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INTRODUCTION

In this thesis we study some homogenization processes that may model macro-
scopic properties of media whose microscopic behaviour takes lower-dimensional,
multi-dimensional or multi-scale structures into account. In mathematical terms,
this study can be traslated into the asymptotic behaviour via I'-convergence of
integral functionals (see Chapter 1) which may model energies of these struc-
tures. In addition we face also the problem of the choice of the natural domains
in which the energies before homogenization and the limit problems are set since
it is not always the usual Sobolev space.

In Chapter 2 we deal with the asymptotic behaviour of integral functionals
which may model energies concentrated on multi-dimensional structures. The
model example we have in mind is that of composite elastic bodies composed
of n-dimensional elastic grains interacting through contact forces depending on
the relative displacements of their common boundaries (see Example 2.3). In a
general setting, following the approach of Ambrosio, Buttazzo and Fonseca [2],
we consider integrals of the form

P = [ (25 e

& du.

defined on the space W, ?(Q; R™) of Sobolev functions with respect to the mea-
sure iz, which is the set of LP-functions of 2 whose distributional derivative is
a measure absolutely continuous with respect to u. with p-summable densities.
We study the limit as € — 0 of such functionals under the hypotheses that f
is a Borel function 1-periodic in the first variable satisfying a standard growth
condition of order p, and
pe(B) = émﬂ(%B)

where p is a fixed 1-periodic Radon measure. In the model example the measure
4, up to normalization, is the sum of the n-dimensional Lebesgue measure and
(n — 1)-dimensional Hausdorff measure concentrated on a 1-periodic closed set
E of o-finite n — 1-dimensional Hausdorff measure and such that [0,1]" \ E has
a finite number of connected component, each one with a Lipschitz boundary.
We show (Theorem 2.7) that under suitable reasonably general requirements on
the measure p (we will say that p is ‘p-homogenizable’; see Definition 2.4), the
family (F;) I'-converges as € — 0 to a functional of the form

Fhom (u) = fhom (Du) dz
Q

on WHP(Q; R™), where the function fiom is described by the asymptotic formula
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1 dDu
om(A) = lim inf{ — P
fuom(4) = i wt{ [p( S Ya

u € W:f;c(R”; R™), u— Ax k-periodic} )
This formula generalizes the usual one, corresponding to the case when pu is
the Lebesgue measure (see Braides [23] and Miiller [65]). Hence, in this case we
deal with energies defined on multi-dimensional structures whose homogeniza-
tion gives rise to integral functionals defined on full-dimensional domains. This
problem had been previously studied in the case when p is the restriction of the
Lebesgue measure to a periodic set whose complement is composed by well sep-
arated bounded sets by Braides and Garroni [30] (media with stiff inclusions).
Another meaningful case is when p is the (n — 1)-dimensional Hausdorff measure
restricted to the union of the boundaries of a periodic partition of R™. In this
case the functions in Wj’p (€;R™) are piecewise constant and the functionals
F. can be interpreted as a finite-difference approximation of the homogenized
functional (Section 2.4, see also Kozlov [58], Pankov [67] and Davini [39]).

The approach described above is somehow complementary to the “smooth
approach” where the functionals F. are defined as

P = [ (2. 9u)dn,

on C*°(; R™), whose homogenization is studied by Zhikov [75] (see also Braides
and Chiadd Piat [24] for the case u = xg with E periodic, Bouchitté and Fragala
[20] and Bouchitté, Buttazzo and Seppecher [19] for relaxation results in the case
of general p).

In the context of linear elasticity or perfect plasticity, in place of considering
energies depending on the deformation gradient Du, it is customary to consider
energy functionals depending explicitly on the linearized strain tensor Eu. Hence,
in Chapter 3 we study the asymptotic behaviour of functionals of the type

Fe(u,Q) = /Qf(g %)dﬂs

defined in a particular class of functions with bounded deformation denoted by
LD?, () (introduced in Section 3.1). More precisely, LDF,_(€) is the space of
functions v € LP(Q; R™), whose deformation tensor Fu is a measure absolutely
continuous with respect to p. with p-summable density dEw/du.. Using both
classical and fine properties of functions with bounded deformation and the same
assumptions as in Chapter 2, we prove a homogenization theorem (Theorem 3.9).
Precisely, we show the existence of the I'-limit of the functionals F with respect
to LP-convergence in the Sobolev space W1P(Q; R"), and with respect to L-
convergence in BD() (the space of functions with bounded deformation in §;
that is, the space of functions u € L!(£2; R™) whose deformation tensor Eu is a
Radon measure with finite total variation in €, see [3]). We show that the I'-limit
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admits an integral representation

Fhom(ua Q) = / fhom(Eu) dx
Q
in lep(Q; R™); moreover, if f is convex then

dEsu

Foom(u, Q) = om(Eu da:+/ rom | =—=— |d|E°u
o (10) = | from (€0) i (d|ESu‘)| |

in BD(?), where Eu is the density of the absolutely continuous part and Efu is
the singular part of Eu with respect to the Lebesgue measure; fiom is described
by an asymptotic formula and f =~ denotes the recession function of fyom (see
(1.1) and [15] for relaxation of functionals defined on BD(2)).

Finally, we show that when the scaling argument leading to the functionals F;
does not apply, non local effects can arise. More precisely, we consider functionals

of the type
x dFEu
- —)d
f(g» dﬂs) He

which in the previous approach tend to the null functional when v > 0, and we
construct an explicit example showing that, with a suitable choice of 7, u. and of
the convergence with respect to which the I'-limit is computed, we have a limit
functional of a non local nature (in the same spirit of Bellieud and Bouchitté
[18]).

In Chapter 4 we prove a general Homogenization Theorem for sets with os-
cillating boundaries and in Chapter 5 we apply this result to the description
of nonlinearly elastic thin films with a fast-oscillating profile. The behaviour of
such films is governed by an elastic energy, where two parameters intervene: a
first parameter ¢ represents the thickness of the thin film and a second one ¢ the
scale of the oscillations. The analytic description of the elastic energy is given
by a functional of the form

Fo(u,Q) = 67/

Q

E.s(u) = /9(676) W(Du) dz, (0.1)

where the set (e, d) is of the form

Qe 6) = {x€R3: | i3] <5f(%,%2),(x1,z2) Ew}, (0.2)

with f is a bounded 1-periodic function which parameterizes the boundary of
the thin film, which then has periodicity §.

It is convenient to scale these energies by a change of variables and consider
the functionals

1
B (u) = / W(Dlu, Dau, ngu) da, (0.3)
Q(5) €
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where now

Tl T2

Q(0) = {a: cR?: |z3] < f(F, ?), (x1,22) € w}. (0.4)

In this way we separate the effects of the two parameters € and §.

Fia. 0.1. fast oscillating boundaries

In a recent paper by Braides, Fonseca and Francfort [29] a general com-
pactness result for functional of thin-film type has been proven which comprises
energies of the form (0.3), showing that, with fixed § = §(¢), upon possibly ex-
tracting a subsequence, the family E? © I'-converges as € — 0 to a 2-dimensional
energy, which, if 6(¢) — 0 as € — 0, can be identified with a 2d-functional of the
form

B(u) = / W (Dyu, Do) da. (0.5)

In many cases it is possible to describe w explicitly in terms of W and f, and
as a consequence to prove that no passage to a subsequence is necessary. When
f = C is constant (i.e., the profile of the thin film is flat, and hence there
is no real dependence on ¢) the description of the energy density W has been
given by Le Dret and Raoult [59] who proved that W = 2C Q2W; here Q-
denotes the operation of 2d-quasiconvexification, and W is obtained from W by
minimizing in the third component. An equivalent formula, of ‘homogenization
type’, is given in [29] (see also Section 1.9 Theorem 1.46). If W # QoW (i.e., W
is not quasiconvex). Both formulas underline the formation of microstructures
generated by the passage to the limit. When f is not constant, then the function
W depends on the behaviour of § with respect to €. The case when § = ¢ (or
more in general when d/e converges to a constant) has been treated in [29],
where it is shown that a homogenization-type formula for W can be given. The
same method can be used when § >> ¢; in this case the recipe to obtain W is
the following: first, keep § fixed and apply the Le Dret and Raoult procedure,
considering the thickness of the thin film as a parameter. The output of this
procedure is a 2-dimensional energy of the form
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E°(u) = / 2f(%, %)QQW(DlU, Dou) dzx. (0.6)
w

We can then let § tend to 0, and apply well-known homogenization procedures
of Braides and Miiller (see Section 1.9) obtaining a limit functional, which turns
out to be the desired one. In the case § << ¢ it is possible to make an ansatz in
the same spirit, arguing that the limit £ can be obtained in the following two
steps:

(1) (Homogenization of sets with oscillating boundaries) First consider ¢ as
fixed, and let § — 0, to obtain a limit functional of the form

1
E.(u) = / Whom (xg,Dlu, Dou, ngu) dx
wx(—1,1)

(we consider the normalized case sup f = 1).

Note that in this case an additional dependence on x3 is introduced, which
may underline a loss of coerciveness of the function Wy, for certain values of
x3. The form of Wy, will depend on W and on the sublevel sets of f;

(2) (Thin film limit) Let ¢ — 0 and apply a suitable generalization of the
method of [29] to non-coercive functionals. In this way we obtain a limit energy
density

o 1 _
Wom (F) = inf inf{ — Wiom (23, Du + (F,0)) da :
hom () ren {kz2 /(0,k)2><(0,1) hom s, Du - (1,0)) e

u € Wli’f((O, 1)%;R?), u k-periodic in (931,1’2)} .

Note that the dependence on x3 implies that the simpler method of [59] cannot
be applied to this situation.

A partial result in this case has been obtained by Kohn and Vogelius [57]
who dealt with linear operators.

In Chapter 4 we give a general theory for the homogenization of non-convex
energies defined on sets with oscillating boundaries by generalizing the appli-
cation of the direct methods of I'-convergence to homogenization as described
in Sections 1.7 and 1.9. We clarify and prove statement (1) above, by show-
ing that the functionals E. are defined on a ‘degenerate Sobolev Space’ that
can be described by proving an auxiliary convex-homogenization result. The
formula for Wy, can be obtained by solving a possibly degenerate localized 3d-
homogenization problem. In the case of convex W the determination of Whom (¢, F)
for fixed t € (—1,1) essentially amount to solving a 2d-homogenization problem
with an energy which is coercive only on the set By = {(z1,72) € R? : f(x1,72) >
[t|}, while in the general non-convex case the problem defining Wyom (¢, F) is
genuinely three dimensional. We state and prove these results in a general n-
dimensional setting (for some related problems in the convex setting see e.g.
[31)).

In Chapter 5 we prove that by following steps (1) and (2) above we indeed



6 Introduction

obtain the description of W. Even though this is an intrinsically vectorial prob-
lem, and hence the ‘natural’ structural condition on W is quasiconvexity, we
have been able to prove this result only with the additional hypothesis that W
is convex. The technical point where this assumption is needed is the separation
of scales argument, which assures that, essentially, homogenization comes first,
followed by the thin film 3d—2d limit. In general problems where only quasicon-
vexity is assumed this point is usually proved by a compactness argument which
uses some equi-integrability properties of gradients of optimal sequences for the
homogenization derived from the growth conditions on the energy density (see
Section 1.8.1; for the use of this argument in the framework of iterated homoge-
nization see [26] Chapter 22; for an application to heterogeneous thin films with
flat profile see Shu [68]). In the case of thin films with fast-oscillating profiles,
this technique cannot be used since we have a control on the gradients of optimal
sequences only on varying wildly oscillating domains. In the convex case though,
optimal sequences for the homogenization can be obtained simply by scaling
one single periodic function, and hence their gradients automatically enjoy equi-
integrability properties. Note that this difficulty is similar to those encountered
when dealing with higher-order theories of thin films. In that case the neces-
sary compactness properties can be obtained by adding a small perturbation
with higher-order derivatives (as in the paper by Bhattacharya and James [17]).
We do not follow this type of argument since even a singular perturbation by
higher-order gradients might interact with the homogenization process, as shown
by Francfort and Miiller [50]. More applications of I'-convergence arguments to
thin films theory can be found in [16, 28].

In Chapter 6 and 7 we deal with the asymptotic behaviour of Dirichlet prob-
lems in perforated domains. A well-known result shows the appearance of a
‘strange’ extra term as the period of the perforation tends to 0. In a paper by Cio-
ranescu and Murat [38] (see also e.g. earlier work by Marchenko and Khrushlov
[62]) the following result (among others) is proved. Let £ be a bounded open set
in R", n > 3 and for all § > 0 let Q5 be the periodically perforated domain

Q5 = Q\ U §?7
i€Zn

where B? denotes the open ball of centre 2! = 4 and radius 6"/("~2). Let
¢ € H~1(Q) be fixed, and let us € H}(Q2) be the solution of the problem

—Au=¢
u € Hy(Qs),

extended to 0 outside €25. Then, as § — 0, the sequence us converges weakly in
H}(Q) to the function u which solves the problem

—Au+Cu=2¢
u € Hy(Q),
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where C' denotes the capacity of the unit ball in R™:

C = cap(By) = inf{/ D¢ : ¢ € H'(R), ¢ =1on By(0)}.

n

This result can be easily translated in a equivalent variational form and set in the
framework of I'-convergence, since us is the solution of the minimum problem

min{/ |Dv|? dz — 2(¢,v) : v € Hy(), v=0on Q\Qg},
Q
and the limit function u solves
min{/ (|Dv|? + Cv|?) dz — 2(¢p,v) : v € H&(Q)}
Q

In Chapter 6 we give a direct proof of the non-linear vector-valued version of
this variational problem under minimal assumptions. More precisely, let €2 be a
bounded open set in R™ and let m > 1. Let 1 < p < n and for all 6 > 0 let s
be the periodically perforated domain defined as above, where now Bf denotes
the open ball of centre z¢ = i§ and radius 6™/ (n=P) (for notational simplicity we
do not treat the case n = p, which can be dealt with similarly; for the necessary
changes in the statements see [38]). Note that this is the only meaningful scaling
for the radii of the perforation, since other choices give trivial convergence results.
Let f: M™*™ — [0,+00) be a Borel function satisfying a growth condition of
order p, and let (d;) be a sequence of strictly positive numbers converging to 0
such that there exists the limit

_np_ __n_
9(=) =lim ] 7 Qf (6,77 z)
J
for all z € R™, where Qf denotes the quasiconvexification of f. Note that this
condition is not restrictive upon passing to a subsequence and is trivially satisfied

if f is positively homogeneous of degree p. Then, if ¢ € W17’ (Q; R™) is fixed,
the minimum values

mj = inf{ f(Du)dz + (¢p,u) : ue Wol’p(Q(;j;Rm)}
§s;

converge to the minimum value
m = min{/ (Qf(Du) + go(u)) dx + (p,u) : u € W&’P(Q;Rm)}’
Q

where ¢ is given by the nonlinear capacitary formula

o(z) = mf{/ g(DQ)dr ¢~ € WIPRSR™), ¢ =0 on Bi(0)},



8 Introduction

which agrees with those obtained in convex cases (see e.g. [13], [42], [69], [34]).
Moreover, if u; € Wol’p(ng;Rm) is such that fﬂaj f(Duj) dx+(¢p,uj) = mj+o(1)
as j — 400, then, upon extending u; to 0 outside Qs,, (uj) admits a subsequence
weakly converging in VVO1 P(Q; R™) to a solution of the problem defining m.

Note that we do not assume any structure or regularity condition on f. In
the case of convex and differentiable f we may recover the corresponding result
for systems contained in the paper by Casado Diaz and Garroni [34], where more
arbitrary geometries are also considered. Note moreover that ¢ may depend on
the subsequence (J;), and as a consequence the values m; may not converge.
Furthermore, the function ¢ may not be positively homogeneous of degree p, as
already observed by Casado Diaz and Garroni [35].

The proof of the result is based only on a new simple and direct I'-convergence
approach. The fundamental tool is a ‘joining lemma for perforated domains’
(Lemma 6.6), which, loosely speaking, allows us to restrict our attention to
families of functions (us), converging to a function u, which equal the constant
u(z?) on suitable annuli surrounding B¢. The contribution of these functions
on such annuli easily leads to the formula defining ¢. This method seems of
interest also since it can be easily applied to sequences of integral functionals
by considering minimum problems m; where we replace f(Du) by f;(z, Du). In
Chapter 7 we examine the case f;(x, Du) = f(z/e;, Du). In order to highlight the
effects of homogenization we only treat the case when f is positively homogeneous
of degree 2 in the second variable and n > 3; the same method with minor
changes applies for n = 2 or to p-homogeneous f and 1 < p < n (for changes in
the statements see e.g. [38], [34]).

Since these problems are usually expressed in terms of G-convergence of oper-
ators (see [12]) we describe our results with that terminology. Consider problems
of the general form

—diva.(x, Du) = ¢
{u =0 on 09y, (07)

(for the sake of clarity in the exposition we consider only the case of a linear and
symmetric). A recent compactness result by Dal Maso and Murat [43] ensures
that, for a fixed choice of § = d(g), upon possibly extracting a subsequence, the
solutions u. converge to that of a limit problem of the form

—div (ao(m, Du)) +pu=4¢ (0.8)
u =0 on 0,
where the operator Ag = —div ag(x, Du) is the G-limit of the sequence of opera-

tors —div a.(z, Du) (see e.g. [71], [66], [1], [76], [37], [67]). The G-limit operator
is well defined by a compactness argument; in particular, if a.(z, z) = a(z/e, 2)
then the G-limit (homogenized) operator Apom = —div apem(Du) is indepen-
dent from the subsequence and does not depend on z. The determination of
the function ¢ € L*° is a subtler problem and involves a complex capacitary
computation.
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In Chapter 7 we address the problem of the effective computation of ¢ in
(0.8) when a.(x,z) = a(z/e, z) in (0.7) with a 1-periodic. We highlight various
regimes, at which the oscillating Dirichlet boundary problems of the form

—diva(E,Du) =¢
€ (0.9)
u = 0 on 09y,

behave differently (again, for the sake of simplicity here we describe the results
in the case when the function « is linear, continuous and symmetric, and n > 3
only):

(i) (separation of scales) if € << §"/("=2) or & >> § then the whole family of
solutions u. s of (0.9) converges to the solution « of a problem of the form

—div (anom(Du)) + Cu = ¢
om 0.10
{ u =0 on 0% (0.10)

i.e., p = C. In the case ¢ << §"/("=2) the constant C is given by the homogenized
capacitary problem

{(ahom(Du), Du)dz : u € H'(R™), u =1 on Bl(O)}.

(0.11)
In a sense, we may first let ¢ — 0 and then § — 0. In the case ¢ >> §, conversely,
we may let first act € as a parameter. As a consequence the dependence on z/e
in (0.9) can be ‘frozen’ and we are led to consider the parameterized capacitary
problems

n

C = capy,,(B1) = inf{/

cap,(B1) = inf{/ {a(y, Du), Du) dx : w € H'(R™), u =1 on Bl(O)}. (0.12)
The overall effect of letting € — 0 is then obtained by averaging, and we get

C= cap, (B1) dy. (0.13)
0,1)m™

(ii) (almost-periodic effects) in the remaining cases, the two periods ¢ and ¢
present in (0.9) interact. As a consequence in general the family of solutions u. s
does not converge. The problems satisfied by converging subsequences may be of
the form (0.10) with C described by a single problem (periodic behaviour) of the
form

cap’(By) = inf{/ n(b(amDu),Du) de:u€ H'(R™), u=1on Bl(O)}, (0.14)

with b a suitable scaled operator (in some cases independent of z), or by a
formula of the type (0.13) (almost-periodic behaviour) with cap,, substituted by
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a suitable scaled and localized problem, but may even give rise to a problem of
the form (0.8) with non-constant ¢ (finely-tuned interplay between 6 and €).

All the results above may be easily derived from the corresponding description
of the I'-limits (see [45], [41], [26], [22]) of the functionals F; 5 of the form

/Qf(g,Du) dr if u=0onJ;cz. B?

+00 otherwise

Fes(u) = (0.15)

for f(x,z) = (a(z,z),2) (a linear) (see Remark 7.1(ii)). We show that the I'-
limits of converging subsequences of these functionals as e — 0 and § — 0 are of
the form

F(u):/gfhom(Du) dac—i—/ﬂ<p|u\2dx, (0.16)

where fhom is the homogenized energy density of f (see Section 1.9 Theorem
1.46) and ¢ is described above. Note that in the cases ¢ << 6™/("~2) and § << ¢
then ¢ is constant and does not depend on the subsequence. Also in this case
we propose a direct proof of all these results based on the use of the ‘joining
lemma on varying domains’ (Lemma 7.2, see Lemma 6.6 in a general context).
This technique is explained in a general framework in Section 7.2. Note that we
do not make use of integral representation techniques such as those in [40].

In order to make the presentation more self-contained we introduce in Chap-
ter 1 the necessary background on measure theory, I'-convergence and relaxation
and functions of bounded variation and deformation. Moreover we state the clas-
sical homogenization results that are used in the sequel.

Chapter 2 is the paper [8], with a modified definition of ‘p-homogenizable’
measure, done in collaboration with A. Braides and V. Chiado Piat, Chapter 3
is the paper [9] in collaboration with F. B. Ebobisse, Chapters 4, 5, 6 and 7 are
papers [5], [7] and [6] in collaboration with A. Braides.
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PRELIMINARIES

We introduce the notation and the classical definitions and results that we will
use in the next chapters.

1.1 Notation

Let © be a bounded open subset of R™, B(£2) denotes the family of Borel subsets
of Q and B.(2) the family of Borel subsets with compact closure in §2. We denote
by A(€) the family of all open subsets of Q. In the sequel, n,m € N with n > 2,
m >1.Ifx € R" then z,, = (21,...,7,_1) € R" ! is the vector of the first n—1

components of x, and D, = ( R — ) The notation M™*™ stands for

oz’ ) OLp_1
the space of m x n real matrices and Mg for the space of n x n real symmetric
matrices.

Given a matrix F' € M™*" and following the notation introduced in [59],
we write F' = (F|F,), where F; denotes the i-th column of F, 1 < i < n, and
F= (Fy,...,Fhq) € M™*7=1 is the matrix of the first n — 1 columns of F. F
denotes also (F',0) when no confusion arises.

Ck(Q;R™) is the space of k-times continuously differentiable functions u :
Q — R™, CF(Q;R™) are functions in C*(Q; R™) with compact support. We
will use standard notation for the Sobolev and Lebesgue spaces WP(Q; R™)
and LP(Q; R™), WyP(€; R™) is the closure of C2°(Q; R™) in WHP(Q; R™) and
W‘l’p/(Q;Rm) is the dual space of Wol’p(Q;Rm) where p’ denotes the dual
exponent of p > 1; when p = 2 and m = 1 we use the notation H'(f),
H}(Q) and H~1(Q) respectively. The letter ¢ will denote a strictly positive con-
stant independent of the parameters under consideration, whose value may vary
from line to line and w a generic fixed modulus of continuity;i.e., a function
w : [0,400) — [0,+00) continuous in 0 and with w(0) = 0. The Hausdorff
k-dimensional measure and the n-dimensional Lebesgue measure in R™ are des-
ignated as H*¥ and L" respectively. If E C R" is a Lebesgue-measurable set
then |E| or L™(E) is its Lebesgue measure. If E is a subset of R™ then xg is
its characteristic function. B,(x) is the open ball of center z and radius p. The
symbols (-,-) and | - | stand for the Euclidean scalar product and the Euclidean
norm. For any two vectors a and b in R", the symmetric tensor product a ® b is
the symmetric n x n matrix defined by a ©b = 2 (a®b+b®a), being the tensor
product a ® b the matrix whose entries are a;b;. We denote [t] the integer part
of t.

Let f: RY — [0, +0c0] be convex. We define the recession function f> of f
as
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t—o0

f(x) = lim @ for every x € RV . (1.1)

Note that from the convexity of f it is possible to prove that the limit of f(tx)/t
as t tends to +oo exists so that f° is well defined. It is well-known that f° is
convex and positively homogeneous of degree one.

1.2 Basic notions of measure theory

Definition 1.1 A function p : B(2) — M™*™ js a matrix-valued measure (or
a M™*"valued measure) on Q if it is countably additive;i.e.,

B=|J B, B,NB;j=0  ifi#j = w(B)=> " u(B).
€N €N

The set of such measures will be denoted by M(Q; M™*™). If no confusion may
arise, we denote by p;j, 1 =1,...,n and j =1,...,m the entries of p.

We say that a matriz-valued measure is a vector measure if m = 1 and that
it is a measure if n,m = 1. We say that a measure is a positive measure if it
takes its values in [0, +00].

The set of vector measures, measures and of positive measures on € will be
denoted by M(; R™), M(Q) and M (Q), respectively.

A function p : B.(Q) — M"™*" 4s a matrix-valued Radon measure on Q if
By s a measure for all ' CC Q. As above, we will speak of vector Radon
measures, Radon measures and of positive Radon measures.

We define the restriction ul_B of u to B C Q by

plB(A) = u(B N A)

for all A € B(Q).

Definition 1.2 If u € M(Q; M™*"™) for all B € B(Q) we define the total vari-
ation of p on B by

ul(B) = sup{>_Iu(B)| = B= ] B}

ieEN €N
The set function |p| is a positive measure on Q.

We say that p € M(Q;M™*™) is bounded or finite if it has finite total
variation in Q;i.e., |u|(Q2) < +oo.

Definition 1.3 Let p € M () and A € M(Q;M™*™). We say that X is abso-
lutely continuous with respect to p (and we write A << p) if \(B) = 0 for every
B € B(Q) with u(B) = 0. We say that X is singular with respect to u if there
exists a set E € B(Q) such that u(E) =0 and A(B) = 0 for all B € B(Q)) with
BNE=090.
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Definition 1.4 If p € M(2) we adopt the usual notation LE(€;M™*") to
indicate the space of M™*™-valued p-summable functions with respect to |u| on
Q. We omit p if it is the Lebesque measure, and we omit M™*™ if n,m = 1.

Remark 1.5 If f € L}, (Q;M™*") and p € M(Q) then we define the measure
fu € M(Q;M™*™) by

fu(B) =/deu-

Definition 1.6. (Locally weak* convergence) Let u and the sequence (up)
be matriz-valued Radon measures; we say that (up) locally weakly* converges to

woif
lim /¢duh=/¢du
h—+oo Q O

for every ¢ € C.(Q; M™*™).

Theorem 1.7. (Radon-Nikodym) If A € M(Q;M™*"), and pn € M4(),
then there exists a function f € Lb(ﬂ; M™*™) and a measure \°, singular with
respect to w, such that

A= fu+ A%,
This will be called the Radon-Nikodym decomposition of A with respect to p.

Theorem 1.8. (Besicovitch Derivation Theorem) Let u, A and f be as in
Theorem 1.7. Then for p-almost all x € spt u there exists the limit

O i MBo@)

im ——,
' = u(B,@)

and f(x) = %(m) for p-almost all x € spt .

1.3 Lower semicontinuity and relaxation
Let (X, d) be a metric space.

Definition 1.9 A function F : X — [—oc0, +0o] will be said to be (sequentially)
lower semicontinuous (I.s.c. for short) at w € X, if for every sequence (u;)
converging to u we have

F(z) < liminf F'(u;), (1.2)

or in other words

F(u) = min{limjinf F(u;): u; — u}. (1.3)

We will say that F is lower semicontinuous (on X ) if it is Ls.c. at allu € X.
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Definition 1.10 Let F' : X — [~o0,+0oc] be a function. Its lower semicontin-
uous envelope F' is the greatest lower semicontinuous function not greater than
F, i.e. for everyu e X

F(u) =sup{G(u) : G lLs.c., G<F}. (1.4)

F s called also relaxation of F' or relaxed function.

Remark 1.11 Notice that the function F can be described as follows: for every
ueX
F(u) = inf{liminf F(u;): u; — u}. (1.5)
J

The reason for introducing this notion can be found in the following well-know
theorem (see e.g. [26] Theorem 1.9).

Theorem 1.12. (Weierstrass) Let F : X — [—00,+00] be such that there
exists a compact set K C X with infx F(u) = infg F'(u). Then there exists the
minimum value miny F(u) and it is equals the infimum infx F(u). Moreover,

the minimum points for F are exactly all the limits of converging sequences Uj
such that lim; F'(u;) = infx F.

Let f : Q@ x RN — [0,400] be a given function, we consider functionals
defined on the space M;(Q; RY) of bounded vector measures of the form

) / f(z,v)dp if X =ovp with v € LY(Q; RY)
=< JB

F(\B (1.6)

400 otherwise,

for every A € My(Q; RY) amd B € B(€2). The following theorem prove that the
relaxed functional F' with respect to the locally weak*-convergence in the sense
of measures can be written as an integral

F(A,B):/B@(x,%) du+/B<p°°<x, j;:")dm (1.7)

for a suitable convex integrand ¢ depending on f, where > is the recession
function of ¢ and A is split into the sum

A= — A8
d,u'u +
by using the Radon-Nikodym Theorem 1.7 and the Besicovitch Derivation The-

orem 1.8 (see [32] Theorem 3.3.1).

Theorem 1.13 Assume the functional F(-,Q2) defined in (1.6) is finite in at least
one vy € LY (S RN). Then, there exists a Borel function ¢ : @ x RN — [0, +00]
such that
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(i) for p-a.e. x € Q the function p(z,-) is convex and l.s.c. on RY;
(ii) formula (1.7) holds for every A\ € My(Q; RY) and every B € B();

iii) the recession function > (x,s) is l.s.c. in (x,s).
2

1.4 Quasiconvexity and rank-one-convexity

Definition 1.14 We say that f : M™*™ — R is quasiconvex if f is continuous,
and for all A € M™*"™ and for every bounded open set E of R"

E|f(A /fA+D<p)d

for every p € CF(E;R™).

Definition 1.15 A function f : M™*" — [—oc0,+0o0] is rank-1-convex if and
only if for all A, B € M™*™ such that rank (A — B) <1

ftA+ (1 =t)B) <tf(A)+ (1 -t)f(B) (1.8)

for all t € (0,1) for which the right-hand side makes sense.
Remark 1.16 (i) If f is rank-1-convex, and 0 < f(A4) < ¢(1 + |A|P), then f
satisfies a local Lipschitz condition

[f(A) = F(B)] < c(1 + AP~ +|BIP~)|A - B (1.9)

for all A, B € M™*™;
(ii) if m =1 or n = 1 then rank-1-convexity is the same as convexity;

(iii) if 1 < p < oo and f quasiconvex satisfies the growth condition from
above 0 < f(A) < ¢(1+ |AP) for all A € M™*" then f is rank-one-convex.

Theorem 1.17 Let 1 <p < oo and f: M™*" — [0,4+00) satisfying

0< f(A) <c(l+|AP)  for all A e M™*™,

/fDu

is (sequentially) weakly l.s.c. on WLP(Q; R™) if and only if f is a quasiconvex
function.

(See e.g. [26] Remark 5.15, Theorem 5.16 and Proposition 4.3).

Definition 1.18 Let h: M™*™ — [0,+00) be a Borel function.
The WP -quasiconvezification of h is given by the formula

The functional

Qh(A) = inf{/(o . h(A + Du)dx : u € WEP((0, 1)”;R’")} (1.10)

for A € M™ ™. We say that h is WP -quasiconvez if Qh = h.
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Proposition 1.19 If f : M™*"™ — R is a locally bounded Borel function, then
Qf is quasiconver.

(See e.g. [26] Proposition 6.7).
Remark 1.20 If f: M™*"™ — R is a locally bounded Borel function, then

Qf =sup{g: M™*" — R : g quasiconvex, g < f}; (1.11)

that is, Q f is the quasiconvex envelope of f. In fact, if we denote by h the right-
hand side of (1.11), then Qf < h since Qf is quasiconvex and Qf < f. On the
other hand, if g is quasiconvex and g < f, then g = Qg < Qf, so that h < Qf.

Remark 1.21 If h is a Borel function as above, and there exist constants
c1,¢2 > 0 such that ¢1(JA|P — 1) < h(A) < co(]AP + 1), then the function
Qh is quasiconvex (see Proposition 1.19) and the functional

H(u) = / Qh(Du) dz
Q
is the lower-semicontinuous envelope of the functional
H(u) = / h(Du) dx
Q

on WHP(Q; R™) with respect to the LP(Q; R™) convergence. In fact, by Theorem
1.46 and Remark 1.24 (v) the lower-semicontinuous envelope H of H can be
written in an integral form H(u) = [, ¢(Du)dz, with ¢ quasiconvex. Since
Y < h then by Remark 1.20 v = Q¢ < Qh and H < H. On the other hand Qh
is quasiconvex; hence, H is lower semicontinuous with respect to the L?(Q; R™)
convergence (see Theorem 1.17), so that H < H (see Definition 1.10).

1.5 TI'-convergence

We introduce the definition of De Giorgi’s I'-convergence. Let (X, d) be a metric
space. We say that a sequence of functions F; : X — [—o0, +00] I'-converge to
F:X — [—00,+00] (as j — +00) if for all u € X we have:

(i) (liminf inequality) for every sequence (u;) converging to u

F(u) < liminf Fj(u;); (1.12)
J

(ii) (limsup inequality) for all n > 0 there exists a sequence (u;) converging
to u such that
F(u) > limsup Fj(u;) — 7. (1.13)
J
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If (i) and (ii) hold we write F'(u) = I'-lim; Fj(u) and F is the I'-limit of F.
We also introduce the notation

F'(u) = F—lirrbianj(u) = inf{limjianj(uj) tu; — u},

F"(u) = T-limsup Fj(u) = inf{limsuij(uj) tu; — u},
j J

so that the equality F' = F" is equivalent to the existence of the I'-lim; F;(u).
We will say that a family (F.) I'-converges to F if for all sequences (g;) of
positive numbers converging to 0 (i) and (ii) above are satisfied with F, in place
of Fj.
Very important properties of I'-convergence are the compactness and the
convergence of the minimum values of a sequence F; to the minimum value of F,
as the following theorems show (see e.g. [26] Theorem 7.2 and Proposition 7.9):

Theorem 1.22. (Compactness) Let (X,d) be a separable metric space, and
for all j € N let Fj : X — [—00,400] be a function. Then there is an increasing
sequence of integers (ji) such that the T'-limy F}, (u) exists for allu € X.

Theorem 1.23. (Convergence of minimum problems) Let F; I'-converge
to F. Let there exist a compact set K C X such that infx F; = infx F}; for all
7 € N. Then

Jmin F' = liminf Fj.
X jX

Moreover, if (ji) is an increasing sequence of integers and (ux) is a converging
sequence such that limy, Fj, (u) = lim; inf x F; then its limit is a minimum point
for F.

From the definition of I'-convergence we immediately obtain the following
properties.
Remark 1.24 (i) F’ and F” are lower semicontinuous functions on X;

(ii) If G is a continuous function and F' = I'-lim; F; then F+G = T'-lim; (F;+
G);

(iii) If each function F} is positively homogeneous of degree p, then F” and
F" are positively homogeneous of degree p;

(iv) If each function Fj is convex then F” is convex but in general F” is not
convex;

v) If F; = F for all j € N, then I'-lim; F; = F.
J 3L
vi) I-liminf; F; = I'-liminf; F; and I'-limsup, F; = I'-limsup, F}.
ity it g i
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1.6 Increasing set functions

Definition 1.25 A set function o : A(2) — [0, +00] is called an increasing set
function if a(@) = 0 and a(V) < a(U) if V. C U. An increasing set function is
said to be subadditive if

a(UUuV)<al)+alV) (1.14)
for all U,V € A(Q); « is said to be superadditive if
a(UUV)>al)+alV) (1.15)
for all U,V € A(Q) with UNV =0; « is said to be inner regular if
a(U) =sup{a(V): Ve AQ), V CcCU} (1.16)

for allU € A(Q).

It will be useful to characterize measures as increasing set functions enjoying
special properties which are often satisfied by I'-limits. The following criterion is
due to De Giorgi and Letta (see e.g. [26] Theorem 10.2).

Theorem 1.26 (Measure property criterion) Let « : A(2) — [0,4+0c0] be an
increasing set function. The following statements are equivalent:

(i) « is the restriction to A(Q?) of a Borel measure on Q;

(i) « is subadditive, superadditive and inner regular;

(iii) the set function

B(E) = inf{a(U) : U € A(Q),EC U} (1.17)

defines a Borel measure on €.

The properties of increasing set functions will be used to obtain the compact-
ness of I'-limits as in the following theorem (see e.g. [26] Theorem 10.3).

Theorem 1.27. (Compactness) Let (F.) : LP(Q; R™)x A(Q) — [0, +00] (g >
0) be a family of functionals. Suppose that for every sequence (ex) of positive real
numbers converging to 0 and for every u € WHP(Q; R™)

o(U) = F-limkinf F., (u,U)
" (U) =T-limsup Fr, (u,U)
k

(the T-limits are performed with respect to the LP(U; R™) convergence) define
inner reqular increasing set functions. Then for every sequence (g;) of positive
real numbers converging to 0 there exists a subsequence (e, ) such that the I'-limit

F(u,U) = F_li,?lstk (u,U)

exists for allU € A(Q) and u € WHP(Q; R™).



The direct method of I'-convergence 19

Remark 1.28 Note that fixed a sequence () converging to 0 by Theorem 1.22
and a diagonal procedure we can extract a subsequence (not relabeled) such that
F.(-,U) I'-converges to a functional F'(-,U) for all U in a dense family of open
sets R.

1.7 The direct method of I'-convergence

The direct methods of I'-convergence for the integral functionals consist in prov-
ing general abstract compactness results that assure the existence of I'-converging
sequences, and then in recovering enough information on the structure of the I'-
limits as to obtain a representation in a suitable form.

This method in the version which follows is explained in detail in the book
by Braides and Defranceschi [26] (see also Dal Maso [41] and Buttazzo [32]).

1.7.1  Compactness and measure property of the I'-limit

Definition 1.29 Let F. : LP(Q;R™) x A(Q) — [0,400] be a family of func-
tionals. We say that (F.) satisfies the LP-fundamental estimate as ¢ — 0 if for
all U, U,V € A(Q) with U cC U, and for all o > 0, there exists M, > 0
and €, > 0 such that for all u,v € LP(Q;R™) and € < &, there exists a cut-off
function ¢ € C°(U;[0,1]), ¢ =1 in U’, such that

F.(ou+ (11—, U UV) < (1+0)(F.(u,U) + F(v,V))

+M, |lu—vfPdr+o. (1.18)
(UNVI\U

The definition of fundamental estimate extends to sequences (F;) and to func-
tionals F' with obvious changes.

We show, giving an example, how we usually proceed to prove that some
functionals satisfy the fundamental estimate.

Example 1.30 Consider the functional F : LP(; R™) x A(2) — [0, 4+00] de-
fined by

) = /Uf(x,Du(x))dx if w e WH(Q;R™)

F(u,U (1.19)

400 otherwise,

where f : Q@ x M™*" — [0,4+00) is a Borel function, convex in the second
variable, such that there exists C' > 0 such that

0< flz,A) <CA+[AP),  f(2,24) <O+ f(z,A)) (1.20)
forall z € Q and A € M™*™. In order to prove (1.18) it suffices to consider u, v €

WLHQ;R™), and fix U,U’,V € A(Q) with U’ cC U. We set § = dist (U’,U),
and we fix N € N, N > 0. With fixed k£ € {1,..., N} let ¢ be a cut-off function
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between {x € U : Ndist (z,U’) < §(k — 1)} and {x € U : Ndist (z,U’) < 0k}
with |[Dp|d < 2N. We define for all k =1,..., N

Crp={z€U:6k—1) < Ndist (z,U") < dk}.
We then have
Flpou+ (1 — ), U UV) < F(u,U) + F(v,V)
+/ f(z,oDu+ (1 —¢)Dv+ (u—v)Dyp)dz
LNV
=F(u,U)+ F(v,V)
+/ f(z 2(1(¢Du+(1—<p)Dv)—|—}(u—v)D<p))dx
le/a)% N2 2
< F(u,U)+ F(v,V)
1 1
+C o (1 + f(=, i(chu +(1—p)Dv) + §(u - v)Dgo))d;v
< F(u,U)+ F(v,V)
1 1
+C [ (L4 3f@pDut (1= 9)D0) + 3 f (e, (u = v)Dy) da
RNV
< F(u,U)+ F(v,V)
+C (1+ %gof(a:,Du) + %(1 —¢)f(z,Dv) + %f(x, (u—v)Dy))dx
crnv
< F(u,U)+ F(v,V)

+C (1—|—f(:£,Du)+f(x,Dv)+C(1+|Dg0|p|u—v|p)) dx.
CLNV

Since
N
Z/ (1+C + f(x, Du) + f(x, Dv)) da

< / (1+C+ f(z,Du) + f(z, Dv)) dx
(UNV\U
<A+O)UNV|+F(u,U)+ F(v,V)

we can choose k such that

((1+C)\UOV|+F(u, U)+F(v, V)).

S

[ Cs s Du) Do) d <
CrNV
We then have

Flou+ (1 — @), U'UV) < (1+%)(F(U,U)+F(’U,V))
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c 2N\P
—(1+0O)|UNV|+C*(= — P d
rronvi+er(35) /CWW ol d
C
< (1+ ) (F(,U) + F(u,V)

c 2N \P
+—(1+O)UNV|+C?*— / u—vf? dz.
FUFOUNVIHC(E) | u=l

If we choose
N=N, = [max{%, %(1 +ONu v} +1,

([t] denotes the integer part of ¢) and

then (1.18) is satisfied.

From the fundamental estimate we can derive some inequalities for the I'-
limits (see e.g. [26] Proposition 11.5).
Proposition 1.31 Let (F.) be a family of functionals defined on LP(Q; R™) x

A(Q) with values in [0,+00] satisfying the LP-fundamental estimate as € — 0,

and let (g;) be a sequence of positive real numbers converging to 0. If for every
u€ LP(;R™) and U € A(2) we denote

F'(u,U) =T-liminf F. (u,U) (1.21)
j
F"(u,U) = T-limsup F;, (u,U), (1.22)
J
then we have
Fl(w,U'UV) < F'(u,U) + F"(u, V) (1.23)
F'(w,U' UV) < F"(w,U) + F"(u,V) (1.24)

for allu e LP(;R™) and U, U,V € A(Q) with U’ CcC U.

From the previous proposition we obtain some inner regularity results, pro-
vided that a growth estimate is satisfied (see e.g. [26] Proposition 11.6).

Proposition 1.32 Let (F.) be as in Proposition 1.31, and let F' and F" be
defined by (1.21) and (1.22), respectively. Let ¢ > 1, and let u € WH4(Q; R™) N
L (Q;R™); if F'(u,-) and F"(u,-) are increasing set functions and

P, U) < c/U(1+ |\ Dul?) dz (1.25)

for all U € A(Q), then F'(u,-) and F"(u,-) are inner regular increasing set
functions. Moreover, F"'(u,-) is subadditive.
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Hence, if we have a family of functionals which satisfy the LP-fundamental
estimate as ¢ — 0 (1.18) and growth condition (1.25), by Proposition 1.32 we
can apply Theorem 1.27 and we get existence of the T'-limit F(u,U) for every
U € A(Q) and u € WHP(Q; R™). Moreover by Proposition 1.32 we also have the
subadditivity and inner regularity of the set function F'(u,-), while the superad-
ditivity is obvious. Hence, by the Measure property criterion (Theorem 1.26) we
get that F'(u,-) is the restriction of a Borel measure to A(£2).

1.7.2  T'-limits and boundary values

If we assume that estimates of the form (1.25) are satisfied uniformly by LP-
fundamental estimate as ¢ — 0, and we consider some boundary conditions then
we get another property of the I-limits (see e.g. [26] Proposition 11.7).

Proposition 1.33 Let (F.) be a family of functionals defined on WP (£2; R™) x
A(Q) with values in [0,+00] satisfying the LP-fundamental estimate as € — 0
(we regard these functionals as extended to +oo on LP(Q;R™)\ WLP(Q;R™)),
and let (¢;) be a sequence of positive real numbers converging to 0. Let

. (u,U) < C/U(H | DulP) dz (1.26)

hold for all U € A(Q) and u € WHP(Q; R™). If we take ¢ € WHP(Q; R™), and
we define G?j : LP(Q;R™) — [0, 400

F(u, Q) ifu—¢ e WyP(Q;R™)

G2 (u) =
+o00 otherwise,
then we have
F'(u, Q) =T-liminf . (u, Q) = T-liminf G? (u) (1.27)
J J !
F"(u,Q) = T-limsup F; (u, Q) = T-lim sup G2, (u) (1.28)
J J

for all w € WYP(Q; R™) such that u — ¢ € WP (S R™).

Remark 1.34 The previous proposition is equivalent to say that if (1.26) holds,
together with the LP-fundamental estimate as ¢ — 0, the minimizing sequences
for the I'-limits can be taken with the same boundary values as their limit.

1.7.3 Integral representation on Sobolev spaces

The last step of the direct methods is the integral representation of the I'-limit;
for this purpose it is important to consider the I'-limit as a functional defined
both on functions and sets and single out the properties which assure that it can
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be written in an integral form. Hence we introduce the “localization method”
which consists in considering functionals of the form

Flu,U) = /U F(a, Du(z)) da,

with u € WHP(Q; R™) and U € A(Q), and we give the Integral Representation
Theorem also with its proof since it will be useful in the next chapters.

Theorem 1.35 Let Q be a bounded open subset of R™, and let 1 < p < oo.
Let F: WhP(Q; R™) x A(2) — [0, +00) be a functional satisfying the following
conditions:

(i) (locality) F' is local, i.e. F(u,U) = F(v,U) ifu=v a.e. on U € A(Q);

(ii) (measure property) for all u € WHP(Q; R™) the set function F(u,-) is
the restriction of a Borel measure to A(f2);

(iii) (growth condition) there exists ¢ > 0 and a € L*(Q) such that

Fu,U) < ¢ /U (a(z) + |Dul?) dz

for all u € WHP(Q; R™) and U € A(Q);

(iv) (translation invariance in u) F(u + z,U) = F(u,U) for all z € R™,
ue€ WHP(Q;R™) and U € A(Q);

(v) (lower semicontinuity) for all U € A(Q) F(-,U) is sequentially lower
semicontinuous with respect to the weak convergence in WHP(Q; R™).

Then there exists a Carathéodory function f : Q x M™*™ — [0,400) satisfying
the growth condition
0 < f(z,4) < c(ax) +|A]) (1.29)

for all x € Q and A € M™*"™, such that
Flu,U) = / F(z, Du(x)) do (1.30)
U

for allu € WHP(Q;R™) and U € A(Q).

PROOF. Step 1: definition of f.

Fix A € M™*"; by (ii) F'(Ax,-) can be extended to a Borel measure on 2
which, by (iii), is absolutely continuous with respect to the Lebesgue measure.
Hence there exists a density function g4 € L'(Q2) such that

F(Aq:,U):/UgA(;v)dx

for all U € A(£2). We set
f(.’I}, A) = gA(x)
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for all z € Q and A € M™*™. Note that by condition (iii), with fixed A € M™*"
0< f(x,A) < cla(z) + [A])

for a.e. z € Q.

Step 2: integral representation on piecewise affine functions.
Let U € A(Q) and let u € WHP(Q; R™) be piecewise affine on U, i.e. we can

write
N

uy = ZXUJ' (Aj.r + Zj),

j=1
where the sets U; are disjoint open sets with |U \ UjV:1 Uj| =0, Aj € M™*™,
eR™ for j=1,...,N. By (i), (ii), (iv) and Step 1

F(u,U) =Y F(u,U;) = > F(Ajz+2,U;)

<.
Il
—_

I
Mz

F(Ajz,Uj) Z fo

<.
I
—

I
M=

/U F(x, Du) dz = /U F(x, Du) dz:

1 J

<.
Il

that is, the representation (1.30).

Step 3: rank-1-convezity of f.
We want to show that, with fixed A, B € M™*" such that rank(B — A) = 1,
and ¢ € (0,1)

fy,tB+ (1 —1)A) <tf(y,B)+(1-1)f(y,A)

for all y € Q. By definition we can take

 F(Ae,B(y.p)
A) = S\ PP
Sy, A) = limsup ===

for all y € Q and A € M™*". Hence it will suffice to show that if B(y,p) C Q
then

F((tB+ (1= ) A)a, B(y, p)) < tF (B, B(y, p) + (1 —)F(Az, B(y, p)). (1.31)

Let a € R™, b € R" be vectors such that B — A = a ® b. Consider the function
v € WE*(R™;R™) defined by

Az + (b,x)a— (1 —t)ja fjeZ,j<{(bx)<j+t
v(r) =
Az + (14 j)ta ifjeZ, j+t<(bz)<j+1.
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We also define the sets

Es={zeR":3eZ: j+t<(bx)<j+1},
Ep={zeR":3jeZ: j<(bz)<j+th.

If we set u;(x) = %v(jx), we have

u; =" (tB+ (1 —-t)A)z weakly* in Wh*°(Q; R™)
Xig, =" 1—t weakly* in L>(Q)
J
Xig, =t weakly* in L™ (Q);
J

)

moreover, Du; = A on %EA and Duj = B on %EB. Hence by (v) and (iv) we
obtain

F((tB+ (1 —t)A)z, B(y, p))
< limjinf F(uj, By, p))

J

= lim‘inf(/ Xip,94(x) dac—i—/ X1p,98(x) dx)
J B(y,p) Bly,p)

:t/ gB(x)dx—i-(l—t)/ ga(z)dz
B(y,p) B(y,p)

= tF(Bx, B(y, p)) + (1 = t)F(Az, B(y, p)),

1 1
= timinf (F(Az, ~Ea 0 B(y, p)) + F(Ba, =F5 1 By, )

proving (1.31), and finally the rank-1-convexity of f(y,-), taking the limsup as
p — 0+. By Remark 1.16(i) we have that f(y,-) is locally Lipschitz, and hence
f is a Carathéodory function.

Step 4: an inequality by continuity.

As a consequence of Step 3 and (1.29) the functional u — [, f(z, Du) dz is
continuous with respect to the strong convergence of WP (U; R™). If U CC Q we
can find a sequence u; € WHP(Q; R™) converging strongly to u in W17 (; R™),
and such that their restrictions to U are piecewise affine. Then

F(u,U) < liminf F(u;,U)

J

zli?Lf(x,Duj)dx:/Uf(w,Du)dx

by (v) and Step 3.

Step 5: equality by translation.
Let u € WHP(Q; R™); we consider the functional G : WP (Q; R™) x A(2) —
[0,400) defined by
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G(v,U)=F(u+v,U)

that satisfies all hypotheses (i)—(v) of Theorem 1.35 (with different ¢ and a in
condition (iii)). Hence, by Steps 1-4 above, there exists a Carathéodory function
P Q x M™*" — [0, 400) such that

G(U,U)g/Uz/J(:c,Dv)dx

for all v € WHP(Q;R™) and for all U CC Q open sets, with equality for v
piecewise affine on U. Let us take an open set U CC (2, and u; piecewise affine
on U converging strongly to u in W1P(€2; R™) as in Step 4. We have

/w(x70)dx:G(O,U):F(u,U)
U
g/Uf(x,Du)dx:H;n/Uf(a:,Duj)dx
= lim F(u;,U) = lim G(u; — u,U)
J j

< lijxrl/UzZJ(x,Duj — Du)dx = /Uz/)(z,O) dz;

hence all inequalities are in fact equalities, and in particular

F(u,U):/Uf(x,Du)da:

for all U CC Q.

Step 6: integral representation.
By (ii) the integral representation obtained in Step 5 holds for all open subsets
U of Q. O

The following result characterizes a class of integral functionals with inte-
grand independent of the space variable (see e.g. [26] Proposition 9.2).

Corollary 1.36 Let F': W1P(Q; R™) x A(Q) — [0, +00). There ezists a quasi-
convez f: M™*™ — [0, 4+00) satisfying

0< f(A) <c(1+]|AP) VA € M™*" (1.32)
such that the functional F' can be represented by
Flu,U) = / F(Du) da (1.33)
U

if and only if conditions (1)—(v) of Theorem 1.35 hold and in addition
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(vi)(translation invariance in x)
F(Az, B(y, p)) = F(Az, B(z, p))
forall A e M™*™ y 2 € Q, and p > 0 such that B(y, p) U B(z, p) C Q.

1.8 Application of the direct methods to integral functionals with
standard growth conditions

Let © be a bounded subset of R™, let p > 1 and let F; : LP(; R™) x A(Q) —
[0, 400] be a family of functionals of the form

5 1,p .M
FouU) = /Ufe(x,Du) dr ifue WHP(Q; R™) (1.34)

400 otherwise,

where f. : R" x M"™*"™ — [0,400) is a Borel function satisfying the standard
growth condition of order p

aAlP < fe(z, A) < B(1 + |A]7) (1.35)

forall z € Q and A € M™*™,

Proposition 1.37 Let (F.) be a family of functionals defined in (1.34) which
satisfies the growth condition (1.35). Then (F:) satisfies the LP-fundamental es-
timate as e — 0.

(See e.g. [26] Proposition 12.2). Hence by Section 1.7.1 we obtain the following
proposition.

Proposition 1.38 Let (F.) be a family of functionals defined in (1.34). Then
for every sequence (¢;) of positive real numbers converging to 0 there exists a
further subsequence (g;,) such that the T'-limit

F(u,U)=T- lillcn F, (u,U)

exists for allu € WHP(Q; R™) and U € A(Q), and F(u,-) is the restriction of a
Borel measure to A().

Remark 1.39 The same conclusions of Proposition 1.38 follow if we suppose in
the place of (1.35) that
9(@, A) < fe(z, A) < c(1+ g(x, A)),
with g(x,-) convex, g(z,24) < ¢(1 + g(x, A)), and g(z, A) < ¢(1 + |A|P) for all
x € Qand A € M™*" taking into account Example 1.19.
By Proposition 1.38 and the Integral Representation Theorem 1.35 we get
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Theorem 1.40 Let (f.) be a family of Borel functions with f. : @ x M™*™ —
[0,4+00) satisfying the estimate

al AP < fe(z, A) < B(1 4 [A]P)

for allx € Q and A € M™*" | and let
F.(u,U) = / fe(z, Du) dx (1.36)
U

if u € WhP(Q;R™). Then, for every sequence (g;) of positive real numbers
converging to 0 there exists a subsequence (g;,) and a Carathéodory function
@ Qx M™™ — [0,400) satisfying the same growth estimate as f. such that,
if we define

F(u,U) = / o(z, Du) dx (1.37)
U
for u € WHP(Q; R™), we have
F(u,U) = I‘—li]gn F, (uw,U) (1.38)

for allu € WHP(Q; R™) and U € A(Q).

In the case of functionals with integrands independent of the space variable
I'-convergence reduces to a pointwise convergence (see e.g. [26] Proposition 12.8).

Proposition 1.41 Let p > 1, and let (f.) be a family of continuous functions
with fo : M™*™ — [0, +00) satisfying the estimate

al AP < f(A) < B(1 + |A]")

for all A € M™*"™. Let, for every bounded open set U of R",
gmmz/ﬁwm@ (1.39)
U

ifu € WHP(U; R™), and let (g) be a sequence of positive real numbers converging
to 0. We have that F_,(u,U) I'-converges to F'(u,U) for all U bounded open sets
of R"™ and v € WHP(U; R™) if and only if Qfe; — f pointwise and

“%m:AJWWW (1.40)

for all U bounded open sets of R™ and u € W1P(U; R™).

1.8.1 Higher integrability of gradients

The following lemma (see [49]) allows to pass from bounded sequences to se-
quences with equi-integrable p-th power of the gradient. This result can be
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sometimes helpful since it allows us to assume that the optimal sequences for
the I'-limit can be taken with equi-integrable p-th power gradient.

Lemma 1.42 For every bounded sequence (u;) in WHP(Q; R™) there exists a
subsequence (not relabelled) and a sequence (v;) in WP(Q; R™) such that

lim [{u; # v;} U{Du; # Du;}| =0

and (|Dv;|P) is equi-integrable.

Remark 1.43 Let f; : R"xM™*" — [0, +00) be a Borel function satisfying the
standard growth condition of order p (1.35) and let (u;) be a bounded sequence
in WhP(Q; R™) with u; — w in LP(Q; R™). Then there exist a subsequence,
still denoted by (u;), and a sequence (v;) in WP(Q; R™) such that v; — u in
LP(; R™), (] Dv,[P) is equi-integrable and

limsup/ fi(z, Dvj)dx < limsup/ fi(z, Duj) dx.
J Q J Q
To check this, choose (v;) as in Lemma 1.42, so that v; — u and

lim sup/ fj(z, Duj)dzx > lim sup/
J Q J {uj=v;}0{Du;=Dv;}

= limsup/ fi(x, Dv;) dx
J Q

fi(z, Du;) dx

the last equality following from the equi-integrability of (|Dv;[?), and the growth
conditions on f;.

1.9 Periodic homogenization

In this section we use the direct methods of I'-convergence to obtain a homoge-
nization theorem.

1.9.1  Coercive homogenization

Let us consider

Fu(u) = / 7(Z. Dutz)) d,

where u € W1P(Q; R™) and the function f: R™ x M™*" — [0, 4+00) is a Borel
function satisfying the following conditions:

(i) (periodicity) f is 1-periodic in the first variable;
(i) (standard growth condition of order p) there exist 0 < o < 3 such that

alA[P < f(z, A) < B(1+ |A])

for all z € R™ and A € M™*™,
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By Theorem 1.40 we have also for this class of integral functionals a com-
pactness and integral representation result; we still denote ¢ the homogenized
integrand of the I'-limit, which could depend on the sequence (g;, ).

In order to show that the whole family (F.) I'-converges, we prove the fol-
lowing Propositions.

Proposition 1.44 The function ¢ can be chosen independent of the first vari-
able.

Proor. By Corollary 1.36 it is sufficient to prove that if A € M™*" y, 2 €
R"™ and p > 0 then

- lilgn F., (Az,By(y)) =T- lillcn F., (Az,B,(2)).

By Proposition 1.33 there exists a sequence (u) C Wy (B, (y); R™) such that
up — 0in LP(B,(y); R™) and

111511 F., (Az +uy, By(y)) =T~ li]gl F., (Az,B,(y)).

We extend ui to R™ by 0 outside B,(y). Let r > 1, let 7, € R™ be given by

Zi_yi}

(m)i =& |
' " i

and let vg(z) = up(z — 7). Note that 7, — 2z — y and 73 is a period for x —
f(z/ej,, A) for all A, so that
stk (AI’ + Vg, T+ Bp(y)) - stk (ALE + ug, Bp(y))
Moreover, v, = 0 outside 74, + B, (y). We have vy — 0 in LP(B,,(z); R™); hence,
I- li}gn F., (Az,B,(2))

<TI- lilgn Ffjk (Az, Byy(2))

< limkinf F., (Az +vg, Bry(2))

< limkinf F., (Az +uy, By(y)) + |Brp \ B,|B(1 +|A]P)

=T- 111£n F., (Az,By(y)) + [Brp \ Bp|B(L+ [A]P).

Letting » — 1 we obtain the inequality
I- li}gn F., (Az,B(2)) <I- lilzn F., (Az, B,y(y));

the opposite inequality is obtained by a symmetry argument. |

The following proposition is crucial in proving that the I'-limit does not
depend on the subsequence (g;).
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Proposition 1.45 Let f: R"xM™*™ — [0,400) be a Borel function satisfying
the periodicity condition and such that sup{f(x, A) : x= € R"} is finite for all
A e M™*"™: then the limit

t——+oo t"

lim iinf{/ fz, A+ Du(z))da : ue ngp((o,t)”;Rm)} (1.41)
0,6)™

exists for all A € M"™*™.

(See e.g. [26] Proposition 14.4).

By applying the previous results we have the following Homogenization The-
orem (see e.g. [26] Theorems 14.5 and 14.7) which shows that ¢ can be expressed
by an asymptotic formula which does not depend on (gj, ).

Theorem 1.46. (Homogenization Theorem) Let f : R"xM™*" — [0, +00)
be a Borel function satisfying the periodicity assumption and the standard growth
condition of order p > 1. If Q is a bounded open set of R"™ and we set for all

e>0
T

Fou) = /Qf<g,Du(x)) do (1.42)

for all u € WHP(Q; R™), then we have
I-lim F.(u) = / fhom (Du(x)) dz,
e—0 Q

for all u € WHP(Q; R™), where fhom : M™X" — [0,+00) is a quasiconvex
function satisfying the asymptotic homogenization formula

from(A) = lim iinf{/ f(z,A+ Du(z))dx: ue Wol’p((O,t)";R’”)}
0,5)™

t—-+oo N
(1.43)
for all A € M™>™,
If in addition f(z,-) is convezr for all x € R™ then fuom is given by the
cell-problem formula

fuom(A) = { [ fl. A4 Due)dy: w e WE(O )R (140

for all A € M™*™ where W;p((o, D™ R™) = {u € WEP(R™;R™) : u 1-periodic}.

loc

For the proof of the last statement see [61].

1.9.2  Non-coercive convex homogenization

Theorem 1.47. (Homogenization for Non-coercive Functionals) Let ) be
a bounded open subset of R™ with Lipschitz boundary. Let g be a convex function
satisfying the periodicity assumption and such that there exists C > 0 such that
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0<g(z,A) <C(1+|A]P), 9(z,24) < C(1 +g(z,4)) .

Then we have
r- 1in(1) G:(u) = | ¥(Du(x))dx,
e Q
for all u € WHL(Q; R™), where ¢p : M™*" — [0, +00) is the convex function
given by the cell-problem formula (1.44). Moreover, if ¢ satisfies

¥(4)

= = 00, 1.45
|Al—+oo  |A] (1.45)
then the T'-limit exists on the whole LP(Q;R™), and it takes the value +00 on
LP(Q;R™) \ WHL(Q; R™).

ProoFr. By Example 1.30 the conclusions of Theorem 1.46 still hold. It re-
mains to extend the representation of the I-limit G outside W1P(Q; R™).

In the course of the proof (p;) denotes a sequence of mollifiers with spt p; C
B(0,1/j), and p; * v is the convolution between p; and v. Note that since
has Lipschitz boundary, by the standard reflection technique near 99 (see for
instance Adams [1] Theorems 4.26, 4.28 and Section 4.29 for details) all functions
can be extended to some Q' DD , so that we can suppose that each p; * v is
defined on the whole ©'. Such an extension will not influence the validity of our
arguments.

For every u € LP(Q;R™), let Go(u,U) denote the localization of the func-
tionals G. to the set U € A(Q).

Step 1: G'(u,U) > [, ¥(Du)dx for all U € A(Q) and u € WH'(Q;R™).

Note that the I-limit G exists for all w € LP(€; R™) and for all R in a dense
family of open sets R (see Remark 1.28), hence G(-, R) is convex for all R € R.
G'(u,-) is an increasing set function for all u, and from the definition of I'-liminf,
it can be immediately checked by a translation argument that for all U, V' € A(f),
veLlP(R™), and y € R, if V CC y+ U then G'(vY,V) < G'(v,U), where
v¥(x) =v(z —y).

For all U,U’" € A(Q) such that U’ CC U there exists R € R such that
U’ cc R cc U. We can choose j large enough as to have R CC y + U for all
y € B(0,1/5), hence using Jensen’s inequality and the properties of G’ recalled
above, we get

waﬁ%/ pi(y) G(u, R) dy
B(0,1/35)

s/ p;(4) G (u,U) dy = G (u,U)
B(0,1/3)

and
G(pj *xu,U") < G'(u,U).
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On the other hand, by the representation of G'on W1?(Q; R™), we have
G(pj*u,U') = . P(D(pj * u)) d.

Since the functional v — fU, ¥(Dv) dx is lower semicontinuous with respect to
the LP-convergence, and p; * u — u in LP(U’,R™), we get by the previous
formulae

Y(Du)dz <liminf | ¢(D(p; xu))dz < G'(u,U).
g J U’
By the arbitrariness of U’ CC U the step is concluded.

Step 2: if ¢ satisfies (1.45) then G'(u,Q) = 400 for all u € LP(Q;R™) \
WE(Q; R™).
We proceed exactly as in the previous step, noting that (1.45) implies that

liminf [ (D(p; * u))de = +oo.
J U’

Step 3: G (u,U) < [, ¥(Du)dx for all U € A(Q) and v € WH(Q; R™).
We have, using the lower semicontinuity of G’ and Jensen’s inequality,

G"(u,U) < liminf G"(pj * u,U) = liminf G(p; * u, U)
j

J

= limlinf/ Y(D(p; *u))dz
J U

<timyint [ [ o, PR =) dyde

J

= limlinf/ pi(y) Y(Du) dzx dy
B(0,1/7) Uty

< lim inf pi(y) | ¥(Du)dxdy = ¥(Du) dx,
J B(0,1/5) U’ U’
for all U’ DD U. By the arbitrariness of U’ the proof is achieved. |

1.10 Extensions of the direct methods

Convexity is crucial in establishing Theorem 1.47. In some cases though it is
possible to extend that result to non-convex integrands.
From Theorem 1.47 follows that we can define

WhHY(Q;R™) = {u e WHH(Q;R™) : / Y(Du)dr < +oo}
Q
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and

WhP(Q;R™) c WHY(Q; R™) ¢ WHL(Q; R™).

Let F; : LP(Q; R™) x A(Q2) — [0, +0c] be defined as follow

F.(u) = /Qf(§7DU($)) de ifue Wl,p(Q;Rm)

(1.46)

400 otherwise,

where f: R™ x M"*" — [0, 400) is a Borel function which satisfies the period-
icity assumption and the following conditions:

9(x, A) < f(z, A) < c(1+9g(z, A)), (1.47)

with g : R™ x M™*"™ — [0, 400) Borel function, 1-periodic in the first variable
and convex in the second one, such that

0<g(z,A) <c(1+]AP7)  g(x,24) < c(1+g(z, A)) (1.48)

for all z € Q and A € M™*".

As already noted in Remark 1.39, we get compactness and integral repre-
sentation on W1P(; R™) also under these assumptions. In general we can not
extend the I-limit on W1¥(Q; R™) but we can just conclude by Theorem 1.47
that the I-limit is +00 on W(Q; R™) \ W1¥(Q; R™); however similar results
hold in some particular cases as the following Sections 1.10.1 and 1.10.2 show.

1.10.1 Homogenization with non-standard growth conditions

Let © be a bounded subset of R™, let p < ¢ < p* and let F, : LP(; R™) < A(Q2) —
[0, 4+00] be defined as follow

z,Du)dx if ue WHP(Q; R™
IR R (R™)

+00 otherwise,

where f. : R" xM™*" — [0, +00) is a Borel function satisfying the non-standard
growth condition

alAP < f.(x, A) < B(L+ |A]) (1.49)

for all x € Q and A € M™*",

We assume that 2 has a Lipschitz boundary and by Rellich’s Theorem and
a generalization of the direct methods of I'-convergence, we prove compactness
and integral representation theorems on W14(€; R™), which are the analogue
of Proposition 1.38 and Theorem 1.40.
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We restrict our attention to the case of homogenization and we study the
convex case thanks to which we will then deal with the non-convex case; hence

we consider
T
(u) = —,Du)d
Ge(u) /Qg(E u) x

where u € WH4(Q; R™) and g : R® x M™*" — [0, +00) is a Borel function,
1-periodic in the first variable and convex in the second one, such that it satisfies
the non-standard growth conditions (1.49).

Repeating the proof of Theorem 1.47 we extend the I'-limit

G, U) = /U b(Du(x)) de,

for all U € A(Q) and v € WHP(Q; R™), where ¢ satisfies the homogenization
formula (1.44). Hence if we define

W (U; R™) = {u e WP (U;R™) : / W(Du) da < +oo}
U

for every bounded open subset U of R, then
why(U; R™) c W (U; R™) ¢ WHP(U; R™)

and the T-limit G is finite only in W% (Q; R™).
Now we consider

F.(u) = /Qf<§,Du(x)) dx

where u € WHP(Q; R™) and f : R" x M™*" — [0,+00) is a Borel function
1-periodic in the first variable and which satisfies (1.47), with g : R x M™*" —
[0, +00) Borel function, 1-periodic in the first variable and convex in the second
one, which satisfies (1.49) and g(z,24) < ¢(1 + g(z, A)) for all z € Q and
Ae M,

Using the results of convex homogenization, we get existence and integral
representation of the I'-limit of F;

F(u,U):/U’y(x,Du)das

for all U € A(Q) and u € WLP(Q; R™), with F finite only in W% (Q; R™).

It is possible to prove that v can be chosen independent of the first variable
and it satisfies the homogenization formula (1.43).

For more details on this argument see Chapter 21 of [26].

1.10.2  Oscillating boundaries

Another case is the homogenization of non-convex functionals defined on sets
with oscillating boundaries. In Chapter 4 we study this problems proving the
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existence of the T-limit on the whole LP(Q; R™) and we show that the integral
representation holds on the whole domain of the I'-limit that will be a ‘degenerate
Sobolev Space’. Also in this case the ‘degenerate Sobolev Space’ will be defined
as domain of the I'-limit of the convex case.

1.11 The spaces BV and BD

We summarize some definitions and basic results on functions of bounded vari-
ations and on functions with bounded deformation which will be useful in the
sequel. For a general exposition of the theory of functions of bounded variation
we refer to [47], [46], [51], [77] and [4]. For a general exposition of the theory of
functions with bounded deformation we refer to [71], [72], [56], [63], [11], [74],
73], [3].

Given a function u € L'(2; R™), we say that x € Q is a Lebesgue points of
u if and only if there exists z € R™ such that

1
lim —/ u(y) — z|de =0. 1.50
p—0+ p™ Bp(m)| ( (1.50)

We denote €2, the set of Lebesgue points of u in . If z exists then it is unique
and we define @(x) = z; we call @ precise representative of u.

We denote by S, the set of points which are not Lebesgue points and we
call it discontinuity set of u; the set S, is Lebesgue-negligible and the function
@ : Q, — R™ coincides with u L™-almost everywhere in €, = Q\ S,.

Definition 1.48 We say that x € € belongs to J,, the jump set of u, if and
only if there exist a unit normal v € S"~! and two vectors a and b in R™ (a # b)

such that )
lim — lu(y) —aldy =0
p—0+ Pn B:r (z,v)

lim — — =
Jm o [ ) =ty =0
where Bpi(x,y) ={yeB,(x) : (y—=x,£v)>0}.

The triplet (a,b,v) is uniquely determined up to a change of sign of v and
a permutation of (a,b). For every z € J,, we define ut(z) = a, u~(z) = b and
vy (x) = v.

It is easy to prove that J, and S, are Borel sets (J, C S,) and that u™, u~

and @ are Borel functions.

Definition 1.49 Given a Borel set J C RN, we say that J is countably (HY =1, N—
1)-rectifiable (rectifiable for short) if

J:RUUKi

i>1

where HN=1(R) = 0 and each K; is a compact subset of a C* (N —1)-dimensional
manifold.
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Thus, for every rectifiable set J it is possible to define HN~! a.e. a unitary
normal vector field v.

Now we have set all the tools to describe the structure of BV and BD func-
tions.

Definition 1.50 Let u € L*(Q;R™). We say that u is a function of bounded
variation, and we write w € BV (Q; R™), if all its distributional first derivatives
Dju; are Radon measure with finite total variation in §1;1i.e.,

/'Ll/j.Did)d.’E: —/ (ZSdDZ’LL]
Q Q

forallp € CLQ),i=1,....,nand j=1,...,m.
We denote by Du the M™*™-valued measure whose entries are D;u;.

Definition 1.51 For every u € BV (; R™) we consider the Radon-Nikodym
decomposition Du = D% + D%u of Du, where D%u is absolutely continuous
and D%u is singular with respect to the Lebesgue measure L. We may further
decompose the singular part D%u as D%u = D + Dy where DIy = Dul_ S, is
the jump part of Du, and D°u = D*ul_(2\ S,) is the Cantor part of Du. We
can then write

Du = D% + D'u + Du.

Theorem 1.52 Ifu € BV(; R™) then
(1) for L™-almost every x € Q there erists the approximate gradient of wu,
Vu;i.e.,

1 lu(y) —u(@) — (Vu(z),y — )| , _
/Bp(x) ly — 2| =0,

and it is the density of the absolutely continuous part of Du;i.e., D%u = VuLl™;

(2) S, is rectifiable, H" (S, \ Ju) = 0 and we have
Diu=(u"—u")@uv,H"'LS,,

where v, is defined by Du = v,|Du| |Dul-a.e. and coincides with that of Defini-
tion 1.48 on J, H" '-a.e. on Sy,;

(3) for any Borel set B with H"1(B) < +o00, we have that |Du|(B) = 0.

For a complete proof of points (1), (2) and (3) see [4] Theorem 3.81, [21] Theorems
1.63 and 1.66, respectively.

Theorem 1.53. (Chain rule in BV) Letu € BV(Q;R™) and f € C*(R™; RF)
be a Lipschitz. Then v = f ou belongs to BV (Q; R¥) and

Dv = Vf(a)(Vul™ 4+ D) + (f(u™) — f(u™)) @ v, H" 'L S, .
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(See [4] Theorem 3.93 and [21] Section 1.8.2).
For any y,£ € R™, £ # 0, and any 2 C R™ we define

me:={y e R" : (y,§) =0},
Q :={teR : y+1t£ €},

08 ={yem : Q5 #0}, (1.51)

and given v : 0 — R™ the function u, ¢ : Qf — R is defined by uy ¢ (t) = u(y-+t€)
for every t € Qg; it is well know that the space BV (€; R™) can be characterized
by means of one-dimensional sections:

Theorem 1.54 Let u € BV(;R™) and let £ € S" ' = {( e R" : [¢] = 1}.
Then we have uy ¢ € BV(Q%; R™) for H"'-almost every y € Q¢ and

(Du, &) = / D%uy ¢ dH™ 1 foro=a,j,c.
Q¢

Conversely, let uw € L*(Q;R™). If for every direction £ € S™™' we have uy¢ €
BV(Q%; R™) for H" '-almost every y € Q¢ and

/Q 1Dyl (25) a1 () < oo

then u € BV (Q; R™).

(See [4] Theorems 3.99 and 3.100).

Definition 1.55 Let u € L'(Q;R"™), and let Eu be the symmetric part of the
distributional gradient of u;i.e.,

1
(Bu)yy = (Biju),  Eijui= 5(Dyu; + Djus).

The space LD(Q) is defined as the set of all functions u € L'(Q; R") such that
Eiju € LYQ) for anyi,j=1,...,n.

We say that u € L*(€; R") is a function with bounded deformation, and we
write u € BD(Q), if E;ju is a Radon measure with finite total variation in Q for
any i,5 =1,...,n.

We denote by Eu the M"™*"-valued measure whose entries are E;;u.

Note that the closed subspace LD(2) of BD(2) plays the same role in BD(f2) as
the one of WH1(Q; R™) in BV (€; R™). One can easily see that WH(Q; R") C
LD(Q) with strict inclusion.

For every £ € R", let D¢ be the distributional derivative in the direction
¢ defined by Deu = (Du,§). For every function u : @ — R™ let us define the
function u¢ : Q@ — R by ué(x) = (u(z),£).
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Theorem 1.56 Ifu € BD(SY) then D¢u® is a bounded Radon measure on §) for
every £ € R" and
Deut = (Fug, ).

Conversely, let &,...,&, be a basis of R and let u € LY(Q;R™); then u €
BD(Q) if Deu® is a bounded Radon measure on Q for every & of the form & +¢;,
,j=1,...,n.

(See [73] Chapter 2 Section 2.2).

Definition 1.57 For every u € BD(QY) we consider the Radon-Nikodym decom-
position Eu = E*u + E°u of Fu, where E%u is absolutely continuous and E°u
is singular with respect to the Lebesgue measure L. We may further decompose
the singular part Eu as E*u = Eu + E°u where E/u = Eul_.J, is the jump
part of Fu, and E°u = ESul_(Q\ J,) is the Cantor part of Eu. We can then
write

Fu=E%+ E’u+ E°u.

Theorem 1.58 If u € BD(Q) then
(1) for L™-almost every x € Q) there exists the approzimate symmetric differ-
ential of u, Eu;i.e.,

lim — 3
p=0p" JB, () ly — |
and it is the density of E%u with respect to L™ ;i.e., E%u = Eul™;
(2) Jy, is rectifiable and we have

1 [(uly) —ul@) —Euly —2), y =)l | _

Eiyu=(ut —u") @u,H" L Jy; (1.52)

(3) for any Borel set B with H"~'(B) < +o00, we have that |Eu|(B) = 0.

For a complete proof of points (1), (2) and (3) see [3] Theorem 4.3, [3] Proposition
3.5 and [73] Chapter 2, [3] Proposition 4.4, respectively.

Note that it is not known whether H"~1(S, \ J.) = 0 or not.

Now we shall see that the space BD()) can be characterized using suitable
one-dimensional sections. We use the notation introduced in (1.51).

Given u : 2 — R" for every y,£ € R", £ # 0, the function ug : Qg — R is
defined by

W (1) = u(y + 1) = (uly + £6),§) Ve e Q.

If u € LY(;R™), then for every ¢ € R", £ # 0, and every y € Qf the one-
dimensional section ﬁg of the function @ introduced in (1.50) is defined for every

te (Qu)s

Proposition 1.59 Let v € BD(Q) and let £ € R™ with § # 0. Then the
following two conditions hold for H"'-almost every y € QF:



40 Preliminaries

(i) ﬁg is defined and coincides with ug L-almost everywhere in Qg;

(i) u§ € BV(Q5).
Moreover,

Bue) = [ D), B 6l = [ Dulan )

as measures in Q. Conversely, let u € L*(Q;R™) and let &1, ..., &, be a basis of
R". Assume that for every & of the form & + &;,

ug € BV(Qg) for H" ™' —a.e. y € QF,

/Q 1Du () ) < +oc.

Then u € BD(R).
(See [3] Proposition 3.2).
Remark 1.60 By Proposition 1.59 we obtain that |[(Eug, §)|(B) = 0 for every

Borel set B with H" 1(B) = 0. Since for any basis £i,...,&, there exists a
constant ¢, depending on the basis, such that

|Eul <c Z (Bu(& + &), & + &)

ij=1

we conclude that
H"Y(B)=0 = |Eu|(B)=0
for every Borel set B.
Let R be the class of the rigid motions in R™;i.e., affine maps of the form
Az + d with A a skew symmetric n X n matrix and d € R", or equivalently
u € BD(Q) such that Eu = 0. The following “Poincaré-type” inequality for BD

functions follows from Proposition 2.2 and Remark 1.1 of Chapter 2 of [73]. For
a complete proof see [56] Part II, Proposition 3.11.

Theorem 1.61. (Poincaré-type inequality) Let Q be a bounded connected
open set with Lipschitz boundary and let R : BD(Q) — R be a continuous linear
map which leaves the elements of R fixed. Then there exists a constant ¢(Q, R)
such that

/Q lu — R(u)|dz < ¢(Q2, R)|Eul|(£)

for alluw € BD(Q).

Definition 1.62 We call intermediate topology on BD(Q) that defined by the
distance
= vl (oumey + | Eul(©) — | Eol(Q). (1.53)
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Theorem 1.63 C>(Q) is dense in the space BD(Q) endowed with the interme-
diate topology.

(See [73] Chapter 2 Theorem 3.2).

Proposition 1.64. (Korn’s inequality) For any p satisfying 1 < p < +o00 we
define the space

{ue L*(QR™) @ Ejuec LP(Q)i,j=1,..,n}. (1.54)
If Q has a locally Lipschitz boundary, then for all 1 < p < 400 we have
3 / |Diuj(x)|pdx§c/ (ju@)[? + | Bu(2)]?) da-. (1.55)
=179 Q
for all u in the space (1.54).

The Korn’s inequality implies that (1.54) is none other than WP (Q; R") (see
[73] Chapter 1 Section 1, [52] and [53]).



2

HOMOGENIZATION OF PERIODIC MULTI-DIMENSIONAL
STRUCTURES

2.1 Sobolev spaces with respect to a measure

The following notion of Sobolev space with respect to a measure has been intro-
duced by Ambrosio, Buttazzo and Fonseca [2].

Definition 2.1 Let A be a finite Borel positive measure on the open set 0 C R™,
and let 1 < p < +oo. The Sobolev space with respect to A, W/\l’p(Q;Rm), is
defined as

WIP(Q R™) = {u € LP(%R™) : u € BV(Q;R™), Du << A,

dDu
S e @M |
d)\ S )\( ) ) )

where LY (€, RY) stands for the usual Lebesgue space of p-summable RN -valued
functions with respect to A.

Remark 2.2 By definition, functions in VVA1 P(Q; R™) are functions of bounded
variation. From the embedding of BV (Q; R™) in L™/ ("~ (Q; R™) and the chain
rule Theorem 1.53 the following two facts can be easily deduced, that are used
in the sequel.
(a) W P(Q; R™) is embedded in L =D (Q; R™).
(b) If uw € Wy P(Q; R™) and v € W, >°(Q) then uwv € WP (Q; R™), and
dD(uv) dDu dDv

AT\ +U® TN (2.1)

Note that in (2.1) it is necessary to consider the precise representatives, since
the measure A\ may take into account also sets of zero Lebesgue measure.

Ifue W;’p(Q;Rm) then Du(B) = 0 if B is a set of zero (n — 1)-Hausdorff
measure. Hence, Wi’p(Q; R™) = Wi,’p(Q; R™) if A — X is concentrated on a set
of Hausdorff dimension lower than n — 1; e.g., points in R3.

Properties of lower semicontinuity and relaxation for functionals defined on

Sobolev spaces with respect to a measure have been studied in [2].

2.2 Statement of the main result

Let p be a non-zero positive Radon measure on R™ which is 1-periodic; i. e.,



Statement of the main result 43

n(B +e;) = u(B)

for all Borel subsets B of R™ and for all ¢ = 1,...,n. The measure p will be
fixed throughout the chapter. We will assume the normalization

n((0,1)") = 1. (2.2)

For all £ > 0 we define the e-periodic positive Radon measure p. by

pe(B) = E"MGB) (2.3)

for all Borel sets B. Note that by (2.2) the family (u.) converges locally weakly*
in the sense of measures to the Lebesgue measure as € — 0.

In the sequel f : R™ x M™*" — [0,4+00) will be a fixed Borel function 1-
periodic in the first variable and satisfying the growth condition of order p > 1:
there exist 0 < o < 3 such that

alAPP < f(x, A) < B(1 4+ |AP) (2.4)
for all z € R™ and A € M™*™,

For every bounded open set 2, we define the functionals at scale ¢ > 0 as

xz dDu 1
: DP(O-RM
/Qf(g e )duE if ue W, P(Q;R™)

Fe(u,Q) = (2.5)

+00 otherwise.
Example 2.3 (a) (Perfectly-rigid bodies connected with springs) We take
E={yeR": Jie{l,...,n}such that y; € Z},
that is, the union of all the boundaries of cubes @; =i+ (0,1)" with i € Z"™. E
is an (n — 1)-dimensional set in R™. We take
1 n—1
w(B) = M (B E)
for all Borel sets B. For every € > 0 we have

1
pe(B) = ﬁeH"_l(B NekE).

In this case W1 P consists of functions which are constant on every connected
component of each e@; N €, since we must have Du = 0 on these sets. In the
case that u is constant on each eQ; N (2, e.g. if Q is convex, we have

dDu n dDu n L
i = i g(uz —u;)® (i—j) on 9(eQ;) NA(eQ;) N
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where u; is the value of v on £Q);. In this case the functionals F. take the form

z 1 dDu
oD d n—l.
E/QQEEQ(s’sdanl) H

Note that if € is bounded then W, ?(Q;R™) = WL>*(Q;R™) for all p if the
number of connected components of each € N e@); is finite.
(b) (Elastic media connected with springs) Let E be as above and let

p(B) = —— (1Bl + 1 (B0 B))

pe(B) = n—ﬂ(|B| + 1" ((B) N B)) .

In this case the functions in Wl};p(Q; R™) are functions whose restriction to each
£Q; NN belongs to WP(£Q; N; R™), and such that the difference of the traces
on both sides of 0(eQ;) N A(eQ;) N Q is p-summable for every 4,5 € Z". The
functionals F take the form

nilAf<§vd(Zu) dx—i_a/gmeEg(:’idd’]-[DTﬁl) d'H”fl,

In order to obtain a meaningful limit of the functionals F. as ¢ — 0, some
requirements have to be made so that the limit functionals admit an integral
representation on W1P(Q; R™).

Definition 2.4 A 1-periodic positive Radon measure p on R™ will be called p-
homogenizable if the following properties hold:

(i) (existence of cut-off functions) there exist K > 0 and § > 0 such that
for all € > 0, for all pairs U,V of open subsets of R" with U CC V, and
dist (U,0V) > be, and for all w € WLP(V) there exists ¢ € W,>°(V) with
0<¢p<1,¢=1o0nU, ¢ =0 in a neighbourhood of OV, such that

dD K
J L Sy PP
d/ls (dlst (U, 8‘/)) V\U
Such a ¢ will be called a cut-off function between U and V;
(ii) (ex1stence of periodic test-functions) for all i = 1,...,n, there exists

z; € W o (R7) such that x v 2z;(x) — a; is 1-periodic.

Remark 2.5 Note that the Lebesgue measure satisfies trivially all the proper-
ties of Definition 2.4. Property (i) depends on u and p.

Example 2.6 (a) The measure p in Example 2.3(a) is p-homogenizable for all
p > 1. In fact, to prove (i) let § = 5y/n. Fixed € > 0, set U, = |J{eQ; : eQ:NU #
0}. Note that U. CC V. Choose (we use the notation [¢] for the integer part of

t)
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#(z) =1~ (G [Limt{le — gl -y € U] A1),

where |2 — Y| = maxi<i<p |z; — ys|, and
1,
C= [glnf{|xfy|oo cxeU., yeov| -2

Note that |dD¢/dp.| < n/(Ce) < ¢/dist (U, dV) for some constant ¢ independent
of U and V. Moreover, if u € Wﬁ;p(V) then u is equal to a constant u; on each
cube £Q; such that D¢ # 0 on 9(eQ);). Hence, for two such cubes

g < (ul + sy aie = [ e
BeQiﬁaer 85Qiﬂé)st EQiUEQj

so that

quSN‘P cPe / ~ 1
al dp. < —— ¢ P dme
/v‘ dpte dist (U, 0V)P (V\U)ﬂsEﬂsptD¢| |

Cp
<om—C P dz .
=it (U, V)P /V\U ful? dz

The proof of (i) is then complete. To verify (ii) take simply z;(x) = [x;].

(b) The measure g in Example 2.3(b) is p-homogenizable for all p > 1. In
fact, the proof of (i) and (ii) is trivial since the Lebesgue measure is absolutely
continuous with respect to pu.

The homogenization theorem for functionals in (2.5) takes the following form.

Theorem 2.7 Let u be a p-homogenizable measure, and for every bounded open
subset Q of R™ let F.(-,Q2) be defined on LP(; R™) by (2.5). Then the T'-limit
with respect to the LP(§; R™)-convergence

Fhom(u, Q) =T- lir% F(u, ) (2.7)

exists for all bounded open subsets Q) with Lipschitz boundary and for all u €
WLP(Q; R™), and it can be represented as

Fhom(u,Q):/thom(Du) dx , (2.8)

where the homogenized integrand satisfies the asymptotic formula

. . 1 dDu
from(4) = tim_inf{ /W £ ) du (2.9)

ue Wl,p (Rn,Rm)7 u— Ax k—pe’l’iOdiC}-

w,loc
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If p > 1 then Fhom(u, Q) = +oo if u € LP(Q; R™) \ WHP(Q; R™). Furthermore,
if f is convex then the cell-problem formula holds

dﬁ) d (2.10)

f om A) = inf / f T,
hom (A) { 0,1y ( du
= Wl,p (Rn,Rm)a u— Ax l—pGTiOdic}

w,loc

for all A e M™*",

Remark 2.8 In formulas (2.9) and (2.10) we cannot replace the sets [0, k)™ and
[0,1)™ by the sets (0, k)™ and (0, 1)™, respectively, if u charges [0,1)™\ (0,1)".

Remark 2.9 If x4 is not a p-homogenizable measure then fy,, may be equal to
400 for all non-zero matrices A. As an example, take

w(B)= Y Ai+B), (2.11)

i€Zn

where A is any probability measure with spt A contained in (0,1)™. Then test-
functions w in (2.9) must be constant on a periodic connected component of R”,
and hence we get that from(A4) = +oo if A # 0.

Remark 2.10 Contrary to the usual homogenization results in the framework
of ordinary Sobolev spaces, the hypothesis that 2 has a Lipschitz boundary
(which will be used in an essential way in Step 3 of Proposition 2.13) cannot be
removed from Theorem 2.7. To check this, take simply n = 2 and

oo oo

0= (U2t 27 % 0,0) U (U0 x (-2 g+ 27),

=1 i=1

where (g;) is a numbering of QN (0, 1). Take as p the measure of Example 2.3(a)
and any f in Theorem 2.7. Note that, as QN %Qi is connected for all sub-cubes
+Q; of (0,1)?, each function u € WL (2N(0,1)%;R™) is constant on each such

H1/k
QN £Q;. Hence, the two spaces W;i’/’k(ﬂ N (0,1)%;R™) and Wl}f/’k(((), )% R™)

are equivalent, and, as + £ N (0,1)2 C 2N (0,1)?,

Fy(u, Q0 (0,1)%) = Fyp(u, (0,1)%).
If the thesis of Theorem 2.7 were true, then we would easily conclude that for
all v € WHP(Q N (0,1)%R™) with Fhom(u, 2N (0,1)?) < 400 there exists u €
Whr((0,1)%,R™) with u = v on QN (0,1)% and

Fhom(va Q N (Oa 1)2) = Fhom(ua (07 1)2)7

which is not possible for example if f > 1 since |21 (0,1)?| # |(0,1)?|.
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2.3 Proof of the homogenization theorem

The proof of Theorem 2.7 will be obtained at the end of the section, as a conse-
quence of the following propositions, which adapt to this case the usual methods
for the homogenization by I'-convergence. While the usual compactness and in-
tegral representation results in Section 1.7 hold with minor modification also in
this case, a more complex proof for the so-called fundamental estimate, for the
growth condition from above and for the homogenization formula is necessary.

From now on, 2 will be a fixed bounded open subset of R™ with Lipschitz
boundary.

Proposition 2.11. (Fundamental Estimate) For every o > 0 there exists
€e and M > 0 such that for all U U’V open subsets of Q with U' C U and
dist (U",V\U) >0, for all e < eodist (U',V \U) and for all u € W;P(Q; R™),
vE Wﬁ;p(ﬂ; R™) there exists a cut-off function between U’ and U, ¢ € W;;“(UU
V), such that

F.pu+ (1 - )0, U'UV) < (1+0)(F.(u,U) + F.(v,V)) (2.12)

M
+ —vlPdz + opu-(UNV)\U").
(dist (U, V\U))? /(UnV)\U’ lu —offde + onel( )

PROOF. Let K > 0 and 0 > 0 be the constants given by Definition 2.4(i), let
N € N be such that Nde < dist (U, V\U), and let Uy, = {z € U : Ndist (z,U’) <
kdist (U, V\U)}, Uy = U'. For each k = 1,..., N let ¢ be a cut-off function
between Uy_1 and Uy, satisfying (2.6), which exists since dist (Uy—1,0Uy) > de.
We have, using Remark 2.2(b), (2.4) and (2.6)

F.(¢ru+ (1 —¢p)v, U UV)
[ r(Ea - -0 e ) dn
vuv &

dpte dpie dpe
x dDu + dDwv
< Z =\ d e I
_/Uf(5’dﬂs) ME+/\/f(5’du5) He
dDup |dDuv P
[ (e 2P
(Ur\Us—1)nV dpie dpie
dDoy, |P
+4°8 (@-9e 17 e
(Ux\Ug-1)NV dpte
< F.(u,U) + F.(v,V)
dDu P dDv |p
+4P 3 1 n dy
(Uk\Uk,71)ﬁV( dﬂa d/JE ) €
KNP
+4P3— p/ lu — v|P da
(dISt U,V U)) (U\Ur—1)NV

where K is the constant appearing in (2.6).
Choose k such that
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dDu P
(4] )
(Ue\Ug_1)NV dpie

KNP
- 5 |u — v|P dx
dist (U’, \%4 \ U)) (U\Ug_1)NV

1 dDu|p dDv P
< —( (1 n v ) dpi.
N\ wnvno

dpe dpie
P
+— KN p/ \u7v|pd:17>.
(d1st U, vy U)) (UNV\U

Then, taking into account also (2.4),

p dDv
dpie

T

Fo(ppu+ (1= ¢p)v,U'UV)
< F.(u,U) + F:(v,V)

p
+% (/(UHV)\U’ f(? %) A=+ /(UOV)\U/ f(? Cﬂ%j) due)

KNP 4 )
e T Sy 1+ RO VD)
<(1+ %) (Fe(w,U) + Fe(0,V))
KNP 43 )
B T S 14 4 Rl OV,

We can choose ¢, satisfying

473 1
omin{l, a} - leg

so that we can find IV, depending only on ¢ and on the constants of the problem,
in such a way that (2.12) holds, with M = 4P K3NP~L. O

Proposition 2.12 For every A € M™*" there exists z4 € Wi:ﬁC(R”;R"”)
such that za — Ax is 1-periodic and satisfies

/[\071)n

PROOF. Define z4 = 37" | 37| Ajj2je;, where 2; are as in Definition 2.4(ii).
Inequality (2.13) is trivial. O

dDZA
dp

‘pdu < c|A|P. (2.13)

We fix an infinitesimal sequence (¢;). We define

F'(u,U) =I-liminf F;, (u,U)

oo
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F"(u,U) =TI-limsup F., (u,U)
j——+oo
for all u € LP(2; R™) and for all open subsets U of 2. By Remark 1.24(i) the I'-
upper and lower limits, F”'(-,U) and F’(-,U) defined above, are LP(Q; R™)-lower
semicontinuous functionals.

Proposition 2.13. (Growth Condition) We have

F'(u,U) < c/ (1+ |Du|?)dx
U

for all w € WHP(Q; R™) and for all open subsets U of Q with [0U| = 0.

PROOF. Step 1: we have F"(Az,U) < c|U|(1 + |AJP) for all A € M™*" and
for all U € A(Q).

Let z4 be given by Proposition 2.12. We may assume that z; — x; has mean
value 0 in the periodicity cell, so that the functions z5(x) = ez4(x/e) converge
in LI (R™;R™) to Az, and

loc

dDz5
F"(Az,U) < limsup/ f(f, ZA) djie
e—0+ Ju© \e dpe

D 15
gﬁlimsup/(l—i—‘d A
e—0+ U dﬂe

p i
)dﬂg < [T (1 + |A]P).

Step 2: we have F''(u,U) < ¢ [,,(1+|DulP)dx for all piecewise affine function
u € WHP(Q; R™) and for all open subsets U C Q with [0U| = 0.

We write u = Zfil XU, Ui, where Uy,..., Uy are disjoint open subsets of
U such that |U \ J,U;| = 0 and |U;| = |U;|, and u;(x) = A;x + ¢; for some
A; € M™ ™ and ¢; € R™. For each i we set u$(x) = 2§ () +¢;, as from Step 1.

We will prove Step 2 by finite induction. First, we give an estimate on Uy UUs.
For all € sufficiently small, we can apply Proposition 2.11 choosing the sets

Ul ={zeU: dist (z,Us) < n},

Us and U; as the sets U, U’ and V in its statement, respectively, where n = 1. > 0
will be determined later, and taking ¢ = 1, v = u5 and v = uf. We obtain then
a cut-off function ¢ = ¢. between Uy and Uj such that

Fe(geus + (1= ¢e)ui, Uy UU2) < 2(Fc(us, Ur) + Fe(u3, UY))
M

] =i e+ e ).
1NU,

The constant M is the one given by Proposition 2.11 with & = 1. We can choose
now 7 = 7, tending to 0 as € — 0, in such a way that
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o1
lim — |ug —uf|Pdz =0,
=01z Ju,nuye

taking into account that

3 € €|p — D p ,pt+1
hr% |ug —ui|P doz = / lug — w1 |P dz < c||Du||Zn
e=YJunuy U1NUy

since u; are affine and ug = uq on OU; NAU;. If we define w§ = ¢u§+ (1 — de)us,
we have w§ — w in LP(U; U Us; R™) and

lim sup F. (w, Uy U Uy) < c/ (1+ | Dul) da
U,UUs

e—0

as in the proof of Step 1.

We can proceed now by induction, repeating at each step the previous argu-
ment replacing Uy by Uy U...UUj, Uz by Ujt1, uj by the w§ constructed in the
preceding step, and u3 by u5 .

Step 3: conclusion.
To conclude the proof it suffices to recall that F”(-,U) is weakly lower semi-
continuous and piecewise affine functions are dense in W17 (Q; R™). O

Proposition 2.14 There exists a subsequence of (g;) (not relabeled) such that
for all open subsets U of Q) there exists the I'-limit

r- lim F. (u,U)=F(u,U),

and there ezists a function ¢ : M"™*™ — R such that
F(u,U) z/ o(Du)dx
U

for allu € WHP(Q; R™) and U C Q with |0U| = 0.

PROOF. The proof of this proposition can be obtained using the methods of
I’-convergence, Section 1.7, outlining the necessary modifications.

Using the compactness of T'-convergence (see Theorem 1.22) and a diagonal
procedure, we extract a subsequence (not relabeled) such that the T'-limit

I- _lir+n F.;(u,U) = F(u,U)
J—+oo
exists for all uw € LP(Q; R™) and for all sets U in the countable family R of all

finite unions of open rectangles of 2 with rational vertices.
Now, observe that for all open subsets U C Q with |0U| = 0 we have
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F"(u,U) =sup{F"(u,V): V CcC U, Vopen},

F'(u,U) =sup{F'(u,V): V cC U, Vopen}.

This can be shown modifying the proof of Proposition 1.32 for functionals that
satisfy the conclusions of Proposition 2.11 and Proposition 2.13.

Next, we note that the I'-limit F'(u, U) = I'-lim;_ o F¢, (u, U) exists for all
U € A(Q) with |0U| = 0, and for all u € W1P(Q; R™) the function F(u,-) is
the restriction to the family these open sets of a Borel measure on (2. This result
can be obtained by Theorem 1.27 and by the De Giorgi-Letta measure criterion
Theorem 1.26, noting that the proof of Proposition 1.31 can be repeated using
Proposition 2.11.

Eventually, the existence of ¢ : M™*"™ — R such that

F(u,U):/Ugo(Du)dfc

for all w € WHP(Q;R™) and for all U € A(Q) with [0U| = 0 follows from the
integral representation Corollary 1.36, observing that translation invariance in x
can be obtained as in Proposition 1.44.

OJ

Proposition 2.15. (Homogenization Formula) For all A € M™*" there
exists the limit in (2.9) and we have p(A) = from(A).

PROOF. In order to simplify the proof of formula (2.9), we can suppose that
w([0,1)™\ (0,1)™) = 0, which holds up to a translation. For all A € M™*" and
k € N we define

gk(A) = inf —/ fle, — )dp:ue W, P (R R™), u—Azx k-periodic ;.
v =i | (T e W (R R }

Fixed A € M™*" let u € W;’p (R™;R™) with u — Az k-periodic and with

Jloc
mean value 0 on (0, %k)". Define the sequence u;(x) = ¢; u(z/e;), and note that

u; — Az in Li, (R";R™). We have then

1 dDu
- ") < liminf F.. (u; "= — ——) dp.
p(A) = F(Az, (0,1)") < liminf Fe, (u;, (0,1)") = o [07k)7lf(w, m ) du
Hence, ¢(A) < gr(A), so that
©(A) < liminf g;(A). (2.14)

k—-+4oco

Conversely, let w; — Ax be such that

p(A) = F(Az,(0,1)™) = lim F, (wj, (0,1)™).

Jj—-+oo
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Let 0 > 0. Let T; = 1/e; and let u;(z) = Tjw;(x/T;). We use the notation
Kj = [T;] +1.

If 5 is large enough and N > 4, we can use Proposition 2.11 with ¢ = 1,
U= (057})”5 V= (OvKJ)n\(QT]/NaE72(TJ/N))nv U= (Tj/Najjjf(T]/N))na
u = u;, and v = z4. We get then

Fi(¢u+ (1 - ¢)v, (0,K;)") (2.15)
= Fi(¢u+ (1 —¢), U UV)
< (1+40)(Fi(u,U) + Fi(v,V))

—l—MNij_p/ lu —v|Pdx + ou((UNV)\U").
(UNVI\U

Since ¢u + (1 — ¢)v — Az is K-periodic, we obtain

K;L ng (A)
< (L+0)(Fi(uy, (0,75)") + Fi(za,V))
+MNPT / i — zaPda + ou((U N V) T)

(0,75)"\(T; /N, T; —(T; /N))™

KT
< (L4 o) (T Fx, (wy,(0,1)") + Cﬁ(l + A7)

JrMNPTJ?L/( ) lw; — 2j|Pdx + ocKT,
0,1)"

where z;(x) = T;le(zj). Note that z; — Az in LP((0,1)";R™); hence

lim |lwj — z;|Pde =0.
J—+o0 (071)71

Dividing the estimate above by K7, and letting first j — 400 and then o — 0
and N — 400, we get
limsup g, (A) < o(A). (2.16)

By (2.14) and (2.16) we obtain then

¢(A) = liminf g, (A) = lim gg, (A).

k—-+4oco j—+oo

The first equality shows that ¢ is independent of the sequence (g;). Repeating
the reasoning then with a sequence () such that

lim gg, (A) = limsup gi(A)
oo k400

the proof is complete. |
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PrRoOOF OF THEOREM 2.7. The previous propositions show that the limit
in (2.7) exists and (2.8) holds with fhom given by (2.9). Formula (2.10) in the
convex case follows as in Theorem 1.46.

It remains to check that Fyom(u, Q) = +oo if u € LP(Q; R™) \ WLP(Q; R™)
when p > 1. Clearly, it suffices to prove this for f(A) = |A|P. In this case, Fhom
is convex, hence it is determined by its behaviour on W1P(Q;R™) (see [41]
Chapter 23). It will be enough then to prove that fhom(A) > c|A[P. Since fhom
is positively homogeneous of degree p, it is sufficient to check that from(A) # 0
if A # 0. To this aim, let u. — Az be such that F.(uc,(0,1)") — fhom(A).
If fhom(A) = 0 then by the Poincaré inequality for BV -functions, by Holder’s
inequality and a scaling argument we obtain that u 1 tends to a constant, and a
contradiction. O

2.4 Limits of a class of difference schemes

In this section we show how some energies depending on finite differences can be
seen as a particular case of functionals defined on Sobolev spaces with respect to
the measures introduced in Example 2.3(a). For the sake of illustration we deal
only with the case of integrands independent of z. We remark that in the case of
quadratic functionals (i.e., 1% (&) = cx€? below), our result can be framed in the
theory of difference operators elaborated by Kozlov [58], where a compactness
and representation theorem is given for a general class of operators.
Let 2 C R™ be an open set with Lipschitz boundary, and let

I ={ieZ":ci+[0,e]" CQ}.
Let #1....4, be convex functions such that
1P < Pr(€) < (1 + €7
for all £ € M™*™ and k =1,...,n. We define A, the set of functions
1

u:(Z"ﬁgQ)HRm
and for all u € A,

n . .

n u(r+eg) —ue
el = 305 e (ML),

If u € A, then we can associate to u the piecewise constant function v, : Q@ —
R"™ defined by

u(i) x€ei+[0,e)" eie€QNeZ”
vy (z) = .

0 otherwise
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Definition 2.16 Let u; € Ac;. We say that u; converges to u € LP(Q) if and
only if vy, converges to u in LP(Q).

Theorem 2.17 The functionals V. I'-converge as € — 0 to

" ou
—)dx uweWhP(Q;R™
U(u) = ;/ka(azk) ( )
+o0 u € LP(Q; R™) \ WhP(Q; R™)

with respect to the convergence in LP(S) as in Definition 2.16.

PROOF. Let f: M™*™ — [0, +00) be defined by
§=n i: (o (ik)
n
k=1
where &, = &ey. If we consider p as in Example 2.3(a), since f is convex, by

formula (2.10) it follows that

n

From(€) = - F(n€) = 3" ().

k=1

In fact, the computation of (2.10) is trivial, since u(z) = >_}_, &lzx] is the

unique function u € Wlloc(R";Rm)7 up to translations, such that u — &x is

1-periodic. By formula (2 8)

/ Zwk dx ue WhP(Q; R™)

+00 e LP(Q;R™) \ Whe(Q; R™)

Fhom u, Q

and Fyom(u, Q) = U(u).
For all U CC § open set with |0U| =0 and & > 0, let

P t) = [ () dne.

and let u; € Ac; converge to u € LP(Q2). Then

lin nf W, (u;) = lim inf >3 ( H;) (i)>

k=1 zEIE

1de
>1 f “J d n—1
> e [ (3 )
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lim f/ f(dD”“”)d
= limin : -
Jj—+oo U dﬂsj H 7

= liminf F_, (vy,,U)

Jj—+oo

Z Fhom (’LL, U)
by formula (2.7) and the definition of I'-convergence, so that

liminf W, (u;) > sup Fhom(u,U) = ¥(u).
J—too UuccQa

By the arbitrariness of u;

I'-lim i(I)lf U (u) > U(u).
e—

Conversely, suppose that v; € W,?(Q; R™) converges to u in LP(Q) and define
J

u;j(7) = lim sup][ vj(z —eji) dz (2.17)
B(O,p)ﬂ[O,Ej)"

p—0F

for all i € Z" N 1Q. Note that if i € I. or i —ej, € I. for some k then the average
in (2.17) is constant for p small enough.
By definition, u; converges to u € LP(§2) and

limsup ¥, (u;) < limsup F, (v;, Q2);

oo j—+oo
there follows that

I-limsup ¥, (u) < I-limsup Fe(u,Q) = U(u),

e—0 e—0

so that
- liH(l) U (u) = ¥(u),
E—

and the proof is concluded. |

2.5 Appendix: Sobolev inequalities in Wj’p

In this appendix we include some results about Sobolev inequalities in the spaces
W}}vp. In particular, we will prove that the measures in Example 2.3 satisfy the
Poincaré inequality.

Proposition 2.18 Let p be the measure in Example 2.3(b). Then for all 1 <
g <n(np—2p+1)/(n—p)(n—1) (for anyq > 1 if p > n) and for all k € N there
exists a constant C (k) such that for all u € WP((0,k)") with f(O,k)" ude =0
dDu P 1/p
“ dp) .

we have 1
q

(/ |u\qu) §C(k)(/ il

(.0 ! dp

Moreover, if g = p then we can take C(k) = ck with ¢ a fized constant.

(2.18)
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PRrROOF. If n = 1 then (2.18) follows from the Sobolev inequality for BV
functions (see Remark 2.21). We will deal only with the case p < n and ¢ > p,
which again is not a restriction. The other cases can be derived from this by
applying Holder’s inequality.

We set U = (0,k)". We start by considering an inequality involving the
median of a function rather than the mean. We recall that the set of the medians
of u (in U), med(u), is the set of real numbers ¢ such that

1 1
Unfu>t < Ul and  |UN{u<t} < 5[0

Let u € Wl}’p (U). By the Poincaré inequality for BV functions, there exists a
constant ¢ = ¢(U) such that for u € BV(U) and t € med(u)

lu =t Lrson-n 0y < e[ Dul(U) (2.19)
(see [77] Theorem 5.12.10). By a scaling argument it can be easily checked that ¢
may be chosen independent of k. From now on, we denote ¢ any constant which
satisfies this property.
Let first ¢ > np/(n — 1), and set v = u|u|"~! with r > 1. If 0 € med(u) then
0 € med(v); hence, by (2.19),
ol 00y < A DY),

We then get, by Holder’s and Minkowski’s inequalities,

(n—1)/n
(/ |u|7'n/(n—1)dx) < C/ |u|"_1|Vu|dx
U U

te / fut — (T )
UNE

, 1/p’
< | Vull, (/ P/ 1) dm)
U
1/p
+c (/ lut —u~|P d’H”_1>
UNE
, 1/p’ , 1/p’
< ((/ P D) dH”‘1> + (/ [ [P D) dH”‘1> > .
UNE UNE

Let ¢ = rn/(n—1) and a = p/(r — 1); then we can rewrite the estimate above

r/q (r—=1)/a
([1utrae) ™ < cawul, [ 1ufas)
U U
1/p
+c (/ lut —u~|P dH”_1>
UNE

as
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(r=1)/a (r—1)/a
X (/ u+adH”4> +—</ m—wdH”*) .
UNE UNE

Interpreting u™ as traces of Sobolev functions defined on each cube of U \ E, we
have

1/«
([ wsean=) " < culwison (2.20)
UNE
for p<a<p(n-—1)/(n—p) (see [1] Theorem 7.58). Hence,

[ully < el Vullpllulf!
1/p
+c (/ lut —u~ P d’H"1> (Hu||;f1 + HVuH;*l) .
UNE

Note that @ < ¢ < n(np—2p+1)/(n — 1)(n — p). By Holder’s inequality
Julli™ < lully 01 DED and - ullp T < il oG,

If we denote ¢; = |U\(T71)(é7%) and ¢y = \U|(T71)(%7%), we get

) dDu P 1/p dDwu P 1/p
flly < ene( [ | i)l o / 42 an)
dD (r=1)/p
x(chunzw ([ ) (221)

dD 1/P dD
< ten el [ [ ) e[ |

By Young’s inequality

dDu|p 1/p
envenel [ |G )l
1((2( ))” D/ /’dDu
< - (c1 +e2)c ’
r r
e N\ (r—1)
2 (e ()Y
T 1 2(r—1)
B (Q(TI))T_ (c1 4 c2)c /‘dDu
r

so that, by (2.21),
dDu P
Jully < eae { [ [ :

1/p>r

/p

1
+ Sl
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where ¢4 = 1+c¢;1 +co. In particular, we have that, for a general u and ¢ € med(u),
dDu P 1/ P
lu—t]ly < c4c / ‘ . (2.22)

By Minkowski’s inequality and (2.22)
lullg < llw —tllq + [T} (2.23)

dDu|p 1/p
§64c(/ e ,u) + [¢||U|Me.
U

Suppose in addition that fU udx = 0. We then can estimate

(n=1)/n
It] = ‘][ udzr — t| S][ lu —t|de < ( lu — ¢V (=D d:c)
U

dDu < UL/’ dDu p 1/p
‘U|(n D/n ‘ > C|U‘(n—1)/n ‘

— c[Ur|=m)/me / ’dD“ 1“”7

by (2.19) and Jensen’s and Hélder’s inequalities. Finally, by (2.23),
dD 1/p
([ o) < s s 12 )
U

To conclude the proof set

C(k) = C<C4 n ‘U|1/q+<p—n>/np) (2.24)

— C<1 L r=DG =) (=D (G-3) 4 kn/q+<pfn>/p> ,

In particular if ¢ = np/(n — 1) we have a = r = p and C(k) = c(1 + 3kP~1/P).
If ¢ < np/(n — 1) an application of Holder’s inequality yields that we can take
C(k) = ck((P=m)/p+(n/0) We obtain the last statement of the proposition when
P=4q. 0

Remark 2.19 The previous proposition proves the Sobolev inequalities for the
measures p in Example 2.3, in particular the last statement proves the Poincaré
inequality. In fact, the Sobolev inequalities, and hence also the Poincaré inequal-
ity, for the measures in Example 2.3(a) are a particular case of those for the
measures in Example 2.3(b).

Remark 2.20 Proposition 2.18 can be proved for measures of the more general
form
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1
wB) =17 H1(EN0,1)")

provided that E is a 1-periodic closed set of o-finite n — 1-dimensional Hausdorff
measure and that [0,1]™ \ F has a finite number of connected component, each
one with a Lipschitz boundary. The proof follows the same line, remarking that
the particular form of E was used only in (2.20).

(18] + H""H (BN E)),

Remark 2.21 The validity of a Sobolev inequality for a general p depends on
the measure p itself and p. In particular it always holds if n = 1 for all p and
g, or if p <m/(n—1) with ¢ = n/(n —1). In fact, in this case, by the Sobolev
inequality for BV -functions and Holder’s inequality

(n—1)/ dD
(/ |u|™/ (=) dac) < c|Dul(U —c/‘ u
U

/ dDu |p 1/10
<c ‘

Conversely, if ¢ > p > n/(n — 1), take a 1-periodic function u € (BVje.(R™) N
LP((0,1)™) \ L9((0,1)™)), and set p = |Dul. Clearly |[dDu/du| = 1, so that
u € W, P(U) for all subsets U of R", but we have [, |u|?dx = 400 for each U
sufficiently large.

M(U)(P_l)/”.
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HOMOGENIZATION OF PERIODIC MULTI-DIMENSIONAL
STRUCTURES: THE LINEARLY ELASTIC/PERFECTLY
PLASTIC CASE

3.1 The space LD%(Q2)

In this section we define the analog of W, (€; R") (see Definition 2.1) when the
gradient is replaced by the linearized strain tensor.

Definition 3.1 Let A be a finite Borel positive measure on the open set 0 C R,
and let 1 < p < +oo. We define the space

LDX(Q) = {u € LP(%GRY) : ue BD(Q), Bu << A, CZETU € Lf;(Q;M"Xn)} :

sym

We will use the notation LD (S2) instead of LD} ().

Proposition 3.2 (i) The spaces LDY(Q) and LD}(Q) coincide whenever |\ —
w|(Q2\ B) =0 for some H" -negligible Borel subset B of 2.

(ii) The measure A in Definition 3.1 can always be assumed concentrated on a
Borel set where its (n — 1)-dimensional upper density is finite.

PROOF. Point (i) easily follows from the fact that BD functions do not charge
H"Lnegligible sets (see Remark 1.60). Point (ii) follows from (i) since if we
consider

B
E= {x € : limsup ABy(@)) pff)) = +oo}
p—0 "

from covering theorems (see e.g. [77]) we have H"~*(E) = 0; hence if we set
p=ALQ\F

by (i) we have LD} (Q) = LD% (). 0

In the following proposition we prove a Leibniz-type formula for the densities
with respect to a measure A. This formula will be used in the proof of the
fundamental estimate, Proposition 3.11.

Proposition 3.3 If u € LD}(Q), v € Wy ®(Q) and @ ® BY € L] (Q;M"*")
then wv € LDX (), and

dE(uww)  _dEu . _dDv
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PROOF. By definition, functions in LDY have bounded deformation. Using the
characterization of the spaces BV (€2) and BD(2) by means of one-dimensional
sections (see Theorem 1.54 and Proposition 1.59) we have

ug € BV(Qg), Uye € BV(Qg) H" e yeQs
where

V() = uS(y + 1) = (uly +1€), ), vyelt) = vy +1)  VEe k.
Hence by the chain rule formula for BV functions (see Theorem 1.53) we have

(uv)g = u§ Uy € BV(Qg)

and
D(ugvyé) = ﬁyygDug + ﬂgDvy,g H ' —ae. ye Q.

By Theorem 1.54 and Proposition 1.59, we can prove that uv € BD(2) and
(Buvg, &) = (0EuE, &) + (a © Dvg,§) VE e R™.
By choosing & = &; + &;, where 1,...,&, is a basis of R", we get
E(uww) = 9Eu+ 1t ® Du. (3.2)

Since the measures in the left hand-side of (3.2) are absolutely continuous with
respect to A with densities in L (Q; MZ%"), we finally get uv € LD%(Q) and

sym

(3.1) is proved. O

Remark 3.4 Note that in (3.1) it is necessary to consider the precise represen-
tatives of u and v, since the measure A\ may take into account also sets of zero
Lebesgue measure.

3.2 Choice of the measure and some examples

Let p be a non-zero positive Radon measure on R™ which is 1-periodic; i.e.,

u(B +e)) = pu(B)

for all Borel subsets B of R™ and for all i = 1,...,n. We will assume the
normalization
u((0,1)") = 1. (3.3)
For all € > 0 we define the e-periodic positive Radon measure p. by
1
ue(B) = " (= B) (3.4)

for all Borel sets B. Note that by (3.3) the family (u.) converges locally weakly*
in the sense of measures to the Lebesgue measure as ¢ — 0.
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In the sequel f : R™ x M™*"™ — [0,400) will be a fixed Borel function 1-
periodic in the first variable and satisfying the growth condition of order p > 1:
there exist 0 < a < 3 such that

al AP < f(x, A) < B(1 +[A]) (3.5)

for all z € R™ and A € M"™*".
For every bounded open set 2, we define the functionals at scale € > 0 as

r dEu .
/Qf( )dug if u € LD _(Q)

F.(u,Q) = e’ du. (3.6)

+o00 otherwise.

Now we consider some additional assumptions on the measure u, in order to
prove the existence and the integral representation of the I'-limit of the func-
tionals F. as € — 0. In the sequel we will point out that these conditions are
necessary and sufficient.

We assume:

(i) (existence of cut-off functions) there exist K > 0 and 6 > 0 such that
for all € > 0, for all pairs U,V of open subsets of R" with U CC V, and
dist (U,0V) > de, and for all u € LD! (V) there exists ¢ € W, (V) with
0<¢p<1,¢=10nU, ¢ =0 in a neighbourhood of IV, such that

dD
/ ‘ *o ﬂ‘pdﬂa <
v dpe

K p
(dist (U, 8V))" /V\U jult e (37)

Such a ¢ will be called a cut-off function between U and V;
(ii) (existence of periodic test-functions) for all i,j = 1,...,n, there exists

2ij € LDM 1oc(R™) such that  — z;;(z) — xje; is 1-periodic.

Remark 3.5 Note that if x4 is p-homogenizable in the sense of Definition 2.4;

i.e., if there exists z; € Wu P (R™) such that z — z;(z) — z; is 1-periodic, then

the functions z;; = z;e; trivially satisfy the condition (ii) above but the converse
is not true.

Remark 3.6 Note that the Lebesgue measure trivially satisfies properties (i),
(ii). Note that property (i) depends on p and p.

We consider in our context the measure p of Examples 2.3(a) and (b).
Example 3.7 (Perfectly-rigid bodies connected by springs.)
We consider

E={yeR": Jie{l,...,n} such that y; € Z},

that is, the union of all the boundaries of cubes Q; =i+ (0,1)" with i € Z". E
is an (n — 1)-dimensional set in R™. We set
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1
u(B) = ~H" (BN E)
for all Borel sets B. For every € > 0 we have
1 n—1
ue(B) = EeH (BNeE).

If u e LDV, () then Fu = 0 on every connected component of each £Q; N,
so in this case LDI_ (Q) consists of functions which are rigid displacements on
these sets; i.e., u; = R;x + ¢; on each eQ; N with R; a n X n skew symmetric
matrix, and ¢; € R"™. Hence by Theorem 1.58(2), we have

dEuv n dEu n

dn =zt = g w) @ (= 1) on 9(eQ) N9(EQ;) N Q.

In this case the functionals F; take the form

z 1 dEu
T2 7T\ nfl.
E/Qng(e’edHn—l) H

Note that if © is bounded then LD¥_(2) = LD,? (Q2) for all p if the number of
connected components of each € N e@); is finite.

Comparing with Example 2.3(a), we get that Wl};”(Q; R"™) C LD}, (Q).

The measure p satisfies the conditions (i) and (ii) for all p > 1. In fact, to
prove (i) we consider the same cut-off function in Example 2.6(a)

o(x) =1 (G [Limt(le —yloo -y € U] A1),

where fixed ¢ > 0, U, = J{eQ; : eQ:NU # 0}, |z — yloo = maxi<i<n |Ti — Yil,
and

C= Einf{|x—y|m:m€Ug, yEBVH —-2.

Note that |dD¢/dp| < n/(Ce) < ¢/dist (U, 0V') for some constant ¢ independent
of U and V.
Interpreting u* as traces of Sobolev functions defined on each cube Q;, we

have
1/p
(/ |ui|pd7-{"1> < CHU”WLP(Q,-),
0 .

i

hence by a scaling argument and by Korn’s inequality (1.55)

1/p 1/p 1/p
<€/ |uide”_1) <c (/ |ulP dx) +e </ | Eul? da:)
0eQ; eQ; eQ;



64 The linearly elastic/perfectly plastic case

1/p
=c (/ |ulP dx)
eQq

where ¢ depends only on the cube. If p = 1 we can apply the trace inequality in

LD(Q;)
/ | aHm ! < c/ lu| d + [Bul(Q1),
0Q; Qi

so we get

5/ lut|dH" ! < c/ |u| de.
0eQ; eQ;

Hence for all p > 1

6/ lut P dH" ! < c/ |ulP dx.
0eQ; eQ;

For two cubes

5/ P aH ! < 5/ (g + iy |P) dH < c/ luf? da
0eQiNdeQ); 9eQ;NIeQ); eQiUeQ;

so that

dD¢ cPe / ~ -1
e wlP dH™
/‘dﬂs dist (U, V)P (V\U)neEnsptD¢| |
Cp
nm—————————"> Pdx.
< | e

The proof of (i) is then complete. To verify (ii) we apply Remark 3.5 to Example
2.6(a) and take simply z;;(z) = [z;]e;.

Example 3.8 (Elastic media connected by springs).
Let F be as in the previous example and let

p(B) = —— (1Bl + (B0 B))

j1o(B) = %H(|B| +eH N (eE)N B)) .

In this case the functions in LD¥,_(€2) are functions whose restriction to each eQ;N
Q belongs to WP (eQ; N Q; R™) when p > 1 by the Korn’s inequality (1.55) (we
suppose that £Q; N has a locally Lipschitz boundary) and to LD(eQ;N$2) when
p = 1, while the difference of the traces on both sides of 9(¢Q;) NI (eQ;)NQ is p-
summable for every ¢, j € Z™. Hence if we compare our case with Example 2.3(b),
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we can conclude that W;?(Q;R") = LD? (Q) if p > 1 and W} ' (;R") C
LD, () if p = 1. The functionals F, take the form

1 z dEu z 1 dEu
— ——\d - d nfl.
n—l—l/ﬂf(s’ dx) x+€/§mEEg(e’5dH"—1) H

The measure y satisfies conditions (i) and (ii) for all p > 1 by Example 2.6(b).

3.3 The homogenization theorem

The homogenization theorem for the functionals in (3.6) takes the following form.

Theorem 3.9 Let u be a measure which satisfies conditions (i) and (ii) in Sec-
tion 3.2, and for every bounded open subset Q of R™ let F.(-,Q) be defined on
LP(Q;R™) by (3.6). Then the I'-limit with respect to the LP(Q; R™)-convergence

Fhom(u, ) =T- lir% F.(u, ) (3.8)

exists for all bounded open subsets Q) with Lipschitz boundary and for all u €
LP(S;R™); it can be represented on WLP(Q; R™) for p > 1 as

Fhom(u,Q):/thom(Eu) dx (3.9)

where the homogenized integrand satisfies the asymptotic formula

1 dEu
on(A) = lim inf{ — B 1
from(A) = Tim in {k" /[07k)nf<x du) a (3.10)
u€ LD}, (R"), u— Az k‘—periodic}

for all A € M{7D.
Moreover, Fyhom(u,Q) = +o00 if p > 1 and u € LP(Q; R™) \ WHP(Q; R™), or
if ue L'(Q;R™) \ BD(Q) when p=1.

Furthermore, if f is convex then the I'-limit can be represented as

dEu?®
Frhom(u, Q :/fom Eu dm+/f°§m ——— |d|Eu®
o (00) = | from (€ e+ | $35 (e ) A

for all w € BD(Q2) when p = 1.

Remark 3.10 Note that we cannot replace the sets [0, k)™ by the sets (0, k)™ if
w([0, k)™ \ (0,k)™) # 0, see Remark 2.8.

Same examples and considerations of Remarks 2.9 and 2.10, applied to our
case, show that condition (ii) for the measure p and the assumption that Q has
a Lipschitz boundary are necessary to get a homogenization theorem. In fact,
if condition (ii) fails then fhom(A) = 400 if A # 0; while if  does not have
Lipschitz boundary then the equality (3.9) may not hold.
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The following proposition is a usual tool to prove the existence of the I'-limit
and its integral representation (see Section 1.7).

Proposition 3.11. (Fundamental Estimate) For every o > 0 there ewists
€ and M > 0 such that for all U U,V open subsets of Q with U' C U and
dist (U",V\U) > 0, for all € < e,dist (U",V \ U) and for all w € LD}, (Q),
v € LDE_(Q) there exists a cut-off function between U’ and U, ¢ € Wﬁ;‘x’(UUV),
such that

Fe(gu+ (1= ¢)v,U'UV) < (1+0)(Fe(u,U) + Fe(v, V) (3.11)
- Pde+o !
+(dlSt (U/,V\U))p [UOV)\U/ |U—’U‘ d + /J'E((UQV)\U)

PRrROOF. By taking (3.1) and condition (i) into account, the proof follows
exactly that of Proposition 2.11.

Proposition 3.12 For every A € M2X" there emists z4 € LD® | (R") such

sym w,loc
that z4 — Ax is 1-periodic and satisfies

s

PROOF. Define z4 = szzl A;jzij, where z;; are as in condition (ii). In-
equality (3.12) is then trivial. O

dEZA
dp

p

dp < c|AlP. (3.12)

We fix (g;) which goes to zero. We define

F'(u,U) =TI-liminf F_, (u, U)

Jj—-+oo

F"(u,U) =TI-limsup F., (u,U)

j—4o0
for all w € LP(; R™) and for all open subsets U of .
Proposition 3.13. (Growth Condition) We have for all open subsets U of
Q with |0U| =0
F(u,U) < c/ (1+ | Eul?) do
U
for allu € WHP(Q;R™) if p > 1 and

F'(u,U) < c(|U] + |Eu|(U))
for allu e BD(Q) if p=1.

ProoOF. This Growth Conditions can be obtained modifying the proof of
Proposition 2.13. In particular in Step 2 therein now we have to consider the

affine functions u;(z) = A;x +¢; for some A; € M?yxnf and ¢; € R"™, in Step 3 we
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just have to note that piecewise affine functions are dense in BD endowed with
the intermediate topology (1.53) (see Theorem 1.63). O

Proposition 3.14 There exists a subsequence of (g;) (not relabeled) such that
for all open subsets U of Q with |0U| = 0 there exists the T'-limit

r- lligl F., (u,U) = F(u,U),
j—+oo

for all w € WHP(Q; R™) if p > 1 and for all u € BD(Q) if p = 1. There exists a
function ¢ : M™*"™ — R such that

F(u,U) z/ p(Pu)dx
U
for all u € WHP(Q; R™) if p > 1; moreover if f is convex

F(u,U) :/Uga(é'u) dm+/l]g0°°(dc|lgzz|)d|Esu|

for allu € BD(Q) if p=1.

PRrROOF. To prove the existence of the I'-limit on WP (Q; R™) for p > 1 and
BD(9) for p =1, and the integral representation of the I'-limit

F(u,U) = /U<p(Du) dx

on WHP(Q;R") when p > 1, we repeat the proof of Proposition 2.14 using
Propositions 3.11 and 3.13. Moreover, we can prove that o(Du) = ¢(Eu). In
fact, let w; — Az be such that

F(Az,Q) = lirJP Fe, (wj, )

j—
and let Rx + ¢ be a rigid displacement, then
F(Ax+ Rz +¢,Q) < limlanEj (wj + Rz +¢,Q)
J—+oo
= lim F (w;,Q) = F(Az,Q)

j—+o0

so that (A + R) < ¢(A). The reverse inequality follows similarly, therefore for
all R (n x n) skew-symmetric matrix

p(A+ R) = o(A)

which implies ¢(B) = @(B%BT) for any B € M"™*",
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Let us prove the integral representation of the I'-limit F(u,) on BD(Q)
whenever f is convex. We consider the functional defined on L(Q; R™)

o(Bu)dx if u e WHY(Q; R™
G [ et (%R
400 otherwise;

note that G(u,Q) = F(u,Q) on WH(Q; R") and that ¢ is convex and a|A| <
p(A) < B(1+ |A]) for every A € M2x". We introduce

sym *

G(u,U) = inf{lgm_'i_nfG(uh7 U) : up —u in Ll(Q;R")}
the relaxed functional of G (see (1.4) and (1.5)).

For every u € BD(?), by Definition 1.55, Eu is a bounded M"*"-valued
Radon measure; hence if we define

dE*u
> E? 1
@(Su)dx—i—/U(p (d‘ESu‘)d\ ul (3.13)

oEu(v) = [

U

then Fu +— @FEu takes its values in M (Q) and it is l.s.c. with respect to the
locally weak*-convergence of measures (see [54] Theorem 3 and Section 3).

By the growth condition from below of ¢ and the lower semicontinuity of
oFEu we get, for fixed €2, that u — pEu() is L*(; R")-Ls.c. on BD(£2). Hence
if we define

wEu(Q) if ue BD(Q)
D(u, ) =
+00 otherwise,

for all u € L'(Q;R™), we have that ®(u,Q) < G(u,Q) on L'(Q;R™) which
implies, by (1.4), that ®(u, Q) < G(u, Q) and
©FEu(Q) < G(u,Q) (3.14)

for all w € BD(Q).

To prove the other inequality we use the approximation property of ¢ Eu by
convolution (see [54] Theorem 4 and Theroem 4’);i.e., we consider Q, = {x €
Q:d(z,09) > £}, pr, with spt pr, C B(0, £) and ug = u * pj, then

wEu(Q) = kEI-iI-loo A o(EBuyg) dz . (3.15)
k

Fix Q' cc Q, for k large enough Q' C Qj hence by (3.15) and (1.5)

wEu()) > liminf/ o(EBuy) dz
k——4o00 Q/
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> G(u, )
for all ' CcC Q; hence by convexity and growth condition of ¢ we get
©Eu(Q) > G(u, Q) (3.16)

for every w € BD(Q). By (3.13), (3.14) and (3.16) we obtain

— oo [ AE°u s
G(u,U) = /Ucp(é'u) dz + /U ¢ (d|ESu|)d|E ul (3.17)
for every v € BD(9Q).
Since F(-,U) < G(-,U) in BD(R), by the L'(Q; R")-lower semicontinuity of
the T-limit, (1.4) and (3.17) we obtain

dE*u

F(u,U)g/ go(eu)dx+/[]go°°<cw)d|ESu| (3.18)

U
for all u € BD()). The reverse inequality is obtained by a convolution argument.
In fact we define as above Uy, p and uy. For y € B(0, %) and k large enough we
have that Uy Cy+U.

Since F(-,U) is convex on BD(Q) for all U € A(Q) and F(u¥,Uy) < F(u,U)
with u¥(x) = u(z — y), by Jensen’s inequality

F(u p, Uy) < Fu,U) (3.19)

for every u € BD() (see proof of Theorem 1.47 Step 1).
On the other hand, by (3.15) and (3.13) we have that

dE°u
lim F = | —— |d|E®
GJm (ug, Ug) /Ugo(é’u)dx—i—/Ugo (d\Esu\)d‘ ul

hence by (3.19) we have

dE*u
oo S < .
/ng(é'u) da:Jr/Ugo (d| 3u|)d|E u| < F(u,U) (3.20)

for all w € BD(Q).
By (3.18) and (3.20) we can conclude that

dE*u s
F(u,U):/Uap(é’u)da;+/U<p°°(d|ESu|)d|E‘u|

as desired. m

Proposition 3.15. (Homogenization Formula) For all A € My there ex-
ists the limit in (3.10) and we have p(A) = from(A).
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PROOF. It can be obtain repeating the proof of the Proposition 2.15 but
defining

. 1 dEu p " L
gre(A) = 1nf{k—n /(o,k)n f(z, W)du tu€ LDy, (R"), u— Ax k‘-pel"lOdlC}

for all A € M?*"™ and k € N. O

sym

PrOOF OF THEOREM 3.9. It remains to check the coercivity of the I'-limit.
By the growth condition on f and a comparison argument, it is enough to prove
this for f(A) = |A|P. We know that the T-limit Fl,on exists for all uw € LP(; R™)
and for all sets R in the countable family R of all finite unions of open rectangles
of Q with rational vertices, in this case Fj,om is also convex. For all U, U € A(f)
such that U’ CC U there exists R € R such that U’ CC R CC U. Reasoning
as in the proof of Theorem 1.47 Step 1 , for y € B(0, %) and k large enough we
have that R C y + U hence

Fhom(ukyR) < F/(ua U)

and
lkimj_nf Fhom(ug, U") < F'(u,U) (3.21)
with up = u * py.
It will be enough then to prove that fhom(A) > ¢|AP. In fact for any u €
LP(Q;R™) \ WHP(Q; R™) when p > 1 by (3.21)

F'(u,U) > climinf [ |Duy|?dz
k—-+oco U’

by the arbitrarity of U’, we get Fyom(u,U) = +oo. Similarly, if p = 1 for all
u e LYQ;R") \ BD(Q) we have |Eu|(Q) = +oo, let Q' CC Q we get by (3.21)
that
F'(u,Q) > climinf | Bug| (')
k—+o00

by arbitrarity of Q' we obtain Fj,om (u, Q) = 4o00.

Since fuhom is positively homogeneous of degree p, to prove that fhom(4) >
c|AP, it is sufficient to check that fhom(A4) # 0 if A # 0. To this aim, let
ue — Az be such that Fe(ue, (0,1)") — fhom(A). I from(A) = 0 then by a
“Poincaré-type” inequality for BD functions (see Theorem 1.61), by Holder’s
inequality and a scaling argument we obtain that

P

dEu.
U .

dpie

0= JromlA) = il_r)% (0,1)

> lim c(/ |u€fRu5\dx)p
e—0 (0’1)n
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where the constant ¢ depends only on 2 and R, and Ru, is a rigid displacement.
Hence Ru. — Az in L', and we get a contradiction because A is a symmetric
matrix. O

3.4 Non local effects
Theorem 3.9 shows the I'-convergence of the functionals F. to Fom in WP (£; R™)
and that the I'-limit is local; in fact we have represented Fj,om as the integration
over Q) of a local density of energy of the form fhom(Eu).

Now, if we consider

P =< [ F(T ) dn

then T'(LP)-lim._o F (u, Q) = 0 on WHP(Q; R"™), when « > 0. In this case, how-
ever, no coerciveness result may hold for sequences (u.) with sup_. o F2 (u., Q) <
400 in any norm.

We will show with an example that a more complex notion of convergence
may have to be introduced and that the I'-limit functionals may be of a non-local
nature.

Let & = w x (0,1) be a ‘cylindrical’ domain where w is a connected open
subset of R2.

We define e D; to be a two dimensional disk centered at x; = (i1 + 5, €i2+5)
of radius /4

eE> =eD; x (0,1) eE? = U eE;?
i€l.
where i = (i1,i2) € I. = {i € Z? : cE;* C Q},

eB' = Q\ eE%

We call E = Dy x (0,1).
We consider the measures

pe(B) = eH*(B N 0= E?)

and the functionals )

dEu
dpe .

Y — 7
Fi(u,Q) =¢ /Q\ i
Note that, up to normalization, p. is the same measure of Example 3.7.
In this case LD? () consists of functions which are rigid displacements on
the sets eE' and eE?; i.e., u € LD}, () if and only if there exist a;, b;, ¢, d € R?
such that

u=cAz+d on eE!
u=a; Nz+b; on 5E¢2

for each i € I.. We use the notation z = (7, 73) € R3, 2, = (21, 22).
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Hence

E 1dFE 1
Cfmu:g%:g(ch+d—ai/\m—bi)®von3(€Ei2)-

Definition 3.16 Let u. € LDiE(Q). We say that ue converges to (uy,us) €
L2(Q; R3) x L2(Q; R?) if and only if

lim lue —uy|*dr =0 (3.22)
=0 Jept
lim lue —ug|*dr =0. (3.23)
=0 Jepe2

We will study the I'-limit F' of F with respect to the convergence intro-
duced in Definition 3.16 (see Theorem 3.19). The domain of F will be the set
of pairs (u1,us2) such that u; is a rigid displacement and us is in the space U
of functions whose ‘vertical sections are rigid displacements’, introduced in the
following proposition.

Let us define, for all > 0, Té“ = Qﬁ x (0,1) where Q’; =k + (0,1)? with
k= (ki,ky) e J={keZ?: Ty NQ+#0}

Proposition 3.17 Let u. € LD} (Q) and uy € L*(; R?).

lim |ue —ug|*dr =0
€0 /e g2

if and only if ug € U where
LI:{UGL2(Q;R3):V77>OHJCZ2 and 3A* Nz +B* onTF VkeJ

such that UT;HQ:Q Z/ |v(x)—Ak/\x—Bk|2dx§0(n)}.
keJ ke Tyne

PROOF. Let u, € LDZE (), by definition u. = a.; A x + b.; on eE?. Let
h € N and n > 0 such that n = he, we extend a.; A x + b.; to T,’f for each
iel,={i€Z?:cE? C T,’f}, hence we can construct a rigid displacement on
k
T, ,
A’g/\:UJrBéC =12 Zae,i/\erbsﬂi-
i€l

Let us suppose that u. satisfies condition (3.23),

/TT’IC NeE?

2

ug(x) — A¥ Nz — BF| da (3.24)
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2
< C(Z / ’Ug(l‘) —ac; N — be,j‘ dxz
jel, /B
1 2
+Z/ aaj/\x—kbw-—ﬁZam/\a:—Fbm dz).
jel, 7B i€,
Let us estimate the last term in (3.24)
1 2
Z/ ag’j/\x—l—be,j—ﬁZam/\x—i—bE,i dxr
jer, Y <E} i€l
2
Sc(Z/ Qe j /\:chbs,jfuz(:z:)‘ dx
jel, B}
1 2
—I—Z/ ﬁZas)i/\x—l—bm‘—uz(x—i—aci—xj)‘ dx
jer, 7eEF Y e,
1 2
+ Z/ e Zuz(x) 7u2(x+xif:€j)‘ dz).
jel, 7 eE; i€l

For each © € e¢E? we have that = 4+ z; — x; € ¢E}, hence with a change of
coordinates we get

1 2
Z/ |ae,; ANx +bej— 72 Zae,i/\x—i—bw‘ dxr
jel, VeE3 i€l
2
SC(Z/ A j /\erbE’jqu(:z:)‘ dz
JElk B}
1 2
+ Z —2/ ag,i/\(x—i—mj—:Ei)—&—bg,i—ug(sc)‘ dx
i,j€I h EE?
1 2
+ Z 2 u2(x)—u2(x+:riij)‘ dx)
4,J€ Ik gEaz
2
<c / Qe i AT+ bey — uz‘ dx (3.25)
icly, Y eF7
1 2
+ Z o) Qe A (CL’j — 1’1) dx
ijelx h cE?
1 2
+ Z ™l ug(z) — ue(z + z; — x;) dw).
igen, IV Jer?

Now if we denote A the set of all translations of the type x; —x; with 4, j € I,
we get that
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> )
72
iGen " Jer?

1 2
SZﬁ Z /TJ|U,2(I)—UQ(33—|—T)| dx

TEA reC (k)

us(x) — ug(z 4+ x; — x5) ’ dx (3.26)

where C(k) = {(k‘l, kg), (kl + ]., kg), (/Cl, kQ + ].)7 (kl + ]., kg + 1)}
Since |A| = ch?, by (3.26) we have

1 2
Z Z — ug(z) —ug(z +x; — x;)| dx
- h‘2 eE?
keJi,jel) J
1
<ey pz lluz() — w2l + T2 m
TEA
<c s [lual) — us(+ ) Pagoms) (3.27)
ITI<v2n

Let us consider the cubes Qil = (ei 4+ (0,1)?) x (g5 + (0,¢)) for i € I, and
jeJ.={jeZ: Qg’i NeE? # 0}. Since us € L2(2;R3), we can assume that
there exists a sequence (ue2) which is constant on each Qil such that

: 2 1 o2 _
ehi%/g |ug — ue 2| dx = glir(l)z Z /QJ' . lug —uc 2, i|°de =0 (3.28)

i€l jEJ: e,i

where u. 2, ; is the value of (u.2) on Qg,i.
So by (3.23) ) we get

Eh_{% E E , |ue — Ue,2,i,j

J 2
iel, jeJ. QL Nek;

2dr =0. (3.29)

Note that the L2-norm on the set R of rigid displacements is equivalent to
the norm on R
la Az +blr = (la* +[b]*)"/?,

hence by (3.29)

limy DY Blacil + e — ue i P =0
i€le jeJe
which implies that
lim > ° e*lacif* =0 (3.30)

i€l

and
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> bl <c (3.31)

i€l

for each € > 0 small enough.
Since |z; — ;| <, by the equivalence of the norms we have

1
> ),

3,J€1k

2 &‘2
as ;i N (xz; — ;)| de<ec Z ﬁn2|am|2

1,5 €,

=co” Y acil. (3.32)

i€l

Note that 3 e > ier, = 2ier.-
Now we insert (3.32) into (3.25) and, summing up all the corresponding

estimates obtained for different indices k € J, by (3.27) we get

1 2
Z Z Qe j N +bej — 7z Z aei AT +bei| dx (3.33)
keJjely, Y E; i€l
2
< c(Z/ e N2+ be g — uz(x) dx+772262|a57i|2
eE?

i€l i€l

+ sup [luz() - wa(-+ DlEaars ) -
|71<V2n

Finally, we sum up the estimates (3.24) for k € J and insert (3.33); by (3.23)
and (3.30) we get

2
uy — AF Nz — BY| dx (3.34)

lir% E /
E—
keg? TyneE?

<c sup |lua(-) —ua(-+ T)\\i?(Q;RS) .
[71<v2n

On the other hand it is easy to see by (3.30) and (3.31) that there exists A* A
x + B such that

2
Af Nz 4+ BY — AP ANz~ BY| de=0

lim
e—0 Tk
n

for each k € J, hence by (3.34) we can conclude that up € Y.
Conversely, if uy € U then eE? = UkeJTé‘? NeE? and we have rigid displace-
ments A* Az + B¥ on each Tf;.
We define
aciNx+bey= (AP Na+ Bk)‘EEf

for each 7 € Ij,. Hence
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Z/ aci At by — us(a)| d;v:Z/TkmEZ

i€l kedJ

2
A* Nz + BF —uo(z)| da

and by definition of U

1in(1) g /
E—> N
ke’ ThNeE?

-S|

keJ TrnQ

2
A* Nz + BF — UQ(J:)’ dx (3.35)

2
AF Az + B —uz(:zc)‘ dx < o(n).

y (3.35), passing to the limit as n — 0, we get

51%;/513? dr=0.

2
aei AT+ by — u2(x)‘

O

Remark 3.18 Note that, since u. are rigid displacements, by (3.22) it is easy
to see that u; is a rigid displacement.
For simplicity, we will denote

F(uy,ue; Q) =T- lir% F2(ug,u2;Q)
£—

for (uy,uz) € R x U. We will continue to write FY(u, Q) for u € LD?_(Q).

Theorem 3.19 For v =2 the functionals F) I'-converge as € — 0 to

Flur, s O —cl/|u1 (u2) |2dx+c2/\u13—<u2> 2 du

on R x U with respect to the convergence introduced in Definition 3.16, where

3 s
Clzgﬂ', CQZZ.

PROOF. By the invariance of the functionals with respect to translations of rigid
displacements and by Remark 3.18 we can always assume without loss of gener-
ality that u. = u; on eE'.
Let us call
Qe i NT+ Pei =u1 — e AT — b

P9 =y |
; OeE?

i€l

hence )
(e ANx+ Bei) © 1/‘ dH? .

Fix x3 € (0,1), we can find the following equality

2
O NT+ Pey| dag

2
45/ ’(%mx+ﬁe,i)@y‘ dH! —16/
OeD; €

D;
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2 2
:wgzq(][ Qi AT+ Bes dma)lj +](][ Qi AT+ Bes dxa)Q‘)
2 eD; eD

i

™
g8 (i)t + (o) + 2(e,)3) -

Hence, if we integrate also in x3, we get

4e /
8€E.2

1 2 2
:/ wgz(‘(][ Qi AT+ Be dxa)l’ +‘(][ Qi AT+ e dxa)Q‘ )dﬂcg
0 2 eD; eD

2

Qe ANx + Bs,i

2
(i Nx+ Bei) © 1/‘ dH? — 16/

eE?
i

i

+ e ()} + (e + 2(0e0)2) (3.36)

2 2
(][ O i N+ e i dma)h‘ dx = lim Z/ )(a57iAx+ﬁg,i)h’ dx
EDi EHOZ- . sE?
for each h =1,2,3, and
T 2 2
62‘(][ Qe i AT Pe i d:ca)h’ = 8/ ‘(][ Qe i AT+ e dma)h‘ dry;
2 eD; eD;" JeD;

hence,

2
;iL%Z/ 3¢ ][ e Ao G daala| dos

i€l
= 8lim Z/
E— 2
i€l €E7"

If we pass to the limit in (3.36), by (3.37) we obtain

2
(Gei AT+ ﬁs,i)h‘ da . (3.37)

2
(a“-/\x-i-ﬁsi @V‘ de

1. OeE?
2
>611mZ/ (aei ANz~ Bei) ‘ ‘(Oés,i/\fv+5s,¢)2 dz
e—0 E2
i€l
+ hm L6 ZEZI: e ((@e,) Oéa,z')% + 2(045,,')%) . (3.38)

For every sequence u. converging to (u1,us) in the sense of Definition 3.16,
by (3.30) we have that
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222)51 D et (aea)t + (aei)3 +2(0e4)3) =0 (3.39)

lEa

so we insert (3.39) into (3.38) to find that

FE
lim inf &2 /‘d Ue |

e—0

dp. > 6|E] / (1Yo — (t12)o|? (3.40)
1B [ Jun)s = (ua)af da.
By the arbitrarity of u., choosing v = 2
I- ligélf Faz(ul, u2; Q) > F(uy,uz; Q). (3.41)
Now we consider
ue = (cAxz+d)xegr + (@ Nz +b) Xep2
obviously it converges to (c Az +d,a Az +Db), and we call a Az + = (a—c)A

x+ (b—d).
In this case

g
eE?

for h = 1,2, hence by (3.36)

2 1
(a/\x—l—ﬁ)h) dx:/ z62’(][ aAzx+ Bdxy) ’ dxs + 5404%
o 2° 1Moo, 128

2
(a/\x—l—ﬁ)@y‘ dH?

lim sup E 5/
e—0 iel. OcE?

.
<oimy [

el
+4lim2 /

e—0
icl. /7

=6|E|/Q\<am+ma

(aNz+P) ‘ ‘(a/\x—l—ﬁ)g‘zdx

(a Nz +6)3‘ dx +clirr%)52|a|2
e—

(A + 5)3]2 de.  (3.42)
Q

y (3.40) and (3.42) we get

Bu. 12
lim 2 / ‘ dEue
=0 Jol due

dp. = 6|E] /Q‘(omxm)a (3.43)

2
+4|E|/‘(a/\x—|—ﬂ)3‘ dz .
Q
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Now we fix 77 > 0 and consider u; € R and vy such that v3,,. = AF Nz + BF
with k € J. By (3.43) we get

lim sup Ff(llq Xegt + 03 Xep2, Q)

e—0

<thsupF (u1 Xepr + (A* Az + B*) xop2, T nQ)

keJ e—0
—Z6|E|/ _ A Az - BY,
keJ ka
+Z4|E|/ — AR Az — B ’ dz
keJ e

= 6181 [ (o) — o3|

da:+4|E|/Q‘(u1(x) —@))s| dr (3.44)

If up € U then for all 7 > 0 there exists vy as above such that ||us —v3[|r2(Rrs)
o(n), since the T-upper limit is L2-lower semicontinuous if we denote

Fy (u1,u9; Q) = I'-lim sup FEQ(ul, ug; Q)
e—0

by (3.44) we get

Fy(u1,u9; Q) < hmlnf FY (uy,v3; Q)

'r]~>

< limiélfG\E|/}(u1(x) —03(2))a
7]%
+4|E|/‘ uy(z) — vg (z ‘ dx

= 61| [ [(us(2) = uale))

It follows that given (u1,u2) € R x U

2

dx+4|E|/Q‘(u1(m)—u2($))3 dx .

I-limsup F. (uq, u; Q) < F(ug, u2; Q)

e—0

so that by (3.41)
I- liH(l) F.2(uy,ug; Q) = F(uy,uz; Q)
as desired. |

If ue converges to (u1,u2) in the sense of Definition 3.16 then u. converges
weakly in L2(€;R3) to (1 — c)uy + cug where ¢ = |E|. If we define the energy

F(u,Q) := inf F(uy,u; Q)
u=(1—c)ui+cus
(u1,u2) ERXU
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by Theorem 3.19

F(u,Q) = inf (51/ |re — ua|2dx—|—c~2/ |rs — u3|2dm)
reER Q Q

where ¢; = c;/c? and ¢ = cp/c?, which explains the non local nature of our

limit.

Remark 3.20 Let us consider, up to normalization, the same measure of Ex-

ample 3.8

i2(B) = (|B| +eH2(BN 85E2)>

and the functionals )

dEu, dii
..

ﬁu,Qzez/’ —
2u.0) = [ [

In this case by Theorem 3.19 we can deduce that the I'-limsup,_, Ff(ul, ug; Q)
is finite for (uy1,us) € R x U.
In fact, since LD (;R?) C LDZ~ (4 R3), given (u1,uz) € R x U we have

I- limsupf?(ul, ug; ) < T-limsup F2(uy, uz; Q) .

e—0 e—0



4

HOMOGENIZATION OF OSCILLATING BOUNDARIES

4.1 Scheme of the direct method

In the sequel we will repeatedly apply some variants of the so-called direct
method of I'-convergence to homogenization problems, which consists in com-
bining localization and integral representation procedures to obtain compactness
theorem for classes of integral functional.
The T-limits will be performed with respect to the L?(€; R™)-convergence.
Let © be a bounded subset of R™, let p > 1 and let F, : LP(Q; R™) x A(Q) —
[0, 4+00] be a family of functionals of the form

FuU) = /Ufg(%Du) de ifue X (U) (4.1)

400 otherwise,

for suitable function spaces X.(U) and f. : R™ x M™*" — [0,400) Borel
functions. Suppose that there exist Borel functions g. : R® x R — [0, 4+00),
convex and even in the second variable, with

ge (@, |F]) < fe(z, F) < O(1 + ge(w, |F|)) < C(L+ [F[P), (4.2)
ge(2,2t) < C(1 + ge(x,1)) (4.3)

for all ' € M™*" z € Q and t € R. Growth conditions (4.2) and (4.3) are
designed to include functions of the type a.(z)|F|P with the only assumption
a. > 0, thus allowing for zones where a. = 0. In the next section a. will be
the characteristic function of a set with fast-oscillating boundary. Note that a
general theory for functions satisfying

0< fo(z, F) < C(1+|F|P)

only has not be developed yet. The aim of the direct method of I'-convergence
is to prove a compactness result for the family (F.), giving a representation of
the limit, and, possibly, complete the description in terms of ‘homogenization
formulas’.

Step 1 With fixed (¢;) extract a subsequence (not relabeled) such that
F.(-,U) T-converges to a functional Fy(-,U) for all U in a dense family of open
sets R (see Proposition 1.22);

Step 2 Thanks to (4.2) and (4.3), prove that Fy(u,-) is the restriction of a
finite Borel measure to R for all u € W1P(Q; R™), so that by inner regularity we
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indeed have that F.(-,U) I'-converges to a functional Fy(-,U) on W1P(Q; R™)
for all U € A(£). In this step is crucial the so-called fundamental LP-estimate:
for all U,Y, Z € A(Q) with Y CC U, and for all ¢ > 0, there exists M > 0 such
that for all u,v € WHP(Q; R™) one may find a cut-off function ¢ € C°(U; [0, 1]),
@ =11in Y, such that

Flpu+(1—9)u,YUZ) < (1+0)(F(u,U)+ F.(v,Z))

+M |lu—v|Pdx+ 0. (4.4)
(UNZ)\Y

Moreover, by again using the fundamental LP-estimate it can be proven that
if u e WHP(Q;R™) N X (U) for all € and Fy(u,U) < +oo then there exist a
sequence u. € X.(U) such that

hH(l) F.(us,U) = Fy(u,U)
E—

and u. = u on a neighbourhood of OU (see Sections 1.6 and 1.7.1, Remark 1.39
and Section 1.7.2);

Step 3 By the locality and semicontinuity properties of I'-limits and by Step
2 we can find a function ¢ : @ x M™*" — [0,4+00) such that 0 < ¢(x, F) <
C(1+ |FP) and Fy(u,U) = F,(u,U) for all u € WH?(Q;R™) and U € A(1Q),

where

Fu(u) = /Q o(z, Du) dz.

In the proof of this step a crucial point is the passage from the identity Fy(u) =
F,(u) when u is piecewise affine to a general u by the continuity of F, with
respect to a convergence in which piecewise-affine functions are dense (e.g. the
strong W1P-convergence) (see Theorem 1.35);

Step 4 If f.(x, F) = f(£,F) with f 1-periodic in the first variable then by
the periodicity of f we deduce that ¢ = ¢(F) (see Proposition 1.44);

Step 5 If gc(x, F') = g(%, F) with g 1-periodic in the first variable then we
consider the auxiliary functionals

/ge(anU) de ifue X (Q)
U

Ge(u,U) = (4.5)

+00 otherwise.

By Step 1-4 we can assume that a function ¢ exists such that G.(,U) I-
converges to the functional Fy,(-,U) on WHP(; R™) for all U € A();

Step 6 Note that ¢ is convex. By an argument of approximation by convo-
lution prove that indeed the functional G.(-,U) I'-converges to the functional
Fy(-,U) on Wh(Q;R™) for all U € A(S2). Define the ‘domain’ of Fy(-,Q):
WL, R™) = {u € WHL(Q;R™) + Fy(u, Q) < 400} (see Theorem 1.47);
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Step 7 Repeat Step 2 and 3 substituting the space W17 (2; R™) by the space
WL¥(Q; R™) thus obtaining the representation Fy = F,, on Wh1(Q; R™). It is
usually proved by using some additional assumptions on ;

Step 8 Deduce that ¢ and ¢ do not depend on (g;) by proving a homoge-
nization formula;

Step 9 Finally, the representation of Fj on the whole LP(2; R™), and not
only on W11(Q; R™), can be obtained in some cases by a more accurate study
of the properties of ¢ (as for example in Theorem 1.47).

We will have to modify Steps 1-9 above as to cover the case when the domain
of the limit is a ‘degenerate Sobolev Space’. In particular, since the function v
obtained as in Step 5 will be degenerate, a suitable weighted Sobolev Space
will have to be defined, which takes the place of W11(2; R™) in Step 6 above.
Moreover, we will have to deal with the fact that our functions f.,g. may be
periodic only in some variables, so that Step 8 will be harder to verify. We will
include all the details of the reasonings which do not fall directly in this scheme,
while we will feel free to refer to Chapter 1 for those procedures which have
become customary.

It is worth mentioning that in some cases the arguments outlined above can
be simplified by using some techniques (as blow-up arguments or the theory of
Young measures) that avoid to use the complex localization procedure. As our
problem is concerned those methods seem harder to apply since the energies we
consider are coercive only on wildly oscillating sets.

4.2 Homogenization of media with oscillating profile

Let f : R"! — [0,1] be a 1-periodic lower semicontinuous function and 0 <
minf < supf = 1, let W : R"7! x M™*" — [0,+00) be a Borel function
1-periodic in the first variable satisfying

WP < W(za, F) < B(1+ [F?) (4.6)

for all z, € R"™! and F € M™ ", for some 1 < p < 400, 0 < v < 3. The
set w will be a fixed bounded open subset of R*~! with Lipschitz boundary and
Q=wx(-1,1).

Fic. 4.1. the graph of a typical f in the unit cell

In this section we compute the I'-limit of functionals of the form
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/ W(m—a,Du) dr if ug, € WIP(Q; R™)
Q. €

Jo(u) = (4.7)

400 otherwise,

where

Q. ={z€Q: |, < flza/e)}. (4.8)

F1G. 4.2. the upper profile of ). with f as in Figure 4.1

The I'-limit theorem will be stated and proved at the end of the chapter after
some preliminary results, which are needed to define the domain of the I'-limit
and to explain the homogenization formula.

In orded to apply the method described in the previous section we introduce
the localized version of the functionals J.: for all U open subset of 2 we define

T
W=, Du)dz ifu e Wir(Q. NU:R™
Je(u,U) = /QEOU ( e ) |Q.NU ( )

(4.9)

400 otherwise,
so that J.(u) = J.(u, Q).

The first proposition contains the analog of Steps 1-4 of the direct method
of I'-convergence as outlined in the previous section.

Proposition 4.1 From every sequence (g;) of positive numbers converging to 0
we can extract a subsequence (not relabeled) such that the T-limit

Jo(u,U) =T- ‘liI_P Je, (u,U)

J—To0

exists for all u € WHP(Q; R™) and U open subsets of 2. Moreover, there exists
a Carathéodory function ¢ : (—1,1) x M™*™ — [0, +00) such that

Jo(u,U)z/Uga(xn,Du)da:
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for all u € WHP(Q; R™).

ProOF. The functional J. can be rewritten on X.(U) = {u € LP(;R™) :
Ujo.nU € WhP(Q.NU;R™)} as

J-(u,U) = /UXQE(x)WC%,Du) dzx .

We can then apply Steps 1-3 of Section 4.1 (see Example 1.30 for the proof of
the LP-fundamental estimate). Finally, a translation argument in the z,-plane
(completely analogous, e.g., to the one in the proof of Proposition 1.44) shows
that

oy, F) dy:/ ey, ') dy

By(za) X (z=n,2+n) B, (xl,) X (2=n,2+n)

for all p,n > 0, 24, 2., z such that
(Bo(@a) x (2= mz+m) U (Bylah) x (: =n,z+m)) € Q.

We then easily deduce that p(z, F) = ¢(x,, F). O

We will complete the proof of the homogenization theorem by characteriz-
ing the function ¢ above (showing in particular that it does not depend on the
sequence (g;)), proving the existence of the I'-limit Jy on the whole LP(£2; R™)
and showing that the integral representation in the previous proposition holds
on the whole domain of Jy. In order to get to this result, we will have to define
a number of auxiliary energies; we then streamline the organization of the rest
of the chapter. First, in Section 4.3 we consider the case when W(F) = | F||?.
We will denote by 1 the function given by Proposition 4.1 corresponding to this
particular choice of W. For fixed ¢ the function (¢, -) is easily characterized by
solving a (n — 1)-dimensional (possibly, non coercive) homogenization problem.
It is possible then to define the ‘degenerate Sobolev space’ Wi’p (©; R™) of func-
tions such that [, ¥ (2n, Du)dz < +oo, which turns out to be the domain of
the T-limit when W (F) = || F||P, and hence also in the general case by (4.6). In
Section 4.4, in order to describe the function ¢ in the general case, with fixed
t we consider the case when we replace the function f with the characteristic
function of Ey = {z : f(za) > |t|} (i.e., we deal with cylindrical domains).
The function ¢(t,-) will eventually be given by the energy density of the cor-
responding I'-limit. Finally, in Section 4.5 we are able to consider general W
and f and obtain the oscillating-boundary homogenization Theorem 4.15 as the
consequence of the previous sections.

4.3 An auxiliary problem. Definition of the limit domain

In general, the limit functional Jy exists and is finite also outside WP (£; R™).
We first deal with the case of Jy corresponding to
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n
W(x,F) = ||[F||P, where ||[F[|P =Y |Fj|*. (4.10)
Jj=1

By a careful description of the domain of the corresponding I'-limit we will
identify the domain of Jy as a suitable ‘degenerate Sobolev Space’ (see Definition
4.5) which, in view of the growth condition (4.6), will also be the domain of .Jy
corresponding to energy densities other than (4.10).

We recall a preliminary result.

Theorem 4.2 Let E be a 1-periodic set in RN ; i.e., such that xg is a 1-periodic
function, and let

|Dv||P dx  if viyner € WHP(U NeE; R™)
JE(w,U) = foe o

+00 otherwise.

(4.11)

Then the I'-limit
JE (v, U) =T- lim JE (v, U)
E—

exists for all U bounded open subsets of R and v € WLP(U;R™). Moreover,
we have

JE (0.U) = / o (Do) di
U

for all w € WHP(U;R™), where oL, is a positively homogeneous function of
degree p, satisfying the formula

C

o (F) = inf{/ |Dv+ F||Pdx :v € VVli’p(E; R™), 1—peri0dic} .
EN(0,1)N

PROOF. This theorem is a particular case of Theorem 1.47, the positive ho-
mogeneity of ¢f  easily following from its definition. O

For all t € (—1,1) we define

pu(t,F) =l (F),

the latter function being that given by the previous theorem, with N =n — 1
and E = Ey = {z4 : f(za) > |t|}. We define also

V(t, F)=ou(t, F) + Lo 1(E: N (0, 1) Y|, P (4.12)
Theorem 4.3 If W = |F||P and ¢ is given by Proposition 4.1 then we have
o(t, F) = (L, F).

In particular ¢ does not depend on (&;).
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PROOF. Let (x, F) be such that z,, is a Lebesgue point for (-, F'). Then

(,0(.13»,“F) = lim (P(yn,F) dy (413)
P=0FJ B, (20) X (20 —p,zn)

— 1 JO(FyaBp(xa) X (In — P xn))
= lim .
p—0F |Bp(wa) X (xn - P;xn)|

We consider the case x,, > 0 only, the case x,, < 0 being dealt with using a
symmetric argument. Note that for 0 <t < s < 1 we have Ey C Fy. Let u; — 0
with u; € Wy (By(a) X (Tn — py24) N Q.,) be such that

Jo(Fy, Bp(wa) X (2n = pran)) = 1im Je; (Fy +uj, By(za) X (2n = p,2n)).

Then,

e, (Fy+uj, By(za) X (2n — p,2y))

)
Yo
XE,, \ —
/x ‘/B o(Ta) (6-7 )
/ / XEy"(g |Fy + Dpuj|Pdyy, dya
(za) J

> / / XEx,,L
zn—p J Bp(2a)

||F+D uj” dyo dyn
||F+Dau]deyadyn

by Jensen’s inequality. By using the lower limit inequality for the I'-convergence
in Theorem 4.2 with £ = E,,, and by an application of Fatou’s Lemma, we get

Jo(Fy, By(xa) X (2 — p,an)) > p/ P (0, F)dya
B (xa)
JFPLn—l(Bp(za))|Fn|p£n—1(Exn N (0, 1)n71) .
Letting p — 0% we obtain then by (4.13)
ga(a:n,F) > W#(Invf) + En—l(Exn N (07 1)n71)‘Fn|p-

Vice versa, let v; — 0 be such that Fy, + vj(Ya) is a recovery sequence for
J e (FYa, B,(74)) along the sequence (g;), and set

hom
uj(y) =Fy+ ('Uj(ya)vo) = (Fyoz + 'Uj(ya)anyn) .

We then have

/ ©(Yn, A) dy
B, (Ia) X (In yTn +p)
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< liminf J;, (uj, By(2a) X (Tn, 2n 4 p))
J—+oo

< limin xe, (22) 1Du; 1 dy
IJ=H0 JB,(20) X (@020 +p) <

= tim p [, (BT + Doy P+ |
By(za) €j

Jj—-4o0

= p/ @4 (wn, F)dya
B,,(:r(,(
+pLn1(Bp (o)) [Fnl? L1 (B, 0(0,1)" 7,
which gives the missing inequality by (4.13). O

Remark 4.4 With fixed ¢, we define the ‘kernel’ of px(t,-) as

Ker gy = {px(t,-) = 0}.

Then Ker ¢ is a linear space and its dimension is a multiple integer of m; i.e.,
dim Ker oy = km for some k=0,...,n—1

and there exist &y 1,...,&,—1 € R"! such that

Fl

F = € Ker (I Fﬁz =0

Fm
for each i = k+1,...,n—1. (Note that k depends on ¢ fixed and F? denotes the
i-th row of I, 1 <i<m).

In fact, since I +— @4 (t, F') is positively homogeneous of degree p, convex and
even, Ker ¢4 is a linear space and satisfies the following properties: if F' € Kerp4
then

(i) for each (s1,...,5m) € R™

S1 Fl
: € Ker py;
SmE™
(ii) PF € Ker ¢y for each permutation matrix P € M™*™,

Properties (i) and (ii) imply that if we fix F'* we can construct m matrices
linearly independent

F! 0 0
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which span a subspace (F) of Ker ¢ of dimension m.

Now, if (F') # Ker p4, we can single out a non-zero matrix in Ker ¢y or-
thogonal to (F''), and, by using the same argument as above taking its first
row vector, find other m matrices which, together with the matrices constructed
before, form a linearly independent family.

By proceeding in this way, we end up with 7y,...,7: € R"~! such that for
all A € Kerpy

k

7 .

A:g 845N i=1,...,m
=1

with s;; € R, which means that the dim Ker ¢4 = km for some k € {1, ... ,n—1}.
The orthogonal subspace to (ny,...,m;) is a vector subspace of R™"~1)
(€k+1, -+ -, &n—1) and the vectors of the two basis satisfy, by definition, the con-
ditions
m& =0 di=1,....k j=k+1,...,n—L

Eence7 we can conclude thaj there exist vectors {x4+1,...,&n—1 € R™ ! such that
F € Ker gy if and only if F¢§; =0 foreachi=%k+1,...,n -1

Since t — @ (t, F) is decreasing on (0, 1) and it is coercive on (0, min f), there
exist 0 <minf <t1 <...<tp <tpp1 < ... <tp1 <1and Eear,... Eny €
R"~! such that

(i) ¢ (t, F) is coercive on (0,t1);

(ii) for each k = 1,....n — 2 @u(t,F) = 0 if and only if F& = 0

fori=k+1,...,n—1on (tk, tkr1);

(iii) px(t,F) =0 on (t,_1,1).

Definition 4.5 We define the ‘degenerate weighted Sobolev Space’ Wi’p(Q; R™)
as the space of functions u € LP(2; R™) such that

(i) Dyu € LD, (2 R™);

(ii) Dee,oyu € LY, (w x (=t;, t;); R™) fori=1,...,n—1;

(i) if @ : Q — M™"D s any measurable function such that
O = Dig, oyu € LY (w x (—t3,t;);R™) fori=1,...,n—1, then

loc

/ 77[}(557“ ‘I’\Dnu) dr < +00.
Q
Clearly, the last integral is independent of the choice of ®; hence, it will be

denoted by
/w(meu) dx ,
Q

with a slight abuse of notation.

Remark 4.6 Note that in dimension 3 (i.e., n = 3) the representation of the
space Wi’p (€; R™) is particularly simple as, up to a rotation, we can assume
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that £ = ey. In this case, Wdl)’p(Q; R™) is the space of functions u € LP(€; R™)
such that
(i) Dsu € L1, (9 R™);

(i) Dou € LP (w x (—ta,t2); R™);

loc

(111) Diu € L’ (w X (—tl,tl);Rm);

loc

(iv) if ® : Q@ — M™*2 & = (®,,P,) is any measurable function such that
Py = Dyu in w X (—t27t2) and ¢; = Dju in w X (—tl,t1>7 then

/ Y(x3, ®|Dsu) dr < +00.
Q
Example 4.7 If n = 3 and

1 1
fz1,20) = 3 + B sin?(z1) sin?(22) ,
then @ (¢, F) = ||F||P if |t| < 1/2 and 0 otherwise, so that t; =ty = 1/2, and £
is any vector. If instead

1 1
f((El,.’EQ) = 5 =+ §sin2(x1) s

then t; = 1/2, t, = 1 and £ = (0,1).

N
LR

NS ..::&“\‘\‘\‘\\\\‘\s\
= \\\‘ ‘\s‘ss
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Fi1G. 4.3. the oscillating profiles in Example 4.7

By using a convolution argument, we can improve Proposition 4.1 to give a
characterization of the I'-limit on the whole Wi’p (€;R™) and independent of
the sequence (e;). This result corresponds to Step 6 in Section 4.1, and its proof
uses the convexity of F' +— ||F||? in an essential way.

Proposition 4.8 Let W = uFHp, and let U be a open subset of Q. Then
(i) if u € LP(U;R™) \ W, P(U; R™) then there exists the T'-limit

Jo(u,U) =T- liH(l) J(u,U) = 4o0;
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(ii) ifu € Wé’p(ﬂ; R™) then there exists the I'-limit
Jo(u,U) =T- lin’(l) Je(u,U) = / W(zy, Du) dx
g— U

PROOF. We only outline the proof, as it closely follows that of Theorem 1.47,
and details can be found therein.

Fix u € LP(; R™) and U an open subset of Q. In order to compute Jo(u, U)
it is sufficient to show that from every sequence (¢;) we can extract a subse-
quence (g, ) such that the I-limit along (e, ) exists and is independent of the
subsequence.

We fix a sequence (¢;). By Theorem 4.3 the thesis of Proposition 4.1 holds
with 1) in the place of ¢. Upon possibly extracting a further subsequence, we
may also assume that there exists the limit

Jo(u,U) =T- lim J. (u,U).
J—+oo

Let (p;) be a sequence of mollifiers with sptp; C B(0, %) C R"!, and define

uxw:i@wﬁpxwu@a—%xmdy

By the convexity of Jy and its translation-invariance properties, we have
Jo(u;, U") < Jo(u,U) for all U' CC U such that U’ C (y,0)+U for all y € sptp;.
By the convexity of ¢ the functional v — [, ¥(zn, Dv) dx (if v € LP(U'; R™) \
Wdl)’p (U’; R™) this integral is set equal to 400) is lower semicontinuous with
respect to the LP(U’; R™) convergence. Hence, we have

Y(xp, Du)de < liminf [ ¢(z,, Dy;)dx < Jo(u,U).
U’ Jj—+oo U’

By the arbitrariness of U’ we get
/ (xy, Du)dx < Jo(u,U), (4.14)
U

and in particular that Jo(u,U) = 400 if u € LP(U;R™) \WJ)’Z’(U;R’”)7 so that
(i) is proved.

Let now u € Wdl)’p(Q;Rm). We first assume that U CC U’ CC Q. By using
the lower semicontinuity of Jy and Jensen’s inequality, we have

Jo(u,U) < liminf Jy(u;,U) = hrnlnf/ Y(xn, Duj)d

Jj—+oo Jj—+oo

@mm/AwW@w%mu4wmw@

Jj—+o0
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= lim inf pj(y)/ Y(xy, Du) dx dy
J=te0 JB(0,1) U+(y,0)

< lim inf piy)dy | Y(xn,Du)dx = [ (z,, Du)dz.
J=te0 JB(0,1) U’ U’

By the arbitrariness of U’ we then get
Jo(u,U) < / V(xp, Du) dz, (4.15)
U

so that (ii) follows by taking (4.14) into account.

Finally, for arbitrary U, note that if u € Wi’p (©; R™) then it can be approxi-
mated by a sequence (v;) of functions in W' (Q; R™) such that [, ¢(x,, Dv;) dx
are equi-bounded (we may use e.g. the argument in the proof of [46] Section 4.2
Theorem 3); hence, by the lower semicontinuity of J” = I'-lim sup; Je;, we have
J"(u) < 4o0. This fact implies (as in Propositions 1.31 and 1.32) that J" is
inner-regular; i.e.,

J"(u,U) = sup{J"(u, V):Vcc U} :

Since (ii) holds with V' in the place of U we easily get the thesis. O

The following proposition clarifies the structure of W;*, and implies that

the restrictions of functions u € Wdl)’p (€; R™) to relatively compact subsets of
w X (tg,tky1) are characterized as those functions having directional derivatives
Dyy1,..., Dy p-summable.

Proposition 4.9 Letk=1,...,n—2 and s € (ti,tx+1). There exist two positive
constants ay(s) and By such that

n—1 n—1

ar(s) (Y2 IF&lP +IF.) < vt F) < B (30 P&l +1Fl7) (4.16)

i=k+1 i=k+1
for all F € M™*" and t € (tg, s] .

PROOF. Since F +— ¢4(t, F) is positively homogeneous of degree p and con-
vex, if t € (tg,tr+1) we easily deduce that

n—1

i=k+1

where
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&i
_ 0
0
If we denote
B, =  max sup cg(t, E;
k i=k+1,..,n=1yc01) #( )
then
n—1
pu(t.F) < B Y [F&l (4.17)
i=k+1

On the other hand we have that

w#(t’F) > e P# (E (F£k+l7 . ;>F§nfl))
S P&l = N(Fésrs e Féun)[P
> cinf{py(t,G) : G € S" P NKerpy™}

by p-homogeneity. Note that ¢ +— ¢ inf{p4(t,G) : G € S" ' NKerpx™} = c(t)
is decreasing on (0, 1) and

so that we get
n—1
patF) > ah(s) S [F&P. (4.18)
1=k-+1
Let
ap(s) = min{aj(s), inf L, 1(FE;n(0,1)" 1)}
te(ty,s]
and
By = max{f, 1},

then (4.16) follows by Theorem 4.3, (4.17) and (4.18). 0

Proposition 4.10 Fix t € (tg,tp1), fork=0,...,n—1 (tc =0,t, =1). If ¢
is given by (4.12) then

Wt F) = min{/ | Dwl|? dz -
(0,1)"N(E¢x(0,1))

w e WLP(Et x (0,1);R™), w— Fzx l-periodic}.

loc
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PROOF. Let w be a test function for the minimum problem above, then

/ | Dw|? dz

(0,1)"N(E: x(0,1))

= / ||Daw||pdx+/ | D, w|P dx
(0,1)"N(E¢x(0,1)) (0,1)"N(E:x(0,1))

1
2/ min{/ [|Dv||P dzq, :
0 E.N(0,1)n—1

ve Wl’p(Et;Rm), v— Fx, 1-periodic} dxy,

loc
1
—I—/ (/ |Dpw|? dxn) dz,,
E.n(0,1)»—1 Mo
> ou(t, F)+ Ln-1(E, 0 (0, 1) Y| E,|P = ¥(t, F)

by Jensen’s inequality and the description of ¢4 (see Theorem 4.2); hence,

$(t, F) < minf / | Dw|l? da
(0,1)"NE; % (0,1)
(S Wﬁ)’Cp(Et x (0,1);R™), w— Fz 1—periodic}
by Theorem 4.3.

Conversely, given a function v such that v — Fx,, is 1-periodic, we can con-
struct a test function w, such that w — F'z 1-periodic, as

w(z) =v(xy) — Fray, .

We then have

/ |1Dw]P dx

(0,1)"N(E¢x(0,1))

- / (1Dt + |Eu?) da
(0,1)"N(E¢x(0,1))

:/ ot | Dav||P dze + L1 (Ey 0 (0, 1) H|F,|P
E:n(0,1)n—

> min{/ [Dw||” da :
(0,1)"N(Erx(0,1))

w e Wl,p(Et « (0’ 1);Rm)’ w— Fx 1_periodiC}

loc

and hence the converse inequality

Wt F) = min{/ |1 Do|? do :
E,N(0,1)n—1
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ve Wl’p(Et;Rm), v—Fx, 1-periodic}

loc

+Ly 1 (B0 (0,1)" 1) |F,|P

> min{/ || Dwl|P dz :
(0,1)»N(E: %x(0,1))

w e WP (Ey x (0,1);R™), w— Fa l—periodic}

is obtained as desired. ]

Now we can turn our attention to the case with a general W. Now that a
natural domain for the limit functional is defined, we can easily state and prove
a compactness result that partly improves Proposition 4.1.

Theorem 4.11 Let J. be given by (4.9). Then for every sequence (¢;) of positive
numbers converging to 0 there exists a subsequence (not relabeled) such that the
T-limit
Jo(u,U) =T- ‘hI-P Je, (u,U)
J—To0
exists for all u € Wdl)p(ﬂ, R™) and U open subsets of Q. Moreover Jy(u,-) is the
restriction of a Borel measure to A(€).

PROOF. By (4.6) and Proposition 4.8 we deduce the condition

I-limsup J.(u,U) < ﬁ/ (1+ ¢(xy, Du)) dz (4.19)
U

e—0

if u e Wé’p(U;Rm) and U is an open subset of 2. Then, we can follow the
Steps 1-3 in Section 4.1 to prove the compactness of (J.) and that Jy(u,-) is the
restriction of a Borel measure to A(2). O

4.4 Homogenization of cylindrical domains

It remains now to extend the integral representation of Proposition 4.1 and
characterize its integrand. We first deal with the case of ‘cylindrical’ domains;
i.e., we consider g in place of f, with E a 1-periodic open subset of R" 1.

Let t1,...,t,—1 be the points in (0,1) introduced to characterize the ‘degen-
erate weighted Sobolev Space’ in Definition 4.5. Since in the following we will
choose E = E; (E; defined as {x, : f(zq) > |t|}) we introduce the following
notation: with fixed t € (0,1), ¢t # t; for k = 1,...,n — 1, consider the set E;
and the functional

/ W(fia,pu) dr if u € WhP(Q.NU;R™)
Ji(w,U) =3 Jonu. N € (4.20)

400 otherwise,

where U. = U N (eE; x (—1,1)). Note that the integrand of J! satisfies the
following growth conditions
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Y9(w, A) < XB,x(—1,) W (Ta, A) < B(1 + g(z, A)) (4.21)

where g(z, A) = X g, x(-1,1)(%)|| AP is obviously 1-periodic in x, convex in A and
satisfying

0 < glw, A) < 1+ A" and g(,24) < e(1 + g(x, A))

for all A € M™*",

2R
2RI

S
2R e e 27 L
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F1a. 4.4. cylindrical domains F; x (—1,1) related to the function f in Figure
4.1 for different values of ¢

Remark 4.12 Note that if we fix ¢ € (tx_1,tx) and consider xg, in place of f
then Wi’p(ﬂ; R™) turns out to be the space

WP (Q;R™) = {u € LP(R™) : Dyu € LP(Q;R™), D, oyu € LP(QR™)
it=k,...,n—1}

ifk=1,...,n—1, and
WEP(Q;R™) = {u € LP(Q;R™) : Dyu € LP(Q;R™)}.

if k=n.
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Theorem 4.13 Lett € (t;—1,tx) and let JL(-,U) be defined by (4.20). Then the
T-limit with respect to the LP(; R™)-convergence

i, U) = / Wi (Du) di
U

exists for each u € Wkl’p(Q; R™) and U open subset of Q, where Wi is given
by

1
t _ . . .
Whom(4) = TET 1nf{an /(O,T)" X5, (Ta)W (2o, A+ Du(x)) dz :

ue WOLP((O,T)”;R’”)}

for all A e M™*™,

ProOOF. By taking Theorem 4.11 into account with x g, in the place of f, and
repeating word for word the proof of the integral representation Theorem 1.35,
replacing WP (Q; R™) by Wkl’p(Q; R™), we obtain an integral representation on
the whole Wk1 P(Q; R™). The integrand of this representation must coincide with
the function ¢ = ¢(z,, F') provided by Proposition 4.1 with xg, in the place of
f. Since the functionals are clearly invariant by translations in the direction z,,
we have indeed ¢ = @(F). It remains to prove the asymptotic formula.

Let us fix A € M™*™ and for T" > 0 set

hr(A) = inf{% /(0 - (26)W (2, A + Du(z)) da -

ue W&”’((O,T)”;Rm)} (4.22)

We will prove the formula by showing first that p(A) < liminfr_ 4 hr(A) and
then that limsupy_, o hr(A) < @(A).
For the first part, let u” € W(l)’p((O,T)”; R™) be such that

1

1
— XE, (o)W (2o, A+ Du(x))dr < hp(A) +
™ Jo,ryn

= 4.23
A
extend u” trivially to (0, [T + 1])", then to all of R™ by periodicity and set
ui (z) = ¢j,u’ (z/ej,). Note that u} — 0in L (R™;R™) as k — +o0.

Taking into account that the number of squares of side [T + 1] intersecting

the square of side 1/¢;, is

o= ([l ) <

by periodicity of u? and W (-, F), we have

n
+ 1) ,
Ejn
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Ta Ta
o(A)dx < liminf XE (=2 )W (=5, A+ Duf (x) ) do
/(o,m (0,1)" (gjk ) (Ejk g )

= liminf €}, / XE, (Ta)W (2o, A+ Du” (z)) dx
¥ (0.1/25,)"

< liminf €7, / X, (o)W (2o, A + Du (z)) dz
b (0.s[T+1])

= liminf s"¢, / X5, (2a)W (2o, A + Dul (z)) dz
i ©.[T+1])"

1 n
< liminf &? 1 IW(xa, A+ Dut'(2))d
< lim in sjk(sjkTJr ) /(O,T)n XE (Ta)W (20, A+ Du’ (z)) dz
n n 1 " P
+e(IT+1" =T (7 +e5) (1+14P)
1
= XE, (o)W (20, A+ DuT(ac)) dx
™ Jorm

+C%([T A — T 4 AP,

Hence, by (4.23) and taking the limit as ' — 400, we get

p(A4) < ljimJirnf hr(A). (4.24)
For the second part, we need to use the LP-fundamental estimate (see (1.18)).
Let (ux) be a sequence in WP((0,1)"; R™) such that u, — 0 in LP((0,1)"; R™)

and
o(A) = lim e (22 )W (22, 4+ Duy ) da (4.25)
k (0,1)n Ejk Ejn
Fix U cCc U cc Q with Q = (0,1)" and let V = Q \ U’. Then for every
o > 0, there exists M, and, with fixed k, for the functions u; and v = 0 there
exists wy = prur (where @y is a cut-off function between U’ and U, so that
wi € WP (Q; R™)) such that

/QxEt(f“)W(%AJerk) dr < (1 +0)</V xEt(:—“)W(x—a,A) d

Jk Ejk Jk Ejk
+ / XEt(m—a>W<x—a,A+Duk) daz)
U Ejk Ej
+ M, lug|P dx + o. (4.26)
U\U’

By a change of variable

T T
XE, (= )W (=%, A+ Dwy, dm:s:’-l/ XE, (Ta )W (xq, A+ Duy) dx
/Q (fjk) (Ejk ) /e, (o)W )
(4.27)



The general case 99

where vg () = 1/¢j, wi (g, ) € Wy P((0,1/e;,)"; R™), since wy, € Wy P (Q; R™).
Thus, by (4.22), (4.27) and (4.26) we get

1 T T
—— hye, 1 (A) < U1 +]|AP LVW(EE, A+ Dug) d
g e () QAU+ 14P) + [ x (T )W A+ D) do
M,
l1+o Q\U’ 1+o

Taking limits on both sides and using the fact that ur — 0 in L?((0,1)™; R™),
by (4.25) we obtain

. o
timsup Ay ) (4) < ¢[Q\U|(1+AP) + p(4) + 75—, (428)

l1+o

for all 0 > 0 and U’ CC Q. Let 0 — 0 and U’ — Q; summing up (4.28) and
(4.24) we get

1}1@3;25 haye;)(4) < ¢(4) < liminf hr(4) < liminf hqye,, ) (A),

and then
A)= lim hqse. y(A) = liminf hp(A4).
p(A4) = lim hqye,,)(A4) = lLiminfhr(4)
This equality proves that ¢ is independent of (¢, ), and that limp_ o hr(A)
exists since we can choose a sequence €;, such that

li A= 1l Iy (A).
imsuphr(4) = Hm hase,,)(4)

4.5 The general case

We can eventually proceed to dealing with the general case.

Proposition 4.14 Let J. be given by (4.9). Then the T'-limit

Jo(u,U) =T- lin(l) Je(u,U)
E—

exists for all u € WJj’p(Q;Rm) and U open subsets of Q). Moreover, for such u
we have

Jo(u,U) :/ o(zy, Du) dz,
U
where @ is given by Proposition 4.1.

PRrOOF. We have to extend the representation of Jy given by Proposition 4.1
to Wi’p(Q; R™). Note that ¢ is a Carathéodory function (see Theorem 1.35, Step
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3). As explained in Step 3 of Section 4.1, a crucial argument used to obtain an
integral representation result is the continuity in Wi’p (€; R™) of the functional

U / o(Tn, Du) dx
U

along some strongly converging sequences of piecewise-affine functions. We only
prove this property, as the rest of the proof follows exactly that of Theorem 1.35
(Steps 1-3, 5 and 6; the proof below replaces Step 4).

Let U = Uz;é Uy where U, CC w X (tg,tgt1), (to = 0,t, = 1); we can
find functions u; € Wi’p (€; R™) such that their restrictions to U are piecewise
affine and u;, Dyu; converge strongly to u, D,u in LP(U; R™), respectively, while
D¢, oyu;j converge strongly to D, oyu in LP(U;; R™).

We will use some estimates deriving from the inequality ¢(¢, F) < 8(1 +
¥ (t, F')), which follows trivially from (4.6). By Proposition 4.9 we have that

n—1

(@, Du) < m( S Dy, oyul” + |Dnu|p>
i1=k+1

n—1

(2, Duy) < ﬂk( S 1D, oyusl” + |Dnuj|p>
i=k+1

on w X (tx,tr+1). Note that by (4.19)

n—2
(T, Duj;)dr < /
| et D) >/,

U

N
ﬂ(1+ Z 5k|D(§i,o>ujlp) dx

kﬂwx(tk,tk+1) i=k+1

If we use the continuity of ¢ in the second variable and apply Fatou’s lemma to
the sequences

n—2
5 [ lpausin+ Y [
U i—o/U

+ / o(xy, Duj) dx
U

n—1
ﬂ(1+ Z 5k|D(§i,0)ujlp) dx

kNwX (tk,tkt1) i=k+1

we get that

/ o(zp, Du)dr = lim o(x, Du;) dz.
U Jj—+oo Ju

Hence, we have proved the integral representation for sets of the type U =
Z;S Uy where Uy, CC w X (tg,tp4+1). A symmetric argument applies to the case
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where U = Uz;é Uy, with Uy CC w X (—tg41, —tx). Since Jo(u,-) is a measure
absolutely continuous with respect to Lebesgue measure, we conclude that the
integral representation holds for all open subsets U of (2. |

Finally, the oscillating-boundary homogenization theorem reads as follows.

Theorem 4.15 Let J. be given by (4.7). Then the I'-limit with respect to the
L?(Q; R™)-convergence
Jo(u) =T- lir% Je(u)
E—

exists for all w € LP(Q;R™), and we have

Whom (|Zn], Du)dz if u € WEP(Q; R™
ey 4 Wl D) PR

400 otherwise,

hom 8 giwen by Theorem
4.13. Moreover, if u € WHP(Q; R™) there exists a family (u:) converging to u in
LP(Q; R™), such that u—u. has compact support in Q and Jo(u) = lime0 Je (ue).

where Whom (t, A) = W (A) for a.e. t € (0,1), and W}

Proor. It is sufficient to compute the I'-limit for u € Wi’p (Q; R™), since
by comparison with Proposition 4.8(i) we immediately have Jo(u) = +oo if
u ¢ Wi’p(Q; R™). Let ¢ be given by Proposition 4.1; it remains to prove that ¢
satisfies an asymptotic formula.

Let 2,, > 0,let 0 < p < z;,, and consider the functionals (4.20) with ¢t = 2, —p
and t = x,, so that

Jin P (Az, (0, 1)n71 X (Tp — pyTn))

- [ e, ()W (22 4) ay
(071)7L71><("En_p7171,) € €

> J:n (A:Ca (07 1)n71 X (zn - P, zn)) .
By Theorem 4.13

pWEn—P(A) > T- lim J; (Az, (0, D" % (2n — p,x0))

hom
> p Wiom(A).
Taking into account that
I-lim J.(Az, (0,1)" ! x (z, — p,z,)) = / o(yn, A) dy
€—0 (0,1)" =1 X (2n—p,n)

we get
o 1
Wiom " (A) < 5 /( )so(yn,A) dyn, < Wiin (A).
Tn—pPyTn
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Since ¢ — W (A) and ¢ — ¢(t, A) are decreasing functions on (0, 1), there
exists a subset M of (0, 1), |[M| = 0, such that they are continuous on (0, 1)\ M;
hence, by passing to the limit as p — 0 we get
(ns A) = Wi (A)

for every x,, € (0,1) \ M. For z,, < 0 it suffices to apply a symmetric argument.

The last statement follows by a well-known argument of stability of I'-con-
vergence by compatible boundary data due to De Giorgi (see Proposition 1.33)
O



5

THIN FILMS WITH FAST-OSCILLATING PROFILE

In this chapter we prove that the I'-limit with respect to the LP-convergence
of functionals

E. 5(u) = /Q( . W(Du) dz,
£,

where the set {2(g, ) is of the form
O(e,0) = {xeR": || <5f(3%a),ma ew}, (5.1)

when ¢ — 0 and 0 << ¢, is given by first applying the theory constructed in
Chapter 4 with € as a parameter and letting § — 0, and subsequently letting
€ — 0. The final result can be summarized as follows, in a n-dimensional setting.
Theorem 5.1 Let f: R"™! — [0,1] be a 1-periodic lower semicontinuous func-
tion with 0 < min f <sup f =1, let W : M™*™ — [0, +00) be a convez function
satisfying
VEP <W(F) < B+ |F)

for all F € M™*™ and for some 1 < p < 400, 0 <y < . Let 6 : (0,+00) —
(0, +00) be such that

e—0 ¢
Let w be a bounded open subset of R"™! and let Q. C w x (—1,1) be defined by

ng{xeR”: |mn\<f(;ég)),xa€w}. (5.2)
Define E. : LP(w x (—1,1); R™) — [0, +00] by

1 .
/QE W(Dau7 gDnu) dx if U|QE e Whr(QR™)

E.(u) = (5.3)

400 otherwise.
Then the T'-limit with respect to the LP-convergence as € — 0 of E. is given by
/ Whom(Dau)dz  if u € WHP(w x (=1,1); R™) and Dyu =0
E(u) =< Jux(-1,1)

400 otherwise,

(5.4)
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where Wom : M™X (=1 [0, +-00) is given by

1
Wion(F) = [ i Wi (. FIE) dt (5.5)
0 n
and Whom by
Wion (t,F) = inf{ [\ (0) W(F + Duo)) do:

(0,1)n
u € WLP(R™R™) 1—periodic} (5.6)

C

for allt € (0,1) and F € M™*", where E; = {f > t}.

5.1 Proof of the result

In order to simplify the proof without loosing sight of the main intricacies of the
argument, we deal only with the case where ¢ = 1/j and § = £2. The general
case can be dealt with similarly, by introducing some error terms. We define,
with a slight abuse of notation,

Q. ={z € Q: || < flkza)}

and for k = j%, j €N
E;(u,U) = / W (Dqul|jDyu) dz
szﬁU

for all ujq ,nv € Whr(Q NU;R™).

By the compactness result Theorem 2.5 in [29] we can suppose that there
exists Wy : M™*("=1 — [0, +00) such that E;(u,U) T-converge for all sets of
the form U =U’ x (—=1,1) or U = U’ x (0, 1) to the functional given by

/ Wo(Dou)dz if w € WHP(U; R™) and Dyu =0
E()(u, U) = U

(5.7)
+00 otherwise.
Proposition 5.2 For all F € M™* (=1 define
Whom(F) = inf{ Wom (n, Du + F) dz : (5.8)

(0,1)"
loc

we WEP(R™ R™), u 1-periodic in xa} .

Then
Whom(F) = Whom(taf) dt, (59)
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where . - B
Whom(t, F) = i}glf Whom(t, F‘Fn) (5.10)

and F — I/Tfhom (t, F) is convex.

PROOF. It can be easily proved that F — Whom(t,F) is convex.
With fixed n > 0, by the Measurable Selection Criterion (see e.g [36]), we
can find G, (t) a measurable function such that

Whom (t7 F‘Gn) < 1}I71f Whom (t; F|Fn) + n-

We can consider

(T, Tn) z/ nGn(s) ds
0

as test function in (5.8). We then get
JR— J— 1 JR—
Whom(F) S / Whom(xnaF|Gn(In)) dmn
0
and so
Whom(F) < / lll;‘lf I/Vhom(t7 F|Fn) dt+n= / Whom(t, F) dt +n.
o fn 0
Conversely,
Whom (F) > inf{ Whom(ibn, Dou+ F)dx :

(0,1)m
u € Wli’f(((), 1)™R™), u l-periodic inxa}

1
> / (inf{/ Whom (t, Dou + F) dxy, :
0 (0,1)n—1
uj(o,1y)n—1 € VVﬁ)’f((O7 1)1 R™), u l-periodic inxa}) dt
1
> / Whom(t,F) dt
0

by Jensen’s inequality. O

Theorem 5.3 For all F € M™ (=1 we have Wy(F) = Whom(F).
ProoF. With fixed n > 0 let v be a test function for (5.8) such that

Whom (%, Dv 4+ F) dz < Whem(F) + 1.
(0)1)71,
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By Theorem 4.15 there exists a sequence v; converging to v such that v; = v on
0(0,1)™ (and, hence, in particular v; is 1-periodic in z,) and

Whom (Tn, Dv + F)dz = lim W(Dv; + F)dz. (5.11)
(0,1)™ Jj—+o0 Q,;n(0,1)"

If we define u;(zq, zpn) = %vj (jTa,xy) then u; — 0 in LP((0,1)™; R™) and

_ 1 _
/ W(Dv; + F)dr = —— / W(Dv; + F) dx
Q,;N(0,1)n 7" Q;N((0,7)*=1x(0,1))

= / W(D;(3Yas yn) + F) dy
ngﬂ(o,l)"

= W (Douj + F|jDpuj) dy
Q.2N(0,1)"

= Ej (uj + FI‘Q, (0,1)™); (5.12)

hence, we can conclude that

Wo(F) < liminf E;(uj + Fzq, (0,1)")

i—+oo

oo

= lim inf/ W(Dv; + F) dx
Q;N(0,1)"
é Whom(F) + n
by (5.7), (5.12), (5.11) and (5.8).
Now we prove the converse inequality. Let u; — 0 be such that

W()(F) = llril Ej (’U,j + an, (0, 1)”)
j—too
By [29] Lemma, 2.6 we can choose u; 1-periodic in z; let v; be defined by v;(z) =
ju;(a/j, xn). With fixed j, N € N, (0,1)" = X _,(0,1)" ' x((m~1)/N,m/N);
we can define a function v, ., by setting

2k e m—1 2k m 2k
Vj(Ta, Tn + 57) if "= - <z <% — %
Uj,m(xa7xn) = . . .
) 2m _ _ 2k+2 if m=1 _ 2k+1 m _ 2k+1
Vj(Ta, ¢ — Tn ) if G < Tn <% 5

for k € Z, which is 1-periodic in z, and 2/N-periodic in z,. Hence, we can
construct
Wji k| (0,01 x (m—1)/Nom/N) = Uik ()

where v, 1 (z) = %vjym(?:r), such that wj y, is {-periodic in z, and
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wj’kl(o,l)"_lX((m—l)/N,m/N) — (O7 (/(70 1)n DnUJ’mdx)./L'n) = ’U)m

as k — 400, in LP((0,1)"; R™). In this case the functions w; ; defined as above

belong to WP (€, N (0,1)™; R™).
Finally, we define w such that

W|(0,1)~1 x ((m—1)/N,m/N) = W™

which is 1-periodic in z,. Let

AN = ;0 {2, = m/N}

and
AZL/N = QN {z, =m/N},
we define
N
m/N
EN = |J AN x ((m —1)/N,m/N)
m=1

and

N
N
BY = |J AN x ((m —1)/N,m/N).
m=1
We restrict our analysis to the case where k/j odd, the other case being dealt
with by introducing a small error term. Hence, if we use the notation

Ii(u, (0,)") = / W (Du) dx

ENN(0,1)™
(I =7 or k) we have that
L;(vj + Fza,(0,1)") = I.(w; k + Fxa, (0,1)™). (5.13)
Reasoning as in Theorems 4.11 and 4.13 we get that

Lhom(w + Fxy,(0,1)") = I- . hlf I(w+ Fxq, (0,1)")

N

= Z/ Whom(m/N, Dw + F) dz
m—1 (0,1)»=1x((m—1)/N,m/N)
N

Wi (L2201

1 _
/ Duw + F) da
(0,1)7=1 % ((m—1)/N,m/N)

= Whom (L"JX]] 1 , Dw + F) dx

(o,1)n

m=1
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> /01 Whom(%,F> dx,,

by (5.10). Taking the limit as N — +o00, we obtain
Lhom(w + Fxy, (0,1)™) > Whom(F) (5.14)

by Proposition 5.2. Hence,

B (u; + Fira, (0,1)7) = / W(Dv, + F) da
Q,;n(0,1)"

> lklminf Ik'(wj,k + Fxon (Oa l)n)
> Whom(F)

by (5.12)-(5.14). By the choice of (u;) we get the desired inequality. O

The proof of Theorem 5.1 will be complete once we observe that in the convex
case formula (5.6) simplifies that in Theorem 4.13 (see Theorem 1.46).

5.2 Convergence of minimum problems

As an application of the I'-convergence result of the previous section, we describe
the asymptotic behaviour of problems of the form

mes = min{/ W (Du)dx : u € LP(w x (—¢,¢); R™),
Q(e,5)
Ul (e,5) € WP (Q(e,6); R™), u= ¢ on (Ow) x (—5,5)}, (5.15)

where ¢ = ¢(x,) € WHP(w; R™), Q(e,9) is given by (5.1) and f and W satisfy
the hypotheses of Theorem 5.1. By using Poincaré’s inequality it can immediately
be checked that problem (5.15) admits at least one solution for each choice of
€,6 > 0. The asymptotic behaviour of these solutions when ¢ — 0 and § << € is
given by the following result.

Proposition 5.4 Let ¢ and 6 = 0(g) satisfy the hypotheses of Theorem 5.1,
and for each € let u. be a solution of (5.15). Then, upon extracting a sub-
sequence, there exist a sequence (ve) in LP(w x (—=1,1);R™) and a function
w € WHP(w; R™) such that

(1) ve = ue on Q(e,d(e)),

(ii) of we(a,xn) = ve(Ta,exy), then we converges (with the identification
w(z) = w(zys)) to w in LP((w x (—=1,1); R™),

(iii) w is a solution of the minimum problem

o = min{/

w

2Whom(Dot) dzo = u € LP(W; R™), u = ¢ on Gw}, (5.16)

where Whom 45 defined by (5.5) and (5.6),
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(iv) me s(cy/€ converges to my.

PROOF. Note that, in the notation of Theorem 5.1, @, defined by . (24, 2,) =
Ue (o, €Xp) 18 & solution of

1 1
Me = =M 5(c) = min{/ W(Dau, fDnu> dr:u e LP(wx (-1,1); R™),
g Q. S

U, € WH(Q;R™), u=¢ on (dw) x (-1, 1)} (5.17)

By [29] Remark 2.3, upon extracting a subsequence, there exist w. € LP((w X
(—=1,1); R™) converging to some w in LP((w x (—1,1);R™), D,w = 0 and
we = Ue on .. By the well-known property of the convergence of minima and
minimizers of T'-converging functionals (see Theorem 1.23), (iii) and (iv) follow
from Theorem 5.1, since the I'-limit is not influenced by the boundary value ¢
(see [29] Lemma 2.6). O



6

ASYMPTOTIC ANALYSIS OF PERIODICALLY-PERFORATED
NONLINEAR MEDIA

6.1 Statement of the main result

In all that follows p > 1, m > 1, n > p are fixed (m,n € N); the I'-limit of
a sequence (®;) of functionals defined on W?(€2; R™) will be performed with
respect to LP(Q; R™)-convergence.

6.1.1 Periodically perforated domains

For all § > 0 we consider the lattice Z™ whose points will be denoted by ¢ = §i
(i € Z™). Moreover, for all i € Z"

B = Bsu/tn-» (2])

denotes the ball of centre 20 and radius 6™ (*~P). The main result of the chapter
is the following.

Theorem 6.1 Let Q be a bounded open subset of R™ with |0Q] = 0. Let f :
M™*" — [0,400) be a Borel function such that f(0) = 0 and satisfying a
growth condition of order p: there exist two constants cy1,co > 0 such that

cl(JAJP — 1) < F(A) < eo(|AJP + 1) for all A € M™¥", (6.1)

Let (0) be a sequence of strictly positive numbers converging to 0. Then, upon
possibly extracting a subsequence, for all A € M™*™ there exist the limit

g(A) = hylaﬁcgf((s;ﬁ%), (6.2)
where Qf denotes the quasiconvezification of f, so that the value
o(z) = inf{/ 9(DQ)dr : ¢ — 2 € WII(RMR™), (=0 on Bi(0)} (63

is well defined for all z € R™. Moreover, the functionals F; : WP(Q; R™) —
[0, 4+00] defined by

. 5
(w) = /Qf(Du)dac ifu=0 a.e onJ;czn By’ NQ

F; (6.4)

400 otherwise
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I-converge with respect to the LP(§); R™)-convergence to the functional F :
WLP(Q; R™) — [0,+00) defined by

F(u):/QQf(Du)dx—i—/Qtp(u)da:. (6.5)

Corollary 6.2 If f is positively homogeneous of degree p then the limit is inde-
pendent of the subsequence and

o(z) = inf{ - f(DO)dx: ¢ —2z€ WHP(R™;R™), (=0 on Bl(())} (6.6)

for all z € R™.

PROOF. It suffices to remark that in this case formula (6.2) gives g = Qf and
that we may replace @ f by f in (6.3) by using Remark 1.21 and Theorem 1.12.
O

Corollary 6.3 (Convergence of minimum problems) Let (6;) satisfy the thesis
of Theorem 6.1. Then for all ¢ € W~LP(Q; R™) the minimum values

m; = inf{Fj(u) +(pu): ue WyP(Q, Rm)}

converge to

m = min{F(u) F(bu) : ue WHP(Q; Rm)}.

Moreover, if u; is such that Fj(uj) + (¢,u;) = m; + o(1) as j — +oo, then
it admits a subsequence weakly converging in Wol’p(Q;Rm) to a solution of the
problem defining m.

PROOF. By a cut-off argument near 99 (see Section 1.7.2) if u € W, ?(Q; R™)
then the sequences in (1.13) of the definition of I'-convergence can be taken in
WO1 P(; R™) as well, while by the growth condition (6.1) we have u; — u weakly
in W, ?(Q; R™). This fact, together with the continuity of G(u) = (¢,u) with
respect to the weak convergence in I/VO1 P(Q; R™), implies that the functionals

®;(u) = {i)(OU) +G(u) ifue Wy P(Q;R™)

T'-converge to

Do(u) = {fffé) L G) ifue WEP(QR)

on WP (€; R™). We can then apply Theorem 1.23 with K = {u € Wy *({; R™) :
| Dul|Lr(rm) < ¢} for a suitable ¢ > 0. O
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Remark 6.4 (Non-spherical holes) The results are easily extended to non-sphe-
rical geometries, by fixing any bounded set F C R™ and considering ¢ +
6"/ ("=P)E in place of B?. The same conclusion follows, upon replacing Bi(0)
by E in the definition of ¢.

Remark 6.5 In general, the function g depends on the subsequence (4;), and
so does . In this case, the I'-limit as 6 — 0 of the functionals

) / f(Du)dz if u=0a.e. onJ;czn B NQ
u) =1 Jo

Fi( (6.7)

+00 otherwise

does not exist.

The proof of Theorem 6.1 will be obtained in the next sections.

6.2 A joining lemma on varying domains

In this section we prove a technical result which allows to modify sequences of
functions near the sets B?. Its proof is close in spirit to the method introduced
by De Giorgi to match boundary conditions for minimizing sequences (see [44]).
For future reference we state this lemma in a general form.

Let (d;) be a sequence of positive numbers converging to 0, and let f; :
R xM™*"™ — [0, +00) be Borel functions satisfying the growth conditions (6.1)
uniformly in j. In the following sections we will simply take f;(x,z) = f(2).

Note that in this section and the following ones sometimes we simply write
¢ in place of §; not to overburden notation.

Lemma 6.6 Let (u;) converge weakly to u in WhP(Q; R™), and let
Z;={icZ": dist (z2,R"\ Q) > J;}. (6.8)

Let k € N be fized. Let (pj) be a sequence of positive numbers with p; < 0;/2.
For all i € Z; there exists k; € {0, ...,k — 1} such that, having set

= {x €Q: 27 < jr—2f| < 2_’“p]}, (6.9)
“3‘ = |Czj\*1/ ‘ujdx  (the mean value of u; on Cij), (6.10)
c?
and 3
pé- = 12_’“";)]- (the middle radius of CY ), (6.11)

there exists a sequence (w;), with w; — u in WHP(Q; R™) such that

w; =u; on Q\ U o’ (6.12)
1€Z;
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wi(@) = if o~ ad| = o} (6.13)

and
1
/ ‘fj (x, Dw;) — fj(x, Du;)|dx < e (6.14)
Q
Moreover, if pj = 0(d;) and the sequence (|Du;|P) is equi-integrable, then we can
choose k; =0 for all i € Z;.
PROOF. For all j e N, i€ Z; and h € {0,....,k — 1} let

Cg’h = {m €Q: 27 < o — 2| < 2_hpj},

and let
ih _ -1 .
u; = |Ci,h| / uy du,
CJ

ih
and
; 3
ih —h
Py = 12 Pij-
Consider a function ¢ = qb{’h € CSO(CZ{}I) such that ¢ = 1 on aBpj,h (x9) and
|D¢| < c/27"p; = c/p;-’h. Let w;h be defined on C’g’h by

h i :
w" = ui" ¢+ (1 - p)u; on CY

with ¢ = gbih as above. We then have, by the growth conditions on f;,
 fil Dty do = /j f3(w, Do — u;) + (1 — ¢)Duy)) da
Ci,h Ci,h

< c/_ (1+ |DoPlus — u" [P + | Duj P) da.
J

i,h
By the Poincaré inequality and its scaling properties we have

[ -t <y [ ipuras, (6.15)

ih ih

so that, recalling that |D¢| < c/pé’h,

filz, Dw;’h) dx < c/ (1+ |Du;|P) de.

J J
Ci,h Ci,h

Since by summing up in h we trivially have
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k—1
> [, a+pulyde< B, 6+ [ (Dupd,
h=0 Cz,h

Bpj (mf)

there exists k; € {0,...,k — 1} such that

1
[, asipulyae< (18,6004 [ puPa). ©0)
ci k B,, («?)
There follows that
[, plepude <t (B,6Dl+ [ Dupds).  (617)
i, k

Bpj (x?)

i

By (6.16) and (6.17) we get

/. |fj($7DUj)—fj(maij)|d$S/, (fi(x, Duy) + f(z, Dw;)) dx
ci, o,

ik; ik;
C
< (BuGhl+ [

Note that if (|Du;|P) is equi-integrable and p; = 0(d;) then we do not need to
use this argument, and may simply choose k; = 0 for all 7 € Z;.

With this choice of k; for all ¢ € Z;, conditions (6.12)—(6.14) are satisfied
by choosing h = k; in the definitions above, i.e. with Cg = Cij’ki, ul =yl

' J J
p;ﬂ = p;f’“ and w; defined by (6.12) and

) |Du;|P dx).

w; = uip + (1 — ¢)u; on CY,

with ¢ = ¢/, .
Finally we prove the convergence of w; to u in LP(2;R™). By (6.15)

/|wj—u|pda:=/ uy —ulP dx
Q ”\Uiezj c?

+/ . |“}¢Zk + (1=, )u; —ulf dz
o i s

Uier g

< / u; —ulP de
Q\Uiezj e}

i

_uilPd _wulPd
+CZ/Cg|u] ul] :c—i—c/U C§|UJ ul|? dz

€7 i€Z;

< —ulPd P Du:lPd
_C/Q|’U,] ul :17+0ij/04| u;|P dx

€2
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< c/ u; —u|pdx+cp§sup/ | Du;|P da.
Q Jj JQ

Hence passing to the limit as j tends to +0o0 we get the desired convergence.
In particular, since (w;) is bounded in W?(Q; R™), we get that (w;) weakly
converges to u in WHP(Q; R™). O

6.3 Some auxiliary energy densities

It will be convenient to approximate the function ¢ defined in (6.3) by suitable
energy densities defined by minimum problems on bounded sets so as to use the
properties of convergence of minima by I'-convergence (Theorem 1.23). In this
section we define such energies and list some of their properties.

We begin by proving in the following remark the existence of ¢ in (6.2).

Remark 6.7 We can consider the functions g; : M"*" — [0, 4+-00) defined by

gj04)==6f%%62f(§f5%?z4). (6.18)

Since g; are quasiconvex and satisfy uniformly a growth condition of order p
they are equi-locally Lipschitz continuous on M™*™: there exists C' depending
only on ci,co, p such that

l9;(4) — g;(B)| < C(A+ [APP~! + [BIP7H)|A - B (6.19)

for all A, B € M™*" (see Remark 1.16(i) and (iii)). Hence, there exists a sub-
sequence (not relabeled) converging pointwise to some limit function g. We may
therefore assume that (6.2) holds. Note that this convergence implies that for all
subsets U of R™ the functionals G, (-, U) defined on W1?(U; R™) by

@mmz/%wmm (6.20)
U
I-converge to the functional G(-,U) defined on WP (U; R™) by

G(u,U)z/Ug(Du)dac (6.21)

(see Proposition 1.41).

Using the notation of the remark above, we set

on,i(2) = inf{/B o DSy (=2 € Wo P (By(0); R™), ¢ =0 on B (0) }.

(6.22)
Note that by the I'-convergence in Remark 6.7 and Theorem 1.23, arguing as
in the proof of Corollary 6.3, we easily deduce that ¢y ; converge pointwise as
j — +0o0 to the function ¢y, defined by
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o) = inff /B o IDO s €2 € WGP (Br(OR"), ¢ =0on Bi(0)}.

(6.23)
We briefly examine some properties of the functions ¢y ; and ¢ which are
easily deduced from the growth conditions satisfied by g; and g.

Remark 6.8 (i) For all N € N and 1 > 0 there exists ¢y, such that

o, (2) = on ()] < enpy 6P s (14 JwfPE 2P
|z — w|(JwPt [P (6.24)

for all |z|,|w| > n and j. This can be easily checked if we consider a linear
similitude ¢ such that ¢(z) = w and ¢ € z + W, ?(Bx(0); R™) such that ¢ =
0 on B;(0) and

oni(2) = /B D0y,

The existence of ¢ follows from the quasiconvexity of g;. If we define ¢ = ?(¢)
then ¢ € w+Wy?(By(0); R™) and ¢ = 0 on B;(0). By using ¢ as a test function
we can estimate ¢ ;j(w) taking into account the following inequality

19;(A) — g;(B)| < C(8; @D/ ") A=t 4 |BP~1)|A - B,

which refines (6.19). By a symmetric argument we deduce the estimate on |¢n ;(2)—
o, (w)]-

(ii) From (i) we deduce that ¢ ; — ¢ uniformly on compact sets of R™\{0}
by Ascoli Arzela’s Theorem.

(ili) By comparison with the well-known case g;(A) = |AJ?, in which case we
have pn ;(2) = c|z|P, we deduce that

on,j(z) < cNéyp/("fp) + c|z|P. (6.25)
(iv) Note that ¢1]A|P < g(A) < o] A|P, so that, again by comparison with the

case g(A) = |AP, we have cic|z|P < pn(z) < cac|z|P. Taking this into account
and arguing as in (i) for fixed n > 0 we also have

o (2) = on(w)| < e (n” + |2 = wl|(JwlP ™" + [2P71) (6.26)
for all w,z € R™.
(v) Arguing as in (ii) and taking (iv) into account, we deduce that oy — ¢

uniformly on compact sets of R™.

Proposition 6.9 Let (u;) be a bounded sequence in L> (€ R™) converging to
u weakly in WHP(Q; R™), let (CY) (i € Z;) be a collection of annuli of the form
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(6.9) for an arbitrary choice of k;, let u’ be defined by (6.10), and let 1; be

J
defined by

Q@ =af s (-2, %" = 3 ot xo: (6.27)

1€Z;

Then we have

i | 05— ()] dz = (6.25)
i Ja
PROOF. Let > 0 be fixed. If < |2| < sup; ||u;[|oc then we have, by Remark
6.8(ii),
lon,i(2) = on(2)] < o(1)
as j — o0, uniformly in z, while, if |z| < 5 then, by Remark 6.8(iii),
lon,i(2) —on(z)| < CN5§LP/(”_p) + 2en?.
Set

Z on(u XQa (6.29)

1€Z;

By the arbitrariness of 1 and the convergence of oy (u;) to oy (u) in L(2), we
deduce that the limit in (6.28) equals the limits

im [ 16— x ()l do = lim [ 135 = o ()| da

—hmZ/ lon(u}) — on(uj)| de (6.30)
(p—&—hm(sup”ujanQRm) Z/ |u —u]|dx)
i€Z;

by (6.26). By Holder’s and Poincaré’s inequalities, we have

. 1/p
/ |uf — uj| de < 6”(p 1)/p(/ | —uj\pd:c)
Q! Q2
1/p
<6n(p /P (/ |Duj|pd;v) 7

so that

Z/ \u —u]|dx<cé /|Du]|pdac )

i€Z;

which proves the convergence to 0 of the limits in (6.30) by the arbitrariness of
- O
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6.4 Proof of the liminf inequality

Let u € WHP(Q; R™) and let u; — u in LP(Q; R™) be such that sup; Fj(u;) <
+00. Note that by (6.1) u; — u weakly in WhP(Q; R™).

We can use a sequence (w;) constructed as in Lemma 6.6 to estimate the
liminf inequality for (F};). We fix k&, N € N with N > 2* and define w; as in
Lemma 6.6 with

p; = N&/ D), (6.31)

Note that with this choice of p; we always have w; = u; = 0 on Bf. Let E; =
Ef’N be given by
, , s
E; = U B, where B = Bp§ (xF)
i€Z;

for all i € Z; (Z; given by (6.8) and p} by (6.11)). We first deal with the
contribution of the part of Du; outside the set Ej.
Proposition 6.10 We have

J

o c
hmllnf/Q\Ej f(Du;)dx > /QQf(Du) dx — P (6.32)

PRrROOF. Let

i : J
vj(x):{uj if v € By

’LUJ(IL') lf’IEQ\E]

Note that by Lemma 6.6 (v;) is bounded in W'?(Q; R™) and that lim; [{z €

Q: uj(z) #v;i(z)}| = 0. We deduce that v; — u weakly in WP (£; R™) so that
lim inf f(Duj) dx + % > lim inf f(Dw;) dz

J Q\E; J Q\E;

:limjinf/ﬂf(va)dac2/QQf(Du)dx7

the last inequality following from Remark 1.21. O

We now turn to the estimate of the contribution on E;. With fixed j € N
and i € Zj, let

((y) = w; (:vf + 5y )y)
be defined on Bay-k; (0), and extended to ué» outside this ball. Note that
¢ —ul € Wy (By(0);R™) and ¢ =0on B;(0). (6.33)

By a change of variables we obtain
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f(Dw;) dz = 67 / gD p(5 TP DE) de > 6T (ul)  (6.34)
B B (0)
by (6.22); hence, to give the estimate on E; we have to compute the limit

lim inf Z 5;¢N,j(u§) = lim_inf/ Y; dx, (6.35)
i€Z; 7 Ja

where 9; is defined as in (6.27).
Proposition 6.11 We have

-l inf £ (u) 2 /Q Qf (Du)dz + /Q o) dz

for all u € WHP(Q; R™).

PROOF. Let u; — u in LP(Q; R™). We can assume, upon possibly passing to
a subsequence, that there exists the limit

lim Fj(u;) < +o0,
j

so that u; — w in WHP(Q; R™). By [27] Lemma 3.5, upon passing to a further
subsequence, for all M € N and n > 0 there exists Ry; > M and a Lipschitz
function ®,; of Lipschitz constant 1 such that ®p(2) = z if |2] < Ry and
®y(2) =0if 2| > 2Ry, and

lim F;(u;) > liminf F;(®ar(uy)) — . (6.36)
j J

From Lemma 6.6, (6.35), and Proposition 6.9, applied to (®as(u;)) in place
of (u;), we get that

liminf [ f(D®y(u;)) dz + % > limint 3 67 on,; (@ar(w)?)
I E; I 1€Z;

- / o (1)) d
Q
z/Qgp(q)M(u))dac. (6.37)

Summing up (6.37) and (6.32) and by the arbitrariness of k, we then obtain

limjianj(fI)M(uj))2/QQf(DéM(u))dx—&—‘/ng(CI)M(u))dx. (6.38)

By (6.36) we then have
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i () 1> [ QFDu(w)do + [ p(@a(w) da.

Q

We can let M — 400 and note that @y (u) — u in WHP(Q; R™) to get
i )+ > [ QfDw s+ [ pu)da.
j Q Q

The thesis is obtained by letting n — 0. 0

6.5 Proof of the limsup inequality

The limsup inequality is obtained by suitably modifying a recovery sequence for
the lower semicontinuous envelope of [, f(Du) dz.

Proposition 6.12 If |09 = 0 then we have
T- hmbupF /Qf (Du) daz—|—/ p(u) dz

for all w € WHP(Q; R™).

PROOF. Let u € WHP(;R™) and let (v;) be a sequence converging to u
weakly in W1P(Q; R™) such that

lim f Dv,) dac—/Qf (Du)d (6.39)
j

We preliminarily note that we may assume that (|Dv;|P) is equi-integrable on (2
(see Section 1.8.1). With fixed N € N, by Lemma 6.6 applied with u; = v;,

4 s/ (n=p)
and taking the equi-integrability of |Dv,|” into account we may also suppose
that v; equals a constant v] on OBy (z?) for all i € Z;, where

_ n/(n—p)
pj = No; .

STEP 1. We first assume that in addition (v;) is a bounded sequence in
L>(Q;R™).

Let n > 0 be fixed. We now modify the sequence (v;) to obtain functions
u; € WHP(Q; R™) such that

uj:vjonQ\UBp;(If), uj:()maQﬂLJB;S
iezn iczn
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and

lim sup

/ f(Du;)dx < / o(u) dr + n|Q). (6.40)
J 2nJ,czn By, (x?) Q

The sequence (u;) will then be a recovery sequence for the limsup inequality. In
fact, clearly u; — w in LP(Q; R™) since lim; [{u; # v;}| = 0 and (u;) is bounded
in WLP(Q; R™), and

limsup/ f(Duj)dx < limsup/ f(Dvj)dx
J Q j N, zn B

s
J p; (131 )

+ lim sup

g /muiezn Bey (a2) fbw)dr

Sli;gn/ﬂf(va)dx—&-/Qcp(u)d;v—&-mm

:/Qf(Du)dm+/<p(u)dx+77|Q|. (6.41)
Q Q

We now define u; on each B, (29) N €. We treat separately the cases i € Z;
J
and i € Z" \ Z;. We first treat the case i € Z;. Let

M = sup [|vj || Lo (@mm)-
J
By Remark 6.8(v) we can choose N such that
n
e(2) =2 on(z) — 3 (6.42)

for all |z] < M. Recall moreover that ¢y ; converges uniformly on compact sets
of R™ to ¢ as j — 400; we may therefore assume that

w3

len.;(2) —en ()] < (6.43)

for all |z| < M and j € N.
Let ¢} € v + W,*(Bx(0); R™) be such that ¢; =0 on B;(0) and

w3

/ ( )5;”’/ e T DG de < o (0)) + 5 < (0]) £, (6.44)
By (0

the last inequality being a consequence of (6.42) and (6.43), taking into account
that |vi| < M.
We define u; on By (z9) by

u;(@) = G (@ = af)a; "),
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By a change of variables we then have

/B oy T(Pws) e =5 /B o g/ p(6 7 TP DC da < 8 (vl + 67y,
o’ T N
J

(6.45)
If ¢ ¢ Z; it is not possible to use the construction above since By, (x9) might

intersect Q. We then consider a scalar ( € W1P(By(0)) such that ( — 1 €
Wy (Bx(0)), 0 < ¢ <1 and ¢ =0 on By(0), and simply define

u;(z) = v;(x) C((I - xf)(;;’L/(”—p))

on B, (29) N Q. We then have

/ f(Duy)dx

<c | (1+ | Duyl?) da
B

ol (CE?)QQ
J

< c/ (1 + |Dv;|P + 5]»_7Lp/(n_p) 'Dg((x - :17?)5]._”/(”_1))) 'p|vj\p) dx

< o) (1 + M \DC|P dz) +e / | Du; [P da. (6.46)
Bn(0) B,/ (z9)NQ

Let
Ei= |J By@)nQ and = J @
i€Z"\Z; i€Zn\Z;

Then (6.46) above implies that

. f(Duy)dx < c|Q)] + c/E/ | Dv,; [P dz = o(1), (6.47)

J

by the equi-integrability of (|Dv;[?) and the fact that lim; [©)| = [09] = 0.
Taking (6.45) and (6.47) into account, we have

limsup/ f(Du;) de < limsup Z (5;‘<p(vj-) dx + n|Q),
J QnUiGZ" BP; (wf) J i€Z;

so that (6.40) is proved by Proposition 6.9.

STEP 2. We now remove the boundedness assumption. First assume that u €
L>(Q;R™). Then let M = 4|u||p(q;rm) and let & : R™ — R™ be a Lipschitz
function of Lipschitz constant 1 such that ®(z) = z if |2] < M/2 and ®(z) =0



Proof of the limsup inequality 123

if |z] > M. Let (vj) be a sequence converging to u weakly in WP (£2; R™) such
that (6.39) holds and (|Dv,|?) is equi-integrable on Q, and define v} = ®(v;).
We have fuj\/[ — u weakly in WP (Q; R™) and lim; |[{v; # vJM}| = 0. Hence, by
the equi-integrability of (|Dv;|?), we obtain that

lijm/gf(Dv]M)dx:lijrrl/ng(va)dmz /QQf(Du) de.

We can then repeat all the reasonings above with (v}') in the place of (v;).
Finally, for arbitrary u € W1P(Q; R™), simply note that it can be approx-
imated by a sequence of functions uy € WHP(Q;R™) N L>=(Q; R™) with re-
spect to the strong convergence of WHP(2; R™). By the lower semicontinuity of
F"(u) = I'-limsup; Fj(u) with respect to the LP(Q; R™) convergence (see Re-
mark 1.24(i)) we then have F”(u) < liminfy F"(ug) = limy F(ur) = F(u) as
desired. O



7

SEPARATION OF SCALES AND ALMOST-PERIODIC
EFFECTS IN THE ASYMPTOTIC BEHAVIOUR OF
PERFORATED PERIODIC MEDIA

7.1 Setting of the problem

In all that follows € is a bounded open subset of R", n > 3; the I'-limit of a
sequence of functionals F; defined on H{(Q2) will be performed with respect to
the L2(Q)-convergence.

The functionals we consider are defined as follows. Let f : R"xR"™ — [0, +00)
be a Borel function satisfying

(H1) (periodicity) f(-,z) is 1-periodic for all z € R™;

(H2) (positive homogeneity) f(x,-) is positively homogeneous of degree 2 for
all z € R™;

(H3) (growth conditions) there exist two constants c¢p,ca > 0 such that
c1|z)? < f(x,2) < ez]2)? for all x, 2.

It is well known (see Theorem 1.46) that the I'-limit Gy of the functionals
(G.) defined by

G.(u) = /Qf<§,Du> dx (7.1)

on H}(Q) exists and can be represented as

GO(U’>:/thom(Du) dl’7 (72)
where

from (%) = inf{/( ) fly,Du+2)dy :u € HL (R") 1-periodic} (7.3)
0,1)"

for z € R™ defines a convex function positively homogeneous of degree 2 (see
Remark 1.16(ii) and (iii) and Remark 1.24(iii)).

For all § > 0 we will consider the lattice Z™ whose points will be denoted
20 = i (i € Z™). Moreover, for all i € Z"

Bf = B(S'n,/('n,72) (xf)

For all €,§ > 0 we consider F; 5 : H}(Q) — [0, +00o] defined by
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/Qf<§, Du) dr ifu=0onJ;,cgn B

F.s(u) = (7.4)
+00 otherwise.
With fixed § = §(e) we will study the I'-limits of sequences (F}) with
Fy=F, s5(c;)- (7.5)

We will separately consider the following cases:
(1) (Section 7.3.1) e << §™/(»=2)_ In this case the I'-limit does not depend
on (g;) and can be written in the form

Fo(u) = /Q From (D) dz + C /Q (uf? do (7.6)

on the whole H{(£2). The characterization of C is described in Theorem 7.6;
(2) (Section 7.3.2) € >> §. The same conclusion of (1) above holds with a
different characterization of C' (see Theorem 7.7);
(3) (Section 7.4) In the remaining cases in general the I'-limit does not exist,
but we may have converging sequences (F;) both to functionals of the form (7.6)
with different C' or to functionals of the form

Fo(u):/thom(Du)der/an|u|2 dx (7.7)

for some strictly positive ¢ € L>(Q).
Remark 7.1 (i) Since the functionals we consider are weakly equi-coercive on
H(Q) (more precisely, if sup;(Fj(u;)) < +oo and (u;) is bounded in L*(£2)
then it is weakly pre-compact in H}(Q2)) in the I-liminf inequality above we
may consider only sequences (u;) weakly converging in H}(€2);

(i) if H is a continuous functional on L?(§2) then F;+ H I-converge to Fy+H.
By the well-known property of convergence of minima of I'-limits (see Theorem
1.23) we deduce for instance in case (1) above that for all fixed h € L?(Q) the
values

M, :inf{/ﬂé(g)f(i,Du) da:—/ﬂs(g) hudz : v =0 on 895(5)},

where €05 denotes the d-periodically perforated set

Q5 = Q\ By (0) +2") = @\ |J B, (7.8)
SV AL

converge to

m= min{/ (fhom(Du) + Clul* — hu) dr:u=0on 89}
Q
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ase — 0.

Furthermore, if f is convex in the second variable, for each ¢ a solution u. of
me exists, the family (u.) (extended to 0 on Q\ Q5()) is weakly precompact in
H}(Q) and every its limit is a solution for m. If f(x,z) = (a(x, 2), 2) (a linear) we
may then restate this I'-convergence result in terms of convergence of solutions
of elliptic PDE as in the Introduction.

7.2 A general I'-convergence approach

In this section we describe a general procedure to compute the I'-limit of func-
tionals defined on perforated domains. In the following sections we specialize this
approach to the cases (1)—(3) highlighted in the previous section.

Let f; : R x R" — [0,+00) be Borel functions satisfying the positive ho-
mogeneity condition (H2) and the growth conditions (H3) uniformly in j. We
suppose that the sequence of functionals (G;) defined on H{(£2) by

G, (u) = /Q £, (@, Du) da (7.9)

I’-converges to a functional G of the form

Go(u):/gfo(x,Du)dx. (7.10)

In our case f;(z,2) = f(x/e;,2) and fo = fhom-
Let (6;) be a sequence of positive numbers converging to 0 and let (F;) be
defined on H{(€2) by

Gj(u) ifu=0onJ;czn Bf
Fj(u) = (7.11)
400 otherwise.

Note that sometimes we use the notation J = d; not to overburden notation.

7.2.1 The I'-liminf inequality
Let (u;) converge weakly to u in H(€2). We can suppose that sup; Fj(u;) < +o0.
We wish to separate the contribution due to Du; ‘near the balls B’ and ‘far
from them’. The latter will be estimated simply by Go(u), while the former will
be described by a limit capacitary formula.

The way to discriminate between ‘near’ and ‘far’ contribution is formalized
by the following lemma, whose proof, together with a slightly more general state-
ment can be found in Chapter 6.

Lemma 7.2 Let uj be a sequence weakly converging to w in Hg(Q) as above,
and let N,k € N. Let (§;) be a sequence of positive numbers converging to 0 and
let

Z;={icZ": dist (z2,R"\ Q) > J;}.
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For all i € Z; there exists k; € {0,...,k — 1} such that, having set

Cl = {x eN: Q‘kf‘lNéf/("’z) <l|e—al| < 2"“@']\[6;/(”’2)}, (7.12)

ué = |C’f\*1/ ‘ujdx  (the mean value of uj on CY), (7.13)
o
and 3
pé. = Z2"“1']\7(5?/(7172) (the middle radius of C?), (7.14)
there exists a sequence (w;), with w; — u in Hg(Q) such that
w; =u; on Q\ U c? (7.15)
1€Z;
w;(x) = uf if |v — 2| = p} (7.16)
and )
/ ‘fj(x,ij) - fj(x,Duj)‘ dz < e (7.17)
Q
Moreover if uj = vj with |Dv;|? equi-integrable, setting
. 1 n/(n—2 3 n/(n—2
ng{er: SNE 7 < o —af] < SN/ )}, (7.18)
v; =/t /Cj vjdz  (the mean value of v; on CY), (7.19)
and ‘
pj = Né?/("_Q) (the middle radius of CY), (7.20)

we get the same conclusions above.

By this lemma we can use the sequence (w;) to estimate the I'-liminf inequal-
ity for (F;). We first deal with the contribution of the part of Du; ‘external’ to

the annuli Cij; i.e., outside the set

E; = U B, where B! = B, (x?) (7.21)

i€Z;

for all 1 € Z;.
Let k, N be fixed, let u’ be constructed as in (7.13). We define

by = Y P xgs, (7.22)
i€z;
where 5 s
6 g0 (0% %\
@ xl+( 9 2) :

The following lemma describes the asymptotic behaviour of ;.



128 Separation of scales and almost-periodic effects

Lemma 7.3 The sequence ¢; converges to |u|® strongly in L*($).

ProOOF. By the Poincaré inequality

2 2 2
/Qf \uj—uj| dxgc(ki)éj /Qf |Du;|* dz,

where ¢(l) depends only on [ € {0,...,k — 1}; since k € N is fixed we get

Z/ j—uj |2dgc < 052/ |Du;|? d, (7.23)

1€EZ;

where ¢ :=max,—o,....k—1 c(k;). Since Uz, Q? invades Q and u; — u in L%(1)
as j — 400, by (7.23) we have that

1imsup/1/)jdx§ﬁmsup2 Z/ uf — uy]? —|—/|u]| dsc
; o ;

Jj—+oo j—+oo icz,

=2 [ |u*dz, (7.24)
Q

and, by (7.24), (7.23) and Holder’s inequality

hmsup/ [v; — |ul|?|dz < climsup Z/ |u — u;|? dm)

Jmtee Nez,

X limsup(/g(wj + Ju]?) dx)

j—+o0

c(/Q |u|2dx) i jligrrloo d; (/Q |Duj|2dx>1/2 =0

as desired. O

Proposition 7.4 Let (u;) be as above. Let k,N € N and let (w;) be given by
Lemma 7.2. Then we have

hmmf/ fi(z, Du;)dx > fo x, Du) dm—i—hmlnf/ fi(z, Dw;)d

Jj—+oo Jj—=+oo

(7.25)
PROOF. We define

i J )
k,N:{uj on B, i€ Z;
J

Ui w; otherwise .
The sequence (vf’N)j is bounded in H{(£2); hence, it is pre-compact in L*(Q).
Since L”({U?’N —w;}) — 0 and w; — win L3() as j — +oo, o

;" converges
strongly to u in L?(Q).
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By Lemma 7.2 and condition (H2)

Fy(uy)+ e = Filwy) = [

fi(x, Dw;) dx + / fi(x, Dw;) dx
O\ E, E;

= / fi(z, va’N) dz + fi(z, Dw;) dx

- Gj(v;?aN)-k/E [j(x, Dw;) dx . (7.26)

By the I-liminf inequality of the functionals G; (7.9)

ljm+inf Gj (vf’N) > / folz, Du) dx (7.27)
Jj—4o0 Q
and (7.25) follows immediately. O

We now turn to the estimate of the contribution due to Du; on E;. From now
on, we suppose that N > 2F so that the construction of w; in Lemma, 7.2 keeps
w; = u;j on B?. With fixed j € N and i € Zj such that u; #0let (: By(0) = R
be defined by

() = ui (= w; (28 = 877" 2y)) y € Byorin(0)
- J

0 otherwise .

If u; = 0 we simply set ( = 0. Note that
¢ € Hy(Bn(0)) and ¢ =1 on By(0). (7.28)

By a change of variables we obtain

fi(z, Dwj) dx = (5j"\u3|2/ fj(x? — 6;1/(7172)1;, D¢) dux; (7.29)
B By (0)

hence, if we set

on(@) = inf{ /B o fi(a=67/"" Dy, D) dy : ¢ € HY(B(0), ¢ =1 on By(0)}

(7.30)
the computation of the liminf on the right hand side of (7.25) is translated into
computing the limit

: : n|, 1|2 S
lim inf EXZ: 0F [uj o 5 (27)- (7.31)

By considering the functions ; and gpﬁ-v defined by (7.22) and by
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Z on,j(x an (7.32)
i€Z;

respectively, the limit (7.31) is translated into

lim inf goé\’i/)j dx. (7.33)

j—+oo

By Lemma 7.3 it is sufficient to compute the weak* limit ¢~ in L>°(Q) of
the functions <p§v as j — +oo. For our problem this will be done differently in
the cases (1)—(3) described in Section 7.1. We then have

hmmf/ fj(x,ij)d:cz/goN|u|2dx, (7.34)
E, Q

j—4o0

and a I'-liminf inequality is achieved by taking the supremum in N.

7.2.2 The I'-limsup inequality

The I'-limsup inequality is obtained by suitably modifying a recovery sequence
for the I'-limit of G;. Let u € H{(2) and let (v;) be a sequence converging to u
weakly in H} () such that lim; G;(v;) = Go(u). Let

Q(8;) = {z € Q: dist (z,00) > §,};

we may assume that sptv; C ©(d;) (see Proposition 1.33) and that |Dv;|? is
equi-integrable (see Section 1.8.1).

By Lemma 7.2, taking the equi—integrability of |va |2 into account, we may
also suppose that v; equals a constant v} on 0B, (z 9), where

n/(n—2
p; = N&I/ ),

The construction of a recovery sequence will be then obtained easily if, fixed 7,
we construct functions ¢} in Hj(By(0)) with ¢} =1 on B;(0) such that, setting

vj(z) on Q\ Uier B, (x?)

YT - G()) onm 6 7

we have

limsup/ [j(xz, Duj)dx < / olul® dx + n,
J U, B, (a2 Q

where ¢ = supy " is suggested by the liminf inequality. Indeed, with this choice
of (u;), we obtain

limsup/ fi(x,Duj)dz < [ fo(x, Du) dx—l—limsup/ fj(x, Du;) dx
0 Q U Bp7 (x9)

Jj——+oo j—+o0
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S/fo(x7Du)dx+/cp|u|2dx+n, (7.36)
Q Q

and the I'-limsup inequality is verified.

7.3 Separation of scales

In this section we study the extreme cases ¢ << §"/("=2) and ¢ >> §. In both
cases the I'-limit of the whole family (F. ;) exists and it is described by an
extra term of the form C [, |u|? dz, whose computation highlights a separation
of scales effect.

7.3.1 Highly-oscillating energies in perforated domains

We treat the case ¢ << 0™/("=2) first. In this case the limit is computed as if by
first letting ¢ — 0, thus obtaining a homogenized functional, and then applying
the theory of perforated domains for a fixed functional.

Remark 7.5 We define
capyon (B1) = inf{ foom(DC)dz : ¢ € H'(R™), (=1on 31(0)}.
RTI,
It can be easily checked that

capyom(B1) = lim min{ from(D¢)dz : C € Hl(BNJr;(O))
N—+4oo BN+ﬁ(O) N

(=1ondBy,+(0) (=0on Bl_%(())}

= NHIEOOHHH{/BN ﬁ(o) fhom(DC) dz CG Hl(BN—%(O))

(=1ondBy_ 1(0) ¢(=0on BH%(O)}.

Theorem 7.6 Let f satisfy (H1)—-(H3) and let F, s be given by (7.4). Let § :
(0, +00) — (0,400) be such that

n/n—2
lim 6(e) =0 lim o) = +00;

e—0 e—0 £

then there exists the T'-limit with respect to the L*(§))-convergence
-ty F. () = | foom(Du)di + capy (B1) [ uf d
- Q Q

for all uw € HY(Q).

PRrROOF. We fix a sequence (g;) of positive numbers converging to 0 and let
0; = 0(g5). Let Fj = F_, ;5,. Note that we sometime simply write ¢ in place of d;.
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We first deal with the I'-liminf inequality. Let u; be weakly converging to u
in H}(Q), such that sup; Fj(u;) < co. Let k € N and N > 2¥, and let w; be as
in Lemma 7.2; by Proposition 7.4 to compute the I'-liminf inequality we have to
study the contribution on the set E; given by (7.21).

s
For all i € Z™ let y§ = sj[z—;}], so that ¢ € y +[0,¢;)". Taking into account

that ; << 5?/ (=2 " we deduce the following inclusions
B (18 C B? .
a0 C B (73)
and ‘
Bg - BPj (va) C B(N_i_%)(;;/"*z(yis) (7'38)

for j large enough. There follows that w; can be extended outside Bg as

s — w; oan _ (7.39)
7 uj on B(N_F%)&;x/n%(yf) \ B} .

Let u% # 0. By (7.39) and conditions (H1) and (H2), by a change of variables,

we get
/ f(i,ij) dx:/
BI \&j B
fL/n—Q

zfsy\u;lﬁ/B f(z I ,Dg;i) dz,  (7.40)

(44 (©) &

f(i, ij 7,) dz
nyn—2(ys)  NEi ’

<N+%)6j

where ‘ ) ‘
Ciz) = wji(287" %+ yf) Jud

Note that by (7.37) and (7.38) (j(2) =1 on 9By, 1,(0) and ¢} = 0 on B (0).
If we denote n; = 53‘/5;/”_27 by (7.40) we have

/U . f(%, ij) dr

> Z 5;L|u;|2 min{/

i€Z; B

f(nij,Dc(z)) dz : € H'(By,1(0)

v+ 4

¢=1ondB(y,1,0)(=00n B(l_%)(o)}; (7.41)

hence, by (7.41), Lemma 7.3 and the I'-convergence of the functionals (7.1) to
that in (7.2), we have

lim inf f(E,ij) dx
Jj—+o0 U B: €j
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> min{/B from(D¢(2))dz : ¢ € H' (Byy 1(0))

(N+%>(O)
C=1on 0By, 3)(0) C=00n By_y)(0)} /Q (uf? da

Passing to the limit in the inequality given by Proposition 7.4 first as N and
then as k tend to +o00, by Remark 7.5 we have that

liminf Fj(u;) > [ foom(Du)dx + capyom(B1) [ |u* dz
j—too Q Q
as desired. By the arbitrariness of u; the I'-liminf inequality is proved.
Now we pass to compute the I-limsup inequality. Given u € HJ (2) we want
to construct a recovery sequence (u;) for the I'-limit of F};. Following the ap-

proach of Section 7.2.2, it remains to define u; on B, (z?).
We denote

mév = min{/B ]lv)(o)f<;,DC(z)) dz : Ce€ Hl(BNfﬁ(O))

(=1ondBy_1,(0)(=00n B(H%)(O)}

and
¥ —win{ [ fun(DO@) s CEH By (0)
Bin_1)(0

C = 1 on 8B(N7%)(0) < = 0 on B(1+%)(0)},
and fix M € N; by Remark 7.5 and for N large enough

1
mN < Caphom(Bl) + M .

N
n
converges to m" as 7 tends to 0 (see Theorem 1.23). Considering n; = ej/éy/nﬂ,
from the convergence of minima we deduce that there exists a sequence (; €
H'(By_1(0)) with ¢; =1 on B(y_1,(0) and ¢; = 0 on By, 1,(0) such that

By the I'-convergence of the functionals (7.1) to that in (7.2), we have that m
N

1
lim f(i,ng(z)) dz < capyo(B1) + — . (7.42)
Jj—+o0 B(N_%)(O) nj M

By a change of variables we get

z 1 x ~.
J\—,D¢i(2) ) dz = — fl—,DC(x)) dz, (7.43)
/;(N_I{])(O) <TI-7 ’ ) 6] B n/'n,—?(yis) (67 ! )

_ L
(N=%)s’
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where

G =6 (5.

]

Reasoning as for the I'-liminf inequality we may suppose that

chB(H%)&;/n,Q(yf) and B(N_%)(S;/n,z(yf)chj(xf). (7.44)

Since (i(z) = 1 on 6B(N7%)6;l/n72(yf) and Ci(z) = 0 on B(H%)&?/mz(yf)7 by
(7.44) we can define ' '
Q:JZ on B(N_%)é;b/n—z(yf)

1 on B, (2?) \B(N_%)(;;/nﬂ(yig)

so that ¢! =1 on 8B, (27) and ¢} = 0 on B. By (7.43) and condition (H2), we

get
/B (O)f(nij,ng(z)) dz — ;n / o f(;j,DC}(m)) da . (7.45)

(N=39)

Now we can construct the recovery sequence u; by setting

vy on Q\ U; By, (xf)
U;‘ CJZ (z) on BP;‘ (If),

and prove that it converges weakly to u in H'(). In fact (u;) is bounded in
H'(Q) and v; — u; tends to 0 in measure. Since v; — u in L?*(Q), then also
u; — u in L?*(Q) and hence weakly in H'(Q).

By (7.36), (7.46), (7.45), Lemma 7.3 and (7.42) we have

lim sup F (u;) / Jhom (Du) d

j—too
z
+ lim sup 7' [vj \2/ fl—,D¢(2)) dz
Z Biy_1,(0) <77J' ! )

J=te ez,
/ Jrhom(Du) dx + (caphom (By) + / |u|2d9c

By the arbitrariness of M we conclude the I'-limsup inequality; hence, the I'-
convergence of the functionals F; 5.y as ¢ — 0. |
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7.3.2  Slowly-oscillating energies in perforated domains

Now we treat the case € >> §. In this case the limit is computed as if first
applying the limit process to functionals in which z/e acts as a parameter, and
then averaging the outcome.

We consider for the sake of simplicity the case of continuous f:

(H4) (continuity) f(-, z) is continuous for all z € R™.

This condition can be easily dropped, at the expense of a much heavier notation.

Theorem 7.7 Let [ satisfy (H1)—(H4) and let F. s be given by (7.4). Let § :
(0, +00) — (0,400) be such that

limﬁ =0.
e—0 €

There exists the T-limit with respect to the L?(Q)-convergence

I-lim F, 5 (u) = / Jhom (Du) dx—|—/ a(x) dm/ lu|? dz
-0 Q (0,1)m Q
for all w € H}(Y), where

a(z) = mf{ F(z,DC)dy : ¢ € HYR™), ¢=1 on 31(0)} . (7.47)

Rn

Before proving Theorem 7.7 we make some general observations from which
the I-limsup inequality will easily follow, and that will be used also in the next
sections.

Remark 7.8 In this Section and in the next one, we will consider several cases
for which the I'-limsup inequality will be obtained by considering the recovery
sequence (7.35) introduced in Section 7.2.2, but the functions (} will be con-
structed in a different way with respect to the previous section. In this case the
function ¢y ; defined as in (7.30) takes the form

57}/(”—2)

onj(z) = inf{/

B

o fle= P D) du

N EJ

¢ € HY(Bx(0)), (=1 on 31(0)}. (7.48)

With fixed j € N and i € Z; we take ¢} in Hj(Bn(0)) with ¢¢ = 1 on B(0)
such that

R A . 20y 1
fl= — 22—y, D¢ dy < Nl =)+ = (7.49)
/BN(O) (Ej €j ‘]) J <€J> ]

By a change of variables we obtain
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8 ;
(%l/Bpj(mf)f(ej Cz( n/(nx2))) dx < <PN7J(?) +%

J

and
5

[y 20~ GG o2 T amitons(2)+]

i€Z; €

Hence, if we define

= eni(Z ) X (7.50)

1€Z;

where @y ; is given by (7.48), and

V=) vixe (7.51)

1€Z;

with v} given by (7.19), we have

lim sup/ f( Duj) dx
j UL B"j (T(E) €

Jj—+oo J
x r—a?
zlimsup/ f(—,D( ( Cl(in/n %))))dm
j—+oo U,B,J (x8) &
< lim sup Z 6"\1} | gon( —hmsup/ ’(/JJQOJ dx. (7.52)
j—4o0 i€Z; j—4o0

PRrROOF OF THEOREM 7.7. We fix a sequence (¢;) of positive numbers con-
verging to 0 and let d; = §(¢;). We have already shown in Section 7.2.2 that to
get the I-liminf inequality we have to study (in the notation of that section) the
weak* convergence in L>(Q) of the functions <p§-v to oV, as j — 4o0. In our
case @} is given by (7.50).

If we define

a(e) =int{ [ fe.DOdy: ¢ HY(BAO), ¢ =1on Br(0)} (.53
By (0)

by hypothesis (H4), we have that
5 (=2
lon; — anlleo < w(Nij = ) (7.54)
J

and
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! j
() ()] <o) a3

for all y € Q2. Hence, if we define
Y an(Z )
a; = an 4))( 5 and FzN:/ an(y) dy
J €j Q1 0,1)"

i€ Z;

since ay is 1-periodic, we have aN(Ej_) —* gy in L™ and by (7.55) also a§v —*

ay as j — 4o0. By (7.54) ¢ —* ¢V = ay and hence
lim o :/ a(x)dx. 7.56
Jim = [ e (7.56)

By Proposition 7.4, (7.34), Lemma 7.3 and (7.56) we get the I'-liminf inequality.
The T'-limsup inequality is obtained by considering the recovery sequence
(7.35) with ¢} constructed by (7.49), and recalling (7.52) and Lemma 7.3. [

7.4 Interaction between homogenization processes
In this section we treat the remaining cases when ¢ is between the scales 6/"2
and 6. We will suppose that (;) and (g;) are such that

5@/(”*2) .
lim 2—— = ¢ €0, +00) lim - < +o00 (7.57)

J—00 Ej J—00 5

hold. We define the localized capacitary formula
al(x) = inf{ fx—qy,D¢)dy: ¢ € H'(R"), ¢ =1on Bl(O)} . (7.58)
R’n,

Note that when ¢ = 0, a® coincides with the function a defined in (7.47).

Theorem 7.9 (Periodic interaction of scales) Let f satisfy (H1)—-(H4) and let
F; = F;, 5, with F. 5 as in (7.4). Let ¢; — 0 and let §; — 0 be such that (7.57)

holds. Suppose that 6; = %ej with k; € N prime with M € N. Then there exists
the T-limit with respect to the L?(§)-convergence

- lim Fj(u):/fhom(Du)dm—i—C’/ lu|? dz,
Q Q

j—+o0

on H(Q), where
h

he{0,....M—1}"
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PROOF. Let ¢y ; be the 1-periodic function defined as in (7.48), and let

@) =int{ [ fe—qn DOdy: ¢ HIByO), ¢ = 1o BO)}.

(7.60)

Asd— 5Jthen
ki e e heqo a1y (7.61)
e MM ’ ' '

y (7.61) and the periodicity of ¢ ;

> 67 | @N,J< ) = > (Z 5}Llu§- ‘PNJ /Wdew
i€Z; he{0,... M—1}n i€l
(7.62)
where

h o,
In=5;+2"NZ

and ¢;, Y are defined in (7.22) (7.50), respectively. Note that
PO ETEED DR DI o e
he{0,..,M—1} i€ly
and |lon,; — alllc — 0 as j — +o0; hence,
1 h
N _ x N _ e L
D DI v “N<M)
he{0,...,M—1}n

and

1 h
A9
NEToo‘p > mrn (M)
he{0,...,M—1}n

Recalling Lemma 7.3 we obtain the I'-liminf inequality.
In order to obtain the T-limsup inequality, by (7.52) it is sufficient to use the
scheme of Section 7.2.2 with ¢} as in (7.49). O

Remark 7.10 In the particular case when §;/¢; € N (i.e., M = 1) the constant
C' is given by the single problem defining a4(0).

Theorem 7.11 (Almost-periodic interaction of scales) Let f satisfy (H1)—(H4)
and let Fj = I, 5, with F. 5 as in (7.4). Let £; — 0 and let 6; — 0 be such that
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(7.57) holds. Suppose that 0; = (k; + r)e; with k; € N and r ¢ Q. Then there
exists the T-limit with respect to the L?(Q)-convergence

- lim Fj(u;) = fhom(Du)da:+C/ lu|? dz
o Q

j—+oo

on H(Q), where

C= al(z)dx. (7.63)
(0,1)n
ProoF. The sequence <,0§V defined in (7.50) is bounded in L*°(Q); hence,
up to subsequences, there exists VN € L>(Q) such that (pN —* N in L>(Q)
as j — 4oo. In order to identify the limit !V, it suffices to test it against
characteristic functions of n-cubes. Hence, if we prove that

/ N dx — L™(A)C (7.64)
A
for every n-cube A, we have @V = C.
We define .
Z 5 SDN,J Z )XQ £ (m )+Zm>
1€Z;
where

o 8 g &\"
Qg (27) = ] +(7M7M)

Note that also ¢§V —* N in L>°(Q). By the continuity of ¢ ;

4

Nl = N <
"\e; I\e; M

if x € Qﬁ(xf) + Z"; hence, we study the weak* convergence of

zHZ(s” <PNJ< )XQ ()20 (2) -

i€Z;

Let A be an n-cube with edges parallel to the coordinate axes and of side length
[, we compute

/ZEZZ:(;CP (:j)xczlwwzw( )dx

n nM
= ¢} /i EXZ: oy ?@N,j(Z)XQﬁ(ELj)+Z"(Z)dZ
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MTL
) -1 [ e DGR s
e - f ]<>£Z‘j€; 0y
+€ﬂ/ PN, 7X =2 z)dz, 700
? Jr, it zEZZ 7 e} N(T}HZ”() )

where we have decomposed (1/¢;)A as the union of [({/e;) — 1]™ unit cubes and
of a set R;, with L"(R;) < 2n(l/e;)" 1.

By an application of Birkhoff’s Theorem (see e.g. [60]) as in [25] Appendix
A and (7.65) we deduce

jligloo/ Z 6;7901\77]( )XQE (x §)+zn($) dx

= E"(A)/ afy(2) dz/ xXo, (2)M"dz = E"(A)/ aly(z) dz,
(0,1)n (o,nm M (0,1)n

where a¥; is defined by (7.60). By (7.64) we have

N = / aly(z) dz;
(0,1)

hence, by Lemma 7.3

lir_n/ N, dx:gaN/ lu|? de, (7.66)
J Q Q

where ¢; is defined as in (7.22), and

lim ¢V / a(z)dx . 7.67
Jm o= [ ) (7617

By (7.34)

T
lim inf = Dw;)dz > z)d 2d 7.68
}H&/Ejf(e wa) fc_/om I/IUI x (7.68)

J

and we obtain the I'-liminf inequality.
Recalling (7.52), we choose (} as in (7.49), and by (7.66), (7.67) we get the
T'-limsup inequality. |

Corollary 7.12 (Non-existence) If ¢ : (0, +00) — (0, 4+00) is a continuous func-
tion such that

) € .o (n=2) ()
;1_1%5( e) = il_I}I(l)(s( ) =0, and EIE%T—(JE[O,—FOO),

then the I'-limit of the functionals Fy 5.y as € — 0 does not exist.
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Remark 7.13 The case §; = ¢; (more generally, 0; = se; with fixed s > 0) is
covered by Theorem 7.9 and Theorem 7.11. Note that the condition lim;_. . d;/e; =
1 does not allow to conclude the existence of the I'-limit of F}; as shown by Ex-
ample 7.14 below.

Example 7.14 (Finely-tuned interplay between scales) We finally give an exam-
ple when the extra term in the limit is not described by a constant: if §; = ¢; —l—s?
then

- lim Fj(u):/ﬂfhom(Du)dz+/a(x)|u(;c)|2d:17.

Jj—-+o0 Q

In fact, by the periodicity of ¢ ; defined as in (7.48)

)
3 a3l Py (22) = 32 ol iey)

i€, € i€z,
If we consider the function ax defined by (7.53), by condition (H4)

)

() - ot

& < w(ed); (7.69)

J

hence, by (7.54) and (7.69), we have that
li 5ni2 ij - I 5n¢2 k)
i, 2 oo () =t D 87l Pan(ed)

- / an (@)|u(z)[? de (7.70)
Q

and

Nl—ig-loo QaN(ac)|u(x)\2da::/Qa(:c)|u(x)|2dx. (7.71)

Reasoning as in the proof of Theorems 7.9 and 7.11 we get the I'-liminf and the
I'-limsup inequalities.
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