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Introduction 1

Introduction

The fascinating subject of superconductivity was opened over a century ago by Onnes

[1], but until quite recently it was strictly a low-temperature phenomenon. The discovery

of the cuprate superconductors [2] in a family of transition metal oxides, with transition

temperatures up to ����� ������	 , has generated tremendous excitement for two main

reasons. First, from a practical point of view, these compounds open a new temperature

realm for superconducting devices which may have interesting commercial applications,

and these potential benefits have attracted extraordinary attention from the whole scien-

tific community. The second reason, relevant to those in a more abstract field, is the

interest in the microscopic mechanism driving superconductivity.

The first main distinction to be made is between theories which seek to describe

these new materials within the framework of standard Eliashberg approach [3] or other

weak coupling approaches arising from the exchange of other bosons, e.g. excitons

or plasmons, and theories which make a radical break with the past and place these

materials in the category of very strong coupling systems. It has become apparent from

the early years of their discovery that many properties of these materials are unusual,

and a proper understanding will require developing and extending concepts from many

areas of condensed matter physics.

The main characteristic of the superconducting state is the opening of a gap at the

Fermi level in the electronic spectrum. The difference with the conventional supercon-

ductors, where the gap opens isotropically along the Fermi surface, is that, for high-

temperature superconductors, the gap has a strong dependence on the wavevector 
 ,

having a �
��������� symmetry. Nevertheless, the superconducting state appears to be asso-

ciated with a pairing of electrons, and hence the overall superconducting behavior of

these new systems is similar to the one of the conventional materials. In fact most of the

familiar phenomena which are manifestations of the superconducting state (persistent

current, Josephson tunneling, vortex lattice) have been established also in these materi-

als, but, the microscopic mechanism underlying the high transition temperature is still

mysterious.
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There are theoretical problems connected not only with the high � � and with the

microscopic mechanism of superconductivity, but also with the many unconventional

electronic properties observed above � � , in the metallic state. The usual metals are well

described by the Landau theory of the normal Fermi liquid [4]. Within this theory it is

possible to view much of solid-state physics in terms of certain elementary excitations,

which interact only weakly with one another. The use of an elementary excitation to

describe the complicated interrelated motion of many particles has turned out to be an

extraordinarily useful device in contemporary physics.

The remarkable fact is that, although the interactions between the electrons can be

very strong and long-range (i.e. through the Coulomb potential), it is possible to de-

scribe the whole system with weakly interacting quasi-particles, with the same quan-

tum numbers of the non-interacting gas of electrons. The Landau theory breaks down if

there is a spontaneous symmetry breaking, e.g. if the gas of quasi-particles is unstable

against superconductivity, antiferromagnetism or ferromagnetism. This case has been

known for many years, and it is at the basis of the mechanism leading to the ordinary

low-temperature superconductivity: if the net interaction between the quasi-particles is

attractive in some angular momentum channel, it drives the system towards the super-

conducting state. Another, more interesting, way to break the Landau theory is when

the residual interactions among quasi-particles are sufficiently strong that it is not pos-

sible to use a description of weakly interacting gas. This is the case of one-dimensional

systems, where interactions lead to a decoupling between charge and spin excitations at

low energy. However, in two or higher dimensions, singular (i.e. diverging) interactions

at the Fermi surface are needed in order to break the Landau quasi-particle description

[5].

The transition metal oxides represent prototype examples of materials in which the

strong electron-electron and the strong electron-phonon interactions lead to phases with

a very poor conductivity or even an insulating behavior, possibly leading to a Landau

theory breaking. For example,
�������	�

and 
 �	� are dimerized insulating materials,
��������


and 
 ����
 are charge ordered insulators, ��� ��� is a ferromagnetic metal, ��� � and � ���
are Mott insulators with antiferromagnetic order. In this context the discovery of high-

temperature superconductors by Bednorz and Müller in 1986 [2] has played the role of

a sounding board for a renewed interest in this class of materials, opening a new era

of unconventional superconductors. The cuprate superconductors are layered materials

with a complex perovskite chemical structure. Copper-oxide planes ��� ��� are alternated

with insulating block layers of rare and/or alkaline earth and Oxygen atoms (see Fig. 1).

At stoichiometric composition, the cuprates are insulators with antiferromagnetic order
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Figure 1: The structure of ����� � ��� ����
 .

of the spin localized on the Copper atoms. The richness of the phase diagram of these

materials depends upon the fact that the electron density can be varied by substituting

the rare earths with lower valence elements or by adding Oxygen in the insulating block

layers. Although the new atoms reside in between the ��� � � layers the free carriers are

injected into the these layers. Hence, it is widely accepted that the ��� � � layers play a

fundamental role in determining the physics of these materials. Detailed experiments re-

veal a strong dependence of the physical properties of the cuprates upon electron doping

and temperature.

Two main features have particularly focused the attention of the scientific commu-

nity in these years: the existence of a pseudogap phase in the underdoped region, in

which the system does not have a superconducting long-range order, but there is a large

anisotropic gap in the excitation spectrum [6, 7, 8], and the presence of huge charge

and spin fluctuations, the so-called stripes, found at low temperature in many cuprates

[9, 10]. One of the major challenges of high-temperature superconductors is to under-

stand the nature of this anomalous phase above � � and the relevance of the stripes with

respect to the superconducting phase.

As suggested by Anderson in an early paper [11], strong purely electronic inter-

action combined with low dimensionality may entirely determine the physics of these

systems. Following this suggestion, a huge amount of work has been done in order to

understand and clarify how these two aspects change the usual properties of the elec-
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t

t

U

Figure 2: In second order perturbation theory in
�����

, if the spins of neighboring sites
are antiparallel, they gain energy by a virtual process creating a double occupation.

tron gas as predicted by simple mean-field treatments. Despite the intricate structure of

the real materials, it is essential to reduce the problem as much as possible and iden-

tify the minimal features which can capture the relevant physics. In this regard, much

attention has been devoted to effective low-energy models such as the Hubbard and the

so-called
� � �

model. The Hubbard model was introduced well before the discovery of

high-temperature superconductors in order to describe the ferromagnetic properties of

the transition metals [12]. In this simple model the complicated structure of the different

bound and continuum energy levels of each ion, which corresponds to a lattice site, is

reduced to a single localized orbital level. The states of the model are given by specify-

ing the four possible configurations of each site, i.e. its level can be empty, contain one

electron with either spin up or down, or be doubly occupied. The Hamiltonian contains

only two terms: a diagonal term corresponding to a positive energy
�

times the number

of doubly occupied ionic levels, and an off-diagonal term (nearest neighbor hopping)

which has a non-vanishing matrix element
�

between those pairs of states that differ by

the position of a single electron. In the strong coupling limit
��� �

, the low-energy

states of the model belong to the subspace without doubly occupied sites. At lowest

order in perturbation theory, the effective Hamiltonian, acting in the subspace without

doubly occupied sites, contains, in addition to the hopping term, an antiferromagnetic

coupling
��� �	� �
 between the spins of neighboring lattice sites (superexchange). In-

deed, as sketched in Fig. 2, in second order perturbation theory, two opposite spins gain

energy by virtual double occupation, whereas if the spins are parallel, the Pauli principle

forbids this virtual process.

These simple models of strongly correlated electrons represent a training ground for

studying how the charge and spin fluctuations may affect the nature of the ground-state.

Indeed, it turns out that the strong interaction between electrons may drive the system

towards different phases, e.g. superconducting, phase separated, stripe-like depending

on the strength of the antiferromagnetic interaction and the level of doping.

Despite remarkable progress, we still lack reliable theoretical methods that work in
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arbitrary dimension. In two dimensions in particular, even the seemingly simple goal

of understanding the magnetic phase diagram of the Hubbard or the
� � �

model is a

challenge. Traditional mean-field techniques, slave-boson approaches [13] and dynami-

cal mean-field theory [14] fail to give a satisfactory description of the phase diagram of

strongly correlated electron systems in two dimensions. One of the main problems with

these methods is the difficulty in handling the constraint of no double occupancy of the
�����

model.

Instead, quantum Monte Carlo techniques, allow us to overcome this difficulty and

to treat exactly the constraint of the
� � �

model. Moreover, by using quantum Monte

Carlo it is possible to extract unbiased information about the ground-state properties of a

generic correlated system in the whole parameter region. In its simplest formulation, the

variational Monte Carlo, both the energy and the correlation functions of a given state

can be calculated, by a stochastic sampling. In this case, the best representation of the

true ground-state is given by the wavefunction with the lowest energy, but the results are

strongly dependent on the chosen wavefunction, and therefore highly questionable. In

the variational Monte Carlo scheme, the electronic configurations are sampled according

to the square modulus of the given wavefunction, i.e. a positive definite quantity, which

can be interpreted as a probability. This fact makes possible the usual Monte Carlo

sampling, e.g. by using the Metropolis algorithm [15].

A systematic improvement of the variational Monte Carlo is given by stochastic

methods which allow us to filter out, from a starting trial wavefunction, the ground-

state, e.g. by the Green function Monte Carlo [16]. In this case the configurations are

sampled according to the true ground-state wavefunction. Because of the antisymmetry

of the many-body wavefunction, this quantity does not have a definite sign and cannot be

interpreted as a probability distribution, and therefore these stochastic techniques cannot

be straightforwardly applied. This is a particular case of the well-known sign problem,

that affects all the quantum Monte Carlo methods for fermionic systems.

In order to overcome this difficulty, some approximate method is needed. The sim-

plest one is the fixed-node [17], which allows us to obtain the best wavefunction in a

class of states with their signs being fixed by the best variational one. This method re-

lies on the choice of variational guess and therefore it contains an intrinsic bias. In this

thesis we have also developed and made use of a recent improvement of the fixed-node

approximation, the Green function with stochastic reconfiguration [18, 19], which al-

lows us to release the fixed-node approximation in a controlled way and to obtain much

more accurate estimates of the ground-state correlations.

On the other hand, whenever it is possible to improve systematically the variational
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wavefunction and estimate its accuracy, the variational Monte Carlo calculation also as-

sumes a powerful role in determining the ground-state properties of a many-body Hamil-

tonian. This can be done by applying a number � of Lanczos steps to a given starting

wavefunction and by computing the energy and the variance of the resulting state. Since

the ground-state has both the minimum energy and a zero variance, it is possible to

use the � different results to estimate the exact zero-variance energy. It turns out that,

whenever the variational wavefunction is a good approximation of the ground-state, few

Lanczos steps are enough to determine a very accurate estimate of the ground-state en-

ergy and correlation functions. By using this method, we have shown that the projected

d-wave superconducting wavefunction represents an exceptionally good variational state

whenever the lattice does not break any spatial symmetry, namely for a two-dimensional

square lattice, and we have obtained very accurate results for the energy and the super-

conducting order parameter of the
� � �

model for
� � ����� � . This method gives reliable

results in a large range of dopings and antiferromagnetic couplings
�

. Motivated by a

renewed interest in the determination of the ferromagnetic stability in the
� � � limit

[20, 21, 22], we have found that the paramagnetic phase, stable at large hole doping � ,

undergoes a second-order transition to a ferromagnetic state for � � ����� .

By allowing few Lanczos steps, however, it is not possible to change drastically the

nature of the wavefunction used as initial guess. For example, it is not possible to recover

a charge/spin inhomogeneity, like phase separation or incommensurate charge/spin mod-

ulation, if the starting wavefunction has a homogeneous charge distribution. By contrast,

within the fixed-node and the stochastic reconfiguration approaches, it is possible to

change the structure of the wavefunction and recover a charge or spin modulation. It

is worth noting that, at least within the fixed-node scheme, the charge and spin rear-

rangement is possible by changing only the amplitudes of the approximate ground-state

wavefunction, without changing its relative phases. By calculating the density-density

structure factor, we have given an accurate phase separation boundary for the Hubbard

and the
� ���

models.

Moreover, there is a strong and subtle dependence of the electron charge and spin

distribution upon the shape of the lattice cluster. If rotational symmetry is broken by

considering a rectangular cluster, the ground-state exhibits peaks in the density-density

and spin-spin correlation functions, suggesting a charge and spin ordering. These results

may explain the fact that a different numerical method, the density matrix renormaliza-

tion group, applied to rectangular clusters with cylindrical boundary conditions, finds

huge density modulations, whereas Monte Carlo techniques, with periodic boundary

conditions leads to a homogeneous ground-state. The main feature which comes out
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is that the
� � �

model has a superconducting ground-state at moderate doping, but

small perturbations in the underlying lattice, that induce some anisotropy in the original

model, may drive the system towards a charge and spin inhomogeneity.
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Chapter 1

The strongly correlated electron

systems

1.1 Introduction

The discovery of high-temperature superconductors (HTSC) by Bednorz and Müller in

1986 [2] marked the beginning of the new era of the unconventional superconductors.

Indeed Bednorz and Müller succeeded in finding superconductivity in a class of tran-

sition metal oxides, which are known to show a wide range of phase transitions driven

by strong purely electronic and strong electron-phonon interactions. Hence, transition

metal oxides range from antiferromagnetic insulators ( � ��� , ��� ����� ) to ferromagnetic

metals ( ��� ��� ), and can show metal-insulator transitions ( 
 ���	� ), spin pairing (
��� ���	�

)

or charge ordering ( 
 ����
 , ��� ��� 
 ), see Fig. 1.1 [23]. Therefore, it soon became clear that

the microscopic mechanism leading to high-temperature superconductivity has a com-

pletely different origin from the classic low-temperature superconductors, described by

the BCS theory [24, 25]. The difference between these two kinds of superconductors is

not restricted only to the value of the critical temperature � � , but involves many aspects

of their properties, both in the superconducting and in the metallic phase. Indeed, the

basis of the BCS theory is the existence of a metallic Fermi-liquid at high temperatures

[4]. Then, by decreasing the temperature, an attractive pairing interaction makes the

metal unstable and drives the system towards a state in which the electrons are strongly

bound in pairs. This scenario does not work for HTSC: indeed, through the years, it

became clear that the phase above � � cannot be described by a simple Fermi-liquid, in

view of the many anomalous properties.

A common characteristic of the HTSC is the presence of ��� � � layers; between these
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Figure 1.1: Phases of transition metal oxides, from Ref. [23].

layers there are charge reservoirs of rare-earth atoms like Lanthanum or Barium (see

Fig. 1.2). In all the stoichiometric compounds, the ���
���

ions have a magnetic moment

and, below a Néel temperature, the undoped materials are insulating antiferromagnets

with a charge-transfer gap, despite there being one hole per unit cell. This fact has led

to the consideration of the strong electronic interaction as a fundamental ingredient: in

particular, the local Coulomb interaction between two holes on a Copper atom is of the

same magnitude as the bandwidth.

As the system is doped, the antiferromagnetic order is suppressed and the sys-

tem eventually becomes superconducting (see Fig. 1.2). For example, in the case of� � � ��� � � , doping can be achieved in two different ways, either by substituting
� �
���

with � �
���

or by inserting
� � � . Although the new atoms reside in the reservoirs, in both

cases the free carriers (holes and electrons, respectively) are injected into the ��� � � lay-

ers. This fact suggests that the ��� ��� planes have a fundamental role in determining the

entire physics of HTSC.

The confirmation of the d-wave character of the superconducting gap [26], has def-

initely convinced that a purely phononic mechanism is not adequate to describe these

materials and that superconductivity is caused by a different mechanism. Many authors

have suggested theories that combine the pairing ideas with the presence of strong anti-

ferromagnetic correlations. Among these there are the spin-bag theories [27], the nearly

antiferromagnetic Fermi-liquid theories [28], and theories based on a self-consistent

fluctuating exchange approximation [29].
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Figure 1.2: The structure of
� � � ��� � � and the phase diagram of

� � � ��� � � � ��� � � . The
��� �	� planes are believed to be the active region when additional holes are added by
replacing some Lanthanum with Strontium.

A different point of view considers the superconductivity as caused by charge fluc-

tuations [30, 31]. As pointed out first in Ref. [30], the strong electronic interaction

between carriers can lead to phase separation, that is a state in which the mobile carriers

cluster together, leaving the rest of the system undoped. This is what is experimen-

tally observed for the Oxygen doped
� � � ��� � � ��� [32]. In this compound the long-range

Coulomb repulsion between charge carriers in the ��� � � planes is screened by the mo-

bile Oxygen atoms in the reservoirs. By contrast, in those compounds in which the

long-range Coulomb repulsion is not screened, the long wavelength charge fluctuations

are energetically unfavorable and only microscopic inhomogeneities are possible [30].

One of the most puzzling aspects of the HTSC is the anomalous behavior of the

metallic state above the superconducting transition temperature. Both in the optimally

doped region, where the critical temperature has the maximum value, and in the under-

doped region, there is clear evidence that the metallic state cannot be described by the

usual Fermi-liquid theory [4]. At optimal doping, the linear behavior of the resistivity

from the critical temperature over a wide range of temperatures [33] has led many au-

thors to claim that there is a breakdown of the Fermi-liquid theory in the normal state

[34]. In the underdoped regime, below a crossover temperature � �
the cuprates are char-

acterized by the opening of a large pseudogap in the single-particle excitation spectrum
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and in the spin and charge response function, as observed in angle resolved photoemis-

sion, tunneling and specific heat [35]. Although in this state there is a gap, of � ������� �
symmetry, there is no long-range order [7, 8].

On the other hand, one of the longstanding mysteries of HTSC concerns the sup-

pression of superconductivity in
�
�
� ��� � � � ��� � � at � � �� [36]. Different studies

[9, 37, 38, 39] of this and related cuprates materials, such as
�
� ��� � ��� � ��� � � � � � ��� � � , have

established that the suppression of � � requires both a hole concentration of � � �� and

a lattice distortion from the usual low-temperature orthorhombic to the low-temperature

tetragonal structure. Furthermore, at the same doping, neutron studies have found a

clear evidence of static incommensurate ordering of antiferromagnetic stripes separated

by charged domain walls [9, 39]. The presence of dynamic incommensurate spin and

charge fluctuations is well established also for other hole densities and different com-

pounds [40, 41]. The understanding of the role of these inhomogeneities remains a

challenging unsolved problem.

Definitely, the discovery of HTSC has given a great impetus to clarifying old issues

and to investigating new possible phases in solid state physics. Indeed, HTSC has been

the starting point for studying different problems such as the metal-insulator transition,

the breakdown of the Fermi-liquid theory, charge and spin order in solids. Moreover, in

the last few years it has become evident that many different materials, such as mangan-

ites [42], fullerides [43], organic conductors [44], cannot be described by standard theo-

ries and electron-electron correlations play a crucial role in determining their physics.

In this regard, simple microscopic models of strongly correlated electrons represent

a very useful training ground to understand the fundamental physics of the much more

complicated real materials.

1.2 Microscopic models

The simplest model of interacting electrons on a lattice is the Hubbard Hamiltonian [12]

	 � � ��
��
�� ����� �����
�� � � ��� ��� ��
 
�� 
��  � 
�� !#" (1.1)

where $&% stands for nearest neighbors, � 
�� � ( � �
�� � ) destroys (creates) an electron with

spin ' at site ( , and � 
)� � � �*�
)� � � 
�� � . Each site can be empty, singly occupied, by an

electron with spin up or down, or doubly occupied. Electrons can hop from a site to the

neighboring one with an amplitude
� �

. The interaction between particles is reduced to

a local density-density term, while all the non-local terms are dropped.
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A more realistic model for describing the ��� ��� layers is the three-band Hubbard

model

	 � ��� 
 
 � � �
�� � � 
�� � � ��� 

� � � �� � � � � � � � ��� 
 
 � �
��  � 
��  � �
�� ! � 
)� !

� ��� 

� � �� �  � � �  � �� � ! � � � ! � ���	� 
��
�� � � � � ��
 � �
�� � � 
)� � � �� � �	
 � � � �	


� ����� 
��
�� � � � � �
�� � � � � � �
	 � � � " (1.2)

where � �
�� � creates a ��� 
�� �
��� ������� hole with spin ' at Copper site ( , � �� � � creates an
� 
�� � � � ,

or
� 
�� � � � , hole with spin ' at Oxygen site � , �	� and

���
are the atomic energies of Copper

and Oxygen respectively, and � �	� ����� ������� � .
���

and
���

are the local Coulomb

repulsion on Copper and Oxygen atoms,
���	�

is the Coulomb interaction between nearest

neighbor Copper and Oxygen atoms. Finally,
�����

is the ��� � � hybridization, and the

last sum runs over the four Oxygen atoms around the Copper site ( .
Although the Hubbard model (1.1) is certainly a very simple Hamiltonian of inter-

acting electrons on a lattice, there are no exact solutions for spatial dimensions greater

than one [45], and even at zero temperature the ground-state properties as a function of

the interaction strength
�

and the electron density are not known. In Fig. 1.3 we report

the Hartree-Fock phase diagram of the two-dimensional Hubbard model as calculated

in Ref. [46]. Although the Hartree-Fock approximation gives a presumably reasonable

description of the true ground-state only in the weak-coupling limit, this approach can

give important insights into the competing phases, e.g. metallic, or with spin or charge

order.

Furthermore, the most intriguing problem in strongly correlated electron models is

the possibility of having superconductivity from a purely repulsive interaction. The

nature and the extent of the pairing correlations in the two-dimensional Hubbard model

near half-filling remains an open question. Diagrammatic calculations based upon the

exchange of spin fluctuations [28, 29] suggest the possibility of d-wave pairing. Within

quantum Monte Carlo calculations it turns out that the superconducting correlations are

suppressed by increasing the electron interaction both in the single-band [47] and in the

three-band Hubbard models [48]. On the other hand, within a renormalization group

approach [49], a � � � ��� � superconducting ground-state at infinitely small coupling and

finite doping has been recently obtained.

In the strong coupling regime, i.e.
� � �

, the Hubbard model can be mapped onto



14 The strongly correlated electron systems

Figure 1.3: Hartree-Fock phase diagram for the two-dimensional Hubbard model from
Ref. [46], � is the electron density. A, F, and P denote antiferromagnetic, ferromagnetic,
and paramagnetic ground-states, respectively.

the so-called
� ���

model, projecting out the subspace with doubly occupied sites

	 � � � 
� 
)� ����� �
�
� �
)� �

�
� ��� ��� � 
 � 
�� � �

��� 
�� � � � �
� � 
 � ��� (1.3)

where
�
� �
�� � � � �
�� �



� � � 
��
	� � , � 
 � � � � 
�� � is the electron density on site ( ,

� 
 �� � � ��� ��*�
�� ��
 ��� ��� �� 
�� ��� is the spin operator and 
 ��� ��� are Pauli matrices. The antiferromag-

netic coupling
�

is related to the Coulomb interaction by
� � � �

� ���
[50].

The relevance of this model for HTSC is given by the fact that also the more realistic

three-band Hubbard model (1.2) reduces to the
� � �

model for large on-site Copper

repulsion
��� � ���	� " � �	� " ��� " ���	� [51], although in this case the expression for

�
is more

complicated
� � � �

��	�

 � �	� � ���	� �

��� ���� � �
� � �	� � ����� � (1.4)

Using the realistic values for the parameters [52], it is found that
� � ���

���
���
� � .

At half-filling, that is when the number of electrons equals the number of sites, the

charge dynamics is completely frozen and only the spin degrees of freedom are effective,

in this case the
� � �

model is equivalent to the Heisenberg model. Although we lack

the exact solution of the Heisenberg model for dimensions greater than one, it is well

accepted that, in two dimensions, the ground-state is magnetically ordered and has a
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Figure 1.4: Two holes in an antiferromagnetic background. In the
� � �

limit, the
energy loss with respect to the ordered state is given by number of broken bonds. If the
holes are far apart (a) the energy loss is ��� � whereas if they form a cluster (b) it is ��� � .

finite staggered magnetization in the thermodynamic limit [16, 53]. This fact strongly

suggests that, at least at half-filling, the cuprates are well described by this Hamiltonian.

The crucial point for HTSC is whether the underdoped regime can be described by

doping the Heisenberg model, that is by the
� ���

model.

1.2.1 Phase separation

Recently, the problem of a finite number of holes in an antiferromagnetic background

has attracted considerable attention. At finite hole doping there is competition between

the kinetic energy, which favors a homogeneous delocalized state, and the interaction

energy, which favors an inhomogeneous localized state. This competition may give rise

to strong charge fluctuations and eventually to phase separation or charge density waves.

In order to gain insight into the possible charge inhomogeneities in the lightly doped
� � �

model, it is instructive to consider the case of two holes and
� � �

. In this limit

the kinetic energy can be neglected, and the energy of a state with two widely separated

holes is � � �
� � ��� � , where �

�
is the energy of the uniform antiferromagnetic

background and � is the antiferromagnetic energy per bond. By contrast the energy of a

state with the two holes clustered together to form a pair is � � �
� � ��� � (see Fig. 1.4).

The same argument holds for a finite number of holes.

This simple variational calculation suggests that, at least for very large values of
�

,

the state in which the holes are segregated, leaving the rest of the system undoped, is

favored over the uniform one. At finite
�

the loss in antiferromagnetic energy competes

with the gain in kinetic energy, and it is not at all obvious if the homogeneous state is
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unfavorite.

In an early work, Emery and co-workers [54] claimed that, at low doping, the

ground-state of the
� � �

model is phase-separated for all the interaction strength
�

.

Their statement was supported by an exact diagonalization on a small lattice cluster and

by a variational calculation for
��� �

. Although the exact diagonalization results give

insights into the physical properties of the cluster under consideration, for fermion sys-

tems it is impossible to consider sizes with more than � � � � �
sites and, for such small

lattices, any size scaling in more than one dimension is highly questionable. Since the

phase separation is a long-wavelength instability it is crucial to consider large systems.

Moreover, on small lattices and for low doping it is not easy to distinguish between

phase separation and pairing. For example, for a 16-sites lattice, the clustering of two

holes can represent both pairing or phase separation at a doping of � � ��� �
�
.

In the thermodynamic limit, the compressibility of a stable system is finite and pos-

itive. Since the compressibility can be related to the second derivative of the energy per

site � 
 � � with respect to the density �

� � ��� � ��
�
� � � � " (1.5)

it turns out that, in an infinite system, the stability criterium requires that the energy per

site is a concave function of the density, see Fig. 1.5 (a). By contrast, if the compressibil-

ity is negative, the system phase-separates, i.e. it creates two macroscopic regions with

densities � ��� and � � � . In this case, the energy of the homogeneous state can be lowered

by forming two separated regions with different densities, being the total energy given

by the Maxwell construction, see Fig. 1.5 (b).

In Ref. [54], a very clever way to detect phase separation by using energy calcula-

tions has also been suggested. Assuming that, at a fixed hole doping � , the system is

composed of a hole-free and a hole-rich phase, with density � , and assuming that the

volume is large enough that the surface interaction can be neglected, the energy per site

can be written in the form

� 
 � � �
	 � �� � 
 � " ��� �
	 � �� � �
� �
� �� � � � � � �� � ��� " (1.6)

where � is the total number of sites, � � is the number of sites in the hole-rich phase, � �
is the energy per site of the Heisenberg (hole-free) phase, and � � is the energy per site

of the uniform hole-rich phase, which is a function of � ����� � � � , with
���

number of

holes, finally the hole density of the total system is � ����� � � . For fixed values of
���

and � , i.e. for a given doping � , � 
 � " ��� is a function of � � . The system phase-separates



Microscopic models 17

Figure 1.5: Energy per site landscape versus doping for a stable (a) and a phase-
separated (b) system. Energy per per hole versus doping for a stable (c) and unstable (d)
system. The dashed line is the Maxwell construction.

if � 
 � " ��� has a minimum as a function of � � at � ��� � . The energy per site can be

rearranged into the form � 
 � " ��� � � � � � � 
 ��� " (1.7)

where � 
 ��� � � � � � �� (1.8)

is the energy per hole in the (uniform) hole-rich region. Therefore phase separation

occurs if
� 
 ��� has a minimum at finite � , see Fig. 1.5 (c) and (d). It is worth noting that,

in the thermodynamic limit, if the system phase-separates,
� 
 ��� is a flat function of � for

� � � � � � , whereas, in a finite size lattice, due to surface terms,
� 
 ��� can be slightly

convex.

By using the above mentioned method, different authors have addressed the problem

of finding out the critical value
� � above which there is phase separation at low doping in
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the
�����

model by using different numerical techniques [55, 56, 57, 58, 59, 60, 61, 62,

63]. It is worth noting that because the Hubbard model reduces to the
� � �

one in the

strong coupling limit, one could expect that, if the
� � �

model phase-separates at small
�

’s, the Hubbard model will also at large
�

’s. Although there is no general consensus on

the value of
� � , most of the calculations agree that it is between ����� � and � �

� �
. Different

quantum Monte Carlo calculations [57, 58, 59, 60] agree with a
� � � ����� � , by contrast

in Refs. [61, 62] it is found that there is phase separation at all the interaction strengths.

These discrepancies are probably due to the fact that in the latter work the different

dopings are not achieved by varying the number of holes while keeping the lattice size

constant, but by varying the lattice size while keeping the number of holes constant.

Although this procedure probably overcomes the problems of having shell effects, it

forces one to use fairly small sizes in the delicate low-doping region.

The high-temperature expansion [55, 56] gives
� � � � �

� �
, but this method suffers

from the difficulty of extrapolating the ground-state energy from very high temperatures.

Finally a recent density matrix renormalization group calculation [63] gives
� � � � . This

value is found by calculating the critical value for
�

-leg ladders with increasing number

of legs (up to
��� � ) and extrapolating to the two-dimensional limit.

1.2.2 Superconductivity

Many of the methods that have been used in establishing results on charge or spin order

have not been able to provide clear and definite evidence for or against superconduc-

tivity. The main problem of quantum Monte Carlo techniques is that the sign problem

prevents us from reaching low enough temperatures to show a clear superconducting

signal [64, 65, 66]. Within the high-temperature expansion it is not clear whether series

of high enough order can be calculated to reach a temperature below which a signal of

superconductivity would be observed. As far as the exact diagonalization methods are

concerned, Dagotto and Riera [67] found a strongly enhanced pair-pair structure factor

in a ��� � cluster at quarter filling for
� �

� �
. Their results indicate that the symmetry

of the order parameter is � ��������� . However the ��� � system is still quite small and this

signal may be due to short-range correlations instead of true off-diagonal long-range

order.

Insights in favor of superconductivity come from variational results. Although vari-

ational calculations are limited by the small number of wavefunctions one can choose,

they nevertheless provide useful information about the ground-state properties and they

give a good starting point for further investigations. The work is especially hard in the
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� � �
model, where many different magnetic and charge-ordered phases are compet-

ing. Indeed, from variational calculations it becomes clear that in the low-doping region

antiferromagnetic ordered phases are competing with superconductivity, the two phases

having very similar energies. Moreover it is not clear if it is possible to have a coexis-

tence of these two phases or if they are exclusive.

Gros [68] suggested that the � ��������� BCS wavefunction projected onto the subspace

of no doubly occupied sites is a very good variational state for the
� � �

model. Moreover,

Giamarchi and Lhuillier [69] found the d-wave state stable up to � � ����� .

More recently, different more involved techniques have been used to improve the

variational state by using few Lanczos steps [70], or the fixed-node approximation [17]

on the lattice. The former approach has given controversial results. Shih and co-workers

[71] have shown that the pair-pair structure factor is suppressed and they argued that

there is no superconducting order for
��� � � � � . Conversely, Heeb and Rice [58] identify

a finite region of d-wave superconductivity for hole densities down to � � ��� � � .

Calandra and Sorella [72] have suggested that, instead of calculating the long-range

pair-pair correlations, in Monte Carlo methods a more reliable and less biased quantity

is the short-range superconducting order parameter. Indeed it is found that by increasing

the accuracy of the calculation, the order parameter remains finite and sizeable for
� �

��� � � and � � � � �
�
.

The density matrix renormalization group calculations present a completely different

scenario. Using a rectangular cluster with open boundary condition in one direction, it is

found that the ground-state has a huge charge modulation and that the superconducting

pair-pair correlations are almost negligible [73].

As far as the Hubbard model is concerned, a superconducting instability, with a max-

imal � � � � � � 	 at � � ���
�
, has been found for

� � �
� �

within the dynamical cluster

approximation [74]. Moreover a wide region of coexistence of antiferromagnetism and

superconductivity comes out at
� � � � from a slightly different approach [75]. Finally,

a weak-coupling renormalization group approach [49] also gives rise to a d-wave order

parameter in a large region of the phase diagram of the Hubbard model. These results

are in strong disagreement with what is found in quantum Monte Carlo calculations [47],

where no sign of superconducting correlations is detected.

1.2.3 Magnetic order

At half-filling both the
� � �

and the Hubbard model are antiferromagnetic insulators.

The
� � �

model reduces to the Heisenberg model, and due to the constraint of no doubly
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occupied sites, only the spin exchange interaction is relevant. By contrast in the Hubbard

model there are both charge and spin fluctuations, but at half-filling, because of the

completely nested Fermi surface, the ground-state is an insulator antiferromagnetically

ordered at any finite interaction
�

. At finite doping, the hole hopping highly frustrates

the antiferromagnetic background, leading to the suppression of the long-range order.

This has been verified in the
� � �

model by Variational Monte Carlo [69, 76] which

found a rapid suppression of antiferromagnetism with doping, and by high-temperature

expansion [77] which found a sharp antiferromagnetic peak in the spin-spin structure

factor at � � 
�� " � � at half-filling, which is present but suppressed by increasing the

doping. Moreover, in the low-doping region of the Hubbard model it has been found by

using the Hartree-Fock approximation that the commensurate antiferromagnetic state is

unstable against domain-wall formation [78], and by Monte Carlo calculations that the

spin-spin structure factor develops incommensurate peaks at wavevectors near � [79].

Another type of magnetic order, not related to cuprates, is the ferromagnetic insta-

bility, that may occur at low doping and small coupling, i.e.
� � �

. In particular, one of

the few rigorous theorems in strongly correlated systems refers to one hole in the
� � �

limit [80]. In this case, Nagaoka showed that the ground-state is fully polarized, that is

it has all the spins aligned. Although the Nagaoka theorem holds at any finite size and

in the thermodynamic limit, there are no generalizations at finite hole densities. Indeed,

the case of one hole is not relevant for infinite size and can only be a ”singular point”.

The question of ferromagnetism in the infinite-
�

Hubbard model (or equivalently

the
� � � case of the

� � �
model) has attracted much interest in the past years

[20, 21, 22, 81, 82, 83, 84]. In particular, it has become clear that, at least for small

sizes, there are huge boundary effects that affect the result [84]. Extrapolating series

of few coefficients, the high-temperature expansion gives an energy much lower than

the ferromagnetic one, suggesting that at any finite hole doping the ground-state is not

fully polarized. It is worth noting that the high-temperature expansion is not a variational

method and extrapolation from high temperature down to zero temperature is highly non

trivial. By contrast, pure variational calculations [21, 22], which are based on a single

spin-flip on the ferromagnetic state, give a finite critical hole density below which the

ground-state is fully polarized.
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Chapter 2

Numerical methods

2.1 Lanczos

From a general point of view, the ground state ��� � % of an Hamiltonian
	

can be ob-

tained by the power method from a trial wavefunction ����� % , provided that $����	��� � %�
� � .

Indeed, if we define the operator � �
� � 	
, with

�
a suitable constant chosen to allow

us the convergence to the ground-state, we have that:��������� % � 
 � � �
� � � ��� � ��� � % � 
 
��� � � � � � 
� � �

� � � � 
 ��� 
 %�� " (2.1)

where � 
 and ��� 
 % are the eigenvalues and eigenvectors of
	

respectively, and

�

 �

$�� 
 ����� % . Therefore � � 	����� � � ����� % � ��� � % " (2.2)

that is, as � goes to infinity, the iteration converges to the ground-state of the Hamiltonian	
.

Starting from the power method, it is possible to define a much more efficient it-

erative procedure for the determination of the lowest eigenstate of Hermitian matrices,

known as the Lanczos technique. Indeed, within the power method, the ground-state

is approximated by a single state, i.e. ��� � % �!� � ����� % , by contrast, the basic idea of

the Lanczos method, is to use all the information contained in the powers � 
 ����� % , with

( � � " � � � " � to reconstruct the ground-state ��� � % , namely��� � % � 

 � � � � � � � �#" 
 	 
 ��� % � (2.3)

However, the vectors generated by the power method are not orthogonal, whereas within

the Lanczos method a special orthogonal basis is constructed. This basis is generated



22 Numerical methods

iteratively. The first step is to choose an arbitrary vector ��� � % of the Hilbert space, the

only requirement is that this vector has a non-zero overlap with the true ground-state.

If there is no a priori information about the ground-state, this requirement is satisfied

by selecting random coefficients in the working basis. If some information about the

ground-state is known, like its momentum, spin, or its properties under rotation, then

it is useful to initialize the starting vector using these properties, choosing a vector that

belongs to the particular subspace having the right quantum numbers.

The Lanczos procedure consists in generating a set of orthogonal vectors as follow:

we normalize ��� � % and define a new vector by applying the Hamiltonian
	

to the initial

state, and we subtract the projection over ��� � %
� � ��� � % � 	 ��� � % � " � ��� � % " (2.4)

the coefficients " � and
� �

are such that $�� � ��� � % � � and $�� � ��� � % � � , that is:

" � � $ � � � 	 ��� � % (2.5)
� � � $ � � � 	 ��� � % � (2.6)

Then we can construct a new state, orthogonal to the previous ones as

� � ��� � % � 	 ��� � % � " � ��� � % � � � ��� � % " (2.7)

with

" � � $ � � � 	 ��� � % (2.8)
� � � $ � � � 	 ��� � % � (2.9)

In general the procedure can be generalized by defining an orthogonal basis recursively

as
� � � � ��� � � � % � 	 ��� � % � " � ��� � % � � � ��� � � � % " (2.10)

for � � � " � " � " � � � , being ��� � % � � ,
� � � � and

" � � $�� � � 	 ��� � % (2.11)
� � � � � $�� � � � � 	 ��� � % � (2.12)

It is worth noting that, by construction, the vector ��� � % is orthogonal to all the previ-

ous ones, although we subtract only the projections of the last two. In this basis the
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Hamiltonian has a tridiagonal form

	 �

�������
�
" � � � � � � � �
� � " � � � � � � �
�

� � " � � � � � �
� �

� � " � � � �
� � � � � � � � � � � � � � �

��������
� � (2.13)

Once in this form, the matrix can be easily diagonalized by using standard library sub-

routines. In principle, in order to obtain the exact ground-state of the Hamiltonian, it is

necessary to perform a number of iterations equal to the dimension of the Hilbert space.

In practice, the greatest advantage of this method is that a very accurate approximation

of the ground-state is obtained after a very small number of iterations, typically of the

order of 100, depending on the model.

The main limitation of this technique is the exponential growing of the Hilbert space.

Indeed, although the ground-state can be written with a great accuracy in terms of few��� � % as ��� � %��
	 �
���


 � � � � � ��� � % " (2.14)

it is necessary to express the general vector of the Lanczos basis ��� � % in a suitable

basis to which the Hamiltonian is applied. For example, for the spin-
�� Heisenberg

model, in which each site can have an up or a down spin, it is convenient to work in

the Ising basis, where �
� is defined at every site, i.e. a generic element is given by� � % � ��� "�� "�� " � "�� " � " � "�� " � � � % . For the Hubbard model, each site can be singly

occupied, by a spin up or down, doubly occupied by opposite spins or empty, and the

generic element reads � � % � ��� " � " � � "�� " � " � " � � " � " � � � % . For the Hubbard

model on 16 sites at half-filling and ��� � � the Hilbert space is about � � � � ��� � , a huge

computer memory. In practice this problem can be heavily alleviated by using the sym-

metries of the Hamiltonian (in Appendix A it is shown how to implement symmetries

in the Lanczos algorithm). Indeed, in the case of periodic boundary conditions, there is

translational invariance and the total momentum of the system is a conserved quantity.

Moreover, on square lattices also discrete rotations of
� � �

and reflections with respect

to a particular axis are defined and can give rise to good quantum numbers.

Since in general translations and rotations do not commute, it is not possible to

diagonalize the Hamiltonian in a subspace with a definite momentum and a definite

symmetry with respect to rotations. However, for particular values of the momentum it

is possible to define also the rotational quantum number. For example, for � � 

� " � � or
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� � 
�� " � � the Hamiltonian has a block-form also with respect to rotations. After the

introduction of these symmetries, the Hilbert space of the Hubbard model at half-filling,� � � � , zero momentum and � -wave is about � �
�
� � � � . Therefore it comes out that the

use of the symmetries is a fundamental achievement to perform a diagonalization of the

Hubbard model, at least near half-filling.

In principle the Lanczos procedure, as described in Eqs. (2.10), (2.11) and (2.12),

can give informations about both the ground-state energy and the ground-state vector.

In practice, during the Lanczos matrix construction, only three vectors are stored, i.e.��� � � � % , ��� � % and ��� � � � % (by using an improved algorithm, it is possible to store only

two vectors), because each element ��� � % of the basis is represented by a large set of co-

efficients, when it is expanded in the basis selected to carry out the problem. Therefore,

it is not convenient to store all the ��� � % vectors individually, since this procedure would

demand a memory requirement equal to the size of the Hilbert space times the number

of Lanczos steps. A possible solution of the problem is to run the Lanczos twice: in

the first run we find the coefficient � � of Eq. (2.14), in the second run the vectors ��� � %
are systematically reconstructed one by one, multiplied by their coefficient and stored in��� � % .

Within the Lanczos method, it is useful to consider not only the
� � � cluster, but

also other tilted square lattices, which have axes forming non-zero angles with lattice

axes. In general it is possible to construct square cluster with � � �
� ��� � , being

� and � positive integers. Only cluster with � � � (or �
� � ) or � � � have all

the symmetries of the infinite lattice, clusters with � 
� � can have rotations but not

reflections with respect to a given axis.

In this thesis, using all the lattice symmetries, we have diagonalized the Hubbard

model on 18 sites, where the symmetrized Hilbert space at half-filling and ��� � � is

about � � � ��� � [85]. By contrast, due to the smaller bare Hilbert space, the
� � �

model can be diagonalized in rather bigger cluster, i.e. for 4 holes on 26, where the

symmetrized Hilbert space is about � � � ��� � .

2.2 Variational Monte Carlo

One of the most useful properties of quantum mechanics is that the expectation value of

an Hamiltonian
	

over any trial wavefunction ��� % gives an upper bound to the ground-

state energy �
�

� � $ � � 	 ��� %
$�� ��� % � �

� " (2.15)
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this can be easily seen if we expand ��� % in terms of the eigenfunction ��� 
 % of
	

with

energy � 

$�� � 	 ��� %
$�� ��� % � 
 
 � 
 � $�� 
 ��� % � �$ � ��� % � �

� � 
 



� 
 � �

� � � $ � 
 ��� % � �$�� ��� % � �
� � (2.16)

In this way, if we have a set of different wavefunctions, we can choose the best approxi-

mation of the ground-state by looking for the lowest expectation value of the energy.

In general, due to the rapid growth of the Hilbert space with the lattice size, the vari-

ational expectation values (2.15) can be calculated exactly only for very small clusters,

e.g. about 40 sites for the spin-
�� Heisenberg model. On larger sizes only a Monte Carlo

approach to evaluate Eq. (2.15) is possible. In order to show how statistical methods can

be used to calculate this kind of expectation values, it is useful to introduce complete

sets of states � � % in Eq. (2.15)

$�� � 	 ��� %$�� ��� % �
�

� � � � � 
 � 
 � 	 � � � � � 
 ����
� � � 
 ��� " (2.17)

where � 
 ��� � $ � ��� % , 	 � � � � � $ � 
 � 	 � � % , and for the sake of simplicity we have restricted

to real wavefunctions. Defining the local energy � � as

� � � $ � 
 � 	 ��� %
$ � ��� % � 


� � � 
 � 
 �� 
 ��� 	 � � � � " (2.18)

Eq. (2.17) can be written as

� � �
� � � � � 
 ����
� � � 
 ��� � (2.19)

The local energy � � depends crucially on the choice of the wavefunction ��� % , in partic-

ular, if ��� % is an eigenstate of
	

with eigenvalue � , it comes out from Eq. (2.18) that

� � � � , and the Monte Carlo method is free from statistical fluctuations.

The evaluation of Eq. (2.19) can be done by generating a sample � of � configura-

tions according to the probability distribution

� 
 ��� � � � 
 ����
� � � � 
 � 
 � (2.20)

and then averaging the values of the local energy over these configurations

� � �
�



�����

� � � (2.21)

In practice, the simplest method to generate a set of configurations according to the

probability distribution
� 
 ��� is the Metropolis algorithm [15]: given a configuration � ,
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a new configuration � 
 is accepted if a random number � , between 0 and 1, satisfied the

condition

� �
� 
 � 
 �� 
 ��� � � � 
 � 
 �� 
 ��� � � " (2.22)

otherwise the new configuration is kept equal to the old one, � 
 � � .

By the Variational Monte Carlo, it is possible to calculate any kind of expectation

value over a given wavefunction in a similar way

$�� % � $�� � � ��� %
$�� ��� % � �

� � � � � 
 ����
� � � 
 ��� " (2.23)

where

� � � $ � ��� ��� %
$ � ��� % � 


� � � 
 � 
 �� 
 ��� � � � � � � (2.24)

An important point is that the only rigorous result is the upper bound to the ground-state

energy, and there are no criteria about the accuracy of other properties of the ground-

state, such as $�� % .
2.2.1 Systematic improvement by Lanczos steps

A given trial wavefunction ��� % can be systematically improved by applying � times the

Hamiltonian and then by constructing a linear combination of all the � terms����� � � � � � � ��� % � 

 � � � � � � � � " 
 	 
 ��� % " (2.25)

where the coefficients " 
 are variational parameters. If we want to calculate the expec-

tation value of
	

over Eq. (2.25), we need all the moments $�� � 	 
 ��� % up to the order�
� � � . In principle, if we want to calculate exactly the moments, the above description

is straightforward, but, in practice, it has serious computational limitations, because the

time required for the evaluation of the moments grows exponentially with the number

of Lanczos steps. On the other hand, if we compute the moments stochastically, we face

the problem of having statistical errors, that strongly affect the final expectation value of

the Hamiltonian.

What we can easily do is to consider � � � , in this case it is possible to evaluate the

expectation value of the Hamiltonian over����� % � 

� � " 	 ����� % " (2.26)

with a reasonable amount of computer time. For an efficient way to find the optimal

value of the parameter " see Appendix B. In this case we have

� � � $���� � 	 ����� %$ �	������� % �
�

� � � � ��� 
 � 
 � 	 � � � � �	� 
 ����
� � �� 
 ��� " (2.27)
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where ��� 
 ��� � $ � ����� % .
By defining the local energy as

� �� � 

� � 	 � � � � ��� 
 � 
 ��	� 
 ��� " (2.28)

we obtain

� � � �
� � �� � �� 
 ����
� � �� 
 ��� " (2.29)

which can be stochastically sampled using Monte Carlo by generating configurations

according to � �� 
 ��� � � � � � �� 
 � 
 � . Notice that the ratio � � 
 � 
 � � ��� 
 ��� , necessary to the

Metropolis algorithm, is evaluated by using the fact that��� 
 � 
 ���� 
 ��� � $ � 
 � 
 � � " 	 ����� %
$ � � 
 � � " 	 � ��� % � � 
 � 
 �� 
 ��� �

� � " � � �� � " � � � � (2.30)

Therefore, at each Monte Carlo step, we have to calculate the local energy of the trial

wavefunction ��� % both on the configuration � and � 
 . This kind of calculation takes

order of the number of the lattice sites operations. Notice that we have to evaluate all

the matrix elements $ � 
 � 	 ��� % , even if the movement from � to � 
 is not accepted. It

is easy to see that, if we want to perform � Lanczos steps exactly, we have to calculate

quantities like $ � 
 � 	 
 ��� % for ( � � " � � � " � � � � , which takes an exponential increasing

time with � . Indeed we have to consider all the possible configurations which come from

the application of
	 


to � 
 .
In Section 2.4, we will show an efficient way to perform the Lanczos steps by using

the stochastic reconfiguration technique.

2.3 Green function Monte Carlo

2.3.1 Basic principles

The Green function Monte Carlo (GFMC) [16] is a stochastic technique that allows us

to filter out the ground-state ��� � % of an Hamiltonian
	

from a trial wavefunction ����� % ,
provided that $���� ��� � %�
� � , by using the power method Eq. (2.1).

In practice we define a basis � � % (e.g. the spin configuration of the lattice) and the

iterative application of the Green function � � � � � given by Eq. (2.1) reads� � � � 
 � 
 � � 

�
� � � � � � � 
 ��� � (2.31)

On large sizes it is not possible to evaluate exactly this recursive equation. Indeed,

after few steps, the application of � generates transitions to a very large number of
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different states, implying a huge amount of memory occupation. Therefore an alternative

approach is necessary. The solution is to sample in a statistical way the matrix-vector

product (2.31) by defining a Markov process.

In order to implement efficiently the power method, it is convenient to consider not

the original matrix � , but the slightly more involved non-symmetric one [86]

�� � � � � � � � 
 � 
 �� � 
 ��� � � � � � " (2.32)

where � � 
 ��� is the so-called guiding wavefunction. The convenience of using
�� instead

of � comes out from the following argument. If we consider
�� , the local energy � � is

given by

� � � 

� � � � 
 � 
 �� � 
 ��� 	 � � � � � 


� � �	 � � � � � (2.33)

Thus if � � 
 ��� is exactly equal to the ground-state of
	

then � � � �
�
, independently

on � . This is the so called zero-variance property, namely if the guiding wavefunction

approaches an exact eigenstate of
	

, the method is free of statistical fluctuations. The

guiding wavefunction has to be as simple as possible to be efficiently implemented in

the calculation of the matrix elements and as close as possible to the ground-state of � .

Moreover, it is easy to show that if � 
 
 ��� is an eigenvector of � with eigenvalue � 
 ,
then � � 
 ��� � 
 
 ��� is an eigenvector of

�� with the same eigenvalue, i.e. � and
�� have

the same spectrum. It is worth noting that, after the importance sampling transformation

(2.32), the iteration step (2.31), reads� � � � 
 � 
 � � � 
 � 
 � � 

�

�� � � � � � � 
 ��� � � 
 ��� � (2.34)

For simplicity, from now on the bar over an operator represents the same operator after

the importance sampling transformation.

2.3.2 Statistical implementation of the power method

In order to define the statistical implementation of Eq. (2.34), we decompose the matrix
�� � � � � in terms of three factors:

�� � � � � � � � � � � � � � � � � � " (2.35)

where � � � � � is the sign of
�� � � � � , � � is a normalization factor and � � � � � is a stochastic

matrix, i.e. it fulfills the conditions � � � � � � � and
�

� � � � � � � � � .
The basic element of the stochastic process is the walker, which, in the simplest

formulation, is defined by

 � "�� � , i.e. by its configuration in the lattice � and by a



Green function Monte Carlo 29

weight � . Stochastically, the iteration (2.34) is interpreted as a transition of the walker��� � 
 , whereas the weight of the walker is scaled � � �

 � � � � � � � � � . This scheme

defines a Markov process in the walker space

 � "�� � . The basic idea of the stochastic

implementation of Eq. (2.34) is that, although the number of non-zero elements of
�� � � � �

is of the order of the Hilbert space times the number of sites, the number of non-zero

entries in each column is of the order of the number of sites. Therefore all the non-zero

elements of
�� � � � � for a fixed � can be computed, even for large size systems.

The previous Markov iteration allows us to define the evolution of the probability

distribution
� � 
 � " ��� to have a walker with weight � and configuration � , namely:

� � � � 
 � 
 " � 
 � � 

�

� � � � �
� �

� � � �



� � � � � � � " � � � (2.36)

The first momentum of the probability distribution
� � 
 � " ��� completely determines the

wavefunction wavefunction � � 
 ��� of the power method (2.1)� � 
 ��� � � 
 ��� � �
� � � � � 
 � " ��� � (2.37)

Indeed, it can be easily seen that the evolution (2.36) correctly reproduces the dynam-

ics of the wavefunction, Eq. (2.34). Therefore, after an equilibration, the probability
� � 
 � " ��� converges to its equilibrium limit

� � 
 � " ��� , which defines the ground-state

wavefunction � � 
 ��� � � 
 ��� � �
� � � � � 


� " ��� � (2.38)

Therefore, the ground-state energy is given by

�
� � $�� � � 	 ��� � %$�� � ��� � % �

�
� � � � �	 � � � ��� � � � � � 
 � " ����

� � � � � � � 
 � " ��� � (2.39)

Using the fact that the local energy � � � �
� � �	 � � � � , we have that the ground-state

energy �
�

can be computed over a sample � of independent � values of configurations

�
� � ����� � �
	 ��� � � ������ � �
	 � � � � (2.40)

In addition, within the same Monte Carlo sampling, it is also possible to calculate the

so-called mixed averages [16] of arbitrary linear operators � ,

$�� %
��� � $ � � ��� ��� � %
$�� � ��� � % � (2.41)

In fact, such mixed averages can be calculated using Eq. (2.40) by substituting the local

energy � � with the local estimator associated to the operator � , namely

� � � 

� � �

� � � � � � (2.42)
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where
�
� � � � � are the operator matrix elements transformed according to the guiding wave-

function.

In the practical implementation of the method, since the walker weights grow ex-

ponentially with the Markov iteration, the procedure for the statistical evaluation of the

ground-state energy and the mixed averages is slightly different. We can consider that,

after many iterations, the configuration � , generated in the Markov process, is distributed

according to the maximum right eigenstate of the matrix � � � � � . This state is different

from the state � � 
 ��� � � 
 ��� we are interested in, and we can consider it as a trial state in

the power method. At any Markov iteration we can compute the weight of the walker

assuming that � iterations before it was equal to 1. In this way the ground-state energy

is given by

�
� � � � � ��� � ��� � � �� " (2.43)

where � �� � �
�
� � � � � ����� � � �����	� � � � ����� � (2.44)

In principle, the previously described procedure is free from any approximation, and,

it gives exact results within the statistical errors. Unfortunately there are two main tech-

nical problem. The first one is that the weight � �� grows exponentially by increasing� , implying a divergent variance in the energy average. Indeed � �� is a product of �
different factors and it can assume very large or very small values. This problem has a

simple solution by considering the GFMC technique with many walkers and by intro-

ducing a reconfiguration scheme, which enables to drop out the irrelevant walkers with

small weights. Recently, Calandra and Sorella [53] have introduced a reconfiguration

scheme working at fixed number of walkers, in a way that allows us to control the bias

due to the finite walker population, which we will describe in the following.

The second problem is much more serious and it is related to the sign problem. It is

due to the fact that the average sign,

$ � � % � � � � ��� � � � �� � " (2.45)

vanishes exponentially with � . Indeed walkers with positive and negative weights can-

cel almost exactly, giving rise to an exponentially small quantity to sample, with huge

fluctuations. In the following Sections we will discuss different ways to introduce some

approximation to avoid the sign problem.

Let us focus on the first problem and, in order to show how the reconfiguration

scheme works, let consider a case without sign problem, i.e. with � � � � � � � . We consider
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�
walkers and label the corresponding configurations and weights with a couple of

vectors

�� "�� � , with each component


 � 
�"���
 � , ( � � " � � � " � corresponding to the ( � �
walker. It is easy to generalize Eq. (2.36) to many independent walkers

� � � � 
 � 
 " � 
 � � 

� � � � � � � ��� � � � �


 �
� � � " � � � " �


�
� � � � � � � � � � � � � � � � � � � ���

� � � � � � � � � � (2.46)

Again, the wavefunction � � 
�� � is completely determined by the first momentum of the

probability
� � 
 � " � � , namely

� � 
 ��� � � 
 ��� � �
	�� ��
 
 � � � � � � � � � �� � � 
 � " � � � (2.47)

If the evolution of
� � 
 � " � � is done without any restriction, we have that each walker is

completely uncorrelated from the other

� � 
 � " � � � �

 � � � � � � � � � � 
 ��
 " � 
 � � (2.48)

In order to prevent the divergence of the weights, we define a reconfiguration process

that changes the probability distribution without changing its first momentum, i.e. the

wavefunction:

� 
� 
 � 
 " � 
 � � ��	�� ��
 
 � 	

 � 
 " � 
 "�� " � � � � 
 � " � � " (2.49)

where the kernel 	

 � 
 " � 
 "�� " � � is given by

	

 � 
 " � 
 "�� " � � � �

�

 � � � � � � � � � � � � � �� � � � � �



�


 � �� 
 � � � � " (2.50)

where the symbol � 	�� ��
 indicates the
�

dimensional integral over the � 
 variables.

In practice this reconfiguration process amounts to generate a new set of
�

walkers
�� 
 "�� 
 � in terms of the old
�

walkers

�� "�� � in the following way: each new walker will

have a weight
�� � �� � � � � and a new configuration � 

 among the possible old ones � � ,

chosen with a probability � 
 � � � � 
 	 � ��� � � . After this reconfiguration scheme, all the

new walkers have the same weight and most of the irrelevant walkers with small weight

are dropped out. Moreover it is easy to show that this kind of reconfiguration does not

change the first momentum of the probability distribution [53].
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2.3.3 Fixed-node approximation

When the weights of the walkers are not all positive it is always possible to define the

transition probability for the stochastic process, but even if the Markov process con-

verges to a probability distribution which determines the ground-state wavefunction, cal-

culations are unstable due to wild cancelations between positive and negative weights. It

is then necessary to consider some kind of approximation. The fixed-node (FN) approx-

imation [17] defines an effective Hamiltonian
�	������

, starting from
�	

, setting to zero the

positive off diagonal elements of
�	

�	 �����
� � � � � � �	 � � � � ��� �	 � � � �	� �

� ��� �	 � � � � � ���
(2.51)

Moreover, in order to have variational results for the energies, it is also necessary that

the diagonal term takes an additional sign-flip contribute:

�	 �����
� � � � �	 � � � ��

� � 
 ��� (2.52)


�� � 
 ��� � 
	��� ��� ��� � � � � �� � �	 � � � � � (2.53)

A generalization of the fixed node approximation can be obtained defining the ef-

fective Hamiltonian in a slightly different way. Indeed reversing the sign of the positive

off-diagonal matrix elements of
�	

and multiplying them by a constant � � � one ob-

tains:

�	 �����
� � � � � � �	 � � � � ��� �	 � � � ��� �

� � �	 � �)� � ��� �	 � � � � � ���
(2.54)

The diagonal term must be changed as

�	 �����
� � � � �	 � � � � 


� � ��� 
�� � 
 ��� � (2.55)

Note that the standard FN dynamic is recovered with � � � , while the case with � � � �
is the opposite limit in which

�	������ � �	
. The energy only slightly depends on � and

the lowest value can be obtained in the standard FN framework, i.e. � � � . Neverthe-

less the introduction of � allows us transition to states on different nodal regions. This

feature will be extensively used in the framework of the Green function with stochastic

reconfiguration.

The FN approximation gives an upper bound of the ground-state energy. Indeed if

we consider any state ��� % , and we compare its energy with respect to
	

and
	������

:

� � � $�� ��� 	 ����� � 	�� ��� % " (2.56)
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we obtain:

� � � 

� � ��� 
	� � � � � � � � � � �� � � 	 � � � � � ����� � 
 ��� ����

� � 
 � 
 �� � 
 ��� ����
� � 
 � 
 � ����

� � 
 ���� � 
 � 
 � �������� �
	 � � � � �����

�

�

(2.57)

Because � � is positive for any wavefunction, it comes out that the ground-state of
	 �����

is an upper bound of the ground-state of
	

. Moreover the GFMC method can calculate

the exact ground-state energy �
������

and the wavefunction � ����� of
	������

, without any

sign problem. Hence

�
������ � $�� ����� � 	 ��� ����� %

$�� ����� ��� ����� % � �
� " (2.58)

where the last inequality follows from the usual variational principle. Therefore we

can conclude that the FN energy is an upper bound to the true ground-state energy.

Furthermore, because one can easily verify that $�� � � 	 ��� � % � $�� � � 	������ ��� � % , one can

be sure that the GFMC procedure improves the energy of the guiding wavefunction

�
������ � $�� � � 	 ����� ��� � %

$ � � ��� � % � $�� � � 	 ��� � %
$�� � ��� � % � (2.59)

2.3.4 Forward walking technique

The GFMC technique can be used with success to compute also correlation functions

on the ground-state of
	

. In particular, it is simple to compute expectation values of

operators that are diagonal in the working basis, so that � � � � � � � � � � � $ � � � � � % . By using

GFMC, the configurations of the walkers are distributed as � �

 ��� � � 
 ��� , however, in

order to compute

$�� % � $�� � � � ��� � %$�� � ��� � % " (2.60)

a further work is required.

To this purpose, the desired expectation value is written as

$�� % �
� � 	

� � � � ��� $ � � � 	 �
� 	 � � ��� %

$�� � � 	 � � � � ��� % � (2.61)

From a statistical point of view, Eq. (2.61) amounts first to sample a configuration �
after

� 

GFMC steps, then to measure the quantity $ � ��� � � % , and finally to let the walker

propagate forward for further
�

steps. In order to evaluate the stochastic average, an

approach similar to that done for the energy is possible. In this case we have:

$�� % � � � � � � ��� � � �� " (2.62)
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where � � is the average over the walker population of the operator � at the generation

� , i.e. � � � �� � � � �� , being � �� the value of the operator � on the configuration � � of

the �
� �

walker at the iteration � , and

� �� � � � ��
� � � �

�� � � � � (2.63)

Notice that the correcting factors � �� are different from the case of the energy. Indeed,

in this case, � �� contain a further propagation of
�

steps as compared to the previous

expression.

A further condition is necessary in order to control the bias in the forward walking

technique. The set of measured values � �� with weight factors given by Eq. (2.63) has

to be modified after each reconfiguration process occurring in the forward direction.

In practice after each reconfiguration, we have to bookkeep only the values � �� of the

observable that survive after the reconfiguration. Therefore, after each reconfiguration,

� � 

 � � � � 
 	 , for ( � � " � � � " � and the function � 
 ( � describing the reconfiguration

scheme has to be computed: the walker with index ( assumes the configuration with

index � 
 ( � before the reconfiguration.

In order to implement recursively the forward walking, it is useful to store at each

reconfiguration the integer function � � 
 ( � for each reconfiguration � and the value of � �

of the operator for each walker. Then it is possible to compute the relevant configurations

contributing to the operator � after
�

reconfiguration steps by recursive application of

the integer function � � 
 ( � .
2.3.5 Green function Monte Carlo with stochastic reconfiguration

The GFMC with stochastic reconfiguration (SR) [18, 19] represents a systematic im-

provement of the FN approximation that allows us to sample the sign changes of the

guiding wavefunction. This method is based upon the simple requirement that, after a

short propagation via the approximate FN dynamics, a number � of correlation func-

tions over the state � � 
 ��� can be constrained to be exact by a small perturbation of the

FN evolved state � ������ 
 ��� , which is free from sign problem. By iterating this process

the average sign remains stable. Moreover the method has the important property to be

exact if all the possible correlation functions are included.

Therefore, in the original formulation, the main idea of the SR is to replace the

many-body state � � 
 ��� , to which the exact Green function has been applied, with an

approximate state related to the FN dynamics. In this way, the Green function
�� � � � � is
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related to the FN one
�� ������ � � � by a factor � � � � �

�� � � � � � � � � � � �� ������ � � � " (2.64)

where

� � � � � �
���� ���

� ��� �� � � � � � �
� �� ��� �� � � � � � �� � � � � �� � ���	�
�� � � ��� � � � 
 � (2.65)

Notice that we have
� � � 


� � �� � � � � � 

� � �� ������ � � � � (2.66)

The appropriate stochastic process relative to the Hamiltonian
	

can be defined by the

following three steps:

1. Given the walker

 � "�� � , change the weight by scaling it with

� � :

� � � � � �

2. Generate randomly a new configuration � 
 according to the stochastic matrix � � � � � .
3. Finally multiply the weight of the walker by � � � � � :

�

 � � � � � � � �

Without the last step, one is actually sampling the fixed-node Hamiltonian
	 �����

. In the

simulation both the dynamics given by
�� ����� and by

�� are followed, by updating both

the weight � associated to the true Hamiltonian and the weight � ����� associated to the

approximate
	 �����

. Therefore the walker can be characterized by the triad

 � "�� " � ����� � .

The previous algorithm allows us to define the evolution of the probability to find the

walker with weights � and � ����� , in a configuration � , namely:

� � � � 
 � 
 "�� ����� � " � 
 � � 

�

� � � � �
�
�
� � � � � � � � � � � �



� � � � � � � " � ����� �� �

" � � � (2.67)

The first moments of the probability distribution
� � 
 � " � ����� " ��� over � and � ����� give

the state � � 
 ��� , propagated with the exact
�� , and the state � ������ 
 ��� , propagated with the

approximate
�� ����� , respectively� � 
 ��� � � 
 ��� � �

� �
�

� �
�����

� � � 
 � "�� ����� " ��� (2.68)� ������ 
 ��� � � 
 ��� � �
� �

�
� �

�����
�
����� � � 
 � " � ����� " ��� � (2.69)
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The iteration step reads� � � � 
 � 
 � � � 
 � 
 � � 

�

�� � � � � � � 
 ��� � � 
 ��� (2.70)� ������ � � 
 � 
 � � � 
 � 
 � � 

�

�� ������ � � � � ������ 
 ��� � � 
 ��� � (2.71)

The generalization of this algorithm for many walkers is straightforward: if we consider�
walkers and we label the corresponding configurations and weights by


�� "�� � , with

each component

 � 
 "���
 "�� �����
 � referring to the ( � � walker, for ( � � " � � � � , we have� � 
 ��� � � 
 ��� � � 	�� ��
 
 � � � � � � � � � �� � � 
 � " � � (2.72)

� ������ 
 ��� � � 
 ��� � � 	�� ��
 
 � � � � ������ � � � � �� � � 
 � " � � " (2.73)

the symbol � 	�� ��
 indicates the
� �

dimensional integral over the


� 
 "�� �����
 � variables,

( � � " � � � " � . The reference weights �
�����
 sample statistically the reference state� ������ 
 ��� � � 
 ��� , whereas the weights � 
 refers to the state � � 
 ��� � � 
 ��� , propagated by

the exact Green function, namely:

$ $ � �����
 � � � � � % % � � ������ 
 ��� � � 
 ��� (2.74)

$�$ ��
 � � � � � % % � � � 
 ��� � � 
 ��� " (2.75)

where the brackets $ $ % % indicate both the average over the number of walkers at a given

Markov iteration � and the statistical average.

The Eqs. (2.72) and (2.73) show that the states � � 
 ��� and � ������ 
 ��� do not uniquely

determines the walker probability
� � 
 � " � � , but, as for the case without sign problem,

it is possible to change the probability distribution without changing the exact infor-

mation content, i.e. � � 
 ��� and � ������ 
 ��� . In this regard it is possible to define a linear

transformation, described by a simple kernel � 
 � 
 " � 
�� � " � �
� 
� 
 � 
 " � 
 � � � 	�� ��
 
 � � 
 � 
 " � 
 � � " � � � � 
 � " � � � (2.76)

The kernel is defined by:

� 
 � 
 " � 
 � � " � � �
�
�

 � � � � � � � � � � ��� � � � � �� � � � � � � �

� �
�
�


 � � � � � � � �� � � � � � � � �

� �
�
�
����� �
 � � � 

 ��� " (2.77)
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where
� �

� � � � �� � � � � � � " (2.78)

the coefficients � � � will be defined in the following. Notice that the outcoming variables� 
� and �

� are completely independent for different � values. Therefore it is possible

to integrate each of the
�

factors of the kernel in the variables �

� and �

����� �� and to

sum over the new configurations � 
� , the result being simply one, as required by the

normalization condition of the density probability. In the reconfiguration process, the

new configurations � 

 are taken randomly among the old ones � � , according with the

probability � � � ��� ��� � � � � � � ��� � , defined below in terms of the weights � � , �
������ and the

configurations � � . Furthermore the new weights �


 are taken as

�


 � � � � �
� � �� � � � � � ���� ��� " (2.79)

whereas the FN weights are restricted to be positive

�
����� �
 � � � 

 � � (2.80)

In this way, after each reconfiguration� � 
 ��� � � 
� 
 ��� " (2.81)

moreover, also the reference state explicitly depends on the SR iteration, and after each

reconfiguration � ������ 
 ��� � � � � � � 
 ������� 
� 
 ��� � � (2.82)

The reason of this choice is to optimize the reference state and make it as close as

possible to � 
� 
 ��� , being the signs fixed by � � 
 ��� .
The coefficient

�
guarantees that the normalization of the wavefunction is preserved



�
� 
� 
 ��� � 


�
� � 
 ��� � (2.83)

The only quantities which we need to define are the coefficients � � � . The important

point is that these coefficients are not restricted to be positive, and they may depend on

all the weights � � , the configurations � � and the reference weights �
������ .

The choice � � � � � � is exact in the sense that � 
� 
 ��� � � � 
 ��� , and coincides

with the one for the case without sign problem. However this choice is not convenient,

because this reconfiguration will not improve the average sign, which will decay ex-

ponentially to zero. Instead, in the case with sign problem, we can parameterize the

coefficients � � � by assuming that they are close enough to the positive definite weights
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�
������ , the ones obtained with

�� ����� . The reason for this choice is that, though the weights
�
������ may be occasionally very different from the exact ones � � , namely their sign can

be wrong, they sample a state � ������ 
 ��� , which is supposed to be quite close to the exact

propagated one � � 
 ��� . This condition is clearly verified for an appropriate choice of

the guiding wavefunction, making the FN accurate. Then, we can assume that small

perturbations over the state � ������ 
 ��� may lead to fulfill the equality� 
� 
 ��� � � � 
 ��� " (2.84)

with an arbitrary small error. Therefore we can assume that the � � � are given by small

correction to the �
������

� � � � �
������
�
� � 
 � " � �

�
�
� � � �

� � ����� � � � (2.85)

The corrections are taken proportional to the fluctuations of � different operators �
�

,

with corresponding local estimator

�
�
� � �

$�� � � � � � � � %
$ � � � � � % " (2.86)

and average value over the positive reference weights

�
� � ����� � � � � ������ �

�
� �� � � ������ � (2.87)

With the general form (2.85) for the coefficients � � � , it is possible to fulfill that all the

mixed averages for the chosen � operators have the same value before and after the

reconfiguration 

� � � � �

�
�
� � � � � 
� 
 ��� � 


� � � � �
�
�
� � � � � � 
 ��� � (2.88)

It can be proven [19] that, in order to fulfill exactly the SR conditions (2.88), it is suffi-

cient that the � � � coefficients are chosen in a way that� � � � � � �� �� � � � � �
� � � � � �� �� � � � " (2.89)

which can be fulfilled with a solution of a simple linear system for the unknown variables

" � , for � � � " � � � " �

 � � � � � � � " � � �

� � � � �
�
�
� � � �

� � ����� �� � � � " (2.90)
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where � � � � � is the covariance matrix

� � � � � � � � � ������ �
�
�
� � � �

� � ����� � �
�
� �
� � � �

� � � ����� �� � � ������ � (2.91)

It is worth noting that, asymptotically, by adding more and more parameters " � ,we can achieve the condition � 
� 
 ��� � � � 
 ��� exactly, since the state � � 
 ��� is com-

pletely determined by its correlation functions. Indeed, consider the diagonal opera-

tors: all these operators may be written as a linear combination of elementary ones

� ���
� � � � � � � �)� � � � � ��� , acting on a single configuration � � , plus at most an overall constant.

If the conditions (2.88) are satisfied for all the elementary operators � ���
� � � � , it follows

that � 
� 
 � � � � � � 
 � � � for all � � . Then it is simple to show that the coefficients � � � are

invariant for any constant shift of the operators �
�
. Furthermore, with a little algebra it

turns out that these coefficients do not change for any linear transformation of the cho-

sen operator set. Thus we prove the convergence of the SR for any sequence of diagonal

operators, that, with increasing � , becomes complete. For non-diagonal operators � � � � � ,
we simply note that they assume the same mixed average values of the equivalent diago-

nal ones �
� 
����
� � � � � � � � � � � � � � � � � � . Thus the proof that the SR procedure converges to the

exact solution is valid in general even for non-diagonal operators.

2.4 Few Lanczos steps from Monte Carlo technique

In this Section we show that the SR procedure can be considered as a projection of the

exactly propagated state onto a particular subspace. By using as a reference dynamics

the FN one, the method is not variational, but, if a different reference is taken, it comes

out that the SR gives variational estimate of the energy. Moreover, we show that a

slightly different approach allows us to perform � Lanczos steps on a given variational

wavefunction.

Let us redefine the � � � coefficients as

� � � � �
������
�
� � 
 � " � � �� � � � (2.92)

Then the constants " � are determined by the condition

" � � 
 � � � � �� � � � � � � � � � �� �� � � � " (2.93)
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where the covariance matrix is

� � � � � � � � � ������ �
�
� � �

� �
� �� � � ������ � (2.94)

In this way, at each reconfiguration step, the new state � 
� 
 ��� is defined starting from the

reference one � ������ 
 ���
� 
� 
 ��� � � 
 � " � � �� � � ������ 
 ��� ��� � � ������ 
 ��� " (2.95)

with

�
�
�
� $�� � ��� � � � %$�� � � � % " (2.96)

where � � � " � � � " � , �
�

being the identity operator. In the limit if large number of

walkers, the constants " � are given by

" � � 
 � � � � �� � � � 
 � � � � 
 � 
 � � � 
 � 
 � � � �� � " (2.97)

with � � � � � � 

�
� � 
 ��� � ������ 
 ��� � �� � � �� � (2.98)

Therefore the SR can be considered as a projection of the exactly propagated wavefunc-

tion onto the subspace spanned by the states �
�
� � ������ 
 ���� 
� 
 ��� � 


� � 
������ � � � � � � � 
 � 
 � " (2.99)

being 
������ � � � � � � 
 � � � � � � �� � � � � �� � ������ 
 ��� � � 
 � 
 � � � �� � � (2.100)

The operator
�	���

is not a true projector, because, although it satisfies the requirement
� ��
� � �����

, the condition
�
�
�
� � �����

is not generally satisfied. At equilibrium, the

state � � 
 ��� represents the maximum right eigenvector of the matrix

� ��� � ����� � ���
� � ���
��
 �
� � 	 � ����� � (2.101)

The method is therefore rigorously variational provided the operator
���
�

is a true pro-

jector, namely for � ������ 
 ��� � � � 
 ��� . Indeed the maximum eigenvalue

 � � �

��� � of

the Hermitian matrix
�	����
 ��� � 	 � ���
� is certainly smaller than the corresponding one
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 � � �
� � of the exact Green function


 �
� � 	 � . In fact if � �
��
 ��� � ���
� � �
��
 ��� is the

eigenstate of
�	�
��
 ��� � 	 � ���
� with eigenvalue


 � � �
�
� � , then

�
�
��� � �����

implies

�
�
� � $�� �
� � ����� 	 ���
� ��� ��� %

$�� �
� � ����� ���
� ��� ��� % � $ � ��� � 	 ��� ��� %
$�� �
� ��� ��� % � �

� � (2.102)

In order to have a rigorous variational method, a further detail has to be taken into

account. Indeed, after each reconfiguration, not only the state � � 
 ��� is replaced by� 
� 
 ��� , but also the reference state � ������ 
 ��� is changed as� ����� �� 
 ��� � � � � � � 
 ������� 
� 
 ��� � � (2.103)

Within the Monte Carlo method, instead of changing the weights of the reference wave-

function with the choice �
����� �
 � � � 

 � (which implies Eq. (2.103), in the large number of

walkers), it is possible to remain with the same reference state � ������ 
 ��� , without chang-

ing it during the simulation. This is obtained by the following reweighting scheme:

after the reconfiguration, the new configurations � 

 are selected among the old ones � � ,
according to the weights � � � � � . The new weights for the state � 
� 
 ��� are taken as

�


 � � � � � ��� �� � � � � � ��� ��� " (2.104)

whereas the weights for the reference state � ������ 
 ��� are taken as

�
����� �
 � � � � � � � �� �

������ � 
 	� � � ��� ��� � � � � 

 �� � � � � � � (2.105)

In this way the walker population can describe both the wavefunction � 
� 
 ��� and the

reference one � ����� �� 
 ��� , by considering the weights �


 and �

����� �
 , respectively:

$ $ � ����� �
 � � � � � % % � � ����� �� 
 ��� � � 
 ��� (2.106)

$ $ � 

 � � � � � % % � � 
� 
 ��� � � 
 ��� " (2.107)

where, as stated before, the symbol $ $ % % stands for both the average over the walker

population, at a given Markov iteration � , and the statistical average.

As the reference Green function, the one proposed by Hellberg and Manousakis [62]

is the most convenient from the practical point of view of reducing statistical fluctuations

�� � ���

� � � � � �
� � � � � � � � � � � �	 � � � � � " (2.108)

where
� � � 


� � � � � � � � � � �	 � � � � � � (2.109)
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By applying the power method with the Green function (2.108), the convergence is

reached when the maximum right eigenvector � � � 
 ��� is filtered out, namely



�

�� � ���

� � � � � � � 
 ��� � � � � 
 � 
 � � (2.110)

Thus this Green function can be used to generate configurations distributed according� � � 
 ��� with a stochastic matrix

� �
� �

� � � � � � � �
� �

�� � � �

� � � � " (2.111)

and, because in general Eq. (2.71) holds, we have that, using the fixed reference algo-

rithm Eqs. (2.104) and (2.105), � ������ 
 ��� � � � 
 ��� . Therefore, by using
�� � � �

� � � � as the

reference Green function, the method is rigorously variational.

The advantage of using the reference Green function (2.108) is that it has a very

simple relation with the exact one
�� � � � �

�� � � � �
�� � � �

� � � � � � � � � � � � � � � " (2.112)

where the sign
�

is given by the exact Green function matrix element. In this way, the

stochastic conditions (2.88) can be fulfilled with high statistical accuracy since both the

left and right hand side of Eq. (2.88) are sampled statistically with the same configura-

tions and weights � 
 and �
�����
 , which are highly correlated.

We notice an important property of this method: if we consider only operators de-

fined by powers of the Hamiltonian, i.e. �
� � 	 �

for � � � " � � � " � , the projector
�	���

acts on the Krilov basis, the same of the Lanczos algorithm. Therefore

������ �� ����� � �

filters out the lowest energy state in the Krilov basis, i.e. the state obtained by applying

� Lanczos steps. Moreover, since � �

 ��� belongs to the subspace projected by

� ���
,

we have that $ � � � 	 ����� � $�� � � ���
� 	 , and hence the mixed average of the energy

coincides with the variational energy

$ � � � 	 ��� ��� %
$�� � ��� ��� % � $�� � � ���
� 	 ����� ��� �
� %

$�� � � ���
� ��� �
� % � �
���

� (2.113)

The advantage of using the SR scheme to perform � Lanczos steps is due to the fact

that it is sufficient to compute only � Hamiltonian powers on a given configuration. By

contrast, in the conventional method, all the powers of the Hamiltonian up to
�
� � �

are needed, leading to a much more demanding numerical effort. It is also important

to emphasize that within this technique it is not necessary to optimize the parameters

" � , with an iterative procedure. These parameters are simply obtained at the end of the
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simulation as a simple statistical average of the ones obtained by solving Eq. (2.93) for

each Markov iteration.

In principle, with this method it is possible to perform � Lanczos steps onto a given

wavefunction, but, in practice, only few powers of the Hamiltonian are feasible. By

combining this technique with the one described in Section 2.2.1, it is easy to apply

two Lanczos steps to a given variational wavefunction. In practice, first we apply one

Lanczos step without using the SR scheme (see Section 2.2.1), then, we use the SR to

reconstruct the second Lanczos step.

2.4.1 Variance extrapolation

A great advantage of the variational method is that we have an additional information

about the quality of the trial wavefunction. Indeed the variance

' � � �� �
� $�� � 	 � ��� %

$�� ��� % �
� $�� � 	 ��� %

$�� ��� % � � � (2.114)

measures the width of the energy distribution of the wavefunction ��� % . In other words

it provides a criterion for how much ��� % deviates from an eigenfunction. Indeed the

variance ' � vanishes for all the eigenstates of
	

, and a good variational state have both

an energy close to �
�

and a small variance.

In practice the variance is easy to calculate by using Monte Carlo techniques, indeed,

if we introduce a complete set � � % of states, we have

$�� � 	 � ��� %
$�� ��� % � �

� $�� � 	 � � % $ � � 	 ��� %�
� � � 
 ��� � �

� �
�
� � � 
 ����

� � � 
 ��� " (2.115)

where we have used the definition of the local energy � � , Eq. (2.18). Therefore the

calculation of the variance can be performed sampling both the local energy and its

square.

Suppose that a given wavefunction is close to the true ground-state ��� � % , i.e ��� % ���� � % � � � � % , with $�� � � � % � � and $ � � ��� � % � $ � � � % � � , then its energy per site is

� � � ��
�
�
� � � � $ � � 	 � � %

� � � � � � �
�
� � � �� 
 $ � � 	 � � % � �

� � � (2.116)

Therefore the difference between the variational and the exact energies vanishes linearly

with
� �

. On the other hand the variance is given by

' � � �� �
�
�
�� � � � $ � � 	 � � � %

� � � � �
�
�
� � � � $ ��� 	 � � %

� � � � � � � � (2.117)
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Figure 2.1: Energy per site extrapolation for the
� � �

model, 4 holes on 26 sites,� � ���
� �

. � � � " � " � Lanczos iterations over the projected d-wave wavefunction are
reported. The extrapolated value of the energy is also shown, and the continuous line is
a linear fit of the data.

Expanding to the leading order in
� �

, we obtain

' � � � �� � $ � � 
 	 � �
� � � � � % � (2.118)

It follows that, if the trial wavefunction is close to the exact ground-state, we have that

� � � �
�
� ����� � �

� � � � ' � � (2.119)

The last relation can be used to extract information about �
�
, we can use different values

of � and ' � , for different number of Lanczos iterations and extrapolate to ' � � � ,

obtaining an estimate of �
�
. This kind of estimate is not a variational bound and it is

meaningful only if the starting wavefunction is a good approximation for the ground-

state.

We note that the best information of the variance extrapolation is achieved by using

the results of a given starting variational wavefunction (for example the one which mini-

mizes the energy), and then by applying a certain number of Lanczos steps. By contrast,

the information contained in different variational starting points may be questionable for

the variance extrapolation. Indeed the relation between the energy and the variance for

different variational wavefunctions is uncorrelated, because, in general the minimum for

the energy does not coincide with the minimum for the variance. Instead the application

of � Lanczos steps generates a hierarchy of wavefunctions in which each state strictly

descends from the previous one, improving its energy and variance. In this way, the
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Figure 2.2: Energy per site extrapolation for the
� � �

model, 4 holes on 26 sites,� � ����� � . � � � " � " � Lanczos iterations over the projected d-wave wavefunction are
reported. The extrapolated value of the energy is also shown, and the continuous line is
a linear fit of the data.

gain in the energy is highly correlated to the gain in the variance, and we have the best

possible information about the energy of the best state belonging to the class generated

by the starting wavefunction.

As an example of how the variance extrapolation works, we report in Figs. 2.1 and

2.2 the case of the
� � �

model for 4 holes on 26 sites, where the exact results are

known by Lanczos diagonalization, for
� � ���

� �
and

� � ����� � respectively. We refer

to Section 3.3.1 for a detailed description of the variational wavefunction, moreover we

express all the energies in unit of
�
. Both the energy and the variance are improved by

a factor of three by applying exactly one Lanczos step to the variational wavefunction.

As described in the previous Section, by using the SR technique, it is also possible to

perform two Lanczos steps onto the variational wavefunction. The gain in energy and in

variance is another factor of two. This represents the best variational result: we obtain

� � � � � � � ���
� � � � 
 � � for
� � ���

� �
, and � � � � � � � � � ��� � � 
 � � for

� � � ��� � .
Moreover the three results for � � � " � " � Lanczos steps can be used to extrapolate

the exact energy by using Eq. (2.119). It turns out that the, non variational, estimate is

exact in the statistical errors: for
� � ���

� �
, where the exact result is �

� � � � � ��� � � � � ,

we obtain � � � � � ���
� � � � 
 � � , whereas for
� � ����� � , where �

� � � � � ��� ����� � , we have

� � � � � ��� ����� � 
�� � . It is worth noting that, besides the fact the variational results for

� � � are about ��� �
�

above in energy with respect to the exact ones, the three points

with � � � " � " � lies on the same straight line, and Eq. (2.119) holds.
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Figure 2.3: Energy per site of the finite-size Heisenberg model. Comparison of exact
results (indicated by arrows) and the approximate � � � " � " � Lanczos iterations over the
projected d-wave wavefunction for � � � � (full triangles), � � � � (full squares) and� ��� � (full circles). The extrapolated value of the energy is also shown, continuous
lines are quadratic fit of the data.

Figure 2.4: Order parameter �
� � � 
�� " � � � � in the finite-size Heisenberg model,� 
 � " � � being the spin isotropic antiferromagnetic structure factor. Comparison of exact

results (indicated by arrows) and the approximate � � � " � " � Lanczos iterations over
the projected d-wave wavefunction for � � � � (full triangles), � � � � (full squares)
and � ��� � (full circles). The extrapolated value of the order parameter is also shown,
continuous lines are quadratic fit of the data. Inset: finite-size scaling with the variational
wavefunction (empty circles) and with the variance extrapolated one (full circles).
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It is remarkable that the variance extrapolation method can give exceptionally good

results also for rather large lattice sizes. For the Heisenberg model, where there is no sign

problem, it is possible to obtain the exact results, with arbitrary small statistical errors,

both on the energy and on the correlation functions by using GFMC. In order to show

the accuracy of the variance extrapolation we report in Fig. 2.3 the energy per site as a

function of the variance for 18, 50 and 98 sites and � � � " � " � . Much more impressive

is the behavior of the antiferromagnetic order parameter as a function of the size of the

lattice (Fig. 2.4). Although the variational wavefunction does not have magnetic long-

range order, and the expectation value of the magnetic order parameter monotonically

decreases by increasing the lattice size (see inset of Fig. 2.4), few Lanczos steps are

enough to reproduce the magnetic correlations of the ground-state.

2.4.2 Improving the variational energy

We have seen that, by using (2.105) as the definition of the reference weights, the method

is rigorously variational. However, the choice (2.80) gives a better reference dynamics

because it allows us to improve self-consistently the amplitudes of the reference wave-

function. In this case � ������ 
 ��� 
� � � 
 ��� and the method is no longer variational. A

compromise between the two cases is to introduce a parameter
�

that interpolate the two

limits [87]

�
����� �
 � � � 

 �� � � � � � � � � � (2.120)

In this case, the reference wavefunction � ������ 
 ��� is not given by averaging the configura-

tions with the weights �
�����
 : by using Eq. (2.95), � 
� 
 ��� � � � � ������ 
 ��� , and Eq. (2.107),

at equilibrium, we have that

$ $ � ����� �
 � � � � � % % � � � � � � � ����� 
 ��� � � 
 ��� � � � 
 ��� � � 
 ��� " (2.121)

where � � 
 ��� � � 
 ��� is the right eigenvector of the renormalized Green function

�� �

� � � � � � � � � � � �� � ���

� � � � � (2.122)

From Eqs. (2.121) and (2.95), at equilibrium we obtain� ����� 
 ��� � � � � � � � � ��
 ��� (2.123)� 
 ��� � � � � � � � � ��� � � � � ��
 ��� ��� � � � 
 ��� " (2.124)

and therefore the state � 
 ��� is uniquely determined.
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Figure 2.5: Energy per site for the
� � �

model, 8 holes on a � � � lattice,
� � � � � � as

a function of the number
�

of forward walking. The
� � ���

�
� and

� � � � � cases are
shown, the arrow indicate the result of � � �

Lanczos steps. The fixed-node approxima-
tion gives � � � � � ���
� � ��� 
 � � .

In order to compute the correlation function over the stochastic state � 
 ��� , it is

necessary to use a slight generalization to non-symmetric matrices, of the forward walk-

ing technique. Indeed, for non-symmetric matrices, such as
�� �

� � � � , the left eigenvector� � 
 ��� � � � 
 ��� does not necessarily coincide with the right eigenvector � ��
 ��� � � 
 ��� .
Since in the large number of walkers, the fluctuations of the parameters " � are vanish-

ingly small, it is convenient to implement the forward walking with fixed parameters " � .The matrix
�� �

� � � � can be written in terms of a symmetric matrix � �� �)� �
�� �

� � � � �
�
� ��
� � �� � � � " (2.125)

where �
� � ��� � 
 ����� � � � � ��� �� � � (2.126)� �� � � � � � � � � ��� � � � � � � ��� �� � � � � � � � � � � � � � 	 � � � � � � (2.127)

The right and left eigenvectors of
�� �

� � � � are written in terms of the eigenvector � � 
 ��� of� �� � � � , namely � ��
 ��� � � 
 ��� � � � � � 
 ��� and � � 
 ��� � � � 
 ��� � � � 
 ��� � � � . Then, it follows

that the stochastic state � 
 ��� can be written in terms of � � 
 ���� 
 ��� � � �
� � � � 
 ��� � � � � � 
 ��� " (2.128)

By applying several times the Green function
�� �

� � � � , it is possible to filter out the state� ��
 ��� � � 
 ��� , then it is possible to evaluate the expectation value of any operator � by
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propagating
�

times forward

$�� ��� ��� %
$�� ��� % �

� � 	� ��� �
� � � � � � � � 
 �� � � �� � � � � � �� � � � � � ��
 ��� � � 
 ����
� � � � � � � � 
 �� � � �� � � � � � �� � � � � � ��
 ��� � � 
 ��� " (2.129)

where the operators
�
� and

��
are given by�
� � � � � � � � 
 � 
 �� � 
 ��� � � � � � � � � � � (2.130)�� � � � � � � � � � � � � � � � (2.131)

Therefore, contrary to the standard forward walking where
� � � � � � � is satisfied,

in this case slightly more involved matrix elements have to be considered. Indeed, by

using the fact that
�

� � 
 �� � � �� � � � � � � 
 ��� � � � 
 ��� , Eq. (2.129) is easily verified. Notice

that also the denominator in Eq. (2.129) has to be forward propagated for
�

iterations,

since in this case the diagonal elements of
��

are not trivial. In particular, it is possible to

consider � � 	
and calculate the variational expectation value over the stochastic state� 
 ��� .

In Fig. 2.5, we report the energy as a function of the number
�

of forward walking

for the
��� �

model, 8 holes on a � � � lattice at
� � ����� � . The true energy expectation

value (
� � � ) can be much higher than the mixed average (

� � � ) estimate, espe-

cially for
� � � on large systems. The sizeable gain in energy by considering a small

but finite
�

with respect to the case of
� � � is due to the fact that, with

� � � , it is

possible to strongly improve the amplitudes of the wavefunction. The
� � � case can

overcome, at least partially, the limitation of the few Lanczos step technique to be not

size consistent, namely that in the thermodynamic limit the energy per site cannot be

improved from the variational one. By contrast, for
� � � , the reference Green function

is modified similarly to the FN case, and it is possible to obtain a size-consistent gain in

energy [87].
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Chapter 3

Phase separation

3.1 Introduction

One of the most debated issues in strongly correlated electron systems is the nature of

the charge distribution in their ground-state. In particular, many authors have recently

addressed the question of phase separation (PS) in the
� ���

[54, 55, 56, 57, 58, 59, 60,

61, 62, 63] and in the Hubbard model [88, 89]. In the
� � �

model, it is well accepted that

for
� � �

the holes tend to cluster together leaving the rest of the system in an undoped

antiferromagnetic state. The main question is if this scenario persists down to small
�

’s,

or even to
��� � [90]. Although most of the calculations lead to the conclusion that

a finite critical value
� � of

�
below which the ground-state is homogeneous exists, it

is not clear what this value is at low doping, with estimates ranging from ����� � to � �
� �

.

Moreover some authors [91] suggest that just before PS the ground-state has charge

modulations, i.e. charge density waves.

As stated in Chapter 1, the simplest way to detect PS is by looking at the energy per

hole � 
 � � � � 
 � � � � 
 � ��
" (3.1)

where � 
 � � is the energy per site at hole doping � and � 
 � � is the energy per site at half-

filling (Heisenberg model). In the thermodynamic limit, whereas for a stable system
� 
 � �

is a concave function of � , if the system phase-separates for densities up to � � � � , � 
 � �
is a flat function for � � � � . For finite systems, due to surface effects,

� 
 � � can be convex

even for a stable system. Therefore, it is necessary to consider large enough lattices to

wash out this spurious finite size effect. By using this approach with different quantum

Monte Carlo techniques, many authors agree that the critical value of
�

is
� � � ����� �

[57, 58, 59, 60]. By contrast Hellberg and Manousakis [61, 62], using a modified Green
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function Monte Carlo (GFMC) technique, claim that the phase-separated state persists

down to
� � � , that is the ground-state is unstable against PS at small hole doping for

any interaction strength. The disagreement between these results is probably due to the

fact that, in Refs. [61, 62], the delicate low-doping region is studied with fairly small

clusters, introducing serious finite size effects. A completely different approach, the

high-temperature expansion [55, 56], gives instead a stable ground-state up to
� � � � �

� �
,

but this method suffers from the difficulty of extrapolating the zero temperature limit

from few coefficient series.

Recent density matrix renormalization group results support a different scenario. By

performing the calculation on
�

-leg ladders, the value of
� � � � in the two-dimensional

case is found by extrapolating the value found at a fixed
�

for
� � � [63]. Because of

the growing of the Hilbert space when increasing
�

, the number of legs is limited to �
� �

and the large
�

limit is not well under control. Moreover, within the same approach,

White and Scalapino proposed that the ground-state of the
� � �

model has a charge

density wave order in a wide range of dopings for
� � ����� � [91]. This statement could

be strongly affected by the choice of boundary conditions (periodic in one direction and

open in the other) which might introduce uncontrolled finite size effects.

As far as the Hubbard model is concerned, little work has been done. Cosentini and

co-workers [88], by calculating the energy per hole using the fixed-node method, found

that there is a large region of PS in the phase diagram, at least for
� � ��� � . Their

conclusions, however, are affected by the choice of the guiding wavefunction, which

gives a very poor approximation near half-filling.

In this Chapter we present quantum Monte Carlo calculations for the Hubbard and

the
� � �

model. For the Hubbard model, the auxiliary-field quantum Monte Carlo

(AFQMC) gives very accurate results in the weak- and intermediate-coupling regime,

i.e. for
� � � � [92]. AFQMC will then be used to assess the accuracy of our results

also for sizes where the exact results by Lanczos diagonalization are not available. We

will show that a study of the PS instability is very difficult using only energy calculation.

Instead, a careful calculation of charge correlation functions

� 


 � � $ � � � � � % � �� 
 
�� � � 
 �

� � � � � � 	 $ � 
 � � % (3.2)

gives a safer indication of the charge fluctuations. Moreover, the knowledge of
� 



 �
allows us to extract information about charge fluctuations for all the wavelengths, giving

insight in favor of possible charge modulations. Within this approach, we are able to

find an homogeneous ground-state for
� � ��� � .
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For the
� � �

model, the accuracy of the calculation is more difficult to assess com-

pared to the Hubbard model, since there are no reliable methods for large sizes: the

comparison with exact results is then limited to small clusters. We will report both

energy and
� 



 � calculations that support a scenario in which
� � � � ��� � .

3.2 The Hubbard Model

3.2.1 Variational wavefunction

We consider the Hubbard model on a square lattice of � sites with
��� �  #� � ! particles

and
�  �
� ! , �  (

� ! ) being the number of spin up (down) particles. The Hamiltonian

reads: 	 � � � 
��
�� � � � �����
�� � � � � � � � 
 
 � 
��  � 
�� !#" (3.3)

where $ % stands for nearest neighbors, � 
�� � ( ���
�� � ) destroys (creates) an electron with spin

' at site ( , and � 
�� � � ���
�� � � 
�� � . In the following all energies are measured in units of
�
.

In order to study PS as close as possible to half-filling using only closed-shell configu-

rations, we consider square lattices tilted by � � � with � � � � �
�

and � odd. In this way

half-filling is a closed shell and the first doped closed shell has � holes independently on� .

In the presence of the sign-problem the choice of the guiding wavefunction is crucial.

Our guiding wavefunction reads��� � % � ��� � � � � ��� � � � % " (3.4)

where � � % is a Slater determinant in which the orbitals are suitably chosen (see below),
��� � � � is the projector onto the subspace with

�  � � ! , i.e. with zero total spin compo-

nent along the � -axis,
�

� is a Gutzwiller operator that inhibits the double occupancies

�
� � � � ��� � � ��� � �
	 " (3.5)

where � is a variational parameter, and � � is a Jastrow factor

� � � �
� � � � � � � � � � � �� � �� " (3.6)

where � is another variational parameter, and the � 
�� � are taken from the theory of spin-

waves [93]. Some care must be taken in the choice of the orbitals appearing in the Slater

determinant. The most common choice is to take the orbitals from an Hartree-Fock
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approximation of the Hamiltonian breaking the SU(2) spin rotation symmetry along the
� -axis. 	 � � � 
��
�� ����� � �*�
)� � � ��� ���

�
� 
 
�� �

� $ � 
 % � ' 
 � � � � � $ �&
 %�� � 
)� � " (3.7)

where

$ � 
 % � $ � 
��  % � $ � 
�� ! % " (3.8)

$ �&
 % � 
 � � �
� � 	 $ � 
��  % � $ � 
�� ! % 
 � (3.9)

We consider only fillings which are closed shells for
� � � and where a solution with

constant density $ � 
 % �
� � � � and staggered magnetization $ � 
 % � � is found. In this

case the Hartree-Fock many body wavefunction can be written as

� � % �
� � � � � � � �
� � �

�
� �  � � � � � � � 	

�
�

�

�� � ! � � % " (3.10)

where the quasi-particles have definite momentum modulo � � 
�� " � � and definite spin,

since the antiferromagnetic order parameter is along the � -axis

�

�
� � � � � � �*�� � � � '�� � �*�� ��� � � " (3.11)

� belongs to the reduced magnetic Brillouin zone, � � and � � are defined by:

� � �
���	 ��

�
� � � �
� � �� � �

� � (3.12)

� � �
���	 ��

�
� �

� �
� � �� � �

� � " (3.13)

where
� � � � � � 
 ��� � � � ��� � � � � � and � � 
�
� . It is worth noting that for

� � � � �

one has � � � � � � �� � , namely the spin up and the spin down are in different sub-lattices

(classical Néel state).

In a previous work [88] the wavefunction (3.4) with � � % given by Eq. (3.10) has been

found to be a rather poor approximation for large
� � �

at half-filling. In particular in this

representation the Jastrow factor � � does not play any important role.

We propose a new wavefunction which is a straightforward generalization of the one

successfully used for the Heisenberg model [53]. The fundamental ingredient is to allow

spin fluctuations perpendicular to the staggered magnetization. An easy implementation

of this idea is to put the magnetization in the � ��
 plane allowing transverse fluctuations
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along the � -axis through a Jastrow-like factor [93]. This is achieved by a � � rotation
� � 
 � � � around the



-axis of the canonical operators:

�
��

 � � � � �
��  

� � 

�
� � � �� �

�
� �
��  � � �
�� ! � (3.14)

�
��

 � � � � �
�� ! � �


 � � � � �� �
�
� �
��  � � �
�� ! � � (3.15)

The fermionic part of our guiding wavefunction is therefore defined as a Slater determi-

nant of the transformed orbitals

�

�
� � � � �

��

 � � � �

�
� �  � � 
 � � � (3.16)

�

�
� � � � �

��

 � � � �

�
� � ! � � 
 � � � " (3.17)

namely it is given by � � % �
� � � � � � � �
� � �

�
� � � � � � � � � � 	

�
�

�

�� � � � � % � (3.18)

Remarkably, for
� � � � � and at half-filling, by construction the state (3.18) becomes

the Néel state with spin quantization parallel to the � -axis, i.e. it has the correct Marshall

sign on each of the
� �

configurations sampled by GFMC. In this limit it is also clear why

the Jastrow factor may be much more effective: being defined along the � -axis, it allows

us to sample the quantum fluctuation perpendicular to the staggered magnetization. In

the previous case instead both the Jastrow quantization axis and the order parameter

were parallel and for
� � � � � there is no way to sample any fluctuation, the only

possible configuration being the classical one.

An important systematic improvement of the wavefunction can be achieved by per-

forming exactly one Lanczos step starting from ��� � %��� � % � 

� � " 	 �#��� � % " (3.19)

with " a variational parameter chosen to minimize the energy. This technique has been

successfully used for the
� � �

model both to improve the variational calculation [58]

and as starting point for power methods [70]. Henceforth we will denote by VMC and

LS the results obtained performing a variational Monte Carlo with the wavefunction

(3.4) and (3.19), respectively. Analogously, the symbols FN and FNLS will indicate

the fixed-node approximation applied to the wavefunction (3.4) and (3.19), respectively.

Finally the symbol SR will indicate the (not variational) results obtained by stochastic

reconfiguration applied to wavefunction (3.19).
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� � � � � % � � � � � ��� ��� � � ��� � � � � � � � � ��� � � � � �
4 Eq. (3.10) -0.9585 -0.9382(1) -0.9514(1) -0.9520(1) -0.9556(1)

10 Eq. (3.10) -0.4484 -0.4034(1) -0.4284(1) -0.4154(1) -0.4316(1)

20 Eq. (3.10) -0.2339 -0.2023(1) -0.2195(1) -0.2060(1) -0.2225(1)

4 Eq. (3.18) -0.9585 -0.9460(1) -0.9547(1) -0.9553(1) -0.9576(1)

10 Eq. (3.18) -0.4484 -0.4382(1) -0.4451(1) -0.4428(1) -0.4470(1)

20 Eq. (3.18) -0.2339 -0.2293(1) -0.2232(1) -0.2310(1) -0.2337(1)

Table 3.1: Variational energies for 18 electrons on 18 sites as a function of
� � �

using

(3.10) and (3.18) as Slater determinant.

� � � � � � � � ��� ��� � � ��� � � � � � � � � ��� � � � � �
4 -1.1299 -1.1124(1) -1.1218(1) -1.1229(1) -1.1263(1)

10 -1.0193 -0.9749(1) -1.0006(1) -0.9997(1) -1.0098(1)

20 -0.9598 -0.8983(1) -0.9354(1) -0.9253(1) -0.9450(1)

Table 3.2: Variational energies for 10 electrons on 18 sites as a function of
� � �

.

In Table 3.1 and 3.2 we report the energies of 18 and 10 electrons on 18 sites, respec-

tively. At half-filling we compare the results using (3.4) with the Slater determinant � � %
given by (3.10) and (3.18) for different approximations and values of

� � �
. Using (3.18)

we obtain a sizeable improvement for large
�

’s (
� � ��� � ). Notice that for

� � �
� �

the best variational result with (3.10) is worse than the simple VMC with (3.18). For 10

electrons the two Slater determinants give the same results. Indeed for this doping the

antiferromagnetic order is strongly suppressed and the Jastrow factor � � does not play

any important role.

3.2.2 Results

In order to show that the energy calculations may overestimate the tendency to a PS

instability, it is important to compare the GFMC results with some exact reference. Pre-

vious studies on the Hubbard model have shown that it is important to consider relatively

large lattice sizes since finite size effects favor PS [79]. At
� � � and half-filling there

is a large density of states at the Fermi level, this huge degeneracy being only slightly

removed by a small Coulomb interaction. It turns out that the energy per hole is al-

most constant up to the first closed shell, i.e. for � � � � � , giving rise to an unphysical

and spurious PS [79]. We need therefore a reference result for large lattices, where ex-

act diagonalizations are not available. In the case of the Hubbard model for
� � � �
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Figure 3.1: Relative accuracy of various GFMC techniques with respect to AFQMC for
a 162-site lattice with

� � � � as a function of filling � . From top to bottom VMC (empty
triangles), FN (empty hexagons), LS (empty squares), FNLS (empty circles), SR (full
squares). Lines are guides to the eye.

the AFQMC is almost exact and represents the reference we need. Unfortunately, the

AFQMC suffers from very large fluctuations for larger values of the Hubbard interaction
�

and no useful informations can be obtained with this method for
� � ��� � . There-

fore, the GFMC plays a fundamental role in studying the strong coupling regime of the

Hubbard model.

In Fig. 3.1 we show the accuracy of the GFMC results obtained with different ap-

proximations compared with the AFQMC ones for a 162-site lattice and
� � � � .

For this coupling value AFQMC does not provide evidence for PS. We plot � � 
 � � �	 � 
 � � � ��� � � ��� 
 � � 
 � ��� � � ��� 
 � � , where � 
 � � and ��� � � ��� 
 � � are the energies per site

of GFMC and AFQMC respectively for a doping � . Besides the improvement in the ab-

solute accuracy, the curves get flatter and flatter improving the approximation, but only

the SR accuracy is almost doping independent. In other words, we need a really accurate

calculation to wash out the spurious dependence of the variational energy upon doping.

Even for the best variational method, the FNLS, although the accuracy on the energy is

for all dopings less than �
�

, the difference in accuracy between, for example, the half-

filled case and the first closed shell is still sizeable. This difference is very important,

because it represents just the energy scale determining or ruling out PS.

In Fig. 3.2 the function
� 
 � � is shown for FN, FNLS, SR, and AFQMC methods. We

need to use SR to exclude the occurrence of PS, where even the FNLS data would imply

PS. The reason for this disappointing situation is that all the known variational meth-
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Figure 3.2: Energy per hole
� 
 � � for a 162-site lattice with

� � � � . From top to bottom
FN (empty hexagons), FNLS (empty circles), SR (full squares) , and AFQMC (full
circles). Lines are guides to the eye.

ods are still too dependent on the guiding wavefunction. As evidenced by the previous

analysis, the resolution in energy necessary to detect or rule out PS is very hard to be

reached with statistical methods, especially for large
� � �

.

On the other hand, GFMC methods have proven to be reliable not only for energy

calculations but also for correlation functions like
� 



 � [60]. For a phase-separated

system there are strong fluctuations in the density for small momenta:
� 



 � � � is

expected to be strongly enhanced for small momenta, that is for � 
 � � �
�� , � being the

characteristic length of the phase-separated region. Moreover if the compressibility �
diverges also

� 


 � � � diverges yielding an alternative tool to probe PS.

The GFMC study of
� 



 � turns out to be reliable, since it is based on a single

calculation for a given doping value, whereas the evaluation using
� 
 � � involves a com-

parison between energies obtained by different simulations for different fillings, with

corresponding guiding wavefunction having different accuracies. Moreover from
� 



 �
it is also possible to extract information about charge fluctuations at finite 
 ’s, related

to charge density waves, and therefore the knowledge of
� 



 � allows us to have more

general results with respect to the simple study of
� 
 � � .

We computed the density structure factor
� 



 � by means of the forward-walking

technique, within the FNLS approximation, at half-filling and for the first few closed-

shell configurations on a 162 and a 98-site lattice. The evaluation of density-density

correlation function is in principle possible even within SR by numerical differentiation

of the energy with respect to an external field coupled to
� 



 � . However this approach
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Figure 3.3: FNLS results of
� 



 � for
� � � � , 162 electrons on 162 sites (empty circles),

98 electron on 98 sites (empty squares), 154 electrons on 162 sites (full circles) and 90
electrons on 98 sites (full squares). Lines are guides to the eye and error-bars are smaller
than points. � � 


� " � � , � � 
�� " � � , � � 
 � " � � .
� � � � 
 FNLS EXACT

� � ��� � 
 FNLS EXACT
�� " � � 0.2117(1) 0.2106

 � " � � 0.0448(1) 0.0456
 � " � � 0.4151(1) 0.4144

 � " � � 0.1164(1) 0.1176
 � " � � 0.5310(1) 0.5283

 � " � � 0.1491(1) 0.1503
 � " � � 0.2806(1) 0.2806

 � " � � 0.0647(1) 0.0658
 � " � � 0.3616(1) 0.3613

 � " � � 0.0997(1) 0.1010

Table 3.3: Density-density correlation function
� 



 � for 18 electrons on 18-site lattice

in the Hubbard model. Momenta are in unit of
� � � � � .

is very demanding and does not give a significant improvement to the FNLS results,

which are very accurate. In Table 3.3 we report the density-density correlation function

for
� � � � and

� � ��� � at half-filling on a 18-site lattice. Furthermore, it is found

that even in a larger system the FNLS provides a very accurate result: for 90 electrons

on the 98-site lattice, the FNLS gives
� 



 � � ��� � � �


� � for the smallest 
 -point, i.e.


 � 
�� � � � " � � � � � , whereas the AFQMC gives
� 



 � � ��� � �
� � 
�� � . It is worth noting

that the value of FNLS is slightly greater than the one of AFQMC, implying that the

FNLS tends to overestimate the tendency towards PS.

In Fig. 3.3
� 



 � is shown for
� � � � at half-filling for a 162-site and a 98-site lattices

and for 154 electrons on a 162-site lattice and 90 electrons on a 98-site lattice. No sign

of divergence, and consequently of PS or charge density waves, is seen in the data. We
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Figure 3.4: Relative accuracy of various GFMC techniques with respect to AFQMC
for different lattices ( � � � � " � � " � � � ) and

� � � � . From top to bottom VMC (empty
triangles), FN (empty hexagons), LS (empty squares), FNLS (empty circles). Lines are
guides to the eye.

also notice that the two sets of points for the half-filled systems lie on the same curve,

showing that we have substantially reached the thermodynamic limit. For this value of
�

,
� 



 � is essentially featureless for all dopings we considered, suggesting that there

are no charge instabilities at any finite length. The smallest doping we considered is

� � ��� � � � and we cannot exclude that for smaller dopings PS or charge density waves

are present.

In order to investigate smaller dopings we should consider larger lattices. Unfortu-

nately the accuracy of the approximations considered decreases when increasing the size

of the system and the 162-site lattice represents the largest lattice where the accuracy is

acceptable. In Fig. 3.4 we report � � 
 � � for various sizes and for different approxima-

tions: from the 18 sites to the 162 sites the accuracy of FNLS changes from less than

� � �
�

to about �����
�

. These indications prevent us from considering sizes larger than the

ones presented in this thesis.

Now we turn to larger Coulomb interactions and consider
� � ��� � , where the

AFQMC results are not reliable due to large fluctuations. In principle GFMC techniques

do not suffer from intrinsic limitations in the large coupling regime and it is possible to

consider any value of
�

. In practice we need an accurate knowledge of the nodes, i.e. an

accurate guiding wavefunction. Our choice, Eq. (3.4) with orbitals given by Eqs. (3.16)

and (3.17), is a very good approximation for the half-filling case. In Table 3.1 we report

the energies for various methods for 18 electrons on 18 sites at different
�

’s. Although
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Figure 3.5: FNLS results of
� 



 � for
� � ��� � , 162 electrons on 162 sites (empty

circles), 98 electrons on 98 sites (empty squares), 154 electrons on 162 sites (full circles),
90 electrons on 98 sites (full squares), and 138 electrons on 162 sites (full triangles).
Lines are guides to the eye and error-bars are smaller than points. � � 


� " � � , � �
�� " � � , � � 
 � " � � .

all the approximations are quite size dependent, the wavefunction becomes more and

more accurate by increasing the Coulomb potential. Therefore we expect that it also

gives a good starting point at least close to half-filling.

We present results for
� � ��� � , for which previous FN calculations based on

� 
 � �
and a less accurate wavefunction [88] have shown PS up to � � � � � � . Indeed if we use� 
 � � as a probe for PS we find that the phase diagram shows a large instability region,

confirming the results of Ref. [88]. As for the
��� � � case, this instability is very likely

to be a spurious effect: a consequence of the different energy accuracy for different

dopings. This possibility, that cannot be proved without knowing the exact energies

at strong coupling, is instead very clearly supported by the calculation of the charge

correlation functions.

Fig. 3.5 displays
� 



 � for the same fillings of Fig. 3.3 and for 138 electrons on

the 162-site lattice, which corresponds to � � ��� � � � . All the correlation functions are

definitely non-divergent for 
 � � and are qualitatively similar to the
� � � � case,

indicating that the system is far away from a PS instability. Furthermore
� 



 � does not

show peaks at any finite momenta for this Coulomb interaction.
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3.2.3 Conclusions

An extensive GFMC analysis of the Hubbard model at low hole doping has been carried

out. In particular we have focused on the possible instability of the model with respect

to PS and charge density waves. Comparing GFMC results with AFQMC ones in the

weak coupling region (
� � � � ), we show that detecting PS by means of energy results

requires a very accurate calculation at all electronic densities. Indeed the accuracy of the

energy is strongly dependent on the electron density, and the signature of PS based only

on energy calculations is clearly affected by this bias, leading to a spurious region of PS

instability. In the case of the Hubbard model this is particularly relevant because, while

we are able to give a very good description of the half-filled case, in which the ground-

state is an antiferromagnetic insulator, we are not aware of equally accurate descriptions

of the doped state. Even for
��� � � it is necessary to use the really accurate SR and

AFQMC technique to eliminate the doping dependence of the accuracy and to rule out

PS.

On the other hand, PS and charge density waves instabilities can be probed more eas-

ily using density-density correlation functions. This approach has various advantages.

First, it is found that
� 



 � has very small size effects and the thermodynamic limit is

reached with about 100 sites. Second, the information contained in
� 



 � does not de-

pend on different densities, implying that a different accuracy as a function of doping

does not introduce any external bias.

Instead of using energy calculations, which are very expensive at moderate and large
�

’s, we calculate the charge correlation functions and we are able to find clear evidence

for the absence of PS up to
� � ��� � in the low-doping regime.

3.3 The
��� �

Model

3.3.1 Variational wavefunction

As in the case of the Hubbard model, we consider the
� � �

model on a � � � tilted square

lattice of � sites with � � � � �
�

( � odd) and
� � �  � � ! particles,

�  � � ! . In order to

compare the quantum Monte Carlo results with exact results by Lanczos diagonalization,

we report also calculations for a � � � � lattice.

The
�����

Hamiltonian reads:

	 � � ��
��
�� ����� �
�
���
�� �

�
� ��� ��� � 
 ��
�� ���

� � 
�� � � � �
� � 
 � � � " (3.20)
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where
�
�*�
�� � � ���
�� �



� � � 
��
	� � , � 
 � � � � 
)� � is the electron density on site ( ,

� 
 �� ��� ��� �� �
)� � 
 ��� ��� �� 
�� ��� is the spin operator and 
 ��� ��� are Pauli matrices.

As pointed out by Gros [68], a very good variational wavefunction in the low-doping

regime is given by the projected d-wave BCS state��� ��
��� % � � � � � � �

� ��� � ���� �  ��� � � � ! � � � % " (3.21)

where
� � projects onto the subspace of

�
particles,

�
is the Gutzwiller projector, which

completely forbids doubly occupied sites, and � � is the pair amplitude given by

� � � � �
� � � � �

�� � �
�� " (3.22)

with � � � � 

� � � � � � � � � � � � , � � � � � � 
 ��� � � � ��� � � � � � ���

, � being a variational

parameter and
�

the chemical potential.

The non-projected wavefunction (3.21) can be obtained as the ground-state of the

mean-field Hamiltonian

	 � 
 � � � ���� � � � � � � � 
 � �
� � ���� �  ��� � � � ! � 	 � � ��� � (3.23)

It is worth noting that � � is highly singular for a d-wave superconducting order pa-

rameter: it diverges along the diagonal directions for � � � � , i.e. inside the bare elec-

tronic Fermi surface. Therefore it comes out that the wavefunction (3.21) is ill-defined

on every finite cluster containing � -points along the diagonal direction. In order to avoid

these singularities, it is useful to perform a particle-hole transformation on down-spin

� 
 � 
 � � �
� �
�*�
)� ! (3.24)

� 
 � � 
��  � (3.25)

After this transformation, the average number of electron
�

is related to the difference

between � and � particles as follows

��� � � 
 

� $ � �
 � 
 % � $ � �
 � 
 % � " (3.26)

whereas the average magnetization is given by� � 
 

� $ � �
)�  � 
��  % � $ � �
�� ! � 
�� ! % � � � � � 
 


� $ � �
 � 
 % � $ � �
 � 
 % � � (3.27)
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We can easily solve Eqs. (3.26) and (3.27) and obtain, in the subspace with zero magne-

tization:


 
 $ � �
 � 
 % � �
� (3.28)


 
 $ � �
 � 
 % � � � � � � (3.29)

After the particle-hole transformation, the wavefunction (3.21) can be written as��� ��
��� % � �� � �� � � � � � � �� ��� � � � � �� � � �� % " (3.30)

where
�� � and

��
are the particle-hole transformed projectors

� � and
�

, respectively.

� � �
���	 ��

�
� � � �
� �

�� � �
�� � (3.31)

� � �
���	 ��

�
� � � �
� �

�� � �
�� � " (3.32)

and � �� % is the vacuum of � and � particles, i.e. �
� � �� % � �

� � �� % � � , defined by � �� % �
� � � �� � � % . In this case the singular points are occupied by the particles. It is worth

noting that, if the magnetization is zero, the system is always at half-filling.

In order to improve our variational and guiding wavefunction, we add to the wave-

function (3.21) a density-density Jastrow factor [94]

� � � � � � � � � � � � � � � � � " (3.33)

with � variational parameter. Therefore our wavefunction reads��� � % � � ��� ��
��� % � (3.34)

The accuracy of the wavefunction can be improved further by performing one Lanc-

zos step: ��� � % � 

� � " 	 � ��� � % " (3.35)

where " is a free parameter chosen to minimize the energy.

It is worth noting that, although for the
� � �

model the projected d-wave BCS

wavefunction with a spin-rotationally invariant density-density Jastrow factor represents

a very accurate variational state, for the Hubbard model at small and intermediate cou-

pling (
� � ��� � ) the best choice for the variational and guiding wavefunction is given by
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� � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � �
0.2 -0.57413 -0.5380(1) -0.5550(1) -0.5605(1) -0.5654(1)

0.3 -0.64262 -0.6128(1) -0.6271(1) -0.6328(1) -0.6365(1)

0.4 -0.71437 -0.6883(1) -0.7007(1) -0.7065(1) -0.7096(1)

0.5 -0.78812 -0.7640(1) -0.7754(1) -0.7811(1) -0.7839(1)

0.6 -0.86337 -0.8400(1) -0.8510(1) -0.8567(1) -0.8594(1)

Table 3.4: Variational energies for 22 electrons on 26 sites as a function of
� � �

.

� � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � �
0.2 -0.40956 -0.3895(1) -0.3997(1) -0.4028(1) -0.4058(1)

0.3 -0.50097 -0.4826(1) -0.4921(1) -0.4951(1) -0.4981(1)

0.4 -0.59452 -0.5761(1) -0.5860(1) -0.5887(1) -0.5918(1)

0.5 -0.68945 -0.6698(1) -0.6807(1) -0.6833(1) -0.6867(1)

0.6 -0.78537 -0.7638(1) -0.7763(1) -0.7787(1) -0.7826(1)

Table 3.5: Variational energies for 24 electrons on 26 sites as a function of
� � �

.

a Jastrow-Slater determinant with rotated orbitals (3.16) and (3.17). Indeed, although the

projected d-wave BCS wavefunction is a singlet and does not break the SU(2) symmetry,

it has a very poor variational energy for the Hubbard model. The quality of the varia-

tional energy obtained with our Jastrow-Slater determinant remains considerably better

than the BCS one at half-filling and
� � � � � even when the accuracy of the approxima-

tion is improved by the GFMC. Instead, in the doped case, the BCS wavefunction with

GFMC is only slightly worse than the corresponding Jastrow-Slater determinant pro-

posed in Section 3.2.1. This may suggest that antiferromagnetism is already suppressed

at small finite doping and d-wave superconductivity is a possible stable phase especially

at large
� � �

.

In Table 3.4 and 3.5 we report the energies 22 and 24 electrons on 26 sites, where

the exact result is known by Lanczos diagonalization, for different approximations. As

for the case of the Hubbard model, we indicate with VMC and LS the results obtained

with the wavefunction (3.34) and (3.35), respectively, using Variational Monte Carlo.

The symbols FN and FNLS will indicate the results obtained with fixed-node approxi-

mation applied to wavefunction (3.34) and (3.35) respectively. Finally, the symbol SR

will indicate the results obtained with stochastic reconfiguration applied to wavefunction

(3.34).
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Figure 3.6: Energy per hole
� 
 � � within the FN approximation for 98-site (triangles),

162-site (squares) and 242-site lattice (circles),
� � ����� � . Inset: the same for

� � �
.

Lines are guides to the eye.

3.3.2 Results

In this Section we show the result for the energy per hole and the density-density corre-

lation function
� 



 � for the
� � �

model. Contrary to the case of the Hubbard model,

for the
� � �

model there are no accurate reference results for large lattice sizes, and

therefore it is not possible to perform a comparison with an almost exact solution on

large lattices. Assuming that the guiding wavefunction (3.21) is size consistent, i.e. that

its accuracy does not depend too much on the system size, the same accuracy obtained

on small lattice can be achieved also on larger cluster. In Fig. 3.6 we report the energy

per hole calculation for
� � ����� � within the FN approximation: the inset shows the case

of
� � �

. The two cases are qualitatively different: for
� � ����� � the minimum at finite

doping, present in the 98-site lattice, disappears when larger sizes are considered (162

and 242 sites), suggesting that for this value of the antiferromagnetic coupling there is no

PS for the infinite system. We believe that the occurrence of PS at
� � ����� � and 98 sites

is an artifact of the FN approximation on small sizes and the minimum in
� 
 � � no longer

occurs in the thermodynamic limit. Instead, for
� � �

the finite doping minimum in
� 
 � �

is almost size independent, suggesting that, for this value of
�

, a true phase-separated

state is present. On the other hand for
� � ����� � , a different insight in favor of a uniform

ground-state comes from the SR method. In Fig. 3.7 it is reported the case of 50-site and

98-site lattice: although for the smallest cluster even the SR technique gives a minimum

in the energy per hole, for the 98-site lattice the SR recovers a uniform ground-state.

As for the Hubbard model, in order to detect the charge inhomogeneities of the
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Figure 3.7: Energy per hole
� 
 � � for 50-site (triangles) and 98-site lattice (circles). FN

results are connected by dashed lines and SR by continuous lines.

ground-state it is better to look at the density-density correlation function. We computed

the density structure factor
� 



 � by means of the forward-walking technique, within the

FN approximation for few dopings near half-filling on a 98 and a 162-site lattice. In

Fig. 3.8
� 



 � is shown for
� � ����� � for a 98-site cluster and different dopings. The

peak at 
 � � , near half-filling, progressively disappears by increasing the doping. At

� � ��� � , a considerable peak at finite momenta is present, indicating a possible charge

modulation.

In order to investigate more deeply the region near half-filling, we consider a 162-site

lattice for 152 and 146 electrons, see Fig. 3.9. These two fillings give hole concentrations

similar to the ones of the 98-site cluster. In this case, for both dopings, a clear peak at

small, but finite, momenta is present. There are two possible interpretations of these

results. The first one is that the thermodynamic limit is reached with about 100 sites,

therefore the
� 



 � results for the two clusters should lie on the same curve. This is

especially the case for the smaller doping, where the two electron fillings give very

similar densities. Because the 
 -points in the two lattices are slightly different, these

results suggest that there is a very narrow peak at finite small momenta. The second

possibility is that the 98-site system is too small to detect the finite- 
 charge modulation

present in the larger 162-site lattice.

It is very important to note that the peak in
� 



 � is a genuine feature of the ground-

state of the
� � �

model: indeed it is not present at a pure VMC level, and it is extremely

important to use many power iterations to generate it, see Fig. 3.10.

It is worth noting that, at small doping, the shape of the density-density correlation
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Figure 3.8: N(q) for
� � ��� � � and 98 sites by using FN approximation. From top to

bottom: 88 (triangles), 90 (squares), 92 (hexagons), 94 (circles) electrons. Lines are
guides to the eye. � � 


� " � � , � � 
 � " � � , � � 
�� " � � .

Figure 3.9: N(q) for
� � ����� � , 98 and 162 sites by using FN approximation. From top

to bottom: 88 electrons on 98 sites (full squares) and 146 electrons on 162 sites (empty
squares), and 92 electrons on 98 sites (full circles) and 152 electrons on 162 sites (empty
circles). Lines are guides to the eye. � � 


� " � � , � � 
 � " � � , � � 
�� " � � .
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Figure 3.10: Comparison between the N(q) calculated by VMC and by FN for
� � ����� �

and 162 sites. From top to bottom: 146 electrons by VMC (full squares) and by FN
(empty squares), and 152 electrons by VMC (full circles) and by FN (empty circles).
Lines are guides to the eye. � � 


� " � � , � � 
 � " � � , � � 
�� " � � .
function for the

��� �
model at

� � � � � � is quite different from the one of the Hubbard

model at
� � ��� � . Indeed, whereas in the Hubbard model no signature of charge mod-

ulations are present in
� 



 � , in the
� � �

model a considerable peak at small momenta

is present even at rather large doping, � � ��� � . This disagreement is perhaps due to

the fact that the
��� �

model completely forbids doubly occupied sites. In Table 3.6 we

report the
� 



 � calculation for the Hubbard and the
� � �

model for 16 electrons on a

small 18-site lattice by exact Lanczos diagonalization. Even in this case there are some

quantitative difference, but if we project out all the states with at least one site doubly

occupied from the ground-state of the Hubbard model, the density-density correlations

over this state look much more similar to the ones of the
�����

model.

In order to clarify the question of PS in the
� � �

model, it is necessary to perform

the same kind of calculation for different antiferromagnetic couplings
�

. Indeed, the

density-density correlation function is found to be much less size dependent than the

energy per hole, and therefore the PS instability can be studied in a much safer way with

this kind of method. In Fig. 3.11 and 3.12 we show the
� 



 � for
� � � �

� �
and

� � ���
� � ,
respectively. In the

� � ���
� �

case, a finite peak at finite momenta is present, although

it is sensibly smaller than the corresponding peak at
��� � � � � . Moreover, as soon as

the doping is increased, every feature at small momenta disappears indicating that the

density becomes almost uniform.

The situation is completely different for
� � ���
� � where a huge peak in the density-

density correlations is present close to the � point, both in the 98 and in the 162-site
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� � � 
 � 
 � " � � 
 � 
 � " � � 
 � 
 � " � � 
 � 
 � " � � 
 � 
 � " � �
0.4 0.1104 0.1089 0.1101 0.0959 0.1016

0.2 0.0996 0.1100 0.1108 0.1005 0.1065

0.1 0.0951 0.1104 0.1110 0.1029 0.1083
� � �

10 0.1349 0.2085 0.2448 0.1510 0.1865

20 0.1065 0.1376 0.1499 0.1145 0.1290

40 0.0974 0.1172 0.1211 0.1060 0.1136

40 0.0955 0.1102 0.1110 0.1029 0.1080

Table 3.6: Exact ground-state values for the density-density correlation function
� 



 �
for 16 electrons on 18-site lattice in the Hubbard and

� � �
model by Lanczos diagonal-

ization. The value of
� 



 � on the ground-state of the Hubbard model, having projected

out all the states with at least one site doubly occupied, is also reported in the last row

for
� � �
� � . Momenta are in unit of

� � � � � .

Figure 3.11: N(q) for
� � ���

� �
, 98 and 162 sites by using FN approximation. From top

to bottom: 88 electrons on 98 sites (full squares) and 146 electrons on 162 sites (empty
squares), and 92 electrons on 98 sites (full circles) and 152 electrons on 162 sites (empty
circles). Lines are guides to the eye. � � 


� " � � , � � 
 � " � � , � � 
�� " � � .
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Figure 3.12: N(q) for
� � ��� � � , 98 and 162 sites by using FN approximation. 94

electrons on 98 sites (empty squares) and 156 electrons on 162 sites (empty circles).
The VMC calculation for 156 electrons on 162 sites is also reported (full circles). Lines
are guides to the eye. � � 


� " � � , � � 
 � " � � , � � 
�� " � � .

system, as shown in Fig. 3.12. Away from the � point the behavior of
� 



 � is almost

featureless and does not show any finite- 
 peak.

The boundary of PS instability found looking at
� 



 � agrees very well with the

one found looking at the energy per hole. In Fig. 3.13, the energy per hole is plotted

for
� � ���
� � for 50 and 98 sites, using the SR approximation. For this value of the

antiferromagnetic coupling, the behavior of
� 
 � � is rather different from the one of

� �

��� � � . Indeed the minimum in the energy per hole is present both in the 50 and in the 98-

site system, and, although it is less marked by increasing the size, its position is almost

size-independent.

Our results on the
� � �

model are in good quantitative agreement with other quantum

Monte Carlo calculations [57, 58, 59], and, although it is not possible to rule out the

possibility that PS takes place very close to half-filling, it is safe to conclude that no PS

occurs for
� � � � � � and ��� ��� � � . This statement would be in disagreement with a

recent calculation by Hellberg and Manousakis [61, 62], who claim that PS occurs at all

interaction strengths. The main problem with Refs. [61, 62] is that, instead of working

at fixed lattice and varying the number of particles, in order to change the doping, the

size of the lattice is changed, keeping fixed the number of electrons. In this way, the

delicate low-doping region is studied only with exceedingly small lattices. Therefore

the energy per hole suffers of huge size effects and it is not at all representative of the

thermodynamic limit.
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Figure 3.13: Energy per hole
� 
 � � for 50-site (empty circles) and 98-site lattice (full

circles) by using the SR approximation,
� � ���
� � . Lines are guides to the eye.

3.3.3 Conclusions

In this Section we performed an extensive study of the charge fluctuations in the
� � �

model at low doping and for different antiferromagnetic couplings. Although both the

energy per hole and the density-density correlation function calculations give a consis-

tent boundary for the PS instability, we believe that the second method has much less

size dependence and gives a more reliable tool to look at the long-wavelength instabil-

ity. Moreover, it also gives information about finite- 
 charge modulations, that cannot

be detected with the energy per hole only. A clear qualitative difference in
� 



 � at small

momenta for
� � ���

� �
����� � and

� � ��� � � strongly suggests that the onset of PS is at
� � � ����� � .

Even though at small couplings
�

the ground-state is not phase-separated, at least for

� � � � � � , there is clear evidence of some charge modulations with long wavelengths.

These findings could support density matrix renormalization group calculations on rect-

angular lattices [91], although within this method clearer evidence of a true striped phase

is found. Indeed, the charge fluctuations at small
�

’s can be easily pinned by the open

boundary conditions chosen along one of the direction of the rectangular cluster. In

order to gain kinetic energy the system tends to expel the holes from the boundaries,

favoring a pinned charge modulation.

It is worth noting that, even for
� � ��� � � , the analysis of the energy per hole gives

a very large compressibility, suggesting that, even though the ground-state is not phase-

separated, the system is strongly susceptible and it is expected that a further small at-

tractive interaction can drive the system towards a charge instability.
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Chapter 4

Superconductivity and stripes in the
� � �

model

4.1 Introduction

The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS)

[24, 25] was founded on a number of assumptions which, on the basis of experiments,

were generally accepted. In particular, the experimental evidence pointed to the fact

that, in the transition of a metal to the superconducting state, the lattice and its prop-

erties were essentially unchanged, whereas the properties of the conduction electrons

were changed drastically. The early attempts suggested that a theory based upon the

independent-particle model of conduction electrons did not have the possibility of ex-

plaining the fundamental properties of superconductors. Thus the simplest model which

seemed capable of explaining superconductivity was that of a gas of electrons interact-

ing with each other through some two-particle interaction. The question of what specific

interaction is responsible for superconductivity has been considered over a long period.

When the Coulomb interaction between electrons was little understood, it was thought

that the long-range part of this force could bring about the correlations that seemed nec-

essary to explain superconductivity. However, Bohm and Pines [95] showed that the

long-range part of the Coulomb potential is connected with the collective oscillation

of the electrons (the plasma mode) which, because of its high frequency character, can

weakly affect the low-energy superconducting phase. The difficulty in finding the right

interaction is due to the small energy change between the normal and the supercon-

ducting states. Despite this difficulty, Fröhlich [96] proposed that the attraction which

drives to the superconducting state arises as a result of the interaction of electrons with
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the lattice vibrations, e.g. with phonons. Its significance in causing superconductivity

is confirmed by the dependence of the critical temperature on the isotopic mass of the

lattice.

A fundamental step toward the understanding of superconductivity was made by

Cooper [97], who showed that the Fermi sea is unstable to the formation of bound pairs

for an arbitrary small attractive interaction. He solved the problem of two particles

interacting through an attractive potential
���
� � in the presence of the Fermi sea, and

demonstrated that they bind with an energy given by

� � � ������� � � �� � �
�
	 " (4.1)

where
� 


� � is the density of states at the Fermi level and
�����

is an energy cutoff. In

particular
���

is the frequency of the phonons which mediate the attractive interaction

between particles.

The Cooper argument suggests that in the presence of an attractive interaction the

normal state of a free electron gas is unstable. This argument is only suggestive, but it

laid the foundations for the BCS theory. Assuming that, below the transition tempera-

ture, electrons of opposite spin and momentum condensate into bound states, Bardeen,

Cooper and Schrieffer proposed that the wavefunction describing the superconducting

state is ��� � � � % � � � � � � � � � �*�� �  ��� � � � ! � � � % " (4.2)

where � � and � � are variational parameters.

In the presence of a small attractive interaction between electrons near the Fermi

energy, it is possible to show [25] that the superconducting state energy �
�
� is lower

than the normal state � � one

�
�
� � � � � � � 


� � �
� 

� �� " (4.3)

where

� 

� � � �
����� � � �� � �

��	
(4.4)

is the zero-temperature gap which opens at the Fermi level in the superconducting state.

In the low-temperature superconductors, described by the BCS theory, the gap does not

depend on the momentum � , i.e. it opens isotropically over the Fermi surface. In this

simple approach, the critical temperature � � is related to the gap � 

� � by

� 

� � � � � � � � � � � � (4.5)
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The superconducting gap can be considered as the order parameter for the supercon-

ducting transition. Indeed, at finite temperatures the value of the gap decreases and

eventually vanishes for � � � �

� 

� � �

�
� � �

� �
� �� � (4.6)

The discovery of high-temperature superconductors has renewed the discussion of

unconventional, i.e. non-phononic, pairing mechanisms in solids. Indeed, although

phonon exchange [98] could explain transition temperatures around 30 K, as required

for
�
�
� ��� � � � ��� � � , it is more difficult to believe that it can be responsible for supercon-

ductivity above 90 K, as attained in ��� �
� ��� ����� ��� . Moreover, besides the high critical

temperature itself, the anomalous properties described in Chapter 1 have led to consider

novel mechanisms for the superconducting instability.

One of the most striking features of the cuprate superconductors, and related insulat-

ing materials such as Neodymium doped compounds, is a strong evidence of dynamic

and static ordering of spins and charges, which, for example, shows up as incommen-

surate peaks in low-energy neutron diffraction measurements [9, 39]. In an early work,

Tranquada and co-workers [9], found a clear evidence of static and incommensurate

charge and spin order in
� � ��� � ��� � ��� � � � � � ��� � � with � � �� . They argue that, although

bulk superconductivity is absent in this material, their results are relevant also for super-

conducting samples.

Indeed, also in the superconducting
� � � ��� � � � ��� � � , there is increasing evidence of

dynamical magnetic and stripe correlations [10] from neutron and X-ray scattering mea-

surements. The low-energy magnetic scattering, which is characterized by the antifer-

romagnetic wavevector � � 
 � " � � at low doping, shifts to positions 
 � � 
�� � � � � " � �
and 
 � � 
�� " � � � � � � , with

�
proportional to the hole doping, i.e.

� � � . More-

over, peaks revealing charge ordering at 
 � � 
 � �
� � " � � and 
 � � 


� " � �
� � � are also

found. The relation between 
 � and 
 � implies that the periodicity of the spins is twice

the periodicity of charge: in Fig. 4.1 the case of � � �� is reported. This hole den-

sity is often considered a ”magic” filling, at which the charge and spin correlations are

strongest and presumably locked by the tilt distortion of the underlying lattice [9]. In-

deed, neutron and X-ray scattering measurements on
� � ��� � ��� � ��� � � � � � ��� �	� show that

the charge and magnetic ordering temperatures reach their maximum at � � �� , where

the superconducting temperature has an anomalous suppression. Moreover, a similar

suppression in the superconducting temperature is also observed in Barium based com-

pounds,
� � � ��� � � � ��� � � , for the same hole doping � � �� . This effect has attracted

the attention of many authors and the major controversy regards the issue of whether
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Figure 4.1: Idealized diagram of the spin and charge stripe pattern in a ��� � � plane of
hole doped

� � � ��� � � � ��� � � with � � �� . Arrows indicate spins and circles indicate holes
and

�
is the ��� � ��� lattice spacing. The hole stripes are half-filled, i.e. there is only

one half of a hole per ��� site.

this mesoscopic self-organization of charges and spins is a necessary precursor for high-

temperature superconductivity [99, 100] or whether it is simply an alternative instability

that competes with superconductivity [73].

It is worth noting that, within a simple Hartree-Fock approach it is not possible to

predict half-filled stripes, and only stripes with one hole per site, corresponding to
� � � � ,

are found [101]. Therefore a strong-coupling approach, which can treat more properly

the local hole correlations, is needed. By using the density matrix renormalization group

method on the
� � �

model, White and Scalapino claimed that, for a wide range of dop-

ings, the ground-state has stripe-like correlations and, in particular, at
��� � �

�
� � and

hole doping � � �� , they reproduced the half-filled stripes of Fig. 4.1 [91]. This result

has stimulated much work in order to understand the stability of this kind of solution

against the change of lattice shape, boundary conditions, interaction strength and elec-

tron doping. In general, the hole motion at finite doping, frustrates the antiferromagnetic

alignment of the spins present at half-filling, and the strong electronic interaction may

drive the system towards phase-separation [54, 61], superconductivity [58, 72], charge

density waves or stripes [91], or to some exotic non-Fermi liquid phase, e.g. flux phases

[102]. Therefore the scenario presented by the
� � �

model is far to be understood and it

is still an open question if this simple model containing only purely electronic correla-

tions is able to describe the anomalous properties found in the underdoped region of the

high-temperature superconductors.
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In this Chapter we present Monte Carlo calculations of the superconducting order

parameter for the
� � �

model (3.20) at finite doping. Furthermore, in the last Section we

report the density-density and spin-spin structure factor for two different lattice shapes,

i.e. square and rectangular, in order to study the dependence of the charge and spin

peaks on boundary conditions.

4.2 Small lattice calculations

In this Section we show the accuracy of the variance extrapolation method described in

Section 2.4.1 on a small � � � � sites, where exact results are available. The variational

wavefunction is the one described in Section 3.3.1��� ��
� � % � � � � � � � �

� � � � � �� �  � � � � � ! � � � % " (4.7)

where
� � is the projector onto the subspace of

�
particles,

�
is the Gutzwiller projector,

which forbids doubly occupied sites, � is a density-density Jastrow factor (3.33), and� � is defined by Eq. (3.22).

As stated in Section 3.3.1, the unprojected wavefunction (4.7) can be obtained as the

ground-state of the mean-field Hamiltonian

	 � 
 � � � � �� � � � � � ��� � � ���
� � �

�
� � (4.8)

�
� �

� 
 ��
�� ���
� 
)� � �

���
��  ������ ! � ������  ���
�� ! � " (4.9)

where � � � � � � 
 ��� � � � � � � � � � � � �
,
�

being the chemical potential,
�
� � creates all

possible nearest-neighbor singlet bonds with d-wave symmetry, being
� 
�� � � � � or

� �
if the bond $ ( " � % is in the � or



direction, respectively.

Our main task is to compute the anomalous order parameter at finite system size

� � � �� $�� � � �� � �� � ��� �� %� $�� � � �� ��� � � �� % $ � �� ��� �� %
" (4.10)

where ��� �� % and ��� � � �� % are the states with
�

and
� � �

electrons, respectively, and

� is the number of Lanczos steps applied onto the wavefunction (4.7). If
� �

is finite in

the thermodynamic limit this necessarily implies off-diagonal long-range order in the

ground state. Following Refs. [72, 103], it is convenient with an approximate technique
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Figure 4.2: Variational energy (upper panel) and d-wave order parameter
� �

(lower
panel) as a function of the variance obtained by applying exactly � Lanczos steps to
the variational wavefunction of Eq. (4.7). Full dots (optimal � ), empty dots ( � � � � .� � � � ,

� � � � and
� � ����� �

to calculate a short-range quantity like
� �

, instead of the more conventional long-range

expectation value �
� �� � $�� �� � �� �

� � ��� �� %
$�� �� ��� �� % � (4.11)

It is worth noting that, because of the constraint of no doubly occupied sites, the super-

conducting order parameter
� �

, at small hole densities, is proportional to the number of

holes and not to the number of electrons as in models of weakly correlated electrons.

Therefore, in order to decide if the
� � �

model has a superconducting ground-state or

not, it makes no sense to compare the value of
� �

in the
� � �

model with the corre-

sponding one in a free-electron model, as it is done in Ref. [71].

In Table 4.1 we show a comparison between the variance extrapolation method and

the exact results for 18 and 16 electrons at
� � ����� � . In Table 4.2 we show

� �
as a

function of the number of Lanczos step iterations for the 18-site cluster at
� � ����� � . In

the same Table we have computed also the variance ' � , the overlap squared

� � � � $�� � ��� � % � � " (4.12)

of the wavefunction ��� � % with the true ground state ��� � % , and the average sign of the��� � % wavefunction:

$ � � % � 

�
� $ � ��� � % � � � � �


 $ � ��� � % $ � ��� � %�� " (4.13)
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� � � � � � � � � � � � � � � � � � ��
18 0.55 1 -0.4765(1) -0.47668

18 0.55 2 -0.4775(1) -0.47749

16 0.20 1 -0.6541(1) 0.1074(4) -0.65420 0.10730

16 0.55 2 -0.6583(1) 0.122(1) -0.65826 0.12135

Table 4.1: Comparison between the estimates of the ground-state energy per site � � �
and of the d-wave order parameter

� �
obtained with the exact and the statistical applica-

tion of � Lanczos steps on the variational wavefunction of Eq. (4.7). � is the variational

parameter of the mean-field Hamiltonian (4.8), � � � � ,
� � � � " � � and

� � ����� � .

where � � % denotes configurations with definite electron positions and spins. For an exact

calculation, namely � � � � , both
� � � � and � � � � , whereas ' � � � . The variance

thus represents a very important tool to estimate the ‘distance’ from the exact ground

state when the latter is not known. In particular, whenever
� � � � the energy approaches

the exact result linearly with the variance ' � , allowing us to estimate the error in the

variational energy.

This can be achieved by plotting the variational energies as a function of the corre-

sponding variance ' � , and performing a linear or quadratic fit to the ' � � exact limit

(see Fig. 4.2). Similar fits can be attempted for correlation functions though, in this case,

a term �
� ' � is also expected for ' � � � . This term is however negligible for quan-

tities like
� �

that are averaged bulk correlation functions in a large system size (see the

Appendix C). In practice even in the small 18-site cluster the non-linear term turns out

to be negligible (see Fig. 4.2). We believe that, being the convergence of the Lanczos

algorithm particularly well behaved and certainly unbiased, the variance extrapolation

method is in this case particularly useful and reliable. However for bad initial wavefunc-

tion (e.g., randomly generated) or very large sizes the approach to zero of the variance

may behave rather wildly, requiring many Lanczos steps to reach the regime where the

extrapolation is possible.

As shown in Table 4.2 the quality of the variational wavefunction (4.7) is excep-

tionally good, especially in the doped case with
� � � � . Here

� �
is larger than ��� �

even at the simplest � � � variational level, and is drastically improved with very few

Lanczos step iterations. Remarkable is also the behavior of the average sign � � which

measures directly the accuracy of the BCS wavefunction phases, without caring about

the amplitudes. In the undoped case the signs of the wavefunction $ � � % can be proven

to be exact, i.e., $ � � % � � , having the state (4.7) the well-known Marshall signs, i.e.,
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� � � $ � � % � � ' � � � �
18 0.00 0 1.0000 0.6898 1.194 -0.43833

16 0.00 0 0.9656 0.8306 1.174 -0.63847

18 0.80 0 1.0000 0.8850 0.335 -0.46639

18 0.80 1 1.0000 0.9915 0.042 -0.47662

18 0.80 2 1.0000 0.9995 0.004 -0.47752

18 0.80 3 1.0000 1.0000 0.0003 -0.47759

18 0.80 4 1.0000 1.0000 0.00002 -0.47759

18 0.80 � 1.0000 1.0000 0.0 -0.47759

16 0.55 0 0.9891 0.9260 0.940 -0.64559

16 0.55 1 0.9988 0.9814 0.191 -0.65638

16 0.55 2 0.9999 0.9942 0.060 -0.65826

16 0.55 3 1.0000 0.9983 0.018 -0.65882

16 0.55 4 1.0000 0.9995 0.005 -0.65898

16 0.55 5 1.0000 0.9999 0.002 -0.65902

16 0.55 6 1.0000 0.9999 0.0005 -0.65904

16 0.55 7 1.0000 1.0000 0.0001 -0.65904

16 0.55 � 1.0000 1.0000 0.0 -0.65904

Table 4.2: Average sign $ � � % , overlap squared on the exact ground-state
� �

and vari-

ance ' � obtained applying exactly � Lanczos steps on the variational wavefunction of

Eq. (4.7). � � � � ,
��� � � " � � and

� � ����� � .
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the phases of the exact ground state of the Heisenberg model (see Appendix D). For the

two-hole case, the nodes change in a non trivial way. Nevertheless, $ � � % remains very

close to 1 and it is much higher than the average sign of the corresponding Gutzwiller

wavefunction ( � � � ), also shown in the Table for comparison.

These results suggest that there is a tendency to d-wave pairing in the
� � �

model at

doping � � � � � and
� � ��� � � , and that the wavefunction (4.7) is a particularly accurate

wavefunction to describe the small and even zero doping region of the
�����

model.

4.3 Superconducting order parameter

In order to confirm the results found on the small 18-site lattice, we compute in this

Section the anomalous order parameter
� �

on larger size systems, by using variational

Monte Carlo with few Lanczos steps. In the variational approach, it is easy to calculate

the quantity

� �� � �� $�� � � �� � �� � ��� �� %
$ � �� ��� �� % � (4.14)

Hence in order to have the value of the normalized order parameter
� �

, it is necessary to

perform a second simulation at
� � �

particles in which the quantity

� �� � �� $�� �� � �� ��� � � �� %
$�� � � �� ��� � � �� % (4.15)

is calculated. Then, the product of the two variational calculations yields the square of

the desired quantity
� � � � � �� �

� �� � (4.16)

In Figs. 4.3 and 4.4 we show the results for the energy and the d-wave order param-

eter
� �

for � � � " � " � Lanczos steps for 4 and 8 holes on the 50-site lattice, respectively.

The starting variational wavefunction is chosen to have the best possible variational en-

ergy within the class described by Eq. 4.7. It turns out that the energy extrapolation is

very stable and each Lanczos step improves by a factor of two both the variance and

the energy accuracy, giving rise to a very accurate value of the extrapolated energy,

� � � � � � ��� � � � 
�� � and � � � � � � � � � � � 
 � � for 4 and 8 holes, respectively.

For small lattice sizes, the extrapolated value of the energy does not depend on the

particular ansatz of the starting wavefunction, and it is possible to obtain an accurate

value of the ground-state energy starting both from a metallic state, with � � � , and

from a superconducting state, with a finite � (see Fig. 4.2). Indeed, for small clusters,
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Figure 4.3: Variational energy (lower panel) and d-wave order parameter
� �

(upper
panel) as a function of the variance obtained by applying exactly � � � " � " � Lanczos
steps to the variational wavefunction of Eq. (4.7). The extrapolated values of the energy
and

� �
are also shown. � � � � and

� � ����� �

Figure 4.4: Variational energy (lower panel) and d-wave order parameter
� �

(upper
panel) as a function of the variance obtained by applying exactly � � � " � " � Lanczos
steps to the variational wavefunction of Eq. (4.7). The extrapolated values of the energy
and

� �
are also shown. � � � � and

� � ����� �
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there is a large gap between the ground-state and the first excited state, and the Lanc-

zos algorithm converges to the ground-state in few steps. By contrast, on large size

systems, the choice of the starting wavefunction is a crucial point to obtain an accurate

value of the ground-state energy. Indeed, although the Lanczos technique always con-

verges to the lowest eigenstate, it is not obvious that few iterations are enough to obtain

a good approximation of the ground-state. The variance vanishes for all the eigenstates

of the Hamiltonian, and, with only few Lanczos steps, it is possible to remain stuck in

a local minimum and converge to an excited state. The convergence to the lowest en-

ergy state is guaranteed only if the starting wavefunction has a large overlap with the

ground-state. By increasing the size of the system this overlap goes to zero, and in or-

der to converge to the ground-state, it is necessary to perform more and more Lanczos

iterations. Therefore, it is interesting to compare the results obtained by starting from

different wavefunctions. In particular, we can consider the optimal variational wave-

function, with a sizeable � � ���
� �

��� � , and the wavefunction with � � � , which

describes a correlated metal, without superconducting long-range order. At high den-

sities of holes, the two states have almost the same energy, and even the extrapolated

values coincide within the statistical errors. In the lower panel of Fig. 4.5, we report

the variational energies for the case of 20 holes on 50 sites (in this case the optimal

variational wavefunction has � � ���
�
). The fact that the two different wavefunctions

converge to the same extrapolated energy suggests that this value of the energy accu-

rately represents the true ground-state energy for this doping. In the low-doping region,

for 4 holes, even if the � � � " � " � energies for the optimal variational wavefunction are

lower than the corresponding ones of the metallic wavefunction, the extrapolated ener-

gies of the two wavefunctions coincide within the statistical errors, see Fig. 4.6. In this

case, as shown in the inset of Fig. 4.6, the magnetic order parameter is almost indepen-

dent from � for the optimal wavefunction, whereas it sensibly grows, by increasing � ,

for the metallic wavefunction, the difference between the two being only �
�

. It appears

that, in the low-doping region, the ground-state has short-range antiferromagnetic order,

and its structure can be recovered from both the wavefunctions, which have almost the

same structure. In this doping region, both the wavefunction with a finite � and the

metallic one with � � � , appear to converge to the same (magnetically ordered) state

by means of few Lanczos iterations.

When a symmetry breaking occurs, on large clusters, it is not possible to change

the overall structure of the starting wavefunction by the application of only few Lanc-

zos steps, as clearly suggested for the case of 8 holes on 50 sites, shown in the upper

panel of Fig. 4.5. This failure in the convergence of the few Lanczos steps algorithm
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Figure 4.5: Variational energies as a function of the variance obtained by applying � �
� " � " � Lanczos steps to the wavefunction of Eq. (4.7) on a 50-site lattice for

� � ��� � � .
Full dots (continuous line) correspond to the optimal � , empty dots (dashed line) to
� � � , for

� � �
� (lower panel) and

� � �
�

(upper panel). The extrapolated value of
the energy is also shown.

Figure 4.6: Variational energies as a function of the variance obtained by applying � �
� " � " � Lanczos steps to the wavefunction of Eq. (4.7) on a 50-site lattice for

� � ��� � � .
Full dots (continuous line) correspond to the optimal � , empty dots (dashed line) to� � � , for

� � � � . The extrapolated value of the energy is also shown. In the inset:
magnetic order parameter �

� � � 
 � " � � � � for the two wavefunctions.
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can be used to estimate the condensation energy, i.e. the difference of energy between

the superconductor and the metal. Indeed, the precursor signal, on finite systems, of a

symmetry breaking (which occurs only in the thermodynamic limit) is the existence of

two distinct minima in the energy landscape. By increasing the lattice size, the energy

barrier between these two minima raises up and, with few Lanczos steps, it is more and

more difficult to cross it. Therefore, on large enough sizes, by starting from a metallic

wavefunction and by applying � � �
Lanczos steps, we remain stuck in the local min-

imum and we do not obtain the energy of the superconducting state. In this sense, it

appears plausible that we can estimate the condensation energy.

For the case of 8 holes, both the variational � � � " � " � and the variance extrapolated

results for the optimal variational wavefunction (with � � ��� � ) lie below in energy than

the corresponding results for the � � � wavefunction, see the upper panel of Fig. 4.5.

In this case the difference in energy between the two wavefunctions is rather sizeable,

� � � ��� �
�
, for the � � � variational level and is only slightly reduced by applying

a few Lanczos steps. It turns out that the difference between the two extrapolated val-

ues is � � � ��� � � � , implying a small but finite condensation energy. Therefore, in the

intermediate hole doping, the two wavefunctions have a completely different structure,

and hence, by applying few Lanczos steps, it is not possible to reconstruct the supercon-

ducting order starting from a wavefunction which does not contain it. We obtain that

the condensation energy has a maximum at finite hole density and decreases when the

doping in reduced. It is remarkable that this is just what is found experimentally from

specific heat measurements [104].

On the other hand, the value of the variational parameter � is found to increase by

reducing the number of holes. Even though the value of
� �

is certainly related to the

superconducting order parameter, the meaning of the ”bare” variational parameter �
is not clear. Indeed, although in the wavefunction (4.7) there are ”preformed” pairs of

electrons, the Gutzwiller projector strongly affects the charge dynamics, which, at half-

filling, is completely frozen. Therefore, due to the strong electron correlations, � does

not have the meaning of the superconducting gap, as it happens in the standard BCS

theory. At finite doping � , the holes generate a non-trivial charge dynamics, making

possible a finite superconducting order parameter of order � . It is worth noting that,

because of the local constraint,
� �

is of the order of the number of holes and not of

the number of the electrons, as expected in a weakly correlated system. By contrast,

� should control the single-particle excitations and could be related to the value of the

pseudogap. Experimentally, it is found that, in the underdoped region of cuprates, above

the superconducting critical temperature, there is a large � ��������� gap in the excitation
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Figure 4.7: Size scaling of the variance extrapolated d-wave order parameter
� �

for the
d-wave wavefunction of Eq. (4.7) with � 
� � (full circles and long-dashed line) and
for the metallic wavefunction with � � � (empty circles and short-dashed line). The
extrapolated value of

� �
for � 
� � is also shown, and the lines are guide to the eye.

spectrum [6, 7], though there is not a true superconducting long-range order. The mag-

nitude of the pseudogap decreases by increasing the hole doping, exactly as found for

� . Moreover, in the slightly doped regime, the value of � is much higher than the

one of the superconducting order parameter
� �

, and therefore we might expect that at

small but finite temperature the superconductivity is suppressed, while maintaining the

”preformed” pairs.

In order to attempt a finite size scaling of the d-wave superconducting order pa-

rameter, we have considered a 98-site lattice and we have computed
� �

for
� � � � ,

corresponding to a hole doping of � � ��� �
� �

. In Fig. 4.7 the behavior of
� �

as a function

of the lattice size for this density is reported. In the 50 and 18-site lattice we have used

a linear interpolation of the nearest densities available. Although by increasing the size

from the small 18-site cluster to the 98-site one, the superconducting order parameter is

decreased by a
�
�
�

, the finite size scaling is consistent with a finite value in the ther-

modynamic limit, implying a superconducting ground-state at this hole density for the
� � �

model. On the other hand, the superconducting order parameter of the metallic

wavefunction (with � � � ) has a completely different behavior as a function of the

system size, and it is consistent with a vanishing value in the thermodynamic limit. In-

deed, although for the 18-site lattice the value of
� �

of the metallic wavefunction is
�
�
�

smaller than the one of the superconducting wavefunction, by increasing the size of the

cluster, the difference becomes more and more pronounced.
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These results roughly confirm the ones of Ref.[72], though in that case a differ-

ent strategy has been followed: the simulations were performed in the grand-canonical

ensemble in the presence of a small external field which creates a d-wave Cooper pair.

Then the calculation of the superconducting order parameter was performed by using the

fixed-node and the stochastic reconfiguration approximations and the value of
� �

was

found by extrapolating to zero field. Although this kind of calculation has been demon-

strated to be very accurate, at least on small sizes, it suffers from the fact that a difficult

extrapolation to zero field is necessary. Indeed, although there is a qualitative agreement

as far as the value of
� �

is concerned, the method proposed in this thesis suggests that

the value of
� �

monotonically decreases by increasing the accuracy (e.g. by applying �
Lanczos steps), on the contrary, in Ref. [72], it is found that

� �
is enhanced, with respect

to its variational value, both by fixed-node and stochastic reconfiguration. This may be

a spurious effect which derives from the large value of the d-wave susceptibility at finite

fields.

4.4 Charge and spin modulations

In this Section we study the dependence of the charge and spin distribution from the

shape of the lattice. The motivation for this study is given by the fact that accurate

density matrix renormalization group calculations applied to rectangular clusters with

cylindrical boundary conditions find huge charge and spin modulations in the ground-

state of the
� � �

model for
� � � � � � [73, 91]. The main limitation of this technique is

that, up to very recently [105], it was not possible to consider a translationally invariant

system, i.e. a lattice with periodic boundary conditions in both the directions, or suf-

ficiently large clusters, such that the boundary effects are negligible. The breaking of

the translational symmetry introduces huge spurious effects and may completely alter

the nature of the ground-state. Indeed, as shown in the Chapter 3 by the analysis of the

density-density structure factor, for
� � ����� � , there are incommensurate charge fluctu-

ations, which can be easily enhanced by some external imposition. Within the density

matrix renormalization group, stripes are found to be stable in a wide range of dopings

and antiferromagnetic couplings [91], whereas the superconducting order parameter is

found to be strongly suppressed [73].

By contrast, quantum Monte Carlo techniques, applied to square lattices with pe-

riodic boundary conditions, find that the finite- 
 charge fluctuations are strongly sup-

pressed if compared to the ones found within the density matrix renormalization group.

Moreover, the Monte Carlo method applied to clusters with cylindrical boundary condi-
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Figure 4.8: Density-density structure factor
� 



 � for 8 holes on a � � � lattice and
� �

� � � � . The variational with � � � (empty triangles), � � � (empty squares), � � �
(empty

circles), fixed-node (full triangles) and stochastic reconfiguration (full circles) results
are reported. In the inset: the same for the spin-spin structure factor � 
 
 � . � � 


� " � � ,
� � 
 � " � � , � � 
�� " � � .
tions has shown a very weak charge modulation [106]. Nevertheless, though the density

matrix renormalization group is
� �

� times more accurate in the variational energy than

the quantum Monte Carlo, it is not clear whether the same is valid for the correlation

functions. The discrepancy between these two numerical methods drives us to investi-

gate, within the quantum Monte Carlo, the dependence of the charge distribution upon

the anisotropies of the lattice. The simplest way to introduce the anisotropy, without

breaking the translational symmetry, is to consider rectangular clusters with periodic

boundary conditions in both directions. In this way, only the rotational symmetry is

explicitly broken and a translational invariant wavefunction is expected to improve the

accuracy of our quantum Monte Carlo calculation. The choice of rectangular lattices

with periodic boundary conditions represents the mildest way to introduce an external

perturbation to the square lattice without breaking the translational symmetry. For rect-

angular lattices, we consider the wavefunction of Eq. (4.7) with a different value for �
in � and



directions.

We compute the density-density structure factor� 


 � � $ � � � � � % � �� 
 
�� � � 
 �

� � � � � � 	 $ � 
 � � % " (4.17)

and the spin-spin structure factor

� 
 
 � � $ � �� � �� � % � �� 
 
�� � � 
 �

� � � � � � 	 $ � �
 � �� % " (4.18)
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Figure 4.9: Density-density structure factor
� 



 � for 4 holes on a � � � lattice and� � ����� � . The variational with � � � (a), � � � and � � �
(b), the fixed-node applied

to the � � � (empty circles, c) and to the � � � (full circles, c) wavefunction, and the
stochastic reconfiguration (d) results are reported. � � 


� " � � , � � 
 � " � � , � � 
�� " � � ,�� � 

� " � � .

Figure 4.10: Spin-spin structure factor � 
 
 � for 4 holes on a � � � lattice and
� � ����� � .

The variational with � � � (a), � � � and � � �
(b), the fixed-node applied to the � � �

(empty circles, c) and to the � � � (full circles, c) wavefunction, and the stochastic
reconfiguration (d) results are reported. � � 


� " � � , � � 
�� " � � , � � 
�� " � � , �� �

� " � � .
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Figure 4.11: Density-density structure factor
� 



 � for 4 holes on a � � � lattice and 16
holes on a � � � � lattice and

� � ����� � . The empty symbols refer to the � � � cluster, the
full ones to the � � � � lattice. The variational with � � � (triangles) and the stochastic
reconfiguration (circles) results are reported. In the inset it is shown the comparison
between the � � � lattice (empty squares) and the � � � � one (full circles), along the

� � �
direction. � � 


� " � � , � � 
 � " � � , � � 
�� " � � , �� � 

� " � � .

for a rectangular � � � and a square � � � lattice with 4 and 8 holes respectively: in this

way both the clusters have the same hole density, � � �� . We find that, for the square lat-

tice, the variational results for
� 



 � and � 
 
 � are not modified by increasing the accuracy

of the wavefunction: even within the most accurate approximation, the stochastic recon-

figuration, the structure of both
� 



 � and � 
 
 � is qualitatively, and also quantitatively,

in agreement with the one of the � � � variational calculation. The direct inspection of

the
� 



 � does not reveal any trace of phase separation, and the only structure is a small

peak in the � � �
direction for 
 � 
�� � � " � � , see Fig. 4.8. Moreover, the spin-spin

structure factor reveals a large peak for the commensurate wavevector � � 
 � " � � , indi-

cating that the ground-state has a strong short range antiferromagnetic order. Therefore,

for this cluster, the d-wave wavefunction (4.7) represents a very good approximation of

the ground-state and contains accurately the charge and spin correlations.

The situation is completely different for the rectangular cluster � � � . In this case,

although at the variational level the wavefunction does not show any kind of charge or

spin order, a huge charge density wave is recovered within the stochastic reconfiguration

and the fixed-node schemes. In Fig. 4.9, we report the calculation of
� 



 � for various

approximations. For this kind of cluster and the chosen hole density � � �� , we find that

the most accurate methods are able to produce a peak at 
 � � 
�� � � " � � , not present in the

variational wavefunction, where the density-density correlations are almost structure-

less. In this case, the improvement given by the Lanczos steps is not sufficient to build
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Figure 4.12: The stochastic reconfiguration results for the spin-spin structure factor � 
 
 �
for 4 holes on a � � � lattice (empty circles) and 16 holes on a � � � � lattice and

� � ����� �
(full circles). The � � � variational results for the � � � � lattice (full triangles) are also
reported. � � 


� " � � , � � 
 � " � � , � � 
�� " � � , �� � 

� " � � .

� � � � � � � � � � � � � � ��� � � �
� � � -0.64144(5) 0.0306(1) 0.0400(1) 0.0437(4)

� � � � -0.64074(5) 0.0219(1) 0.0296(2) 0.0329(6)

Table 4.3: Variational energy per site with � � � , � � � � � � , and energy accuracy � � �

� � � � � � � � � � � � � , with � � � " � . ��� � � � � 


�
�
� � � � � � � � � � � � is related to the best

variational energy obtained with the stochastic reconfiguration method.

up the incommensurate charge peak. Indeed, the application of few Lanczos iterations

is not enough to completely change the structure of the starting wavefunction, and some

more involved scheme, like the stochastic reconfiguration, is needed [87].

Furthermore, as shown in Fig. 4.10, a similar situation occurs also for the spin-spin

structure factor � 
 
 � : in this case the variational wavefunction has a broad maximum

around � � 
 � " � � , and the structure is only slightly changed by the application of one

and two Lanczos steps. By contrast, within the fixed-node and the stochastic recon-

figuration approximations, a sharp incommensurate peak rises at 
 � � 
 � � � � " � � . It is

remarkable that the wavevector 
�� and 
 � for which the
� 



 � and the � 
 
 � have the peaks

are exactly the ones that are found experimentally (see Section 4.1). These findings are

in good qualitative agreement with the ones obtained with the density matrix renormal-

ization approach [73, 91], where however cylindrical boundary conditions enhance even

more the stripe features of the ground-state.

In order to clarify the relevance of the stripes in large size systems, we consider the
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Figure 4.13: The � � � variational results for the density-density structure factor
� 



 �
for 8 holes on a � � � lattice (full circles) and 32 holes on a � � � � � lattice and

� � ��� � �
(empty circles) are reported. In the inset: the same for the spin-spin structure factor� 
 
 � . � � 


� " � � , � � 
�� " � � , � � 
�� " � � .

� � � � lattice with the same hole density, � � �� . By increasing the system size from the

� � � lattice to the � � � � one, we have only a slight loss in the accuracy. Indeed, as

shown in Table 4.4, our best variational energy for the largest system is only
�
�
�

worse

than the one for the smallest � � � cluster. Therefore, we expect that the accuracy on the

density-density and spin-spin structure factor is sufficient to detect possible electronic

fluctuations at incommensurate wavevectors. We find that, as shown in Fig. 4.11, the

structure of
� 



 � for this large rectangular lattice is completely different from the one of

the small � � � cluster. In particular, in the � � � direction, the results of the � � � vari-

ational wavefunction are much more similar to the ones of the � � � lattice. This feature

is preserved also within the fixed-node and the stochastic reconfiguration techniques.

Moreover, the incommensurate peak in the spin-spin structure factor shifts towards the

commensurate wavevector � � 
�� " � � at 
 � � 

�
� � � " � � , see Fig. 4.12, suggesting that

the particular stripe-like feature of the � � � lattice disappears by increasing the size of

the cluster. It is noticeable that the incommensurate peak of the � 
 
 � at 
 � is a genuine

non-perturbative feature of the most accurate techniques (fixed-node and stochastic re-

configuration), and does not appear in a simple, i.e. � � � , calculation (see Fig. 4.12).

It is also remarkable that, within the forward walking technique of both the fixed-node

and the stochastic reconfiguration, there is a considerable enhancement of the density-

density structure factor
� 



 � for 
�� � 
 � � � " � � , exactly the momentum 
�� related to 
 � .
The fact that the structure of the � 
 
 � , and partially of the

� 


 � , is substantially changed
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by the stochastic reconfiguration (and by the fixed-node) strongly indicates that our most

accurate methods are able to detect the tendency towards stripe-formation. Therefore,

these results strongly indicate that, in the large size limit, whatever the shape of the lat-

tice is, the projected d-wave wavefunction gives an exceptionally good approximation

of the true ground-state, and that the stripe-like features found within the density matrix

renormalization group are size effects due to the smallness of the cluster considered,

further enhanced by the fact that in one direction there are open boundary conditions.

A particular important point is that there is a very singular convergence to the ther-

modynamic limit. Our results suggest that, as shown in Fig. 4.13, for square lattices

the size scaling is smooth and, by increasing the lattice size up to the � ��� � � cluster,

there are no important modifications in the structure of the charge and spin correlations.

By contrast, for rectangular lattices, the size scaling is much more subtle a tricky, for

example the
� 



 � along the � � �
direction changes dramatically by increasing the

size, even at the � � � variational level (see Fig. 4.11), indicating that for rectangular

clusters there are huge size effects.

4.5 Conclusions

In this Chapter we have performed a study of the superconducting order in the
� � �

model at
� � ����� � and low hole densities. Moreover, in the last Section, we have

addressed the question of charge and spin ordering, recently raised by density matrix

renormalization group calculations [73, 91].

The projected d-wave wavefunction is found to be an excellent approximation of the

ground-state of the
� � �

model. Furthermore, the accuracy of the variational ansatz

can be further improved by the exact application of � Lanczos steps. In this way, as

demonstrated in Section 2.4.1, it is possible to extract information about the energy

and the correlation functions of the exact ground-state. This method turns out to be

exceptionally reliable and unbiased whenever it is possible to have an exact reference

to compare with. It is noticeable that the variance extrapolation gives very accurate

results even on rather large size systems and, up to � � � ��� sites, it is safely possible to

estimate the exact ground-state energy. Indeed, for the projected d-wave wavefunction

on square lattices with � � � ��� , each Lanczos step reduces both the energy and the

variance by about a factor of two, making possible a very stable linear extrapolation.

The estimate of the condensation energy, i.e. the difference in energy between the

superconductor and the metal is also possible by the same method. Motivated by a fi-

nite condensation energy at doping ��� ��� � � we calculated the superconducting order
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parameter
� �

for this hole density. A finite size scaling of this quantity shows that
� �

is

finite in the thermodynamic limit, indicating the superconducting nature of the ground-

state of the
� ���

model. For this value of the doping and on square lattices, the charge

and spin structures of the variational wavefunction is found to describe very well the

ones of the ground-state, and they do not qualitatively change by increasing the degree

of accuracy. By contrast, on a small � � � rectangular cluster with periodic boundary

conditions, the projected d-wave wavefunction does not contain the stripe-like ordering

characteristic of the ground-state. These charge and spin correlations can be easily de-

tected by the fixed-node and the stochastic reconfiguration approaches. However, these

effects are restricted to small sizes: indeed, by considering a larger � � � � lattice, the

stripe order vanishes and the density-density structure factor becomes similar to the one

of square clusters. These results suggest that the d-wave superconducting wavefunction

is a very stable state for the
� � �

model even at moderately small couplings
�

. However,

it is possible that small anisotropies in the Hamiltonian, like different hoppings and an-

tiferromagnetic couplings in the two directions (
� � 
� � � , � � 
� � � ) can drive the system

towards a stripe-like instability.
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Chapter 5

Ferromagnetism from strong local

repulsion

5.1 Introduction

The theory of magnetic ordering in crystals is one of the oldest problems in solid state

physics. A theory of magnetism based on a free electron gas is hopelessly inadequate

as an approach to real metals: to explain the magnetic ordering, in the great majority

of cases, it is necessary to go beyond the independent electron approximation. The

development of a tractable model of magnetic metal, capable of describing both the spin

correlations and the electronic transport properties, remains one of the major unsolved

problem in solid state theory.

Although a theory of magnetism based on a free electron approximation does not

give a satisfactory interpretation of the phenomenon, it provides a very simple model in

which the magnetic structure is implied in the absence of an explicit spin-dependent in-

teraction. Bloch [107] first pointed out that the Hartree-Fock approximation can predict

ferromagnetism in a gas of electrons interacting only through the Coulomb potential.

Within this approximation, if every one-electron level with a given wave vector less than� � is occupied by two electrons of opposite spin, then the ground-state energy of
�

free

electrons is

� � � � �
�

 � � � � � � � �

� � 
 � � � � � � � �� � � " (5.1)

where

� �
is the Bohr radius and � is the electron charge. The first term in Eq. (5.1) is the

total kinetic energy, and the second is the Hartree-Fock approximation of the electron-

electron Coulomb interaction (the exchange part only). Instead of assuming that every

one-electron energy level is occupied by two particles of opposite spin, a more general
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possibility is to fill each one-electron level with � � �  with spin-up electrons and each

level with � � � ! with spin-down electrons, leading to a net spin imbalance. Since in

the Hartree-Fock approximation the exchange interaction is only between particles with

opposite spin, we have an equation of the form (5.1) for each spin population

�  � �  � �
�

 �  � � � � � �

� � 
 �  � � � � � �� � � (5.2)

� ! � � ! � �
�

 � ! � � � � � �

� � 
 � ! � � � � � �� � � " (5.3)

where the total energy and number of particles are given by

� � �  � � ! (5.4)�
�

� �  
� � � !� � � � � � � � � �!� � ��� � ��� � � � (5.5)

If we take
�  
� � ! and we find an energy lower than the one of Eq. (5.1), the ground-

state has a non-vanishing magnetization and the electron gas will be partially (or fully)

polarized.

For simplicity, if we consider the limiting case of
�  � � and

� ! � � , then we

have that �  � � � � � � � , and the total energy is

� � � � �
�
� � � � 
 � � � � � � � �

� � � � � � 
 � � � � � � � �� � � � (5.6)

If we compare the energy of the non-magnetic case, Eq. (5.1), with the one of the fully

polarized case, Eq. (5.6), we have that in the former case the kinetic energy is larger

by a factor
� � � �

, whereas the exchange energy is smaller by a factor
� � � �

. Therefore

the ground-state will be fully polarized if the exchange energy dominates the kinetic

energy. This situation happens for small � � , i.e. at low densities. Therefore, as the

density decreases, a transition from a non-magnetic to a fully polarized ground-state

occurs within this approximation.

Unfortunately, these simple arguments for the magnetic instability are invalidated

by different considerations. First, even within the Hartree-Fock approximation there are

other more complicated solutions for the one-electron levels that lead to lower energies

than the one of the fully polarized state [108]. Moreover if the Hartree-Fock approxi-

mation is improved by introducing a screening in the electron interaction, the scenario

changes drastically. For example, in the extreme limit of a delta-function potential, ferro-

magnetism in the high density limit is found, whereas at low densities the non-magnetic

phase is stable. Indeed, at very low electron densities, the ground-state of the electron
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gas can be shown to crystallize into a Wigner crystal, whose description is outside the

reach of the independent electron approximation.

Furthermore, although the best Hartree-Fock ground-state is by no means obvious,

the correlations between electrons can drastically alter its predictions. Ferromagnetism

has been observed experimentally in metals whose free ions contain partially filled � of� shells, which are well beyond a free electron description. Indeed, a simple approach to

explain ferromagnetism in these compounds is obtained by combining the free electron

picture of itinerant ferromagnetism with the band theory, i.e. by calculating a differ-

ent self-consistent field for electrons of opposite spins. However this approach is not

satisfactory at all, and a more complete theory, which takes into account correlations

between itinerant electrons is needed.

In 1963 Hubbard [12] proposed a highly oversimplified model to describe the in-

terplay between the band-like and localized behavior of these materials. In this model

the vast set of bound and continuum electron levels of each ion is reduced to a single

localized orbital level. The non trivial ingredient is that pairs of electrons with opposite

spins that occupy the same ion pay an on-site energy
�

. For a large Coulomb interac-

tion
�

, electrons can prefer to occupy only a single spin sector, up or down, minimizing

therefore the strong Coulomb repulsion, leading to a magnetic ground-state. Indeed,

as Nagaoka showed in a milestone paper [80], a single hole in the infinite-
�

Hubbard

model on any finite bipartite cluster with periodic boundary conditions, for any dimen-

sion � �
�

has a fully polarized ferromagnetic ground-state, i.e the ground-state has

a maximum spin � . Unfortunately the Nagaoka theorem refers to a single point in

the phase diagram, which is not thermodynamically significant. A central point in the

theory of strongly correlated electronic systems is to understand if a ferromagnetic Na-

gaoka ground-state can survive at finite hole densities or finite Coulomb repulsions. In

the Hartree-Fock approximation of the Hubbard model [46], a large part of the phase

diagram shows a ferromagnetic ground-state (see Fig. 1.3). However, in the real phase

diagram, the ferromagnetic region is expected to be strongly reduced, or even completely

absent.

Driven by the Nagaoka result on the infinite-
�

Hubbard model (or equivalently the
� � �

model at
� � � ), many authors have recently tried to answer the old ques-

tion of the ferromagnetic stability of the two-dimensional infinite-
�

Hubbard model

[20, 21, 22, 81, 82, 83], but the situation is still rather controversial. In particular Putikka

and co-workers [20], using the high-temperature expansion, found that the ground-state

has not a saturated magnetization for all hole densities, ruling out the possibility of a

stable ferromagnetism at any finite hole concentration. However, because of the uncer-
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tainties of their extrapolation to zero temperature, their calculation cannot be considered

as a definite proof of the complete absence of a Nagaoka state at finite hole densities.

By contrast, variational calculations based on a single spin flip on the saturated ferro-

magnetic state [21, 22] give a doping concentration � � � � �
�
� as the upper bound for the

stability of the Nagaoka state.

Another way of tackling this problem is to evaluate the spin of the ground-state

on finite small clusters, where exact diagonalizations are possible. However, on small

lattices, the total spin of the ground-state is strongly dependent upon the number of holes

and the chosen boundary conditions. For instance, for two holes on any finite cluster

with periodic boundary conditions it is possible to show [82] that the ground-state spin

is not maximum whereas for certain finite number of holes such that the ferromagnetic

ground-state is non degenerate with periodic boundary conditions, the ground-state has

maximum spin [109]. In general, for small clusters, there is a strong dependence of the

ground-state spin on the number of holes and on boundary conditions, indicating large

shell effects [84]. Definitely, these effects become less and less important by increasing

the size of the system, and the hope is that they are negligible for systems that can be

studied by numerical methods.

In this Chapter we study the stability of the ferromagnetism in the two-dimensional
� ���

model at
� � � , namely

	 � � � 
� 
)� ����� �
�
� �
)� �

�
� ��� � (5.7)

where the constraint of no doubly occupied sites is enforced by the fact that
�
� �
�� � �

� �
�� � "


� � � 
��
	� � , being � 
 � � � � 
)� � the electron density on site ( . The method we use

are quantum Monte Carlo techniques, i.e. variational with � � � " � " � Lanczos steps and

fixed-node approximation.

5.2 Results

The wavefunction used in the variational Monte Carlo and in the Green function Monte

Carlo as a guiding wavefunction is the one described in Section 3.3.1:��� % � � � � � � � �
� � � � � �� �  � � � � � ! � � � % " (5.8)

where
� � is the projector onto the subspace of

�
particles,

�
is the Gutzwiller projector,

which forbids doubly occupied sites, � is a density-density Jastrow factor (3.33), and � �
is defined by Eq. (3.22). The variational parameters � � of the pairing wavefunction may
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Figure 5.1: Variational energies for � � � " � " � Lanczos steps in the singlet subspace for
10 electrons on 18 sites. The continuous line is the linear fit of � � � " � , the dashed line
is the quadratic fit of � � � " � " � . The extrapolated points with zero-variance and the
FNLS result are also shown.

also represent the Gutzwiller wavefunction in the particular case of � � ��� 
 � � � � � � ,
where

�
� is the free Fermi energy,

� �
is the corresponding dispersion

� � � � � � 
 ��� � � � �
� � � � � � and

�
is the step function. For closed shell fillings, this wavefunction is a singlet.

For open shell, we take � � with a small d-wave or s-wave symmetry in order to split the

bare degeneracy, the resulting wavefunction being a singlet. Analogously, by using

the particle-hole transformation on down spins, we are able to consider a number of up

electrons which is different from the number of down electrons, corresponding to a finite

total spin � � � .

We use the � � � tilted squares with � � � � �
� � � �

sites with periodic boundary

conditions, which possess the full spatial symmetries of the infinite lattice. We indicate

with VMC the variational Monte Carlo results obtained with the wavefunction (5.8),

with 1LS and 2LS the results obtained with � � � " � Lanczos steps applied to (5.8),

respectively. Moreover, the results obtained by fixed-node using (5.8) with one Lanczos

step as a guiding wavefunction are indicated with FNLS.

For large doping the ground-state is believed to be a paramagnetic liquid, and in this

region the Gutzwiller wavefunction, with the density-density Jastrow factor, gives a very

good approximation. We report in Fig. 5.1 variational and FNLS results for 10 electrons

on 18 sites in the subspace of
�  � � ! . Although the FNLS is rather accurate, on this

small cluster the 2LS has a better energy. Moreover, using the variational results with

different number of Lanczos steps, it is possible to extrapolate to the zero-variance limit,
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Figure 5.2: Variational energies for � � � " � " � Lanczos steps for 28 electrons on a one-
dimensional lattice of 50 sites. The continuous line is the quadratic fit of � � � " � " � .
The extrapolated point with zero-variance is also shown.

and estimate the exact ground-state energy. For
� � � the variational wavefunction (5.8)

is not as accurate as in the case of finite
�

’s, and using the � � � " � " � Lanczos steps,

the energy as a function of the variance ' has a finite curvature and the extrapolated

value slightly overestimates the exact ground-state energy. Because the linear behavior

of the energy as a function of the variance is expected for ' � � � , we can use the

� � � " � points to linearly extrapolate the value of the exact energy, which actually

gives a very accurate estimate. The 2LS represents our best variational result and the

extrapolation our best, non-variational, estimation of the exact value. In the 18-site

lattice with periodic boundary conditions, the fully polarized ferromagnet is stable only

for one hole, while even for two holes the spin is not maximum. As noted by Riera and

Young [84] in the ��� � lattice, the total spin of the ground-state is strongly dependent

upon the number of holes, at least in the low-doping region. This is due to the fact that,

for small sizes and periodic boundary conditions, the ferromagnetic state is frustrated

for a number of holes which is not a closed shell. Therefore it is crucial to consider

larger systems, where shell effects, induced by boundary conditions, are weaker than

for 18 sites. Indeed the difference in energy using different boundary conditions goes to

zero by increasing the number of lattice sites.

The method of the variance extrapolation gives exceptionally good results also for

large size systems. For example in one dimension and
� � � , where the exact solu-

tion is known by the Bhete ansatz [110], it is possible to obtain the exact result within
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Figure 5.3: FNLS results for the 50-site(full circles) and the 98-site (empty squares)
cluster in the singlet subspace. The ferromagnetic energy for 50 sites (short dashed
line), 98 sites (long dashed line) and the � ��� � ����� lattice (continuous line) are also
reported.

the statistical errors, even starting from a very poor variational wavefunction, i.e. the

Gutzwiller one (see Fig. 5.2). In this case the � � � variational energy is rather poor,

� � � � � � ��� � � � 
 � � , with respect to the exact one, � � � � � � � ���
� � ��� � , and it is largely

improved by one and two Lanczos steps. Moreover it is worth noting that, although the

energy difference between the best variational result and the exact one is still rather size-

able, the extrapolated value gives the exact value of the energy. Since the convergence

of the Lanczos technique is not particularly dependent upon dimensionality and type of

interaction, it is safely assumed that similar performances can be obtained even for the

much more interesting and complicated problem of the two-dimensional lattice.

In order to perform a systematic study of the spin instability, we consider the 50-site

and the 98-site lattices. The results in the singlet subspace for these two systems are al-

most in quantitative agreement, suggesting that, for � � ��� � , the finite size corrections

are small compared to the energy difference between the singlet and the saturated ferro-

magnet. In Fig. 5.3 we show the energies for the fully polarized and the singlet state, by

using FNLS results, for these two lattices. Contrary to the very weakly size dependent

singlet energies, the ferromagnetic energies for 50 and 98 sites are sizeable different in

the delicate region ���
�
� � � ���

�
, where there is the level crossing at the variational

level between the singlet state and the fully polarized state. However the value of the

ferromagnetic energy for the 98-site lattice almost coincides with the one of a � ��� � �����
lattice, which is expected to represent the thermodynamic limit.

In Fig. 5.4 we report the difference in energy between the singlet and the fully po-
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Figure 5.4: Differences between the singlet energy per site � � � � and the fully polarized
one � � � for the 98-site lattice as a function of the hole concentration for different ap-
proximations: 1LS (open triangles), 2LS (full squares), and FNLS (open circles), the
extrapolated value (full circles) is also reported.

larized state for different hole densities and Monte Carlo techniques for the 98 sites. For

large doping the homogeneous singlet state is well below in energy than the ferromag-

net but by decreasing the number of holes there is a sharp evidence for a fully polarized

ground-state in the low-doping region. All the Monte Carlo methods give a very large

critical doping � � � ���
�
�
�
���
�
� for the transition between the two states. Of course this

is a variational estimate and gives an upper bound for the transition. By contrast, if we

consider the extrapolated value of the energy, � � is strongly pushed at much lower dop-

ing. Although, in this case, the large statistical errors prevent us to extract the transition

point, it is clear that at low doping the homogeneous singlet state is higher in energy

than the fully polarized state. This feature is also clear in the 50-site lattice.

In Fig. 5.5 we show the variational energies for 42 electrons on 50 sites, which

corresponds to � � ��� � � . For this number of electrons the singlet is a closed shell. Here

we consider all the possible values of the spin leading to a closed shell, i.e. � � ��  � � ! � � " � � " � � . As found for the 98-site lattice, for this doping the singlet is well

above in energy than the fully polarized ferromagnet, although in this case the number

of holes is such that the singlet is a closed shell, and therefore the configuration is not

frustrated. Instead, for this number of holes the ferromagnetic state is not a closed shell

and hence its configuration is unfavorable. Moreover, from Fig. 5.5, the energy is found

to be monotonically decreasing by increasing the total spin.

In the low-doping region the fully polarized state is found to be stable, implying
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Figure 5.5: Variational energies with � � � " � " � Lanczos steps in different total spin
sectors for 42 electrons on 50 sites: � � � (triangles, continuous line), � � � (squares,
long-dashed line), and � � � � (circles, short-dashed line). The fully polarized energy
for the same lattice is also reported.

Figure 5.6: Variational energies with � � � " � " � Lanczos steps in different total spin
sectors for 58 electrons on 98 sites: � � � (triangles, continuous line), � � � (squares,
long-dashed line), and � � � � (circles, short-dashed line). In the inset: the same for� � � (triangles, continuous line) and � � � (squares, long-dashed line) for 42 electrons
on 98 sites.
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Figure 5.7: Upper panel: variational with � � � (full triangles), � � � Lanczos steps
(full squares) and FNLS (full circles) results for the ground-state energy as a function of
the total spin � for 58 electrons on 98 sites. The ferromagnetic energy is marked by the
arrow. Lower panel: the same for 74 electrons on 98 sites.

that a partially polarized ground-state for intermediate doping can exist. For very large

doping, � � ����� , the ground-state is found to be paramagnetic and the energy is an in-

creasing function of the total spin, with a finite spin susceptibility. In the inset of Fig. 5.6

it is shown the case of 42 electrons on 98 sites for � � � and � � � , which are both

closed-shell configurations. For every variational calculation, the results are consistent

with a singlet ground-state and a finite gap between these two spins. By decreasing the

hole concentration, the lowest spin states collapse to the singlet and eventually becomes

degenerate with it, implying a divergent spin susceptibility. For 58 electrons on 98 sites,

we found that, for all the Monte Carlo techniques used, the singlet is almost degenerate

with the � � � state (see Fig. 5.6). Indeed, although in the VMC calculation there is a

small difference between the energy of the � � � and the � � � state, by increasing the

accuracy with � � � " � Lanczos steps, the two energies tend to become closer and closer

and even the extrapolated values give a degeneracy of these two spins. By contrast the� � � � state remains always well above in energy.

This scenario is consistent with a second order transition between a paramagnetic

liquid and a polarized state. The spin susceptibility, related to the curvature of the energy

as a function of the spin, is finite in the stable paramagnetic region and diverges at the

transition, reflecting the collapse of the low-lying states with finite total spin.

Although within the fixed-node scheme the total spin is not defined, if the guiding

wavefunction is a good approximation of a state with total spin � , then the ground-state
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Figure 5.8: Upper panel: variational with � � � (full triangles), � � � Lanczos steps
(full squares) and FNLS (full circles) results for the ground-state energy as a function of
the total spin � for 66 electrons on 98 sites. The ferromagnetic energy is marked by the
arrow. Lower panel: the same for 68 electrons on 98 sites.

of the effective fixed-node Hamiltonian will have a large overlap with the state of spin� . In this sense we can specify, also within the FNLS approximation, the total spin of

the wavefunction. The degeneracy of the � � � and � � � states persists also within the

FNLS approximation. In the upper panel of Fig. 5.7 we report the variational energies

with � � � " � and the FNLS results as a function of the spin � . For this lattice the

FNLS represents the best variational result, giving an energy lower than the best � � �
variational result. It is worth noting that, even within the FNLS scheme, we found that

the singlet and the � � � state are almost degenerate, whereas the � � � � state is well

above in energy. The situation is completely different in comparison to the case of 74

electrons. Here all the variational and FNLS results are consistent with a decreasing

behavior of the energy with increasing the spin � , being the minimum found for the

fully polarized case.

In the region of intermediate doping, all the variational and FNLS approaches give

a minimum in the energy at finite spin, in Fig. 5.8 we report the case of 66 and 68

electrons. This suggests that the total magnetization increases, varying the hole density,

until saturation is reached for � � � ���
���

���
�
� .
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5.3 Conclusions

In this Chapter we have addressed the problem of the ferromagnetic ordering in the
� � �

model at
� � � . In this particular limit, the Hamiltonian contains only the kinetic term,

and the strong correlation is given by the fact that doubly occupied sites are not allowed.

Although there are no explicit magnetic interaction between the spins, Nagaoka [80] has

shown that the ground-state of one hole on every lattice size is fully polarized. This

astonishing result has lead to the natural question of the ferromagnetic stability at finite

hole densities. This kind of problem requires large enough systems. Indeed, on small

lattice, the choice of the boundary conditions plays a fundamental role in stabilizing a

particular value of the ground-state spin.

We have performed Monte Carlo calculations with different approximations, i.e.

variational with � � � " � " � Lanczos steps and fixed-node, for fairly large clusters, where

the size effects are smaller than the energy scales we are interested in. At high hole

doping, � � � ��� , the ground-state is found to be a paramagnetic liquid with a finite

spin susceptibility. Indeed for 42 electrons on 98 sites, all the approximations used give

that the singlet has the lowest energy and states with finite total spin are well above in

energy, separated by a finite spin gap. By decreasing the hole doping, the low-lying

excited states with � � � collapse onto the singlet. For 58 electrons on the same cluster,

we found that, for all the approximations considered, the state with � � � is almost

degenerate with the singlet, and the two states become more and more degenerate by

increasing the accuracy of the approximation. By contrast the state with � � � � is sep-

arated by a finite energy gap. By decreasing further the doping the singlet eventually

becomes higher in energy than the fully polarized state, and a clear evidence of satu-

rated ferromagnetism at small hole doping, � � ���
�

is found. For example, in the 50-site

lattice for 42 electrons, the ground-state is found to have its maximum spin value, and

the energy is monotonically increasing with decreasing the total spin.
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Conclusions

Motivated by the recent discovery of high-temperature superconductors, in this thesis

we have investigated the ground-state properties of two-dimensional systems with strong

electron-electron correlations, by using quantum Monte Carlo techniques on the lattice.

The main outcome of this work is that, in the range of physically relevant antiferromag-

netic couplings,
� � � �

� �
���
� � , the ground-state of the

� � �
model can be described

by the d-wave superconducting state, projected in the subspace without doubly occu-

pied sites, with a long-range density-density Jastrow factor. For small size systems,

where exact results are available by Lanczos diagonalization, the energy and the cor-

relation functions are qualitatively reproduced, the relative error being of the order of

a few percent. The accuracy of the variational wavefunction can be further improved

by the application of a few Lanczos steps. This can be easily done, without too much

computational effort, by using the recently developed technique of the Green function

Monte Carlo with stochastic reconfiguration [18, 19]. Moreover, since in a pure varia-

tional calculation it is possible to compute both the energy and the variance of a given

wavefunction, and because the ground-state has the minimum energy and zero variance,

an estimate of the ground-state energy can be extracted from the zero-variance extrap-

olation. Within the variance extrapolation method and by starting from the projected

d-wave wavefunction, we obtain exact results, within the statistical errors, whenever ex-

act diagonalization is possible, i.e. for � � � � , and it is plausible that the same holds up

to � � � ��� .

This method also gives reliable results on energies down to the difficult limit of
� � � . Therefore, it is possible to gain insight into the possible ferromagnetic insta-

bility. The paramagnetic phase, stable at high hole doping, becomes unstable towards a

partially polarized ferromagnetic metal at a relative high doping, � � ��� � . The results

are consistent with a second-order transition, with a divergent spin susceptibility. In

the low-doping region, the ground-state is found to be fully polarized, as suggested in

Refs. [21, 22].

Furthermore, the variance extrapolation also allows us to estimate the condensation
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energy, i.e. the difference of energy between the superconducting and the metallic phase.

At finite antiferromagnetic couplings, the condensation energy is maximum for moder-

ate hole dopings, whereas the ground-state shows a finite superconducting order param-

eter
� �

in the thermodynamic limit, in agreement with what is found in Refs. [72, 58]. It

is worth noting that, due to the local constraint, at small doping
� �

is proportional to the

number of holes and not to the number of electrons. On the other hand, the ”bare” varia-

tional gap � , related to the single-particle excitations, is found to decrease by increasing

the number of holes. Although it is found that the variational gap has a sizeable value

� � � , the local constraint strongly renormalizes the value of the true superconducting

order parameter, and we obtain
� � � � � � � . These facts suggest that, while

� �
could be

related to the superconducting order parameter, and hence to the true superconducting

gap, � might refer to the pseudogap observed in the underdoped metallic region of the

cuprates. An interesting perspective is to find out the behavior of the charge gap as a

function of the hole doping, and make a comparison with the experimental results.

The variance extrapolation scheme fails to correctly reproduce the charge and spin

correlation functions when the antiferromagnetic coupling and the hole doping are such

that strong electronic fluctuations are present, e.g. phase separation or stripes, and the

ground-state is not uniform. In these cases more sophisticated methods, which rely on

self-consistent approximations, like fixed-node or stochastic reconfiguration techniques,

are needed to detect the spatial charge and spin distribution. By direct inspection of

the energy per hole and the density-density structure factor, it is found that the onset

for phase separation is
� � � ���

�
���
� � , in agreement to what is found by other authors

[57, 58, 59], and that for
� � ����� � there are large charge fluctuations at small but finite

wavevectors, indicating that the system is near to a charge density wave instability. The

scenario is similar to what happens in the one dimensional
� � �

model, where, near to

the phase separation boundary, there is a liquid of bound pairs [111]. It is remarkable

that this effect is characteristic of the
� � �

model and it is not present in the Hubbard

model, even for
� � ��� � , where the ground-state is found to be homogeneous. In this

case, it turns out that the gain in energy by using the d-wave superconducting state with

a Gutzwiller projector is negligible, suggesting that in the Hubbard model the conden-

sation energy is vanishingly small. A possible way to significantly enhance the pairing

correlations in the Hubbard model is by adding an effective exchange term
�

in addition

to the Coulomb interaction
�

, as found in ladder systems [112]

The charge fluctuations are further enhanced if the underlying lattice breaks the rota-

tional symmetry: we showed that for a small rectangular lattice the density-density and

spin-spin structure factors have huge peaks for incommensurate wavevectors, similarly
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to what is found within the density matrix renormalization group technique [73, 91],

where the rotational symmetry is broken also by considering cylindrical boundary con-

ditions. However, it turns out that the stripe-like features are an artifact of the boundary

conditions, i.e. they are finite size effects due to the smallness of the cluster. Neverthe-

less, we expect that the
�����

is near to a charge density wave instability, and that small

distortions of the underlying lattice or perturbations in the Hamiltonian could drive to-

wards the same charge and spin modulations experimentally observed in
�
�
� ��� � � � ��� � �

and
�
� ��� � ��� � � � � � � � � ��� � � . It is likely that slight perturbations of the hopping ampli-

tudes and of the antiferromagnetic couplings (
� � 
� � � and

� � 
� � � ), which introduce

small anisotropies into the original model, can lead to stripe-like correlations in the

ground-state. This possibility will be carefully considered in a forthcoming study.





Acknowledgments

First of all, it is a pleasure to acknowledge the stimulating collaboration with Sandro Sorella

and Alberto Parola. Special thanks are due to Matteo Calandra, Massimo Capone, Luca Capriotti,

with whom part of this work has been done. I am grateful to Michele Fabrizio and Giuseppe

Santoro for useful suggestions and discussions (and to Giuseppe also for a careful reading of this

work). I also thank Stefania de Palo, Erik Koch and Claudia Filippi for discussion on the fixed-

node approximation and other numerical methods, and to Matthias Troyer on density matrix

renormalization group. It is also a pleasure to gratefully acknowledge Giovanni Bachelet, for

his suggestions and for his interest in this work. I would like to acknowledge the ”Rome group”

for enlightening insight into the physics of high-temperature superconductors: Carlo Di Castro,

Claudio Castellani, Sergio Caprara, Marco Grilli and Andrea Perali. Finally, I would like to

acknowledge Steve White, Elbio Dagotto and George Martins for sending me unpublished data

on the ����� model.





Appendix A 113

Appendix A

Implementation of symmetries in the

Lanczos algorithm

In this Appendix we describe how to implement the symmetries in the Lanczos algorithm. Let� � 
�� be the representative element of a given equivalence class labeled by � [113].
� � 
�� rep-

resents a fixed electron configuration on the lattice. We denote by � a generic element of the

symmetry group. An orthonormal basis in the symmetrized Hilbert space is

� � ��� �	 
 


�
�
�


���� � � � 
 ��� (A.1)

where the sum is over the symmetries which generate distinct states, and

 
���� ����� 
 is the

number of these states, � � being the number of the elements of the group and � 
 the multiplicity

of the state, � � are the phases defining the one dimensional representation of the group we are

considering: �
� � � ��� �


����� � � �� (A.2)

Because the number of elements of this sum depends on � , it is convenient to write the state
� � �

in a different way: � � ��� �	 ! 
 �
�
�


���� � � � 
 ��� (A.3)

where the sum is over all the symmetries and� 
	 ! 
 � �	 
 
  (A.4)

Using this basis, we can write a generic state as

�#" ��� �

%$ 
 � � ��� (A.5)

where the normalization condition gives �

 �

$ 
 �
� � �  (A.6)
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In order to find the relation between the coefficients $


 of

�#" 
 ����� �#" � and the $ 
 ’s of
�#" � , we

note that

1. By applying the Hamiltonian to
� � 
�� , we obtain states

� �
� � which are not necessarily

representatives: in the following
� � � � will identify the representative of

� �
� �

� � � 
 ��� �
�

� 
 � � � ��� � � � � ���
where the sum over � runs over all the configurations but

� 
 � � selects only those configu-

rations connected to
� � 
 � by a term inthe Hamiltonian.

2. Because � ’s are symmetries of the Hamiltonian, we have

� � � ��� ���  

Therefore

�#" 
 ��� �

 $



 � � ����� �#" ��� �


�
� $


 � 
 � � �	 ! 
 �
� �

� � � � ��� � � � � ��� (A.7)

where the index � runs over the equivalence classes, whereas the index � runs over all the con-

figuration connected by � to � , but not necessarily belonging to different equivalence classes.

Using the group property, it turns out that

$

� � �



�
�

� 
 � � 	 ! �	 ! 
 � �

�� �
	�� $ 
  (A.8)

where now the sum over � runs over all the elements of the equivalence class identified by the

representative 
 . The last equation is the basic one to compute the Lanczos step iteration in the

reduced basis of states belonging to a given symmetric subspace.
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Appendix B

An efficient calculation of the single

Lanczos step

In this Appendix we describe an efficient way to find the optimal wavefunction
�#" ��� ��� � ���� ��� �#" � , starting from a chosen variational state

�#" � , i.e. to calculate the value of � for which

the energy � � � ���
	 " ��� ��� � ��� � � ��� � �
� �#" �	 " ��� ��� � �
� � �#" � (B.1)

has a minimum. The standard method is to calculate the different powers of the Hamiltonian

� � �
	 " � � � �#" �	 " �#" � � (B.2)

using configurations generated by the Metropolis algorithm according to
" � ��� � .

However, this methods is highly inefficient because smaller statistical fluctuations are ob-

tained if the configurations are generated according to
" ���� ��� ��� � ��� � �

�
� � "���� � , where

�
� is

the local energy and � � is the value of � which minimizes the expectation value (B.1).

Using the definition (B.2), the Eq. (B.1) can be written as� � � � � � � ��� � � � � �
� � �

����� � � � � � � � �  (B.3)

In order to minimize

� � � � , it is convenient to compute the energy expectation value
� � by gen-

erating configurations according to
" � ��� � . Then, instead of calculating

� �
and

� �
, we generate

configurations distributed according
" �� ��� � , with a given � and we compute� � � � � 	 " � � � �#" � �	 " � �#" � � (B.4)

� � � � � 	 " � ��� ��� � ��� � � �#" � �	 " � �#" � �  (B.5)� � � � is obtained by averaging over the chosen configurations the local energy

�
�� corresponding

to
" � ��� � , whereas � � � � is obtained by averaging over the same configurations the quantity
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� ��� �
�
� � � � . Indeed we have that

� � � � � 	 " � �#" �	 " � �#" � � �
�
�
� 	 " � � � � �

� � ��� � �� ��� ��� ��
�
� 	 " � � � � � �

�
�
�
� 	 " � � � � �

��� �� � �	� ��
�
�
� 	 " � � � � � �  (B.6)

Given � � � � , it is straightforward to compute
� �

� � � � � � � ��� � � � � � � � � � �� � � (B.7)

moreover, given
� � and

� �
, the value of

� � � � defines the highest momentum
� �

� � �
� � � �
� � � � � � � � �

� � ��� � � � � � � � �� �  (B.8)

Notice that the most difficult momentum
� �

is given by sampling an energy expectation value,

which is much more accurate compared to the direct determination of
� �

. Therefore it is possible

to minimize

� � � � , yielding

� � � �
� � � � � � � � ����� � � � � � � � � � � ��� � � � � � � � � � � � � � � � �� �

� � � � � � � �
�� � � (B.9)

where the sign � is chosen to minimize the energy

� � � � . The analytical minimization of

� � � � ,
given the value of

� � , � � � � , and

� � � � itself, provides the exact value of � � , within the statistical

errors, which become smaller and smaller whenever ��� � � . Typically two or three attempts are

enough to reach a very accurate determination of � � .
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Appendix C

Variance estimate of the error on bulk

correlation functions

In this Appendix we estimate the error on correlation functions assuming that the ground state��� � � is approximated with the wavefunction
�#" � � :

��� � ��� �#" � � ��� � �#" 
 � (C.1)

where 	 " � �#" � � � 	 " 
 �#" 
 � � � , and
�#" 
 � represents a normalized wavefunction orthogonal

to the exact one, 	 � � �#" 
 � � � . We restrict our analysis to thermodynamically averaged cor-

relation functions � , the ones which can be written as a bulk average of local operators � 
 :
� � � 
 � 
 ��� . This class of operators includes for instance the average kinetic or potential

energy or the spin-spin correlation function. If we use periodic boundary conditions the expec-

tation value of � 
 on a state with given momentum does not depend on � and the bulk average

does not represents an approximation

	 � � � � 
 ��� � �	 � � ��� � � � 	 � � � � ��� � �	 � � ��� � � �	�  (C.2)

We show here that the expectation value of bulk-averaged operators � on the approximate state�#" � � satisfy the following relation:

	 " � � � �#" � ���
� ��� � �
�� � � � �

	 � ��� (C.3)

thus implying that for large enough size the expectation value (C.3) approaches the exact corre-

lation function � linearly with the variance. The validity of the above statement is very simple

to show under very general grounds. In fact by definition:

	 " � � � �#" � ���
� � �
� � 	 " 
 � � ��� � � � � �
�� ���

�� 	 " 
 � � �#" 
 �� (C.4)

The term proportional to � � in the above equation can be easily bounded by use of the Schwartz

inequality: � 	 " 
 � � ��� � � �
� � � 	 " 
 ��� � � � � ��� � � �

���
	 � � ��� � � � �

� ��� � �� (C.5)
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The final term in the latter inequality can be estimated under the general assumption that corre-

lation functions
� ��� ��� 	 � � ��� � 
 � � � � � 
 � � � � � ��� � �	 � � ��� � � (C.6)

decay sufficiently fast with the distance
� � �

, as a consequence of the cluster property:

	 � � ��� � � � �
� ��� � � � � �����

�� � �� � � � ��� �� (C.7)

This concludes the proof of the statement of this Appendix, provided
� � � ��� � is finite for ���

� .
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Appendix D

An important property of the projected

BCS wavefunction

Let us consider the Gutzwiller projected BCS state

�#" �
��� ����� ����� � ��� � � $ � � �� �  � � � � � ! 
 � ���� (D.1)

where � � projects onto the subspace of � particles, � is the Gutzwiller projector, which

completely forbids doubly occupied sites, and
� �

and $
�

are variational parameters. The non-

projected wavefunction is the exact ground-state solution of the BCS Hamiltonian

� � � � � ��� � � �� � � � � � � � � �
	 � � � �� �  � � � � � ! � �  � 
 � (D.2)

where � � � � � � ����
���� � � ��
���� � � � � , being � the chemical potential and we assume that 	 �
is real and satisfies 	 � � 	 � � . The pair amplitude is given by

$
�� � � 	 �

� � ��� � �� � 	 ��  (D.3)

The effect of particle-hole symmetry

�

�
� � � � � � � ��� � � (D.4)

with � � ��� � � � , leaves the Hamiltonian and the two projectors � � and � � invariant, but

changes the state (D.1) into

�#" �
� � ����� ����� � �

$
�
�
� � �

�
� ��� �  � � � � ��� � ! 
 � ��� (D.5)

If the ground-state is invariant under particle-hole transformation, the proportionality between

Eq. (D.1) and Eq. (D.5) implies

$
� ���� � ��� � �

� �
$
� (D.6)
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which corresponds to 	 � � � 	 � ��� . However, on a square lattice there are spatial symmetries

relating the points
�

and
� � � on the Fermi surface. In particular, the reflections across the

bisectors bring
�

into
� � � . Therefore if the gap is non vanishing along the Fermi surface 	 �

must change sign under
� ��� and

� � � � which means d-wave symmetry.

Now we investigate the signs of the projected wavefunction (D.1) and we show that it satisfies

the Marshall sign rule. We start from the BCS Hamiltonian (D.2) and perform the particle-hole

transformation only on the down-spins

�

�
� � ! � � � � ��� � ! (D.7)
�

�
� �  � � � �  (D.8)

followed by the canonical transformation (spin rotation):

� � � � � �	 �
��� � �  � � � � � ! � (D.9)

� � � � � � �	 �
��� � �  � � � � � ! � (D.10)

The BCS Hamiltonian (D.2) acquires the form

� � � � � � � ��� � � � � ��� � � (D.11)

where ��� ��� ��� � � � �� � � � � � ��� � 	 � � �� � � � � ��� � � (D.12)

where we have assumed that 	 � � � 	 � ��� . The ground-state of � may be written as a tensor

product of free states � � � � fermions.

If the state
� � "���� �
	�	�	 � � � � � � � � 	�	�	 � � � � � � ��� is the ground-state of

� � � � ��� � , then the

state
� � " � ��� �
	�	�	 � � � � � � � � 	�	�	 � � � � � � ��� is the ground-state of

� � � � ��� � . Here we have

chosen an arbitrary ordering of the lattice sites:
� � � 	�	�	 � � � . Therefore, the ground-state of �

is

�
� � �

" ��� �
	�	�	 � � � � � " � �
� ��	�	�	 � � � � � � �� � � � 	�	�	 � �� ��� � � � � �� � � � 	�	�	 � �� ��� � � � � ��� (D.13)

where we fixed the chemical potential so to have a ground state with exactly � fermions. If we

write this state in terms of the original electron operators we get, apart from a proportionality

factor,

�
� � �

" ��� � 	�	�	 � � � � � " � �
� � 	�	�	 � � � � � � � ��
 � � � � ���� �  � � � � � ��� � � � � !��
� � ��� � � � � �� � �  � � � � � � � � � � � ! � � � � � ! 	�	�	 � �� � ! � ��� (D.14)
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When we project over the state at fixed number of particles, equal to the number of sites, we

must chose the same number of creators and annihilators in the � � � factors of the product. But

if we do not want double occupancies (due to the Gutzwiller projector) we must create an up

spin on the same site where a down spin has been annihilated. Therefore, the only terms which

survive are those with
� 
 � � 
 :

�
�
�#"���� � 	�	�	 � � � � � � � � � � � � �

�
� � �
� � �  � � � � ! 	�	�	 � �� � �  � � � � ! � � � � ! 	�	�	 � �� � ! � ��� (D.15)

Finally, by moving the down spin creators to the left, we can order the operators according to

the specified ordering of sites in the lattice, independently of the spin, without introducing any

further phase factor. Therefore, on this basis, the wavefunction has exactly the Marshall sign. In

fact the Heisenberg hamiltonian does not move particles thereby leaving invariant the ordering

of fermion operators on the lattice.
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