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ABSTRACT 
Understanding how the complexity of connections among the neurons in the brain is 

established and modified in an experience- and activity-dependent way is a challenging 

task of Neuroscience. Although in the last decades many progresses have been made in 

characterising the basic mechanisms of synaptic transmission, a full comprehension of 

how information is transferred and processed by neurons has not been fully achieved.  

In the present study, theoretical tools and patch clamp experiments were used to further 

investigate synaptic transmission, focusing on quantal transmission at single synapses 

and on different types of signalling at the level of a particular interneuronal network in 

the CA1 area of the rodent hippocampus. 

The simultaneous release of more than one vesicle from an individual presynaptic active 

zone is a typical mechanism that can affect the strength and reliability of synaptic 

transmission. At many central synapses, however, release caused by a single presynaptic 

action potential is limited to one vesicle (univesicular release). The likelihood of 

multivesicular release at a particular synapse has been tied to release probability (Pr), and 

whether it can occur at Schaffer collateral–CA1 synapses, at which Pr ranges widely, is 

controversial. In contrast with previous findings, proofs of multivesicular release at this 

synapse have been recently obtained at late developmental stages; however, in the case of 

newborn hippocampus, it is still difficult to find strong evidence in one direction or 

another. 

In order to address this point, in the first part of this study a simple and general stochastic 

model of synaptic release has been developed and analytically solved. The model 

solution gives analytical mathematical expressions relating basic quantal parameters with 

average values of quantities that can be measured experimentally. Comparison of these 

quantities with the experimental measures allows to determine the most probable values 

of the quantal parameters and to discriminate the univesicular from the multivesicular 

mode of glutamate release. The model has been validated with data previously collected 

at glutamatergic CA3-CA1 synapses in the hippocampus from newborn (P1-P5 old) rats. 

The results strongly support a multivesicular type of release process requiring a variable 

pool of immediately releasable vesicles. Moreover, computing quantities that are 

functions of the model parameters, the mean amplitude of the synaptic response to the 
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release of a single vesicle (Q) was estimated to be 5-10 pA, in very good agreement with 

experimental findings. In addition, a multivesicular type of release was supported by 

various experimental evidences: a high variability of the amplitude of successes, with a 

coefficient of variation ranging from 0.12 to 0.73; an average potency ratio a2/a1 between 

the second and first response to a pair of stimuli bigger than 1; and changes in the 

potency of the synaptic response to the first stimulus when the release probability was 

modified by increasing or decreasing the extracellular calcium concentration. This work 

indicates that at glutamatergic CA3-CA1 synapses of the neonatal rat hippocampus a 

single action potential may induce the release of more than one vesicle from the same 

release site. 

In a more systemic approach to the analysis of communication between neurons, it is 

interesting to investigate more complex, network interactions. GABAergic interneurons 

constitute a heterogeneous group of cells which exert a powerful control on network 

excitability and are responsible for the oscillatory behaviour crucial for information 

processing in the brain. They have been differently classified according to their 

morphological, neurochemical and physiological characteristics. 

In the second part of this study, whole cell patch clamp recordings were used to further 

characterize, in transgenic mice expressing EGFP in a subpopulation of GABAergic 

interneurons containing somatostatin (GIN mice), the functional properties of EGFP-

positive cells in stratum oriens of the CA1 region of the hippocampus, in slice cultures 

obtained from P8 old animals. These cells showed passive and active membrane 

properties similar to those found in stratum oriens interneurons projecting to stratum 

lacunosum-moleculare. Moreover, they exhibited different firing patterns which were 

maintained upon membrane depolarization: irregular (48%), regular (30%) and clustered 

(22%). Paired recordings from EGFP-positive cells often revealed electrical coupling 

(47% of the cases), which was abolished by carbenoxolone (200 µM). On average, the 

coupling coefficient was 0.21 ± 0.07. When electrical coupling was particularly strong it 

acted as a powerful low-pass filter, thus contributing to alter the output of individual 

cells. The dynamic interaction between cells with various firing patterns may differently 

control GABAergic signalling, leading, as suggested by simulation data, to a wide range 

of interneuronal communication. In additional paired recordings of a presynaptic EGFP-
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positive interneuron and a postsynaptic principal cell, trains of action potentials in 

interneurons rarely evoked GABAergic postsynaptic currents (3/45 pairs) with small 

amplitude and slow kinetics, and that at 20 Hz exhibited short-term depression. In 

contrast, excitatory connections between principal cells and EGFP-positive interneurons 

were found more often (17/55 pairs) and exhibited a frequency and use-dependent 

facilitation, particularly in the gamma band. In conclusion, it appears that EGFP-positive 

interneurons in stratum oriens of GIN mice constitute a heterogeneous population of cells 

interconnected via electrical synapses, exhibiting particular features in their chemical and 

electrical synaptic signalling. Moreover, the dynamic interaction between these 

interneurons may differentially affect target cells and neuronal communication within the 

hippocampal network. 
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INTRODUCTION 
 

SECTION I 

 

1. The Hippocampus 

The hippocampus is among the best characterised brain structures, mainly because its 

layered organisation (Andersen et al., 1971) is particularly suitable for anatomical and 

physiological investigations, but also because, since the early 1950s, it has been 

recognised to play a fundamental role in some forms of learning and memory (Kandel, 

2001).  

Evidence implicates the hippocampus in storing and processing spatial information. 

Studies in rats have shown that neurons in the hippocampus have spatial firing fields; 

these cells are called “place cells” (Muller, 1996). Some cells fire when the animal finds 

itself in a particular location, regardless of direction of navigation, while most are at least 

partially sensitive to head direction and direction of navigation.  

The discovery of place cells led to the idea that the hippocampus might act as a 

“cognitive map” of the neural representation of the layout of the environment. Recent 

evidence has cast doubt on this perspective, indicating that the hippocampus might be 

crucial for more fundamental processes within navigation. Regardless, studies with 

animals have shown that an intact hippocampus is required for simple spatial memory 

tasks (for instance, finding the way back to a hidden goal) (Kwok & Buckley, 2006), and 

moreover, neurological patients with damage to the hippocampal formation show 

memory deficits.  

From these clinical origins, a diverse field of memory research has flowed (Morris, 

2006). The specific functional contributions of the hippocampus and those of related 

structures (the entorhinal cortex, the dentate gyrus, the individual CA fields and the 

subicular complex) remain a matter of dispute. Rival neuropsychological theories include 

proposals for a role in cognitive mapping and scene memory (O'Keefe & Nadel, 1978; 

Gaffan, 2001), declarative and relational memory (Squire, 1992; Eichenbaum & Cohen, 

2001), the rapid acquisition of configural or conjunctive associations (Sutherland & 

Rudy, 1989; O'Reilly & Rudy, 2001), context-specific encoding and retrieval of specific 
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events (Hirsh, 1974; Good & Honey, 1991) and the proposal that the hippocampal 

formation is critical for certain aspects of episodic and/or episodic-like memory (Tulving, 

1983; Mishkin et al., 1997; Morris & Frey, 1997; Vargha-Khadem et al., 1997; Aggleton 

& Brown, 1999). To complement this complexity, neural network modelling studies 

indicate that the intrinsic anatomy and synaptic physiology of the hippocampus could 

mediate the rapid encoding and distributed storage of a large number of arbitrary 

associations (Marr, 1971; McNaughton & Morris, 1987; McClelland et al., 1995; Rolls & 

Treves, 1998). Both approaches suggest that in all mammals, be they man, monkey or 

mouse, the hippocampus is a particular kind of associative memory network. It does not 

operate in isolation as several excitatory inputs and outputs reflect important functional 

interactions with the neocortex (Amaral & Witter, 1989; Witter et al., 2000) and inputs 

from midbrain and other forebrain nuclei modulate its activity in critical ways for 

memory formation (Matthies et al., 1990). 

 

1.1 Anatomy of the hippocampus 

The hippocampus is an elongated structure located on the medial wall of the lateral 

ventricle, whose longitudinal axis forms a semicircle around the thalamus. Due to its 

layered organisation through this axis, when the hippocampus is cut across its transverse 

axis (the septotemporal one), it is possible to identify a particular structure that is 

preserved in all slices taken with this orientation. The hippocampus proper and its 

neighbouring cortical regions, the dentate gyrus (DG), subiculum and enthorinal cortex, 

are collectively termed “hippocampal formation”. As shown in Figure 1, the 

hippocampus proper is divided in stratum oriens (1), stratum pyramidale (2), stratum 

radiatum (3), and stratum lacunosum-moleculare (4). Excitatory neurones (pyramidal 

cells) are arranged in a layer that forms the stratum pyramidale, traditionally divided in 

four regions CA1-CA4. In general, CA4 is considered the initial part of CA3 and the 

small CA2 is often included in CA1 (but see for example Lein et al., 2005). All 

pyramidal neurones bear basal dendrites that arborise and form the stratum oriens and 

apical dendrites that are radially oriented in the stratum radiatum and lacunosum-

moleculare. In the DG, granule cells represent the principal neurones, while the area 

between DG and the CA3 region is called the hilus. 
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1.2 The hippocampal circuitry 

The main inputs to the hippocampus come from the enthorinal cortex, the septum and the 

controlateral hippocampus, whereas a unique unidirectional progression of excitatory 

pathways links each region of the hippocampus, creating a sort of trisynaptic circuit 

(Figure 1). The perforant path, originated from the enthorinal cortex, passes through the 

subicular complex and terminates mainly in the dentate gyrus, making synapses on 

granule cells. Then, the distinctive unmyelinated axons of the granule cells (mossy fibres) 

 
Figure 1. Neuronal elements of the hippocampal formation. Labelled areas include 
the subiculum, part of the enthorinal cortex, the fornix, the dentate gyrus and the region 
CA1 to CA4. The hippocampus proper is divided into stratum oriens (1), stratum 
pyramidale (2; cell bodies drawn as ovals), stratum radiatum (3) and stratum lacunosum-
moleculare (4). (Modified from Ramón y Cajal, 1911) 
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project to the hilus and to the stratum lucidum of the CA3 region. Here they make 

synapses en passant on CA3 pyramidal neurones showing the large, presynaptic 

varicosities typical of mossy fibres-CA3 contacts. These presynaptic expansions form a 

unique synaptic complex with equally intricate postsynaptic processes called thorny 

excrescences and may contain tens of release sites (Jonas et al., 1993). Information is 

therefore transferred, through Schaffer collaterals, from CA3 to CA1 pyramidal neurones, 

which therefore send their axons to the subiculum and the deep 

layers of enthorinal cortex. Then, signal is sent back to many of the same cortical areas. 

Thus, information entering the enthorinal cortex from a particular cortical area can 

traverse the entire hippocampus and return to the cortical area from which it originated. 

The transformations that take place during this process are presumably essential for 

information storage (Johnston & Amaral, 1998). Furthermore, commissural associative 

fibres provide synaptic contacts between CA3 pyramidal neurones and between the two 

hippocampi, via the fornix. Excitatory postsynaptic currents or potentials elicited by MF 

stimulation can be discriminated from those evoked by commissural fibres on the basis of 

their faster kinetics (Yeckel et al., 1999) and their sensitivity to the selective agonist for 

metabotropic glutamate receptors 2/3, (2S,2’R,3’R)-2-(2’,3’-dicarboxycyclopropyl) 

glycine (DCG-IV; Kamiya et al., 1996). The recurrent connections between pyramidal 

neurones are particular of the CA3 region and are responsible for making this region 

quite unstable. The simultaneous activation of a certain percentage of these connections 

is sufficient for generating epileptiform activity, characterised by spontaneous, 

synchronised and rhythmic firing in a large number of neurones (Miles & Wong, 1986; 

Traub & Miles, 1991). This feature accounts for the selective generation of seizures in 

this region following the application of convulsive agents (Ben-Ari & Cossart, 2000). 

The hippocampus is known to be crucial for certain forms of learning and memory, and 

the recurrent associative network formed by CA3 pyramidal cells have recently been 

shown to play an important role in associative memory recall (Nakazawa et al., 2002). 

A critical role in controlling the communication between pyramidal neurones, especially 

but not only in this case, is accomplished by local inhibitory interneurons and a balance is 

set between excitation and inhibition. In contrast to the rather uniform population of 

excitatory neurones, interneurons, which are distributed in the entire hippocampus, show 
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a great variability and are classified in several families according to their morphology and 

axonal and dendritic arborisation (see Section II). Among all the differences in 

morphology and in active and passive membrane properties between neurones, a 

particular feature of pyramidal cells, known as accommodation, is the possibility to limit 

the maximal firing frequency upon injection of a depolarising current step. This property 

distinguishes pyramidal neurones from interneurons that, on the contrary, are able to fire 

up to 400 Hz (Lacaille, 1991). 

 

2. Synaptic transmission 

Synaptic contacts between neurones occur primarily between small swellings, known as 

boutons, either at the terminal or along (en passant) axonal profiles of the presynaptic 

neurone and small fingerlike processes (spines) of postsynaptic dendrites (axospinus 

synapses). However, other types of synapses have been characterised and have been 

termed depending on the contact elements (for example axosomatic, axoaxonic, 

dendrodendritic).  

Two structurally and functionally distinct forms of synapses exist: electrical and 

chemical. At electrical synapses, specialised channels (gap junctions) form a direct 

electrical connection between the presynaptic and the postsynaptic neurones. At chemical 

synapses, the cells are electrically disconnected from one another: the electrical signal is 

translated into a chemical one in the presynaptic neurone and only afterwards is re-

converted to an electrical signal in the postsynaptic cell. Electrical synapses have the 

virtue that transmission occurs without delay, but they are far less rich in possibilities for 

adjustment and control than chemical synapses, that, in fact, represent the predominant 

way of communication between neurones. In this Section, the attention will be focused 

on chemical synapses, in particular on glutamatergic excitatory ones. 

 

2.1 Chemical synapses and neurotransmitter release 

Chemical synapses operate through the release, from the presynaptic neurone, of a 

neurotransmitter that diffuses in the synaptic cleft and provokes electrical changes in the 

postsynaptic cell by binding to a selective membrane protein present on the postsynaptic 

membrane (receptor). Neurotransmitter molecules are initially stored in the synaptic 
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vesicles described, long time ago, by ultrastructural studies (Palade 1954; Palay, 1954). 

Most vesicles are retained in a large pool behind the plasma membrane, whereas a small 

part of them approaches the presynaptic membrane, and eventually fuse with it, through a 

particular cycle that can be divided in several steps and involves a very large number of 

proteins (reviewed in Südhof, 1995). The vesicles immediately available for release 

belong to the so-called readily releasable pool of vesicles (RRP; Rosenmund & Stevens, 

1996; Südhof, 2000; for a review see Rizzoli and Betz 2005). Synaptic vesicles are 

usually anchored to a network of cytoskeletal filaments by synapsins, a family of protein 

presenting phosphorylation sites for both cAMP and calcium-calmodulin dependent 

protein kinases. Phosphorylation is able to free vesicles from the cytoskeleton constrain, 

allowing them to move into the active zone, where they dock through the interaction 

between proteins in the vesicular membrane and proteins in the plasma membrane. 

Candidates for these protein-protein interactions include the vesicular membrane proteins 

synaptotagmin and Rab3 (Benfenati et al., 1999). After docking, synaptic vesicles go 

through a maturation process, known as priming, during which a highly stable core 

complex is formed between the synaptic vesicle protein VAMP/synaptobrevin and the 

presynaptic membrane proteins syntaxin and SNAP-25. These three proteins are known 

as SNAP receptors or SNAREs, as they form a high affinity binding site for cytosolic α-

SNAP (soluble NSF attachment protein), which itself becomes a receptor site for NSF 

(N-emthylmaleimide-sensitive factor). Under steady-state conditions, specific protein 

interactions, between VAMP and synaptophysin at the vesicle membrane and between 

syntaxin and munc 18 (or munc 13) at the plasma membrane, inhibit the formation of the 

core complex that would otherwise assemble outside the active zones (Thomson, 2000). 

The “unlocking” of these proteins occurs during docking and is modulated by 

phosphorylation and by calcium, suggesting that it may be an important rate-dependent 

step in the supply of fusion-competent vesicles during repetitive activity. Once the fusion 

core complexes are formed, they have to be disassembled for release to occur. The 

hydrolisis of ATP by NSF provides the energy required to regenerate the SNARE 

monomers that will be used in the next cycle. Rapid fusion and exocytosis are triggered 

by high local calcium concentration during the action potential invasion. Ca2+ ions act in 

a co-operative way, as judged from the steep relationship between change in intracellular 
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calcium concentration ([Ca2+]i) and transmitter release, thus accounting for a considerable 

margin of safety for synaptic transmission (Dodge & Rahamimoff, 1967). Different lines 

of evidence suggest that synaptotagmins function as Ca2+ sensors in the final fusion step 

(Südhof, 1995). According to the classical model, during exocytosis, vesicles collapse 

completely into the plasma membrane (“total fusion”) and release neurotransmitter in the 

synaptic cleft. During this process Rab proteins dissociate from the vesicle membranes 

and may retard the activation of neighbouring vesicles, resulting in release site 

refractoriness (Geppert et al., 1997). Therefore, empty vesicles internalise slowly 

(endocytosis) at sites distant from the active zones and translocate into the interior for 

endosomal fusion. New vesicles accumulate again neurotransmitter by means of an active 

transport driven by an electrochemical gradient created by a proton pump. Finally, filled 

vesicles translocate back to the active zones and the vesicle cycle ends. A few years ago, 

this cycle model has been revisited and an alternative fusion process has been proposed. 

It suggests a transient state of the vesicle fusion, known as “transient fusion” or “kiss and 

 
Figure 2. Main steps in neurotransmitter release at chemical synapses. A small part 
of synaptic vesicles approaches the plasma membrane and, through docking and priming 
processes, gets ready for being rapidly released. The influx of Ca2+ ions during action 
potential invasion triggers vesicle fusion. Thus, the neurotransmitter released diffuses 
across the narrow synaptic cleft and acts on postsynaptic receptors. Following or during 
fusion, Rab proteins dissociate from the vesicle and may in some way retard the 
activation of neighbouring vesicles (resulting in release site refractoriness). Synaptic 
vesicles are therefore recycled, in either slow or fast way, and may accumulate 
neurotransmitter again. (Modified from Thomson, 2000) 
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run”, a concept already proposed in the 1970s by Ceccarelli et al. (1973). According to 

this hypothesis, vesicles fuse with the plasma membrane by forming a transient fusion 

pore while preserving vesicle integrity. After detachment, vesicles can fuse again without 

any preceding endosomal fusion. The advantages are a rapid cycling between fusion and 

non-fusion state and reduced energy consumption. Applications of fluorescent and atomic 

force microscopy have provided evidence for the kiss and run model in non-neuronal and 

neuronal cells (Schneider, 2001).  

Once neurotransmitter is released in the cleft, it diffuses to act mainly on ionotropic or 

metabotropic receptors that are clustered in an electron-dense thickening of the 

postsynaptic membrane, known as postsynaptic density. Then neurotransmitter is rapidly 

eliminated by diffusion, enzymatic degradation or by uptake into nerve terminals or glial 

cells. Ionotropic receptors are ion channels that open when they are bound by 

neurotransmitter molecules, allowing ions to flow within the cell membrane. This process 

changes the membrane potential of the postsynaptic neurone either in the positive 

(depolarisation) or in the negative direction (hyperpolarisation). When receptors are 

permeable to calcium ions, these cations can also activate intracellular processes. After 

opening, postsynaptic receptors normally desensitize, i.e. they remain in an “open state” 

without allowing ion influx, until they recover and restore their initial condition. 

Alternatively, the transmitter may bind to metabotropic receptors that are linked to ion 

channels through GTP-binding proteins (G-proteins). 

An interesting approach to analyze the time course of transmitter concentration in the 

cleft deserves to be mentioned. This detection technique utilizes the non-equilibrium 

displacement of a competitive antagonist following the synaptic release of transmitter 

(Clements et al., 1992; Clements, 1996; Tong & Jahr, 1994a,b; Barberis et al., 2004). 

Displacement is a passive process whereby antagonist unbinds from receptors and is 

replaced by transmitter. Synaptic responses are elicited in the presence of a competitive 

antagonist, and the size of the reduction in amplitude provides information about the 

average transmitter timecourse at that synapse. A significant amount of antagonist 

unbinding must occur within the same timescale as clearance of transmitter, therefore a 

rapidly dissociating (low-affinity) competitive antagonist is required (a so-called “fast-off 

antagonist”). At equilibrium, antagonist molecules are constantly binding and unbinding, 
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and a fraction of receptors is vacant at any given moment. An instantaneous change to a 

high concentration of transmitter results in the rapid binding of transmitter to vacant 

receptors. As transmitter clearance continues, some antagonist molecules unbind from the 

receptors and are replaced by transmitter molecules (non-equilibrium displacement). 

Thus, the longer the transmitter is present, the more antagonist is displaced and the larger 

the response becomes. In this way, changes in amplitude of the postsynaptic response 

will depend not only on the concentration of the antagonist, but also on the amplitude and 

time course of the transmitter transient. In contrast, the block exerted by an antagonist 

with unbinding kinetics much slower than the synaptic pulse (a slowly dissociating 

competitive antagonist) does not depend on synaptic pulse concentration and time 

duration but only on the concentration of the antagonist, because during the synaptic 

pulse the antagonist cannot unbind from the receptor; in particular, if transmitter 

clearance is made faster or slower for any reason, the effectiveness of a slowly 

dissociating antagonist is unchanged and the modification cannot be detected. 

 

2.2 Synaptic efficacy 

The first step in the study of chemical synaptic transmission is the analysis of the efficacy 

of the synapse. By definition, the synaptic efficacy is the strength of synaptic 

transmission, measured by the average size of the postsynaptic response to stimulation of 

a presynaptic neuron (Faber et al., 1998) and it was originally studied at the 

neuromuscular junction (NMJ). 

The NMJ represents the standard model for studying synaptic transmission. At the 

beginning of the 1950s del Castillo and Katz (1954) proposed the quantal hypothesis of 

transmitter release, according to which neurotransmitter is packaged in discrete quantities 

of fixed size, called quanta, which are generally identified with synaptic vesicles. Thus, 

when a nerve impulse reaches the terminal, an integer number of quanta release their 

content in the synaptic cleft. In line with this idea, miniature currents, which can be 

recorded in the absence of action potential, are due to the release of a single quantum. 

Each release site operates in an all-or-none fashion, meaning that it can release either 

zero or one quantum and each quantum is released probabilistically and independently of 

the others. If the probability of release is uniform among the different sites, synaptic 
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transmission can be fit with a simple binomial model. Thus, in a synapse with N 

functional release sites and a probability p of release at each individual site, the 

probability that n quanta are released by a single action potential is: 

 nNn pp
nNn

N
nP −−

−
= )1(

)!(!
!

)(  (I.1) 

While the probability of detecting no response (failure rate) is: 

 NpP )1()0( −=  (I.2) 

The mean number of quanta released, known as quantal content, is given by: 

 Npm =  (I.3) 

If Q represents the magnitude of the postsynaptic response to a single transmitter 

quantum (quantal size), the mean response I and its standard deviation σ are: 

 NpQI =  (I.4) 

 )1( pNpQ −=σ  (I.5) 

Thus, the efficacy of a synaptic connection is the quantity written in eqn. I.4, and it 

depends on the synaptic parameters N, p and Q. 

Interestingly the coefficient of variation (CV), defined as the ratio between the standard 

deviation and the mean, is independent of Q: 

 
Np

p
I

CV
)1( −== σ

 (I.6) 

In case of a very low probability of release (p<<1) and large N, the binomial distribution 

approximates the Poisson one and eqns. I.1-I.2-I.6 convert respectively into: 
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Later on, the basic concepts of neurotransmitter release have been extended to central 

synaptic transmission, despite the obvious differences, both functional and 

morphological, that distinguish the two systems. For example, most of central synapses 

are characterised by a very small quantal size, with a change in conductance that is two 
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orders of magnitude smaller than that measured at the NMJ and is due to the opening of 

tens rather than thousands of postsynaptic receptors (but see calyx of Held; Borst et al., 

1995).  

More importantly, at central synapses it is convenient to introduce a change in the simple 

picture depicted at the NMJ, in order to be able to account also for multivesicular release 

at a single release site (see paragraph 2.4). For this modality of transmission, the single 

sites are not constrained to operate in an all-or-none manner, and each active site can 

release a variable number of vesicles from the RRP as a consequence of a single action 

potential. For simplicity, it is convenient to focus on one single release site at a time, 

especially since the probability of release can vary a lot between different terminals at the 

same central synapses (Rosenmund et al., 1993). The following considerations refer 

therefore to a central synapse with a single release site. In this condition, the case of 

univesicular release is very simple, since for each action potential just zero or one vesicle 

can be released, and the probability of having a postsynaptic response is identical to the 

probability that the vesicle be released. On the other hand, in the multivesicular case, 

formulas identical to the ones written above are valid, if now N is the number of vesicles 

of the RRP which can be independently released and p is the release probability for a 

single vesicle. The notable difference from the univesicular case, that is often mistaken 

also in the literature, is that now p is not any more equal to the probability of release of 

the synapse, which can be indicated with Pr; consequently, the probability of having 

multiquantal responses depends on p and it has no relation with Pr (while many authors 

relate it to Pr
2; for example see Clements, 1996). If for example N = 5 and p = 0.1, using 

eqn. I.1 it is clear that over 100 stimulations of the synapse there will be in average 33 

unit responses, 7 double-quantum responses, 1 triple response, zero quadruple and 

quintuple responses, 59 failures. Thus, p is very different from Pr, that is equal to 0.41; 

moreover, double release is predicted to happen with probability 10p2(1-p)3 = 0.0729, 

which is very different from Pr
2 = 0.1681, and triple release with probability 10p3(1-p)2 = 

0.0081, and not with Pr
3 = 0.068921. 

 

2.2.1 Modulation of synaptic efficacy 
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Changes in one or more of the synaptic parameters account for modifications in synaptic 

strength. Such modulation of synaptic efficacy is thought to be very important for the 

refinement of neural circuitry, information processing and storage. Thus, the possibility 

to find out the mechanisms and the sites of changes of synaptic strength is really 

important for understanding brain functions. Such changes and modulation are referred to 

as synaptic plasticity, and a detailed analysis of the mechanisms of this important 

phenomenon is beyond the purpose of this work. Briefly, synapses can undergo various 

kinds of synaptic plasticity, which can be sorted in different classes.  

Short-term plasticity refers to use-dependent synaptic changes that are restricted to brief 

periods of time (reviewed in Zucker & Regehr, 2002). These processes are crucial for 

regulating temporal coding and information processing between neurones in the brain 

(Tsodyks & Markram, 1997), where, in fact, information is conveyed by spike train 

rather than by isolated action potentials. These modifications vary from synapse to 

synapse and in the same synapse according to its previous history (Debanne et al., 1996; 

Markram & Tsodyks, 1996). Thus, most synapses in the CNS, including neocortex and 

hippocampus, undergo dynamic bidirectional regulations of their efficacy following 

activity-dependent processes. Increases in transmitter release by repeated stimulation fall 

into two categories: those that act over short interval (facilitation) and those that 

accumulate significantly during prolonged stimulation, augmentation and potentiation. 

These phenomena have been shown to be presynaptic in origin, with a strong correlation 

between elevation in [Ca2+]i and enhancement of synaptic strength (Zucker & Regehr, 

2002; Thomson, 2000). Another common form of short-term plasticity lasting from 

seconds to minutes is depression upon repeated use (Thomson & Deuchars, 1994; Nelson 

& Turrigiano, 1998). This may provide a dynamic gain control over a variety of 

presynaptic afferent firing action potentials at different rates (Markram & Tsodyks, 

1996). Repeated use can either enhance or decrease synaptic efficacy, but in some cases 

multiple processes are present and the result is a combination of facilitation and 

depression. A particular example is obtained through the application of a paired-pulse 

protocol within a short time interval. In this case, the ratio between the mean amplitudes 

of the second response over the first one, known as paired-pulse ratio (PPR), is often 

inversely related to the initial release probability. This means that either paired-pulse 
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facilitation or paired-pulse depression can be observed in case of low or high release 

probability, respectively (Debanne et al., 1996; Dobrunz & Stevens, 1997).  

Finally, long-lasting activity dependent changes in synaptic efficacy are thought to play a 

fundamental role in the development of the neural circuitry, learning and memory 

(Stevens, 1998; Martin et al., 2000). Long-term potentiation (LTP) refers to an increase 

in synaptic efficacy that can last for hours or even days, and it was first obtained by 

repetitive stimulation at synapses between perforant path fibres and granule cells in the 

DG of the hippocampus (Bliss & Lomo, 1973). LTP has been shown to occur in many 

other regions of the brain, but it has been mainly studied in the hippocampus and, in 

particular, at CA3-CA1 synapses (reviewed in Bliss & Collingridge, 1993; Larkman & 

Jack, 1995; Nicoll & Malenka, 1995; Malenka & Nicoll, 1999). Long-term depression 

(LTD), on the other hand, is a lasting activity-dependent decrease in synaptic efficacy 

that was at first described in CA1 neurons (Lynch et al., 1977; for a review see Kemp & 

Bashir, 2001). It is widely accepted that LTD prevails in neonatal and young animals 

where it precedes the developmental onset of LTP (Dudek & Bear, 1993; Battistin & 

Cherubini, 1994). 

 

2.3 Quantal analysis and estimation of quantal parameters 

For a successful analysis of the synaptic activity it is therefore critically important to be 

able to obtain precise estimations of the quantal parameters N, p (indicating generically 

the release probability) and Q. It is clear that, while Q depends on both pre and 

postsynaptic mechanisms, N and p are controlled only by presynaptic factors. On the 

basis of the simple equations in paragraph 2.2, quantal analysis has been developed to 

find estimations of these parameters and/or to define the site of changes in case of 

modifications in synaptic efficacy (Katz, 1969; Korn & Faber, 1991; Faber et al., 1998). 

At central synapses it is quite difficult to find appropriate experimental approaches and 

models for the application of quantal analysis, even though some authors have provided 

recipes for a ‘proper’ quantal analysis (see for example Korn & Faber, 1991). In many 

cases the distribution of miniature currents at central synapses is found surprisingly 

skewed (Bekkers et al., 1990; Bekkers & Stevens; 1995), and more generally a great 

variability of the parameters is found both with experimental and simulation studies 
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(Rosenmund et al., 1993; Bekkers, 1994; Auger & Marty, 1997; Auger & Marty, 2000; 

Franks et al., 2003). This is due to different factors which can be sorted according to the 

various steps in the process of chemical synaptic transmission.  

 

2.3.1 Presynaptic issues 

Even if changes in Q and N may be involved in the modulation of synaptic strength and 

have always to be taken into account, the probability of release seems to be a major factor 

that influences the pattern of transmitter release (Thomson, 2000). A strong variability in 

p has been found when comparing both synapses from different preparations and the 

same kind of synapses. p can vary from less than 0.01 at specific cortical connections 

(Thomson et al., 1995) up to 0.9 at the calyx of Held (von Gersdorff et al., 1997) and a 

similar range of variability has been detected in the CA1 region of the hippocampus 

(Dobrunz & Stevens, 1997). It is still difficult to define p in an unambiguous and precise 

way, as a lot of different processes are involved in transmitter release. This particularity 

can probably account for the high variability in p values as well as for the many 

opportunities in controlling and modulating it. In general, p represents the probability that 

Ca2+ ions entering the nerve terminal because of a single action potential triggers the 

release of fusion-competent vesicles. Thus, we could imagine that different values of p 

are due to differences in local calcium affinity or binding at the level of Ca2+ sensors. 

Alternatively, the shape of the presynaptic action potential may be of fundamental 

importance for determining the strength of synapses, since the degree and the duration of 

depolarisation control the opening of voltage-gated Ca2+ channels, as well as the driving 

force for calcium influx itself (Sabatini & Regehr, 1997). Therefore, also the number, 

location and properties of calcium channels are important in modulating the shape and 

the size of the Ca2+ transients themselves. On the other hand, a differential expression of 

proteins involved in release or differences in their phosphorylation could account for 

further variability in the probability of release. The interplay between all these 

mechanisms determines p and a modification at any of these levels might affect synaptic 

strength (Thomson, 2000). Moreover, at hippocampal synapses the variability of p is 

found to be high even between different release sites of the same synapse (Rosenmund et 

al., 1993) or between different stages of the postnatal development (Wasling et al., 2004). 
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Finally, modulations of synaptic strength during synaptic plasticity may require 

presynaptic mechanisms to act as possible regulation sites for the modification of quantal 

size. One such site could be the vesicular neurotransmitter transporter, which, if subject 

to activity-dependent regulation, could link vesicle content to terminal activity. Another 

possible site of regulation is the fusion pore, the conductance of which has been observed 

to be quite small in small synaptic vesicles (19 pS) in relation to large dense-core 

vesicles. If the size of fusion pore conductance in CNS synapses occurs in similar ranges, 

alterations to fusion pore kinetics could provide meaningful regulatory mechanisms to 

determine the strength of synaptic connections (Liu, 2003). 

 

2.3.2 Time course of synaptic signalling 

After the release, the synaptic signal is propagated via the diffusion of the transmitter in 

the synaptic cleft. In this phase, the signal is subject to variability due to changes in delay 

times and agonist concentration (Liu et al., 1999; Franks et al., 2003). The time course of 

postsynaptic responses depends on the synchrony of transmitter release, on the time 

course of transmitter concentration in the cleft as well as on the gating properties of the 

receptors (Jonas, 2000). As previously described, evoked release of transmitter involves 

several steps; therefore it would not be surprising that the synaptic delay is somewhat 

variable from trial to trial at the same release site and between different release sites. The 

diffusion of neurotransmitter itself depends on several factors, such as the diffusion 

coefficient, the geometry of the cleft, the distribution and affinity of transmitter binding 

sites and the transporter uptake rate (Clements, 1996). It has been estimated that 

glutamate concentration during a synaptic event has a peak ranging between 1 and 5 mM 

and decays in a biphasic manner with time constants approximately 100 ms and 2 ms 

(Clements, 1996). The rising phase of postsynaptic signals is determined by the binding 

process between neurotransmitter molecules and receptors. Therefore it depends on the 

transmitter concentration time course and on the receptors opening rate. The decay phase, 

on the contrary, is mainly determined by the unbinding process, if desensitisation is 

considerably slow as in the case of nicotinic acetylcholine receptors. For example, no 

detectable AMPA receptor desensitisation has been revealed at hippocampal synapses 

(Hjelmstad et al., 1999). The decay phase depends also on the kinetics of desensitisation 
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when desensitisation itself occurs at the time scale comparable to the one of transmitter 

concentration, as in the case of AMPA receptors at most glutamatergic synapses 

(Clements et al., 1992; Jones & Westbrook, 1996; but see also Jonas, 2000).  

 

2.3.3 Postsynaptic issues 

An early interpretation suggested that the small quantal size at central synapses could be 

due to a small number of postsynaptic receptors. Thus, because of the high number of 

transmitter molecules released and because of the small volume of the synaptic cleft, 

glutamate would reach a concentration high enough to saturate all the receptors (Edwards 

et al., 1990). According to this interpretation the skewed distribution of the minis could 

be due either to multiple quantal clusters of receptors on the postsynaptic membrane or to 

synapses consisting of multiple active zones (Edwards, 1995). Alternatively, the 

variability observed could be accomplished by differences in miniature amplitudes 

between different release sites (Edwards et al., 1990; reviewed in Auger & Marty, 2000) 

or by fluctuations in the number of functional receptors or in their affinity for the 

transmitter. Obviously, receptor saturation has many important implications in synaptic 

physiology and in its possible modifications during synaptic plasticity (Scheuss et al., 

2002). Indeed, it seems that certain heterogeneity exists among different types of 

synapses. In the hippocampus, while high receptor saturation was initially described at 

certain connections (Edwards et al., 1990; Clements et al., 1992; Jonas et al., 1993; Tang 

et al., 1994), more recent studies exploiting different techniques have shown that 

variation in the concentration of the agonist is the main source of variability of the 

responses (Liu et al., 1999; Hanse & Gustafsson, 2001a; Franks et al., 2003) and that 

receptors are not saturated (Mainen et al., 1999; Raghavachari & Lisman 2004; 

McAllister & Stevens 2000; Nimchinsky et al., 2004; Conti & Lisman 2003). Moreover, 

an incomplete occupancy of AMPA receptors has been suggested by recordings of 

miniature excitatory postsynaptic currents from single synaptic boutons in hippocampal 

cultures (Forti et al., 1997). It is worth noticing that saturation of postsynaptic receptors 

can lead to errors also in the estimation of N, since multi-site (and in general, 

multivesicular) release could give rise to a postsynaptic response that is not significantly 

different from a univesicular one. In fact, in the case of a simple functional 
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characterization of a synapse it is advisable to designate it not as a one-site or 

univesicular synapse, but rather as a ‘uniquantal’ synapse (Silver, 1998). Finally, a 

number of other sources of variability have been treated in experimental and modelling 

studies, including different number and stochastic properties of the postsynaptic receptors 

at the same or at different release sites (Auger & Marty, 1997; Auger & Marty, 2000; 

Franks et al., 2003). 

 

2.3.4 Methods: classical approaches and novel ideas 

Starting from the pioneer work of del Castillo and Katz (1954), various approaches have 

been used to address the problems of quantal analysis. By convention, synaptic amplitude 

fluctuations are often visualized by measuring the amplitudes of several hundred evoked 

synaptic responses and plotting their distribution as a histogram. Several different 

techniques have been developed for interpreting synaptic amplitude fluctuations, and 

many of these focus on the amplitude histogram (reviewed by Bekkers, 1994; Redman, 

1990; Bennett and Kearns, 2000). Moreover, in the case of a Poissonian model for the 

release, eqns. I.8 and I.9 have been used to obtain immediate estimates of the quantal 

content m from the number of failures or from the CV, respectively. The corresponding 

expressions allow these two methods to be applied to a binomial process (eqns. I.2 and 

I.6) just upon requirement of independent estimates of p, e.g., by comparing two 

conditions of release, such as high and low [Ca2+] (for details, see Martin, 1977). More 

often, because the binomial CV is independent of Q, it has been used as a tool for 

identifying the site of a change in synaptic strength, i.e., pre- versus postsynaptic (Faber 

and Korn, 1991). 

However, some of these techniques rely on models of synaptic transmission that 

incorporate unrealistic simplifying assumptions, or have too many free parameters 

(Brown et al., 1976; Barton and Cohen, 1977; Clements, 1991; Faber and Korn, 1991; 

Walmsley, 1995; Frerking and Wilson, 1996; Bekkers, 1994, 1995; Bekkers and 

Clements, 1999). Of particular concern are methods that search for ‘quantal’ peaks in the 

synaptic amplitude histogram (del Castillo and Katz, 1954; Redman, 1990; Bekkers, 

1995; Bekkers and Clements, 1999). These methods assume that every vesicle of 

transmitter produces a postsynaptic response of approximately the same amplitude (the 
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‘quantal’ amplitude), and that the quantal amplitude is identical at all terminals or release 

sites, assumptions that are valid just at the NMJ. For central synapses, due to the 

variability of the responses discussed above, modifications of the original quantal 

hypothesis have been developed. They take into account the possibility of a non-uniform 

probability of release as well as the existence of both intra and intersite quantal 

variability, i.e. the variability in the quantal size at individual release site and between 

different release sites, respectively (Frerking & Wilson, 1996; Bennett & Kearns, 2000; 

Scheuss & Neher, 2001). In particular, methods which require fewer assumptions and are 

more robust to variability than previous approaches are the ones based on the analysis of 

the relationship between the mean and the variance of the responses (Clements, 2003), 

and the so-called multiple-probability fluctuation analysis (Silver, 2003). As described by 

Clements and Silver (2000), such methods also provide powerful tools for understanding 

the site of expression of synaptic plasticity (Silver et al., 1998; Reid & Clements, 1999; 

Foster & Regehr, 2004). 

Finally, some authors have pointed out recently a couple of different problems that must 

be acknowledged when dealing with quantal analysis of synaptic responses. In fact, it is 

not clear yet whether at small central synapses different release sites behave 

independently as observed at the NMJ. The analysis of the stochastic properties of 

miniature excitatory postsynaptic currents at individual hippocampal synapses has shown 

a clear divergence of the output of quanta from Poisson’s law (Abenavoli et al., 2002). 

This result, together with the morphological observation of spontaneous pairs of omega 

profiles at active zones by fast freezing, suggests that functional release sites might be 

clustered. Moreover, impressive results suggest that spontaneously recycling vesicles and 

activity-dependent recycling vesicles originate from distinct pools with limited cross-talk 

with each other (Sara et al., 2005), thus undermining the idea itself of an analysis of 

synaptic activity based on experiments with minis. 

 

2.4 Univesicular versus multivesicular release 

It was shown in the central nervous system that the number of release sites equals N, one 

of the parameters of the binomial law used in quantal analysis to describe the amplitude 

distribution of evoked synaptic currents (for a review see Redman, 1990). This identity 
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means that the maximal number of quantal peaks in amplitude distributions is inferior or 

equal to the number of release sites. In the extreme case where the connection involves a 

single release site, a single peak is observed. These observations together with electron 

microscopy structural data have been interpreted by Triller and Korn (1982) as indicating 

that only one vesicle can be released per release site after the arrival of an action potential 

(one site–one vesicle hypothesis). Nevertheless, as stressed by the same authors, near 

saturation of postsynaptic receptors by the neurotransmitter content of a single vesicle 

could provide an alternative to the single site–single vesicle hypothesis (Korn et al., 

1982). If postsynaptic receptors are close to saturation, multivesicular release would 

result in a small signal increment over univesicular release as only few additional 

receptors can be recruited. Single release sites would therefore generate single peak 

amplitude histograms in spite of multivesicular release. If on the other hand postsynaptic 

receptor occupancy is significant but far from saturation, multivesicular release will result 

in multiple peaks at decreasing intervals as the number of free postsynaptic receptors 

decreases after each vesicular release. In practice, occupancy values of 0.5 or higher will 

generate amplitude histograms that are virtually indistinguishable from single peak 

distributions. Furthermore, even if full saturation of postsynaptic receptors occurs, 

multivesicular release can in principle be demonstrated at single site synapses. Vesicular 

release is a time distributed process: synaptic current onsets are spread over a period of 

about 1 ms at room temperature (Katz & Miledi, 1965; Isaacson & Walmsley, 1995). 

Two successive exocytotic events should therefore result in a succession of a large and a 

small synaptic current, very much as in the case of two closely separated miniature 

events. Moreover, since the release probability is a function of time, early release events 

are more likely to be followed by a second release event than late ones. Thus 

multivesicular events will tend to have early latencies. Their rise times should be slowed 

down because of temporal summation of the rising phases of the underlying individual 

components. They will also have long durations, because larger and longer agonist pulses 

tend to prolong the decay time of the postsynaptic currents. Finally, they will have large 

amplitudes because of the partial summation of successive events (due to the fact that 

receptor occupancy is less than 1). Conversely, univesicular events will tend to be 

associated with longer latencies, fast rise times, short decay times and small amplitudes 
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(Raghavachari & Lisman, 2004). It is worth noticing that this observation about response 

amplitudes means that multivesicular release is more easily subject to postsynaptic 

saturation, especially if p is high; this implies that highly plastic synapses with the 

possibility of multivesicular release will have lower values of p, and that in general 

quantal size is determined by a fine balance of pre and postsynaptic factors (Liu, 2003).  

Using the tools described above, the application of fast-off antagonists, and even other 

techniques, multivesicular release was demonstrated at central synapses, for example at 

cerebellar synapses (Auger et al., 1998; Auger & Marty, 2000; Wadiche & Jahr, 2001; 

Foster et al., 2002).  

The situation is more controversial at hippocampal synapses. For instance, at the CA3-

CA1 synapses, proofs of univesicular release are reported both during the first week of 

development (Hanse & Gustafsson, 2001a,b) and in later periods (Stevens & Wang, 

1995; Hjelmstad et al., 1997). At this synapse, the non-saturation of postsynaptic 

receptors has been assessed with various techniques (Mainen et al., 1999; Raghavachari 

& Lisman 2004; McAllister & Stevens 2000; Nimchinsky et al., 2004; Conti & Lisman 

2003).  

Moreover, several lines of evidence suggest the involvement of a single functional 

release site at these connections for the first postnatal week, and the development of an 

increased number of release sites for each axon in the following weeks (Hsia et al., 1998; 

Groc et al., 2002). Interestingly, new studies using optical and electrophysiological 

methods have recently reported proofs of multivesicular release at CA1-CA3 synapses at 

late developmental stages (Oertner et al., 2002; Conti & Lisman, 2003; Christie & Jahr, 

2006), even though no evidence of multivesicular release has been reported at this 

synapse during the first week of development. 

 



 31 

SECTION II 

 

1. Interneurons of the hippocampus: overview 

Since the early studies of Ramón y Cajal (1911) and Lorente de Nó (1934) describing the 

different neuronal varieties that make up the circuitry of the hippocampal cortex, it has 

been clear that a high level of heterogeneity is present in the morphology and 

connectivity of local circuit neurons, as opposed to principal neurons, which are much 

more uniform in their appearance.  

The term interneuron was originally used to describe cells at the interface between input 

and output neurons in invertebrates. However, following the development of the concept 

of synaptic inhibition (Eccles, 1964), the word ‘interneuron’ progressively conveyed the 

unifying principle that inhibitory cells with short axons play an essential role in the 

regulation of local circuit excitability, in contrast to (excitatory) principal cells with long 

axons that project information to distant brain regions. Nevertheless, the continuous 

emergence of novel functional, biochemical and anatomical data has clearly shown that 

the concept of ‘interneuron’ is an oversimplification that needs to be readjusted to 

accommodate cellular types that would not strictly fit the definition. The debates over 

nomenclature have surfaced in more recent years, particularly when neurons with local 

axons were shown to establish asymmetrical (presumably excitatory) synapses; confusion 

also existed concerning what to call “interneurons” with axon collaterals that project to 

distant brain areas. These cases clearly indicated that the correspondence among Golgi’s 

short axon cells, the non pyramidal cells of Ramón y Cajal and Lorente de Nó, and the 

inhibitory interneurons described by Eccles and others was not at all straightforward. 

Therefore, it is not surprising that interneurons have been collectively referred to as ‘non-

principal cells’ just because of the lack of a better unifying criterion. Albeit extremely 

vague, the term ‘non-principal neuron’ has the advantage of retaining the complexity of 

the real scenario and highlighting the difficulty in finding a positive common 

denominator that can encompass such a variety of neuronal types.  

For the hippocampal formation, the term ‘non-principal cell’ was sufficiently simple and 

correct to designate neurons mostly involved in local synaptic circuits, but some of them, 

in addition to their local collaterals, may have an extra hippocampal or commissural 
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projection. On the other hand, neurons with well-established local excitatory output (e.g., 

mossy cells) are not considered interneurons, even if their axon remains restricted to the 

hippocampal formation. Given that most, if not all, non-principal cells use GABA as a 

transmitter (Freund & Buzsáki, 1996), the definition “GABAergic non-principal cells” 

appears to be the most adequate for hippocampal interneurons. 

In the past few decades, the quest for a unifying criterion has radically turned into a more 

specific search for extended classification schemes, with the ideal goal of restraining the 

wide heterogeneity of interneurons to manageable subgroups. According to most authors 

 
Figure 3.  Interneurons in the CA1 area of the hippocampus. Somata and dendrites of 
interneurons innervating pyramidal cells are shown in orange, those innervating other 
interneurons are shown in pink. Axons are green and the main termination zone of 
GABAergic synapses are shown in yellow. Molecular cell markers in combination with 
the axonal patterns help the recognition and characterisation of each class. Further data 
may lead to lumping of some classes and to the identification of additional cell types. CB, 
calbindin; CR, calretinin; LM-PP, lacunosum-moleculare–perforant path; LM-R-PP, 
lacunosum-moleculare–radiatum–perforant path; m2, muscarinic receptor type 2; NPY, 
neuropeptide tyrosine; PV, parvalbumin; SM, somatostatin; VGLUT3, vesicular 
glutamate transporter 3. (From Somogyi & Klausberger, 2005) 
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(see for example McBain & Fisahn, 2001), to understand the role of well-defined 

populations of interneurons in a particular brain function, one must first understand the 

nature of the afferent synaptic drive (both excitatory and inhibitory). In addition, one 

must identify the precise roles of intrinsic voltage-gated conductances, the types and roles 

of interneuronal signalling, and the anatomical identity of the cell types embedded in the 

network of interest. Once equipped with this information, models and simulations based 

on the exact properties and function of identified synapses and cells in a well-

characterized computational network can be constructed. This would allow asking precise 

questions about the roles of specific inhibitory interneurons in generating or modulating 

particular brain functions. However, a basic obstacle to performing such analysis, and to 

explaining why cortical neurons produce action potentials in a particular pattern, is the 

lack of knowledge of the identity and number of input neurons in the required detail. In 

most cortical areas many populations of input axons and several distinct populations of 

recipient neurons are mixed in space, making synaptic connections difficult to predict. As 

an example, the cortical area with the least heterogeneous neuronal population and the 

smallest number of extrinsic inputs is probably the hippocampal CA1 area, one reason for 

its popularity for studying the cortical network. The alignment of the somata and 

dendrites of pyramidal cells into defined layers and the laminar segregation of much of 

the extrinsic and intrinsic inputs provide the best chance for defining the synaptic 

relationships of distinct cell types and the basic cortical circuit. Nevertheless, even in this 

limited region it is not simple to unveil the complete organization of the inhibitory system 

(see Figure 3). 

It is therefore convenient to undergo a detailed description of the approaches that have 

been most widely used in the quest for a precise classification of the hippocampal 

interneurons. 

 

1.1 Towards a classification of the interneurons 

One important problem that has always afflicted studies of interneuron function has been 

the inability to classify interneurons into neat sub-populations, identified for example 

with functional or anatomical tools. In contrast to the more homogeneous principal cell 

population, interneurons are exceptionally diverse in their morphological appearance and 
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functional properties. To date, there is no universally accepted taxonomy of cortical and, 

in particular, hippocampal interneurons. Classification schemes vary from many defined 

classes (Freund & Buzsáki, 1996; McBain & Fisahn, 2001; Maccaferri & Lacaille, 2003; 

Somogyi & Klausberger, 2005) to views that regard interneurons as a single group with 

virtually unlimited heterogeneity of its members (Mott et al., 1997; Parra et al., 1998). 

In general, there is no agreement on the number and identity of neuronal species in the 

cerebral cortex. This is partly due to the lack of agreement on criteria of what is necessary 

to define a cell type, and consequently different authors use partial criteria or sets of non-

overlapping data for studying the same or a mixture of several neuronal populations. The 

lack of adequate definition of cell types mainly results from the small number of cells and 

cortical areas studied in a comprehensive manner, despite the availability of long 

established methods of proven value. In other words, relative to the challenge of defining 

the likely number of cell types that occupy a distinct position in the spatio-temporal 

structure of the cortex, little effort has been devoted to defining them in a rigorous 

manner. In addition, some statistical variability is expected within a single population of 

cells in all measures, which may have profound biological significance (Aradi et al. 2002; 

Foldy et al. 2004), but at the same time may make the recognition of individual cells 

more difficult. 

In the following sections, an overview will be provided of a number of different features 

which make the interneuronal family such a multifarious ensemble of cells (see 

Maccaferri & Lacaille, 2003). According to many authors, based on the whole range of 

measured parameters each cell would eventually fall into a tight cluster, the cell type, in 

this multidimensional space. Of course, in most cases only some of the measures will be 

available in a given experiment, and one of the important current tasks is to establish 

which partial measures are sufficient for the correct recognition of a class of cell, in one 

cortical area, across areas and across different species. As stated above, initial progress 

towards this goal is expected from simple cortical areas such as the hippocampal CA1 

region (Somogyi & Klausberger, 2005; Figure 3). 

 

1.1.1 Morphological classification 
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The hypothesis that neurones with different shapes have distinct roles in the cortex was 

implicit in the earliest studies of Ramón y Cajal and was later elaborated by many, most 

elegantly by Janos Szentagothai (1975). A further useful predictor for distinct roles was 

found in the differential and highly selective location of output synapses on target 

neurones (Ramón y Cajal, 1893; Szentagothai, 1975). The morphological appearance of 

interneurons is now regarded as a source of important information for their specific role 

in neuronal circuits. Indeed, their anatomy alone can provide intuitive insights into cell-

type-specific contributions in an active network, by relating the somatodendritic location 

to the layer specificity of synaptic input and the axonal projections to the postsynaptic 

target domain.  

The earliest studies, based on Golgi impregnations (Ramón y Cajal, 1893; Lorente de Nó, 

1934), distinguished ~20 different types of interneurons in the hippocampus. Specific 

types of cell were assigned a simple descriptive term according to a striking feature of 

their axonal or dendritic processes (e.g. basket cell, horizontal cell and stellate cell). A 

significant improvement was the development of labelling techniques that allowed 

examination of the entire dendritic and axonal processes of single cells (Buhl et al., 

1994). To match the large number of interneuron types, an equally rich terminology was 

adopted. Specific cellular types were defined by a combination of classical terms (e.g. 

basket cells) and new descriptive terms that emphasized different aspects of interneuron 

anatomy (Gulyas et al., 1993). For example, some terms highlighted the postsynaptic 

target domain (e.g. ‘axo–axonic cells’, which innervate the axon initial segment of the 

postsynaptic cell; Buhl et al., 1994); others referred to the two specific layers containing 

the soma and the axonal processes (e.g. oriens–lacunosum moleculare, ‘O–LM cells’; 

Freund & Buzsáki, 1996; pyramidale–lacunosum moleculare, ‘P–LM cells’; Oliva et al., 

2000; oriens–oriens and radiatum, ‘O–bistratified cells’; Maccaferri et al., 2000). In the 

case of long-projection interneurons, the origin and target brain regions were embedded 

in the terminology (e.g. hippocampo–septal neurons). Different systems emphasized the 

main axis of orientation of the interneuron dendritic tree (e.g. stellate cells, and vertical 

and horizontal cells located in stratum oriens) or, finally, the specific afferents onto 

pyramidal cells that overlap with the interneuron projections (e.g. Schaffer-collateral 

associated interneurons).  
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However, given the lack of a universally agreed anatomical nomenclature, different 

investigators have described the same type of interneuron using different descriptive 

terminology (e.g. horizontal cells in McBain et al., 1994, and O–LM cells in Maccaferri 

et al., 2000; vertical cells in McBain et al., 1994, and basket or bistratified cells in Buhl 

et al., 1994), leading to a strong need for a universally recognized interneuron 

vocabulary. Despite the usefulness and potential descriptive power of accurate 

morphological characterization, the role of an interneuron in an active brain network is 

ultimately and crucially shaped by its functional properties which, therefore, need to be 

included in its definition. 

 

1.1.2 Neurochemical classification 

The morphology of an interneuron does not define it; within a given morphological type, 

interneurons can show widely varying electrical or molecular properties. For example, 

the development of immunohistochemical tools has uncovered a tremendous number of 

neurochemical markers for interneurons, and although no single neuropeptide defines a 

specific interneuron type, some interneuron types tend to express specific combinations 

of neuropeptides. 

First, interneurons were found to contain GABA (Storm-Mathisen et al., 1983), as well as 

the GABA-synthesizing enzymes GAD65 and GAD67 (Ribak, 1978), providing evidence 

that local circuit cells in the hippocampus were inhibitory (Freund & Buzsáki, 1996). But, 

in addition, various populations of interneurons were found to contain different peptides 

(e.g. somatostatin, cholecystokinin (CCK) and substance P) or Ca2+-binding proteins (e.g. 

calbindin, parvalbumin and calretinin) (see for example Somogyi et al., 1984; for a 

review see Freund & Buzsáki, 1996). This has resulted in a neurochemical classification 

that is based on the cell-specific presence of these markers, which are potentially 

expected to be functionally discriminating (Freund & Buzsáki, 1996). For example, the 

specific expression of parvalbumin, calbindin and calretinin appears to identify groups of 

interneurons with different geometry of dendritic architecture, postsynaptic target 

selection and synaptic input density (Gulyas et al., 1999). However, different types of 

morphologically defined interneurons could co-exist and overlap in a single 

neurochemically identified subgroup. For example, somatostatin immunoreactivity has 
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been detected in O–LM, O–bistratified, P–LM and radiatum–lacunosum moleculare (R–

LM) interneurons of the CA1 hippocampal subfield (Oliva et al., 2000; Maccaferri et al., 

2000; Katona, 1999; Losonczy et al., 2002). Similarly, parvalbumin is expressed in all 

cellular compartments of basket and axo–axonic cells (Kosaka et al., 1987; Klausberger 

et al., 2003). In addition, parvalbumin immunoreactivity has been shown in O–LM cells, 

although at lower levels and not in the synaptic terminals (Maccaferri et al., 2000; 

Losonczy et al., 2002). 

Moreover, neurochemical markers can be differentially expressed in morphologically 

similar interneurons with different functional properties (e.g. parvalbumin- and CCK-

expressing basket cells; Freund, 2003). Therefore, a combination of the two approaches, 

neurochemical and anatomical, might be required to distinguish selectively interneurons 

performing specific tasks in a circuit. Recent work in vivo using a combination of single-

cell anatomy and neurochemical characterization has shown that three types of 

hippocampal interneurons, identified as parvalbumin-positive basket cells, axo–axonic 

cells and somatostatin-positive O–LM cells, display differences in firing pattern during 

various population discharge patterns (theta oscillations and sharp waves; Klausberger et 

al., 2003). Although information is missing for additional interneuronal types, a strong 

degree of consistency was found within each class of cells, suggesting that these specific 

interneurons subtypes are selectively recruited and carry out distinct types of operation 

during rhythmic brain activity. 

 

1.1.3 Functional classification 

Characterizations based on function have proved to be even more problematic. Classical 

subdivisions were based solely on action potential firing patterns, with different 

distinctions due to different investigators (accommodating or non-accommodating, 

bursting, fast-spiking cells and regular-spiking cells; see Lacaille et al., 1987; Traub et 

al., 1987; Kawaguchi & Hama, 1988). Even more recently, interneurons have been 

divided according to their steady-state or initial responses to stimuli, as well as to the 

spontaneous firing pattern, obtaining for example a distinction between cells firing 

regularly, irregularly or in clusters (Parra et al., 1998). These response types are useful 

markers, regardless of whether they define discrete classes (as opposed to a continuum). 



 38 

However, the generation of action potentials results from the combined activity of 

numerous voltage-gated conductances overlapping in time, all of which have unique 

expression patterns throughout interneuron subpopulations and impart subtle 

characteristics to the action potential waveform. So, whereas this classification has been 

historically useful, it has only limited value given the ever-expanding repertoire of 

voltage-gated channels identified on inhibitory neurons. 

Finally, recent studies on the properties of synapses have been made by identified 

afferent projections on specific interneuron subpopulations. In fact, classifications based 

on the nature of excitatory synaptic transmission have become increasingly common. In 

hippocampal circuits, repetitive activation of afferents either progressively increases or 

decreases the amplitudes of excitatory synaptic events. The list of synapses that show 

facilitation or depression has become increasingly extensive, primarily as a result of 

studies involving connected pairs of neurons. The usefulness of such a classification 

scheme for hippocampal interneurons can be questioned since a single axon may transmit 

information in a target-specific manner (Maccaferri et al., 1998; Scanziani et al., 1998). 

 

2. Functional role of interneurons 

Many fundamental principles of interneuron function have been originally defined using 

the hippocampus, specifically the dentate gyrus (Freund & Buzsáki, 1996). The local-

circuit, GABA-releasing inhibitory interneurons in the hippocampus, as in the rest of the 

cortex, have traditionally been considered as the regulators of principal neuron excitatory 

activity. Recent evidence indicates that, in addition to that role, their network 

connectivity and the properties of their intrinsic voltage-gated currents are finely tuned to 

permit inhibitory interneurons to generate and control the rhythmic output of large 

populations of both principal cells and other populations of inhibitory interneurons, 

indicating a much more complex role for these cells than just providers of inhibition. For 

instance, GABAergic interneurons innervating the perisomatic region of pyramidal cells 

are now thought to control population discharge patterns, and thereby cognitive 

operations, in the whole cerebral cortex (Freund, 2003). 

In particular it has been noted that, in contrast with the rather uniform population of 

principal cells in any of the hippocampal subfields, the afferent and efferent connectivity 
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of interneurons shows great variation (Ramón y Cajal, 1893, 1911; Lorente de Nó, 1934), 

thereby enabling them to carry out multiple tasks.  

Within the hippocampal circuitry, interneurons receive afferent excitatory input from 

several intrinsic and extrinsic sources (Lacaille et al., 1987; Kawaguchi & Hama, 1988; 

Freund & Buzsáki, 1996; Oliva et al., 2000), and excitatory inputs have been shown to 

undergo various types of activity-dependent modulation (see Losonczy et al., 2002, and 

references therein). For example, in the above mentioned work, Gulyas et al. (1999) also 

examined how the pattern of excitatory innervation varied among three different cell 

types containing parvalbumin, calretinin and calbindin. Whereas both parvalbumin and 

calretinin interneurons received synapses within all layers of the hippocampus, calbindin 

cells received input largely from Schaffer collateral afferents in stratum radiatum. The 

high input specificity of calbindin cells indicates that they may be activated primarily in a 

feed-forward manner. By contrast, parvalbumin and calretinin interneurons are activated 

both in a feed-forward manner by Schaffer collaterals and by entorhinal fibres and 

thalamic afferents from the nucleus reunions, as well as in a feed-back manner by local 

CA1 recurrent collaterals. 

In the following paragraphs, the efferent connections of hippocampal interneurons will be 

examined, by presenting the different kinds of interneuronal activity. Both chemical and 

electrical synapses will be introduced since interneurons communicate with target cells 

and among them via these two types of synaptic connections. 

 

2.1 Chemical synaptic activity  

The dendrites, cell bodies, and the axon initial segment of every principal cell in cortical 

structures are innervated by inhibitory interneurons. As stated above, the terminals of 

interneurons release the inhibitory transmitter GABA and may also release peptides that 

colocalize with GABA in many types of interneurons. The complex issue of GABA-

mediated transmission has been reviewed extensively (see for example Mody et al., 

1994).  

Peptides themselves can modulate GABAergic activity, even though their physiologic 

role in the operations of the hippocampal formation has remained elusive. One major 

difficulty is that all experiments to date test the pharmacological effects of peptides on 
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neuronal excitability, passive membrane properties, and/or transmitter release by 

pharmacological means rather than by physiological activation of interneurons. 

Furthermore, bath application or even pressure ejection of the peptide may act on 

multiple sites, some of which may exert an opposite effect on the measured experimental 

variable. Another typical interpretational problem is a mismatch between the axon 

terminals of the peptide-containing interneurons and the intrahippocampal distribution of 

receptors for the same type of peptide. However, it is known that several peptides exert a 

relatively selective action on the release of GABA from the presynaptic terminals of 

interneurons (Freund & Buzsáki, 1996). Assuming that peptides are not released without 

GABA, the peptide will most effectively regulate the release of GABA from the 

terminals of its parental interneuron on the basis of spatial proximity. Such an effect may 

be viewed as a variant of autoregulation (see paragraph 2.1.1). Because some 

interneurons with dendritic targets may not possess presynaptic GABAB receptors 

(Lambert and Wilson, 1993), an interesting possibility is that autoregulation of GABA 

release in those neurons may be carried out by a coreleased peptide. It is worth noticing 

that the axon collaterals of most peptide containing interneurons target the dendritic 

domains of principal cells. It is also possible that high-frequency firing or certain 

discharge patterns are a prerequisite for peptide release; therefore, presynaptic regulation 

of GABA release may be discharge pattern dependent. 

 

2.1.1 Postsynaptic actions on the principal cells 

In general, the stimulation of afferent fibres elicits biphasic IPSPs in principal cells. The 

early phase of this event is due to the activation of GABAA receptors while the late phase 

is due to the activation of GABAB receptors. GABA, released from presynaptic nerve 

terminals binds to synaptic GABAA receptors facing the presynaptic release site and 

induces an early inhibitory postsynaptic potential. The membrane hyperpolarisation and 

the associated increase in membrane conductance lower the threshold for action potential 

generation leading to inhibition of cell firing. Activation of GABAA receptors also shunts 

excitatory synaptic currents. The late phase of the IPSP is mediated by K+ ions flowing 

through channels linked by G-proteins to GABAB receptors. Initially, questions were 

posed regarding the modes of interneuron-mediated inhibition of principal cells and 
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among interneurons themselves. For example, it is unclear if separate groups of inhibitory 

cells are responsible for activating postsynaptic GABAA and GABAB receptors; however, 

at least in the hippocampus, spontaneously occurring GABAB-mediated synaptic events 

have been never found. 

GABA receptors are located at pre- and postsynaptic sites. Chloride-dependent GABAA-

receptor-mediated synaptic inhibition is similar in these two locations, while 

metabotropic GABAB receptors cause presynaptic inhibition by suppressing calcium 

influx and reducing transmitter release. In this way, GABA can be important also in 

presynaptic control and modulations of transmitter release (Owens & Kriegstein, 2002). 

It is interesting to notice that in the hippocampus presynaptic GABAB receptor function is 

already present perinatally, but postsynaptic receptor function is delayed until about one 

week later (Gaiarsa et al., 1995; McLean et al., 1996). 

An early hypothesis suggested that dendritic inhibition is mediated by GABAB receptors, 

probably activated by GABA released by a separate group of interneurons (Alger & 

Nicoll, 1982; Segal, 1990). In support of this hypothesis, IPSPs with similar kinetics to 

the GABAB-receptor-mediated responses are produced by activation of interneurons in 

stratum lacunosum-moleculare (Lacaille & Schwartzkroin, 1988). However, the slow rise 

time of somatic IPSPs in postsynaptic pyramidal cells may simply reflect electrotonic 

filtering by the dendrites (Soltesz & Mody, 1994). Furthermore, other experiments that 

have involved pharmacological manipulations show that dendritic inhibition brought 

about by intracellular activation of the presynaptic interneuron is mediated by GABAA 

receptors (Buhl et al., 1994, 1995). 

Overall, different GABAergic interneurons can affect hippocampal principal cells with 

inhibition, shunting, and even excitation in the presence of particular conditions for the 

reversal potential of chloride (Freund & Buzsáki, 1996). It is clear that fast ‘phasic’ 

synapses synchronize the activity of principal cell ensembles and contribute to the 

generation of high-frequency oscillatory activity in interneuron networks (Cobb et al., 

1995; Buzsáki & Draguhn, 2004), whereas slow ‘tonic’ inhibition may set the gain or 

offset of the input-output relations of postsynaptic target cells (Holt & Koch, 1997; 

Mitchell & Silver, 2003). 
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More recently, the mapping of axonal arbours to specific domains across the dendritic 

trees of their targets has provided important clues to the specific functional roles carried 

out by various interneuron subtypes (Buhl et al., 1994; Halasy et al., 1996; Miles et al., 

1996; Maccaferri et al., 2000; Klausberger et al., 2002). For example, interneurons that 

innervate pyramidal cell somata regulate the local generation of Na+-dependent action 

potentials (Miles et al., 1996). By contrast, inhibition arriving at dendritic locations 

influences dendritic voltage-gated currents, shunts excitatory inputs at sites distal to the 

soma (Callaway & Ross, 1995; Hoffman et al., 1997), and regulates dendritic Ca2+-

dependent action potentials (Miles et al., 1996). In brief, somatic GABA synapses control 

action potential discharge, whereas dendritic GABA synapses control local electrogenesis 

and synaptic plasticity. Results unveiling distinct functional roles have also been obtained 

by comparing interneuron subtypes distinguished from a molecular point of view (Hefft 

& Jonas, 2005). Of course, this division of labour is excessively rigid and exceptions to 

this classification probably exist (Maccaferri et al., 2000; McBain, 2000). 

 

2.1.2 Synaptic plasticity 

It is worth mentioning that interneurons undergo activity-dependent forms of synaptic 

plasticity different from those commonly found in principal cells (Maccaferri & McBain, 

1996; McBain et al., 1999). Calcium entry via Ca2+-permeable AMPA receptors, present 

on various hippocampal interneurons is crucial for the induction of long-term potentiation 

in these cell types. Ca2+-permeable AMPA receptor channels are tonically blocked (from 

inside) by endogenous polyamines and the relief from this blockade is both use- and 

voltage-dependent. This mechanism of activation endows Ca2+-permeable AMPA 

receptor synapses with a new postsynaptic mechanism for short-term enhancement of 

synaptic gain. Short-term facilitation is greatest at depolarized potentials and acts to boost 

sub threshold EPSPs to trigger action potentials despite the reduced driving force. A 

novel form of long-term plasticity also exists at interneuron Ca2+-permeable AMPA 

synapses. High-frequency stimulation of associational inputs onto CA3 stratum radiatum 

interneurons or of mossy fibre inputs onto stratum lucidum interneurons induces a form 

of NMDA-independent long-term depression termed interneuron LTD (iLTD; McMahon 

& Kauer, 1997). Interestingly, identical patterns of stimuli delivered to mossy fibre axons 
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resulted in opposing long-term changes in synaptic efficacy at principal synapses 

compared with interneuron synapses (long-term potentiation versus iLTD, respectively). 

This differential plasticity is likely to shift the excitation–inhibition balance in favour of 

excitation at mossy fibre–CA3 connections (McMahon & Kauer, 1997; Laezza et al., 

1999; Toth et al., 2000). 

 

2.2 Networks of interneurons 

One of the main challenges of neuroscience is to understand how complex behaviours of 

the brain emerge from its cellular constituents. Interneurons differ from each other not 

only in intrinsic biophysical properties, morphological and molecular biological features, 

but also in their connectivity. Complex wiring affects the contribution of interneurons to 

network performance and many authors suggest that connectivity is a useful approach for 

examining how complex functions (e.g. oscillations) emerge from elementary features 

(e.g. inhibitory connections; Buzsáki et al., 2004). 

 

2.2.1 Gap junctions between interneurons 

Gap junctions are clusters of channels that connect the interiors of adjoining cells and 

mediate electrical coupling and transfer of small molecules. In the initial electron 

microscopic description, the extracellular space between the adjoining cells appeared 

reduced to a narrow gap, and the channels crossing the gap were not well resolved (Revel 

and Karnovsky, 1967). Thus, the term gap junction derives from a structural 

characteristic not obviously related to function. The gap distinguishes these junctions 

from “tight junctions” or “zonulae occludentes”, where the intercellular space between 

adjoining cells appears completely occluded (but see Tang and Goodenough, 2003). The 

large internal diameter (1.2–2 nm) of many gap junction channels allows not only flow of 

electric current, largely carried by K+ ions, but also exchange of small metabolites and 

intracellular signalling molecules. In general, gap junctions may subserve metabolic 

coupling and chemical communication as well as electrical one, and they are thought to 

play an important role in brain development, morphogenesis, and pattern formation 

(Bennett et al., 1991; Bruzzone et al., 1996; Dermietzel et al., 1989; Goodenough et al., 

1996). 



 44 

The structural proteins comprising gap junctional channels, called connexins (Cx), form a 

multigene family whose members are distinguished according to their predicted 

molecular mass in kDa (e.g. Cx32, Cx43; Willecke et al., 2002). The family of connexin 

genes comprises 21 members in the human and 20 in the mouse genome, 19 of which can 

be considered as orthologue pairs on the basis of their sequence. Intercellular channels 

span two plasma membranes and result from the association of two half channels, called 

connexons, contributed separately by each of the two participating cells. Each connexon, 

in turn, is a hexameric assembly of connexin subunits. Intercellular channels are defined 

as homotypic, when the two connexons have the same molecular composition, or 

heterotypic, when the connexons differ (Hormuzdi et al., 2004). Connexins have evolved 

a code of compatibility that permits only selective interactions between connexons, so 

that the establishment of electrical coupling is also dependent on the pattern of connexin 

expression between neighboring cells (Bruzzone et al., 1996). It is known that mice with 

targeted deletion of any one of a number of connexins still exhibit relatively normal 

structure and function, suggesting either redundancy or relative unimportance (Deans et 

al., 2001; Guldenagel et al., 2001; Buhl et al., 2003). 

Evidence that inhibitory interneurons of the hippocampus are interconnected by electrical 

synapses is persuasive. Dendrodendritic gap junctions between interneurons are 

frequently seen in areas CA1 and CA3 (Kosaka & Hama, 1985) and in the dentate gyrus 

(Kosaka, 1983). Several types of gap junction–coupled interneurons have been identified 

(Katsumaru et al., 1988; Fukuda & Kosaka, 2000), and dye coupling has been observed 

between inhibitory cells of the hilus (Strata et al., 1997) and of the CA1 region 

(Michelson & Wong 1994). Paired-interneuron recordings have shown electrical coupling 

directly, and single-cell RT-PCR has revealed mRNA encoding for connexin 36 (Cx36) 

(Venance et al., 2000). Furthermore, although electrical coupling between pairs of 

interneurons was abundant in the CA3 and in the dentate areas of wild-type mice, it was 

absent in cells of Cx36 knockout mice (Hormuzdi et al., 2001). 

The functions of electrical coupling between hippocampal interneurons are not yet well 

understood. Many studies have focused on the possibility that gap junctions play a role in 

generating or modulating synchronous oscillations or seizure-like activity. Measurements 

in Cx36 knockout mice have implicated electrical synapses in the generation of gamma-
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frequency rhythms (see paragraph 2.2.3; Figure 4), but not of fast ripples or slower theta 

rhythms (Hormuzdi et al., 2001; Traub et al., 2002; Buhl et al., 2003); however the role 

of gap junctions is found to be important also in high-frequency oscillations (Draguhn et 

al., 1998). It should also be considered that, if single neurons must “choose” between 

chemically mediated excitation and inhibition, gap junctions permit GABAergic cells to 

be also excitatory and to synchronize with others more precisely than possible with 

inhibition alone. 

 

2.2.2 Inhibition in networks of coupled neurons 

Inhibition is critical in shaping response properties in single cells as well as in assisting 

cooperativity in large cell populations. Inhibitory interneurons in cortical structures 

provide stability to the activity of the principal cell populations by feedback and feed-

forward inhibition (Freund & Buzsáki, 1996). Groups of interneurons tonically or 

phasically hyperpolarize and/or increase membrane conductance (“shunting”) in the 

perisomatic and/or dendritic regions of neurons and thereby decrease the efficacy of 

excitatory afferents in discharging their principal cell targets. Activation of hippocampal 

interneurons may be brought about by extra hippocampal inputs, by intra hippocampal 

inputs afferent to interneurons (both feed-forward), or by principal cells of the same 

hippocampal region (recurrent or feedback). In the feed-forward regulatory system, 

afferent volleys directly activate the inhibitory neuron (first event) that in turn reduces the 

probability of firing of the principal cells (second event). In the feedback system, an 

excitatory input discharges the principal cells, whose excitatory output is fed back to the 

inhibitory cell(s) through recurrent axon collaterals (Andersen et al., 1964). The 

inhibitory interneuron(s) then may discharge and inhibit a group of principal cells, 

including those that initially activated the interneuron(s). In short, the directions of firing 

rate changes of local principal cells and inhibitory interneurons are the same in the 

feedback systems but opposite in the feed-forward scheme (Buzsáki, 1984). 

Interestingly it was seen that, although inhibition and disynaptic disinhibition are useful 

concepts in the description of physiological effects of interneurons, application of usual 

Boolean logic often fails to provide correct predictions in systems where interneurons are 

interconnected with each other (Freund & Buzsáki, 1996). It is clear from both 
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experimental and simulation studies that in networks of inhibitory cells, independent of 

whether members are connected unidirectionally or mutually, oscillatory activity often 

emerges (Bragin et al., 1995; Whittington et al., 1995; Traub et al., 1996; Bartos et al., 

2002; Sohal & Huguenard, 2005; Vida et al., 2006), and the rules that govern the timing 

of action potentials and the frequency changes of the participating cells can no longer be 

inferred from the simple logic of inhibition and disinhibition. 

 

2.2.3 Network activity and oscillations 

Interneurons of the hippocampus are able to synchronize principal cells (see Cobb et al., 

1995). Moreover, they can phase the output of principal neurons giving rise to oscillatory 

 
Figure 4. Gap junctions between interneurons stabilize interneuron network gamma 
oscillations. (a) The putative organization of dendro–dendritic gap junctions between 
fast-spiking interneurons. The dendritic field of a basket cell is used to show 
representative gap junctions between distal dendritic compartments (yellow circles). (b) 
Electrical coupling between interneurons using dendritic gap junctions allows excitatory 
interneuron interactions, whereby tonic depolarization is shared between cells and a low-
pass-filtered correlate of action potentials in an active interneuron can be seen in the 
coupled interneuron. Gap-junction coupling provides a mechanism by which changes in 
membrane potential can be passed throughout the interneuron network, thus ‘smoothing’ 
the postsynaptic effects of any input heterogeneity. Scale bars: 2 mV, 40 mV and 100 ms. 
(c) Using pyramidal cell recordings to sample the output from interneurons (as inhibitory 
postsynaptic current (IPSC) trains) during interneuron-network gamma rhythms reveals a 
strong dependence on gap junction coupling. The upper trace shows a gamma frequency 
IPSC train in response to glutamate pressure ejection with fast excitatory synaptic 
transmission blocked. The lower trace shows the response in the same cell with gap 
junction conductance reduced by 0.2 mM carbenoxolone. Graphs show autocorrelations 
to illustrate changes in rhythmicity and local temporal coherence. Scale bars, 0.3 nA and 
200 ms. (From Whittington & Traub, 2003) 
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network activity in different frequency bands (Whittington & Traub, 2003; Buzsáki & 

Draguhn, 2004; Traub et al., 2004). There is in fact compelling evidence that 

hippocampal interneurons have a pivotal role in driving inhibition-based rhythms, such as 

gamma (30–80 Hz) and theta (5–12 Hz) frequency network oscillations (Whittington et 

al., 1995; Fisahn et al., 1998; Chapman & Lacaille, 1999a,b; Hormuzdi et al., 2001; 

Gillies et al., 2002; Klausberger et al., 2003, 2004; see Figure 4). In vitro models of 

rhythms of cognitive relevance, such as gamma and theta rhythms, and sharp-wave-

associated ripple oscillations (140–200 Hz), demonstrate an absolute requirement for 

phasic inhibitory synaptic transmission (see Whittington & Traub, 2003). Such rhythms 

represent different behavioural states and can occur transiently (~1s duration), or 

persistently (lasting for many hours). In the latter case, stable patterns of interneuron 

output, and their postsynaptic consequences for pyramidal cell membrane potential occur 

despite known constraints of synaptic habituation and potentiation. In particular, 

synchronous gamma-frequency oscillations represent a temporally coherent activity and 

are thought to be important in cortical information processing (Gray & Singer, 1989; 

Jones & Barth, 1997; Ritz & Sejnowski, 1997; Fries et al., 2001). One of their putative 

roles may be the synchronization of groups of spatially segregated cortical neurons at 

sites that can be many millimetres apart (Gray et al., 1989). Synchronous activity is 

ideally suited to provide a mechanism for the functional ‘binding’ of sensory features. 

Gamma frequency oscillations have been observed in a variety of brain structures (Singer 

& Gray, 1995), amongst them the hippocampus, which has a key role in memory 

formation (Morris et al., 1982; Zola-Morgan & Squire, 1993), and shows oscillatory 

activity in the theta/gamma frequency band during specific behavioural states (Buzsaki et 

al., 1983; Soltesz & Deschenes, 1993; Sik et al., 1995; Singer & Gray, 1995; Penttonen 

et al., 1998). 

Some authors have recently investigated how interneurons can fire phase-locked to 

oscillations, such as theta or sharp-wave-associated ripple oscillations. During these 

rhythms, various subfamilies of interneurons are able to fire with fixed frequencies at a 

characteristic time on the phase of theta or high-frequency waves. The firing patterns of 

individual cells of the same class are remarkably stereotyped and provide unique 

signatures for each class (Klausberger et al., 2003, 2004, 2005). Moreover, it is 
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reasonable to assume that the anatomical heterogeneity of hippocampal interneurons is 

reflected in their functional diversity (as discussed in paragraph 2.2.1) in particular during 

different forms of network activity. Thus, many studies have attempted a correlation of 

structure and function, and in particular, the way in which oscillatory input affects the 

activity of individual interneurons in the active network. For example, the different 

passive and active membrane properties of interneuronal subtypes can give them a role in 

the generation and maintenance of oscillations in different frequency ranges (see Figure 

5; Pike et al., 2000; Whittington & Traub, 2003; Schreiber et al., 2004). Moreover, the 

diverse targeting properties of interneurons or their different neurochemical specification 

may determine their differential involvement in the generation of various kinds of 

hippocampal oscillatory network activity, also leading the hippocampal network to 

 
Figure 5. Different intrinsic membrane properties of interneurons generate different 
outputs from a common excitatory synaptic network drive. Impedance profiles from 
hippocampal basket cells of stratum pyramidale (blue) and stratum oriens interneurons 
(red) reveal strong frequency dependence. Fast-spiking interneurons such as basket cells 
have peak impedance for inputs at gamma frequencies, whereas slow-spiking oriens 
interneurons have peak impedance for inputs at theta frequencies. During gamma 
oscillations in vitro, different interneuron subclasses receive remarkably similar rhythmic 
excitatory postsynaptic currents (EPSCs). The interaction between the common network 
input and the specific intrinsic properties of fast-spiking and slow-spiking interneurons 
leads to a different frequency of interneuron output, closely correlated with the frequency 
of peak impedance. Thus, a single frequency mode of principal cell output can generate 
multiple frequencies of feedback inhibitory input. Scale bars, 5 mV and 200 ms. (From 
Whittington & Traub, 2003) 
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generate ‘nested’ rhythms concurrently occurring in the theta and gamma frequency 

bands (Klausberger et al., 2003, 2004, 2005; Gloveli et al., 2005). 

In general, various paradigms have been identified which enable to evoke network 

oscillations in the hippocampus in vitro, and their properties have been studied 

extensively (for a complete review see Traub et al., 2004). 

 

3. Molecular and genetic variety of the interneurons 

In the recent years, the development of novel techniques, including single-cell reverse-

transcriptase polymerase chain reaction (RT-PCR), in vivo labelling and other molecular 

biological methods, as well as use of transgenic animals, has allowed interneurons to be 

probed from new and different angles (Meyer et al., 2002; Blatow et al., 2003; for a 

review see Monyer & Markram, 2004). 

For example, the first combined patch-clamp RT-PCR study showed differences in ion 

channels in pyramidal neurons and interneurons (Martina et al. 1998). More interestingly, 

in the neocortex, it has been recently described how the electrical diversity arises from 

active properties (ion-channel combinations) and passive properties (the morphology of 

the neuron). The ion-channel genes that are expressed by an interneuron correlate with its 

electrophysiological properties, and ion-channel expression seems to fall into three 

clusters, which map around the three calcium-binding proteins (parvalbumin, calbindin 

and calretinin) that are expressed in separate populations of interneurons (Markram et al., 

2004). On the other hand, knockout mice have helped to understand why the expression 

of particular proteins in GABAergic interneurons is relevant at the network level (Deans 

et al., 2001; Hormuzdi et al., 2001), and in general transgenic mice are being widely used 

for specifically investigating the properties of interneuronal subfamilies (Oliva et al., 

2000; Meyer et al., 2002). 

 

3.1 Correlating molecular and functional studies: new ideas for a classification 

The interesting question to be answered is if these powerful tools can be used to shed 

light on the debate whether hippocampal interneurons are subdivided in definite classes, 

or they constitute a continuum of different neurons. In general, at the anatomical level, 

cortical interneurons are generally accepted as being in distinct classes, not because of 
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any objective analyses, but because of more obvious functional specializations indicated 

by their different domain-targeting tendencies. At the molecular level, the issue is simpler 

because some markers are expressed only by certain interneuron types. However, it 

should be stressed that no one marker points unambiguously towards only one anatomical 

or electrical type of interneuron; the expression pattern of four or five markers might be 

required for a proper analysis. At the electrical level, the diversity might seem arbitrary, 

but this is probably due to the lack of defined functions for the different behaviours. The 

class-versus-continuum issue at all levels will probably only be resolved objectively at 

the level of gene expression. In the neocortex it has already been shown that the 

correlation between expression profiles and electrical phenotypes, the constraints in co-

expression profiles and the ‘flip’ of entire expression profiles to form opposite electrical 

phenotypes all indicate that only a few transcription factors, expressed in different 

combinations, might give rise to a finite number of distinct classes of interneurons 

(Toledo-Rodriguez et al., 2004, 2005). So, most interneurons probably belong to distinct 

electrical, morphological and molecular classes. The observed diversity is several orders 

of magnitude smaller than expected for a continuum of electrical types using more than 

100 ion-channel genes, indicating powerful constraints on diversity. Understanding these 

constraints, also with the aid of molecular and genetic tools, will be crucial for resolving 

the class-versus-continuum debate for hippocampal interneurons. 
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AIM OF THE STUDY 
In the investigation of the functionality of the nervous system, a precise analysis of how 

neurons communicate with each other holds a critical importance. Aim of the present 

study was to go deeper in characterising synaptic transmission in the hippocampus, 

mainly focusing on quantal transmission at single synapses and on different signalling 

properties throughout the hippocampal network. In order to take advantage of my 

theoretical background, I addressed this question in two ways, from both analytic and 

experimental point of view. 

Firstly, I developed an analytic model of chemical transmission at CA3-CA1 synapses, 

which uses simple hypotheses on quantal release from the presynaptic terminal to provide 

useful predictions on some quantal parameters, and on the mode of transmitter release. 

The model was validated with experimental data that we obtained in previous work (not 

included in this thesis) by recording postsynaptic responses in single CA1 pyramidal cells 

to minimal stimulation of afferent fibres. 

Secondly, I investigated the intrinsic and signalling properties of a subset of hippocampal 

interneurons, which are EGFP-positive in a particular strand of transgenic mice. Since 

with minimal stimulation methods it is difficult to make sure that the same single 

presynaptic axon is activated trial after trial, I decided to perform paired recordings from 

interconnected cells. To this aim I set up organotypic hippocampal slice cultures. This 

preparation has the advantage of maintaining morphological and functional features 

similar to those of native hippocampus even if flattened close to a monolayer. Moreover, 

the connectivity between neurons is enhanced, making it easier to find interconnected 

cells in double patch experiments. With this approach, I first characterized the population 

of EGFP-positive somatostatin-containing interneurons of the stratum oriens of CA1 

using single whole-cell patch clamp experiments, focusing on active and passive 

membrane properties and firing patterns of these neurons. Later, I performed double 

patch experiments to record either the simultaneous activity of couples of EGFP-positive 

interneurons in the population, or the activity of one interneuron and one principal cell of 

the CA1. In particular, I analyzed the different types of synaptic signalling, and I also 

collaborated in developing a simple model of this inhibitory network. 
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METHODS AND RESULTS 
 

• Multivesicular release at CA3-CA1 synapses: see enclosed paper 
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Ricci-Tersenghi, F., F. Minneci, E. Sola, E. Cherubini, and L.
Maggi. Multivesicular release at developing Schaffer collateral–CA1
synapses: an analytic approach to describe experimental data. J
Neurophysiol 96: 15–26, 2006. First published April 5, 2006;
doi:10.1152/jn.01202.2005. We developed and analytically solved a
simple and general stochastic model to distinguish the univesicular
from the multivesicular mode of glutamate release. The model solu-
tion gives analytical mathematical expressions for average values of
quantities that can be measured experimentally. Comparison of these
quantities with the experimental measures allows one to discriminate
the release mode and to determine the most probable values of model
parameters. The model has been validated at glutamatergic CA3–CA1
synapses in the hippocampus from newborn (P1–P5 old) rats. Our
results strongly support a multivesicular type of release process
requiring a variable pool of immediately releasable vesicles. More-
over, computing quantities that are functions of the model parameters,
the mean amplitude of the synaptic response to the release of a single
vesicle (q) was estimated to be 5–10 pA, in very good agreement with
experimental findings. In addition a multivesicular type of release was
supported by the following experimental evidences: 1) a high vari-
ability of the amplitude of successes, with a coefficient of variation
ranging from 0.12 to 0.73; 2) an average potency ratio a2/a1 between
the second and first response to a pair of stimuli �1; and 3) changes
in the potency of the synaptic response to the first stimulus when the
release probability was modified by increasing or decreasing the
extracellular calcium concentration. Our results indicate that at Schaf-
fer collateral–CA1 synapses of the neonatal rat hippocampus a single
action potential may induce the release of more than one vesicle from
the same release site.

I N T R O D U C T I O N

According to the quantal theory, the strength of a synaptic
connection is defined as the product of the probability of
transmitter release, the number of release sites, and the size of
the postsynaptic response to a single transmitter quantum (Katz
1969). These parameters, which are crucial for information
processing in the brain, are determined both presynaptically
through the amount of neurotransmitter released and postsyn-
aptically through the number and the gating properties of
available receptors. Differences between these parameters ac-
count for the large variability of synaptic responses that can be
observed in central neurons. Such variability represents an
intrinsic property of synaptic transmission and can be detected
at both excitatory and inhibitory synapses (Forti et al. 1997;
Frerking et al. 1995; Kirischuk et al. 1999; Liu and Tsien
1995).

On the postsynaptic site the degree of receptor saturation set
the conditions by which the synapses can “sense” the amount
of neurotransmitter released. Different techniques have re-
vealed that most synapses work in nonsaturating conditions,
although the degree of receptor saturation varies enormously
between different synapses (Auger and Marty 1997; Barberis et
al. 2004; Frerking et al. 1995; Liu et al. 1999; Mainen et al.
1999; McAllister and Stevens 2000; Umemiya et al. 1999).

On the presynaptic site the number of functional active
zones per connection and the release probability per active
zone are important issues in determining the amount of neu-
rotransmitter released. The number of primed vesicles released
at a single release site per action potential may vary from one
(univesicular release) to several (multivesicular release) (Silver
2003).

In the case of univesicular release the released vesicle would
inhibit within microseconds the release of other docked vesi-
cles (Redman 1990; Regehr and Stevens 2001). This type of
synapse has been observed at excitatory connections between
CA3 pyramidal cells and interneurons in the hippocampus
(Arancio et al. 1994; Gulyas et al. 1993) and between mossy
fibers and granule cells in the cerebellum (Silver et al. 1996).
These connections are characterized by a low coefficient of
variation (CV � SD/mean) of the amplitude of synaptic cur-
rents whose distribution can be fitted by a Gaussian function.

In the case of multivesicular release, multiple vesicles are
released at the same active zone by one action potential. In
support of this model is the observation that at least at some
glutamatergic synapses the concentration of glutamate in the
synaptic cleft changes in relation with the probability of release
at a single release site (Oertner et al. 2002; Wadiche and Jahr
2001). In comparison with the univesicular release, the mul-
tivesicular one is associated with a larger CV of the amplitude
of responses whose distribution cannot be fitted by a Gaussian
function. This type of connection has been well characterized
at interneuron–interneuron synapses, climbing fiber–Purkinje
cell and mossy fiber–granule cell synapses in the cerebellum
(Auger et al. 1998; Wall and Usowicz 1998), and in the
hippocampus (Conti and Lisman 2003; Oertner et al. 2002;
Tong and Jahr 1994).

At hippocampal Schaffer collateral–CA1 connections sev-
eral lines of evidence suggest the involvement of a single
functional release site (Hanse and Gustafsson 2002; Hsia et al.
1998). However, the morphological characterization of these
synapses, i.e., an active zone with several docked vesicles

Address for reprint requests and other correspondence: L. Maggi, Diparti-
mento di Fisiologia Umana e Farmacologia, University “La Sapienza,” Piaz-
zale A. Moro 5, 00185 Rome, Italy (E-mail: maggilaura@gmail.com).

The costs of publication of this article were defrayed in part by the payment
of page charges. The article must therefore be hereby marked “advertisement”
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

J Neurophysiol 96: 15–26, 2006.
First published April 5, 2006; doi:10.1152/jn.01202.2005.

150022-3077/06 $8.00 Copyright © 2006 The American Physiological Societywww.jn.org

 on January 4, 2007 
jn.physiology.org

D
ow

nloaded from
 



apposed to the postsynaptic density (Harris and Sultan 1995;
Schikorski and Stevens 1997; Shepherd and Harris 1998), has
provided the anatomical basis for multivesicular release. In-
deed, as expected for simultaneous release of multiquanta,
minimal stimulation of afferent inputs has revealed synaptic
currents exhibiting a high CV value and a skewed amplitude
distribution histogram (Conti and Lisman 2003; Hessler et al.
1993; Hsia et al. 1998; Huang and Stevens 1997; Maggi et al.
2004; Oertner et al. 2002).

Here we have developed and solved a simple and general
analytic model to distinguish univesicular from multivesicular
mode of transmitter release. The model has been validated
experimentally at Schaffer collateral–CA1 synapses in neona-
tal animals using paired pulses and minimal stimulation of
afferent inputs. From this it appears that multivesicular release
is the mode by which most synapses operate at developmental
CA3–CA1 connections.

M E T H O D S

Slice preparation

Transverse hippocampal slices (300–400 �m thick) from P1–P5
Wistar rats were prepared as previously described (Maggi et al. 2004).
The procedure was in accordance with the regulations of the Italian
Animal Welfare Act and was approved by the local authority veteri-
nary service. Briefly, animals were decapitated after being anesthe-
tized with an intraperitoneal injection of urethane (2 g/kg). The brain
was quickly removed from the skull and placed in ice-cold artificial
cerebrospinal fluid (ACSF) containing (in mM): NaCl 130, KCl 3.5,
NaH2PO4 1.2, NaHCO3 25, MgCl2 1.3, CaCl2 2, glucose 11, saturated

with 95% O2-5% CO2 (pH 7.3–7.4). After 1 h, an individual slice was
transferred to the recording chamber where it was continuously
superfused with oxygenated ACSF at a rate of 2–3 ml/min at 30°C.

Electrophysiological recordings

�-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)–
mediated excitatory postsynaptic currents (EPSCs) evoked by mini-
mal stimulation of the Schaffer collateral were recorded at �60 mV
from individual CA1 pyramidal neurons using the patch-clamp tech-
nique in whole cell configuration. Patch pipettes were filled with a
solution containing (in mM): Cs-methanesulfonate 125, CsCl 10,
HEPES 10, EGTA 0.6–2, MgATP 2, NaGTP 0.3 (resistance 5 M�).
Bicuculline methiodide (5 �M) and tetrodotoxin (TTX, 10 nM) were
added to the bath solution to block �-aminobutyric acid type A
(GABAA) receptors and reduce polysynaptic activity, respectively.
The Schaffer collateral was stimulated with bipolar twisted NiCr-
insulated electrodes placed in stratum radiatum. Paired (50-ms,
100-�s duration) stimuli (at 0.25 Hz; Fig. 1) were adjusted to evoke
minimal EPSCs, which were intermingled with transmission failures.
In all analyzed cells, the stimulus intensity was in the range of 3.5–10
V, corresponding to 2.3–6.7 �A. According to the technique de-
scribed by Jonas et al. (1993) and Allen and Stevens (1994) the
stimulation intensity was decreased until only a single axon was
activated. This was achieved when the mean amplitude of the postsyn-
aptic currents and failure probability remained constant over a range
of stimulus intensities near threshold for detecting a response. The
example of Fig. 1C shows average traces of synaptic currents recorded
from a CA1 pyramidal cell in response to different stimulation
intensities. An abrupt increase in the mean peak amplitude of synaptic
currents was observed when the stimulus intensity was changed from
4.5 to 5 V. The amplitude of responses remained constant for stimu-

FIG. 1. Methods. A: schematic diagram of a hippocampal slice showing the classical 3-synaptic pathway, the stimulating, and the recording electrodes.
Schaffer collateral (Sch) was activated at 0.25 Hz with a pair of stimuli delivered at 50-ms interval (left). Schaffer collateral stimulation evoked in CA1 pyramidal
neurons (held at �60 mV) �-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)–mediated excitatory postsynaptic currents (EPSCs, right). B:
schematic representation of a glutamatergic synapse depicted before the first (left) and the second (right) paired stimuli. Each presynaptic vesicle (circle)
containing the neurotransmitter (in gray) has a characteristic probability of release pves. k is the variable representing the number of primed vesicles in the ready
releasable pool and q (mean quantal size) is the mean amplitude of the synaptic current obtained by activation of postsynaptic receptors by glutamate released
from a single vesicle. C, top: EPSCs evoked by minimal stimulation of Schaffer collateral. Different stimulus intensities were used to evoke synaptic currents
in a CA1 pyramidal cell at P3. Each trace is the average of 15–20 responses. Holding potential was �60 mV. Bottom: plot of the peak amplitude of synaptic
currents against different stimulus intensities. Note the all-or-none appearance of synaptic currents with increasing stimulus intensities. Error bars indicate SE.
Dashed lines connect the mean values of individual points within the same groups. D, left: A1 and A2 are the mean amplitude currents elicited by 2 pulses at 50-ms
interval; A2r and A2f represent the mean amplitude currents to the second pulse given a response or a failure on the first stimulus, respectively. D, right: P1 and
P2 are the probability of transmitter release after the first or second pulse; P2r and P2f are the probability of transmitter release on the second pulse given a response
or a failure to the first one, respectively.
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lations �7 V. This all-or-none behavior suggests that only a single
fiber was stimulated. When the stimulation intensity was turned down,
the probability of failures in synaptic transmission was 1. In 10 cells
we have also measured the latency of individual EPSCs. The distri-
bution of latencies was unimodal and narrow with an average SD of
0.47 ms (ranging from 0.25 to 0.67 ms).

Transmitter failures were estimated by visual discrimination. In a
set of experiments to control the adequacy of the visual selection we
used the method described by Nicholls and Wallace (1978), consisting
in doubling the responses with positive amplitude (see also Gasparini
et al. 2000). A similarity and a high correlation between the two
methods were obtained (r � 0.95; P � 0.0001).

To see whether changing the [Ca2�/Mg2�]o ratio can affect pre-
synaptic axon excitability, field excitatory postsynaptic potentials
(fEPSPs) were recorded with a glass microelectrode filled with NaCl
(2 mM) placed in stratum radiatum of the CA1 area. fEPSPs were
evoked by stimulation of the Schaffer collateral with bipolar twisted
NiCr insulated wires.

Drugs were applied to the bath by a three-way tap system. Drugs
used were tetrodotoxin (TTX, Affinity Research Products, Exeter,
UK) and bicuculline methiodide (Sigma, Milan, Italy).

If not otherwise stated, data are expressed as means � SE. Statis-
tical comparisons were made with �2 test. The errors on all the
quantities that are expressed as a ratio between two measurable values
(e.g., P2r/P2f, a2/a1, q) or as a more complex function of measurable
quantities (e.g., CV) have been computed with the Jackknife method
(Shao and Tu 1995).

Data acquisition and analysis

Data acquisition was done using the LTP114 software package for
evoked responses (courtesy of W. W. Anderson, Bristol University,
UK). Current signals were transferred to a computer after digitization
with an A/D converter (Digidata 1200, Axon Instruments, Foster City,
CA). Data were sampled at 20 kHz and filtered with a cutoff fre-
quency of 2 kHz. Evoked EPSCs were analyzed with the AxoGraph
4.6 Program and Pclamp 9 software (Axon Instruments).

The coefficient of variation (CV) of successful responses (�100

stimuli) was calculated as follows: CV � �SDsuccesses
2 �

SDfailures
2 	0.5/mean success amplitude, where SD represents the

standard deviation.
We distinguished between the average response amplitude (A),

where the average was computed over all trials including failures and
the average response potency (a), where the average was computed
only over successes (Stevens and Wang 1995). In the paired-pulse
experiment, a1 and a2 represent the potency of the first and of the
second pulse, respectively; a
1 represents the potency of the first
synaptic current after changing external calcium concentration.

The model

Our purpose was to develop and solve in a fully analytical way a
model that allows one to distinguish univesicular from multivesicular
release. With simple mathematical passages we computed quantities
that are functions of the model parameters; comparison of these
quantities with those obtained experimentally allowed estimating
which model better describes the experimental data.

Model definitions

We defined A1 and A2 as the mean amplitude currents elicited by
two pulses at 50-ms interval; P1 and P2 as the probability of trans-
mitter release after the first or second pulse; A2r and A2f as the mean
amplitude current to the second pulse given a response or a failure to
the first stimulus, respectively; P2r and P2f as the probability of
transmitter release to the second pulse given a response or a failure to
the first one, respectively; the mean quantal size q as the mean

amplitude of the synaptic current after the release of a single vesicle;
k as the variable counting the number of primed vesicles (i.e., the
number of vesicles in the ready releasable pool); and pves as the
probability of release of each single vesicle (Fig. 1).

We allowed the number of primed vesicles to change from trial to
trial, and thus k is a random variable with probability distribution
function Q(k).

Model assumptions

We made the following assumptions:

● All vesicles have the same release probability pves.

● Postsynaptic receptors are not saturated.

● Postsynaptic receptors do not desensitize.

● Synaptic responses sum linearly.

● No new vesicles become primed in the time interval of 50 ms.

We have assumed that all primed vesicles have the same pves.
However, pves associated with the first and second pulses, at least at
CA3–CA1 synapses, can differ because of the residual calcium and
for this reason we used two independent parameters: pves1 and pves2

(Atluri and Regehr 1996; Kamiya and Zucker 1994; Sakaba and
Neher 2001).

Although the degree of glutamate receptors saturation varies among
different synapses, at Schaffer collateral–CA1 synapses they are far
from saturation, allowing the effective summation of many quanta
(Conti and Lisman 2003; Mainen et al. 1999; McAllister and Stevens
2000; Nimchinsky et al. 2004; Raghavachari and Lisman 2004).
Moreover, no detectable AMPA receptor desensitization in response
to synaptic release of glutamate has been revealed (Hjelmstad et al.
1999).

The assumptions of receptor desensitization and saturation would
eventually lead to an underestimation of the number of released
vesicles and to an overestimation of the quantal content.

Regarding the last assumption, it is known that refilling of the
vesicle pool occurs in two ways: by recruiting new vesicles from the
recycling pool (RP) to the ready releasable pool (RRP) (Rizzoli and
Betz 2005), a process that has a timescale � of about 30 s (Pyle et al.
2000) and by endocytosis of the RRP of vesicles after the first pulse.
This last process takes place with a timescale � 	 1 s (Dobrunz and
Stevens 1997; Pyle et al. 2000; for review see Rizzoli and Betz 2005).
Therefore it is unlikely that refilling may occur within 50 ms.

Distributions of primed vesicles

The experimental determination of Q(k), i.e., the probability of
having k primed vesicles before the first pulse, is very difficult and
would require counting many times the number of ready releasable
vesicles at the same synapse. At present, although attempts have been
made to estimate the typical number of primed vesicles at active zones
in the pyramidal cells of the hippocampus, their distribution Q(k) over
time is unknown. Depending on the different preparations and meth-
ods the estimated number of primed vesicles varies between 2 and 10
(Dobrunz and Stevens 1997; Hanse and Gustafsson 2001b; Oertner et
al. 2002; Schikorski and Stevens 2001; Zhai et al. 2001; for review see
Rizzoli and Betz 2005). Therefore in our model, when required, the
mean 
 of Q(k) has been fixed equal to 2, 5, or 10.

We stress that our analytical computations are done in full gener-
ality for any Q(k): once an experimental determination of Q(k) will be
available, it can be plugged into the equations (which are written
explicitly in the APPENDIX).

Because the exact shape of Q(k) is unknown, we prefer to discuss
the results obtained with the following distributions.

● Fixed number of primed vesicles: Q�k	 � ��k,
	, where the
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Kronecker delta distribution �(k, 
) takes the value 1 for k � 

and 0 otherwise.

● Variable number of primed vesicles following a Poisson distri-

bution: Q�k	 � exp��
	
k/k!, where k! � 1 � 2 �

3 � . . . � k is the factorial of k.

The first distribution describes the case where there are no fluctu-
ations from trial to trial in the number of primed vesicles; whereas the
second distribution takes into account variations in the number of
primed vesicles. Both of these distributions depend on a single
parameter, the mean 
.

We do not explicitly discuss another distribution, which is often
used in the literature, the binomial distribution of mean 
 and
maximum number N

Q�k	 � �N

k��



N
�

k

�1 �



N
�

N�k

with �N

k��
N!

k!�N � k	!

There are several reasons beyond this choice. 1) Presenting general
results varying both 
 and N would be too complicated (and perhaps
confusing). 2) The experimental determination of N, representing the
largest number of primed vesicles that can be found at one synapse,
requires roughly as many measures as the determination of the whole
Q(k). 3) The binomial distribution can be very well approximated by
a Poisson distribution if N is much larger than the mean 
 or if N is
not perfectly conserved from trial to trial (i.e., eventual fluctuations in
N make the binomial look like a Poisson distribution).

So we believe that if N is small the exact distribution can be easily
determined, whereas if N is large (and so much larger than 
, which
is a small number) the Poisson distribution is fairly accurate and there
is no need for the extra parameter N. An example would better
illustrate our last assertion. In Fig. 2 we show three distributions with
a mean 
 � 5: a Poissonian and two binomials with n � 20 and n �
40. As it appears from the figure, the distributions are very similar and
the small differences are certainly much smaller than the incertitude
on the real shape of Q(k). To be more quantitative, we have estimated
the number of measures required for discriminating among these
distributions by performing the following virtual (numerical) experi-
ment: we have generated a set of M measures of k, by extracting
random integers from a binomial distribution with mean 
 � 5 and
n � 20; then we have made the histogram of these numbers and have
fitted it with a Poisson distribution. It turns out that the fit with a
Poisson distribution is unacceptable (P � 0.001) only if M �850, a
huge number of measures.

Analytical resolution

Let us derive the equations linking the distribution of primed
vesicles, Q(k), and the probability that a vesicle releases its neuro-
transmitter content after the first stimulus, pves1, to A1 and P1 values,
measured experimentally.

For k primed vesicles, the probability of having no response at all
equals (1 � pves1)k, which is the probability that none of the k vesicles
releases its content. Here we assume that primed vesicles behave
independently. This assumption is not valid when specific mecha-
nisms can limit the number of released vesicles per site.

Because the number of primed vesicles varies from trial to trial,
when the paired-pulses are repeated many times the probability of
having no response on the first stimulus is

1 � P1 � �
k�0

�

Q�k	�1 � pves1	
k (1)

Explicit expressions for this probability are P1 � 1 � �1 �

pves1	

 for a fixed number distribution and P1 � 1 � e�
pves1 for a

Poisson distribution. Although the derivation of the first expression is
simple (k always takes the value 
), to obtain the second one it is
necessary to remember the power expansion of the exponential func-

tion: ex � ¥k�0
� xk/k!

In a very similar way we can compute the mean amplitude, A1,
assuming that each released vesicle gives a current with amplitude q.
The mean amplitude is given by q multiplied by the number of
released vesicles, which is a random variable fluctuating from trial to
trial. There are two sources of stochasticity in the process: 1) the
number k of primed vesicles, which is distributed according to the
distribution Q(k); and 2) the number of primed vesicles m actually
released, which depends on k and the released probability pves1. The
mean amplitude is given by the following expression

A1 � q �
k

Q�k	 �
m�0

k

m� k

m
�pves1

m �1 � pves1	
k�m

where the first sum takes the average over the number of primed
vesicles, whereas the second sum gives the mean number of released
vesicles when there are k primed vesicles and each of them can be
released independently with probability pves1. The previous expres-
sion can be simplified with some elementary algebra to

A1 � qpves1 �
k

kQ�k	 � qpves1�k1 � qpves1
 (2)

where �k1 is the mean number of primed vesicles when the first
stimulus is given, fixed to 
. If the quantal size varies from vesicle to
vesicle our expressions are perfectly valid because q is the mean
current induced by a single vesicle release. In contrast, methods based
on the analysis of amplitude distribution are influenced by fluctuations
in the quantal size (e.g., peaks become broader and very hard to
interpolate). Working only with mean values allows one to infer
accurate results even for noisy data, as long as the number of trials is
large enough to have small uncertainties on the mean values. Using
this analytical method it is possible to reduce the number of collected
data to 100–200 trials per synapse.

The most interesting part of the model is the response to the second
stimulus. Indeed, according to the assumption that no new vesicle is
recruited in the RRP within 50 ms, we expect that the number of
primed vesicles to the second stimulus depends on the intensity of the
response to the first stimulus. In particular, if there is no response to
the first stimulus, then the number of primed vesicles to the second is
unchanged, whereas in the case of a response to the first stimulus the
number of primed vesicles is reduced. To simplify our analysis we
group all possible outcomes on the first stimulus in two categories:
failures (f) or successes (r). The number of primed vesicles to the

FIG. 2. Poisson and binomial distributions with the same mean are very
similar. Comparison between a Poisson distribution of mean 5 and binomial
distributions with the same mean and 2 different n values (n � 20 and n � 40).
Although the random variable k can take only integer values, distributions are
drawn with continuous lines for readability reasons.
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second stimulus still varies from trial to trial, but now its probability
distribution depends on the outcome of the first stimulus. We call the
distribution Q2f(k) in the case of failure to the first pulse and Q2r(k) in
the case of successes.

Q2f(k) can be computed as

Q2f�k	 �
Q�k	�1 � pves1	

k

1 � P1

The numerator is the probability of having k primed vesicles to the
first stimulus, Q(k), multiplied by the probability than none of the k
vesicles is released. The denominator is the normalization factor and
equals the probability of having no response to the first stimulus. We
have computed the expression for Q2r(k) as well (see the APPENDIX for
detailed computation).

Once the probability distributions of primed vesicles to the second
stimulus are known, the mean release probability and the mean
amplitude to the second stimulus are derived

P2f � 1 � �
k

Q2f�k	�1 � pves2	
k P2r � 1 � �

k

Q2r�k	�1 � pves2	
k

A2f � qpves2 �
k

kQ2f�k	 � qpves2�k2f A2r � qpves2 �
k

kQ2r�k	 � qpves2�k2r

These expressions are identical to Eqs. 1 and 2, the only difference
being the probability distribution of primed vesicles, Q2f(k) and
Q2r(k), and the probability that each of the vesicles is released to the
second stimulus, pves2. In principle, pves2 may depend on whether
there is a response to the first stimulus; however, to keep the number
of parameters in our model as small as possible a single probability
was used.

Considering all events to the second stimulus, irrespective of the
response to the first one, the release probability and the mean current
amplitude are given by

P2 � P1P2r  �1 � P1	P2f A2 � P1A2r  �1 � P1	A2f

Summarizing, we have analytic expressions for all the quantities
measured in paired-pulse experiments: P1, P2f, P2r, P2, A1, A2f, A2r,
and A2. Parameters entering these analytical expressions (to be deter-
mined from experimental measurements) are the distribution of
primed vesicles Q(k), the release probability for a single vesicle, pves1

and pves2, and the mean current induced by the release of one
vesicle, q.

Combining in a convenient way the expressions for mean values,
the following simple equality can be obtained

A2

A1

�
qpves2�k2

qpves1�k1

�
�1 � pves1	pves2

pves1

(3)

The last expression has been obtained by using the relation

�k2 � �1 � pves1	�k1, which gives the mean number of primed
vesicles to the second stimulus as a function of pves1 and �k1, where
�k1 is the mean number of primed vesicles to the first stimulus. It is
clear from Eq. 3 that Q(k) and q are no longer present. If experimen-
tally A2 � A1, this means that facilitation is taking place at the
synapses under study and the release to the second stimulus is
enhanced (pves2 � pves1).

Univesicular versus multivesicular

In the previous section the release of each primed vesicles has been
assumed to be an independent event. Nevertheless, this assumption is
not valid in the case of univesicular release. In the case of univesicular
release each active site can release at most one vesicle per stimulus.
This mechanism implies a clear dependency among vesicles: if a
vesicle is released all the remaining vesicles cannot be released, and
so they are not independent. In our univesicular release model each
vesicle can be released with the same probability, pves, but, as soon as
one vesicle is released, the probability of the remaining vesicles to be
released is zero. On the contrary, in the multivesicular model vesicles
release independently.

When the ratio P2r/P2f is plotted parametrically as a function of P1,
it allows one to discriminate univesicular from multivesicular release
(see Hanse and Gustafsson 2002). At variance with Hanse’s work, in
which the release model has been analyzed with Monte Carlo simu-
lations, in the present study analytic expressions for both the ratio
P2r/P2f and P1 were derived and plotted parametrically without any
approximation. The general expression is complicated (see the APPEN-
DIX for more detailed computation). In Fig. 3, the P2r/P2f relation as a
function of P1 for the Poisson and a fixed number distribution is
represented graphically. In this figure, continuous lines refer to the
Poissonian distributions, whereas dashed lines refer to fixed N ones.
From the plots it can be concluded that the method for discriminating
univesicular from multivesicular release does indeed work. For fixed
number distributions the curve is �1 for any given value of P1 and
any release mechanism. For the Poissonian distribution, a multive-
sicular release produces a horizontal line equal to 1, whereas the
univesicular release produces an upward-bending curve. It should be
stressed that in this case the most relevant region in the graph is that
corresponding to a larger P1 value. Predictions for the P2r/P2f relation
as a function of P1 obtained with different Q(k) values are represented
in Fig. 3, A and B. In particular, although Fig. 3A has been obtained

FIG. 3. Dependency of the P2r/P2f ratio on P1 allows discriminating univesicular from multivesicular release. P2r/P2f ratio, computed from the analytical
model, is plotted against the release probability (P1). Continuous lines refer to the Poissonian distributions, whereas dashed lines refer to the fixed N ones. A:

distribution with pves2 � pves1. Note that for fixed number distributions the curve is always �1; for the Poissonian distribution, a multivesicular release
produces a horizontal line equal to 1, whereas the univesicular release produces an upward-bending curve. B: distribution with pves2 � pves1, where pves2�
� pves1 � (1 � �)pves1

2 and � � 1.5(pves2 is 50% more than pves1 in the low P1 region). Note that for � � 1.5 the P2r/P2f relation would look still more similar
to A.
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by fixing pves2 � pves1, Fig. 3B has been obtained with pves2 � pves1,
just for showing that there are no relevant qualitative changes in the
shape of the functions. To our knowledge, the full correlation between
pves2 and pves1 is not known, although we always observed a facili-
tation. To verify the effect of a larger pves2 on the P2r/P2f relation, we
can consider a simple and reasonable function (a second-order poly-
nomial) with pves2 ranging between 0 and 1, and linearly correlated

with pves1 for low values of this variable, i.e., pves2 � � pves1 

�1 � �	pves1
2 . No major qualitative differences between the distribu-

tions with pves2 � pves1 and pves2 � pves1 can be observed.

Analysis of experimental data

Synaptic currents evoked by minimal stimulation of the Schaffer
collateral were analyzed in 41 CA1 pyramidal neurons in hippocam-
pal slices obtained from P1 to P5 old rats. In Fig. 4 the ratio of the
release probabilities (A) and the paired-pulse ratio (PPR, B) as a
function of P1 have been plotted. It is clear that the majority of cells
responded more to the second stimulus than to the first (P2 � P1, Fig.
4A) and that the PPR was �1 (Fig. 4B). However, these effects were
more pronounced for low P1 values. Given that the number of primed
vesicles to the second stimulus is on average smaller than or equal to
the first one, using Eq. 3 we can conclude that pves2 � pves1 and a

facilitation process is taking place. Note that all the cells with P1 � 0
and P1 � 1 were excluded from the analysis because for these two
values of P1 the probability of P2r and P2f cannot be properly defined.

The main purpose for developing the analytical model was the
possibility of discriminating among different release mechanisms—
univesicular versus multivesicular—by comparing the experimental
data with the analytical prediction reported in Fig. 3. In Fig. 5A the
ratio P2r/P2f has been plotted as a function of P1. It is clear that data
are mainly on the P2r/P2f � 1 line, suggesting that the number of
primed vesicles is not fixed from trial to trial (for fixed number of
primed vesicles the ratio P2r/P2f is �1; see Fig. 3). To facilitate the
comparison with analytical results, the curves obtained for the Poisson
distribution Q(k) with mean 
 were superimposed to data points: in
the multivesicular case the ratio P2r/P2f was equal to 1, whereas in the
univesicular case the curve always increases steeply when P1 ap-
proached 1 and its exact value was dependent on 
. In Fig. 5A the
curves for 
 values equal to 2, 5, and 10 are represented. To check
whether the univesicular mechanism could be compatible with the
experimental data, we performed a statistical analysis for many values
of 
 (recall that 
 is an undetermined parameter of the model because
it cannot be measured directly from the data). We also fitted the data
to the multivesicular Poissonian hypothesis, i.e., the straight line
P2r/P2f � 1. This always turned out to be the better fit with respect to

FIG. 4. Facilitation occurs at CA3–CA1 con-
nection. Synaptic currents evoked in CA1 pyrami-
dal cells by paired stimuli (50 ms apart) delivered
to the Schaffer collateral in hippocampal slices
obtained from P1 to P5 old rats. A: release proba-
bility is plotted as a function of P1 (n � 41). Note
that the majority of cells responds more to the
second than to the first stimulus (P2 � P1). B: plot
of the paired-pulse ratio (PPR) as a function of P1.
Note that the PPR is �1, although facilitation is
more evident at low P1 values.

FIG. 5. Multivesicular release at CA3–
CA1 connections. A: correlation between P1

and the release dependency during paired-
pulse activation. P2r/P2f ratio is plotted over
P1 values (n � 36, cells with P1 � 0.1).
Curves for the Poissonian distribution with
release independency (multivesicular, hori-
zontal gray line, i.e., P2r/P2f ratio�1) or re-
lease dependency (univesicular, upward-bend-
ing continuous line, with 
 � 2, 
 � 5, and

 � 10, as indicated) are superimposed to the
data points. Note that experimental data can
be fitted by a straight line. B: plot of the
estimation of the q value obtained by comput-
ing Eq. 4 with the data related to the first (q1)
or the second (q2) stimulus in a pair (n � 34).
Note that points are on the bisecting line,
indicating that the 2 estimations are compati-
ble. C: upper bound for pves1 is plotted as a
function of P1 (n � 41). Most probable values
for pves1 are in the gray region. D: lower
bound for 
 is plotted against P1 values (n �
41).
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all the other models for any value of 
. We performed �2 analysis and
the resulting P values are the following: multivesicular Poissonian

model P � 0.13, univesicular Poissonian model P �� 10�6

�
 � 5	 and P � 0.05 (
 � 10), univescicular fixed N model P �
0.05 (
 � 10) and P � 1.1 � 10�5 (
 � 5).

Note that few experimental points (those above the P2r/P2f � 1
line) could be interpreted as being attributed to a univesicular mech-
anism. Indeed, we are not asserting that all cells follow the multive-
sicular mode of release, but certainly the vast majority is concentrated
on the P2r/P2f � 1 line, which is naturally interpreted as evidence for
multivesicular release. Moreover cells with very low release proba-
bility (P1 � 0.1), have a very large statistical error (resulting from the
small number of successes), and thus they give no significant contri-
bution to the data analysis and were excluded.

From the analysis of the ratio P2r/P2f versus P1 it appears that the
most likely model of transmitter release at immature CA3–CA1
connections is the multivesicular one with a Poisson distribution of
primed vesicles with mean 
. Thus in the rest of the analysis we
compared this model to the experimental data. We started by making
explicit for this model the formulas previously written in the general
case; distributions of primed vesicles, release probabilities, and mean
amplitudes are given by the following expressions (see the APPENDIX

for a detailed derivation)

Q�k	 � e�


k

k!
Q2r�k	 � Q2f�k	 � e�
�1�pves1	

�
�1 � pves1	�
k

k!

P1 � 1 � e�
pves1 P2 � P2r � P2f � 1 � e�
�1�pves1	pves2

A1 � q
pves1 A2 � A2r � A2f � q
�1 � pves1	pves2

Note that in this model it is possible to check whether the response
failure to the first stimulus depends on activation failure (failure of the
action potential to invade the axon terminal) because in the presence
of a real transmission failure the amplitude of A2r and A2f should be
the same. From our experimental data the A2r/A2f value was equal to
1.09 � 0.05 (n � 36, P1 � 0.1), implying that the lack of successes
to the first pulse were real transmitter failures and not activation
failures.

Combining the expressions for P1, P2, A1, and A2 we could compute
the quantal size q in two equivalent ways

q �
A1

�ln �1 � P1	
�

A2

�ln �1 � P2	
(4)

Note that the second equality can also be used as a consistency check
of the model. An estimation of q in response to the first stimulus (q1)
versus that obtained in response to the second one (q2) is given in Fig.
5B. Data points are spread around the bisecting line, as expected from
the model (from the paired Student’s t-test, the q1 and q2 distributions

turned out to be similar: P � 0.2). This observation suggests that
desensitization of receptors is very small; otherwise, q2 would be
systematically smaller than q1. On average, we obtained a q1 value of
7.8 � 0.5 pA and a q2 value of 8.0 � 0.4 pA (n � 34). Because of the
model assumption on linear summation of the responses, these esti-
mations could be slightly smaller than the real average values.

Although from the experimental measures it is not possible to make
direct estimates of pves1, pves2, and 
, we can still use the model to put
an upper bound on pves1 and a lower bound on 
. The following
inequalities show how to derive these bounds

A2

A1

�
�1 � pves1	pves2

pves1

�
1 � pves1

pves1

f pves1 �
A1

A1  A2

P1 � 1 � e�
pves1f 
 �
�ln �1 � P1	

pves1

� �ln �1 � P1	
A1  A2

A1

The upper bound on pves1 and the lower bound on 
 are shown in Fig.
5, C and D, respectively. Although these are only bound, they give a
strong hint about the dependency on the release probability P1 of
model parameters: pves1 increases roughly linearly with P1 and stays
well below 1, whereas 
 increases much more steeply with P1,
especially in the high release probability region. As predicted from the

relation P1 � 1 � e�
pves1, 
 has to become very large to obtain high
release probabilities. It is important to notice that 
 lower bounds are
of the same order of experimental estimation of the number of primed
vesicles (see INTRODUCTION).

Given that the distribution of released vesicles is Poissonian, we
can analytically compute the coefficient of variation (CV) as a
function of the release probability P

CV � �P�1 �
1

ln �1 � P	
�� 1 (5)

In this expression we did not use any subscript because the result is
general and holds both on the first and the second stimulus as long as
the distribution of primed vesicles is Poissonian.

The CV analytic curve is illustrated with a continuous line in the
graph below the individual traces of Fig. 6A. Note that this curve is an
exact prediction of the model and thus has no fitting parameter.

Further experimental evidence for multivesicular release

HIGH VARIABILITY OF COEFFICIENT OF VARIATION (CV). In the
uniquantal models of synaptic transmission, the variability of the
amplitude of successes, measured by the CV of these amplitudes, is
very low (in the order of 0.2), whereas in the multiquantal models the
CV is significantly larger (�0.4) (Auger and Marty 2000; Conti and
Lisman 2003; Forti et al. 1997; Mainem et al. 1999; McAllister and

FIG. 6. Dependency of the coefficient of variation
(CV) from P1. A, top: example of superimposed
individual traces (n � 50) from a single cell showing
successes to the first (left) and the second stimulus
(right). Bottom: CV values of the response ampli-
tudes obtained from 44 cells are plotted vs. P1 values.
Note that the CV is highly variable. Superimposed to
the plot (full line) is the analytic curve obtained from
the model CV � � P{1 � [1/ln (1 � P)]} � 1 (Eq.

5). Note that this curve is the exact prediction of the
model and there are no fitting parameters. B, top:
average of successful responses (potency) from the
same cell shown in A. Bottom: a2/a1 ratio is plotted
vs. P1 values (n � 44 cells). Note that there is no
correlation between the potency ratio (a2/a1) and the
P1 values.
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Stevens 2000; Oertner et al. 2002; Striker et al. 1996; Umemiya et al.
1999)

We performed the analysis of the CV on our data, collected at
individual CA3–CA1 synapses, to assess whether the amplitude of
successes showed large trial-to-trial variation or whether the re-
sponses were stereotyped. The CV was on average 0.35 � 0.14,
varying from 0.12 to 0.73 (n � 44). This variability supports the
multivesicular mode of neurotransmitter release. The top traces of
Fig. 6A represent an example of synaptic currents (only successes;
n � 50) evoked in a CA1 principal cell in response to a paired-pulse
protocol. It is clear from the figure that a certain degree of variability
between individual currents exists. In the graph below the CV indi-
vidual cells (n � 44) are plotted against P1. These CV values are
clearly not P1 independent (data interpolation with a horizontal line is
not acceptable: P �� 10�6). On the contrary, their dependency on P1

seems to be in good qualitative agreement with the analytic prediction
from the Poisson model, shown with a line in Fig. 6A.

AVERAGE RESPONSE AMPLITUDE TO THE FIRST (a1) AND SECOND

PULSE (a2) ARE DIFFERENT. The amplitude of the success to a single
stimulus is defined potency (a). In the case of univesicular release
changes in the probability of release should not affect the potency.
This means, for example, that the potency ratio a2/a1 between the
second and the first response to a pair of stimuli (50 ms apart), should
be equal to 1 (Stevens and Wang 1995). This condition is necessary,
but not sufficient, i.e., cells with a2/a1 � 1 cannot have univesicular
release (unless we take into account receptor desensitization), whereas
cells with a2/a1 � 1 may have a multivesicular release; indeed, for low
release probabilities, the multivesicular mechanism typically releases
just one vesicle, making the discrimination very difficult.

In a first set of experiments using the paired-pulse protocol, the
potency ratio was measured in each cell and the results are shown in
Fig. 6B. Among the n � 44 cells analyzed, 21 have a potency ratio
statistically different from 1 (P � 0.05), suggesting a multivesicular
release. It is interesting to note that the remaining 23 cells, those with
a2/a1 close to 1, are concentrated in the region of small success
probabilities (11 of the 23 have P1 � 0.2), making it impossible to
establish the release mechanism.

Moreover if all cells had a univesicular release the average value of
a2/a1 should be equal to 1; the mean value of our data is 1.15, which
is statistically different from 1 (P � 0.01), again excluding the
univesicular mode of release.

Finally note that no correlation between the a2/a1 values and the P1

was found (Fig. 6B). It is known that glutamate released from a
neighboring synapse can diffuse to postsynaptic receptors (“spill-
over”; Asztely et al. 1997; Diamond 2001) and may contribute to
potency facilitation (a2/a1 � 1). In our experiments, trials with failures
to both first and second stimuli were indistinguishable from the
baseline, indicating that spillover from neighboring active synapses it
is unlikely to occur and to affect our measurements. Moreover, in our
experimental conditions spillover was partially prevented by the
enhanced glutamate uptake occurring at more physiological temper-
ature (33°C; Asztely et al. 1997).

Changes in extracellular calcium concentration affect the
potency and the postsynaptic amplitude distribution

In a second set of experiments we modified the probability of
glutamate release by increasing or decreasing the external calcium
concentration. In particular we changed the [Ca2�/Mg2�]o ratio from
2/1.3 to 4/1 or 1/2, respectively. To see whether changing the
[Ca2�/Mg2�]o ratio alters the excitability of axon terminals, in addi-
tional experiments we measured the amplitude of afferent volleys and
field EPSPs evoked in stratum radiatum by stimulation of the Schaffer
collateral, before and after changing the [Ca2�/Mg2�]o ratio from
2/1.3 to 4/1. On three hippocampal slices from P3 to P4 old rats, the
amplitude of the afferent volley changed from 57 � 21 �V (2/1.3

ratio) to 54 � 16 �V (4/1 ratio), indicating that axon excitability was
not modified. The amplitude of the corresponding field EPSP changed
from 76 � 5 to 100 � 16 �V. We then measured the potency ratio
(a
1/a1) of the first synaptic current after and before changing the
external calcium concentration. In the case of low [Ca2�/Mg2�]o the
a
1/a1 value was 0.73 � 0.06 (n � 8, P � 0.01), whereas in the case
of high [Ca2�/Mg2�]o the a
1/a1 value was 1.28 � 0.14 (n � 7, P �
0.05).

These findings indicate that a multivesicular modality of release at
individual CA1 synapses is likely to occur.

Representative examples of synaptic currents evoked in CA1 py-
ramidal neurons by Schaffer collateral stimulation in low or high
calcium containing medium are illustrated in Fig. 7. As shown in the
average traces (from n � 50 successes plus failures) of Fig. 7A,
lowering the [Ca2�/Mg2�]o ratio from 2/1.3 to 1/2 produced a
decrease in the mean amplitude response to the first pulse and an
increase in the paired-pulse ratio. The graphs below the traces show
that the reduction in [Ca2�/Mg2�]o caused an increase in the number
of transmitter failures (in gray) to the first response and a decrease in
the skewness of the successes distribution (in white). On the contrary,
increasing the [Ca2�/Mg2�]o ratio from 2/1.3 to 4/1 enhanced the
mean amplitude of the first response (average of 50 failures and
successes) and decreased the paired-pulse ratio. This effect was
associated with a reduction in the number of failures to the first
stimulus and an increase in the skewness of distribution of successes
(Fig. 7B). These findings cannot be explained by the univesicular
mode of glutamate release.

D I S C U S S I O N

Synaptic transmission consists of a series of highly coordi-
nated functional steps during which synaptic vesicles are teth-
ered to the active zones on presynaptic nerve endings, primed
and fused in a Ca2�-dependent way with the plasma membrane
to release the neurotransmitter into the synaptic cleft. One
interesting and not fully clarified aspect of transmitter release
is whether vesicles can be released in an independent way, i.e.,
if at active sites vesicles can be released in an “univesicular”
(at most one vesicle released per stimulus) or in a “multive-
sicular” fashion.

We have developed and analytically solved a model that
allows one to distinguish between the release of one or more
vesicles. In the case that more than one vesicle is released, the
model cannot distinguish between single-site/multivesicular or
multisite/univesicular type of release. Thus to correctly use the
model and to extract useful information, it is crucial to have the
experimental indication that data are collected from a single
axon stimulation. In this study, the model has been experimen-
tally validated in the immature hippocampus at Schaffer col-
lateral–CA1 synapses known to bear only a single release site
(Hsia et al. 1998). Moreover, in our case, evidence has been
provided that a single Schaffer collateral input was activated
(i.e., the potency of EPSCs remained constant over a range of
stimulus intensities after the threshold for detecting a response,
and the latencies of individual synaptic responses exhibited a
unimodal distribution with a small SD). Although we cannot
completely exclude that at least in some cases more than one
fiber was activated, on the whole the results of our analysis
strongly favor a multivesicular type of release.

In the model we have taken into account parameters such as
the number of vesicles in the ready releasable pool and the
probability of release of each vesicle. We then computed
quantities that are functions of the model parameters, such as
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the release probability and the amplitude of postsynaptic cur-
rent (P1, P2f, P2r, P2, A1, A2f, A2r, A2), and analyzed the relation
between the ratio P2r/P2f and the probability of release P1.

Comparison of these quantities with those obtained experimen-
tally in paired-pulse experiments allowed us to estimate which
model better describes the experimental data. From this com-
parison it appears that the multivesicular mode of release is the
most probable mechanism by which immature CA3–CA1 con-
nections operate.

The analytical method developed is very general and
presents some useful properties. First, it deals with simple
average quantities that can be easily measured at each
synapse. Working with only mean values allows one to infer
accurate results even for noisy data, as long as the number
of trials is large enough to have small uncertainties on the
mean values. Using this analytical method it is possible to
reduce the number of collected data to �100 trials per
synapse. Interesting information can be achieved when the
analysis is extended to many synapses with a large range of
release probabilities. Moreover it is possible to estimate the
mean amplitude of synaptic response to the release of a
single vesicle (q), an upper bound for the probability of
release of a single vesicles (pves), and a lower bound for the
mean value of primed vesicles (
). The estimated value of q
(5–10 pA) to both the first and the second stimulus (q1 and
q2) computed in two equivalent ways (see RESULTS) is in
good agreement with that obtained with different experi-
mental approaches and theoretical prediction (5 pA: Conti
and Lisman 2003; 10 pA: Raghavachari and Lisman 2004;
10 pA: Magee and Cook 2000).

One important assumption in the model is that postsynaptic
receptors are not saturated (see INTRODUCTION), implying that
quantal responses can summate. This assumption is supported
by recent work indicating that transmission at single CA1
synapses can be multiquantal: in particular, quantal response
seems to involve the opening of only a small fraction of
channels and multiple quanta summate to produce a wide range
of currents of different amplitudes (Conti and Lisman 2003;
Hsia et al. 1998; Huang and Stevens 1997; Mainen et al. 1999;
Oertner et al. 2002; Raghavachari and Lisman 2004). Another
assumption in the model is the absence of AMPA receptor
desensitization. Data concerning this issue are rather contro-
versial. Whereas in outside-out patches pulled from CA1
principal cells, extrasynaptic AMPA receptor desensitization
occurs when the patch is exposed to brief pulses of glutamate
(Arai and Lynch 1996; Colquhoun et al. 1992), synaptic
receptors do not seem to be affected, as suggested by experi-
ments with minimal and paired-pulse stimulation (Hjelmstad et
al. 1999).

In principle, it could be possible to introduce in the model a
nonlinearity in the sum of the responses and a desensitization
factor (by specific nonlinear functions). Indeed, we decided to
keep the model simpler (no desensitization and linear summa-
tion) because uncertainty on such nonlinear functions would
make model predictions less reliable. Further work is needed to
identify these hypothetical nonlinear functions.

Fitting our experimental data with the model provides strong
evidence that at immature rat CA3–CA1 connections synaptic
transmission is multiquantal. Further support in favor of this
hypothesis is given by: 1) the high variability in the amplitude

FIG. 7. Changes in extracellular calcium
modify amplitude distribution of EPSCs.
Amplitude distribution of the EPSCs evoked
in control conditions and after switching to a
low (1 mM calcium, 2 mM magnesium, A) or
to a high calcium containing solution (4 mM
calcium, 1 mM magnesium, B). Insets above
the graphs represent average traces (n � 50,
successes plus failures). Note the decrease or
increase of the skewness of the amplitude
distribution of synaptic events after switching
to a low or high calcium containing solutions,
respectively. Columns in gray refer to trans-
mitter failures; columns in white refer to
successes. Note that in the �4/�6 pA bin
both columns are represented.
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of successes, with a coefficient of variation (CV) ranging from
0.12 to 0.73; 2) the potency ratio a2/a1 � 1; and 3) changes in
the potency to the first stimulus in relation to different release
probability as suggested by the experiments with low or high
calcium.

At CA3–CA1 synapses, quantal responses with low (Bol-
shakov and Siegelbaum 1995; Larkman et al. 1991; Liao et al.
1992; Stricker et al. 1996) or high CV values (Conti and
Lisman 2003; Maggi et al. 2004; Raghavachari and Lisman
2004) have been reported. In agreement with the present
experiments, similar CV values (ranging from 0.2 to 0.7) have
been detected at Schaffer collateral–CA1 connections of the
hippocampus from immature animals (Hanse and Gustaffson
2001a). However, in contrast with the present findings, the
large quantal variability observed by Hanse and Gustaffson
(2001a) was interpreted as based on nonsaturated AMPA
responses fluctuating as a function of the amount of transmitter
released from each vesicle.

Moreover, some discrepancies regarding potency modula-
tion by factors that modify release probability compatible
either with the univesicular (Hanse and Gustafsson 2001a;
Stevens and Wang 1994) or with the multivesicular mode of
release (Oertner et al. 2002) can be attributed to the different
experimental conditions, including variations in the age of the
animals, the temperature of the experiment, and the technique
used (imaging vs. electrophysiology).

In conclusion, although we cannot exclude the possibility
that, at least in a few cases univesicular release may also occur
in our experiments, the present data indicate that in the major-
ity of cases at immature Schaffer collateral–CA1 synapses an
action potential is able to evoke from a single release site
multiquanta events, each of them being far from saturation. It
is noteworthy that the analytical model we developed and
solved represents a very general method that could be success-
fully used for studying the release mechanisms at any given
synapse.

A P P E N D I X

Herein we report the most technical aspects of our computation. We
use the same notation as in the main text, i.e., Q(k) is the probability
of having k primed vesicles before the first stimulus.

In the univesicular mode of release only one vesicle may be
released in each trial; given k primed vesicles, we have that (1 � pves)

k

is the probability that none is released and 1 � (1 � pves)
k is the

probability that just one vesicle is released.
In the multivesicular mode of release each primed vesicle may be

released independently; given k primed vesicles, the probability that
exactly m are released is given by the expression

� k

m
� pves

m �1 � pves	
k�m

where the binomial coefficient is

� k

m
��

k!

m!�k � m	!

First of all we write some expressions that are valid for a generic Q(k).
The release probability on the first stimulus P1 is given by the

expression

P1 � 1 � �
k�0

�

Q�k	�1 � pves1	
k

This expression is valid for both release mechanisms, univesicular and
multivesicular.

In case of failure on the first stimulus, the distribution of primed
vesicles on the second stimulus is given by the expression

Q2f�k	 �
Q�k	�1 � pves1	

k

1 � P1

which is valid for both release mechanisms. On the contrary, if a release
took place on the first stimulus, then the probability of having k primed
vesicles before the second stimulus does depend on the release mecha-
nism; in the univesicular case it is given by the expression

Q2r�k	 � Q�k  1	
1 � �1 � pves1	

k�1

P1

where the denominator is nothing but the normalization factor; in the
multivesicular one it is given by the expression

Q2r�k	 �
1

P1

�
j�k�1

�

Q� j 	�j

k
�pves1

j�k�1 � pves1	
k

The probabilistic interpretation of this expression is straightforward:
the probability of having still k primed vesicles after a release
occurred on the first stimulus is given by the sum of the probabilities
that j � k primed vesicles were present on the first stimulus times the
probability that exactly ( j � k) were released and k remained. The
sum is then multiplied by the normalization factor 1/P1.

Given the distributions Q2f(k) and Q2r(k), the release probabilities
on the second stimulus are simply given by the expressions

P2f � 1 � �
k�0

�

Q2f�k	�1 � pves2	
k P2r � 1 � �

k�0

�

Q2r�k	�1 � pves2	
k

Substituting Q2f(k) and Q2r(k) with the expressions previously derived
and doing some algebraic simplifications, we finally obtain

P2f � 1 �

�
k�0

�

Q�k	�1 � pves1	
k�1 � pves2	

k

�
k�0

�

Q�k	�1 � pves1	
k

P2r � 1 �
1

P1

�
k�0

�

Q�k  1	�1 � �1 � pves1	
k�1��1 � pves2	

k �uni	

P2r � 1 �
1

P1

�
k�0

�

Q�k	

� ��pves1  �1 � pves1	�1 � pves2	�
k � �1 � pves1	

k�1 � pves2	
k� �multi	

In the following we fix some explicit forms for Q(k) and we write the
ratio P2r/P2f as a function of P1. In principle such a ratio may depend
on both pves1 and pves2, so we have to choose a functional relation
between these two parameters to be able to express the ratio as a
function of P1 only. A reasonable choice is given by the function

pves2 � f�pves1	 � �pves1 � �� � 1	pves1
2

with � � 1, which implies facilitation (pves2 � pves1) and pves2 � �
pves1, for small pves1.
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In Fig. 3 the ratio P2r/P2f is plotted as a function of P1 for � � 1
and � � 1.5 to highlight the small dependency on �. Hereafter we
write the explicit expressions for � � 1.

If k does not vary from trial to trial, then Q�k	 � ��k � 
	, and
we have in the univesicular case

P2r

P2f

�
1 � �1 � P1	

1�1/


P1

and in the multivesicular case

P2r

P2f

�
1 � P1  P1

2 � �1 � �1 � P1	
1/
  �1 � P1	

2/
�


P1
2

If k varies following a Poisson distribution, Q�k	 � exp��
	
k/k!,
then we have in the univesicular case

P2r

P2f

�
1

1 � �1 � P1	
1��1/
	 ln �1�P1	 �

1 � P1

P1�1 
1



ln �1 � P1	�

and P2r/P2f � 1 in the multivesicular case.
We finally prove that for a Poisson distribution and a multivesicular

mode of release the equality Q2r�k	 � Q2f�k	 holds, implying that

A2r � A2f. Substituting the expression Q�k	 � exp��
	
k/k! in the
second, third, and fifth equations of this APPENDIX we arrive at

P1 � 1 � �
k�0

�

Q�k	�1 � pves1	
k � 1 � e�
 �

k�0

�

k

k!
�1 � pves1	

k

� 1 � e�
e
�1�pves1	 � 1 � e�
pves1

Q2f�k	 �
Q�k	�1 � pves1	

k

1 � P1

� e�


k�1 � pves1	

k

k!e�
pves1

� e�
�1�pves1	
�
�1 � pves1	�

k

k!

Q2r�k	 �
1

P1

�
j�k�1

�

Q� j	�j

k
�p ves1

j�k �1 � pves1	
k

�
e�


1 � e�
pves1 �
j�k�1

�

j

j!
�j

k
�p ves1

j�k �1 � pves1	
k

�
e�


1 � e�
pves1


k�1 � pves1	
k

k!
�

j�k�1

�

j�k

� j � k	!
p ves1

j�k

�
e�


1 � e�
pves1


k�1 � pves1	
k

k!
�e
pves1 � 1	

� e�


k�1 � pves1	

k

k!
e
pves1

� e�
�1�pves1	
�
�1 � pves1	�

k

k!

In conclusion, for the multivesicular model with a Poisson distribution of mean

, the distribution of primed vesicles on the second stimulus is Poisson with
mean 
(1 � pves1) independently from the response to the first stimulus.
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Ricerca Grant COFI 2003 to E. Cherubini. L. Maggi was partially supported by

a European Molecular Biology Ooranization long-term fellowship grant. E.
Sola was partially supported by a Novartis fellowship. F. Ricci-Tersenghi was
partially supported by EC 6FP IST Project EVERGROW.

R E F E R E N C E S

Allen C and Stevens CF. An evaluation of causes for unreliability of synaptic
transmission. Proc Natl Acad Sci USA 91: 10380–10383, 1994.

Arai A and Lynch G. Response to repetitive stimulation of AMPA receptors
in patches excised from fields CA1 and CA3 of the hippocampus. Brain Res

716: 202–206, 1996.
Arancio O, Korn H, Gulyas A, Freund T, and Miles R. Excitatory synaptic

connections onto rat hippocampal inhibitory cells may involve a single
transmitter release site. J Physiol 481: 395–405, 1994.

Asztely F, Erdemli G, and Kullmann DM. Extrasynaptic glutamate spillover
in the hippocampus: dependence on temperature and the role of active
glutamate uptake. Neuron 18: 281–293, 1997.

Atluri PP and Regehr WG. Determinants of the time course of facilitation at
the granule cell to Purkinje cell synapse. J Neurosci 16: 5661–5671, 1996.

Auger C, Kondo S, and Marty A. Multivesicular release at single functional
synaptic sites in cerebellar stellate and basket cells. J Neurosci 18: 4532–
4547, 1998.

Auger C and Marty A. Heterogeneity of functional synaptic parameters
among single release sites. Neuron 19: 139–150, 1997.

Auger C and Marty A. Quantal currents at single-site central synapses
[Review]. J Physiol 526: 3–11, 2000.

Barberis A and Petrini EM, and Cherubini E. Presynaptic source of quantal
size variability at GABAergic synapses in rat hippocampal neurons in
culture. Eur J Neurosci 20: 1803–1810, 2004.

Bolshakov VY and Siegelbaum SA. Regulation of hippocampal transmitter
release during development and long-term potentiation. Science 69: 1730–
1734, 1995.

Colquhoun D, Jonas P, and Sakmann B. Action of brief pulses of glutamate
on AMPA/kainate receptors in patches from different neurones of rat
hippocampal slices. J Physiol 458: 261–287, 1992.

Conti R and Lisman J. The high variance of AMPA receptor- and NMDA
receptor-mediated responses at single hippocampal synapses: evidence for
multiquantal release. Proc Natl Acad Sci USA 100: 4885–4890, 2003.

Diamond JS. Neuronal glutamate transporters limit activation of NMDA
receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci

21: 8328–8338, 2001.
Dobrunz LE and Stevens CF. Heterogeneity of release probability, facilita-

tion, and depletion at central synapses. Neuron 18: 995–1008, 1997.
Forti L, Bossi M, Bergamaschi A, Villa A, and Malgaroli A. Loose-patch

recordings of single quanta at individual hippocampal synapses. Nature 388:
874–878, 1997.

Frerking M, Borges S, and Wilson M. Variation in GABA mini amplitude is
the consequence of variation in transmitter concentration. Neuron 15:
885–895, 1995.

Gasparini S, Saviane C, Voronin LL, and Cherubini E. Silent synapses in
the developing hippocampus: lack of functional AMPA receptors or low
probability of glutamate release? Proc Natl Acad Sci USA 15; 97: 9741–
9746, 2000.

Gulyas AI, Miles R, Sik A, Toth K, Tamamaki N, and Freund TF.

Hippocampal pyramidal cells excite inhibitory neurons through a single
release site. Nature 366: 683–687, 1993.

Hanse E and Gustafsson B. Quantal variability at glutamatergic synapses in
area CA1 of the rat neonatal hippocampus. J Physiol 531: 467–480, 2001a.

Hanse E and Gustafsson B. Vesicle release probability and pre-primed pool
at glutamatergic synapses in area CA1 of the rat neonatal hippocampus.
J Physiol 531: 481–493, 2001b.

Hanse E and Gustafsson B. Release dependence to a paired stimulus at a
synaptic release site with a small variable pool of immediately releasable
vesicles. J Neurosci 22: 4381–4387, 2002.

Harris KM and Sultan P. Variation in the number, location and size of
synaptic vesicles provides an anatomical basis for the nonuniform proba-
bility of release at hippocampal CA1 synapses. Neuropharmacology 34:
1387–1389, 1995.

Hessler NA, Shirke AM, and Malinow R. The probability of transmitter
release at a mammalian central synapse. Nature 366: 569–572, 1993.

Hjelmstad GO, Isaac JT, Nicoll RA, and Malenka RC. Lack of AMPA
receptor desensitization during basal synaptic transmission in the hippocam-
pal slice. J Neurophysiol 81: 3096–3099, 1999.

Hsia AY, Malenka RC, and Nicoll RA. Development of excitatory circuitry
in the hippocampus. J Neurophysiol 79: 2013–2024, 1998.

25MULTIVESICULAR RELEASE AT GLUTAMATERGIC SYNAPSE

J Neurophysiol • VOL 96 • JULY 2006 • www.jn.org

 on January 4, 2007 
jn.physiology.org

D
ow

nloaded from
 



Huang EP and Stevens CF. Estimating the distribution of synaptic reliabili-
ties. J Neurophysiol 78: 2870–2880, 1997.

Jonas P, Major G, and Sakmann B. Quantal components of unitary EPSCs
at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus.
J Physiol 472: 615–663, 1993.

Kamiya H and Zucker RS. Residual Ca2� and short-term synaptic plasticity.
Nature 371: 603–606, 1994.

Katz B. The Release of Neural Transmitter Substances. Sherrington Lectures
No. 10. Liverpool, UK: Liverpool Univ. Press, 1969.

Kirischuk S, Veselovsky N, and Grantyn R. Relationship between presyn-
aptic calcium transients and postsynaptic currents at single gamma-ami-
nobutyric acid (GABA)ergic boutons. Proc Natl Acad Sci USA 96: 7520–
7525, 1999.

Larkman A, Stratford K, and Jack J. Quantal analysis of excitatory synaptic
action and depression in hippocampal slices. Nature 350: 344–347, 1991.

Liao D, Jones A, and Malinow R. Direct measurement of quantal changes
underlying long-term potentiation in CA1 hippocampus. Neuron 9: 1089–
1097, 1992.

Liu G, Choi S, and Tsien RW. Variability of neurotransmitter concentration
and nonsaturation of postsynaptic AMPA receptors at synapses in hip-
pocampal cultures and slices. Neuron 22: 395–409, 1999.

Liu G and Tsien RW. Synaptic transmission at single visualized hippocampal
boutons. Neuropharmacology 34: 1407–1421, 1995.

Magee JC and Cook EP. Somatic EPSP amplitude is independent of synapse
location in hippocampal pyramidal neurons. Nat Neurosci 3: 895–903, 2000.

Maggi L, Sola E, Minneci F, Le Magueresse C, Changeux JP, and

Cherubini E. Persistent decrease in synaptic efficacy induced by nicotine at
Schaffer collateral–CA1 synapses in the immature rat hippocampus.
J Physiol 559: 863–874, 2004.

Mainen ZF, Malinow R, and Svoboda K. Synaptic calcium transients in
single spines indicate that NMDA receptors are not saturated. Nature 399:
151–155, 1999.

McAllister AK and Stevens CF. Nonsaturation of AMPA and NMDA
receptors at hippocampal synapses. Proc Natl Acad Sci USA 97: 6173–6178,
2000.

Nicholls J and Wallace BG. Quantal analysis of transmitter release at an
inhibitory synapse in the central nervous system of the leech. J Physiol 281:
171–185, 1978.

Nimchinsky EA, Yasuda R, Oertner TG, and Svoboda K. The number of
glutamate receptors opened by synaptic stimulation in single hippocampal
spines. J Neurosci 24: 2054–2064, 2004.

Oertner TG, Sabatini BL, Nimchinsky EA, and Svoboda K. Facilitation at
single synapses probed with optical quantal analysis. Nat Neurosci 5:
657–664, 2002.

Pyle JL, Kavalali ET, Piedras-Renteria ES, and Tsien RW. Rapid reuse of
readily releasable pool vesicles at hippocampal synapses. Neuron 28: 221–
231, 2000.

Raghavachari S and Lisman JE. Properties of quantal transmission at CA1

synapses. J Neurophysiol 92: 2456–2467, 2004.

Redman S. Quantal analysis of synaptic potentials in neurons of the central

nervous system. Physiol Rev 70: 165–198, 1990.

Regehr WG and Stevens CF. Physiology of synaptic transmission and

short-term plasticity. In: Synapses, edited by Cowan WM, Sudhof TC, and

Stevens CF. Baltimore, MD: Johns Hopkins Univ. Press, 2001, p. 135–175.

Rizzoli SO and Betz WJ. Synaptic vesicle pools [Review]. Nat Rev Neurosci

6: 57–69, 2005.

Sakaba T and Neher E. Quantitative relationship between transmitter release

and calcium current at the calyx of held synapse. J Neurosci 21: 462–476,

2001.

Schikorski T and Stevens CF. Quantitative ultrastructural analysis of hip-

pocampal excitatory synapses. J Neurosci 17: 5858–5867, 1997.

Schikorski T and Stevens CF. Morphological correlates of functionally

defined synaptic vesicle populations. Nat Neurosc 4: 391–395, 2001.

Shao J and Tu D. The Jackknife and Bootstrap. Springer Series in Statistics.

New York: Springer-Verlag, 1995.

Shepherd GM and Harris KM. Three-dimensional structure and composition
of CA33CA1 axons in rat hippocampal slices: implications for presynaptic
connectivity and compartmentalization. J Neurosci 18: 8300–8310, 1998.

Silver RA. Estimation of nonuniform quantal parameters with multiple-
probability fluctuation analysis: theory, application and limitations. J Neu-

rosci Methods 130: 127–141, 2003.
Silver RA, Cull-Candy SG, and Takahashi T. Non-NMDA glutamate

receptor occupancy and open probability at a rat cerebellar synapse with
single and multiple release sites. J Physiol 494: 231–250, 1996.

Stevens CF and Wang Y. Facilitation and depression at single central
synapses. Neuron 14: 795–802, 1995.

Stricker C, Field AC, and Redman SJ. Statistical analysis of amplitude
fluctuations in EPSCs evoked in rat CA1 pyramidal neurones in vitro.
J Physiol 490: 419–441, 1996.

Tong G and Jahr CE. Block of glutamate transporters potentiates postsyn-
aptic excitation. Neuron 13: 1195–1203, 1994.

Umemiya M, Senda M, and Murphy TH. Behaviour of NMDA and AMPA
receptor-mediated miniature EPSCs at rat cortical neuron synapses identi-
fied by calcium imaging. J Physiol 521: 113–122, 1999.

Wadiche JI and Jahr CE. Multivesicular release at climbing fiber-Purkinje
cell synapses. Neuron 32: 301–313, 2001.

Wall MJ and Usowicz MM. Development of the quantal properties of evoked
and spontaneous synaptic currents at a brain synapse. Nat Neurosci 1:
675–682, 1998.

Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfin-

ger ED, Ziv NE, and Garner CC. Assembling the presynaptic active zone:
a characterization of an active one precursor vesicle. Neuron 29: 131–143,
2001.

26 RICCI-TERSENGHI ET AL.

J Neurophysiol • VOL 96 • JULY 2006 • www.jn.org

 on January 4, 2007 
jn.physiology.org

D
ow

nloaded from
 



 53 

• Signalling properties of stratum oriens interneurons of the hippocampus: see 
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Introduction 

The hippocampal circuit is characterized by a large variety of distinct locally connected 

GABAergic cell types (Ramón y Cajal, 1911; Freund & Buzsaki, 1996) which, by 

releasing GABA on principal cells and interneurons, exert a powerful control on network 

excitability and are responsible for the oscillatory behaviour crucial for information 

processing in the brain. GABAergic interneurons selectively innervate different domains 

of pyramidal cells, thus providing the main source of feedback and feed-forward 

inhibition (Freund & Buzsaki, 1996; Miles et al. 1996). Due to their extensive dendritic 

and axonal arborisation, GABAergic interneurons can phase the output of principal cells 

giving rise to a coherent oscillatory activity (Klausberger et al. 2003; Klausberger et al. 

2004; Somogyi & Klausberger, 2005), which occurs at different frequencies (Buzsaki, 

2002; Whittington & Traub, 2003).  Although some oscillations can be reproduced in 

vitro, they occur mainly in vivo during particular behavioural states of the animal 

(Buzsaki, 2002; Buzsaki & Draguhn, 2004). Oscillations have been implicated in 

encoding, consolidation and retrieval of information in the hippocampus (Freund & 

Buzsaki, 1996). Oscillatory rhythms are facilitated by the intrinsic properties of GABA 

releasing cells (Maccaferri & McBain, 1996) and by their electrical coupling via gap 

junctions (Hestrin & Galarreta, 2005). Different interneuron ensembles, each one 

comprising interneurons with similar characteristics, would define multiple functional 

networks (Blatow et al. 2003; Hestrin & Galarreta, 2005). 

GABAergic interneurons have been differently classified according to their 

morphological, neurochemical and physiological characteristics, which include the 

intrinsic firing, network properties and activity dependent synaptic plasticity processes. In 

particular, in the CA1 area of the hippocampus, at least 16 different types of interneurons 

have been characterized on the basis of their selective targets (Somogyi & Klausberger, 

2005).  

More recently, transgenic techniques have been used to identify subsets of interneurons 

expressing enhanced green fluorescent protein (EGFP) in cells containing particular 

peptides or calcium binding proteins (Monyer & Markram, 2004). Using this approach, 

Oliva et al. (2000) have generated transgenic mice expressing EGFP in a subpopulation 

of interneurons containing somatostatin (GIN mice). According to these authors, the vast 
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majority of EGFP positive cells present in stratum oriens of the CA1 area projects to 

stratum lacunosum-moleculare (O-LM; Oliva et al. 2000). O-LM interneurons have been 

thoroughly investigated (Lacaille et al. 1987; Lacaille & Williams, 1990; McBain et al. 

1994; Maccaferri & McBain, 1996; Maccaferri et al. 2000; Maccaferri & Lacaille, 2003; 

Maccaferri, 2005). They constitute a large proportion of stratum oriens horizontal 

neurons with soma and dendrites lying in stratum oriens and axons projecting to distal 

dendrites of CA1 pyramidal cells in stratum lacunosum-moleculare, the region that 

receives entorhinal cortex inputs (Maccaferri, 2005). They are driven by axon collaterals 

of CA1 principal cells (Lacaille et al. 1987; Blasco-Ibanez & Freund, 1995; Maccaferri & 

McBain, 1995; Ali & Thomson, 1998; Losonczy et al. 2002; Pouille & Scanziani, 2004) 

to such extent that synaptic plasticity on principal cells can be passively propagated to 

interneurons (Maccaferri & McBain, 1995; 1996).  

Here, pair recordings from interconnected EGFP-positive cells in stratum oriens or 

interneurons and principal cells have been used to further characterize the functional 

properties of this type of interneurons in hippocampal slice cultures obtained from GIN 

mice (Oliva et al. 2000). We found that EGFP-positive interneurons in stratum oriens of 

GIN mice constitute a heterogeneous population of cells which are interconnected 

through electrical synapses. The dynamic interaction between electrically coupled 

interneurons with different firing properties can differentially affect target cells and act as 

a powerful filter which may be crucial for information processing within the hippocampal 

network.  
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Methods 

Hippocampal slice cultures  

Experiments were performed on hippocampal slices in culture. Hippocampal slices were 

obtained from post-natal day 8 (P8) EGFP-positive mice (GIN mice: Jackson 

Laboratories, Maine, USA; Oliva et al. 2000), following the procedure previously 

described by Stoppini et al. (1991). All experiments were carried out in accordance with 

the European Community Council Directive of 24 November 1986 (86/609EEC) and 

were approved by local authority veterinary service. Briefly, animals were decapitated 

after being anaesthetized with an i.p. injection of urethane (2 g/Kg) and the brains were 

quickly removed from the skull and placed in ice-cold dissection medium consisting of 

modified Eagle’s medium (MEM, Invitrogen, Milan, Italy) containing HEPES (25 mM, 

Sigma, Milan, Italy), Tris base (10 mM), D-glucose (10 mM), MgCl2 (3 mM) and 

penicillin-streptomycin (100 µg/ml, Invitrogen). Tissue slices (400 µm thick) containing 

the hippocampus and the entorhinal cortex were obtained using the McIlwain tissue 

chopper. Slices were placed on 30 mm cell culture inserts (Millicell-CM, Millipore, 

USA) and maintained in culture at the interface between air and culture medium in a CO2 

incubator at 37° C. Culture medium consisted of MEM containing 20% horse serum 

(Invitrogen), HEPES (25 mM), D-glucose (25 mM), MgCl2 (2.5 mM), ascorbic acid (0.5 

mM), insulin 0.5 mg/ml (Sigma) and penicillin-streptomycin (100 µg/ml). Cultures were 

maintained for up to 4 weeks. 

 

Electrophysiological recordings 

After 1 to 3 weeks in culture, slices, which had flattened to a thickness of about 150 µm, 

were transferred to a recording chamber under an upright microscope equipped with both 

fluorescence and IR-DIC video microscopy. The culture in the recording chamber was 

continuously perfused (2-4 ml/min) at 33-35 °C with a solution containing (mM): NaCl 

150, KCl 3, CaCl2 2, MgCl2 1, Hepes 10, glucose 12 (pH 7.3, adjusted with NaOH). 

EGFP-positive interneurons in the stratum oriens of CA1 were visually identified using a 

60X objective by switching between fluorescence and IR-DIC video microscopy. CA1 

pyramidal cells were identified both visually by IR-DIC video microscopy and on the 

basis of their firing properties (i.e. their ability to accommodate in response to long 
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depolarising current pulses). In some cases (n=20), EGFP-positive interneurons were 

labelled with neurobiotin (0.2 %; Vector Laboratories, Burlingame, CA, USA) for later 

morphological identification. EGFP-positive interneurons were also morphologically 

identified by electroporation according to a previously described method (Lohmann et al. 

2005; n=8), using patch pipettes containing sulforhodamine B (dissolved in methanol at 1 

mg/ml). Whole-cell patch-clamp recordings (in current and voltage clamp mode) were 

performed from EGFP-positive interneurons in stratum oriens and/or CA1 principal cells 

using a Multiclamp 700A amplifier (Molecular Devices, Union City, CA, USA). Patch 

electrodes were pulled from borosilicate glass capillaries (Hingenberg, Malsfeld, 

Germany). They had a resistance of 5–7 MΩ when filled with the intracellular solution. 

For single patch experiments the intracellular solution contained (in mM): KMeSO4 135, 

KCl 10, Hepes 10, MgCl2 1, Na2ATP 2, Na2GTP 0.4 (solution 1). For pair recordings it 

contained (in mM): K-gluconate 135, KCl 5, Na2HPO4 10, EGTA 0.5, MgATP 4, 

MgGTP 0.3 (solution 2). The pH was adjusted to 7.3 with KOH. The reversal potential 

for Cl– was –65 mV for solution 1 and –87 mV for solution 2. The stability of the patch 

was checked by monitoring the input and series resistances during the experiment, and 

cells exhibiting changes bigger than 20% were excluded from the analysis. Membrane 

potential values were corrected for a liquid junction potential of 12 mV (solution 1) and 

17 mV (solution 2). Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) 

were recorded from a holding potential of –65 mV. 

Drugs were applied to the bath via a three-way tap system. The following drugs were 

used: tetrodotoxin (Latoxan, Valence, France); sulforhodamine B (sodium salt), 

carbenoxolone (disodium salt) and bicuculline methiodide (Sigma); ZD7288, DL-2-

amino-5-phosphonopentaoic acid (D-AP5) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) 

(Tocris Bioscience, Bristol, UK). DNQX was dissolved in dimethylsulphoxide (DMSO). 

The final concentration of DMSO in the bathing solution was 0.1%. 

 

Data acquisition and analysis 

Data were transferred to a computer after digitization with an A/D converter (Digidata 

1322, Molecular Devices). Data acquisition (digitized at 20 kHz and filtered at 2 kHz) 

was performed with pClamp 9.2 software (Molecular Devices). Input resistance and 
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capacitance of the cells were measured online with the Membrane Test feature of the 

pClamp software. Data were analyzed with Clampfit 9.2 (Molecular Devices). Single 

spikes were evoked in current clamp mode by short (5 ms) depolarizing current pulses. 

Hyperpolarizing electrotonic potentials were obtained by injecting 400 ms long 

hyperpolarizing current pulses. Voltage-dependent membrane oscillations and firing 

patterns were studied by injecting long (800 ms) depolarizing current pulses of variable 

amplitude. Power spectra were constructed from single traces, using the Power Spectrum 

feature of Clampfit 9.2 (Molecular Devices) with a rectangular window and a sample 

number of 4096 which corresponds to a spectral resolution of 2.44 Hz. Interspike interval 

(ISI) histograms were constructed using a custom-written programme in Matlab 7.1 

(MathWorks, Natick, MA, USA). Impedance measurements were obtained by injecting 

long (10 s) sinusoidal current pulses at various frequencies (0.5, 1, 2, 5, 10, 20, 50, 100 

Hz) in current clamp mode and calculating the ratio of the amplitude of the voltage 

response over the amplitude of the injected current waveform.  

In pair recordings from interconnected EGFP-positive cells the coupling coefficient was 

calculated as the ratio of the amplitude of the electrotonic potential in one cell over the 

amplitude of the electrotonic potential in the other cell. At glutamatergic synapses, trains 

of 10 spikes were evoked at a definite frequency (20 Hz, 50 Hz or 100 Hz) in the 

presynaptic neuron (at least 20 consecutive sweeps for each frequency). The probability 

of successes was calculated as the number of postsynaptic responses over the total 

number of presynaptic spikes. Failures were visually identified. For each frequency, the 

potency ratio was calculated as the ratio of the mean potency of synaptic responses to the 

10th spike within the trains over the mean potency of the responses to the 1st spike. 

Data are presented as the mean ± S.E.M. Comparisons between active and passive 

membrane properties were done using the unpaired t-test. Comparisons for differences in 

the probability and potency ratio were assessed by ANOVA followed by post hoc 

multiple comparison Tukey test. The differences were considered significant for p<0.05. 

 

Immunocytochemical experiments 

Mice were anesthetized using diethylether and perfused transcardially with phosphate 

buffer saline (PBS), followed by PBS containing 4% paraformaldehyde (Sigma). Brains 
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were removed from the skull and stored in the same fixative overnight, at 4° C. The day 

after, brains were placed into a solution containing 30% sucrose in PBS. Coronal brain 

slices (50 µm-thick) were cut using a freezing sliding microtome and stored in PBS for 

further use. Sections containing the hippocampus were incubated overnight at 4° C in the 

following primary antibodies diluted in blocking buffer (3% normal goat serum, 0.3 % 

Triton X-100 and 3% bovine serum albumin): rabbit polyclonal anti-somatostatin 28 

(1:700, AB 1752,  Chemicon, Temecula, CA, USA); rabbit polyclonal anti-neuropeptide 

Y (1:1000, AB 10980, AbCam, Cambridge, UK); rabbit polyclonal anti-metabotropic 

glutamate receptor (1:100, AB 27199, AbCam); mouse monoclonal anti-parvalbumin 

(1:700, MAB 1572, Chemicon); rabbit polyclonal anti-GFP (1:1000, kindly provided by 

Dr. Kevin Ainger, Adriacell, Trieste, Italy). Brain sections were rinsed in PBS and 

incubated for 90 min at room temperature with the following secondary antibodies: Alexa 

Fluor 594 goat anti-rabbit, Alexa Fluor 594 goat anti-mouse and Alexa Fluor 488 goat 

anti-rabbit (Molecular Probes, Eugene, OR, USA, 1:350 diluted in blocking buffer). 

Sections were subsequently rinsed and wet-mounted using glycerol / pH 8.6 PBS (9:1) 

containing 2.5 % 1,4diazabicyclo-(2,2,2)-octane (Sigma), in order to prevent fluorescence 

fading. Slides were viewed using a Zeiss Axioskop (Germany) microscope equipped with 

a CCD camera. Images were exported and further processed using Adobe Photoshop and 

Corel Draw. 

 

Modelling 

All the simulations were carried out with the NEURON simulation program (Hines & 

Carnevale, 1997, v5.8) using its variable time step feature. The complete model and 

simulation files are available for public download under the ModelDB section of the 

Senselab database (http://senselab.med.yale.edu). 

The morphology of the interneuron was based on a 3D reconstruction of a real cell (O-

LM; Saraga et al. 2003), and it was downloaded from the public ModelDB archive. The 

same, uniform, passive properties were used for all compartments (τm = 25 ms, Rm = 25 

kΩ·cm
2
, Ra = 150 Ω·cm). Resting potential was set at –65 mV and temperature at 34˚C. 

We found that the basic firing behaviour of the cells described in this paper (regular and 

clustered) can be appropriately modelled using only a Na+ conductance and two fast and 
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slowly inactivating K+ conductances. Since detailed information on the channels’ 

subunits composition and distribution for the specific kind of neurons described in this 

work is not available, we decided to implement our model using the minimum number of 

active conductances that can reproduce the main properties of our cells. For this reason, 

to reproduce an action potential we used a Na+ conductance from CA1 hippocampal 

pyramidal neurons (Migliore et al. 1999) and a fast inactivating K+ channel from mitral 

cells in the olfactory bulb (Kf; Wang et al. 1996). To obtain clusters of action potentials, 

we inserted in all compartments a slowly inactivating K+ current (Ks) that has been 

proposed to be responsible for this effect in putatively GABAergic neurons in the nucleus 

basalis (Wang, 2002). We found that only slight modifications of the original kinetic 

parameters of the Na+ and Ks conductances (a +15 mV shift of the activation/inactivation 

for Na+, and a steeper activation for Ks) were sufficient to qualitatively match all of our 

experimental traces under different current clamp conditions.  

The current generated by a gap junction (GJ) was modelled as IGJ = ggap · (vpost – vpre), 

where ggap, vpost, and vpre, are the GJ conductance, the post- and the pre-synaptic 

membrane potentials, respectively. There is no indication from experiments on the 

dendritic location and total conductance. In our model, a 1.5 nS GJ connecting two 

identical model neurons at ~120 µm from soma resulted in somatic voltage deflections 

very close to those recorded experimentally.  

 

Results 

Identification of EGFP-positive interneurons in stratum oriens 

In agreement with Oliva et al. (2000), in acute hippocampal slices from P8 GIN mice, the 

vast majority of EGFP-positive interneurons were confined to stratum oriens (SO) and 

stratum radiatum (SR) of the CA1 and CA3 hippocampal regions and in the hilus  

(Figure 1A). Some of these cells exhibited the characteristics of O-LM interneurons with 

oval cell bodies and horizontal dendrites running in stratum oriens parallel to stratum 

pyramidale (Figure 1a). As previously shown (Stoppini et al. 1991), after 2-3 weeks, 

cultured slices maintained the characteristic architecture of acute hippocampal slices (De 

Simoni et al. 2003). In addition, several EGFP-positive cells could be identified 

displaying a morphology similar to that observed in acute slices (Figure 1B-D). In the 
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present study we examined only those interneurons with somata localized in stratum 

oriens of the CA1 area. A closer view of two EGFP-positive cells in stratum oriens, 

obtained with single-cell electroporation, shows overlapping extensive dendritic 

arborisations (Figure 1C). As explained in detail in a later section, dendritic arborisations 

were often establishing electrical connections. Figure 1D shows two electrically 

connected interneurons (as confirmed by electrophysiological data) labelled with 

neurobiotin.  

EGFP-positive interneurons in stratum oriens were also identified according to their 

neurochemical markers. Thus, as shown in Figure 1E, every EGFP-positive cell was 

immunopositive for the neuropeptide somatostatin. However, somatostatin-positive 

neurons which were not expressing EGFP could be also identified (Oliva et al. 2000; 

Halabisky et al. 2006; see asterisk in Figure 1E). EGFP-positive cells also expressed the 

splice variant of the metabotropic glutamate receptor 1α (Figure 1F). On the contrary, 

only few EGFP-positive cells were immunoreactive for the neuropeptide Y (NPY; Figure 

1G) and none of them were immunopositive for parvalbumin (data not shown). In 

summary, the immunocytochemical characterization of EGFP-positive cells in stratum 

oriens was similar in all respects to that of previously identified O-LM interneurons 

(McBain et al. 1994; Katona et al. 1999; Maccaferri et al. 2000; Losonczy et al. 2002; 

Klausberger et al. 2003). 

 

Passive and active membrane properties of O-LM interneurons 

Whole cell recordings in current or voltage clamp mode were performed from 203 EGFP-

positive stratum oriens interneurons having a resting membrane potential ranging from –

61 mV to –79 mV (on average –70.5 ± 1.0 mV; n=30) and a membrane input resistance 

(measured from voltage responses to current pulses of different intensities) ranging from 

90 MΩ to 798 MΩ  (on average 246 ± 26 MΩ; n=30). Cell capacitance varied between 

56 pF and 180 pF (on average 110 ± 5 pF; n=30). The high capacitance values observed 

in some cells (often associated with low input resistance) probably reflects the larger 

dendritic arborisation of some interneurons after few weeks in culture (De Simoni et al. 

2003). The passive membrane properties of these neurons are summarized in Table I. The 

majority of these cells did not fire spontaneously. Short (5 ms) depolarizing current 
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pulses induced action potentials with mean amplitude of 77.9 ± 1.4 mV and spike 

threshold of –51.9 ± 0.5 mV (n=30; Table I). Spike repolarization was relatively fast 

(spike width at half amplitude was 0.84 ± 0.03 ms; n=30) and was often followed by a 

large after-hyperpolarization. Injection of hyperpolarizing current pulses of different 

amplitude from the resting membrane potential revealed, in all cells examined, a sag in 

the electrotonic potential (Figure 2A, left), which varied in amplitude between one cell to 

another and was followed by a rebound depolarization occasionally giving rise to an 

action potential. The sag was abolished by ZD7288 (100 µM) indicating that the time-

dependent inwardly rectifying cationic current Ih was responsible for it (Figure 2A, right). 

Another prominent feature found in a minority of tested interneurons (20%) was the 

presence of active conductances observed when the membrane was depolarized from rest 

and synaptic transmission was blocked with D-AP5 (50 µM), DNQX (20 µM) and 

bicuculline (10 µM). Thus, sustained depolarizing current pulses (800 ms), subthreshold 

for spike activation, revealed voltage-dependent membrane oscillations superimposed on 

the top of the electrotonic potential (Figure 2B, left). Further depolarization of the 

membrane induced repetitive high frequency firing. These oscillations were readily 

blocked by tetrodotoxin (1 µM), indicating that voltage-dependent sodium channels were 

essential for their generation (Figure 2B, right). As shown in the example of Figure 2C 

the power spectrum of oscillations had a peak around 40 Hz. 

 

Stratum oriens interneurons exhibit different firing patterns 

Long depolarizing current pulses (800 ms duration) were used to characterize the firing 

patterns of EGFP-positive interneurons that did not fire spontaneously. In agreement with 

Parra et al. (1998) we found that, at the same membrane potential, cells fired with at least 

three distinct firing patterns which remained constant over time: regular, irregular and 

clustered (Figure 3). In regular firing cells, the interspike interval was constant for the 

entire duration of the pulse and the repolarization following each action potential directly 

initiated the next spike. In irregular firing neurons, the interspike interval was variable 

and spike repolarization was often followed by a variable delay before the occurrence of 

the next spike. In clustered cells, brief trains of spikes occurring at regular intervals were 

separated by silent periods of variable duration, usually exhibiting voltage dependent 
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oscillations (see preceding paragraph). Irregular firing cells occurred more frequently 

(48%) than clustered and regular firing neurons that were observed in 22% and 30% of 

the cases, respectively. For each individual cell the interspike interval was usually 

calculated from 10 sweeps obtained at the same membrane potential. As illustrated in 

Figure 3, each cell type exhibited characteristic interspike interval distributions. In order 

to see whether a particular firing pattern could be converted into another by membrane 

depolarization, current steps of increasing amplitude were applied to individual cells. 

Increasing membrane depolarization did not significantly alter the firing patterns (Figure 

4). However, in all neurons examined (n=90), an increase in amplitude of the 

depolarizing current steps produced an enhancement of the instantaneous interspike or 

intercluster frequency. Thus, it seems likely that each individual cell possesses a 

particular set of voltage-dependent conductances responsible for their firing.  This would 

in turn regulate neuronal signalling between EGFP-positive interneurons or between 

interneurons and principal cells.  

It is worth noticing that, with the exception of clustered cells exhibiting lower values of 

input resistance, no correlation was found between different firing patterns and passive 

membrane properties of the cells (Table I).  

 

Resonance properties of EGFP-positive interneurons in stratum oriens  

One characteristic feature of interneurons is to exhibit coherent oscillations at different 

frequencies (Whittington & Traub, 2003). Distinct types of interneurons display an 

enhancement of the voltage responses to subthreshold oscillatory inputs (resonance) at 

different frequencies. This accounts for different frequency preferences of the firing 

output. In order to investigate their resonance properties, sinusoidal currents at 

frequencies ranging from 0.5 to 100 Hz were injected into EGFP-positive interneurons 

held in current clamp conditions under threshold for generating action potentials (Figure 

5). The impedance of the membrane was calculated and plotted as a function of the 

stimulus frequency (Figure 5C, left). The maximal value of the impedance, corresponding 

to resonance, was always (n=7) in the frequency range of 1-5 Hz. A plot of the 

impedance normalised to the value at 0.5 Hz, averaged for 7 interneurons, is shown in 

Figure 5C (right). These data indicate that the resonance properties of the EGFP-positive 
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interneurons in stratum oriens are similar to those found for O-LM interneurons (Pike et 

al. 2000). 

 

Stratum oriens interneurons are electrically coupled via gap junctions 

Pair recordings from EGFP-positive cells localized in stratum oriens revealed the 

presence of electrical synapses in 47% of cases (8/17). Electrically coupled cells were 

located at least two cell diameters apart (~ 50 µm) indicating that gap junctions were not 

directly connecting the soma of the patched cells.  Figure 6A shows simultaneous current 

clamp recordings from two cells one of which (cell 1) was firing spontaneously at 20 Hz. 

Each action potential in cell 1 was associated with a small electrotonic pre-potential (a 

so-called “spikelet”) in cell 2. Electrotonic transmission was reciprocal in all recordings. 

The electrotonic coupling persisted in the presence of the AMPA, NMDA and GABAA 

receptor antagonists DNQX, D-AP5 and bicuculline, respectively, but was abolished by 

the selective gap junction blocker carbenoxolone (200 µM, n=3; Figure 6B). In previous 

work from cortical interneurons it was shown that electrical coupling coexisted with 

chemical synaptic transmission (Galarreta & Hestrin, 1999). Although we can not 

exclude that at least in some of the present cases synaptic potentials or currents could be 

“masked” by the large electrotonic responses, EGFP-positive interneurons appeared to be 

connected preferentially via gap junctions. Thus, we failed to detect inhibitory 

connections between electrically coupled interneurons even in the presence of 

carbenoxolone or when several traces (up to 30 sweeps) were averaged. Interestingly, 

blocking the electrical coupling with carbenoxolone induced the appearance of barrages 

of spontaneous glutamatergic synaptic responses (Figure 6C), suggesting that uncoupling 

removes the strong inhibitory action of the interneuronal network on principal cells. 

Electrical coupling between EGFP-positive cells in stratum oriens was independent of 

the firing patterns of individual neurons. In the representative sample of Figure 7A, a 

steady depolarizing current step in cell 2 produced an irregular firing. This was associated 

in cell 1 with “spikelets” that under voltage clamp conditions were seen as fast inward 

currents followed by slower outward currents reflecting the after-hyperpolarization 

occurring after each action potential. Current injection in cell 1 produced regularly firing 

action potentials that were time-locked in cell 2 with inward spikelet-like currents.  



 65 

Moreover, in all cells tested, a hyperpolarizing current pulse applied to one cell produced 

a simultaneous electrotonic potential in the second cell that was smaller in amplitude 

(Figure 7B). Changes in membrane potential of two coupled cells produced by injecting 

current in one of them were used to measure the coupling coefficient (Hestrin & 

Galarreta, 2005). On average, this was 0.21 ± 0.07 (n=5). Interestingly, in a pair of 

interconnected cells in which the coupling coefficient was particularly high (0.47), 

spontaneous firing in one neuron was able to trigger action potentials in the second one. 

A careful examination of the traces shown on Figure 8A revealed that, when two 

spontaneous action potentials in cell 1 were sufficiently close in time, the corresponding 

spikelets summated giving rise to an action potential in cell 2 which was time locked with 

the second spike. In addition, spikelets in one cell could influence the firing of the other 

cell and vice versa. When cell 1 was depolarized to fire action potentials at high 

frequency (in the gamma range), cell 2 displayed time locked spikelets which summated 

to give rise to action potentials occurring at lower frequency (in the theta range). 

Depolarization of cell 2 produced a similar effect in cell 1 (Figure 8B).  

Therefore, strong electrical coupling acting as a powerful low-pass filter may contribute 

to alter the output of individual cells from gamma to theta frequency discharges, thus 

providing a mechanism for modifying synaptic weights and the temporal coding of 

neuronal ensembles.  

 

Synaptic connectivity between principal cells and interneurons 

Pair recordings from interconnected EGFP-positive interneurons in stratum oriens and 

principal cells allowed identification of their reciprocal connections. In the presence of 

DNQX (20 µM) and D-AP5 (50 µM), action potentials in interneurons evoked IPSCs in 

CA1 pyramidal cells (held at –65 mV). At this holding potential the synaptic currents 

were outward (see Methods). In spite many efforts, this type of connection was found 

only in few cases (3 out of 45). This may be attributed to the distal location of the 

synapses under investigation. Consistent with electrotonic filtering, synaptic currents 

were very small in amplitude (on average 2.6 ± 0.3 pA) and exhibited slow kinetics. In 

one case they could be seen only after averaging twenty sweeps (see also Lacaille et al. 

1987 and Maccaferri et al. 2000). This precluded the possibility to perform any further 
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analysis on individual responses. When a paired pulse protocol was used, the peak 

amplitude of the second IPSC (evoked by a presynaptic spike occurring 50 ms after the 

first one) was unchanged or slightly reduced. Action potentials evoked in the presynaptic 

neuron at 20 Hz induced in pyramidal cells synaptic currents (Figure 9A) that exhibited 

short-term depression.  

In contrast, excitatory connections between principal cells and EGFP-positive 

interneurons in stratum oriens were easily detectable (17/55; Figure 9B). Interneurons in 

stratum oriens are known to receive a strong excitatory input from CA1 pyramidal cells 

(Lacaille et al. 1987; Ali & Thomson, 1998; Losonczy et al. 2002), which is known to be 

further enhanced in cultured slices (De Simoni et al. 2003). In seventeen successful pair 

recordings from principal cells and interneurons, action potentials in principal cells 

evoked in interneurons EPSCs that, at a holding potential of –65 mV, were inward and 

were intermingled with transmission failures. These EPSCs were mediated by AMPA 

receptors since they were readily blocked by DNQX (20 µM; data not shown). In double 

pulses experiments, the probability of successes to the first action potential varied from 

0.17 to 0.91 (on average 0.45 ± 0.08; n=10). In agreement with previous data (Ali & 

Thomson, 1998), the second EPSC (occurring 50 ms after the first one) was always 

facilitated. The PPR calculated as the ratio between the amplitude of the second EPSC 

over that of the first one was 1.5 ± 0.2 (n= 10).  

The ability of the excitatory synapses to follow trains of action potentials at different 

frequencies was studied in ten pairs on interconnected cells. Excitatory synaptic currents 

were evoked in interneurons by trains of 10 presynaptic spikes occurring at 20 Hz 

(repeated at least 20 times). EPSCs evoked by trains of presynaptic action potentials at 50 

and 100 Hz were also recorded with the same protocol. As shown in the representative 

sample of Figure 9C, the synaptic responses were able to follow the presynaptic spikes at 

all frequencies. Moreover, in contrast with the inhibitory currents in principal cells, 

EPSCs in interneurons exhibited short-term facilitation. Both the overall probability of 

successes and the ratio of the average potency of the 10th response over the first one were 

used to measure the efficiency of these synapses at the 3 different frequencies tested. The 

plots of Figure 9D clearly demonstrate that, on average, the probability of successes and 

the potency ratio were significantly higher at 50 Hz than at 20 Hz (p<0.01 and p<0.05 
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respectively). At 100 Hz the probability of successes was not significantly different from 

that observed at 50 Hz, while the potency ratio was significantly (p<0.001) reduced. The 

combination of these two frequency-dependent effects makes synapses between principal 

cells and interneurons particularly reliable in the gamma frequency band. 

 

EGFP-positive interneurons may differentially affect target cells according to their firing 

properties: a simulation model   

From the present experiments it is clear that EGFP-positive interneurons in stratum 

oriens constitute a heterogeneous group of cells with different firing properties. 

Therefore, according to the relative weight of a particular firing pattern, electrically 

coupled interneurons may differentially affect target cells. As already mentioned, the 

probability of finding inhibitory connections between stratum oriens interneurons and 

principal cells was extremely low. To figure out the possible functional consequences of 

the different firing behaviours, we implemented a simple qualitative model using the 

same morphology of an O-LM interneuron but with different active properties. We found 

that regularly firing interneurons could be appropriately modelled using only Na+ and a 

fast inactivating K+ current (Kf; Figure 10A, OR). The inclusion of a Ks was sufficient to 

obtain clusters of action potentials (Fig.10A, OC). Next, we investigated the coupling 

caused by a dendritic gap junction connecting two cells with different firing properties as 

observed from the soma (Figure 10B). In agreement with experimental finding, in both 

cases, a somatic current injected into an OR (Figure 10B, middle) or an OC cell (Figure 

10B, right) resulted in the same depolarization pattern in both cells, independently from 

the intrinsic firing properties of the neuron driven by the gap junction conductance. This 

is a potentially important result, because it implies that the output of the same network of 

interneurons can be modulated and delivered to the target cells as a regular or clustered 

train of synaptic activations, according to which kind of cells (OR or OC) is receiving the 

main input. Because of the short-term depression of the synapses formed by interneurons 

the different output could result in drastically different overall inhibitory effects. We 

show the prediction of our model in the simulations of Figure 10C, where we modelled, 

in qualitative agreement with experiments, a short-term depression of the synaptic 

conductance according to the instantaneous interspike interval. From the simulations, it is 
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clear that cells firing regularly at approximately the gamma frequency (as in Figure 10C, 

middle) would result, within a few hundreds of ms from the beginning of the stimulus, in 

a strong depression of the inhibitory conductance. In striking contrast, for clustered action 

potentials the conductance would have enough time to recover its full amplitude during 

the silent intercluster periods (Figure 10C, right). The net result predicted by the model in 

the latter case is a strong pacemaker inhibitory effect on the target cells.  

 

Discussion 

Here we show that in the hippocampus of GIN mice, EGFP-positive interneurons in 

stratum oriens constitute a heterogeneous population of cells exhibiting different firing 

patterns. These neurons which were electrically coupled via gap junctions, established a 

well-defined inhibitory network able to provide a coordinated inhibition of distal 

dendrites of principal cells targeted by entorhinal inputs. Moreover, pair recordings from 

principal cells and EGFP-positive interneurons revealed a frequency and use-dependent 

facilitation of glutamatergic synaptic connections in response to trains of spikes occurring 

in the gamma range. 

GABAergic interneurons have been divided into different subclasses according to their 

morphological, physiological or neurochemical properties (Maccaferri & Lacaille, 2003). 

However, this distinction may be incorrect because, at the molecular level, the same 

marker can be found in anatomically or electrically distinct cell types (see Markram et al. 

2004). An alternative method for identifying GABAergic interneurons consists in 

labelling a neuronal population containing a particular peptide or calcium binding protein 

with an in vivo marker such as the green fluorescent protein (Monyer & Markram, 2004). 

This allows controlling the network properties of an ensemble of cells with similar 

molecular characteristics. This powerful tool has been successfully used to characterize 

the functional properties of parvalbumin positive (Meyer et al. 2002) or parvalbumin and 

calbindin positive GABAergic cells (Blatow et al. 2003). In the present study 

hippocampal slice cultures obtained from GIN mice (Oliva et al. 2000) were used to 

record EGFP-positive, somatostatin-containing interneurons in stratum oriens of the CA1 

hippocampal region. As recently described for cortical interneurons (Halabisky et al. 

2006), not all somatostatin-positive cells were EGFP-positive (see also Oliva et al. 2000). 
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Like O-LM cells previously identified in rats, in the present experiments EGFP-positive 

interneurons also expressed the splicing form of mGluR1, which was sometimes 

associated with NPY. (Baude et al. 1993; Freund & Buzsaki, 1996; Katona et al. 1999; 

Maccaferri et al. 2000; Oliva et al. 2000; Losonczy et al. 2002). All cells tested were 

immunonegative for parvalbumin (but see Klausberger et al. 2003 and Ferraguti et al. 

2004). Similar to previously identified O-LM interneurons (McBain et al. 1994; Ali & 

Thomson, 1998; Maccaferri et al. 2000; Oliva et al. 2000; Losonczy et al. 2002), most of 

the recorded cells displayed dendrites running parallel to the strata borders. However, it 

was not always possible to identify a clear axonal projection towards stratum lacunosum-

moleculare. In addition, all EGFP-positive cells exhibited a prominent sag in response to 

hyperpolarizing current injection (Maccaferri & McBain, 1996; see Maccaferri & 

Lacaille, 2003; Maccaferri, 2005 for reviews) and a pronounced spike after-

hyperpolarization (Ali & Thomson, 1998). Moreover, a minority of recorded cells 

exhibited fast subthreshold membrane oscillations independent of synaptic transmission 

which could trigger high frequency trains of action potentials. These oscillations are 

known to confer resonance characteristics to interneurons (Jonas et al. 2004). However, 

while O-LM interneurons were identified as fast spiking cells with modest spike 

frequency adaptation, (Lacaille & Williams, 1990; Zhang & McBain, 1995; Oliva et al. 

2000; Maccaferri & Lacaille, 2003; Jonas et al. 2004; Lawrence et al. 2006) EGFP-

positive cells in stratum oriens exhibited different firing patterns, suggesting the 

involvement of different cell types. For instance, in the outermost layer of the 

hippocampus, EGFP-positive cells may belong to oriens-bistratified (Maccaferri et al. 

2000) or trilaminar cells (Somogyi & Klausberger, 2005) whose axons do not project to 

stratum lacunosum-moleculare. However, unlike oriens-bistratified cells (Losonczy et al. 

2002) EGFP-positive neurons were immunopositive for both somatostatin and  mGluR1 

receptors and in contrast with trilaminar cells localized in the CA3 region (Gloveli et al. 

2005), they exhibited a prominent sag in response to hyperpolarizing current injection. 

Independently of the cellular type, the present study provides evidence that interneurons 

with different firing properties could be electrically coupled through gap junctions to 

form a functional network. In the neocortex and in the dentate gyrus of the hippocampus, 

inhibitory networks are thought to be composed of electrically coupled neurons with 
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similar characteristics (Connors & Long, 2004; Hestrin & Galarreta, 2005). For instance, 

in the neocortex, cells with similar firing patterns such as fast spiking (Galarreta & 

Hestrin, 1999; Gibson et al. 1999), low threshold spiking (Beierlein et al. 2000), late 

spiking (Chu et al. 2003), multipolar bursting (Blatow et al. 2003), regular and irregular 

spiking cells (Szabadics et al. 2001; Galarreta et al. 2004) are coupled with each other. 

This would allow to efficiently co-ordinate in space and time GABA release into 

selective target neurons giving rise to specific types of oscillatory behaviours. However, 

coupling between neurons with different firing properties have been also observed, 

although less frequently. Thus, electrical coupling may exists between fast spiking and 

low threshold spiking neurons (Gibson et al. 1999), fast spiking cells and pyramidal 

neurons (Meyer et al, 2002). Recently, it has been reported that interneurons located in 

stratum lacunosum moleculare constitute a heterogeneous population of cells with 

different intrinsic excitability coupled via gap junctions to form a functional syncytium 

(Zsirios & Maccaferri, 2005). Also O-LM interneurons are electrically coupled as 

revealed in the intact in vitro hippocampal preparation (Zhang et al. 2004). However, 

unlike EGFP positive cells in stratum oriens, all coupled cells were found to fire 

regularly and manifested minimal spike frequency adaptation in response to long 

depolarizing current pulses.  

In comparison with the results obtained from the intact hippocampus (Zhang et al. 2004), 

in the present case electrical coupling was present in a larger percentage of cases (18% 

versus 48%) and the average value of the coupling coefficient was higher (7% versus 

21%). This could be related to the younger age of mice used to prepare slice cultures 

(Meyer et al. 2002) or to modifications introduced with the slice culture preparation. 

Interestingly, the present experiments show that when electrical coupling was particularly 

robust it could induce firing in the coupled cell and filter the firing frequency from the 

gamma to the theta band.  

The reciprocal interaction between cells with various firing patterns found in the present 

experiments may differently control GABAergic signalling, permitting, as suggested by 

our simulation data, a wide range of interneuronal communication. Thus, regular firing 

interneurons would induce a short-term depression of IPSCs (see Maccaferri et al. 2000), 

while clustered cells would allow IPSCs to recover during silent intercluster periods. 
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While in the first case the dynamic interaction would result in cell silencing, in the 

second it would result in a powerful pacemaker inhibitory action on the target cells.  

Interestingly, due to their passive and active membrane properties, different types of 

neurons exhibit a frequency preference for action potential generation, which confers to 

distinct types of cells the ability to engender rhythms at different frequencies (Pike et al. 

2000; Whittington & Traub, 2003). These rhythms provide the temporal structure for 

coherent network oscillations, associated in vivo to various behavioural states of the 

animals (Buzsaki, 2002). For instance, O-LM interneurons have been shown to exhibit 

firing preference in the theta band (Pike et al. 2000). Similarly, EGFP-positive cells in 

stratum oriens exhibited a selective enhancement of voltage response to oscillatory input 

(resonance) in the theta range, which underlies the frequency preference for action 

potential generation.  

Pair recordings from interconnected pyramidal cells and interneurons showed that EGFP-

positive cells could be activated by spikes elicited in CA1 principal cells. Like in O-LM 

interneurons (Ali & Thomson, 1998; Losonczy et al. 2002), EPSCs evoked by pairs of 

presynaptic spikes were strongly facilitated, an effect that largely depends on presynaptic 

increase in release probability (Zucker, 1989).  In addition, our data revealed highly 

reliable synaptic responses which were able to follow presynaptic spikes in a wide range 

of frequencies. Interestingly, synaptic currents exhibited a prominent facilitation when 

short trains of presynaptic spikes were evoked in the gamma range, as revealed by the 

enhanced probability of successes and the strong potency facilitation between the last and 

the first EPSC. It  is worth noticing that the interneuronal output arises from the complex 

interplay between passive and active membrane properties of the cells under examination, 

the nature of their reciprocal connectivity (including gap junctions) and incoming 

synaptic inputs (Pike et al. 2000; Schreiber et al. 2004; Lawrence et al. 2006). 

In conclusions, the present data indicate that EGFP-positive interneurons in stratum 

oriens of the hippocampus of GIN mice, which contain somatostatin, constitute a 

heterogeneous group of cells with distinct firing patterns. Due to their intrinsic properties, 

these cells preferentially fire in theta frequency range. Moreover, they are interconnected 

via electrical synapses to form a functional network, whose dynamic interactions may 

differentially affect targeted neurons. Principal cells communicate with EGFP-positive 
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cells through reliable glutamatergic connections which are particularly efficient at the 

gamma frequency. The overlapping of these two rhythms may be crucial for encoding 

complex information. In particular, low frequency oscillations would constitute the 

carrier wave over which barrages of high frequency synaptic currents would be nested as 

pieces of informational input, in a similar way as described for short-term memories 

processing (Bragin et al. 1995; Lisman & Idiart, 1995).  
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Table 1 

Passive and active membrane properties of stratum oriens EGFP-positive 

interneurons exhibiting different firing patterns 

 

  Regular Irregular Clustered Total 

Number of cells (n) 10 10 10 30 

Rin (MΩ) 304 ± 61 285 ± 31 160 ± 21 * 249 ± 26 

Cm (pF) 109 ± 7 108 ± 8 114 ± 11 110 ± 5 

Vm (mV) – 70.0 ± 2.0 – 70.4 ± 1.9 – 71.1 ± 1.4 – 70.5 ± 1.0 

Spike amplitude (mV) 78.9 ± 3.0 77.4 ± 2.1 77.4 ± 2.2 77.9 ± 1.4 

Spike threshold (mV) – 52.8 ± 0.7 – 51.6 ± 0.9 – 51.3 ± 0.8 – 51.9 ± 0.5 

Spike width (ms) 0.87 ± 0.05 0.86 ± 0.07 0.78 ± 0.06 0.84 ± 0.03 

 

Rin: membrane input resistance; Cm: membrane capacitance; Vm: resting membrane 

potential. The values are expressed as mean ± SEM; * p<0.05. 
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Figure legends 

 

Figure 1. Distribution pattern and immunocytochemical characterization of EGFP-

expressing interneurons in the hippocampus of GIN mice 

A: Coronal section of the hippocampus showing the distribution of EGFP-expressing 

interneurons at P8. a: Higher magnification of the inset shown in A. B-D: Organotypic 

hippocampal slices (3 weeks in culture) showing preserved morphology and distribution 

of EGFP positive cells. Images were acquired with 20X (B) and 40X (C, D) immersion 

objectives and confocal microscopy. Note the extensive distribution of EGFP-positive 

axon terminals in SLM in B. C: A couple of EGFP-positive cells, electroporated with 

sulforhodamine B. D: Merging picture (in yellow) of two electrically coupled EGFP-

positive interneurons (arrows) injected with neurobiotin. EGFP positive cells (green) 

were co-immunostained with an antibody against neurobiotin (red). Electrical coupling 

was assessed by electrophysiological experiments. In C and D, EGFP-positive cells are 

localized in stratum oriens. E-G: EGFP positive cells (left) are stained (middle) with 

antibodies against somatostatin (E), mGluR1 (F) and NPY (G). The merge pictures are 

on the right. Note that the vast majority of EGFP-expressing CA1 interneurons were 

immunopositive for somatostatin. The asterisks in E indicate a somatostatin positive cell 

that is not expressing EGFP.  

SO: stratum oriens; SP: stratum pyramidale; SR: stratum radiatum; SLM: stratum 

lacunosum-moleculare. Scale bars, in A: 100 �m, in a and in E-G: 20 �m; in B: 60 �m; in 

C-D: 30 �m. 

 

Figure 2. Membrane properties of the EGFP-positive interneurons 

A: Electrotonic potentials induced by hyperpolarizing current pulses in control and during 

bath application of ZD7288 (100 µM). B: Membrane oscillations on the top of an 

electrotonic potential induced in another interneuron by a steady depolarising current 

pulse. Increasing the amplitude of the current pulse induced high-frequency firing (left). 

Both membrane oscillations and spikes were abolished by TTX (1 µM; right). C: 

Membrane oscillations in B (square) are shown on an expanded time scale (left). The 

power spectrum of the oscillations has a peak around 40 Hz (right). 
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Figure 3. Stratum oriens interneurons exhibit different firing patterns 

Representative traces from three different interneurons exhibiting different firing patterns 

in response to depolarizing current pulses (left). On the right, the interspike interval 

probability histogram is plotted for each cell. For the histograms, 100 consecutive sweeps 

with the same depolarizing current pulse were used. 

 

Figure 4. Increasing membrane depolarization does not change the characteristic 

firing pattern of individual interneurons 

On the left, representative traces of regular (A), clustered (C) and irregular (E) firing 

patterns in three different cells in response to two depolarizing current pulses of different 

intensities. The graphs on the right represent the instantaneous frequency corresponding 

to the first 3 interspike intervals (open symbols) and to the last interspike interval (filled 

circles) versus current intensities (B, D and F). 

 

Figure 5. Resonance properties of EGFP-positive interneurons in stratum oriens 

A: Membrane response (upper trace) of an EGFP-positive interneuron to the injection of a 

sinusoidal current pulse at 2 Hz (lower trace). B: Membrane response of the same 

interneuron to a pulse at 20 Hz. Note that at 20 Hz the membrane response was smaller in 

amplitude and significantly out of phase with the injected current (dashed lines). C: The 

membrane impedance of the same cell at various frequencies (from 0.5 to 100 Hz) is 

plotted on the left. On the right, the impedance normalised to the 0.5 Hz value is plotted 

as a function of frequency (average of 7 cells). 

 

Figure 6. Interneurons are electrically coupled via gap junctions 

A: Paired recordings from interconnected interneurons showing spontaneous firing in one 

cell (cell 1) associated with spikelets in the other one (cell 2). B: In another pair, electrical 

coupling (left) was blocked by carbenoxolone (200 µM; right). C: Same cells as in B. In 

the presence of carbenoxolone a sustained increase in spontaneous glutamatergic activity 

occurred. On the left, spikes in cell 1 are truncated while the corresponding spikelets in 

cell 2 are fully represented. 
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Figure 7. Electrical coupling occurs between neurons exhibiting different firing 

patterns 

A: Paired recordings from two electrically coupled interneurons exhibiting regular (cell 1) 

and irregular (cell 2) firing patterns. On the left, a depolarizing current pulse evoked 

irregular firing in cell 2, which is associated in cell 1 (recorded in voltage clamp) with 

inward spikelet-like currents followed by outward currents corresponding to the after-

hyperpolarizations. On the right, a depolarizing current pulse evoked regular firing in cell 

1, which is associated with spikelet-like currents in cell 2 (recorded in voltage clamp). B: 

In another pair, electrotonic potentials evoked by hyperpolarizing current pulses in one 

cell were associated with electrotonic potentials of smaller amplitude in the other cell. 

 

Figure 8. Low-pass filter properties of electrical connections with high coupling 

coefficient 

A: In a pair of cells with high coupling coefficient (0.47), the spontaneous firing of cell 1 

caused firing in cell 2 only when the spikelets were sufficiently close in time. Spikelets in 

cell 2 were coincident with spikes in cell 1 (dotted lines). The arrow marks a spike in cell 

2 which, in turn, evoked a spikelet in cell 1. B: In the same couple of interneurons, high 

frequency firing (gamma range) in cell 1 was able to evoke lower frequency firing in cell 

2 (theta range) and vice versa. 

 

Figure 9. Synaptic connectivity between EGFP positive interneurons and principal 

cells 

A, B: The graphs on the left represent the experimental arrangement of paired recordings 

form interconnected interneurons and principal cells. In the case of GABAergic synapses 

(A), a train of action potentials at 20 Hz (upper trace) evoked in the pyramidal cell (lower 

trace) IPSCs which undergo short-term depression. In the case of glutamatergic synapses 

(B), the same train of spikes in the pyramidal cell (upper trace) elicited in the interneuron 

(lower trace) EPSCs which undergo short-term facilitation. C: Short-term facilitation of 

EPSCs evoked in another interneuron by trains of spikes in the principal cell at 20, 50 

and 100 Hz. In A-C each recording is the average of 20 consecutive sweeps. D: Plots of 
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the probability of successes and the potency ratio between the 10th (a10) and the 1st (a1) 

response versus different frequencies. Each point represents the average of 10 

(probability) and 9 (potency) individual values obtained from different pairs. Vertical 

bars represent the SEM. Note that, on average, the connections were more reliable during 

activity at 50 Hz. * p<0.05; ** p<0.01; *** p<0.001 (Tukey test for pairwise multiple 

comparison). 

 

Figure 10. Simulation modelling reveals differential signalling of interneurons with 

various firing patterns 

A: Simulation of the basic firing properties. Somatic recordings of a regularly firing cell 

(OR; left) under different 800ms somatic current injections; somatic recordings of a cell 

firing clusters of action potentials (OC; right). B: Effect of a 1.5 nS gap junction 

connecting two neurons with different firing properties. Schematic representation of the 

circuit (left); somatic membrane potential of the two cells during a 0.3 nA current 

injection in the OR neuron (middle); somatic membrane potential during a 0.4 nA current 

injection in the OC neuron (right). C: simulation of the GABAergic output expected from 

the two kind of cells. Schematic representation of the two kind of neurons (OR and OC) 

and their output (outR and outC, respectively; left); somatic membrane potential (bottom) 

and percent of inhibitory synaptic activation (top) during a somatic current injection into 

an OR neuron (middle); somatic potential (bottom) and percent of inhibitory synaptic 

activation (top) during a current injection into an OC neuron (right). The same current 

pulse (0.3 nA, 800 ms) was used in both cases. 
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CONCLUSIONS AND FUTURE PERSPECTIVES 
In my work, I have used combined theoretical and experimental approaches to examine 

different aspects of synaptic signalling in the rodent hippocampus. In the first part of my 

study, I developed a novel analytic model of quantal transmission at chemical synapses. 

This model describes the release process using some classic quantal parameters, like the 

probability of a single vesicle being released after stimulation, and other relevant 

quantities like the distribution of vesicles ready to be released before the arrival of each 

action potential. In this way, the model can include a wide range of situations in which 

the size of the readily releasable pool of vesicles may change with time. Moreover, either 

in the case of univesicular or multivesicular release the calculations were performed with 

or without the constraint that the release of one vesicle inhibits the release of other 

vesicles for the same stimulation. The model connects these parameters to quantities that 

are usually measured experimentally, like the probability of release and the amplitude of 

the postsynaptic response, with simple mathematical formulas. Using these results with 

sets of experimental data, previously obtained at single CA3-CA1 synapses in the 

developing rat hippocampus, allowed estimating quantal parameters. These, were in good 

agreement with those reported previously in the literature and fitted quite well with a 

multivesicular model of synaptic transmission. 

In the second part of my study, I analyzed some relevant signalling properties of a 

network of EGFP-positive somatostatin-containing interneurons of the CA1 region of the 

mouse hippocampus. I performed patch clamp experiments from a single cell or from pair 

of interconnected neurons in cultured slices obtained from GIN mice. I focussed on the 

population of EGFP-positive interneurons of the stratum oriens. From this work, I can 

conclude that these interneurons constitute a heterogeneous population of cells with 

diverse excitable properties. In particular, these neurons exhibit regular, irregular or 

clustered-type firing patterns in response to similar stimuli. Independently from their 

single-cell properties, interneurons were interconnected by electrical synapses in a 

network expressing a high level of connectivity and strong coupling coefficients. The 

interplay among interneurons with different firing properties may influence information 

processing in this hippocampal region. I found also that interneurons were connected 

with principal cells by chemical synapses. Although GABAergic inhibitory synapses to 
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pyramidal cells were difficult to detect and examine, glutamatergic synapses to 

interneurons showed a remarkable modulation of their activity with higher reliability and 

synaptic strength for inputs encoded in the gamma frequency range, which was not 

observed elsewhere. 

Regarding this second part of my work, many aspects are suitable for further 

investigations.  

First of all, since the organotypic culturing procedure may partially affect the network 

properties of the hippocampal circuitry, it would be interesting to perform similar 

experiments on acute hippocampal slices obtained from mice of the same strain, in order 

to validate the present findings. This is true especially in the perspective of analyzing the 

importance of this interneuronal network in the physiology of hippocampal rhythms. To 

this aim, experiments on acute slices obtained from P14–P21 animals are presently being 

performed in our laboratory. 

Another interesting issue to investigate is how the interneuronal network is modulated by 

neurotransmitters and modulators in GIN mice. For instance, it has been demonstrated 

that cannabinoids exert a powerful control on both glutamatergic and GABAergic 

circuitry in the hippocampus (for a review see Wilson & Nicoll, 2002). It would be of 

interest to see how activation of nicotine acetylcholine receptors (nAChRs) by nicotine or 

endogenous acetylcholine, modulates interneuronal network. nAChRs are widely 

distributed within the brain where they contribute to regulate high cognitive functions. 

The hippocampus, a key structure in learning and memory processes, receives a large 

cholinergic innervation and is endowed with a variety of nAChRs, which are thought to 

regulate important processes such as transmitter release, cell excitability and neuronal 

integration, which are crucial to determine network operation and high cognitive 

functions. Deficits in the cholinergic system produce impairment of cognitive functions, 

which are particularly relevant during senescence and in age-related neurodegenerative 

pathologies. Acetylcholine, released from cholinergic fibres, acts on muscarinic and 

nicotinic receptors. The effects of muscarinic receptors on stratum oriens interneurons 

have been partially elucidated. In a recent work (Lawrence et al., 2006a,b) important 

effects of muscarinic receptors activation on the precise tuning of the activity of stratum 

oriens interneurons have been described. However, similar experiments on nAChRs are 
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lacking. In a previous work in collaboration with Laura Maggi (Maggi et al., 2004), not 

included in this thesis, we have shown that, at immature glutamatergic CA3-CA1 

synapses in acute hippocampal slices from P1-P6 old rats, activation of nAChRs by 

nicotine is able to bidirectionally modify synaptic strength, according to the initial 

probability of the synapses. Thus, it would be useful to investigate the effects of nAChRs 

on EGFP-positive interneurons to elucidate how this alkaloid regulates cell excitability 

(as in Lawrence et al., 2006b) and gap junction properties. In preliminary experiments on 

organotypic cultures, similar to the ones described in this thesis, I have found that EGFP-

positive interneurons are sensitive to nicotine which can have a variety of effects. A brief 

(100 ms) pulse of nicotine delivered by pressure from a pipette (concentration of nicotine 

into the pipette 1mM), localized close to the soma of the interneurons voltage-clamped 

near their resting membrane potential (–60 mV), induced in most cases a fast inward 

current followed by a slow one (see Figure 6B). In some neurons nicotine produced only 

a fast inward current. These currents are similar to those previously described in non-

identified CA1 interneurons by Jones and Yakel (1997). According to McQuiston and 

Madison (1999) and Alkondon et al., (1999) the fast response would be mediated by α7 

 
Figure 6. EGFP-positive interneurons bear nAChRs. A. Biocytin labelled EGFP-
positive interneuron of the stratum oriens. Dashed lines delimit stratum pyramidale (Sp). 
So: stratum oriens; Sr: stratum radiatum. B. Application of nicotine by pressure (arrow) 
from a pipette positioned close to the soma of the interneuron evokes a fast inward 
current followed by a slow one. C. In another regular firing EGFP-positive interneuron 
bath application of nicotine (1 µM for 3 min) modifies the firing pattern induced by a 
steady depolarizing current pulse (four traces are superimposed in control and during 
nicotine application). (Unpublished observations) 
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nAChRs while the slow one by non-α7 nAChRs. In addition, other data suggest that 

nicotine can modify the firing patterns of EGFP-positive interneurons (Figure 6C). 

Finally, it would be interesting to use cDNA microarray techniques to characterize 

differences in gene profile between pyramidal cells and EGFP positive interneurons. It is 

possible to harvest cytoplasm from identified interneurons for potential single-cell 

studies. In combination with the described electrophysiological characteristics, this 

achievement could be used to correlate the diverse excitable properties of interneurons to 

different gene expression. 
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