefrontal positivity was obtained independently 

of the accuracy of recollection. However, no left-more-than-right ERP component was 

found even with source judgments which were correct and confident. The latter situation is 

exactly that which, according to the model by Dobbins and colleagues (Dobbins et al., 

2004), should involve systematic processing in the left prefrontal regions.  

Future studies would be useful to further investigate the familiarity monitoring account 

of right prefrontal involvement in memory retrieval. A prediction derived from the 

literature is that a late right prefrontal ERP positivity would be also found in a judgment of 

frequency task, if the assumption that this task heavily relies on familiarity monitoring 

turns out to be true. The amplitude of this right prefrontal ERP component should be 

higher for the most difficult condition (i.e., judging the less frequent items as so) than for 

the easier one (i.e., judging the most frequent items as so). On the other hand, as already 

stated, a weak point of the study is that no ERP component was linked to accurate 

recollection, which according to the literature should have evoked a late (left) prefrontal 

effect (Ranganath & Paller, 1999; see also Dobbins et al., 2004). A possible reason for the 

lack of an accuracy effect is that the task was too difficult and pure recollection was not 
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frequent. Further studies with easier recollection conditions (e.g., shorter and more 

structured encoding lists, simpler items) would help to clarify this issue. 

An additional issue concerning localization of the ERP effects needs also to be considered. 

An apparent inconsistency exists between the confidence effect in the study by Henson and 

colleagues (2000) and in the current experiment 2 concerning the topographical locus of 

the effect. In the fMRI study by Henson and colleagues (2000), areas which showed a 

confidence effect were located bilaterally in the dorsolateral prefrontal regions, while in 

the present study this effect is picked up more by anterior frontal electrodes than by lateral 

frontal ones. However, anatomical inferences based on the ERPs recorded from the scalp 

need to be taken cautiously, because the localization of brain sources does not correspond 

directly to scalp potential topography. The application of a method of source analysis to 

the ERP data could help in clarifying the source of the components found19. If this source 

analysis were to confirm that the neural sources of the anterior ERP component modulated 

by confidence are located in the anterior PFC, an explanation for the discrepancy between 

the two studies should be found. The difference between the tasks adopted in the two 

studies might partly account for it. In the Henson and colleagues’  study (2000), an old/new 

judgement was the object of the confidence evaluation, whereas in ours a voice retrieval 

was required. It could be that monitoring of source retrieval is located more anteriorly than 

item retrieval (e.g., Christoff & Gabrieli, 2000; Simons, Gilbert, Owen, Fletcher, & 

Burgess, 2005; but see Rugg et al., 2003). 

 

6.5. Conclusions 

This project aimed to investigate the feasibility of the fractionation view in the study of 

PFC function (e.g., Stuss et al., 1995; 2005). On this approach, starting from a detailed task 

analysis, it is possible to map various processes within different prefrontal areas, using 

various dissociative methods such as neuropsychological, TMS and developmental 

dissociations. A detailed task-analysis was performed and a functional decomposition was 

obtained by means of different methodologies for two distinct tasks, namely the variable 

FP paradigm and the source memory retrieval. Results of various sets of experiments 

complementarily support the hypothesis that a process (i.e., monitoring), usually attributed 

to the SAS (Norman & Shallice, 1980; 1986; Shallice, 2004), is implemented within a 

specific prefrontal area (i.e., the rDLPFC). This evidence is strengthened by the control 

                                                
19This has not yet been done here because the resources available and the competence were not adequate. 
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offered by the dissociations obtained within-tasks. In particular, right prefrontal areas were 

involved in effects which have been proposed to rely upon monitoring function (e.g., FP 

effect), and not in other monitoring-independent effects which have been or could have 

been found within the same tasks (e.g., sequential FP effects). The present work 

demonstrates that the fractionating approach could be a solution to the ‘homunculus’  

problem (Dennett, 1998). Deconstructing the ‘homunculus’  into small pieces is a fruitful 

approach in order to understand high-level functions and to map them within the PFC. 
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Appendix 
 

Parietal effects found in the source memory Experiments 15 and 16. 

 

Parietal effects in Experiment 15 (time window: 500-800 ms) 

In order to replicate the well-known old/new left parietal effect, a repeated measure 

3x2x2x2 ANOVA was initially conducted with the following factorial analysis: response 

category (hit/hit, hit/miss, correct rejection) x hemisphere (left vs. right) x lobe (frontal vs. 

parietal) x regions (anterior vs. lateral). The dependent variable was mean amplitude in the 

500-800 ms time-window.  

This analysis yielded a significant category x hemisphere interaction [F(2, 24) = 8.4, p 

<  .01], mainly due to waves for hit/misses being more positive in the left hemisphere than 

in the right one (p < .001); waves for the two other response categories did not differ 

between hemispheres. In addition, a lobe x region interaction was obtained [F(1, 12) = 5, p 

< .05]. In view of this interaction, a 3x2x2 ANOVA (response category, hemisphere, 

region) was conducted on the parietal regions only. The only significant effect was the 

response category x hemisphere interaction [F(2, 24) = 11.3, p < .001]. The post-hoc 

analysis revealed that hit/miss waves were more positive in the left than in the right 

parietal regions (p < .001). In addition, as planned comparisons showed, the waves for 

hit/hit as well as those for hit/miss were more positive than those for correct rejections in 

the left parietal region as compared to the right one (p < .05 and p < .01, respectively). No 

hemispheric asymmetry was found for the hit/hit vs. hit/miss comparison.  

Similar ANOVAs were conducted replacing the factor confidence with that of 

accuracy. However, no effect of accuracy was observed in the parietal ERPs (see Figure 

28). 

Thus, experiment 15 replicates the basic old/new effects known from the literature. In 

keeping with previous findings (e.g., Donaldson & Rugg, 1998; Wilding & Rugg, 1996), 

the differences between the ERPs to correct memory judgments for old and new items 

were characterized by an early left parietal old/new effect, consisting of waves for hits 

being more positive than waves for correct rejections. However, unlike some studies (e.g., 

Wilding & Rugg, 1996), but similar to others (Cansino, Marquet, Dolan, & Rugg, 2002; 

Senkfor & Van Petten, 1998), parietal waves were not modulated by the accuracy of the 

subsequent source judgement (hit/hit vs. hit/miss). Moreover, the hemispheric asymmetry 
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(left more than right) in the old/new parietal effect was detected for the hit/miss condition 

only and not for the hit/hit one.  

 

Parietal effects in Experiment 16 (time window: 500-700 ms) 

A 2x2x2x2 ANOVA was performed with the following factorial analysis: confidence 

(low vs. high), lobe (frontal vs. parietal), hemisphere (left vs. right) and region (anterior vs. 

lateral). The mean amplitude of the ERPs in the 500-700 ms post-word onset was used as 

the dependent variable.  

The lobe x hemisphere interaction was significant [F(1, 16) = 5.1, p < .05], due to 

waves being more positive in the left parietal regions than elsewhere (for all, p < .05). As 

the confidence x lobe x region interaction was also significant [F(1, 16) = 10.7, p < .01], a 

2x2x2 ANOVA (confidence, hemisphere and region) was carried out limited to the four 

parietal regions only. This analysis produced a main effect of hemisphere [F(1, 16) = 8.3, p 

< .01], left ERPs being more positive than right ones. More importantly, the confidence x 

region interaction [F(1, 16) = 11, p < .01] showed that waves for low-confidence responses 

were more positive than waves for high-confidence ones in the lateral parietal regions only. 

Similar ANOVAs were conducted replacing the factor confidence with that of 

accuracy. However, no effect of accuracy was observed in the parietal ERPs (see Figure 

29). 

Experiment 16 confirms the general involvement of left parietal regions during a 

source memory task in a time-window different from that concerning the right prefrontal 

effect, as already shown in previous memory studies (e.g., Wilding & Rugg, 1996) and in 

the experiment 15 of the present study. In particular, ERPs in the left parietal regions were 

the most positive in the early latency-window of 500-700 ms, while ERPs in the right 

frontal regions were the most positive in the subsequent latency-windows of 1000-1500 

and 1500-2000 ms. However, the present results again do not corroborate the successful 

retrieval account of the parietal and prefrontal involvements during a source memory task. 

In the current study, the production of confidence ratings by the participants influenced 

their ERPs in two dissociable ways. First, ERPs are more positive for low-confidence 

ratings than for high-confidence ones. This pattern is observed earlier over lateral parietal 

regions (i.e., 500-700 ms and 1000-1500 ms) and later and more sustained in time also 

over anterior prefrontal ones (i.e., 1000-2000 ms). This different time-course suggests a 

different functional role of the two regions during this task. 
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ERP parietal effects in source memory experiments: a general discussion 

As far as the ERP parietal effects during memory retrieval are concerned, recollection 

and retrieval quality accounts have been proposed in the literature (process c, in our task 

analysis proposed on page 160; e.g., Curran, 2004; Duzel et al., 1997; Rugg et al., 1995). 

Such accounts originate from the hypothesis that the parietal ERP effects reflect medial 

temporal lobe activity (Duzel et al., 1999) or cortico-hippocampal interactions (Wilding & 

Rugg, 1996). Medial temporal activity, when reported in functional imaging studies, has 

usually been related to retrieval success (see Schacter, Buckner, & Koutstaal, 1998, for a 

review). However, the present results are in conflict with these accounts, as no effect of 

accuracy was obtained on these sites in either experiment. On the other hand, an effect of 

confidence was observed, with low-confident responses evoking more positive ERPs. 

Responses to be rated low-confidence are less likely to be vividly retrieved or recollected 

(as demonstrated by the behavioural results of experiment 16). Thus, given the existing 

evidence, the finding of low-confidence ERPs being more positive than high-confidence 

ones over the lateral parietal regions in the experiment 16 was unexpected. However, in 

addition to the current study, other ERP studies also show findings somewhat in contrast 

with the recollection account of the parietal effects. In a face recognition task, for instance, 

Graham and Cabeza (2001) found similar parietal ERP amplitudes for hit-hits and hit-

misses. In another ERP study of recognition (Curran, et al., 2001), participants were a 

posteriori separated into Good and Poor performers, according to their ability to 

discriminate studied target words from similar lures. Surprisingly, only poor performers, 

despite of their inability to discriminate between old targets and lures, showed a reliable 

parietal old/lure difference.  

The gap observed in these studies between behavioural performance and the parietal 

ERP effects suggests that the latter may be independent of retrieval accuracy and vivid 

recollection (see also Rossi et al., 2006). Moreover, it should be pointed out that the link 

between the parietal ERP effects and the medial temporal lobe activity is very indirect. 

Indeed, there is recent evidence showing no consistent relationship between left parietal 

ERP correlates of source memory retrieval and hippocampal volume and diffusion (Schiltz 

et al., 2006). The same study showed no correlation between accuracy in source memory 

retrieval and these indices of hippocampal integrity.  

An alternative hypothesis, among others, is that posterior parietal ERP effects might 

reflect the shifting of attention to, and the maintenance of attention on, internally produced 

mnestic representations (processes a and b, in our task analysis; Wagner, Shannon, Kahn, 
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& Buckner, 2005). This hypothesis derives from the observation that the confidence effect 

occurs over the lateral parietal regions in two different time-windows, a phasic early time-

window (see page 222) and a middle tonic one (see page 157), probably associated to the 

two above-mentioned processes. Moreover, in some short-term memory models, the left 

inferior parietal region is thought to be the seat of the input phonological buffer (Paulesu, 

Frith, & Frackowiak, 1993; Shallice & Vallar, 1990). The maintenance of attention on 

memory retrieval products is therefore likely to be increased in order to achieve a source 

memory decision especially for weakly stored traces (low-confidence judgements), 

whereas it is not clear how confidence status can influence the earlier stage of attentional 

shift. However, these interpretations should be taken cautiously, as the opposite pattern 

(more positive parietal ERPs for the high- than for low-confidence judgements) was 

reported in earlier ERP studies of confidence (e.g., Curran, 2004; Rubin et al., 1999). 

Differences in the task demands (source vs. old/new judgements) might help to partially 

account for the discrepancies with previous findings. 


