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“...[Mais devant cette grosse patte rugueuse, ni l’ignorance ni le savoir n’avaient d’impor-

tance: le monde des explications et des raisons n’est pas celui de l’existence. Un cercle

n’est pas absurde, il s’explique très bien par la rotation d’un segment de droite autour

d’une de ses extrémités. Mais aussi un cercle n’existe pas. Cette racine, au contraire,

existait dans la mesure où je ne pouvais pas l’expliquer. Noueuse, inerte, sans nom,

elle me fascinait, m’emplissait les yeux, me ramenait sans cesse à sa propre existence.

J’avais beau répéter: C’est une racine ,ca ne prenait plus.]...”

From “La Nausée” by Jean-Paul Sartre

“Fue sin querer queriendo”

El Chavo del Ocho



Abstract

High Energy Physics Sector

Scuola Internazionale Superiore di Studi Avanzati

Doctor of Philosophy

by Diego Gallego

We analyze the circumstances under which part of the information in the full Lagrangian

of certain supersymmetric theories can be neglected. More precisely, we study when

heavy moduli can be frozen out rather than being properly integrated out, and still get

a reliable low energy effective action around nearly supersymmetric solutions.

The procedure, usually known as Two-Step moduli stabilization, is studied for a generic

class ofN = 1 supersymmetric theories in four dimensions, described by a superpotential

for the moduli of the form W = W0(H) + εW1(H,L), with ε� 1, and an arbitrary but

regular Kähler potential. We find that the simplified description, where theH superfields

are frozen out, is a reliable description as far as their scalar components be solutions of

the leading F -flatness conditions. For generic regular Kähler potential, a mass hierarchy

ofO(ε) between the two sets of fields is also required. This last condition, in supergravity,

is a requirement on the expectation value for the superpotential, 〈W0〉 ∼ O(ε). For nearly

factorizable Kähler potentials, K = KH(H) +KL(L) + εKmix(H,L), the condition of a

mass hierarchy is relaxed and W0 can take arbitrary values at the vacuum. In presence

of matter and gauge interactions the previous conditions continue to hold with a further

comment: only neutral chiral multiplets can be frozen. In the case of broken gauge

symmetry further states becoming massive through the breaking should be properly

integrated out. The higher order terms not reliable in the simple approach, induced by

the presence of O(1) couplings in the matter sector, are also figured out.

Relaying on these results, we use the simplified system to study how two light moduli

can be stabilized in a Minkowski/de Sitter vacuum for a wide class of string-inspired

supergravity models, with an effective Fayet-like SUSY breaking. It is shown under

which conditions this mechanism can be made natural and how it can give rise to an

interesting spectrum of soft masses, with a relatively small mass difference between scalar

and gaugino masses. In absence of a constant superpotential term, the model becomes

completely natural and gives rise to a dynamical explanation of supersymmetry breaking.

Some specific type-IIB and Heterotic string inspired models are considered in detail.
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Chapter 1

Introduction

Last century have been of great excitement for fundamental physics. This enterprize

had its peak with the theoretical establishment, and later experimental test, of the

Standard Model of electroweak interactions. Indeed, the level of precision the theory

has been tested [4] makes rather difficult not to expect that the Large Hadron Collider

(LHC) will find the last piece of the puzzle, the Higgs boson. Still, the Standard Model1

was from the beginning understood to be an effective description at low energies of

some underlying theory. In fact, although the situation was not as clear as in the case of

Fermi theory, where one is dealing with a non-renormalizable Lagrangian, and new effects

were in any case expected at scales where unitarity breaks down, or where its coupling

become non-perturbative, there are some insights telling us that there is still a lot to

be understood. Some of them are quite ambitious and motivated mainly theoretically,

starting from the explanation for the value for the parameters in the Lagrangian, and

numbers like the triplication of families, going to more formal and fundamental questions

like the quantization of charge, or an unification of the fundamental interactions, which

contain a quantum description of gravity. There are other hints, ambitious as well,

more immediate in the sense that deal with the stability of the theory under quantum

corrections. More precisely, the corrections to the mass term for the Higgs bosons in the

Lagrangian diverge as the cut-off scale squared,

m2 ∼ m2
0 +

1
16π2

Λ2
cut−off . (1.1)

Since all the known massive particles acquire masses that are proportional to this pa-

rameter, its value should be around the weak scale, MW ∼ 100GeV . However, the
1As is commonly used we will call by Standard Model the theory of electroweak interactions together

with the theory of strong interactions, Quantum Cromodynamics (QCD). Here we extend even more
this definition by allowing masses for the neutrinos, another signature of incompleteness of the Standard
Model, since these can be “easily” accommodated without dramatically affecting the original framework.

1
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cut-off scale is naturally expected to be near the Planck scale, MPlanck ∼ 1019GeV , so

that seems to be in action a very unnatural cancellation, fine tuned at least in one part

out of 1028, between the bare mass and the quantum corrections. Trying to explain the

puzzled small ratio MW /MPlank, known as the “hierarchy problem”, is probably the

main suggestion of physics beyond the Standard Model in the TeV region, a range of

energies we will be able to explore with the LHC, filling the present era of fundamental

physics with a lot of expectations an relevant excitement.

Probably the simplest and best candidate to solve this problem is Supersymmetry

(SUSY), a symmetry between fermions and bosons. The first consequences of the SUSY

algebra are that in each supermultiplet there are as many fermionic degrees of freedom

as bosonic ones, with identical masses and quantum numbers. Therefore, the quantum

corrections from each sector exactly coincide, and having opposite sings cancel each

other. Of course, if indeed SUSY is realized in nature it should be spontaneously broken

at a scale MS so to explain why we have not found any of the predicted superpartners.

Once it is broken the degeneracy on the masses is splitted by approximately the scale

of SUSY breaking, and the correction to the Higgs bosons mass parameter is roughly2,

∆m2 ∼ 1
16π2

M2
S . (1.2)

Then the scale of SUSY breaking is expected to be in TeV region. A further motivation

for SUSY at TeV energies is the unification of the Standard Model couplings at MGUT ∼
1016GeV [5], suggesting a Grand Unified Theory (GUT) scenario [6].

Besides the fact that SUSY is the only extension of the Poincarè algebra consistent

with a relativistic quantum theory of fields [7], probably one of the first theoretical

appealing facts of SUSY is that, due to the mixings in the algebra with the usual

Poincarè generators, once the SUSY transformations are performed locally, i.e. space-

time dependent, gravity naturally arises. This SUSY invariant version of gravity, know as

Supergravity (SUGRA), brings also the resolutions to some problematic issues present in

the global SUSY case. Indeed, the unobserved massless fermion, the golsdtino, product

of the spontaneous breaking of global SUSY, in SUGRA is understood as a would-be

Goldstone fermion that is eaten up by the gravitino, the graviton superpartner, becoming

massive throw a super-Higgs mechanism [7]. Also the fact that the energy density in

global SUSY theories is positive definite, vanishing only for SUSY vacua, makes rather

difficult to explain the observed almost vanishing cosmological constant of the universe.

As we will see in chapter 2, in SUGRA theories the energy density can take negative
2This shows why SUSY cannot be an explanation for the smallness of the cosmological constant, the

“Big Hierarchy Problem”, where the original tuning is far more unnatural.
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values and, interestingly enough, appealing vacua whose cosmological constant vanishes

in general present SUSY spontaneously broken.

In general SUSY theories share the property of being better behaved under quantum

corrections making them very appealing in contexts like quantum gravity. Indeed there

are strong indications that enough symmetries, N = 8, render SUGRA a finite theory

[8]. Also SUSY Yang-Mills theories compared to the non-SUSY ones are rather easy to

study due to the restrictions imposed by the symmetries and the dualities among them,

making them a fruitful playground of Toy Models in a first approximation to understand

the dynamics of strong coupled systems like QCD (for an introductory review see [9]).

In this sense SUSY is not only the best motivated scenarios for physics beyond the

Standard Model but also very suggestive from the theoretical point of view and deep

understanding of fundamental physics.

Interestingly enough, one of the first papers where SUSY was realized as a new kind

of symmetry [10] was inspired by a generalized Lagrangian with fermionic degrees of

freedom in the world-sheet of a string, the fundamental object that now seems to explain

many of the issues listed above. At that time string theory was born as a possible theory

for strong interactions, but with the successful description by QCD this perspective was

soon abandoned. Still this very simple idea of regarding strings and not point particles as

the fundamental objects, and interpreting its resonance modes as the observed particles,

has dramatic consequences when is looked at from another point of view. This was soon

after noticed by Michael Green and John Schwarz who pointed out that the massless

spin two particle of the string spectrum can be interpreted as the graviton, and string

theory might actually be a quantum description of gravity with the extra ingredient of

encoding simultaneously the already well understood Yang-Mills theories. However, the

theory at its state of art was plagued with inconsistencies like gravitational and gauge

anomalies, so very few people consider this idea as a viable one.

It was not until the eighties with the consistency proof ofN = 1 ten dimensional SUGRA

with gauge groups SO(32) or E8 × E8 [11], and the construction of the corresponding

underlaying superstring description, the Heterotic string [12], that string theory starts

to show up as a strong candidate for a unified quantum description of fundamental in-

teractions. Now we know that only five consistent theories can be constructed, Heterotic

(with its two possible gauge groups), type-I, type-IIB and type-IIA. Moreover, all these

are nothing but different limits of the same theory, M -theory, a quite appealing result

in the aim of a unique theory of everything!

Sadly enough consistency also requires these five theories to live in ten, and not four,

dimensions [13]. The good point is that at least the number of space-time dimensions is

larger than four, so still we have the possibility to extract a four dimensional (4D) theory
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by compactifying the six extra dimensions. This is not a new idea from string theory, as

it was already proposed in the twenties by Kaluza and Klein in a unified description of

gravity and electromagnetism from gravity in five dimensions [14]. However, in doing so

the acclaimed uniqueness of the theory is completely lost as the Einstein equations have

an incredible huge number of solutions turning into probably equal number of different

4D theories, which moreover seem to be dynamically equally favored. In any case the

situation seems to be very likely to reproduce the Standard Model or at least it minimal

SUSY extension (MSSM). One of the early hints pointing suggesting this is so, is the

fact the the gauge group of Heterotic strings E8 × E8, easily accommodates standard

GUT models plus a hidden sector necessary for SUSY breaking. Therefore, the analysis

of these compactified theories is far from being pointless.

Since we are interested in physics at rather low energies, with Compton wavelength larger

than the fundamental string length and the extra-dimension size3 we restrict ourselves to

study only the SUSY Effective Field Theory (EFT) describing the physics of the states

that at first approximation look massless, i.e. a SUGRA theory in 4D. In this context

we now know that out of the many 4D solutions only a very small set can realize our

world [15]. However, is still rather “easy” to construct models with almost or the exact

spectrum4 and gauge group of the Minimal Supersymmetric Standard Model (MSSM)

[16]. On the other hand, it is expected that a theory of everything explains dynamically

the way this extra dimensions are compactified, and what one usually finds, instead,

is a continuous set of unequivalent vacua parametrized by massless modes (moduli),

which characterize, among others, the size and shape of the compact manifold, and

the couplings of the 4D theory! At the moment there are in the market various ways

to generated non-trivial potentials for the moduli uplifting these flat directions, like

background fluxes or non-perturbative effects. In the field space what we have then is a

very complicated scalar potential with a profile that looks like a huge multidimensional

landscape, and whose depressions are the solutions to the equations of motion (e.o.m.).

This analogy was first introduced by Susskind [17] describing the moduli space of SUSY

vacua one gets by compactifying on a Calabi-Yau (CY) 3-fold, but then was generalize

to the full space of solutions coming from the low energy EFT of string theory. Already

in the eighties, dealing only with the Heterotic string, it was known that this space was

very large, even after imposing phenomenological conditions like chirality [18]. Now,

with the developing of D-brane models and flux compactifications [19] the extension of

such Landscape has increased tremendously, so to open even more room for the Standard
3A small curvature is also required in order to make trustable the first orders in the expansion on

the metric.
4By spectrum we refer to the particle content and quantum numbers, being at this stage still massless

fields.
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Model to lie on it, or interesting mechanisms to realize a small cosmological constant

[20], but also to make more worrisome matters on the predictive power of the theory.

The strong motivations we have for requiring SUSY breaking at low energies suggest a

first approach compactifying on manifolds which preserve SUSY in 4D, like CY 3-folds,

and break it later on by low energy effects. This has the extra advantage of dealing with

SUSY theories in 4D that are far more restricted and robust than the non-SUSY ones,

allowing more control on the mechanisms implemented. Indeed, although preserving

SUSY in the compactification process is tightly related to the appearance of the moduli

spaces mentioned above, the up-lifting of these degeneracies better to be performed

before, or meanwhile, SUSY is broken so to have complete control on the prediction of

couplings and masses5. Moreover, generally the moduli fields play an important rôle in

breaking SUSY and generation of soft masses in the visible sector. This mechanism of

moduli mediated SUSY breaking, contrary to other mechanisms, is always present so a

precise and complete computation of the soft terms require a controlled stabilization of

the moduli.

Cosmological observations also impose non-trivial condition on the way the moduli are

stabilized. The first one, is that the vacuum should realize a nearly vanishing cosmolog-

ical constant [21]. It turns out that although the original moduli space has exactly zero

cosmological constant, once non-trivial dynamics are generated the system likely relaxes

to a SUSY or nearly SUSY vacuum now with a deep negative cosmological constant.

The second one, known as the moduli “problem”, points out that decays from light mod-

uli may generate entropy that spoils features like big-bang nucleosynthesis, or if stable

affect the relict energy density we observe. This sets a lower bound in the value for the

mass of the moduli mmod ≥ O(10)TeV [22]. Stabilizing all moduli with heavy enough

masses in a nearly Minkowski space, predicting the value of the observed couplings and

a low SUSY breaking is one of the mayor challenges in string phenomenology.

In this context a tremendous progress has been realized during recent years, mostly in

type-IIB string theories. There, a combination of fluxes for Ramond–Ramond (RR) ten-

sor field strengths and for the Neveu Schwarz–Neveu Schwarz (NSNS) field strength H

has been shown to stabilize the complex structure moduli of the unperturbed compact-

ified space [23]. Subsequently a “scenario” with the Kähler structure moduli stabilized

on a Minkowski/de Sitter (dS) vacuum with SUSY breaking has been introduced by

Kachru, Kallosh, Linde and Trivedi (KKLT) [24], assuming a complete decoupling be-

tween complex structure and Kähler structure moduli. In this scenario all moduli are

originally stabilized in a SUSY Anti-de Sitter (AdS) point, the vacuum is then up-lifted
5There are some axionic-like direction that can be stabilized even after SUSY breaking by quantum

corrections without consequences on the couplings neither on cosmology.
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by an explicit SUSY breaking effect due to the introduction of D3-branes. Although

still it is possible to perform some quantitative analysis of the soft-term sector [25], it

is nevertheless desirable to have a fully satisfactory spontaneous SUSY breaking mech-

anism, motivated also by the fact that SUSY is a local symmetry at the SUGRA level

and hence an explicit breaking should be avoided.

So far we have spoken about the low energy EFT of string theory in a very hypothetical

way. Indeed, the huge number of degrees of freedom (actually infinite) one is dealing

with makes the task of formally computing the EFT Lagrangian practically impossible.

The EFT approach is still desirable since it provides precisely the necessary information

we need at low energies, with tools like the decoupling theorem [26], simplifying dramat-

ically the analysis. To get rid of the string and Kaluza–Klein resonances the approach

is a consistent truncation eliminating the heavy states using symmetry considerations

on a well known 4D theory Lagrangian [27], like the one obtained in toroidal compact-

ifications. At first approximation this is fine, since such states are easily detected and

sufficiently heavy. Despite such a huge simplification, which leads us to the 4D SUGRA

description, the theory typically contains hundreds of fields with complicated dynam-

ics, making an explicit full study of these theories a formidable task. Indeed, as already

mentioned, the scalar potential admits in general a “landscape” of possible vacua, where

even determining the location of the solution in the full set-up might be impossible.

With the developing of flux compactification we have understood how to generate non-

trivial dynamics at tree level for some of the moduli. This, being a tree level effect and

generated by quantized fluxes, induce a large superpotential and in principle large masses

for the moduli involved, compared to the non-perturbative dynamics responsible for the

stabilization of the rest of the moduli. So, in the aim of the EFT low energy description

we are pursuing, these modes might be integrated out as well. However, the situation

seems still so complicated that the common approach is to neglect the dynamics of these

modes by simply freezing them at some approximate Vacuum Expectation Value (VEV).

Notice that the situation is more delicate than in the case of the string and Kaluza–Klein

resonances mainly due to the fact that the moduli are not in general expected to have

polynomial potentials neither vanishing VEV, moreover many couplings may depend

them. Indeed, is not immediately clear that their VEV decouple from the dynamics of

the remaining fields, a first condition to have a reliable description by freezing.

Asking when and up to what extend this approach is valid is a highly crucial question

as by now we are only able to solve system under this set-up. After the acclaimed

work of KKLT there have been some works addressing this issue mainly restricted to

this particular scenario [28, 25, 29, 30, 31, 32]. In particular Choi et. al. found in [25]

that the large flux induced superpotential not necessarily implies a large mass for the
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moduli, so that the dynamics of the light fields might be enriched. Among these works

there is one in particular claiming that the procedure is in general incorrect, so that a

proper integration of the heavy fields leads to completely different conclusions, like the

possibility of having a dS vacuum without the introduction on the D3-branes [29]. This

result turns out to be in contradiction with our findings and the ones in independent

works as we will comment in the analysis.

Other approach was taken by Achucarro et. al. [33, 34, 35], following a proposal by

Binetruy et. al. in [36], studying SUGRA models which present a rather special property

of factorizable Kähler invariant function. This condition, however, seems not to be

typical in EFT from string compactifications, therefore are quite restrictive. Motivated

by the possibility of having stable Minkowski solutions, independently of having or

not properly integrated the heavy fields, Blanco-Pillado et. al. constructed a model

realizing Minkowski SUSY vacua with stabilized moduli [37], and general conditions

for the stability of meta-stable vacua were worked out by Gómez-Reino and Scrucca in

[38, 39].

The main aim of the present thesis is to determine the conditions under which a freez-

ing of fields à la KKLT is a reliable approximation for a rather generic class of 4D,

N = 1, SUGRA theories resembling the flux compactification scenario. Regarding these

results we construct an explicit model where stabilization of light moduli is realized in

a Minkowski vacuum.

The structure of the report is as follows: chapter 2 is devoted to a quick review of the

fundamental tools and concepts we will be dealing with in the rest of the study. This

chapter also serve as a further clarification of the SUGRA EFT framework we glanced

above; chapter 3 present the results of ref.[2] studying the conditions for global and

local SUSY theories under which freezing of moduli fields H is a reliable description in

systems with no gauge interactions and without matter fields. The class of theories we

study are described by a superpotential of the form,

W = W0(H) + εW1(H,L) , (1.3)

with ε� 1, and L are the light multiplets described by the EFT after the integration of

the H multiplets. We allow a generic Kähler potential, with the only assumption that the

eigenvalues of the Kähler metric are parametrically larger than ε. We find that for this

generic case the H multiplets can be reliable frozen as far as they sit in a approximate

SUSY point in the H-directions, and a hierarchy of O(ε) between the masses of the

H and L fields is realized. This last condition in the SUGRA case further translates

to a condition on the VEV of the superpotential 〈W0〉 ∼ O(ε). The condition of a

hierarchy in the masses is relaxed once one restricts Kähler potentials of the factorizable
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form K = KH(H) +KL(L), as we briefly show in general and with a particular relevant

instance of this sort, namely the LARGE volume compactifications [40, 41, 42, 43] arising

from flux compactifications of type-IIB superstrings. The procedure first follows the

standard way of integrating fields out from the component Lagrangian, and then show

how the same result is easily obtained by integrating the complete H supermultiplets

simultaneously; chapter 4, presenting the results of ref.[3], generalize the study done in

chapter 3 by introducing gauge dynamics an matter fields. The schematic form of the

superpotential in this more complicated set-up is taken as follows:

W = W0(H) + YN (H,M)CN + ε
[
W1(H,M) + µM (H,M)CM

]
, (1.4)

where M denotes any kind of light field, charged or neutral, with VEV of O(1), and

the C matter fields with VEV O(ε). W0, YN , W1 and µM , are arbitrary holomorphic

functions, constrained only by gauge invariance, we restrict the study to the case N ≥ 3

and M ≥ 2. With the assumption of neutral H fields the conclusions are mainly the

same found in the previous case, but with the extra comment of pointing out the order

on C, in the superpotential and Kähler potential, where the proper integration of the H

fields starts to be relevant. Notice that introducing gauge dynamics we have further O(1)

dynamics coming form the D-term potential. We will see that heavy fields getting mass

from these dynamics cannot in general be frozen, being the correct procedure to integrate

the full broken gauge sector. This chapter is mainly devoted to the case of generic Kähler

potential, where a hierarchy in the masses is compulsory. However, a section is added

to the results of ref.[3], giving a glance in the situation of the factorizable case and in

particular for the LARGE volume scenarios; chapter 5 presents the results of ref.[1] with

a detailed study of a particular instance for the second step stabilization in the Two-Step

procedure, stabilizing two moduli in a Minkowski space. For this set-up an important

rôle is played by a field depended Fayet-Iliopoulos (FI) term, giving rise to a generalized

SUGRA Fayet-like SUSY breaking. This two moduli case, contrary to the single moduli

one studied by Dudas et. al. in [44], allows to get less suppressed gaugino masses

compared to the gravitino one. It opens also, by the addition of extra non-perturbative

effects, the possibility to render rather natural the value for the parameters in the

Lagrangian. The set-up is general enough to be implemented in type-II and Heterotic

constructions; chapter 6 resume the conclusion and outlook possible further directions

to explore.



Chapter 2

Wandering on the Landscape

This chapter introduces the main tools, ideas and conventions we use in the following.

We define the Lagrangian for a generic EFT and the classical integration of fields and,

in SUSY theories, of supermultiplets. The N = 1 SUGRA Lagrangian in 4D and its

generalities is introduced, being the framework for the rest of the work as an EFT from

string compactifications. In this context we introduce the moduli fields and the possible

mechanism to stabilize them. We review the appearance of field dependent FI-terms

in string compactifications which we will use in the last part of the thesis. Finally the

KKLT work [24] is presented in some detail as a benchmark to introduce the Two-Step

moduli stabilization procedure.

2.1 Effective field theories

String phenomenology, although inspired by a possible microscopic description of fun-

damental interactions, is for most of the porpoises and scenarios studying only the low

energy remnants of the theory, being the ones we can experimentally test in a control-

lable way. Indeed, the highest energy scale that we can reach in the forthcoming LHC

era is far below a suggested string scale, or even a GUT scale, by several orders of

magnitude. Therefore, we find ourselves always dealing with, testing, an EFT, as we

have been continuously during the last century, like in the case of Fermi theory of weak

interactions.

The guiding idea on writing down an effective Lagrangian for a field theory is the fact

that at low energies modes with very large masses cannot be excited, however still their

effects should be seen in the parameters of the low energy theory. Being the energy the

key point in this rationale a generic EFT is represented by a Lagrangian written as an

9
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expansion in powers of momentum [45],

L =
∑
i

ci
Λdi−4

Oi , (2.1)

where ci are dimensionless couplings known as Wilson coefficients, Λ is the cut-off scale

and Oi are operators of dimension di of the light fields. Then, for energies well below Λ

the infinite sum in (2.1) can be consistently truncated to a finite set of operators so to

get a testable theory1.

The Effective Lagrangian is then reliable only up to the scale Λ where new degrees of

freedom are expected2 and one has two points of view to look at it. In a bottom-up

perspective the Wilson coefficients are parameters to be fixed by experimental data,

meanwhile in the top-down perspective are given in terms of the microscopic parameters

after the effects of energies above Λ has been summed up. Clearly this last one is the

one followed in string phenomenology.

When summing up the contributions from the higher energies it is convenient to choose

a basis in the degrees of freedom, φm, such that can be splitted between the heavy

ones, φH , with masses larger than Λ and the light ones, φL. Then in the path integral

formulation is clean the definition of the effective action

eiSEff (φL) ∼
∫

[dφH ]eiS(φL,φH) , (2.2)

such that the φH modes are integrated out. The integral, as usual, is dominated by the

classical solution,
δS

δφH

∣∣∣∣
φH0

= 0 , (2.3)

minimizing the action. Thus on has

eiSEff (φL) ∼ eiS(φL,φH0 )

∫
[d(δφH)]e

i δ2S

δφHδφH
(φH0 )δφHδφH+...

, (2.4)

where we show only the first quantum correction given by the φH mass terms. At the

classical level the effective Lagrangian is then given by

LEff (φL) = L(φL, φH0 (φL)) . (2.5)

1Part of this analysis clearly relies on the assumption that the Wilson coefficients have no anomalous
small or large values.

2In general the degrees of freedom describing the underlying theory can be completely different to the
ones in the effective one, as is the case of QCD with baryon and mesons as relevant degrees of freedom
at low energies and quarks for higher ones.
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with φH0 (φL) the solution to the classical equation of motion,

∂L
∂φH

= 0 . (2.6)

In case one is dealing with heavy vector bosons related to a gauge symmetry the analysis

is still valid, with the extra ingredient of a gauge fixing to get rid of the redundant degrees

of freedom [46].

Being the resulting theory only valid at low energies a further commonly done approx-

imation is to restrict the EFT to the two derivative level, i.e. to require in the kinetic

terms of the effective Lagrangian only terms with mass dimension four. In other words

restrict to slowly varying space-time solutions. This translates to require independence

of the solutions of eq.(2.6) on the derivatives. Then, the full e.o.m. (2.6) reduces to only

the one from potential part of the Lagrangian,

∂V

∂φH
= 0 . (2.7)

In practice, the identification of the physical heavy and light fields is typically not

straightforward as the Lagrangian is not written in term of the canonically normalized

mass eigenstates. It turns out, however, that a precise identification of the physical

heavy modes is not necessary as far as the fields that are integrated out be the main

components of them. Indeed, the integration of such fields will affect the parameters of

the low energy EFT Lagrangian precisely in a way to get the correct physical quantities

at low energies. In some cases, as the ones we will be dealing with, from the form of

the scalar potential, or its second derivative matrix, it is rather easy to directly identify

the main components of the non-canonical normalized heavy directions, say φH , with

H = 1, . . . , nH . One might argue that this is not enough as the physical states, obtained

by the canonical normalization, in general mix the φH with the previously though light

modes. However, as we will see in chapter 3, there is a particular choice for the canonical

basis, φ̂m, where a subset of them φ̂H , with H = 1, . . . , nH , do not have components

in the non-canonical light directions. This means, that if the metric is regular enough

not to introduce further hierarchies, the masses of the φ̂H are of the same order of the

φH ones and their mixings with the light physical modes are of the same order as well,

therefore, the canonical normalization is irrelevant for the purposes of calculating the low

energy EFT for the light physical fields, and in practice can be avoided. Notice, that this

consideration, plus the restriction of a two derivative low energy effective Lagrangian,

implies that we can consistently forget completely the kinetic terms for the fields and

work only a the level of the potential, so that the analysis is considerably simplified.
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2.1.1 Effective SUSY theories

At the two derivative level a Lagrangian of the N = 1 SUSY theory of chiral and

vector multiplets is completely fixed by: the superpotential, W (φ), the Kähler potential,

K(φ, φ̄, V A), and the gauge kinetic functions, fAB(φ). The superpotential and gauge

kinetic functions are holomorphic functions of the chiral multiplets, φ, and the Kähler

potential a real function of the chiral and vector multiplets, V A 3. Then a SUSY invariant

Lagrangian is written as an integral over the Berenzin coordinates θ,

L =
∫
d4θK +

∫
d2θ

(
W +

1
4
fABWαAWB

α

)
+ h.c. . (2.8)

where WA
α is the gauge field strength chiral multiplet, Wα = −1

4DD
(
eVDαe

V
)
, with

Dα the SUSY covariant derivative [7]. The e.o.m. in this case can be written in a

compact form by taking the variation over full supermultiplets [47]. Writing the D-term

density, i.e. the first term in the Lagrangian, as a F -term one using the SUSY covariant

derivatives,
∫
d2θ̄K = −1

4D
2
K, the e.o.m. for a heavy chiral multiplet φH reads,

∂HW −
1
4
D

2
∂HK +

1
4
∂HfABWαAWB

α = 0 . (2.9)

As we did in the non-SUSY case we would like to truncate the theory at the two derivative

level. This, however, should be done in a consistent way with the SUSY algebra. Indeed,

the SUSY transformations mix derivatives with fermion modes and auxiliary fields. It

turns out that this consistent truncation in the chiral equation (2.9) reduces to neglect

all terms with SUSY covariant derivatives, so to get an approximate chiral e.o.m. [48],

∂HW = 0 . (2.10)

This will give an EFT exact at leading order in4 ∂µ/MH , ψi/M3/2
H , λi/M3/2

H , F i/M2
H

and DA/M2
H , where MH is the SUSY mass of the heavy chiral multiplets, given by

MH ∼ ∂H∂HW . Indeed, the solution to the correct full e.o.m. have deviations from

the truncated one of O(D2φi/MH , D
2V A/MH), therefore, in order this to be a good

approximation, besides the usual low energy condition ∂µ/MH � 1, the SUSY breaking

scale should be well below the mass scale of the heavy states, i.e. F i/M2
H � 1 and

DA/M2
H � 1 [49]. For a heavy vector multiplet, V H , a similar analysis shows that at

3In global SUSY the superpotential and the Kähler potential are gauge invariant functions, the gauge
kinetic function instead can be charged, as we will see later on more carefully.

4The presence of the vector multiplet makes the discussion a bit more subtle and this statement is
not strictly correct as we will show more precisely in chapter 4. Still the outcome turns out to be the
same so we neglect this subtlety here.
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the two derivative level the e.o.m. takes the form [50],

∂HK = 0 , (2.11)

where again consistency requires F i/M2
H � 1 and DA/M2

H � 1 with MH the SUSY

mass of the vector multiplet M2
H = ∂H∂HK [49].

These constrains on the auxiliary fields are somehow expected, since we are regarding the

effective theory as approximately SUSY when relating the truncation of the derivatives

with a truncation in the power of the auxiliary fields and fermion bilinears. Moreover, the

mass splitting between the components of the heavy multiplets should be smaller than

mH in order to ensure that none of them remain in the low energy spectrum. This, of

course, is the case only if the auxiliary fields of the integrated fields are suppressed. Since

at leading order, for generic Kähler potentials, the auxiliary fields of the integrated fields

are linear combinations of the light field auxiliary fields, as can be shown by solving the

approximate chiral equation, this requirements then translate into the conditions found

above.

2.2 N = 1 SUGRA in 4D

As mentioned in the introduction, out of the infinite number of fields one obtains in the

quantization of the strings one is interested only in the massless sector. More precisely

the string excitation are characterized by a tower of masses whose lowest value is of

order the string scale, M2
St ∼ 1/α′. Taking the 10D Einstein-Hilbert action, one gets by

neglecting such states, and performing a naive compactification over the six dimensional

compact manifold Y , one finds

S =
g−2
s

(2π)7α′4

∫
M4×Y

d10X
√
−g10R10 ∼

g−2
s V ol(Y )s

α′

∫
M4

d4x
√
−g4R4 , (2.12)

where by V ol(Y )s we denote the volume of the compact manifold in string units, ` ∼
√
α′.

We find, therefore, the following relation with the 4D Planck scale,

M2
St ∼

g2
s

V ol(Y )s
M2
P . (2.13)

Thus, for a moderate string coupling and volume of the compact space, the string scale

is expected to be not so far from the Planck scale5. Then is justified to integrate such

states out to get an effective description of states lighter than MSt. Here, however,
5There is still an attractive scenario known as LARGE volume compactification [40, 41, 42, 43] where

the volume of the compact space is made anomalously large, such that the string scale can reach values
of order TeV with possibilities of being tested at LHC [51].
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we do not have all the information of the full action of the theory and the precise

procedure described in sec.(2.1) is not possible [52]. Still supersymmetry and gauge

symmetry are restrictive enough to allow the general construction of the leading terms,

for small curvatures and weak coupling, of such EFT. These are the type-I, type-II and

Heterotic SUGRA theories in ten dimensions [13]. Notice that we are throwing away

very important information in the context of quantum gravity, which is concerned to the

full stringy nature of the fields. Therefore, these SUGRA theories should be regarded

valid only for energies well bellow the Planck scale, where gravitational quantum effects

are irrelevant.

In the way down to four dimensions by compactifying these 10D SUGRA theories we

find further heavy states, the Kaluza-Klein modes, with masses of order,

mKK ∼
MSt

V ol(Y )1/6
s

, (2.14)

no so far from the string scale and we might integrated them out as well. The problem

again is that in general we don’t have the full information to perform a proper integration

and still if we had the huge number of field make the task rather impossible. As a

matter of fact, even to obtain the full theory involving only the massless states is not a

trivial task! However, the fact that all these states are heavy is very robust and quite

independent of the dynamics of the massless fields, at least for the field region of interest

where the theory is not decompactified, so we can tackle the problem from a bottom-up

approach and write down an effective action for the massless states in the aim of section

(2.1) [52].

Stated in another way, the theory that we write down is one insensible to: the string

nature of the fields, the extra dimensions and quantum gravity effects. Our theory,

then, is valid at energies well below MSt, MKK and MP . Notice that implicitly this has

behind the assumption of small curvature and weak coupling, where our perturbative

approach remains valid. Since we are regarding the compactification in a CY manifold,

or orbifold with point group a subgroup of SU(3), the theory is supersymmetric, i.e. a

SUGRA theory in 4D. We restrict our attention to the N = 1 case being the one of

phenomenological relevance.

A blind bottom-up approach to the effective action is not a very nice way of proceeding

for a candidate to fundamental theory, since we are loosing completely the tightness and

rigidity of string theory by allowing arbitrary unknown couplings. Fortunately we can

do better in first approximation by arguing a consistent truncation, where the heavy

fields are not properly integrated out but simply set to zero, of a well known 4D action

like the one obtained from toroidal compactification. The resulting Lagrangian, then,
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is a proper description of the theory for the light fields where the couplings are known

from first principles [27] (see also refs.[53] for generalizations and a closer look at possible

issues in the procedure.). The theory still is expected to have corrections suppressed by

MSt, MKK and MP , which by an abuse of notation we will denote in the following by

the same scale MP .

Being now clear what is going to be the framework on which we work, i.e. N = 1

SUGRA in 4D, let us explore some of its general features.

2.2.1 Only chiral multiplets

Let us start by considering the case without gauge symmetries, i.e. no vector supermul-

tiplets. Then, as in the global case, at the two derivative level, the theory is completely

determined by two functions of the chiral multiplets: the holomorphic superpotential,

W (φ), and the Kähler potential, K(φ, φ̄). The simplest way to derive the expression

in components of the Lagrangian is using the superconformal formalism, extending the

N = 1 SUSY algebra by adding the superconformal generators [54]. The system is then

extremely constrained by the symmetries that the Lagrangian is easily determined. The

procedure introduces new degrees of freedom collected in the conformal gravity multiplet

with components, besides the graviton and gravitino, two vector auxiliary fields. Also

a compensator chiral multiplet, Φ, is added. Fixing the scalar and spinor components

of the compensator and one of the vector auxiliary fields one recovers the symmetries

of ordinary SUGRA [55]. The Lagrangian, then, can be written in a way very much

resembling the one in global SUSY as an integration over rigid super coordinates,

L =
∫
dθ4

(
−3e−K/3ΦΦ̄

)
+
∫
dθ2WΦ3 + h.c. . (2.15)

The Berenzin integrals, however, are now deformed by extra-terms with dependencies

on the components of the gravity multiplet [54, 56]. At the component level we will

mainly interested in the scalar part, where these deformations are not relevant, so the

calculation is straightforward and easily written as in the global case. With conventions

for the metric signature (+,−,−,−,−) and for the chiral fields φ = (φ, ψ,−F φ) 6, then

it takes the form

L = Kij̄∂
µφi∂µφ̄

j̄ − V , (2.16)

where we regarded the scalar component of the compensator, Φ0, as a non-dynamical

field choosing the gauge Φ0 = MP e
K/6, with MP = MPlanck/

√
8π ∼ 2.4×10−18GeV the

reduced Planck mass, so to obtain the canonical Einstein term in the action [55]. The
6For simplicity of notation, here and throughout the thesis, we use the same notation for the chiral

multiplets and its lowest components, being clear from the context to which one we are referring to.
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labels i and j, then, run over the remaining chiral fields which now on are expressed in

MP units. In terms of a re-scaled auxiliary field for the compensator FΦ = MP e
K/6U ,

the scalar potential has the following form,

V = −∂iKF iŪ − ∂j̄KF
j̄
U −

(
∂ij̄K −

1
3M2

P

∂iK∂j̄K

)
F iF

j̄ + 3M2
PUŪ

+e
K

2M2
P

(
F i∂iW + 3UW + h.c.

)
. (2.17)

Eliminating U ,

U =
1
M2
P

(
1
3
∂iKF

i − e
K

2M2
P W

)
, (2.18)

one has for the auxiliary fields the following expression,

F
ī = e

K

2M2
P K īj

(
∂jW +

1
M2
P

∂jKW

)
, (2.19)

where the matrix K īj is the inverse of the metric ∂i∂j̄K. The scalar potential for the

physical fields then takes the form,

V = e
K

M2
P

(
K ījDiWDj̄W −

3|W |2

M2
P

)
, (2.20)

where we have defined the SUGRA covariant derivative operator Di ≡ ∂i + ∂iK/M
2
P .

The first thing one notices from the scalar potential is that contrary to the global

SUSY case the vacuum energy can be negative. In particular, for SUSY vacua, i.e.

F i ∼ Kij̄Dj̄W = 0 7, the cosmological constant is 〈V 〉 = −3〈e
K

M2
P |W |2/M2

P 〉. It can be

shown that the mass term for the gravitino is given by

m3/2 = e
K

2M2
P |W |/M2

P , (2.21)

therefore in a SUSY vacuum 〈V 〉 = −3m2
3/2M

2
P . For phenomenology we are interested

in non-SUSY vacua, so we may require 〈F i〉 ∼ M2
S 6= 0, with MS the scale of SUSY

breaking, and 〈V 〉 ∼ M4
S − 3m2

3/2M
2
P . Notice that in case M2

S � m3/2MP still there

is no hope to up-lift the cosmological constant, 〈V 〉 & −3m2
3/2M

2
P . Therefore in order

to match, or at least get hopefully closer, to the observed vacuum energy we should

find solutions such that the expectation value for the classical scalar potential (2.20)

vanish, at least up to an accuracy of O(M4
S/16π2) where quantum corrections start to

be relevant and some further considerations are needed to explain the smallness of the

cosmological constant.
7Like in the global case the breaking of SUSY is parametrized by the VEV of the auxiliary field, as

can be understood from the transformation rule for the spinor components, δξψ ∼ −ξF .
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Before introducing the vector fields let us point out some further properties of the

SUGRA Lagrangian. Notice that the Lagrangian as is written in eq.(2.15) is invariant

under the following transformations:

K → K + κ+ κ̄ , W → e−κW , Φ→ eκ/3Φ , (2.22)

where κ is a holomorphic function of the chiral fields. Since Φ in not a physical degree of

freedom this Kähler invariance is not a true symmetry of the theory, however, it states

that the theory is determined by one function only, rather than two as stated above. This

function is the invariant combination of the Kähler potential and the superpotential,

G = K +M2
P ln

(
|W |2

M6
P

)
, (2.23)

known as generalized Kähler potential or Kähler invariant function. Indeed, whenever,

the superpotential is not zero is possible to work in this Kähler gauge, that turns to be

useful in many cases, so to write the SUGRA Lagrangian as,

L =
∫
dθ4

(
−3e−G/3ΦΦ̄

)
+
∫
dθ2Φ3 + h.c. . (2.24)

The scalar potential then reads,

V = −∂iGF iŪ−∂j̄GF
j̄
U−
(
∂i∂j̄G−

1
3M2

P

∂iG∂j̄G

)
F iF j̄+3M2

PUŪ+3M3
P e

G

2M2
P (U+Ū) ,

(2.25)

where the gauge fixing Φ0 = MP e
G/2, FΦ = MP e

G/2U has been implemented in order

to get a canonical normalized Einstein-Hilbert action [55]. Notice that if we solve for

the auxiliary fields, the expressions are different from the one computed above eqs.(2.18)

and (2.19),

U =
1

3M2
P

∂iGF
i −MP e

G

2M2
P , (2.26)

F i = MP e
G

2M2
P Gij̄∂j̄G . (2.27)

This is in fact expected since the previous formulation was not invariant under the

Kähler transformations, but then, since the VEV of the auxiliary fields are the order

parameter of SUSY breaking one may worry about this point. However, due to the fact

that physical quantities are given only through Kähler invariant combinations, at the

end this mismatch turns out to be non-physical. For example in order to have a correct

guess of the SUSY breaking scale and the order of the soft-terms one should use the

canonical normalized F -terms, F i = |KīiF
iF

ī|1/2 no sum over the indices, which exactly

coincides in both approaches. The case of anomaly mediation is more delicate due to
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the fact that has to do with the compensator and gravity multiplets. It turns out that

only in the first gauge fixing we choose the vector auxiliary components of the gravity

multiplet are completely gauged away, so that the anomaly mediation has only to do

with the auxiliary field U . In the second Kähler gauge, instead, one has to be careful of

on keeping track on the contribution from the gravity multiplet 8. In this sense the first

gauge is usually preferred.

As a proof of this equivalence between the two descriptions one can show that the scalar

potential, which now takes the form,

V = M2
P e

G

M2
P

(
Gij̄∂iG∂j̄G− 3M2

P

)
, (2.28)

matches with the one given in eq.(2.20).

2.2.2 Vector multiplets

Vector boson are introduced in the usual way by gauging symmetries, now understood

as isometries of the scalar field manifold. This manifold is Kähler with metric ∂i∂j̄G,

then the isometries of the metric consistent with SUSY are generated by holomorphic

analytic Killing vectors,

XA = Xi
A

∂

∂φi
, XA = X

ī
A

∂

∂φ̄ī
, (2.29)

with A running over the dimensions of the isometry group G. A symmetry transfor-

mation with infinitesimal real constant parameter λA is implemented by the operator

δ = λA(XA + XA), then a chiral multiplet transforms as δφi = λAXi
A(φj). The in-

variance of the theory under such a transformation translates into the invariance of the

generalized Kähler potential,

δG = Xi
A∂iG+X

ī
A∂īG = 0 . (2.30)

Gauging this isometry introduces V A vector supermultiplets and promotes the transfor-

mation parameter to a chiral multiplets λA → ΛA so that the transformation operator is

now given by δ = ΛAXA + Λ̄AXA− i(ΛA− Λ̄A)∂A, and the invariance condition δG = 0

reads now,

∂AG = −iXi
A∂iG = iX

ī
A∂īG . (2.31)

We need also the gauge kinetic function fAB(φi) which is a holomorphic function of the

chiral multiplets. It can be charged, transforming non-linearly with charge Q, δfAB =
8I would like to thank K. W. Choi for pointing out this to me.
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iΛCQCAB, and its charge is related to the cancellation of anomalies, as we will see for a

particular case in the next section. Then besides the terms we wrote in eq.(2.15), where

a dependency on V A is understood in the Kähler potential, we have a further term with

exactly the same form of the global SUSY case,

Lgau−kin =
1
4

∫
dθ2fAB(φi)WAαWB

α + h.c. , (2.32)

where WA
α is the gauge fields strength chiral multiplet, Wα = −1

4DD̄
(
eVDαe

V
)
, with

Dα the SUSY covariant derivative, and again the F -term density is deformed by terms

dependent on the gravity multiplet. For the scalar potential the situation now is very

much like in the global SUSY case, with the only difference that in the global case the

Kähler potential and the superpotential are invariant each one apart, here, instead, is

their combination in G. The new contribution to the scalar potential in the Wess-Zumino

gauge can be written as [57]

VD =
Re(fAB)

2
DADB , (2.33)

with fAB the inverse of the gauge kinetic function, and

DA = −∂AG = iXi
A∂iG = −iX ī

A∂īG . (2.34)

The mass term for the vector boson is found by expanding the kinetic term for the chiral

fields which now are in terms of gauge covariant derivatives, Dµφi = ∂µφ
i + iXi

AV
A
µ ,

∂i∂j̄GDµφD†µφ̄j̄ ∼ ∂i∂j̄GXi
AX

j̄
BV

µAV B
µ . (2.35)

Thus for the non-canonical normalized vector fields the mass matrix is given by

M2
AB = 2∂i∂j̄GX

i
AX

j̄
B . (2.36)

2.2.3 SUGRA effective theories

In the same spirit we did for the global SUSY we would like to have some e.o.m. con-

sistent with SUGRA at the two derivative level. There have been some confusion in

the literature trying to address the integration of full SUSY multiplets in SUGRA theo-

ries, this in part due to the complexity on writing the Lagrangian in a close form while

adding further degrees of freedom. Indeed, the lowest component we get from the chiral

equation we got in the global case, eq.(2.10), is the F -flatness condition for the heavy

field direction, so naively one is tempted to generalize the e.o.m. to the one whose lowest
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component be the F -flatness condition in SUGRA, from eq.(2.19) this is,

∂HW +
1
M2
P

∂HKW = 0 . (2.37)

However, notice that this equation cannot be promoted to the supermultiplet level since

it is a non-chiral equation, and when trying to solve for the components of the chiral

multiplet one finds more equations than variables. At the scalar component level still

eq.(2.37) might be the correct one in certain cases as we will see later in chapter 3,

but for generic cases the correct chiral e.o.m. consistent for a SUGRA EFT at the two

derivative level was recently worked out in [49]. Let us roughly go through the arguments

in [49] for the case there are no vector multiplets since is here that the real issue is.

Starting from the Lagrangian (2.15) we can proceed as we did in the global SUSY case9

by writing the D-density par as a F one, so the exact chiral equation takes the form,

∂HW −
1
4
D

2(∂HKe−K/3Φ̄)Φ−2 = 0 . (2.38)

A consistent SUSY truncation at the two derivative level of the EFT again reduces to

neglect the covariant derivative part, and nicely enough the approximate chiral equation

exactly coincides with the one of the global SUSY case (2.10). Again the EFT extracted

from the solution of the approximate chiral equation is exact only at leading order in the

derivatives, fermion bilinear and auxiliary fields. Here, moreover, the auxiliary field of

the compensator multiplet has to be taken into account, and the theory is exact only at

leading order in U/MH . From the on-shell expression for U , eq.(2.18), using the condition

F i/MH � 1 one finds a constrain in the superpotential eK/2MPW/(M2
PMH) � 1. All

these conditions again translates to the requirement that the SUSY breaking scale be well

below the mass scale of the heavy multiplets. The introduction of the vector multiplets

and their integration does not brings further constrains and different e.o.m. than the

ones found in section (2.1.1) for the global SUSY case.

2.3 Moduli stabilization

After the easy job of getting rid of the heavy unnecessary fields by truncating the theory

obtained through the compactification, one faces the moment to get the hands dirty

trying to get some phenomenological significance of all the remaining stuff. In fact,

contrary to the ten dimensional case where we have only five possibilities the theory

here is quite far from being unique, and is here that the string phenomenology headache
9The terms in the F and D densities dependent on the gravity components are uniquely determined

so no relevant for the discussion.
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begins. In particular among the huge number of effective 4D theories we know that

only a very small set can be candidate to be extension of the Standard Model [15]. The

exclusion criteria are an inter-related set of phenomenological conditions to be realized

in the predicted particle physics and cosmology. Tackling each of these subjects apart

is already a hard task, and we are going to concentrate mainly in realizing the following

items:

1. Low energy SUSY breaking.

2. No exotic light particles.

3. Experimental values for the couplings.

4. Cosmological issues but in particular realizing an almost vanishing cosmological

constant.

Interestingly enough all these are faces of the same token, namely the stabilization of

moduli fields. Moduli fields parametrize deformations of the compactification manifold

which, at tree level, do not change the 4D effective energy and therefore correspond

to massless scalars in four dimensions [58]. Being string theory such a rigid theory

all couplings in four dimensions are given by VEV’s of field operators, therefore, an

explanation for their values reduce to the one for the VEV for the moduli.

It is clear moreover that moduli, coupled only through gravitational interactions to the

visible fields, are obvious candidates for a hidden sector of SUSY breaking. Therefore,

the VEV of their auxiliary fields might play an important rôle in the realization of the

MSSM and extensions. This scenario, known as SUGRA or Moduli Mediation, contrary

to other mechanism of mediation, like Gauge Mediation, is always present. As we saw

in section (2.2), in SUGRA theories breaking of SUSY is a compulsory condition to

reproduce the observed almost vanishing value for the cosmological constant [21] while

getting stabilized moduli with a non-very small gravitino mass.

Depending on the particular details of the compactification the set of moduli is different.

Still some of them, the closed string moduli, are rather independent of the set-up and

are in general present:

1. The dilaton s ∼ e−φ, which is related to the string coupling g2
s ∼ eφ.

2. Metric moduli: these corresponds to the fields that parametrize the space of CY

manifolds. In other words, variations on the metric that leave the CY manifold

properties invariant, in particular the Ricci flatness condition,

Rmn(g + δg) = 0 , (2.39)
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with two independent solutions:

(a) Complex Structure moduli, u, related to the pure holomorphic deformations

δg = δgmn are in one-to-one correspondence with the (2, 1)-forms on the CY.

These characterize to the shape of the compact manifold.

(b) Kähler moduli, t, related to the mixed deformations δg = δgmn̄ are in one-to-

one correspondence with the (1, 1)-forms on the CY. These characterize the

size of the compact manifold.

An easy way to understand the massless nature of some of these moduli is by realizing the

presence of further moduli with axion-like behavior, coming from the compactification

of p-form potentials Cp. Indeed, the gauge transformation, Cp → Cp + dAp−1, remains

in four dimension reflected as shifts symmetries for these zero modes and in particular

forbids mass terms for them. Other consequence of such a symmetry is that these

fields cannot appear in the superpotential. One can show that the dilaton and Kähler

moduli are always superpartners of such axionic fields, therefore, by holomorphicity of

the superpotential these cannot appear neither. A striking consequence of this result

is the fact that the superpotential does not suffer from perturbative corrections, since

the dilaton and Kähler moduli parametrize the string and world sheet perturbative

expansions [59, 60].

At this stage what one finds is a moduli space of SUSY vacua which, besides of being

from the beginning not of phenomenological interest, have not explained yet a dynamical

compactification of the extra dimensions. Indeed, the size of the compact manifold

can be equally infinity. That these vacua be SUSY is not the only phenomenological

problem. Moduli fields couple to matter through gravitational interactions, therefore if

massless can mediate long range forces that clearly are not observed. But even in case

these be massive possible decays may generate entropy that spoils features like big-bang

nucleosynthesis, or if stable affect the relict energy density we observe. Evading this

issues, known as the “moduli problem”, translates into a lower bound on their masses

mmod ≥ O(10)TeV [22].

Given its importance, generating non-trivial dynamics for the moduli, and finding ap-

pealing solutions for the potential generated, is one of the most intense areas of re-

search in string phenomenology. The early attempts in generating moduli potentials

where mostly concentrated in understanding possible non-perturbative dynamics, such

as gaugino condensation and world sheet instantons, which break the sifts symmetries

mentioned above [61] and then are potential sources of moduli dependency in the poten-

tial [62, 63, 64]. Furthermore, being suppressed can naturally solve the hierarchy problem
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dynamically as first proposed by Witten in ref.[65]. These lead to SUGRA models, so-

called racetrack models [66], where the combination of various non-perturbative sectors

compete realizing the stabilization of some set of the bulk moduli and simultaneously

give a dynamical explanation for a low SUSY breaking scale [63, 67]. In the case of

gaugino condensation the moduli dependent superpotential is understood from the fact

that moduli control the gauge couplings, g2
YM , or in general the gauge kinetic function

(see eq.(2.32)). Therefore, if the hidden sector contains asymptotically free theories, as is

usually the case, a gaugino condensate can be realized, 〈λλ〉 = Λ3
np, at the correspond-

ing non perturbative scale Λnp ∼ MP exp
(
− 8π2

b0g2
YM

)
scale, with b0 the beta-function

coefficient, β(gYM ) = −b0g3
YM/16π2, and gYM the gauge coupling at MP scale. This

generates an effective superpotential of the form [68, 69, 48],

WADS ∼ Λ3
np ∼ e

− 24π2fYM (φi)

b0 , (2.40)

where we used holomorphicity of the superpotential and the relation g−2
YM = Re(f),

with f the holomorphic kinetic function. A similar result would come from field theory

instantons. Stringy instantons are generated by the wrapping of stringy objects around

topological non-trivial cycles of the internal space. For example a string world-sheet can

wrap around a 2-cycle Γ, leading to a instanton correction to the action of the form [70],

Winst ∼ e−
A(Γ)

2πα′ , (2.41)

with A the area of the wrapped cycle which depends on the metric moduli. p-branes

wrapping p-cycles lead to a similar effect [71].

During the last decade the developing of compactification with background fluxes, flux

compactifications [19], leads a considerable progress in the understanding and generation

of moduli potentials. In this case it is the energy of the fluxes threading the cycles of

the manifold what gives rise to a tree level moduli dynamics. From a 4D point of view

the fluxes induce a superpotential that for the type-IIB string compactifications takes

the form [72],

Wflux =
∫
Y

Ω3 ∧G3 , (2.42)

where Ω3 is the holomorphic (3, 0)-form on the compact manifold10, Y , and G3 = F3 +

iS H3 the combined three-flux, with F3 and H3 the RR and NSNS field strength and

S the dilaton chiral multiplet. In this way for type-IIB one can stabilize all complex

structure, present inside Ω3, and the dilaton moduli. Notice that in this case the use

of “moduli stabilization” is a bit misleading since in fact fields which acquire masses
10The back reaction due to turning-on the fluxes is such that the compact manifold is not longer a

CY. The most stable case is type-IIB compactifications, where in adiabatic approximation the manifold
continues to be a CY manifold up to a warping [23].
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trough this mechanism are not moduli in the proper sense being its potential generated

at tree level. Still, one refers in this terms to this way of proceed since in general the

introduction of the fluxes is performed adiabatically around an unperturbed moduli

space of a CY, where much more control is possible.

Notice that the flux dynamics are naturally large. Indeed, due to the Dirac quantization

the fluxes can only take discrete values. A first consequence of this is that provides

large masses to the corresponding stabilized moduli which naively may be comparable

with the Kaluza–Klein scale, being both an effect of the compactification. However, the

precise scale for the flux induced masses turns out to be,

m2
flux ∼ eK/M

2
P |Wflux|2/M2

P ∼
M2
P

V ol(Y )2
s

, (2.43)

where we have used a known result K ∼ −2 ln (V ol(Y )s). This should be compared

with m2
KK ∼ M2

P /V ol(Y )4/3
s , where we have used eq.(2.13) and eq.(2.14). Therefore,

for rather large volume of the compact space mflux � mKK and our SUGRA EFT

approach is still justified.

Still, the fact that the flux induced superpotential be of order M3
P is a worrisome point

for phenomenology, since in general will induce a SUSY breaking at MP scale, unless

a fine tuning is implemented. We will expand further on this point in the forthcoming

chapters.

2.4 Fayet-Iliopoulos terms in string theory

On the last part of the thesis we will work an explicit set up where moduli fields are

stabilized in a nearly Minkowski space with the help of the a D-term potential with a

field dependent FI-term. In this section we show how these kind of contribution appear

in general, and then in two explicit frameworks, Heterotic and type-IIB Orientifold

compactifications.

Let us first point out that the invariance condition δG = 0 allows scenarios where the

superpotential is not invariant, i.e., iXi
A∂iW = ξAW , with ξA a real constant. This

R-symmetry when gauged generates a D-term of the form

DA = iXi∂iK +M2
P ξA , (2.44)

where a FI-term, ξA, has been induced. Recently, however, it has been found that such

terms are inconsistent with SUGRA theories [73], since it requires the theory to be

invariant under an exact global symmetry, therefore, here on we forget this option. Still,



Chapter 2. Wandering on the Landscape 25

however, there is the possibility to have field dependent terms that for some purposes

look like genuine constant FI-terms.

As already mentioned some of the moduli present shift symmetries. Denoting by S such

modulus the symmetry acts like,

S → S + iδ , (2.45)

with delta a constant real parameter, i.e. S is realized in a non-linear representation of

the isometry group with XS
A = iδ. This symmetry implies that the chiral multiplet can

appear only through the combination S + S̄, then Kähler potential is necessarily of the

form,

K(S, S̄) = K(S + S̄) , (2.46)

and the superpotential is S-independent. If we now gauge the symmetry as shown in

the section (2.2.2) gauge invariance of the Kähler potential implies then

K(S, S̄, V ) = K(S + S̄ + δ V ) , (2.47)

and the D-term generated has the following form,

D = iXj
A∂jK + iXS

A∂SK = iXj
A∂jK − δ K

′ , (2.48)

where j runs over the chiral fields but S and the prime stands for derivatives under

S. Notice, then, that the term generated by the charged S behaves like a FI-term,

field dependent though, for the remaining fields. Is important to stress that being field

dependent the dynamics involved are far richer and can lead to very different results. In

particular these ones lead inevitably to a spontaneous breaking of the gauge symmetry,

as can be easily seen from the mass term for the vector field (2.36),

M2
V ∼ 2K ′′δ2 . (2.49)

Further important consequences that does not allow to treat them as genuine FI will be

addressed in chapter 4.

Let us see more precisely how these terms appear in the specific examples of Heterotic

and type-IIB Orientifold compactifications with magnetized D-branes.

2.4.1 Heterotic string

A naive calculation of the triangular anomalies in Heterotic compactifications shows a

non-vanishing result. However, being string theory a self-consistent theory these should
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be somehow cancelled. The immediate candidate to do the job is the imaginary compo-

nent of dilaton multiplet defined by

S = s+ iσ , (2.50)

where s is related to the string coupling, s = g−2
s = e−φ, and σ is defined from the zero

mode, Bµν , of the B2 2-form, through a 4D duality transformation,

Hλµνε
λµνρ = eφ∂ρσ . (2.51)

Indeed, the gauge kinetic function at three level is given by the dilaton f = S, and a

coupling σFF̃ is realized. A coupling σRR̃ is realized as well, so a shift in σ seems to

do the job. In order to see that indeed is the shift symmetry what has been gauged and

that this is the way the anomaly is cancelled, let us compactify the Green-Schwarz term

of the ten dimensional action [11], B ∧F ∧F ∧F , taking two of the fields strengths, F2,

to lie completely in the internal space [74], then a term of the form

B ∧ F ∼ Aµ∂µσ , (2.52)

comes out, showing the covariantization of the kinetic term for σ, L ∼ (∂µσ+ δAµ)2, as

becoming charged, then a generalized Green-Schwarz mechanism has been implemented.

Nicely enough a shift in σ if enough for cancelling all the possible anomalies as the

anomaly coefficients for all of them exactly coincide [75, 76],

δ =
MP

192π2
TrQ , (2.53)

where Q refers to the charge operator of the pseudo-anomalous U(1) gauge symmetry.

At the end we have a theory with a Kähler potential for the dilaton S [27],

K = −M2
P ln

(
S + S̄ + δV

MP

)
(2.54)

inducing a field dependent FI

D ∼ δ

S + S̄
. (2.55)

Notice that what we are finding is a loop correcting to the Kähler potential. Indeed,

although the superpotential can be shown to be exact at tree level in perturbation

theory there is nothing to prevent the Kähler potential to get both string and world

sheet perturbative corrections.
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2.4.2 D3/D7 type-IIB orientifolds

In this case the relevant field is the Kähler modulus, T i = ti + iτ i, with ti defined as the

Einstein frame volume of a 4-cycle Σi, and

τ i =
∫

Σi
C4 , (2.56)

the component of the RR 4-form, C4, along Σi. For a D7-brane wrapping a 4-cycle Σi

the Dirac-Born-Infeld action in the string frame is11,

SDBI = −µ7

∫
M4×Σi

d8ξe−φ
√
det(ι∗g + 2πα′F ) ∼

∫
M4×Σi

d8ξ
√
−ge−φFµνFµν , (2.57)

where µ7 is the brane tension and ι∗g denote the pullback of the ten dimensional metric

on M4 × Σi. The last expression shows the gauge kinetic term obtained by expanding

the DBI-action, and where one identifies the real part of the modulus Ti, i.e. the volume

of the 4-cycle, as the gauge couplings. Indeed, its imaginary part has the necessary

coupling of the gauge kinetic function found from the Chern-Simons part of the action,

SCS = −µ7

∫
M4×Σi

∑
p

ι∗Cp ∧ e2πα′F ∼
∫
M4×Σi

C ∧ F ∧ F . (2.58)

In order to see how the modulus gets charged let us expand the 4-from as C4 = Ci2 ∧
ωi + . . . and extract from the CS action the following term

SCS ∼ Qσi
∫
M4

Ci2 ∧ F ∼ Qσi Aµ∂µτi , (2.59)

where Qσi ≡
∫

Σi ι
∗ωi ∧ F is then the charge of τ , and we have used the fact that Ci2 is

Hodge dual to τi. Notice that is not immediate that there is a non vanishing charge.

Indeed in order Qσi not to vanish Σi should have self intersections over a 2-cycle on

which the world-volume flux, F , is non-trivial [77].

For the Kähler moduli the Kähler potential does not have in general a simple explicit

expression as was the case of the dilaton, however, it can be written at tree level as

K(T + T̄ ) = −2M2
P ln (V) , (2.60)

with V the volume of the CY which can be viewed as a implicit function of the Kähler

moduli. The in the D-term a field dependent FI-term is induced of the form,

D ∼ Qσi
∂TiV
V

. (2.61)

11Here and in the following we omit terms involving the NSNS B2 field, being irrelevant for our
discussion.



Chapter 2. Wandering on the Landscape 28

2.5 The KKLT scenario

The discussion at the end of section 2.3 shows that there are enough mechanism in order

to stabilize all closed string moduli. This was first exploited in the context of type-IIB

compactifications by Kachru, Kallosh, Linde and Trivedi in [24], by combining tree-level

flux induced dynamics with non-perturbative ones. Their approach, known sometimes as

“Two-Step Stabilization”, starts by observing that from the flux dynamics the complex

structure and dilaton are fixed with a generic mass of order MP . Therefore, one can

analyze the stabilization of the Kähler moduli using the EFT where these heavy fields

have been integrated out. However, they do not properly integrated out the heavy modes

as explained in section (2.1), but regards, instead, these moduli as simply frozen out at

some SUSY point of the flux superpotential, so that the resulting effective description

for a single Kähler modulus was given by,

W = W0 +A(S0, U0)e−aT/MP . (2.62)

Where S0 and U0 are the frozen values for the heavy moduli, W0 = Wflux(S0, U0), and

the last part is the non-perturbative part whose coefficients may depend on the heavy

moduli, with a a parameter of order one12. The Kähler potential also has a constant

term plus the one dependent on the Kähler moduli,

K = KSC(S0, U0)− 3M2
P ln

(
T + T̄

MP

)
. (2.63)

A factorization of this sort is only a tree-level result, as both α′ and gs corrections may

affect this form, however, one may argue these effects to be irrelevant for some range

on the values of the moduli, like large volume, controlling the perturbative expansion.

This system has a SUSY vacuum dictated by

DTW = ∂TW +
1
M2
P

∂TKW = 0, (2.64)

leading to the following equation,

− aAe−aT/MP − 3MP

(T + T̄ )
(W0 +Ae−aT/MP ) = 0 . (2.65)

The solutions stabilizes the Kähler moduli at T ∼ MP
a ln

(
W0
A

)
, with canonical normalized

mass m2
T ∼ eK/MP (T + T̄ )|∂T∂TW |2 ∼

W 2
0

M2
P

ln
(
W0
A

)
. The space is then an AdS with

12More precisely a depends on the range of the gauge group generating the non-perturbative dynamics.
However this is irrelevant for the present discussion and we simply regard N ∼ 2÷ 10.



Chapter 2. Wandering on the Landscape 29

cosmological constant

V = −3e
K

M2
P
|W |2

M2
P

∼ − 3MP

(T + T̄ )3
|W0|2 . (2.66)

In order to have control in the perturbative correction mentioned above, one has to

realize rather large values for T . Since A is expected to be of O(M3
P ), then W0 should

be tuned to a small value, something a bit weird since Wflux is expected to be also of

O(M3
P ). Notice that the solution being a competing effect between W0 and the non-

perturbative superpotential leads to Ae−aT/MP ∼W0. Since Wnp is the first order term

from a series of non-perturbative effects further suppressed by e−aT/MP , better it to be

very small in order to trust this contribution alone, so we end again in requiring a tuning

for a small W0. We will see in chapter 3 that this condition is also necessary for the

freezing of the complex and dilaton fields to be a reliable approach. In the original paper

KKLT assume a value of W0 ∼ 10−5 arguing the possibility of tuning by the presence of

several fluxes.

In order to break SUSY and at the same time uplift the vacuum KKLT propose the intro-

duction of D3-branes living in the bottom of a warped throat. The potential generated

by the D3-branes has the form,

VD3 ∼
a

(T + T̄ )2
, (2.67)

with a a constant dependent of the string coupling, the D3-brane tension and the warp

factor. Since the warping generates a red-shift it is possible to fine tune the cosmological

constant to lie near Minkowski, i.e. a ∼ |W0|/T parametrically, without destroying the

vacuum. Such explicit breaking of SUSY due to D3-brane can be argued to be the

effect of non-linearized SUSY after an spontaneous breaking in the D3-brane, i.e. a

goldstino living in the D3-brane [78], so that some quantitative studies of interesting

physical quantities, such as soft parameters [79], can be performed. However, still it

is not clear this be the case so this turns out to be the weakest point in the KKLT

construction. After the work of [24], indeed, many works have appeared where the

explicit SUSY breaking is replaced by spontaneous F or D-term breaking of different

kinds [80, 81, 38, 30, 82, 83, 44, 33, 84, 1].

One of the first proposals to spontaneously break SUSY started by noticing that the D-

term contribution to the scalar potential (2.33), contrary to the F -term part, is positive

definite, so one may wonder if it can be used to get a vanishing cosmological constant

from an original SUSY vacuum [85]. In particular the FI-term we computed in section

(2.4.2), with the holomorphic gauge kinetic function f ∼ T , generates a scalar potential
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of the form,

VD ∼
(Qσ)2

(T + T̄ )3
, (2.68)

that in principle could play the same role of the D3-brane in the up-lifting but know

realized as a D-term breaking.

Unfortunately, working with the definition ofG eq.(2.23), the expression forDA eq.(2.34),

one finds,

DA = iXi
A

DiW

W
. (2.69)

Thus contrary to the flat case the D-term SUSY breaking is linked to the F -term one,

i.e. one cannot get pure D-term breaking, as soon after pointed out by Choi et. al.

in [79], and this scenario cannot be realized. We will see, furthermore, that although

it seems that still the D-term contribution to the scalar potential, being naturally of

order M4
P , can easily overcome the F -term part, dynamically the VEV for the D-term is

suppressed and at the vacuum its almost negligible. This shows how difficult in general

is to realize stabilized heavy moduli in a nearly Minkowski space.

One of the strongest assumptions in the KKLT approach, and all the following realiza-

tions, is that the complex structure and dilaton decoupled effectively from the Kähler

moduli dynamics, so that a naive freezing of their VEV was enough to account a proper

integration of these modes. In the following two chapters we will explore in full detail

this procedure in a rather generic class of SUGRA theories, and workout the condition

under which this is a reliable approximation.



Chapter 3

Two-Step Moduli Stabilization:

pure Moduli Case

At the end of last chapter we saw the explicit instance of the KKLT scenario where

all moduli where stabilized. These results strongly relay on the assumption that the

stabilization can be performed in two steps, stabilizing the complex structure and dilaton

moduli first using the flux induced dynamics, and then, in a second step stabilize the

Kähler moduli using non-perturbative effects in a sort of EFT where the dilaton and

complex structure are frozen rather than integrated out. The approach is at first glance

consistent given the strengths of the dynamics involved. Indeed, the non-perturbative

dynamics are expected to be suppressed compared with the flux induced ones. But

already at this point the approach is not completely save since strong dynamics not

always imply a large inertia, i.e. masses, as was pointed out in [25] by Choi et. al.,

and some direction may still remain flat. Going beyond this first observation things

start to be less clear as the proper integration of the fields seems complicated enough

to generate a proper EFT completely different to the simple one obtained by freezing

the fields to some fixed value. As a matter of fact there are not only criticisms and

warnings on the procedure [28, 86, 87] but also explicit claims that the proper procedure

might change completely the dynamics of the light fields [29]. Still, due to the huge

multiplicity of fields this Two-Step stabilization, using the simplified EFT, seems to be

the only practical way we have to tackle semirealistic string compactifications. In this

chapter we carefully explore this issue, finding the conditions for the reliability of the

procedure, in the case where there are only moduli fields.

The study, although rather general, is restricted to a class of 4D N = 1 SUSY theories

that reflects the flux compactification scenarios, described by a superpotential of the

31
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form1,

W (H,L) = W0(H) + εW1(H,L) , (3.1)

with ε � 1. The Kähler potential, however, is left arbitrary with the only assumption

that the eigenvalues of the associated Kähler metric are parametrically larger than ε.

We regard the H fields as stabilized by W0 with an O(1) non-canonical normalized mass.

As we will see, the assumption we do on the metric allows to unequivocally identify the

canonical normalized heavy fields with the H fields, justifying our schematic notation

of H for the heavy and L for the light fields.

We proceed in an expansion in ε, first using the orthodox approach dealing with ordinary

fields, restricted to the scalar components, and then using the compact way of integrating

full chiral multiplets simultaneously, finding in both approaches agreement in concluding

that the simplified version is a reliable description at leading order in ε, as far as the

scalar components of the H multiplets satisfy the leading F -flatness conditions. In global

SUSY this can be immediately promoted to a chiral equation ∂HW0 = 0 to be satisfied by

the fixed chiral fieldsH. For SUGRA theories two cases are realized: i) for generic Kähler

potentials the results for the global case continue to hold with a further restriction on

the VEV of the superpotential, namely W0 ∼ O(ε). These, can be also translated as the

conditions of an O(ε) mass hierarchy between the two sets of fields; ii) for special Kähler

potentials realizing and approximate factorization, i.e. K = KH(H)+KL(L)+O(ε), W0

can arbitrary values at the vacuum and the leading F -flatness conditions, to be satisfied

by the scalar componets H0, are given by ∂HW0 + ∂HKHW0 = 0.

Notice that is only in the first case that one can speak about integrating out heavy fields.

Indeed, not only the gravitino but all fields get SUGRA contributions to their masses

that are of order eK/2|W |, so only in this case the remaining L will have a hierarchy in

the masses of O(ε).

Interestingly enough, in both cases what is found is that the contribution for SUSY

breaking from the frozen field is always suppressed by ε compared with the ones of the

L-fields. This is an important property no only for the reliability of the simple model

but also for the fact we are regarding the simple EFT of the L fields as a SUSY theory.

3.1 Non-Supersymmetric σ-Model

Before entering into the analysis of the case we are interested in, let us study a non-

SUSY bosonic σ-model whose results being general provide some simplification in the

analysis of the SUSY case.
1From here on we work for simplicity in natural units, setting MP = 1.
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Let us consider a system of nH+nL interacting real scalar fieldsH i and Lα, i = 1, . . . , nH ,

α = 1, . . . , nL, with Lagrangian density

L =
1
2
gMN (φM )∂φM∂φN − V (φM ) , (3.2)

the general form of potential is chosen such that naturally presents a hierarchy in the

masses and therefore a reliable freezing is expected,

V (φM ) = V0(H i) + ε V1(H i, Lα) , (3.3)

where M = 1, . . . , nH , 1+nH , . . . , nH+nL, φM = (H i, Lα) and ε� 1. Writing explicitly

ε we parametrize the magnitude of the second part of the potential. Indeed the analysis

not necessarily implies a small coupling between the H and L, but rather that we explore

the system in a field region where the second part of the potential and all its derivatives

are suppressed compared to the ones of first one. The splitting between the fields H i

and Lα is dictated by V0, namely we call H i (the “heavy fields”) the ones appearing in

V0, in this way we can define more precise the small parameter as the ratio of masses

squared ε ' m2
L

m2
H

.

We assume that at a given vacuum 〈φM 〉, the metric gMN is non-singular and ∂i∂jV0 is

positive definite with all eigenvalues parametrically larger than ε. Under these assump-

tions, at leading order in ε, the simple effective low-energy Lagrangian associated to L
is

Lsim =
1
2
gαβ(Lα, H i

0)∂Lα∂Lβ −
[
V0(H i

0) + ε V1(H i
0, L

α)
]
, (3.4)

where H i
0 are the leading order VEV’s for H i, independent of Lα, satisfying ∂iV0(Hj

0) =

0. We want to show that Lsim provides the correct effective Lagrangian for arbitrary

kinetic mixing terms at leading order in an expansion in ε.

Let us look, in an expansion in ε, φM = φM0 + εφM1 . . ., for (space-time independent)

vacua of L by studying the extrema of the potential V in the original, non-canonically

normalized, field basis given by H i and Lα. The leading order solutions, H i
0, for the

H i are determined at O(ε0) from the equations ∂iV = ∂iV0 = 0. At this order, Lα are

undetermined, since ∂αV0 trivially vanishes. At O(ε), we get the leading VEV’s Lα0 for

the light fields from ∂αV1(H i
0) = 0 and the first corrections H i

1 to the VEV’s of the heavy

fields from the linear equations ∂i∂jV0(Hk
0 )Hj

1 + ∂iV1(Hk
0 , L

α
0 ) = 0.

With the approximate vacuum (H i
0, L

α
0 ) determined, we can diagonalize the metric in

order to identify the canonically normalized field fluctuations φ̂c starting from the field

fluctuations φ̂ = φ − 〈φ〉 2. At leading order the matrix to diagonalize is gMN,0 =

2We thank A. Romanino for essentially providing us the argument that follows.
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gMN (H i
0, L

α
0 ) and whose eigenvalues we assume to be parametrically larger than ε. Nicely

enough, a positive definite real symmetric matrix can always be written as the product

of a lower triangular matrix times its transpose3. We then write g0 = (T−1)tT−1, so

that φ̂ = T φ̂c, where

T =

(
(TH)ij 0

(THL)αi (TL)αβ

)
(3.5)

and φ̂ = (Ĥ i, L̂α)t. In the canonical basis, the Lagrangian (3.2) reads

L =
[1

2
+O(ε)

][
(∂Ĥ i

c)
2 + (∂L̂αc )2

]
+ . . . (3.6)

+
[
V0(H i

0 + εH i
1 + (THĤc)i) + εV1(H i

0 + εH i
1 + (THĤc)i, Lα0 + (T φ̂c)α) +O(ε2)

]
,

where the ellipsis in eq.(3.7) stands for all the higher order terms arising from the

expansion of the metric in quantum fluctuations, the specific form of which are not

needed.

The next step would be to diagonalize the mass matrix of the heavy fields, but it will

not be explicitly needed. Indeed, we see from the term V0 in eq.(3.7) that the fields

Ĥ i
c have all a leading mass term of O(ε0), the nH × nH mass matrix being of the form

M2 = T tHM
2
0TH , where (M2

0 )ij = ∂i∂jV0(H i
0). Since by assumption M2

0 is positive

definite, so it is M2. Due to the form of the potential in eq.(3.7), integrating out the

fluctuations Ĥ i
c at quadratic level will only affect the effective theory at O(ε2), so we can

simply set Ĥ i
c = 0 if we want a reliable Lagrangian up to O(ε). We can go back to non-

canonically normalized fields L̂α = (T−1
L L̂c)α. Since T−1

L = (T−1)αβ , the kinetic mixing

matrix reads now (T−1
L )t(TL)−1 = gαβ,0 and all the terms in the ellipsis in eq.(3.7), when

Ĥ i
c = Ĥ i = 0, simply reproduce the full field-dependent metric gαβ(Lα, H i

0) appearing

in eq.(3.4). The resulting full effective Lagrangian becomes

Lfull =
[1

2
gαβ(Lα, H i

0) +O(ε)
]
∂Lα∂Lβ −

[
V0(H i

0 + εH i
1) + εV1(H i

0, L
α) +O(ε2)

]
and hence, modulo irrelevant constant terms, at leading order in ε we get the desired

result

Lsim = Lfull . (3.7)

An important lesson we learn from this exercise, is that, thanks to the Cholesky decom-

position to diagonalize the metric, the heavy mass eigenstates are uniquely determined

by the potential independently of the kinetic mixing. Indeed, the canonical basis we

construct is such that the canonical heavy states are only combinations of the H i modes
3This procedure, called Cholesky decomposition, is unique if we require the diagonal entries of T to

be strictly positive. See e.g. [88].
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and being the eigenvalues of the metric of O(1) the coefficients in the linear combina-

tion for the canonical fields L̂i cannot induce large enhancements so to generated large

masses. Therefore, for matters of the analysis we are interested in, we can forget about

the kinetic terms, and canonical normalization of the fields, and work with the original

modes as they appear in the potential.

3.2 Global SUSY σ-Model

The results found in the previous section, being of general validity, apply to SUSY

theories as well. However, the supersymmetric structure of the theory allows us to

introduce the suppression parameter in a sightly different way, namely directly in the

superpotential leading to a different definition of it in term of the masses ε ' mL
mH

, as we

will see soon. As mentioned in the introduction we study a SUSY theory specified by a

Kähler potential K(φ, φ̄), taken to be generic but regular, and a superpotential, taken

as in eq.(3.1):

W (H i, Lα) = W0(H i) + εW1(H i, Lα) , (3.8)

using the same conventions as before, but considering that now H i and Lα are complex

(super)fields.

3.2.1 Component approach

Let us first treat this SUSY theory as an ordinary one by forgetting the relation about

the multiplet components and work at the level of the scalar potential. This approach

being the common one for any field theory may be clearly clean as procedure, however,

as we will see later on, keeping in mind the supermultiplet nature of the fields allows a

more straightforward way of getting the same results.

Once the auxiliary fields are integrated out the scalar potential of the theory is given by

V = gM̄NF M̄FN , (3.9)

with FM = ∂MW and gM̄N the inverse matrix of gMN̄ = ∂M∂N̄K. The potential V is a

sum of three terms when expanded in ε: V = V0 + εV1 + ε2V2, with

V0 = gj̄iF j̄,0Fi,0 ,

V1 = gj̄iF j̄,1Fi,0 + gᾱiF ᾱ,1Fi,0 + c.c. , (3.10)

V2 = gj̄iF j̄,1Fi,1 + gβ̄αF β̄,1Fα,1 + (gᾱiF ᾱ,1Fi,1 + c.c.) ,
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where FM = FM,0 + εFM,1 and

Fi,0 = ∂iW0 , Fα,0 = 0 , (3.11)

Fi,1 = ∂iW1 , Fα,1 = ∂αW1 .

We assume that at the vacuum the metric gMN̄ is positive definite and that ∂i∂jW0 is

non-degenerate with eigenvalues parametrically larger than ε. We now establish that

if the heavy fields sit at a SUSY vacuum at leading order in ε, the bosonic low energy

effective theory of the light fields Lα is described by the simple SUSY effective theory

with Ksim(Lα, L̄α) = K(H i
0, L

α, H̄ i
0, L̄

α), Wsim = W0(H i
0) + εW1(H i

0, L
α):

Vsim = g̃ᾱαF̃αF̃ ᾱ, (3.12)

with g̃αᾱ = ∂α∂ᾱKsim and F̃α = ∂αWsim.

Like in the non-SUSY case we start by finding the vacuum in an expansion in ε:

〈φM 〉 = φM0 + εφM1 + ε2φM2 + . . . . (3.13)

The equations of motion (e.o.m.) up to O(ε2) read

(∂MV )0 = ∂MV0 = 0 , (3.14)

(∂MV )1 = ∂MV1 + (∂M∂NV0)φN1 + (∂M∂N̄V0)φ̄N̄1 = 0 , (3.15)

(∂MV )2 = ∂MV2 + (∂M∂NV1)φN1 + (∂M∂N̄V1)φ̄N̄1
+(∂M∂NV0)φN2 + (∂M∂N̄V0)φ̄N̄2 (3.16)

+
1
2

(∂M∂N∂PV0)φN1 φ
P
1 +

1
2

(∂M∂N̄∂P̄V0)φ̄N̄1 φ̄
P̄
1 + (∂M∂N∂P̄V0)φN1 φ

P̄
1 = 0,

where all quantities in eqs.(3.14), (3.15) and (3.16) are evaluated at φM = φM0 . At O(ε0),

the equations (∂kV )0 = 0 can generally admit both SUSY and non-SUSY solutions.

Interestingly enough only the first ones admit a decoupling between the H and the L

sectors. Indeed, the SUSY solutions,

Fi,0(H i
0) = F ī,0(H̄ i

0) = 0 . (3.17)

are completely independent of the Lα and furthermore the e.o.m. (∂αV )0 = 0 are

identically satisfied when H i = H i
0, so that Lα are not determined at this order. The

non-SUSY solutions instead, in general do not satisfy none of these two conditions due

to the presence of the inverse metric in V0 mixing both sectors4.
4Notice that decoupling for the non-SUSY solutions would be obtained in case the Kähler potential

satisfies a nearly factorizable condition, K = KH(H) +KL(L) + εKmix(H,L), which effectively leads us
to exactly the non-SUSY σ-model we studied in section (3.1).
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Nicely enough, around the SUSY solutions the e.o.m. of the light fields atO(ε), (∂αV )1 =

0, are automatically satisfied as well, since

∂α∂MV0 = ∂α∂M̄V0 = ∂αV1 = 0 , (3.18)

when evaluated at H = H i
0, as can easily be checked using the explicit expressions in

eq.(3.10). The displacement of the heavy field VEV’s at O(ε) is calculated by taking

M = j in eq.(3.15). We get

H i
1 = −(K−1)ij̄F

j̄
1 , (3.19)

with K ī
j = gīk∂k∂jW0 and F i1 = F M̄,1g

M̄i, evaluated again at H i = H i
0. At this point it

is clear that for consistency of our procedure that all eigenvalues of the matrix ∂i∂jW0

should be of O(1), in other words all H i fields should acquire large masses from W0.

At O(ε2) we finally get non-trivial e.o.m. for Lα as well as the 2nd order displacement

of the heavy fields H i
2, whose explicit form will not be needed. Both H i

2 and Lα0 arise at

O(ε2), but the e.o.m. of Lα do not depend on H i
2, as can be seen from eqs.(3.16) and

(3.18). By plugging eq.(3.19) in eq.(3.16) and after some algebra, we could establish

that the e.o.m. that determine Lα0 in the full theory are the same as the one obtained

in the simple theory where H i are frozen to their leading values H i
0. The best and more

instructive way to proceed, however, is by finding the leading power in ε of the F terms

and their derivatives, evaluated at the shifted vacuum H i
0 + εH i

1. We get

Fi = O(ε), Fα = O(ε), F i = O(ε2), Fα = O(ε) ,

∂jFi = O(1), ∂iFα = O(ε), ∂βFi = O(ε), ∂βFα = O(ε) . (3.20)

Interestingly enough, although in general the backreaction of the light fields on the heavy

ones induce Fi–terms of O(ε), the upper components F i, directly related to the VEV of

the auxiliary fields, vanish at this order since

F
ī(H i

0 + εH i
1) =

[
gīMFM,1(H i

0) + gīj∂kFj,0H
k
1

]
ε+O(ε2) (3.21)

and the first two terms in eq.(3.21) exactly cancel, due to eq.(3.19). This implies that

at linear order the Fi and Fα terms are related as follows:

Fi = −g̃ij̄gj̄αFα +O(ε2) , (3.22)

with g̃ij̄ the inverse metric of gj̄i, not to be confused with gij̄ . Using eq.(3.21) and the

relation (3.22), after some straightforward algebra one finds the desired identification

∂αV = ∂αVsim +O(ε3), (3.23)
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which implies that the location of the vacuum is reliably computed in the simple theory.

In order to establish eq.(3.23), it is very useful to use the matrix identity

g̃ᾱα = gᾱα − gᾱig̃ij̄gj̄α , (3.24)

where g̃ᾱα is the inverse of gαᾱ, appearing in Vsim, not to be confused with gᾱα. Thanks

to eq.(3.24), in particular, it is easy to show that Fα = F̃α at leading order in ε.

The leading order equivalence of the naive low-energy effective theory with the full one

proceeds along the same lines of the general non-SUSY case discussed before, now using

the generalization of the Cholesky decomposition for hermitian matrices to diagonalize

the metric g0 = (T−1)†T−1. However, as we learnt in section 3.1 this procedure does

not introduce any important information given our assumption on the metric, therefore

we can proceed in terms of the non-canonical basis which also allows more clarity in the

procedure.

In order to integrate out the H i modes we solve, in an expansion up to the gaussian

level, the e.o.m. for the fluctuations,

V (H,L) = V (〈H〉, L) + ∂IV (〈H〉, L)ĤI +
1
2
∂I∂JV (〈H〉, L)ĤIĤJ +O(H3) , (3.25)

where for simplicity we have collected the holomorphic and antiholomorphic indices in

a single notation, I = i, ī. The solution for ĤI reads then,

ĤI = −V IJVJ , (3.26)

where VI = ∂IV , and V IJ is the inverse matrix of VIJ = ∂I∂JV . Therefore, the full

effective scalar potential, reads

Vfull = V (〈H〉, L) + Vint(〈H〉, L), (3.27)

where

V = FMFM , (3.28)

is the microscopical scalar potential, and

Vint = −1
2
VIV

IJVJ |H=〈H〉 , (3.29)

is the potential term induced by a gaussian integration of the heavy moduli. Corrections

to eq.(3.29), due to cubic or higher terms in the heavy field fluctuations are negligible.

Given the form of eq.(3.29), the knowledge of the potential at O(ε2) requires to compute

the O(ε) terms in ∂IV and the O(1) in V IJ , the latter arising from the inverse of Vij̄ .
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One gets then

∂i∂j̄V |0 = ∂j̄F k̄,0 g
k̄l ∂iFl,0 , (3.30)

∂iV |1 = F M̄g
M̄l∂iFl,0 , (3.31)

where Fi,0 = ∂iW0. Using eqs.(3.30) and (3.31), we find

Vint = −F M̄gM̄ig̃ij̄g
j̄NFN , (3.32)

where g̃ij̄ is the inverse of gj̄i, not to be confused with gij̄ . The full effective scalar

potential reads then

Vfull = gM̄NF M̄FN − F M̄gM̄ig̃ij̄g
j̄NFN +O(ε3) ,

= ε2g̃ᾱαFαF ᾱ +O(ε3) ,

= Vsim +O(ε3) , (3.33)

where g̃ᾱα is the inverse of gαᾱ, the metric appearing in the simple model where the heavy

fields are frozen, and the identity (3.24) between the metrics has been used. Being the

potential (3.33) of O(ε2), it is enough to keep the leading terms H i
0 for the position of

the VEV’s in the heavy directions, obtaining finally the equivalence at leading order

between the two actions5.

The way we are proceeding might be confusing as we are showing that only once the

scalar fields are integrated out one finds the correct matching between the full and

simple descriptions. Indeed if one tries naively to freeze the H i modes in (3.25) the

matching does not proceed. The point is that in the simple description we are freezing

full supermultiplets, instead, working with the scalar potential for the scalar components

we have properly integrated out the auxiliary components so we are forced to do as well

for the scalar components. Alternatively, once the vacuum is located, one can go to the

full scalar lagrangian where the auxiliary fields have not been integrated out yet,

Vaux = −gMM̄F
MF

M̄ + FM∂MW + F̄ M̄∂M̄W . (3.35)

Using the results we found above and keeping only up O(ε2) terms one gets

Vaux = −gαᾱFαF
ᾱ + Fα∂αW + F̄ ᾱ∂ᾱW +O(ε3) , (3.36)

5Notice that alternatively we could regard the VEV of Hi as a function of the Li using (3.19) as
a field identity, since the VEV of the Lα is not determined by the e.o.m. at this order. In this case
eq.(3.22) holds also as field identity so that Vint ∼ O(ε4), and with (3.24) one immediately gets

Vfull = ε2g̃ᾱαF ᾱ,1Fα,1 = Vsim +O(ε3) . (3.34)
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which exactly coincides at leading order with the component lagrangian one obtains

from the simple superpotential and Kähler potential

Vaux = Vsim, aux +O(ε3) , (3.37)

without the need of integrating out. Essentially what we learn from this example is that

we have to treat all the components of the supermultiplets in the same footing as far

as the low energy EFT is nearly SUSY, implying that the freezing should be performed

at the superpotential and Kähler potential and not at the scalar potential after the

integration of the auxiliary components6.

3.2.2 Manifestly SUSY approach

Since we are dealing with a SUSY theory a much more clever approach is to take the ad-

vantage of having the supermultiplet formalism and integrate simultaneously full heavy

multiplets. This, moreover, by definition takes into account the issues pointed out at

the end of section (3.2.1). The way to proceed was reviewed in section (2.1.1) where

under some constrains on the auxiliary components of the light multiplets we show that

the correct chiral e.o.m. to obtain the EFT at the two derivate level is given by

∂iW = 0 . (3.38)

There is also pointed out that the EFT one gets by using this approximate e.o.m. is

exact only at leading order in the fermion bilinears and auxiliary fields, in particular up

to quadratic order in the auxiliary fields. Given the from of the superpotential we are

studying it is always warranted that Fα ∼ O(ε) around the solutions of eq.(3.38), so

that the possible corrections are indeed irrelevant for our purposes of computing the low

energy EFT at leading order in ε, and we can safely stick to the result from eq.(3.38).

On the other hand, it is clear that in case one wants to study the non-SUSY solutions

we point out for the leading scalar potential eq.(3.14), which do not allow decoupling,

one should use the full chiral equation and not the approximation eq.(3.38).

Let us, then, solve eq.(3.38) in an expansion in ε:

H i = H i
0 + εH i

1(L) +O(ε2) (3.39)
6To a similar conclusion arrive the authors of [53] studying the consistency of truncating the Kaluza–

Klein modes in the EFT after compactification. However, they did not point out the fact that the
underlying reason was the consistent treatment of the supermultiplets.
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where H i
0 are defined by ∂iW0(H0) = 0. The effective Kähler and superpotential read

Wfull = Wsim + ε2
(1

2
∂i∂jW0H

i
1H

j
1 + ∂iW1H

i
1

)
+O(ε3) , (3.40)

Kfull = Ksim + ε
(
∂iKsimH

i
1 + ∂īKsimH̄

ī
1

)
+O(ε2) , (3.41)

where Wsim = W (H0) and Ksim = K(H0, H̄0). The leading shift H i
1 equals

H i
1 = −W ij

0 ∂jW1, (3.42)

with W ij
0 ∼ O(1), the inverse of W0,ij ≡ ∂i∂jW0. In the same way that in the previous

approach in order our expansive approach be consistent we should require that all the

eigenvalues of ∂i∂jW0 be O(1). The solution gives then,

Wfull = Wsim −
1
2
ε2∂iW1W

ij
0 ∂jW1 +O(ε3) . (3.43)

Kfull = Ksim − ε
(
∂iKsimW

ij
0 ∂jW1 + ∂īKsimW

īj̄
0 ∂j̄W 1

)
+O(ε2) . (3.44)

However, we do not need this explicit form to realize that the EFT exactly coincide

at leading order in ε with the simple one. For the scalar potential, in particular, we

recover the matching (3.33) and (3.37). Notice that working at the supermultiplet level

is not only far more straightforward but also carries more information than working

at the scalar potential level, as now also the information about the fermionic sector is

precisely specified. One important result we can recover from the chiral equation (3.38)

is the suppression of the SUSY breaking contribution from the H i sector, encoded in

the expectation value of the auxiliary fields, as can be seen from its θ2 component,

F i = −W ij
0 ∂j∂αW1F

α +O(ε2) (3.45)

∼ O(ε)Fα +O(ε3) . (3.46)

3.3 Supergravity

Let us now turn to SUGRA, the case we are mainly interested in. It turns out that

the analysis closely follows the lines of the flat SUSY case considered in the previous

section, with one extra important requirement, which is a consequence of the universal

nature of the gravitational interactions. As before we first proceed in the orthodox way

of integrating out fields from the scalar potential, allowing us to identify two possible

scenarios, and then turn to the simultaneous integration of full off-shell supermultiplets

to match the results.
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3.3.1 Scalar components level

The superpotential is taken as in eq.(3.8) and all the assumptions of the flat case continue

to hold here. The SUGRA scalar potential was derived in section (2.2.1). Here we recall

it in the two ways derived there,

V = eK
(
gM̄NF M̄FN − 3|W |2

)
= eG

(
gM̄NGM̄GN − 3

)
, (3.47)

where, FM = DMW = ∂MW + (∂MK)W , G = K + ln |W |2 and its derivatives GM =

∂MG = FM/W . As remarked above, gravity makes less transparent the decoupling of

the heavy fields from the light ones. This is best seen if we expand the scalar potential

in ε and analyze the leading term V0 which reads

V0 = eK
(
gM̄NF 0,M̄F0,N − 3|W0|2

)
, (3.48)

where

F0,i = ∂iW0 + (∂iK)W0 , F0,α = (∂αK)W0 . (3.49)

It is immediately clear from eqs.(3.48) and (3.49) that already at O(ε0) and even for

SUSY solutions, F0,i = 0, in general there is no decoupling between the fields H i and

Lα, as was the case for flat space. However, decoupling at this level, i.e. rendering F0,i

independent of Lα, is easily obtained in any of the following cases: i) the VEV of the

superpotential satisfies 〈W0〉 ∼ O(ε), and ii) K is factorizable at leading order, i.e. all

its mixed derivatives are suppressed, e.g. ∂i∂ᾱK ∼ O(ε)7. We now separately discuss

the two situations.

3.3.1.1 Small 〈W0〉

When 〈W0〉 ∼ O(ε), the expansion of the GM ’s is taken as follows:

Gi = Gi,−1 +Gi,0 , Gα = Gα,0 , (3.50)

where we count the powers of ε by taking into account the presence of W in the denom-

inator of the G factors. In this way terms of O(ε−1) appear, but no poles in ε arise,

being eG of O(ε2). In the particular “Kähler gauge” in which we defined the theory, we
7Interestingly enough this is exactly the condition we found for decoupling around the non-SUSY

solution of the leading scalar potential in the flat case. However, as we will see, here it does not
immediately implies a mass hierarchy between the two sectors.
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have

Gi,−1 =
∂iW0

W
, Gi,0 = ∂iK +

∂iW1

W
,

Gα,0 = ∂αK +
∂αW1

W
. (3.51)

As in the previous flat space analysis, let us first show that the location of the vacuum

is reliably computed in the simple theory, namely that ∂αVsim = ∂αV + O(ε3), where

Vsim is the simple effective potential obtained by setting H i = H i
0 in K and W . The

full e.o.m. for the fields can be written as

∂MV = GMV + eG(GP∇MGP +GM ) = 0 . (3.52)

In eq.(3.52), GP = GP̄ g
P̄P ,∇MGP = ∂MGP−ΓQMPGQ is the Kähler covariant derivative

and ΓQMP = (∂MgPQ̄)gQ̄Q are the holomorphic components of the affine connection. The

expansion of ∂MGP gives

∂jGi = (∂jGi)−2 + (∂jGi)−1 + (∂jGi)0 , ∂βGi = (∂βGi)−1 + (∂βGi)0 ,

∂jGα = (∂jGα)−1 + (∂jGα)0 , ∂βGα = (∂βGα)0 . (3.53)

For simplicity, we do not write the explicit forms of the derivatives of the G’s in terms

of K and W , being straightforward to derive these expressions. At O(ε0), (∂iV )0 = 0 is

satisfied by (∂jGi)−2 = −(Gi)−1(Gj)−1 = 0, i.e. ∂iW0 = 0, which fix H i
0. The equations

(∂βV )0 = (∂βV )1 = 0 automatically vanish for H i = H i
0. The equations (∂jV )1 = 0 give

the linear order displacement of the heavy fields (the analogue of the flat space formula

(3.19):

H i
1 = −(K̂−1)ij̄(G

j̄)0 , (3.54)

with K̂ ī
j = gīk(∂kGj)−1 and (Gj̄)0 = (GM̄ )0g

M̄i, evaluated at H i = H i
0.

At the shifted vacuum H i
0 + εH i

1 we have

Gi = O(1), Gα = O(1), Gi = O(ε), Gα = O(1) ,

∇βGi = O(1), ∇βGα = O(1), V = O(ε2) . (3.55)

Using eq.(3.24), we also have

Gα = Gᾱg̃
ᾱα +O(ε) ,

∇βGα = ∂βGα − g̃γ̄γ∂βgαγ̄Gγ = (∇̃βGα) +O(ε) , (3.56)

where ∇̃ is the covariant derivative constructed in the subspace parametrized by the
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scalar fields Lα only, namely the one entering in Vsim. Finally, using eqs.(3.55) and

(3.56), it follows that ∂βV = ∂βVsim +O(ε3), where

Vsim = eG
[
g̃ᾱαGᾱGα − 3

]
, (3.57)

with heavy moduli frozen at H i
0.

The equivalence of the simple low-energy effective theory with the full one proceeds

along the same lines of the flat space SUSY case discussed before, with small changes

in the expressions. Again, the knowledge of the potential (3.27) at O(ε2) requires to

compute the O(ε) terms in ∂IV and the O(1) in V IJ . One gets,

∂i∂j̄V |0 = eK∂j̄F k̄,0 g
k̄l ∂iFl,0 , (3.58)

∂iV |1 = eKF M̄g
M̄l∂iFl,0 , (3.59)

where Fi,0 = ∂iW0. Using eqs.(3.58) and (3.59), we find

Vint = −eKF M̄gM̄ig̃ij̄g
j̄NFN , (3.60)

where g̃ij̄ is the inverse of gj̄i, not to be confused with gij̄ . The full effective scalar

potential reads then

Vfull = eK
(
gM̄NF M̄FN − 3|W |2

)
− eKF M̄gM̄ig̃ij̄g

j̄NFN +O(ε3) ,

= ε2eK
(
g̃ᾱαFαF ᾱ − 3|W |2

)
+O(ε3) ,

= Vsim +O(ε3) , (3.61)

where as in the global SUSY case we used the identity (3.24) between the metrics, and

the fact that for the knowledge of the potential (3.61) up to O(ε2), it is enough to keep

the leading terms H i
0 for the position of the VEV’s in the heavy directions, obtaining

once more equivalence at leading order between the two actions.

We can also proceed from the full component potential eq.(2.17) and using the infor-

mation we have of the vacuum, with the on-shell expression for the auxiliary fields,

Fα ∼ O(ε), F i ∼ O(ε2) and U ∼ O(ε), keep up to O(ε2) terms and find direct matching

at leading order with the full component lagrangian obtained from the simple superpo-

tential and Kähler potential without the need of integrating out the scalar components.

In fact the discussion at the end of section (3.2.1) holds verbatim here in SUGRA.
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3.3.1.2 Almost factorizable Kähler potential

A decoupling between the H and L fields is possible also for generic 〈W0〉, provided that

K is almost factorizable, namely

K(φ, φ̄) = KH(H i, H̄ ī) +KL(Lα, L̄ᾱ) + εKmix(φM , φ̄M̄ ) . (3.62)

With K as in eq.(3.62), the SUSY equations F0,i = 0 do not depend on Lα and lead

to solutions of the e.o.m. (∂iV )0 = 0 on a generic non-SUSY vacuum with F0,α 6= 0.

It turns out that in this case the situation can be sightly generalized. Indeed, at O(ε0)

the system satisfy the general factorizable condition discussed in [36] for the generalized

Kähler potential,

G0(H,L) = GH(H) +GL(L) , (3.63)

which in terms of the Kähler potential and superpotential reads K = KH(H i, H̄ i) +

KL(Lα, L̄α) and W = WH(H i)WL(Lα). The outcome of such a system has been widely

studied in series of papers by Achucarro et. al. [33, 35, 34]. It is clear now that the

SUSY solutions, i.e. G0,i = GH,i = 0, are independent of the Lα fields as ∂α∂jG ≡ 0.

The fact that these are indeed solution of the e.o.m. at O(ε0) can be easily check from

the corresponding scalar potential which takes the form,

V0 = eGH+GL
(
Gij̄H∂iGH∂j̄GH +Gαβ̄L ∂αGL∂β̄GL − 3

)
, (3.64)

with Gij̄H (Gαβ̄L resp. ) the inverse of ∂i∂j̄GH (∂α∂β̄GL resp.). Then the e.o.m. for the

H i fields at this order read,

∂iV0 = V0∂iGH + eGH+GL∂i

(
Gjj̄H∂jGH∂j̄GH

)
. (3.65)

The situation, in fact, is more rigid since that all the mixed derivatives ∂i∂α1 . . . ∂αnV0

vanish as can be seen from eq.(3.64). As a result, ∂HV is at most of O(ε), ∂2
HV is of O(1),

implying that Ĥ i, given in (3.26), is O(ε), and the corrections due to the integration of

the Ĥ i start only at O(ε2). Therefore, not only the leading bosonic effective Lagrangian

at O(ε0) is hence reliably determined by just freezing the heavy fields to their VEV’s

H i
0, but also the next to leading potential at O(ε).

Notice that contrary to the previous case the O(ε0) e.o.m. for the Lα fields are not

automatically satisfied therefore the leading order VEV Lα0 is determined from the be-

gining8. This is related to a crucial difference between this scenario and the one where
8Notice that for realistic scenarios, where the superpotential is of the form (3.1), the dynamics at this

level are solely given by the dependency on the Kähler potential. In this case quite intricate dependencies,
arising possibly from α′, loop and non-perturbative effects to the Kähler potential, will be in general
required in order not to get trivial solutions as run away directions.
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we require a small VEV for W0, given by the fact that here the distinction of the fields

by heavy and light is misleading since in general all fields, starting from the gravitino,

will acquire a mass squared of order eK |W0|2 due to usual SUGRA contributions. This

fact seems to be in tension with our argument of neglecting the canonical normalization

of the fields, since the heavy states were uniquely determined by the H i fields. It turns

out that here the situation is even simpler since not only the metric factorizes at leading

order, by definition, but also the mass matrix, hence the canonical normalized mass

eigenstates start to mix only at O(ε), and the discussion remains unchanged.

An interesting possibility, and probably the most relevant in realistic scenarios (see

footnote (8) in this chapter), is that the SUGRA EFT model is of the no-scale type,

with

Gα0Gα,0 = gᾱαL ∂ᾱKL∂αKL = 3 , (3.66)

with gL the inverse of the Kähler metric ∂α∂ᾱKL. When eq.(3.66) is valid, eq.(3.64)

simplifies to

V0 = eG0Gi0Gi,0 , (3.67)

and ∂αV0 automatically vanish for Gi,0 = 0. The situation is now very similar to the

non-SUSY case discussed in section 3.1. The fields Lα are generally fixed by the O(ε)

e.o.m. ∂αV1 = 0, where V1 is the next scalar potential term, whose explicit form will not

be needed. The expansion in fluctuations of V0 is as before, with Ĥ ∼ O(ε). The leading

bosonic effective Lagrangian arises at O(ε) and is determined by just freezing the heavy

fields to their VEV’s H i
0. As we will see in section (3.3.3), the LARGE volume models

of [40, 41] belong to this class of models.

Let us do an important remark at this stage. As said in the beginning of this section

the factorizability condition is a constrain on the form of the Kähler potential and

superpotential to be realized in the field region around the solution of the e.o.m.. For

the Kähler potential this form is given in eq.(3.62) and for the superpotential in general

this can be stated like,

W = WH(H)WL(L) + εWmix(H,L) , (3.68)

which for the usual case, WL = 1, reduces to the form in eq.(3.8). Then, it is easy to see

that in scenarios like the KKLT one, where at the vacuum the non-perturbative part of

the superpotential is comparable to the VEV of W0 (see section (2.5) and chapter 5),

an approximate factorizable form can only be realized if the VEV for W0 is tuned, as

in this case ε can be defined as ε ' 〈W0/∂
2
HHW0〉. We conclude, thus, that for for such

cases the tuning is compulsory even if one can argue for a near factorizable from for the

Kähler potential.
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3.3.2 Manifestly SUSY approach

In the same spirit of the global case we can enjoy the fact that the fields are arranged

in supermultiplets in order to integrated them out simultaneously. It turns out that

the first scenario we realized in section (3.3.1) where the VEV of the superpotential is

require to be suppressed, 〈W 〉 ∼ O(ε), fulfill all the conditions we describe in section

(2.2.3) where we discuss the procedure to follow in order to get a consistent SUGRA

EFT at the two derivative level. Indeed, given this constrain on the VEV of the super

potential we have that Fα ∼ U ∼ O(ε), so that all possible corrections are negligible for

our purposes, in particular generate O(ε3) corrections in the scalar potential. Therefore,

we can safely use the approximate chiral equation we derive in sec.(3.3.1), implying that

the analysis is exactly the same we did for the flat case in sec.(3.2.2) with the very same

conclusions.

A different story happens in the case we leave W0 arbitrary. Indeed in this case since we

are dealing with fields that are not really heavy even the two derivative approximation

in the kinetic terms seems to be misleading. It seems, therefore, that we have to keep

further terms coming from the second term in eq.(2.38) and we cannot neglect the su-

percovariant derivates contribution the the full chiral e.o.m. . Instead of trying to figure

out from the full chiral equation (2.38) if is possible to obtain another approximative

expression for this particular case, let us follow an analogous procedure to solve for all

the components of the chiral multiplet (for simplicity we restrict the analysis to the

scalar and auxiliary components).

Starting from the full potential (2.25) we derive at the end of sec.(2.2.1), adding the

kinetic terms we have,

L = GMN̄∂µφ
M∂µφ̄

N̄ +GMF
M Ū +GM̄F

M̄
U

+
(
GMM̄ +

1
3
GMGM̄

)
FMF M̄ − 3UŪ − 3e

G
2 (U + Ū) , (3.69)

where the subindices indicate, as usual, derivatives. We choose to work in the Kähler

gauge where only the Kähler invariant function appears since the factorizability and

Kähler invariance are completely implicit on it. Let us take the e.o.m. for the F i and

the scalar component H i.

3eG/2 + 3Ū −GīF
ī = 0 , (3.70)

−GiNFN Ū −GiM̄F
M̄
U −

(
GiMN̄ −

1
3

(GiMGN̄ +GMGiN̄ )
)
FMF

N̄

+
3
2
eG/2(U + Ū)Gi −GiM̄�φ̄M̄ +GiM̄N̄∂

µφ̄M̄∂µφ̄
N̄ = 0 . (3.71)
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The first equation with the on-shell expression for U (2.26) leads to the on-shell expres-

sion for the auxiliary fields (2.27). From the second expression regarding the almost

factorizable nature of G and keeping only the leading terms in ε,

−GijF jŪ −Gij̄F
j̄
U −Gijk̄F jF

k̄ +
1
3
GijGN̄F

jF
N̄ +

1
3
GMGij̄F

MF
j̄ (3.72)

+
3
2
eG/2(U + Ū)Gi −Gij̄�H̄ j̄ +Gij̄k̄∂

µH̄ j̄∂µH̄
k̄ = O(ε) .

The first consequence of the factorizability is that the higher derivative corrections in

the kinetic terms are actually suppressed, since the derivative dependence on the Lα

appear only in the O(ε) terms. Therefore, a two derivative approximation in this sector

is still possible. Looking for slowly varying solutions and using the on-shell expression

for the U field and eq.(3.70), one finds

GijF
jŪ +

1
2

(U + 3Ū)Gij̄F
j̄ −Gijk̄F jF

k̄ +
1
3
GijGN̄F

jF
N̄ +

1
3
GMGij̄F

MF
j̄ = O(ε) .

(3.73)

These, have as solutions F i ∼ O(ε), which imply from eq.(3.70), the scalar components

to be solution for

∂iG =
1
W

(∂iW + ∂iKW ) = O(ε) . (3.74)

Indeed these are the F -flatness conditions we found at leading order in the previous sec-

tion. However, let us stress that this last equation cannot be promoted to the superfield

level in order to solve for the full chiral multiplet H i as it is not a chiral equation, so one

would face more equations than fields to be solved [49]. Plugging back these solutions

in (3.69) keeping only up to O(ε) terms, one gets

L = Gαβ̄∂µL
α∂µL̄

ᾱ +GαF
αŪ +GᾱF

ᾱ
U

+
(
Gαβ̄ +

1
3
GαGβ̄

)
FαF β̄ − 3UŪ − 3e

G
2 (U + Ū) +O(ε2) , (3.75)

where we have kept some O(ε2) terms in order not to be forced to split the G function

and overload the notation. Notice that the only place where the VEV of H i appear at

O(ε0) is the one in the exponential factor of the (U + Ū) term. However, expanding

around the leading solution, ∂iG = 0, the corrections will appear only at the O(ε2), so

we can safely keep only the leading VEV for the H i, as well in the rest of the terms

where it appears since these are at most O(ε). In this way we find again the matching

at O(ε) between the two descriptions.
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3.3.3 The LARGE volume scenario

Although the almost factorizable case seems quite appealing, allowing the integration

of fields with same mass scale as the L fields, its explicit realization from a string com-

pactification does not seems much realistic. Indeed, although at first order the Kähler

potential turns out to be completely factorizable between the different set of moduli,

α′ corrections lead to mixings. For the case of type-IIB orientifold compactifications on

CY it takes the form [89],

K = −2 ln
[
V(T i) + ξ(S + S̄)3/2

]
+K(S + S̄, U j , Ū j) , (3.76)

where V is the CY volume, which depends on the Kähler moduli T i. S and U i are the

dilaton and complex structure moduli. Notice, however, that for points in the mod-

uli space that realize a huge volume this Kähler potential takes the form of almost

factorizability discussed in section (3.3.1.2). It turns out that type-IIB orientifold com-

pactifications on CY indeed admit vacua where the internal volume is exponentially

large, resulting on so called LARGE volume models [40, 41], so let us do a close-up to

this particular scenario (see also ref.[35]).

A generic study of this kind of vacua is more complicated than for the KKLT like ones,

since the form of the Kähler potential for the Kähler moduli plays a dramatic rôle in the

stabilization [90], rising possible different scaling behaviors for different models. There

is, however, a class of models that are expected to encode most of the important features

of this scenario, namely the “swiss-cheese” manifold compactifications. The simplest of

such compactifications is realized in the manifold described by a hyper-surface in the

projective space CP4
[1,1,1,6,9], with h1,1 = 2 and h2,1 = 272 Kähler and complex structure

moduli, respectively. In order to be able to treat this system, we keep only one complex

structure modulus, denoted by U in the following. As will be clear, our conclusions do

not really depend on such drastic simplification. The Kähler potential (3.76) then takes

the form

K = −2 ln
[
V(T, t) + ξ(S + S̄)3/2

]
− ln(S + S̄)− ln(U + Ū) , (3.77)

with the volume of the CY given by [91]:

V(T, t) =
1

9
√

2

(
T 3/2
r − t3/2r

)
. (3.78)

In eq.(3.78) we generally denoted by Xr = (X + X̄)/2 the real part of a complex field

X. Consistent LARGE volume vacua are located at point satisfying Tr � 1 and tr & 1

[90], and we can choose as expansion parameter ε ≡ 1/V ∼ T
−3/2
r . The superpotential

is the sum of a flux superpotential W0 = W0(S,U) and a non–perturbative term W1 =



Chapter 3. Two-Step Stabilization: pure Moduli Case 50

W1(S,U, t).9 The stabilization to large volume requires the non–perturbative part to

scale like the inverse of the volume, i.e. W1 ∼ ε, hence the superpotential has again the

form of eq.(3.8):

W = W0(S,U) + εW1(S,U, t) . (3.79)

The nearly factorization of eq.(3.77) is made evident by redefining T → ε−2/3T ,

K = KH(S,U) +KL(T, t) + εKmix(S, T, t) , (3.80)

withKH = − ln(4SrUr) andKL = −2 ln V, therefore, from the results of section (3.3.1.2)

no fine-tuning on W0 is required. This is neither required from low energy SUSY, i.e.

small gravitino mass, as the hierarchy is now given by the exponential factor in the

Kähler potential, m2
3/2 = eK |W |2 ∼ |W0|2/V2, a property that makes this kind of vacua

very appealing.

It is straightforward to expand GM in powers of ε. We get

GS = GS,0 +O(ε) , GU = GU,0 +O(ε) ,

GT = ε2/3GT,2/3 +O(ε5/3) , Gt = εGt,1 +O(ε2) ,

where, as before, GM = ∂MG, G the Kähler invariant function, and

GS,0 = − 1
2Sr

+
∂SW0

W0
, GU,0 = − 1

2Ur
+
∂UW0

W0
,

GT,2/3 = − 3
2Tr

, Gt,1 =
3
√
tr

2T 3/2
r

+
∂tW1

W0
.

The expansion of the scalar potential V is as follows: V = ε2V2 + ε3V3 +O(ε4), where

V2 = eG2

[
gŪU0 GŪ ,0GU,0 + gS̄S0 GS̄,0GS,0

]
, (3.81)

eG = ε2eG2 +O(ε3), eG2 =
81|W0|2

2SrUrT 3
r

. (3.82)

It is important to notice that, aside from the overall T–dependence appearing in eG2 , V2

depends on S and U only. A possible non-trivial Kähler moduli dependence of O(ε2) in

V2 exactly cancels the -3 term in V2, due to the approximate no-scale structure of the

Kähler potential, for which [92]

∑
i,j=T,t

gj̄i∂iK∂j̄K = 3 +O(ξε) . (3.83)

9Since T is very large, possible non–perturbative terms of the form exp(−aT ) are totally negligible.
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An effective decoupling between S, U and the Kähler moduli appears at this order, so

that the leading e.o.m. for S and U admit the SUSY solutions

GS,0(S0, U0) = GU,0(S0, U0) = 0 . (3.84)

Exactly as we found for the generic approximate factorizable case, around the solutions

(3.84), all the terms linear in the heavy field fluctuations Ĥ = Ŝ, Û of the form cnĤL̂
n,

where L̂ = T̂ , t̂, n ≥ 1, vanish. These terms can only arise from V3, so that schematically

we have V ∼ O(ε2)Ĥ2 +O(ε3)cnĤL̂n, implying that Ĥ ∼ O(ε). Hence integrating out

Ĥ can only result in effective couplings of O(ε4) or higher and hence we can effectively

fix Ĥ = 0. Computing the full leading effective potential V3 for T and t. We find

V3 =
27
[
81ξ0|w0|2 + 4

√
2trT 3

r |∂tw1|2 − 3trT
3/2
r (w̄0∂tw1 + c.c.)

]
T

9/2
r Ur,0Sr,0

, (3.85)

where ξ0 ≡ ξS3/2
r,0 , w0 = W0(S0, U0) and w1(t) = W1(S0, U0, t). It is easy to check that V3

precisely coincides with the simple scalar potential constructed from Wsim = W (S0, U0)

and Ksim = K(S0, U0), where the dilaton and the complex structure modulus are frozen

at their SUSY values S0, U0 [40]. The scaling in ε of the mass spectrum is easily

computed. The complex structure modulus, the dilaton and the gravitino mass arise

from V2 and hence

m3/2 ∼ mS ∼ mU ∼ ε . (3.86)

The Kähler structure moduli mass matrix arises from V3. Given the structure of the

kinetic metric, it is simple to see that

mT ∼ ε3/2 , mt ∼ ε . (3.87)

The scalings (3.86) and (3.87) are in agreement with the one reported in the table 1 of

[41]. We see in this explicit example how although the absence of a hierarchy in the

mass scales of the H and L fields, the model is effectively decoupled and the simple

naive EFT, where one freezes S and U , is reliable.

Let us remark that the system as is so far lacks from an uplifting sector. Indeed, although

clearly a non-SUSY vacuum, the cosmological constant turns out to be still an AdS with

deepness of O(ε3) [40], so the model should necessarily be extended, as we will do at the

end of next chapter.





Chapter 4

Two-Step Moduli Stabilization:

Matter and Gauge Interactions

In the previous chapter we got an important general result, proving the reliability of

the Two-Step moduli stabilization procedure by matching the full actions in both de-

scriptions at leading order in ε, for a general class of SUSY models characterized by

a superpotential that mimics the flux compactification scenarios. For a generic Kähler

potential with arbitrary mixings the requirements found can be summarized as the con-

dition of ensuring a mass hierarchy between the two sector. This condition is instead

relaxed if the Kähler potential realizes a nearly factorizable form. The analysis there was

restricted to the pure moduli case, namely, no gauge interactions and no O(1) couplings

involving the light fields.

The aim of the present chapter is to generalize the previous study by adding vector

multiplets, V A, and matter-like chiral multiplets with O(1) field dependent couplings.

Models of this sort necessarily imply various scales, associated to different symmetry

breakings, SUSY breaking, gauge symmetry breaking, etc. In order to keep our analysis

as simple as possible, and yet capture the essential features, we will assume the presence

of just two kinds of light charged fields, characterized by having VEV parametrically

larger than ε and of O(ε). And denote them by Z and C respectively. Furthermore, in

order to ensure light masses for the matter fields1 we only consider Yukawa and higher

order couplings, however, we briefly discuss how the inclusion of messenger-like fields

can affect the analysis for the visible sector. The remaining light moduli are denoted by

M .
1When the gauge symmetry is broken, a combination of the fields L actually get a heavy mass.

Nevertheless, in order to distinguish them from the fields H appearing in eq.(4.1) below, with an abuse
of language, we will keep calling them light.
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The schematic form of the superpotential in this generalized set-up is taken as follows:

W = W0(H) + YN (H,M,Z)CN + ε
[
W1(H,M,Z) + µM (H,M,Z)CM

]
, (4.1)

where W0, YN , W1 and µM (N ≥ 3,M ≥ 2), are arbitrary holomorphic functions,

constrained only by gauge invariance. The Kähler potential is arbitrary, with the only

assumptions that admits a Taylor expansion in the charged fields C and that, as in

the previous case, all the eigenvalues of the associated Kähler metric are parametrically

larger than ε. Similarly, the gauge kinetic functions f are taken to be arbitrary, but

regular, moduli dependent holomorphic functions.

Under these consideration there is no difference between the charged field with O(1)

VEV and the moduli, since no assumption is required in the form of the superpotential

and Kähler potential, e.g. polynomial in Z. In fact, the moduli can be charged as well,

via non-linear realization, as explained in section (2.4). Therefore we will not make

distinction between these two kinds of fields denoting them simply by M . In the same

spirit, the H i fields can be matter-like multiplets, however, we will mostly concentrate

to the case in which they are all moduli-like fields.

First of all we notice that, contrary to the H fields, massive gauge fields do not generally

admit a freezing. More precisely, while superpotentials of the form (4.1) include a very

wide class of known superpotentials arising from string compactifications, the class of

Kähler potentials which would allow a freezing of the vector fields is quite limited and

not very interesting, unless the vector field is heavy and decoupled, in which case one

can trivially set it to zero. Hence we will not insist in freezing massive vector fields, but

rather we will only show how the freezing of the heavy chiral fields is (not) affected in

presence of heavy vector fields, the latter being always properly integrated out.

On the other hand, the scalar condition FH,0 = ∂HW0 = 0 in general does not fix all the

VEV of the H fields, since gauge invariance constrains the form of W0. Secondly, only

gauge invariant combinations of the heavy moduli can be frozen, being only in this case

that freezing is a well-defined gauge invariant statement. The orthogonal combinations

will not appear in W0, but possibly in other terms of the superpotential (4.1), in com-

bination with light fields and/or in D-terms. Hence, these remaining gauge invariant

combinations will typically be relevant in the low-energy dynamics and should properly

be included among the light fields. More precisely, one can neglect non-neutral heavy

moduli, assuming a chosen gauge-fixing where they are gauged away, but then one has to

carefully take into account the dynamics of the associated massive vector-super field. In

the context of SUSY breaking, the possible D-term SUSY breaking contributions hidden

in the massive vector super field are generally non-negligible. We emphasize this point

because, although already present in the literature in various contexts [50, 36], it has
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been overlooked in some string constructions, where gravity and moduli are neglected

altogether. The impossibility of naively neglecting non-neutral moduli has nothing to do

with gravity but is purely dictated by gauge invariance, so it remains also in the global

limit with gravity decoupled.

Along the lines of the previous chapter, we compare the “full” effective theory obtained

by classically integrating out the heavy fields to the “simple” one obtained by just

“freezing” them out. We mainly use the manifestly SUSY approach introduced in section

(2.1.1) and (2.2.3), which demonstrates itself to be clearer and simpler in the previous

cases, with few necessary comments coming from the orthodox way of integrating the

scalar components. We find that in the charged field range |C| . O(ε), for any values of

theM fields where the superpotentialW has the form (4.1), the simple theory is a reliable

effective field theory. More precisely Wsim, Ksim and fsim differ, from Wfull, Kfull and

ffull, only by operators which are sub-leading in an EFT sense and correct the coefficients

of the already existing couplings by a small amount. The leading C-dependent part of

the scalar potential is identical in both theories. On the other hand, cubic terms of the

schematic form C3 in K and C6 terms in W (and higher) are not naively reliable in the

simple theory, so care has to be taken in working with it anytime higher order operators

are considered. These results exactly hold in the SUGRA extension upon the constrain

W ∼ O(ε) is satisfied at the vacuum.

The way we proceed, namely using the approximate chiral equation to integrate chiral

multiplets, does not allow to tackle directly the case with 〈W0〉 ∼ O(1), as was already

pointed out in section (3.3.2), so we mainly concentrate to the 〈W 〉 ∼ O(ε) situation. At

the end of the chapter, however, we do a short analysis in the orthodox way of integrating

out fields from the Lagrangian for the case 〈W0〉 ∼ O(1), with again an explicit example

in the LARGE volume scenario.

In this chapter we keep track of the masses for the light fields, mL, and the ones of

the heavy vector, mV , and chiral fields, mH , but as before we set the cut-off of the

microscopic theory Λ to be the reduced Planck mass Mp and use units in which Λ =

Mp = 1. In order not to introduce some additional hierarchy of scales, we assume that

mH/Mp � ε and that mV ∼ mH , recalling that ε ≈ mL/mH .

4.1 O(1) Yukawa couplings

Before turning our attention to full models with gauge interactions and vector multiplets,

it is useful to work in absence of the latter, in the limit of vanishing gauge couplings.
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As explained in the beginning of the chapter the introduction of the Yukawa couplings

forces us to distinguish, among the light fields L, between the fields with O(mH) and

O(εmH) VEV’s, denoting them by Mµ (µ = 1, . . . , nM ) and Cα (α = 1, . . . , nC) re-

spectively. We use calligraphic letters A,B, . . ., to collectively denote all the light

field indices: A = (α, µ) and M,N, . . . to collect all fields indices, heavy and light,

M = (i,A) = (i, α, µ). Finally, we denote by LA = (Cα,Mµ) and by φM = (H i, Cα,Mµ)

the set of all light and of all light+heavy fields, respectively. The superpotential (4.1)

written in a more precise form is as follows:

W = W0(H i) + η W̃0(H i,Mµ, Cα) + εW1(H i,Mµ, Cα) . (4.2)

with W̃0 and W1 gauge-invariant polynomials in the fields Cα, with field-dependent

couplings:

W̃0 = Y3,αβγ(H i,Mµ)CαCβCγ +O(C4) ,

W1 = W̃1(H i,Mµ) + µ2,αβ(H i,Mµ)CαCβ +O(C3) . (4.3)

The requirement that W0 give a supersymmetric mass of O(mH) to the heavy fields

and that the fields L have a mass of O(mL) fix W0, W̃1 and µ2,αβ to be of O(mH).

The parameter η is a dummy variable which will be useful in what follows, but that

eventually will be taken to be equal to 1. The Kähler potential is of the form

K = K0 +K1,αβ̄C
αC̄ β̄ + (K2,αβC

αCβ + c.c) +O(C3) , (4.4)

with K0, K1 and K2 arbitrary functions of H i, Mµ and their complex conjugates,

constrained only by gauge invariance.

Our aim is to compare the theory defined above by W and K (the full theory) with the

simple effective one where the H i are frozen at their leading VEV’s H i
0. As before, we

solve the approximate chiral e.o.m. ∂HW = perturbatively in ε and, at each order in ε,

further expand in η:

H i = H i
0 + ηδH i

0(L) +O(η2) + ε
[
H i

1(L) +O(η)
]

+ . . . (4.5)

where, as usual, H i
0 are defined by ∂iW0(H0) = 0 and we regard all eigenvalues of the

matrix ∂i∂jW0(H0) to be of O(mH). The effective superpotential and Kähler potential
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read

Wfull = Wsim + η2
(1

2
∂i∂jW0δH

i
0δH

j
0 + ∂iW̃0δH

i
0

)
+ εη

(
∂i∂jW0δH

i
0H

j
1 + ∂iW̃0H

i
1

+∂iW1δH
i
0

)
+ ε2

(1
2
∂i∂jW0H

i
1H

j
1 + ∂iW1H

i
1

)
+O(η3, η2ε, ηε2, ε3) , (4.6)

Kfull = Ksim + η
[
∂iKsimδH

i
0 + ∂īKsimδH̄

ī
0

]
+O(ε, η2) . (4.7)

The leading shift δH i
0 is

δH i
0 = −W ij

0 ∂jW̃0 , (4.8)

with W ij
0 ∼ 1/mH and H i

1 as in eq.(3.42). By plugging back eqs.(3.42) and (4.8) in

eqs.(4.6) and (4.7), one easily finds

Wfull = Wsim −
1
2
η2∂iW̃0W

ij
0 ∂jW̃0 − εη∂iW̃0W

ij
0 ∂jW1 −

1
2
ε2∂iW1W

ij
0 ∂jW1 +

O(η3, η2ε, ηε2, ε3) , (4.9)

Kfull = Ksim − η
[
∂iKsimW

ij
0 ∂jW̃0 + ∂īKsimW

īj̄
0 ∂j̄W̃ 0

]
+O(ε, η2) . (4.10)

Let us now see the structure of the induced operators, not present in the simple model,

and their possible relevance, recalling that the meaningful region we can explore in the

light charged field directions is defined to be |C|/mH . O(ε), otherwise large masses

would be generated. We will assume that H i ∼ O(mH) to simplify the following scaling

analysis. The leading C-dependent terms of Wfull and Kfull (which are in Wsim and

Ksim) are of O(ε3m3
H) and O(ε2m2

H) respectively, and it is easily shown that corre-

spondingly the leading C-dependent terms V (C) of the scalar potential are of O(ε4m4
H).

Notice that it is crucial to take exp(K/2)W0 = O(εmH) in SUGRA, otherwise terms of

O(ε3m4
H) would appear in the scalar potential, invalidating the equivalence of the simple

and full theories. It is straightforward to see that all the induced couplings appearing

in Wfull are at most of O(ε4m3
H) and those appearing in Kfull of O(ε3m2

H), so that

V (C)full = V (C)sim +O(ε5m5
H) . (4.11)

Eq.(4.11) implies that the e.o.m. of the light fields Cα are the same in both approaches

up to O(ε3), which is the first non-trivial order for these fields, being by assumption

〈Cα〉 ∼ O(εmH). Of course, as far as the C–independent O(ε2) scalar potential is

concerned, the results of chapter 3 still applies, implying, in particular, that the leading

e.o.m. of the M fields are identical in the full and simple theories. Notice that the

O(ε5m5
H) terms in eq.(4.11) arises only from O(ε) corrections to coefficients of operators

present in V (C)sim and not from the new higher derivative operators induced by the

heavy field integration. The latter, as we will see below, are sub-dominant, being at

most of O(ε7m6
H).
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The structure of the higher dimensional operators which are generated by the heavy

field integration is easily seen from Wfull and Kfull. The term proportional to η2

in Wfull gives rise to new induced couplings between the charged fields of the form

YNlYNmC
Nl+Nm . Their coefficients scale as 1/mH , which is higher than the natural

scale O(1) for such operators. It is easy to see that the coefficients of all the higher di-

mensional operators induced by the terms in Wfull proportional to εη and ε2 are smaller

than their natural values. Similarly, the terms proportional to η in the Kähler potential

Kfull give rise to CN higher dimensional operators with coefficients of O(1/mH), higher

than their O(1) natural values, implying that holomorphic cubic terms in C are not

reliable in the simple effective Kähler potential. One can also compute the structure of

the lowest dimensional induced operators appearing in the scalar potential Vfull(C), but

possibly not present in Vsim(C). We get

δV (C) ∼ YNlYNmYNn
mH

CNl+Nm+Nn−2 +
YNlYNmµMnε

mH
CNl+Nm+Mn−2

+
YNlµMmµMnε

2

mH
CNl+Mm+Mn−2 + . . . . (4.12)

where we have schematically denoted by YNl and µMm couplings and their derivatives

with respect to H and M . In eq.(4.12) we omitted generic M dependent coefficients

and we have not distinguished between fields and their complex conjugates. The ellipsis

contains terms which are of the same or higher order in ε. The lowest dimensional

operators appearing in δV (C) are of order C5 but with suppressed couplings. The only

operators with coefficients higher than their natural values are those appearing in the

first term of eq.(4.12), of O(C7).

Let us point out, however, that a more proper point of view on the simple theory as an

EFT should regard it as a theory valid only up to the mass scale of the heavy fields H

rather than up to the cut-off scale, so that higher order operators in the simple model are

naturally suppressed by mH and not by one, i.e. the cut-off scale. Therefore, the correc-

tions we are finding for the coupling CNl+Nm in the superpotential, and CNl+Nm+Nn−2

in the scalar potential, should be compared with the natural coupling in the simple

model correctly scaled now by O(m3−Nl−Nm
H ) and O(m6−Nl−Nm−Nn

H ) respectively, which

indeed are larger than the one induced by the integration as far as mH ≤ 1, as it is

in fact the case. Similar discussion follows with the induced couplings in the Kähler

potential.

4.1.1 Comments on the component approach

Probably the simplest way to recover the previous result using the orthodox way of

integrating fields from the scalar potential as we did in chapter 3, is by realizing that
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in the limit in which YN are of O(ε), the superpotential (4.2) is effectively of the form

(3.1) and the results of chapter 3 apply. In particular these imply δV (C) = O(ε3),

explaining why the minimum sum of powers of YN and ε in eq.(4.12) is three. The

exercise of computing the effective scalar potential shows besides the terms reported in

(4.12) further terms, all of them again scaling as O(ε3) in the limit YN → ε. Indeed,

it is straightforward to explicitly check that cubic or higher order terms in the light

auxiliary fields (including the compensator in SUGRA) can be also of the same order of

the ones obtained above, so is expected, in the sense explained in section (2.2.3), that

these further terms appear. Luckily enough these are at most of the same order and

moreover, of the very same structure! We choose, however, not to show the procedure

here as is still rather complicated compared to the one done supersymmetrically, and

at the same time not elucidating at all. Instead, let us try to show how the terms we

found appear from the integration of the heavy modes, and how further terms, with the

characteristics we just claimed indeed do appear.

The Yukawa term in the superpotential induce terms in the potential of the form∫
dθ2YN (H,M)CNΦ3 ∼ eK/2∂iYNCN−1ψiψC , (4.13)

where Φ is the compensator multiplet whose scalar component we have fixed to eK/3

(see sec.(2.2.1)), and ψi (ψC resp.) is the spinor component of H i (C resp.). From

these couplings the integration of the heavy spinor ψi induces a term in the effective

Lagrangian of the form,

∼ 1
mH

∂iYNl∂jYNmC
Nl+Nm−2ψCψC . (4.14)

which can be easily understood as coming from the term ∂iYNl∂jYNmC
Nl+Nm/mH in the

effective superpotential we found by the manifestly SUSY approach. A coupling like,∫
dθ4(−3e−K/3ΦΦ̄) ∼ ∂i∂µ∂µ̄∂ν̄K0ψ

iψµψ̄µ̄ψ̄ν̄ , (4.15)

combined with the one in eq.(4.13) generates the following effective coupling,

∼ 1
mH

∂iYNC
N−1ψ̄µ̄ψµψ̄ν̄ψC , (4.16)

which can be identified with the leading induced couplings of the form CN/mH we found

in the effective Kähler potential. Of course these are not all the possibilities but from

these examples is clear how is possible to express them in a manifestly SUSY way by

inferring the corresponding term ins the Kähler potential or superpotential.
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Let us see an example of an extra term we cannot see using the approximate chiral

equation. In the scalar potential we find terms of the form,∫
dθ2YN (H,M)CNΦ3 ∼ eK/2FCYNCN−1 ∼ eK

(
∂īW 0C + ȲNmC̄

Nm−1
)
YNlC

Nl−1 ,

(4.17)

where we have used the on-shell expression for FC eq.(2.19) and, in order to express

explicitly the power of C, we used the fact that Kαī ∼ Cα and Kαβ̄ ∼ 1. So that the

couplings ∂j̄īW 0YNH̄
īCN ∼ mHH

iCN and ∂iKH
iCNl−1C̄Nm−1 are realized, where we

have used ∂jiW0 ∼ mH . These, when the H i are integrated out, since the scalar field

propagator goes like m−2
H , induce the following couplings,

∼ 1
mH

YNlYNm ȲNnC
Nl+Nm−1C̄Nn−1 . (4.18)

Notice that although these have the same structure of the couplings we show in eq.(4.12)

the Yukawa couplings here can be constant, as far as there is Kähler mixing between

H i and Cα. Indeed, from the approximate chiral equation we used in the manifestly

SUSY approach, it is clear that there these couplings necessarily require the Yukawas

to depend in the H i fields.

There are other kind of induced couplings, like the ones coming by combining the first

term in eq.(4.17) with itself, that are not suppressed by the heavy fields mass,

∼ YNl ȲMmC
Nl−1C̄Nm−1 . (4.19)

However, the coupling ∂j̄īW 0YNH̄
īCN actually arises from all the terms FM∂MW in

the potential, and the sum of the coefficients of the induced coupling leads exactly to

the one obtains from the simple model. Indeed, as mentioned above, in the limit YN → ε

these couplings are O(ε2) therefore from the results of chapter 3 such a coupling should

match a leading order with the one of the simple model.

4.2 Chiral and vector multiplets

We introduce in this section the vector multiplets by switching on the gauge couplings.

We assume that at the vacuum a gauge group G is spontaneously broken to a subgroup

H at a scale parametrically larger than ε. The gauge group H might be further broken

to a subgroup, but only at scales of O(εmH). As introduced in section (2.2.2) we

denote by XM
A and XM̄

A the holomorphic and anti-holomorphic Killing vectors generating

the (gauged) isometry group G, defined as δφM = λAXM
A , δφ̄M̄ = λAX

M̄
A , with λA
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infinitesimal real parameters. The corresponding D-terms are

DA = iXM
A GM = −iXM̄

A GM̄ , (4.20)

where G = K + log |W |2 and GM = ∂MG are the Kähler invariant function and its

derivatives2. We denote by capital Latin letters A,B, . . . = 1, . . . , adj(G), the gauge

group indices, not to be confused with the light field indices A,B, . . . introduced before.

For simplicity of presentation, we take the holomorphic gauge kinetic functions fAB
diagonal in the gauge indices, so that

fAB = δABfA(H i,Mµ, Zα̂, Cα) (4.21)

are generic holomorphic functions and Re fA = 1/g2
A, with gA the coupling constants of

G.

As already stated in the beginning of the chapter, contrary to the pure F -term case, the

condition ∂iW0 = 0 may not fix all the fields H i. Indeed, gauge invariance relates the

derivatives of W0 by

Xi
A∂iW0 = 0 , (4.22)

so that in general they are not linearly independent and some of the fields may remain

unfixed. Thus, if the Xi
A are not all vanishing, one can always choose a basis in which

some of the fields do not appear at all in W0. It is very simple to explicitly construct

such a basis for the relevant case where the H i are moduli shifting under a U(1) gauge

symmetry. If δH i = iξiΛ, with Λ the chiral super-field associated to the U(1) trans-

formation, one can always choose to parametrize W0 in terms of, say, M1 ≡ H1 (with

ξ1 6= 0) and the nH − 1 gauge invariant operators H i
GI = ξ1H i − ξiH1, with i > 1.

One can invert this relation and use the fields H i
GI in W0. In this field basis, the only

non-vanishing isometry component is X1. From eq.(4.22) we immediately see that W0 is

independent of M1, depending only on the nH −1 gauge invariant fields H i
GI . Of course

the same argument can be repeated for each U(1) generator independently. Hence there

is no well defined meaning in freezing M1 being necessarily a flat direction of W0. The

situation in fact stronger since the concept of freezing a charged fields is not even a mean-

ingful gauge invariant statement, since δM1 6= 0 and thus M1 will necessarily enter in

W (if any) in a gauge invariant combination with light fields. One might, instead, get

rid of M1 by gauging it away, namely choosing a gauge (which is not the Wess-Zumino

gauge) where it is a constant. The dynamics of M1, however, do not disappear being

encoded in the U(1) vector multiplet, more precisely in the longitudinal component of
2As explained in section (2.4) we do not consider constant FI-terms as they are incompatible with a

quantum description of SUGRA, as it is the case for string theory.
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the gauge field and the lowest auxiliary component, which in the new gauge are dynam-

ical. If the vector field is sufficiently massive and is integrated out, the effects of M1 will

eventually appear in new contributions to the Kähler potential of the remaining light

fields. A direct relevant consequence of the above result is the impossibility of naively

neglect moduli fields responsible for field-dependent Fayet-Iliopoulos terms introduced

in section (2.4), and/or forgetting the implicit gauge-fixing taken behind this choice, as

sometimes done in the literature in local string constructions, where all moduli dynamics

is neglected altogether. Clearly, this obstruction has nothing to do with gravity and is

purely dictated by gauge invariance, therefore holds in the global SUSY case as well.

This observation actually dates back to [50] and was more generally expressed in [36].

In conclusion, for all proper heavy fields we must impose3

Xi
A = 0 . (4.23)

In addition to eq.(4.23), for simplicity we also assume that the remaining isometry

components do not depend on H i, XAA = XAA (LB).

Notice that the vector multiplets do not enter in the approximate chiral e.o.m. for the

heavy fields, eq.(2.10). Therefore, the inclusion of gauge dynamics does not affect the

results of section (4.1). However, a claim made in obtaining this equation in section

(2.1.1) was not fully true (see footnote (4) in chapter 2), namely that neglecting the

supercovariant derivatives in the e.o.m. lead to and exact theory at the two derivative

level even in presence of vector multiplets. It turns out , in fact, that even at the

two derivative level terms with covariant derivatives in the Kähler potential may now

appear, coming from products of the auxiliary fields of the form DF or D2. However,

being the auxiliary component D the θ2θ̄2 component of the vector multiplet, these

terms in K arises only from induced terms with at least two covariant derivatives, and

by dimensional analysis necessarily further suppressed by mH . They are, then, in the

low energy EFT necessarily suppressed by ε or ε2 with respect to the F 2 generated

terms and can thus be neglected. We stress the fact that is only in the low energy EFT,

where possible heavy vector fields have been already integrated out, that these terms

are always negligible, being clear that before integrating out the vector multiplets the

coefficients for such terms can be O(mV /mH), i.e. non-suppressed.

The conclusion of the previous discussion is that we can safely use the solutions we

found, eqs.(3.42) and (4.8), which lead to the full effective superpotential and Kähler

potential, shown in eqs.(4.9) and (4.10), and now also to the effective holomorphic gauge
3Of course there is the possibility of vector like representations that acquire heavy masses and vanish-

ing VEV avoiding this obstruction, since for them 〈Xi
A〉 = 0, like in the case for charged Kaluza–Klein

fields. We do not consider such a case here being, though, clear that a proper integration induces only
non-renormalizable couplings suppressed by their mass.
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kinetic functions fAB,

fAB,full = fAB,sim + ∂ifABδH
i
0 +O(ε, η2) . (4.24)

Eq.(4.24) implies that all C–independent terms and C–dependent ones up to CN−1

(included) entering in the fAB are reliable at O(1) in ε.

Let us analyze the effective action first in the unbroken gauge symmetry case, namely

all M fields neutral. The effective Kähler potential (4.10) gives rise to corrections to the

D-terms with schematic form

DA,full −DA,sim = iXα
A∂α

[
∂iKsim(ηδH i

0 + εH i
1) + h.c.

]
+O(ε2, η2, εη)

=
YNi
mH

CNi+2 + εC2 +
εµMi

mH
CMi+2 + . . . , (4.25)

where we have set η = 1 in the second row of eq.(4.25) and where, for concreteness,

we have counted the powers of C (including their complex conjugates) by taking linear

realizations of the gauge group (Xα
A proportional to Cα). Gauge invariance of W̃0 and

W1 has been used, constraining Xα
A∂αδH

i
0 and Xα

A∂αH
i
1 to vanish.

We can easily extract from eq.(4.25) the lower dimensional operators generated by the

heavy field integration, appearing in the D–term scalar potential VD,full but not present

in VD,sim. They are of the form g2YNiC
Ni+4/mH and εµMig

2CMi+4/mH . Both are at

most of O(ε7m6
H) and hence irrelevant. As already mentioned, in presence of vector

multiplets, quadratic terms in the auxiliary fields of the form DF and D2 are missed.

It is useful to explicitly see how this discrepancy arises in our class of models. By

construction, all the effective operators one obtains from the effective D-term scalar

potential using the approximate chiral e.o.m where covariant derivatives are neglected,

give rise to only operators proportional to g2, as above. On the other hand, it is obvious

that in presence of a Kähler mixing term between the charged fields and the heavy fields,

higher order operators with coefficients proportional to (g2)2/m2
H should be expected.

By explicitly computing the scalar potential in components, indeed, we find

δVD ∼
g2YNi
mH

CNi+4 +
εg2µMi

mH
CMi+4 +

(g2)2

m2
H

C8 . (4.26)

The first two terms are exactly those found in the manifestly SUSY case, whereas the

latter arises from the undetected D2 terms. As advertised before, this term is negligible

being of O(ε8m6
H).

In presence of charged M fields the gauge group G is spontaneously broken to a subgroup

H, and we will distinguish between the two set of generators by a splitting in the gauge

index A = (a, â), â ∈ G/H, a ∈ H. The analysis of the low energy EFT in this case is
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more involved due to the presence of extra heavy stuff, the vector bosons Aâ, associated

with the broken generators, which acquire masses through the Higgs mechanism, and

the real scalar fields superpartners of the would-be Goldstone bosons, which acquire

a heavy mass from the D-term dynamics. These fields combine in a massive vector

multiplet of N = 1 SUSY, and their masses squared are splitted by the SUSY breaking

scale encoded in the VEV of the auxiliary field Dâ. Such fields cannot be frozen to

their VEV, as can easily understood by the fact that the superpartner of the would-be

Goldstone is stabilized by the D-term dynamics which has O(1) dependencies on the

light fields VEV, so a proper integration is necessary.

Since the mass splitting inside the massive vector multiplet is dictated by the VEV of

D, a manifestly SUSY integration of a vector super field requires that 〈D〉/m2
V � 1,

with mV the gauge field mass. In our case this condition is always satisfied, as shown

in Appendix A, being 〈Dâ〉 = O(ε2). As shown in section (2.1.1) a vector super field is

supersymmetrically integrated out, neglecting covariant derivative terms coming from

the holomorphic gauge field action, by setting [50]

∂V âK = 0 , (4.27)

V â being the vector-superfields associated to the broken generators. For typical charged

field Kähler potentials, eq.(4.27) does not admit a simple constant solution, meaning,

again, that in general is hopeless to freeze the heavy vector multiplet.

Integrating out a vector super field implies a choice of gauge fixing. The physical gauge

where one gets rid of the eaten Goldstone bosons and their superpartners is the super-

field version of the unitary gauge. On the other hand, it is practically easier to work in

a gauge where an arbitrary chiral charged field M̃ with a non-vanishing component in

the would-be Goldstone directions, i.e. 〈X̃â〉 6= 0, is frozen at its VEV M̃0. This can be

done for each broken generator so that dimG/H light chiral multiplets (or combinations

thereof) are gauged away from the theory. Let us denote by LA
′

the remaining direc-

tions, with A′ = 1, . . . , nL − dimG/H, and by V â
0 the solution to eq.(4.27). Plugging

back in the Lagrangian V â = V â
0 , we get the SUSY effective theory with heavy vector

fields integrated out. As far as the chiral fields are concerned, the correction terms one

obtains from the holomorphic gauge kinetic terms are negligible, being suppressed by

four covariant derivatives with respect to the corrections terms coming from the effective

Kähler potential K ′ = K(V â = V â
0 ).4 The gauge fixing should also be plugged in W ,

giving rise to a superpotential W ′, which is a function of the H i and LA
′
. The effective

4A simple explicit expression for V â0 and K′ is obtained at the Gaussian level. In this case one gets,

V â0 = −m̃−2

âb̂
Kb̂/2 , (4.28)
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D′a term now reads

D′a = iXA
′

a G′A′ = −iXĀ
′

a G
′
Ā′ , (4.30)

with XA
′

a the components of the pulled back isometry vectors on the Kähler invariant

function G′, defined by the gauge fixing. Since the latter is linear in the fields, the pull-

back is trivial and Xα′
a are nothing else than the original isometry vector components

along the non-gauged away directions LA
′
.

After having integrated out the massive vector fields and their scalar partners, we get an

intermediate effective theory given by the Kähler potential K ′, isometry Killing vectors

XA
′

a , superpotential W ′ and gauge kinetic functions fa, with Re fa = 1/g2
a. No field with

non-vanishing VEV and charged underH appears in this theory. All the charged M have

been either gauged away or appear as gauge singlet combinations in the intermediate

theory, effectively behaving as new gauge invariant fields. By expanding K ′ in powers of

the charged fields we get a Kähler potential of the form (4.4) (where K ′0, K ′1 and K ′2, in

turn, can be expanded in powers of the heavy vector mass) and we are effectively back to

the case discussed before of unbroken gauge group, comparing the resulting theory after

integrating out the H with the simple one defined by K ′sim = K ′(H0), W ′sim = W ′(H0),

fa,sim = fa(H0).

Usually one is interested in the simple model where the vector multiplets have not been

integrated out, as wee will see in an explicit example in chapter 5, so one might be

interested in comparing the low energy EFT of this simple theory with the one of the

full integration we just preformed. Nicely enough, this is exactly what is done in last

step above, as the K ′sim and W ′sim exactly coincide with the Kähler and superpotential

obtained by integrating out the heavy vector fields from the simple theory, when the

same gauge-fixing taken in the full theory is used. This closes the proof of the reliability

of the simple description even in presence of gauge dynamics.

4.3 Comments on including messenger fields

As mentioned in the beginning of the chapter, the study with only cubic, and higher,

O(1) couplings for the matter fields in the superpotential is rather restrictive, as in

principle there might be heavy fields relevant for the physics of the visible sector. A first

example of this sort of fields are the messenger fields of gauge mediation scenarios [93],

so let us study this case in some detail. This kind of fields will appear in the original

where m̃2
âb̂

= 2〈gMN̄X
M
â X

N̄
b̂ 〉 is the non-canonically normalized mass matrix for the gauge fields and

Kâ = ∂V âK|V=0. Plugged back in K, it gives

K′ = K(V â = 0)−Kâm̃
−2

âb̂
Kb̂/4 . (4.29)
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superpotential with a O(1) mass term and no direct coupling with the visible matter,

so it is enough to add the term

W ∼ m``˜̀, (4.31)

with m` a field dependent mass parameter, and `-˜̀ a vector-like pair of messenger fields.

Notice that the mass term, in order the messenger to be kept in the low energy EFT,

should be smaller than mH . Their Kähler potential is like for the the other charged

fields eq.(4.4), with the only constrain of allowing only non-renormalizable mixing with

the visible sector. Nicely enough the analysis performed in section (4.1) is general

enough that we can directly read the new induced coupling in presence of these fields.

Regarding the pure messenger sector we read the following leading induced couplings in

the superpotential and Kähler potential,

Wfull ∼
m2
`

mH
(`˜̀)2 , (4.32)

Kfull ∼
m`

mH
`˜̀. (4.33)

Like before, the meaningfull region in field space we can explore is bounded by |`| .
O(εmH), otherwise the vector bosons of the Standard Model would acquire large masses.

In such a case the leading terms for the messengers in the superpotential and Kähler

potentail, given by the terms in Wsim and Ksim are of O(m`m
2
Hε

2) and O(m2
Hε

2) re-

spectively, meanwhile the induced couplings on each one scale like O(m2
`m

3
Hε

4) and

O(m`mHε
2) respectively. The induced coupling in the superpotential is clearly sup-

pressed, instead, the one for the Kähler potential is less obvious. In this case a sightly

suppression is taken part due to the constrain m` � mH so that the induced coupling

still can be neglected. However, more important is the fact that this coupling does not

enters in the leading terms of the metric, which are the most relevant for the e.o.m.

and the masses of the messengers, that is information that can affect the visible sector.

Indeed, in the same way we did with the visible sector, one can check that the leading

corrections to the simple scalar potentail of the pure messenger sector are again solely

due to the shift in the VEV of H i and scale like O(m2
`m

2
Hε

3), while the leading term

in the simple scalar potential scale like O(m2
`m

2
Hε

2), then the e.o.m. are not affected at

leading order. The terms due to the new induced coupling, as in the previous case, are

further suppressed with the leading terms scaling like O(m2
`m

3
Hε

4). s Having checked

the reliability of the simple description in the pure messenger sector, let us turn to the

possible effects due to new induced coupling on the visible sector. From the results of

section (4.1) we read the following induced direct couplings between the messenger and

the visible matter:

Wfull ∼
1
mH

m`Y `˜̀C3 +
ε

mH
m`µ`˜̀C2 . (4.34)
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Notice that in these couplings a further small suppression appear due to the condition

m` � mH , so that the induced couplings are smaller than the natural ones with O(1)

coefficients. As before these couplings in the Lagrangian are completely irrelevant, as

can be checked by noticing that with a mixing in the Kähler potential of the form

K ∼ (|`|2 + |˜̀|2)|C|2 the induced coupling from the messenger point of view is for all

effects exactly like a mass term of O(m`m
2
Hε

3), and from the visible sector point of view

is for all effects like a Yukawa coupling of O(ε2m`/mH) and a mass term of O(ε3).

Before trying to figure out more in detail the effects of such coupling on the soft terms for

the visible sector, let us point out some terms potentially present from moduli mediation

and the scaling for them. From the F -term density in the Lagrangian, we have the

following contributions to the A-term, Bµ-term and soft masses,∫
dθ2(Y C3 + εµC2)Φ3 ∼ eK/2∂νY F νC3 + εeK/2∂νµF

νC2 + eKε2|µ|2|C2 , (4.35)

where as usual the compensator have been fixed to Φ = eK/6 and used FC ∼ εµ̄C̄. We

see, then, that the A-terms are O(ε), meanwhile the mass terms are O(ε2). The D-term

density of the Lagrangian also contributes to the mass terms, using eq.(4.4) we have

(neglecting the explicit µ term in the original superpotential which leads to the same

conclusions), ∫
dθ4(−3e−K/3)|Φ|2 ∼ ∂ν∂ν̄K1|F ν |2|C|2 + ∂ν∂ν̄K2|F ν |2C2 , (4.36)

so again we find an O(ε2) for these terms. Although we have pointed out only few

contributions to the non-canonically normalized soft terms it turns out that the complete

set of contributions lead to the same order in ε [94, 93].

To extract information on the soft terms from the couplings (4.34), we integrate out

the messengers, which necessarily is a one-loop procedure. As usual the superpotential

is not affected being protected by non-renormalization properties [93], instead, in the

Kähler potential a mixing between the mass operator of the messenger and the operators

in eq.(4.34) is induced, generating a direct coupling between the spurion field, X, inside

m` ∼ X, and the visible sector. More precisely, up to loop and O(1) coefficients, the

following terms are generated in the Kähler potential (see e.g. ref.[93] pg. 88),

K ∼ |m`|2

mH
(Y C3 + εµC2) ln(XX̄) . (4.37)



Chapter 4. Two-Step Stabilization: Matter and Gauge Interactions 68

Plugging these in the D-term density of the Lagrangian, we read the following contri-

butions to A-term, Bµ-term and soft-mases,

L ∼
m2
`

mH

∣∣∣∣FXm`

∣∣∣∣2 (Y C3 + εµC2
)

+ ε2
|m`|2

mH

FX
m`
|µ|2|C|2 . (4.38)

where we have used FC ∼ εµ̄C̄ and regarded m` ∼ X. We see, then, that all of them

are suppressed by O(ε) terms, and further powers of m`/mH , compared to the standard

contributions we figured out above. Therefore the contributions from such coupling, and

the couplings itself, can be consistently neglected and the analysis done in the previous

sections for the visible sector is unaffected by adding the messengers.

4.4 Generalized nearly factorizable models

As already pointed out in section (3.3.3), the explicit realization from string theory of the

approximate factorizable case is more restrictive since imposes further conditions on the

form of the Kähler potential. This situation is even clearer once matter, not necessarily

all in the visible sector, is added. Indeed, being the kinetic functions a function of both,

the complex structure and the Kähler moduli, the factorizability, as we stated it, is

completely lost upon some of these fields can acquire O(1) VEV. Still a generalization of

the nearly factorizable case can be constructed inspired in the LARGE volume scenarios

we studied in section (3.3.3). It follows from this discussion that in this case a real

distinction exits between the moduli and the matter, therefore we will distinguish them

denoting the matter, in general, by Q, so that L = {Mµ, Qα} and φM = {H i,Mµ, Qα}.
Consider now a system described by a Kähler invariant function of the form5,

G = GH(H i, H̄ ī) +GM (Mµ, M̄ µ̄) + εGmix(φM , φ̄M̄ ) , (4.39)

which in terms of the Kähler potential and superpotential can be realized with K =

KH(H) + KM (M) + εKmix(φM ) and W = WH(H)WM (M) + εW1(φM ), so that the

fields Q only appear in the suppressed parts. The structure of inverse metric is then of

the following form,

(KMN̄ )−1 ∼

(
O(1) +O(ε)g̃(Q) O(1)h̃(Q)

O(1)h̃(Q) O(ε−1)

)
, (4.40)

5Let us for the moment deal only with matter fields with O(ε) dependency in the superpotential so
that can develop O(1) VEV’s, being these the problematic ones for moduli stabilization issues.
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where the first block refers to the moduli directions, and g̃ and h̃ are moduli dependent

functions of Q. The scalar potential, therefore, can be written as

V = V0(φ̃M̃ , ¯̃
φ

¯̃M ) + εV1(φM , φ̄M̄ ) +O(ε2) , (4.41)

where we denoted by φ̃ the set of all moduli, M̃ = {i, µ}. Notice that in the leading part

no contribution from the Q sector is introduced, i.e. is exactly the same leading potential

studied before in section (3.3.3). We have, then, that the analysis done before for the

integration of the H modes follows verbatim, namely Ĥ ∼ O(ε) and the corrections

to the simple model start at O(ε2), i.e, the leading and sub-leading potentials for the

moduli M are reliable, and for the for the matter Q only its leading one. The canonical

normalization and mass eigenstates mixings are again no an issue due to the form of

the metric and the hierarchy between the potentials fixing moduli and the Q. Notice,

moreover, that indeed there is still a suppression for the expectation value of the auxiliary

fields of the H multiplets, with canonical normalized F -terms (FMc = |KMM̄F
M̄
FM |1/2

no sum),

Fµc ∼ O(1) , FQc ∼ O(ε1/2) , F ic ∼ O(ε), . (4.42)

This, therefore, presents a generalization of the factorizable model proposed in [36],

which allows a more natural introduction of matter-like fields in the game. The intro-

duction of gauge dynamics then is straightforward as far as we keep the H fields neutral

and the gauge kinetic function to have only suppressed dependency on H. In this case,

is easy to check that,

∂iVD ∼ O(ε) , (4.43)

so that the previous discussion is not affected. Adding gauge dynamics at this stage is,

however, far from being realistic, as the dynamics are all of O(1) so that SUSY is broken

at the Plank scale!. As we saw in section (3.3.3) with the LARGE volume scenario this

set-up can be connected to realistic models, so let us now turn to study this case in

particular.

4.4.1 LARGE volume scenario with matter

The LARGE volume scenario present in fact the generalized form for the Kähler potential

introduced in eq.(4.39), with a generic Kähler potential for the matter fields of the form,

K ∼ Z(U, Ū , t, t̄)
Vα

|Q|2 , (4.44)

where Q is a generic charged field and for simplicity we have omitted possible index

contractions and we have allowed a further dependency on the small Kähler modulus
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independent of the implicit one in the volume. The modular weight α is expected to

be a positive number, making also reliable the expansion done in powers of the matter

fields, so that a suppression on such terms is indeed realized. As pointed out at the

end of section (3.3.3) the introduction of extra stuff developing non-vanishing VEV is

compulsory for these scenarios, as the moduli alone are stabilized in an AdS space which

should be up-lifted somehow [83].

Let us see that the situation here is very much as the explained for the generalized fac-

torizable case, studying the simplest model which already contains the novel features,

namely a single Q without any dependency on the superpotential, so that the superpo-

tential continue to have the form we used in section (3.3.3). Forgetting for the moment

possible D-term dynamics, one can compute the scaling of the leading terms depending

on Q,

V ∼ |Q|
2

V2+α

((
DUW |Q=0 +W0(S,U)

)
W 0 + h.c.

)
, (4.45)

where O(1) coefficients are omitted (recalling that for this case our expansion parameter

is defined as ε ∼ V−1). The Q independent part continues to be like in section (3.3.3),

with a leading potential scaling as O(ε2) fixing the dilaton and complex structure and

the one scaling as O(ε3) generating dynamics for the Kähler potential. Being α > 0

the new contributions to the potential does not destabilize the SUSY solutions for the

S and U , which then do not affect the equation of motion of Q, as their contribution

come from the two first terms in eq.(4.45). This is exactly what happens for the Kähler

moduli in the previous case. Indeed, the first non-vanishing contributions scale like

|Q|4O(ε2+2α), as can be easily seen form the terms eK |DUW |2 and eKKC̄UDUWD̄C̄W+

h.c. knowing KC̄U ∼ C̄. Notice, though, that these terms absent in the case U is

regarded as frozen, i.e. the simple model, can start to affect the V3 potential, eq.(3.85),

for the Kähler moduli if 〈Q〉 ∼ O(1). This imposes a constrain in the modular weight

α, namely α > 1/2. In fact, this constrain can be found from the analysis of the

induced scalar potential once the complex structure moduli are integrated out. Doing

the same analysis we did for the pure moduli case on sees that now the fluctuations

Ĥ scale like Ĥ ∼ O(ε) + |Q|2O(εα), therefore, the induced scalar potential, scales like,

Vind ∼ O(ε4) + |Q|2O(ε3+α) + |Q|4O(ε2+2α), so that the leading scalar potential for Q is

not affected, but if Q has O(1) VEV, the last term scales as the leading scalar potential

for the Kähler moduli unless α > 1/2. The model, however, as is so far leads to vanishing

VEV of Q, and depending on the value of α it can be stable or a tachionic direction, so

the analysis done is misleading as it regards Q ∼ O(1).

A more interesting and realistic situation happens by adding the D-term potential. The

explicit system we now study is a stack of branes wrapping the exponentially large cycle,

whose size is characterized by the modulus T , and turn-on some world-volume fluxes.
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The modulus T then gets charged under a U(1) symmetry as explained in section (2.4.2)

(this model was worked out in detail for the simple case by Cremades et. al. in ref.[83]).

Taking Q as an open string mode of the stack of branes, with a corresponding charge

qQ, the D-term potential takes the schematic form,

VD ∼
1

T + T̄

(
δ

V2/3
+
qQZ(U, Ū , t, t̄)|Q|2

Vα

)2

, (4.46)

where we have regarded the gauge kinetic function as fX ∼ T . Let us see that in this,

now complete, system the simple description is always a reliable approximation. The

D-term potential scales as O(ε2/3)(O(ε2/3)+O(εα)|Q|2)2, and its derivative with respect

to U scales like O(ε2/3+α)|Q|2(O(ε2/3)+O(εα)|Q|2) so that seems possible a correction to

the O(ε2) e.o.m. for the complex structure from the F -term potential. It turns out that

this is not the case as two possibilities can happen. That inside the D-term there are

no cancellations, so that Q is likely to be stabilized at vanishing VEV, and no effects for

the e.o.m. of U arise6. Another possibility is that a non-vanishing VEV of Q cancels the

D-term. Let us explore this second case more carefully. The full e.o.m for Q, including

the leading terms from the F -term potential is schematically given by [83],

|w0|2Q
V2+α

+
1

T + T̄

(
δ

V2/3
+
qQZ(U, Ū , t, t̄)|Q|2

Vα

)
qQZ(U, Ū , t, t̄)Q

Vα
= 0 , (4.47)

so that the non-vanishing solution we are looking for is given by

|Q|2 ∼ δ

qQ
Vα−2/3 . (4.48)

Therefore, the contribution from the D-term potential to the e.o.m. of U scales as ε8/3

and its leading SUSY solutions are preserved.

Plugging back the solution for Q in the D-term and F -term parts we get the respective

scalings O(ε−10/3) and (δ/qQ)O(ε−8/3). This last one is naturally larger than the V3

potential for the Kähler moduli, so in order not to spoil the stabilization of the moduli

we show in section (3.3.3) and potentially help with the uplifting of the AdS vacuum a

tune of order O(ε1/3) is needed7. Let us consider, then, that this is the case and take

δ ∼ O(ε1/3). Notice, that the terms in the F -term potential we found above not present

in the simple model, scaling as |Q|4O(ε2+2α), scale now as δ2O(ε10/3), so are harmless

for the Kähler moduli potential.
6This case still may destabilize the Kähler moduli, and a tuning in the Green-Schwarz coefficient δ

of order ε should be argued.
7In ref.[83] the tuning is regarded in the δ Green-Schwarz coefficient, however, for volumes larger

than 105 in string units, such a tuning is rather unnatural even in presence of warpings [95].
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The derivatives for the complex structure have as leading terms,

∂UV ∼ O(ε3) +O(ε2+α)|Q|2 +O(ε2/3+α)|Q|2D , (4.49)

where D is the functional form of the D-term. Then the induced potential due to the

integration has the scaling properties,

Vind ∼ O(εα)
(
O(ε3) +O(ε5/3)D

)
|Q|2 +O(ε2α)

(
O(ε2) +O(ε2/3)D +O(ε−2/3)D2

)
|Q|4 ,
(4.50)

where we have neglected the Q-independent part since we know already is completely

irrelevant. Plugging the computed VEV for Q,

Vind ∼ δ
(
O(ε11/3) +O(ε7/3)D

)
+ δ2

(
O(ε10/3) +O(ε2)D +O(ε2/3)D2

)
. (4.51)

With the first terms in each parenthesis we recover the terms we read before directly

from the F -term potential. Once we regard the cancellation of the D-term due to the

VEV of Q, D ∼ O(ε4/3) (notice also that ∂TD ∼ O(ε4/3) as well), all these terms scale

as O(ε10/3) or larger powers, even before requiring δ ∼ O(ε1/3), then all these terms are

irrelevant for the simple model up to O(ε3) included and the stabilization for the Kähler

moduli in the simple model is reliable. Remarkably enough this result is independent of

the value for the modular weight of Q.

4.4.1.1 Induced couplings

Now that we have seen that at the level of stabilization of the moduli things are save, at

least for the particular model studied, let us see the possible induced couplings generated

in the visible sector by the integration of the heavy fields in a more general framework.

The scaling of the kinetic function for visible matter is known to be α = 2/3 [96] and

let us not to consider Kähler mixings with matter-like fields developing O(1) VEV.

We proceed as in section (4.1.1) drawing the corrections we obtain integrating out he

components of the complex structure. The larger trilinear coupling between the complex

structure and the visible sector due to the Kähler mixing comes from the term in the

potential8, ∫
d4θ(−3e−K/3ΦΦ̄) ∼ ε4/3∂UZ F TUψ̄Q̄ψQ , (4.52)

where we have used ∂TV ∼ (ε1/3), and the usual normalization for the compensator Φ.

With the canonical normalized F Tc = |KT T̄F
TF

T̄ |1/2 ∼ O(ε), as can be easily check

8Exactly the same conclusion can be raised if instead of T in the coupling we take t, the small Kähler
modulus.
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from F T ∼ eK/2K T̄ TKTW0 ∼ O(ε1/3), the coupling scales as O(ε7/3) 9. Integrating out

the complex scalar field U leads to a coupling

ε14/3

m2
U

|ψ̄Q̄ψQ|2 ∼ ε8/3|ψ̄Q̄ψQ|2 , (4.53)

where we have used the fact that m2
U ∼ O(ε2). A term in the Kähler potential of

the form |Q|4/Vβ, generates also such a coupling scaling as εβ|ψ̄Q̄ψQ|2. Thus as far

as β < 8/3 the corrections to such term in the Kähler potential are irrelevant and the

coupling in the simple description is reliable.

To introduce the O(1) Yukawa we can use the results of section (4.1.1), and directly see

the scalings of the induced couplings,

eK

mH
∂iYNl∂jYNmC

Nl+Nm−2ψCψC ∼ O(ε) , (4.54)

scaling exactly as the ones generated by a term O(1)CNn+Nm in the superpotential so

this term is, like in the KKLT-like case, no reliable in the simple description. The

coupling coming from the term ∂i∂µ∂µ̄∂ν̄K0ψ
iψµψ̄µ̄ψ̄ν̄ in the Lagrangian may carry

further scalings from the derivatives on the volume. Let us work the case where all

spinors ψµ belong to the small modulus t multiplet, which is the most dangerous case

since all derivatives can come from Z in eq.(4.44), so that the coupling simply scales as

O(ε2/3), and the induced coupling scales as

O(ε2/3)
eK/2

mH
∂iYNC

N−1ψ̄µ̄ψµψ̄ν̄ψC ∼ O(ε2/3) . (4.55)

This coupling is generated from a term in the Kähler potential of the form O(εβ)CN .

If the only dependency on t comes from the volume then the respective coupling scales

as O(εβ+3), and the induced coupling will be always grater than the original one unless

one allows large negative values for β. If the coupling instead carries further t depen-

dencies apart from those in the volume the coupling scales simple as O(εβ) and β < 2/3

ensures the reliability of the couplings in the simple model. Notice that the analysis of

contributions to the Kähler potential is rather vague as we lack of a precise definition

of naturalness, being the relevant suppression parameter the volume, which in principle

can appear with any (likely negative) power. From the term∫
dθ2YN (U)CNΦ3 ∼ eK/2FCYNCN−1 ∼ eK∂īW 0YNlC

Nl , (4.56)

9More properly one should take the canonical normalized coupling in order to do a proper estimate.
However, since the kinetic function for the complex structure scales as O(1) this is irrelevant once we
compare coupling with the same power of L fields.
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using again KCŪ ∼ C. The coupling, then, scales like eK∂ŪŪW 0YN ŪC
N ∼ O(ε2)ŪCN .

Combined with itself leads to the effective coupling,

O(ε4)
1
m2
U

YNn ȲNmC
Nn−1C̄Nm−1 ∼ O(ε2)YNn ȲNmC

Nn−1C̄Nm−1 . (4.57)

This term is already generated in by the term YNC
N in the superpotential, leading to a

term scaling as O(ε4/3), using KCC̄ ∼ ε−2/3, therefore the induced terms are suppressed

and the original ones appearing in the simple superpotential are reliable.

As said in the beginning, a general analysis of the LARGE volume models seems not as

straightforward as in the KKLT-like case, already without the inclusion of the visible

sector. The explicit set-up we studied here turns out to be rather save, at least up to

the mass level for the moduli and leading couplings in the visible sector. However, being

the scalings determined also by the stabilization procedure, this results most probably

cannot be blindly generalized to any situation. This simply further motivates the usual

more conservative approach [42, 97], where the vacuum is computed in the simple model,

but then, for the computation of the soft-terms, knowing the order of the Kähler mixings

one estimates the order of the respective F -terms for the complex structure and dilaton.

Indeed, one can easily calculate the canonical normalize F -terms using KST̄ ∼ O(ε1/3),

KUT̄ ∼ O(εα−2/3)|Q|2 and KUQ̄ ∼ Q. In our case

F Tc ∼ O(ε) , F tc ∼ O(ε3/2) , FQc ∼ δ1/2O(ε4/3),

FSc ∼ O(ε2) , FUc ∼ δO(ε5/3) . (4.58)

With δ ∼ O(ε1/3), necessary to tune the cosmological constant, the sector Q − U is

further suppressed, but any way is clear that the S and U contributions are suppressed.

So that one can estimate the soft-term contributions from all the sectors instead of

integrate them out and take into account the modified theory. This approach at the

level of the e.o.m. and masses would lead to the very same results, being this one far

more straightforward and simple.



Chapter 5

Moduli Stabilization in

Minkowski vacua

The the study of chapters 3 and 4 gives a very powerful result concerning, among others,

the stabilization of moduli, telling us that one can consistently forget about the dynamics

of many of the moduli, regarded as frozen by the flux induced dynamics. This gives us

more freedom on building and playing with toy models of moduli stabilization, which

in order to be more or less analytical are restricted to a small set of the moduli. In the

present chapter an explicit model is constructed [1] realizing tow moduli stabilization

in Minkowski vacua. These two moduli are the light fields of our previous chapters,

so we concentrate here only to the second step of the Two-Step moduli stabilization

procedure. For completeness in the framework of the previous chapters, Appendix B

shows a numerical instance comparing the Two-Step procedure, followed here, and the

full one for the simpler case with a single modulus.

A well-known, simple and interesting SUSY breaking mechanism is the Fayet-Iliopoulos

model, which is based on a FI-term for a U(1)X gauge symmetry [98]. Its simplest im-

plementation requires two charged fields, φ and χ, with opposite U(1)X charges qφ and

qχ. The requirement of minimizing the DX term in the scalar potential induces one of

the charged fields, say φ, to get a non-vanishing VEV. If the only relevant superpotential

term coupling φ and χ is linear in χ, a simple effective Polonyi-like superpotential term

is induced and SUSY is broken because Fχ 6= 0. In string theory, as explained in section

(2.4), field-dependent effective FI-terms generally arise due to a non-linear transforma-

tion of some modulus U under a would-be anomalous U(1)X gauge symmetry. Moduli

stabilization and Fayet-like SUSY breaking mechanisms are hence interconnected in

string theory and one might wonder if their combined action can efficiently be embed-

ded in a KKLT-set up to provide a spontaneous SUSY breaking mechanism, which

75
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also does not need to assume a complete decoupling between moduli stabilization and

SUSY breaking, like in [24]. A Fayet-like SUSY breaking mechanism has been shown

to successfully give rise to low energy SUSY breaking on a Minkowski/dS vacuum for a

KKLT-like SUGRA model, where the FI modulus is identified with the universal Kähler

modulus and qφ = −qχ [44]. The resulting soft mass parameters for the visible sector are

realistic, but present a moderate hierarchy between gaugino and scalar masses, unless

one complicates the model by introducing additional (messenger-like) fields [44]. The

main drawback of the model of [44] is the introduction of an unnaturally small mass

term mφχ with m ∼ O(10−11 ÷ 10−12) , in addition to the usual KKLT fine-tuning of

assuming a tiny constant superpotential term w0, which is roughly of the same order

as m. A more satisfactory explanation of the smallness of the χφ coupling is necessary,

mainly because higher-order terms of the form cn(φχ)n with n > 1 will generally lead

to a restoration of SUSY.

The aim of this chapter is to study in some detail how a Fayet-like SUSY breaking

mechanism can be realized in string-derived SUGRA theories. We will study the dy-

namics of a SUGRA system with two moduli, the FI modulus U and another neutral

modulus Z, the two charged fields φ and χ, with arbitrary qχ charge (the U(1)X charges

are normalized so that qφ = −1) and extra hidden vector-like matter and two/three

condensing gauge groups responsible for non-perturbatively generated terms necessary

to stabilize U and Z. We specify only the schematic form of the Kähler potential, which

is taken quite generic. As far as the superpotential is concerned, we consider both the

cases of moduli-independent couplings of the form Y χφqχ and non-perturbatively gener-

ated moduli dependent couplings of the form Y exp(−γUU − γZZ)χφqχ , where γU,Z are

some unspecified constants. Once the hidden mesons of the condensing gauge groups are

integrated out, the superpotential becomes the sum of exponential terms (including a

constant term w0) and of the coupling χφqχ . In order to have as much as possible analytic

control on this complicated system, we first look for SUSY vacua when χ is decoupled

and then we consider its backreaction, which generally gives rise to non-SUSY vacua. In

this approximation, the coupling χφqχ is effectively an “up-lifting” term, required to pass

from the AdS SUSY vacuum to a Minkowski/dS one with low-energy SUSY breaking.

We find that the last step puts quite severe constraints on the parameter space of the

superpotential. In particular, we find that the non-perturbatively generated couplings

can alleviate the tuning needed on Y from 2 to 6 orders of magnitude, depending on

the model considered, but taken alone they do not allow us to have Y ∼ O(1), since

the back-reaction induced by the up-lifting term becomes so large that the non-SUSY

vacuum either disappears or always remains AdS. Natural values of Y can however be

obtained by assuming that |qχ| > qφ by a few, so that 〈φ〉qχ can be responsible for the
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remaining necessary suppression, though this might be hardly realized in explicit string

constructions.

Most of our interest is in the hidden sector dynamics of the theory and hence we will

not systematically study how SUSY breaking is mediated to the visible sector or the

precise form of the soft parameters, most of which are necessarily model dependent. We

just notice that gravity mediation of SUSY breaking is preferred to avoid small moduli

masses, linked to the gravitino mass, and that the general pattern of the soft mass terms

seem very promising. In particular, the gaugino masses, which in string-inspired models

with purely gravity mediated SUSY breaking are often considerably smaller than the

non-holomorphic scalar masses, can be naturally made heavier in our set-up, thanks to

the presence of two moduli. In presence of the FI modulus only, gauginos can take a

mass only by assuming a U -dependent gauge kinetic function for the visible gauge group.

Since U transforms under a U(1)X gauge transformation, anomaly arguments require

that some visible matter field has to be charged under U(1)X , which in turn gives rise

to heavy non-holomorphic scalar masses, induced by the DX term [44]. This problem

is now simply solved by assuming that the gauge kinetic function for the visible sector

depends on Z only. Moreover, when γZ 6= 0, the back-reaction of the up-lifting term on

Z will give rise to an enhancement of FZ , so that eventually gauginos just a few times

smaller than the gravitino can be obtained.

The fine-tuning problem to get Y � 1, by means of the flatness condition, is just a

reflection of the other fine-tuning problem which requires w0 � 1 to get low-energy

supersymmetry breaking. Motivated by the idea of solving this second tuning problem,

we have also analyzed the situation in which w0 vanishes, assuming that some stringy

symmetry forbids its appearance. In this case, the moduli stabilization mechanism

boils down to a racetrack model [66], where the scale of supersymmetry breaking is

dynamically generated. Interestingly enough, the back-reaction of the up-lifting term is

milder than before and it is now possible to achieve Y ∼ O(1) with small qχ charges,

relying on γZ,U only. Aside from the usual cancellation of the cosmological constant, this

model is hence completely natural. When two moduli are considered, similarly to before,

one can have a not too hierarchically spectrum of soft masses, although the gauginos

are now a bit lighter than the models with w0 6= 0 considered before.

All the above general considerations are supplemented by considering in some detail three

specific models: i) an orientifold compactification of type IIB on CP4
[1,1,1,6,9], where

U and Z are identified with the two Kähler moduli of the compactification manifold

(w0 6= 0), ii) an heterotic compactification on a generic CY 3-fold, where U and Z are

identified with the dilaton and the universal Kähler modulus, respectively (w0 6= 0), iii)

the model of i) but now assuming w0 = 0. It should be stressed that, in the spirit of our
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bottom-up approach, none of these models are actually full-fledged string models, but

rather they should be seen as inspiring examples to partially fix the arbitrariness in the

choice of the Kähler potential, superpotential and gauge kinetic functions we have at

the SUGRA level. In all three cases, we have analytically and numerically studied the

main properties of the vacuum, including its (meta)stability. The latter is essentially

never a serious issue and all the moduli components are always one or two order of

magnitudes heavier than the gravitino. In all three cases we have always estimated

under which conditions a classical SUGRA analysis is reliable by considering the effect

of the universal α′ correction to the moduli Kähler potential [99, 89].

5.1 General Two-Moduli model

The SUGRA model we consider consists of two moduli multiplets U and Z, a hidden

gauge group of the form G1 ×G2 ×U(1)X , with G1 and G2 non-abelian factors, massless

matter charged under U(1)X and under G1 or G2 (but not both) and finally two chiral

multiplets φ and χ, charged under U(1)X and singlets under G1×G2 . For concreteness,

we take Gi = SU(Ni) (i = 1, 2) and consider NfA quarks Qi and Q̃i in the fundamen-

tal and anti-fundamental representations of Gi. This is the field content of our model.

We assume that the U(1)X gauge symmetry is “pseudo”-anomalous, namely that such

symmetry is non-linearly realized in one of the two moduli multiplets, U , the latter me-

diating a generalized Green-Schwarz mechanism [74]. We normalize the U(1)X charges

so that qφ = −1 and take qQi + q
Q̃i

> 0, qχ > 0, with the same U(1)X charge for all

flavors, for simplicity. The model is finally specified by the Kähler potential, superpo-

tential and gauge kinetic functions. Omitting for simplicity flavor and color indices, the

full Kähler potential KTot and superpotential WTot are a sum of a visible and hidden

sector, WTot = Wv +Wh and KTot = Kv +Kh, where

Kv = αivQ
†
ive

2qivVX+VvQiv (5.1)

represents the Kähler potential of the visible sector, with i running over all visible

fields, and we have schematically denoted by Qiv and Vv all the visible chiral fields and

vector superfields. For simplicity, we have taken Kv to be diagonal in the visible sector

fields. We do not specify the visible superpotential Wv because it will never enter in our

considerations.
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The Kähler potential for the hidden sector reads1,

Kh = KM + αφφ̄e
−2VXφ+ αχχ̄e

2qχVXχ

+
∑
i=1,2

αi

(
Q†ie

Vi+2qQiVXQi + Q̃†ie
−Vi+2q

Q̃i
VX Q̃i

)
, (5.2)

with the superpotential given by

Wh = w0 + Y (U,Z, φ)φqχχ+
∑
i=1,2

ci(U,Z, φ)QiQ̃i φ
qQi+qQ̃i

+
∑
i=1,2

ηi(Ni −Nif )
(

Λi(U,Z)3Ni−Nif

det(QiQ̃i)

) 1
Ni−Nif

. (5.3)

The holomorphic gauge kinetic functions in the hidden sector are taken to be

fi(U,Z) = niU +miZ + pi ; fX(U) = nXU . (5.4)

Several comments are in order. The Kähler potentials (5.1) and (5.2) are supposed to

be the first terms in an expansion in the matter fields up to quadratic order, KM , αiv,

αi, αφ and αχ
2 are generally real functions of U + U + δ VX and Z + Z. In Kh, Vi and

VX denote the vector superfields associated to the non-abelian groups Gi and U(1)X ,

respectively, KM is the Kähler potential for the U and Z moduli and δ is the Green-

Schwarz coefficient. The form of the latter is uniquely fixed by gauge invariance to

be

δ =
(qQ1 + q

Q̃1
)N1f

4π2n1
=

(qQ2 + q
Q̃2

)N2f

4π2n2
. (5.5)

In the spirit of the Two-Step moduli stabilization we have allowed in the superpoten-

tial (5.3) an arbitrary constant term w0 that is supposed to be the left-over of all the

remaining fields, regarded stabilized by O(1) dynamics so that can be safely frozen out

as shown in chapters 3 and 4. Strictly speaking a constant term in the Kähler potential

is also present, however, for non-anomalous large values of the frozen moduli it can be

safely neglected being an O(1) normalization in the physical quantities like the grav-

itino mass. Consistency of our Two-Step stabilization procedure requires w0 to be tiny

in Planck units. We will later discuss the case in which w0 exactly vanishes. The hidden

Yukawa couplings Y and ci in Wh are assumed to generally depend on both moduli. Due

to the Peccei-Quinn symmetries associated to ImU and ImZ, the only allowed moduli

dependence is exponential. The superpotential (5.3) is manifestly Gi invariant, whereas

the U(1)X invariant is less transparent. Under a U(1)X super-gauge transformation

with parameter Λ, one has δXVX = −i(Λ − Λ̄)/2, δXU = iδΛ/2 and δXΦ = iqΦΛΦ for
1See also [82] where a similar analysis with a single modulus in a KKLT context has been done.
2Notice that for simplicity we have taken the same moduli dependent function αi for the hidden

quarks and anti-quarks.
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any charged multiplet Φ 3. Gauge invariance constraints then the couplings Y and ci

to depend on U by means of the gauge invariant combination exp(−U)φδ/2. We then

parameterize

Y (U,Z, φ) = Y φγU δ/2e−γUU−γZZ , ci(U,Z, φ) = ciφ
ηi,U δ/2e−ηi,UU−ηi,ZZ , (5.6)

with Y a constant and ci constant matrices (in flavor space). The phenomenological

coefficients γU/Z and ηi,U/Z are non-vanishing for non-perturbatively generated Yukawa

couplings only. The last term in Wh is the non-perturbatively generated superpotential

term appearing in N = 1 theories for Nf < N [69]. We have found convenient to intro-

duce the factors η1,2 = ±1 in eq.(5.3), which will allow us to set to zero the imaginary

parts of U and Z. The dynamically generated scales Λi(U,Z) are field-dependent and

follows from the holomorphic gauge kinetic functions (5.4). From eq.(5.4) we have

g−2
i = Re fi(U,Z), g−2

X = Re fX(U) , (5.7)

and

|Λi(U,Z)| = e
− 8π2

g2
i

(3Ni−Nif ) . (5.8)

The coefficients nX , ni, mi and pi in eq.(5.4) are model dependent constants, which we

keep generic for the moment. Just for simplicity of the analysis, we have assumed that

the U(1)X factor depends only on the U modulus. It is straightforward to check that the

non-perturbative superpotential terms in eq.(5.3) are U(1)X gauge-invariant provided

the two equalities in eq.(5.5) are satisfied.

We will mostly be interested in the dynamics of the hidden sector of the theory, assuming

that all visible fields vanish. The scalar potential of the theory has the usual SUGRA

form introduced in section (2.2) given by V = VF + VD, with

VF = eKh
(
KIJ̄
h DIWhDJWh − 3|Wh|2

)
, (5.9)

VD =
∑
i=1,2

1
2Re fi

D2
i +

1
2Re fX

D2
X . (5.10)

In eq.(5.9), I, J run over the hidden chiral multiplets Qi, Q̃i, φ, χ, U, Z, DIWh = ∂IWh+

(∂IKh)Wh ≡ FI is the Kähler covariant derivative and KIJ̄
h is the inverse Kähler metric.

In eq.(5.10), Di and DX are the D-terms associated to the GA and U(1)X gauge groups,
3Notice a sightly change on the normalization of the Vector, VX , multiplet compared to the one

followed in the previous chapters.
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whose explicit form is4

Da
i = αi(Q

†
iT

aiQi − Q̃†iT
aiQ̃i) , (5.11)

DX =
∑
i=1,2

αi

(
qQiQ

†
iQi + q

Q̃i
Q̃†i Q̃i

)
+ αχqχχ̄χ− αφφ̄φ

−δ
2

[
α′i(Q

†
iQi + Q̃†i Q̃i) + α′φφ̄φ+ α′χχ̄χ+K ′M

]
, (5.12)

where T ai in eq.(5.11) are the generators of SU(Ni) and ′ in eq.(5.12) stands for a

derivative with respect to U .

5.1.1 Looking for non-SUSY Minkowski minima

A direct analytical study of the minima of V is a formidable task. However, we will see

that it is possible to find non supersymmetric metastable Minkowski minima starting

from AdS SUSY vacua when χ� 1.

Particularly important for what follows is the U(1)X D-term. The minimization of DX

induces then a non-vanishing VEV for φ (taken real for simplicity):

φ2
SUSY =

−δK ′M
2(αφ + δα′φ/2)

. (5.13)

Notice that typically K ′M < 0, so that the right-hand side in eq.(5.13) is positive and the

U(1)X symmetry is spontaneously broken. From the third term in the superpotential

(5.3), we see that φSUSY also induces a mass term for the quarks Qi and Q̃i. Assuming

that φSUSY � m3/2, unless the Yukawa couplings ci(U,Z, φ) are extremely small, a

sufficiently large mass for the quarks Qi and Q̃i is induced.5 Under the assumption that

at the minimum Wh � 1, which is obviously required to have a sufficiently light gravitino

mass, the quarks can be integrated out by the manifestly SUSY approach introduced

in sections (2.1.1) and (2.2.3), and highly exploited in the previous chapters. As well

known the space of D-flat vacua for the non-Abelian sectors is parametrized by the

meson chiral fields Mi = QiQ̃i, therefore, integrating out the quarks ensuring D-flatness

reduces to integrate out the meson multiplets, i.e. solve the chiral e.o.m. ∂MiW = 0.

The solution is given by

Mi = Λ2
i

(
Λi
mi

)1−Nif/Ni
, (5.14)

4Recall we use the same notation for a chiral multiplet and its lowest scalar component, since it
should be clear from the context to what we are referring to.

5We assume that the ci in eq.(5.6) are such that all quarks get a mass when φ acquires a VEV.
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with mi = ciφ
qi , which turns out to be highly suppressed by the dynamical generated

scales Λi � 1 and the small ratio Λi/mi
6. The effective superpotential Weff reads

Weff = w0 + f(φ)e−γZZ−γUUχ+
∑
i=1,2

Ai(φ)e−aiU−biZ , (5.15)

where

ai ≡ ηi,U
Nif

Ni
+

8π2ni
Ni

, bi ≡ ηi,Z
Nif

Ni
+

8π2mi

Ni
,

f(φ) ≡ Y φq̂χ , Ai(φ) ≡ ηiNie
−8π2pi/Ni

(
ciφ

qi
)Nif

Ni , (5.16)

are effective parameters and for simplicity we have defined the effective charges

qi ≡ qQi + qQ̃i + ηi,Uδ/2 , q̂χ ≡ qχ +
γUδ

2
. (5.17)

Due to the highly suppressed size for the solutions Mi we can neglect completely the

contribution due to the integration in Kh, so that the resulting effective Kähler potential

is simply

Keff = KM + αφφ̄e
−2VXφ+ αχχ̄e

2qχVXχ . (5.18)

As next step, we look for vacua with χ� 1. We expand the scalar potential Veff arising

from (5.15), (5.18) and the DX term in powers of χ, Veff =
∑∞

n,m=0 Vn,mχ
nχ†m, and

keep only the leading term V0 ≡ V0,0. It reads

V0 =
1

2Re fX
(D(0)

X )2 + eK
(0)
eff

[ ∑
i,j=U,Z,φ

K
(0)ij̄
eff F

(0)
i F

(0)

j̄
− 3|W (0)

eff |
2 + Vup−lift

]
, (5.19)

where the F -terms are computed using Keff and Weff and the superscript (0) means

that all expressions are evaluated for χ = 0. The first three terms in V0 correspond to

the SUGRA scalar potential that would result from K
(0)
eff , W (0)

eff and fX . The last term

Vup−lift =
|F (0)
χ |2

αχ
, (5.20)

where F
(0)
χ = f(φ) exp(−γZZ − γUU), is effectively a moduli-dependent “up-lifting”

term. Let us look for approximate SUSY vacua for U and Z, neglecting for the moment

the up-lifting term Vup−lift, and assuming that at the extremum w0 is larger than the

dynamically generated terms in (5.15). It is easy to solve the system D
(0)
X = F

(0)
U =

F
(0)
Z = F

(0)
φ = 0. The DX term trivially vanishes when eq.(5.13) is satisfied, so that φ

is determined. At a SUSY extremum, gauge invariance implies F (0)
φ = −δ/(2φ)F (0)

U , so

6Of course, we are here assuming at this stage the existence of a non-runaway minimum for the
moduli U,Z.
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that we are left to solve the system F
(0)
U = F

(0)
Z = 0. We get

USUSY '
b2x1 − b1x2

a1b2 − a2b1
, ZSUSY '

a1x2 − a2x1

a1b2 − a2b1
, (5.21)

where

x1,2 = − ln

[
± w0

A1,2(φSUSY )

b2,1K
(0)′
eff − a2,1K̇

(0)
eff

a1b2 − a2b1

]
, (5.22)

and a dot stands for a derivative with respect to Z. By appropriately choosing the

signs of ηi appearing in Ai(φ), see eq.(5.16), we can always set USUSY and ZSUSY to

be real, so that for simplicity of notation in the following we will always assume real

fields and real parameters. Since U and Z enter explicitly in the coefficients x1,2 above,

eqs.(5.21) do not admit explicit analytic solutions. However, the logarithmic dependence

on U and Z of x1,2 is often mild enough that a good approximate expression for USUSY
and ZSUSY is obtained by taking some educated guess for the moduli in eq.(5.22),

compute (5.21), insert the result in (5.22) and compute once again (5.21). The shifts

in the fields due to the up-lifting term Vup−lift can be found by expanding the extrema

conditions ∂UV0 = ∂ZV0 = ∂φV0 = 0 around the SUSY values (5.21): U = USUSY +∆U ,

Z = ZSUSY + ∆Z, φ = φSUSY + ∆φ and keeping the leading term in Vup−lift and terms

up to linear order in ∆U , ∆Z or ∆φ in the remaining terms of the scalar potential.

The resulting expressions one gets for the shifts are actually very involved and can be

handled only numerically. Some simple approximate formulae can however be derived by

using simple scaling arguments to estimate the typical size of the terms entering in the

Kähler and superpotential terms, eqs.(5.15) and (5.18). We first notice that eq.(5.21)

fixes the sizes of the moduli U and Z at the SUSY point to be inversely proportional to

the effective parameters a1,2 and b1,2. For simplicity, we can take all the a1,2 and b1,2

parameters that do not vanish to be of the same order of magnitude and denote their

common value by a. It then follows that U ∼ Z and we can generally denote by X

the common modulus VEV. We will use such simplified notation anytime we want to

estimate a quantity without giving its explicit expression. Coming back to eq.(5.21), it

is clear that aX is approximately a constant, proportional to the x1,2 coefficients defined

in eq.(5.22). Since w0 � 1 is required to have a sufficiently light gravitino mass, this

constant is much larger than 1. As a matter of fact, for a wide class of models aX is

always in the narrow range 20 . aX . 40, which is essentially the range dictated by

the Planck/electroweak scale hierarchy. The parameter ε ≡ 1/(aX) is then small and

an expansion in ε is possible7. The following scaling behaviors are taken at the SUSY
7Do not confuse the present ε with the one of chapters 3 and 4.
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extremum:

∂nXK
(0)
eff ∼ ∂

n
XKM ∼

1
Xn

, ∂nXαφ,χ ∼
αφ,χ
Xn

, n > 0 . (5.23)

∂XW
(0)
eff ∼ (∂XK

(0)
eff )W (0)

eff ∼
1
X
W

(0)
eff , ∂nXW

(0)
eff ∼ a

n−1∂XW
(0)
eff , n > 1 .

The term proportional to |φ|2 in K
(0)
eff is sub-leading in ε with respect to the purely

moduli dependent term KM . Indeed, αφ|φ|2 . δ/X and, neglecting possible corrections

due to ηiZ/U , one has from eqs.(5.5) and (5.16) that δ = 2qiNif/(Niai), which typically

is less or equal to 1/a. This explains the first relation in eq.(5.23). We are now ready to

estimate the shift of the fields ∆U , ∆Z and ∆φ due to the up-lifting term Vup−lift. In

the heavy U(1)X gauge field approximation MX � m3/2, which will always be the case

of interest for us, one has (see e.g.[39])

〈DX〉 '
2
M2
X

eK
(0)
eff

qχ(F (0)
χ )2

αχ
=

2
M2
X

qχe
K

(0)
effVup−lift , (5.24)

where M2
X = 2g2

Xαφφ
2
SUSY , so that the DX term at the minimum is negligibly small.

We can use the condition DX ' 0 to express ∆φ as a function of ∆Z and ∆U . Using

eq.(5.13), it is straightforward to see that ∆φ scales as

∆φ ∼ φ∆X
X

. (5.25)

Next step is to estimate ∆X. Using eqs.(5.13), (5.23), (5.24) and (5.25), it is a simple

exercise to see that at leading order in ε and up to linear order in ∆X, one has

∂XV0 ' eK
(0)
M KXX̄

M ∂X̄FX̄∂XFX∆X + ∂X(eK
(0)
M Vup−lift) + eK

(0)
M qχVup−lift

∂2
XKM

∂XKM
' 0 ,

(5.26)

giving

∆X ∼ Vup−lift
∂2
XKM

[
qχ∂

2
XKM + (∂XKM )2 + γ∂XKM

]
∂XKM

(
∂2
XW

(0)
eff

)2 ∼ ε2
Vup−lift

(W (0)
eff )2

X(qχ + γX) ,

(5.27)

where γ generally denotes γU or γZ and we have tacitly assumed qχ > 1 in writing the

last relation in eq.(5.27). At a Minkowski minimum, |V |up−lift ∼ |W
(0)
eff |

2, so that the

fraction in eq.(5.27) is O(1). If γU = γZ = 0 and qχ ∼ O(1), the relative shifts of the

moduli are small: ∆X/X ∼ ε2 ∼ 10−3 and certainly the up-lifting term Vup−lift does not

de-stabilize the system and can be treated as a perturbation, as we did. When γU and/or

γZ are non-vanishing, the up-lifting term Vup−lift becomes exponentially sensitive to the

values of U,Z. It is then not enough to have ∆X/X � 1, but the stronger constraint

γ∆X � 1 is required, in order to avoid large displacements of Vup−lift which can result
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on the impossibility of finding a Minkowski solution. This results on a bound on the

size of γ:

γ2 � a2 . (5.28)

The same constraint γ∆X � 1 gives also an upper bound on qχ, ε qχγ/a� 1, which is

however quite mild, in light also of eq.(5.28). We do not report the detailed expressions

for ∆U and ∆Z in the general case, which are very involved and not illuminating even

when expanded in powers of ε. Just for concreteness, we report their form for the

particular case when αχ = αφ = 1, factorizable KM ,Weff (i.e. K̇ ′M = Ẇ ′eff = 0) and

perturbatively generated Y Yukawa coupling: γU = γZ = 0. In these approximations,

we have

∆U ' −Vup−lift
K ′′M [(K ′M )2 + qχK

′′
M ]

K ′M (W (0)′′
eff )2

,

∆Z ' −Vup−lift
K̇MK̈M

(Ẅ (0)
eff )2

, (5.29)

whose scalings are in agreement with the general estimate (5.27). Notice that both ∆Z

and ∆U are positive, since K̇M and K ′M are negative, tending to decrease the up-lifting

term. The scaling behaviors of the F -terms at the non-SUSY vacuum are easily found.

F (0)
χ ∼ α1/2

χ W
(0)
eff ,

F
(0)
X ∼ ε

(
γ +

qχ
X

)
α−1/2
χ F (0)

χ ,

F
(0)
φ ∼ δ

φ
ε
(
γ +

qχ
X

)
α−1/2
χ F (0)

χ . (5.30)

Using eq.(5.30), one can easily estimate K(0)ij̄
eff F

(0)
i F

(0)

j̄
and Vup−lift. In agreement with

our expectation, Vup−lift is the leading term contributing positively to the vacuum en-

ergy, justifying the given name of up-lifting term.

Once the approximate vacuum of the leading potential V0 has been found, given by

U0 = USUSY + ∆U , Z0 = ZSUSY + ∆Z, φ0 = φSUSY + ∆φ, we turn on χ and verify

the validity of our initial assumption χ � 1. The easiest way to estimate χ is to use

the relation DX = iXi
XFi/W between the DX term and the F -terms. At the minimum

DX ' 0, but the F -terms for χ and φ contributing to DX are typically of the same order

of magnitude: φFφ ∼ qχχFχ. Using this relation and the scalings (5.30), we get

χ0 ∼ δε
(
γ +

qχ
X

) 1
qχ
α−1/2
χ , (5.31)

which proves our initial assumption χ � 1. A more accurate estimate of χ0 might be

obtained by considering the next sub-leading potential terms V1,0 = V0,1, V2,0 = V0,2
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and V1,1 obtained by expanding Veff in powers of χ and χ̄. In first approximation, one

can freeze U , Z and φ at the values U0, Z0 and φ0, which extremize V0, so that χ is

determined by a linear equation. The general explicit expression for χ is however very

involved and not very interesting, so we will not report it here. For the same reason,

we do not report the expressions of the further shifts of U , Z and φ induced by the

backreaction of χ. They turn out to scale as eqs. (5.25) and (5.27), but are typically

smaller in the parameter region we will consider in the following. The location of the

vacuum is then slightly shifted but it is not destabilized by the field χ. We can also

check how χ changes the values of the F -terms (5.30). One has

Fχ = F (0)
χ + αχχ(W (0)

eff + χF (0)
χ ),

FX = F
(0)
X + χ(∂XF (0)

χ + ∂XKeffF
(0)
χ ),

Fφ = F
(0)
φ + χ

( q̂χ
φ

+ φαφ

)
F (0)
χ . (5.32)

Using eqs.(5.30) and (5.31), it is straightforward to verify that the effect of χ on Fχ and

FX is negligible, while the second term in Fφ is of the same order as F (0)
φ . Hence the

scalings (5.30) hold also for the full F -terms Fχ, FX and Fφ, providing a final consistency

check of eq.(5.31), which has been derived under this assumption.

Let us now discuss under which conditions the above SUSY breaking mechanism is stable

under small deformations. The choice of the superpotential (5.3) was rather ad hoc, since

we have considered only linear terms in χ and tacitly assumed that possible higher order

terms of the form Yn(U,Z, φ)(χφqχ)n, with n > 1, can be neglected. This assumption is

actually very strong, since the requirement |F (0)
χ | ' α

1/2
χ |W (0)

eff | puts severe constraints

on the size of the constant term Y appearing in (5.6). This is particularly clear if one

notices that generally αχ . 1 and W
(0)
eff ' w0 . O(10−13). The more obvious options

of assuming a perturbative (γU,Z = 0) mass term (qχ = 1) or trilinear coupling (qχ = 2)

leads to a unnaturally small coupling Y . In such a situation, the terms of the form

Yn(U,Z, φ)(χφqχ)n will lead to a restoration of SUSY and to the destabilization of the

non-SUSY vacuum. This is best seen by considering the flat space model with stabilized

moduli. In this case, the relevant superpotential term in eq.(5.15) is just the term linear

in χ, with the Lagrangian invariant under a U(1)R symmetry with R(χ) = 2, R(φ) = 0.

An exact R-symmetry is generally necessary to get a SUSY-breaking vacuum [100] and,

indeed, in absence of moduli and gravitational dynamics, χ is stabilized at the origin

where U(1)R is unbroken. Any term of higher order in χ will necessarily break U(1)R,

leading to the appearance of SUSY vacua. Gravity and moduli explicitly break U(1)R,

but if the breaking is small enough their only effect would be to displace a bit χ from

the origin, so that χ � 1, as predicted by eq.(5.31). If the terms Yn(U,Z, φ)(χφqχ)n

are all negligibly small, much smaller than χw0, the SUSY preserving vacua will appear
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for large values of χ and will not perturb much the (meta)-stable non-SUSY vacuum

close to the origin. However, when the terms Yn(U,Z, φ)(χφqχ)n become roughly of the

same order as χw0, the SUSY vacua approach the origin and the non-SUSY vacua are

destabilized and disappear.

Invoking non-perturbatively generated couplings (γ 6= 0) alleviate the problem, but it

does not solve it, because a natural Y would require γ ∼ a, so that

e−γ U ∼ e−aU ∼W (0)
eff , (5.33)

but the constraint (5.28) does not allow such values of γ . A possible way out is to

consider higher-order couplings by taking qχ > 2, so that the effective term φ
qχ
0 becomes

small enough to get not so small values of Y . In this way, we also more effectively

suppress the dangerous terms (χφqχ)n. Summarizing, the requirement of naturalness

and more importantly stability under superpotential deformations with higher powers

of χ necessarily require to consider non-renormalizable interactions with qχ > 2, the

precise bound on qχ depending on γU,Z being zero or not8.

So far, we have been able to find approximate expressions for the extrema of the scalar

potential Veff , but we have still to check whether these vacua are minima or not. At

leading order in ε and for φSUSY /X � 1, the kinetic mixing of φ with the moduli can

be neglected and the mass of φ is determined by the D-term potential. Its physical mass

is

m2
φ ' 2g2

Xαφφ
2
SUSY , (5.34)

which is also the mass of the gauge vector boson AX , as we have seen. Indeed, Imφ

is approximately the would-be Goldstone boson eaten up by AX after the U(1)X gauge

symmetry breaking. The leading contribution to the χ mass is also easily derived by

looking at the terms quadratic in χ, χ̄. Its physical mass equals

m2
χ '

2q2
χ

αφφ
2
SUSY

Vup−lift . (5.35)

From eq.(5.35) we have mχ & (qχ/
√
ε)m3/2 � m3/2 and hence the effects of SUSY

breaking on mχ are small, so that mχ is approximately the mass of both components

of the complex field χ. The mass scale of mφ is of order
√
ε/X and, unless the moduli

are very large, it is just one or two orders of magnitude below the Planck scale. The
8A cheap way to overcome this problem is to assume that Y is an effective non-perturbatively gen-

erated coupling of some other modulus which has been already stabilized. The problem with this ap-
proach is the fact that, for example in the type-IIB set up, the fields that generate such non-perturbative
Yukawas are Kähler moduli which are not stabilized by fluxes, therefore, seems unavoidable to include
their dynamics and stabilization al together at this stage.
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moduli masses are more involved and are best described by an effective approach where

the massive fields φ and AX are integrated out, approach we will now consider.

5.1.2 Effective description

As we have seen, the cancellation of the U(1)X D-term given by a non-trivial VEV

for φ induces large meson masses, as well as large masses for AX and φ itself. One

might then not only integrate out the meson fields, as we did, but also AX and φ. As

explained in section (4.2) these field in fact build up a massive vector multiplet and

we can integrated it out using a manifestly SUSY approach. At the Gaussian level the

e.o.m. for the massive vector multiplet ∂Keff (φ0)/∂VX = 0 has solution

VX = −m̃−2
X Keff,X/2 , (5.36)

where m̃2
X is the non-canonically normalized mass matrix for the gauge fields and

Keff,X = ∂VXK|VX=0. Plugging back in Keff , it gives

K̂ = K(Vâ = 0)− m̃−2
X Keff,XKeff,X/4 . (5.37)

The physical gauge that get rid of the would-be Goldstone and its superpartners is the

super-unitary gauge, which is nothing else that the super-field version of the standard

unitary gauge. It is defined as 〈Xi〉δφi = 0, Xi the holomorphic Killing vectors, and in

our case, neglecting the χ component, reads

φ = φ0 −
1

2αφφ0

[
(δK ′′M + 2φ2

0α
′
φ)(U − U0) + (δK̇ ′M + 2φ2

0α̇φ)(Z − Z0)
]
, (5.38)

where φ0, U0 and Z0 are the approximate VEV’s we have previously found. The would-

be Goldstone boson is essentially given by Imφ, being the last two terms in eq.(5.38)

suppressed at least by a factor
√
ε. In this way, we can get rid of the φ chiral field,

substituting eq.(5.38) in both the Kähler potential (5.18) and superpotential (5.15). At

leading order, we can neglect the last two terms in eq.(5.38) and just take φ = φ0. This

in fact is an approximate version of the gauge chosen in chapter 4 to integrate the vector

multiplet. Then the solution (5.36) reads approximately as

VX ' −
DX

2αφφ2
0

' − qχαχ
2αφφ2

0

|χ|2 , (5.39)
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where in the last relation we have completely neglected the U and Z dynamics by taking

DX ' qχαχ|χ|2. The approximate version of eq.(5.37) takes the form,

K̂eff ' αχ|χ|2 +KM −
D2
X

2αφφ2
0

' αχ|χ|2 +KM −
q2
χα

2
χ

2αφφ2
0

|χ|4 . (5.40)

The superpotential Ŵeff trivially follows from (5.15) with φ = φ0, so that the field

dependent terms f(φ) and A(φ) defined in eq.(5.16) become now effective constants

f(φ0) and A(φ0). Notice that K̂eff and Ŵeff sensitively depend on φ0, whose precise

value cannot be correctly determined without actually using the full underlying model.

However, the shifts on φ, as computed in the previous subsection, are small enough that

at leading order one might safely replace φ0 in all the above formulae (and the one that

will follow) by the SUSY value (5.13).

The effective model described by K̂eff and Ŵeff is considerably more tractable than

the underlying UV model we considered before. In particular, some physical features

are more transparent and, in addition, such effective description provides us with an

approximate formula for the moduli masses. For instance, it is immediately clear that

a vacuum with χ0 � 1 and non-runaway moduli will necessarily break SUSY, since

Fχ ' f exp(−γZZ0 − γUU0) 6= 0. In fact, as far as χ is concerned, the model is nothing

else than a Polonyi model with a deformed Kähler potential. As we already mentioned,

in the flat-space limit with decoupled moduli, χ will be stabilized at the origin due to

the |χ|4 term in eq.(5.40). The extrema conditions (5.21) for U and Z are rederived by

requiring F̂ (0)
U = F̂

(0)
Z = 0, using the same notation as before. An approximate analytical

formula for the moduli mass terms can be derived, once again by keeping the leading

term in an expansion in ε. One gets

m2
ij̄ ' e

KM∂j̄∂m̄
¯̂
W

(0)
effK

m̄l
M ∂i∂lŴ

(0)
eff , (5.41)

with the indices running over U and Z. Writing the moduli metric as g = (T−1)†T−1, as

we did in section (3.1) with the Choleski decomposition, the canonical normalized mass

matrix (regarding a small Kähler mixing with χ) is given by

M = T †m2T . (5.42)

Notice that with an arbitrary vector φ,

φiMij̄φ̄
j̄ = Φj̄K

j̄iΦi , (5.43)

where Φi = ∂i∂jŴ
(0)
effT

j
j̄
φ̄j̄ , i.e. M is positive definite, so its eigenvalues are all positive,

therefore the solution is indeed a minimum. For the particular case of decoupled Kähler
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and superpotential terms, namely ˙̂
K ′M = ˙̂

W ′eff = 0, both the moduli masses and kinetic

terms are already in a diagonal form, and we get

m2
U,Z ' eKM

∣∣∣∣∣∣∂
2
U,ZŴ

(0)
eff

∂2
U,ZKM

∣∣∣∣∣∣
2

∼ ε−2m2
3/2 . (5.44)

The last equality of eq.(5.44) shows the scaling of the moduli masses with respect to the

gravitino mass m3/2. As can be seen, the moduli are parametrically heavier than the

gravitino, which is a cosmologically welcome feature.

An important comment is now in order. One might wonder why we have decided to adopt

from the beginning an effective field theory approach for the hidden mesons (and tacitly

for all the other moduli possibly responsible for the constant term in the superpotential),

integrating them out from the very beginning, and not for φ and AX which are actually

even heavier! From a purely effective quantum field theory point of view, this is indeed

not justified, the correct procedure being the integration of all the states in the order

specified by their mass scales and run the effective parameters down to lower energies.

At the classical level we are considering here and when focusing only on the properties

of the vacua up to the mass level, however, no real difference occurs and integrating out

some state or not is only a matter of simplicity. Contrary to the mesons, which can

always be easily integrated out supersymmetrically to a very good approximation, as we

did, φ and AX would require more work than what we have shown above to be properly

integrated out, because they are more sensible to SUSY breaking effects. Here we are at

most able to go to the leading order in ε, since the next to leading order would require

the knowledge of the VEV at this precision something that is unknown at this stage.

More importantly, the approximation of completely neglecting the moduli dynamics in

the induced part of the effective Kähler potential and substitute it with just q2
χα

2
χ|χ|4, as

we did in eqs.(5.39) and (5.40), turns out to be in general a quite crude approximation.

Both these approximations can be relaxed and we have analytically and numerically

checked that the resulting “improved” effective model reproduce pretty well, at a more

quantitative level, the main properties of the full theory. Contrary to the naive effective

theory we have shown above, however, the improved theory is no less complicated than

the full one, so that no real simplification occurs in considering it. More over the full

implementation of the gauge fixing would require the knowledge of the numerical values

of the gauge fixing equation with a precision of O(m2
3/2/m

2
V ) 9. On the contrary, the

naive model captures all the qualitative features of the full model and, as a matter of

fact, it has been crucial to guide us in the analysis of the previous subsection.
9For the case of the gauge in which φ is fixed to its VEV this is the numerical precision required for

〈φ〉.
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The analysis of the general two-moduli model performed so far can trivially be reduced

to the single modulus (U) case with essentially no effort when w0 6= 0. We will then not

repeat the analysis here, but just point out that all the considerations we made for the

two-moduli case apply. The only qualitative difference is that with a single modulus one

condensing gauge group is enough.

5.2 Models with w0 = 0

From the previous discussion it is clear that in general one has to face a possible fine-

tuning problem to get Y � 1 in the Yukawa sector for χ, but one might argue that this

is, by means of the flatness condition, just a reflection of the other fine-tuning problem

required to have a tiny constant superpotential term, w0 � 1. In principle, then, we

have to face up to three fine-tuning problems, the third being the unavoidable tuning

of the cosmological constant. Moreover, up to possible suppressions coming from the

exp(K) term in the scalar potential, w0 essentially fixes the supersymmetry breaking

scale. It would be more desirable, instead, to dynamically generate it. This motivates

us to analyze also the case in which w0 vanishes, assuming that some stringy symmetry

forbids its appearance. Let us start by considering a theory with a single modulus (U).

Most of the considerations we made for w0 6= 0 continue to apply for w0 = 0, the main

difference being the moduli stabilization mechanism, which now boils down to a racetrack

model [66], where the scale of supersymmetry breaking is dynamically generated. The

effective Kähler potential is still given by eq.(5.18), with the obvious understanding that

KM , αφ and αχ do not depend on Z. Similarly, the effective superpotential is as in

eq.(5.15), with γZ = b1 = b2 = w0 = 0. The condition of vanishing DX term still fixes

φ to the value (5.13). The equation F
(0)
U = 0, at leading order in ε has as solution

USUSY =
1

a1 − a2
ln
(
−a1A1(φSUSY )
a2A2(φSUSY )

)
. (5.45)

The axionic component of U is always extremized such that the two condensing sectors

get opposite signs, therefore for simplicity we take η1 = −η2 = 1 and set it to zero. The

scaling relations reported in eq.(5.23) are still valid but the very last relation among the

derivatives of the superpotential should be reviewed. Indeed, the racetrack models work

using the competing effects of the different condensing sectors, as clearly illustrated by

eq.(5.45). As a result, there are some cancellations among the condensing scales that

hold at the F -term level, but are destroyed once derivatives of F -terms are taken. The

result of this is that the scaling behavior of the first derivative of the superpotential still
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satisfies the relation given by (5.23), but the higher ones are changed to

∂nUW
(0)
eff ∼ a

nW
(0)
eff , n > 1 . (5.46)

Eq.(5.26) and the first relation in eq.(5.27) still hold with obvious notation changes, so

using eq.(5.46),we now get for the modulus shift:

∆U ∼ ε4
Vup−lift

(W (0)
eff )2

U(qχ + γ U) , (5.47)

where we omit the unnecessary subscript U in γ. Comparing eq.(5.47) with eq.(5.27),

we notice that the shift of U induced by the up-lifting term is now two or three orders

of magnitude smaller than the models with w0 6= 0, being O(ε4) instead of O(ε2). The

F -terms are also parametrically smaller than before:

F
(0)
U ∼ ε2

(
γ +

qχ
U

)
α−1/2
χ F (0)

χ , F
(0)
φ ∼ δ

φ
ε2
(
γ +

qχ
U

)
α−1/2
χ F (0)

χ , (5.48)

where F (0)
χ ∼ α1/2

χ W
(0)
eff . The constraint γ∆U � 1 gives now

γ2 � a2

ε2
. (5.49)

We see from eq.(5.49) that values of γ ∼ a are now allowed, solving the fine-tuning

problem in the coupling Y . The shift on the vacuum induced by the backreaction of χ

is now comparable or even slightly larger than eq.(5.47). However, it is typically small

enough not to destabilize the vacuum. The scaling of χ can still be estimated by the

relation φFφ ∼ qχχFχ, giving

χ0 ∼ δε2
(
γ +

qχ
X

) 1
qχ
α−1/2
χ , (5.50)

which is small, as required. The scalings of the full F terms (5.32) can easily be worked

out using eq.(5.50). We find that Fχ ∼ F
(0)
χ , FX ∼ F

(0)
X and Fφ ∼ F

(0)
φ , but the χ-

dependent terms in FX and Fφ are non-negligible. The mass of U can be estimated using

an effective description, as explained in subsection 2.2. The first relation in eq.(5.44)

still holds, but the different scaling (5.46) of the superpotential gives now

m2
U ∼ ε−4m2

3/2 . (5.51)

The above analysis can be extended to the case of two moduli, in which case one has

to work with at least three condensing sectors to get viable SUSY solutions. Instead of

considering the most general model with three condensing gauge groups, we will now
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focus on an interesting class of models with decoupled non-perturbative superpotential

terms. The effective superpotential WRT3 reads now

WRT3 = f(φ)e−γZZ−γUUχ+A1(φ)e−a1U −A2(φ)e−a2U +A3(φ)e−bZ . (5.52)

If the condensing scales associated to the gauge groups G1 and G2 are much larger than

that of G3, U is approximately stabilized by a racetrack mechanism given by G1 and

G2 at the value (5.45). With U so stabilized, W (0)
RT3 (notation as before) boils down to

a KKLT-like superpotential which gives the following SUSY extremum for Z (see e.g.

[84] for a similar analysis):

ZSUSY ' −
1
b

ln
[
K̇M ŵ0

bA3

]
, (5.53)

where

ŵ0 ≡ A1(φSUSY )e−a1USUSY −A2(φSUSY )e−a2USUSY (5.54)

is an effective constant superpotential term. The shifts in the fields induced by the up-

lifting term Vup−lift can be derived using the by now familiar expansion in ε ' 1/(bZ) '
1/(a1U) ' 1/(a2U) ∼ 1/(aU). The form of the superpotential and the corresponding

different stabilization mechanisms for Z and U do not allow now to consider U and Z

together. Indeed, we have now ∂nUW
(0)
RT3 ∼ anW

(0)
RT3, as in eq.(5.46), and ∂nZW

(0)
RT3 ∼

bn−1W
(0)
RT3/Z, as in eq.(5.23). The leading terms in the shifts of the fields are as follows:

∆Z ∼ ε2qχX + ε2X2γZ + ε3X2γU , ∆U ∼ ε3qχX + ε3X2γZ + ε4X2γU , (5.55)

where X denotes generically U or Z, assumed to be of the same order of magnitude.

The usual bound γZ∆Z � 1 does not allow for natural values γZ ∼ a ∼ b, so that we

are forced to consider γZ = 0 and γU 6= 0, in which case γU ∼ a ∼ b can be taken.

The shift of φ is given by ∆φ ∼ φ∆Z/Z. The F (0)-terms scale as in eq.(5.48), with

F
(0)
Z ∼ F (0)

U . The considerations made for χ0 and the full F -terms in the single modulus

case apply also here. The moduli masses depend on the form of the Kähler potential

KM . If KM is factorizable, then U and Z will have masses as roughly given by eqs.(5.51)

and (5.44), respectively. If KM is not factorizable, then generally the mass of U will

be essentially as given by eq.(5.51), whereas Z will be heavier than what predicted by

eq.(5.44), depending on the mixing between the two moduli in KM .
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5.3 Soft masses

The natural framework of SUSY breaking mediation in any model with hidden and not

sequestered sector, is gravity mediation, with m3/2 ∼ O(TeV). A sufficiently heavy

gravitino is desirable for cosmological reasons, being the moduli masses proportional

to m3/2, according to eqs.(5.44) and (5.51)10. When the would-be anomalous U(1)X
gauge field is very massive, like the scenario advocated in our paper, one can effectively

integrate AX out and get the effective Kähler potential (5.40), taking care of including

possible visible sector contributions to the DX term, which we will shortly discuss. In

this way, all soft parameters can be derived using the standard results of [94] with F -

term breaking only. We will not explicitly compute all the resulting soft terms, but

rather we will just estimate the size of the gaugino and scalar masses.

Let us start by considering the non-holomorphic soft scalar masses, in which case our

considerations will apply to both the models with w0 6= 0 and w0 = 0. For canonically

normalized fields, they read [94]:

m2
īi = m2

3/2 −
1
αiv

F IF J̄RīiIJ̄ . (5.56)

In eq.(5.56), F I = exp(K̂/2)K̂IJ̄FJ̄ , I, J over the hidden sector fields (U , Z and χ) and

αiv is the moduli-dependent function appearing in the Kähler potential of the visible

sector, eq.(5.1), with i running over the visible sector fields. Two possibilities arise,

depending on whether the U(1)X charges qiv are vanishing or not. When qiv 6= 0,

DX ' αχqχ|χ|2 + αivqiv|Q(iv)|2 and the leading canonically normalized soft mass term

reads

m2
ij̄ ' δij̄m

2
3/2

3qχqiv
αφ|φ0|2

& δij̄m
2
3/2

qχqiv
ε

(5.57)

which arise from the term FχF χ̄Rχχ̄ij̄ in eq.(5.56). Using eq.(5.24), eq.(5.57) can be

also rewritten in the more conventional form m2 = qivg
2
X〈DX〉.

If qiv = 0, DX ' αχqχ|χ|2− δ/2α′ivqiv|Q(iv)|2. The leading term coming from DX is now

of the same order as the universal m2
3/2 term appearing in eq.(5.56), so that

m2
ij̄ ∼ δij̄m

2
3/2 . (5.58)

In eq.(5.58) we have not considered the contribution of possible quartic terms in the

charged fields of the form |Qiv|2|χ|2 which we have not specified in the Kähler potentials
10One might further push m3/2 to O(10TeV ) or more, assuming a sequestering of the hidden sector

from the visible sector, so that the gravity mediation can be suppressed and anomaly mediation takes
over [101]. We will not consider this possibility, which is non-generic.



Chapter 5. Moduli Stabilization in Minkowski vacua 95

(5.1) and (5.2). Their contribution can be relevant or even dominant, but it is model-

dependent and can easily be derived from eq.(5.56) once these terms are specified. Given

eqs.(5.57) and (5.58), the choice qiv = 0 is preferred, giving rise to not too heavy scalar

masses.

Let us now consider the gauginos. Their canonically normalized masses are

mg =
∣∣∣F I ∂Ifv

2Re fv

∣∣∣ , (5.59)

where fv schematically denotes the holomorphic gauge kinetic functions of the visible

gauge group. Let us first discuss the models with w0 6= 0. In this case, using eq.(5.30),

we can easily estimate, for linearly moduli dependent fv,

mg ∼ m3/2 εX
(
γ +

qχ
X

)
. (5.60)

We see that mg < m3/2, but on the other hand eq.(5.60) predicts gaugino masses which

are typically larger than those found in the original KKLT scenario with D3-branes. This

was already observed in [44] for a model with one modulus and perturbative up-lifting

term (γ = 0). We notice here that when γ 6= 0 (or qχ > 1), eq.(5.60) predicts even larger

gaugino masses. In fact, considering that εXγ ∼ γ/a and the bound (5.28), the gauginos

can be made just a few times lighter than m3/2, sufficiently heavy to neglect anomaly

mediation contributions which become relevant if mg . m3/2/(4π2). We believe this is

an important welcome feature of models with two moduli. As already argued in [44], in

presence of one modulus only, non-vanishing tree-level gaugino masses would require fv
to depend on U . Due to the non-linear transformation of U under U(1)X , anomalous

transformations of the action are induced, which must be compensated by U(1)X -G2
vis

anomalies in the fermion spectrum, requiring qiv 6= 0 or some other modification, such as

the introduction of U(1)X charged fields, vector-like with respect to Gvis, which can also

be seen as messenger fields of a high scale gauge mediation. This possibility was studied

in some detail for the single modulus case in [102], where among others the stability of

the metastable vacuum, once the messengers are introduced, has been check under some

mild assumptions. We simply notice that in presence of two moduli, a more economical

choice is to assume fv to depend on the neutral modulus Z only, in which case one can

safely take qiv = 0. We will see in a specific example in the next section that this choice,

together with γZ 6= 0, gives rise to a fully satisfactory scenario for gaugino and scalar

mass terms.

The gaugino masses in the models with w0 = 0 sensitively depend on how we choose the

exponential term γ in the up-lifting term. As we have seen, a natural up-lifting term

requires γU 6= 0 and hence γZ = 0 if we allow the non-perturbatively generated coupling
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to depend on one modulus only. Furthermore, if we want to avoid introducing additional

U(1)X charged fields, then fv should depend on Z only. In this case eq.(5.48) gives, for

linearly moduli dependent fv:

mg ∼ m3/2 ε
2X
(
γU +

qχ
X

)
∼ m3/2 ε , (5.61)

where in the last relation the scaling γU ∼ a has been used. The gaugino masses are

significantly lighter than the gravitino now, so that anomaly mediated contributions can-

not be neglected. Gaugino masses can be increased by allowing γZ to be non-vanishing,

in which case they scale as in eq.(5.60). If one allows the non-perturbatively generated

up-lifting term to depend on both moduli, then γU and γZ can respectively solve the nat-

uralness problem of the up-lifting coupling and alleviate the modest hierarchy between

gaugino and scalar masses.

5.4 Explicit models

The exponential sensitivity of the superpotential (5.15) on the moduli, the not so small

value of the expansion parameter ε ∼ 1/30 and the several other approximations made

before do not generally allow for a fully reliable, quantitative analytical study of the

theory. Indeed, the main aim of sections (5.1) and (5.2) was to qualitatively characterize

the models and to show the existence of metastable Minkowski vacua with low-energy

SUSY breaking in a large area in parameter and moduli space, rather than quantitatively

study them. The aim of this section is to study at a more quantitative level three specific

models, two with w0 6= 0 and one with w0 = 0. Most of the analysis here is performed

numerically, because the exponential nature of the superpotential and the smallness of

the DX term at the minimum require a detailed knowledge of the location of the vacuum,

in particular in the moduli directions. In order to appreciate this point, we will report

in tables 1, 2 and 3 various quantities of interest computed starting both by the exact

numerical vacuum and the approximate analytical one. The latter is found along the

lines of subsection 2.1. We start from the SUSY configuration for φ, U and Z given by

eqs.(5.13) and (5.21) for w0 6= 0, and eqs.(5.13), (5.45) and (5.53) for w0 = 0 . We then

expand V0, taking Vup−lift as a perturbation, around the SUSY vacuum, keeping only

the linear terms in ∆U , ∆Z and ∆φ. In this way we get what we denoted by U0, Z0

and φ0. We finally compute the VEV of χ as explained below eq.(5.31).

Notice that already the numerical search of exact minima in presence of the DX -term is

not straightforward. The DX -term is naturally of order one when slightly off-shell, and

thus much bigger than the typical values of the F terms, namely one has VD � VF and

all the energy of the system is dominated by VD, hiding completely the stabilization of
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the moduli encoded in VF . On the contrary, in the heavy gauge field approximation,

VD � VF at the minimum, being O(F 4), see eq.(5.24), which means that a severe fine-

tuning takes place in VD at the minimum. We have been able to circumvent this problem

using a linear combination of the equations of motion for φ and χ to solve for DX in

terms of F -terms and their derivatives, and replace the result in these. We also found

useful, instead of solving the equation of motion for φ, to impose that the expression

found for DX to be equal to its expression (5.12) in terms of the fields. The numerical

vacua so obtained turns out to be stable and the resulting DX and F -terms always

satisfies the consistency condition (A.17).

5.4.1 Type-IIB model

The first model we consider is based on an orientifold compactification of type IIB string

theory on a CY 3-fold obtained as an hyper-surface in CP4, namely CP4
[1,1,1,6,9]. This

CY has h1,1 = 2 and h2,1 = 272 Kähler and complex structure moduli, respectively. See

[91] for details. In the spirit of the Two-Step moduli stabilization, we assume here that a

combination of NSNS and RR fluxes stabilized the dilaton and complex structure moduli

supersymmetrically. These, once being frozen out, give rise to a constant superpotential

term w0. We do not specify the detailed string construction which might give rise to

the superpotential (5.3). We generally assume that D7-branes (and O7 planes) must

be introduced to generate the non-perturbative superpotential terms in (5.3), as well as

the non-linear transformation under U(1)X of the modulus U , as was shown in section

(2.4.2). We will neglect in the following possible open string moduli and consider the

dynamics of the two Kähler moduli only, identifying them with the two moduli U and

Z. We have now to specify the explicit form of the various terms entering in the Kähler

potential (5.2). The purely moduli-dependent function KM is known. In the usual

approximation of neglecting flux effects, it takes the form [91]

KM = −2 lnV , V =
1

9
√

2

((
U + Ū

2

)3/2

−
(
Z + Z̄

2

)3/2
)
, (5.62)

where V is the volume of the CY manifold. We do not specify the modular functions

α1,2 for the mesons M1,2 since they do not play any role in the limit where the mesons

are supersymmetrically integrated out. The modular functions for φ and χ, αφ and αχ

in eq.(5.2), are instead relevant but are generally difficult to derive and depend on the

underlying string construction. We assume here the following ansatz:

αφ = αχ =
(Z + Z̄)
V

, (5.63)
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which is simple enough, but not totally trivial. It should be stressed that there is nothing

peculiar in the (arbitrary) choice we made in eq.(5.63). Any other choice will be fine as

well, provided that αχ is not too small. Indeed, according to eq.(5.31), χ0 ∼ α−1/2
χ and

a sufficiently small αχ can lead to a breakdown of our analysis based on an expansion in

χ. We have now to specify the various parameters entering in the hidden superpotential

(5.3) and the gauge kinetic functions (5.4). Their choice is somehow arbitrary, but we

require that U and Z and the volume of the CY to be sufficiently large to trust the

classical SUGRA analysis. We take, for η1 = −η2 = −1,11

N1 = 40, N1f = 4, q1 = 1, c1 = 1, p1 = 0, n1 =
1

4π
, m1 = 0, η1,U = η1,Z = 0,

N2 = 25, N2f = 1, q2 = 0, c2 = 1, p2 = 0, n2 = 0, m2 =
1

4π
, η2,U = η2,Z = 0,

w0 = 9× 10−14, Y = 4.2× 10−5, qχ = 6, γZ =
1
60
, γU = 0, nX =

1
4π

. (5.64)

The exponential moduli dependence in the up-lifting term Vup−lift is supposed to arise

Numerical Analytical
〈U〉 232 230
〈Z〉 148 146
〈φ〉 6.2× 10−2 6.3× 10−2

〈χ〉 2.2× 10−4 1.3× 10−4

〈FU 〉 −4.0× 10−16 −2.3× 10−16

〈FZ〉 4.2× 10−16 2.3× 10−16

〈Fφ〉 8.5× 10−15 5.1× 10−15

〈Fχ〉 2.1× 10−13 2.2× 10−13

〈DX〉 1.5× 10−26 1.6× 10−27

〈V 〉 9.2× 10−33 2.2× 10−32

Numerical Analytical
m3/2 1.6 1.6
mφ 7.3× 1013 7.4× 1013

mRe(χ) 242 254
mIm(χ) 241 253
mIm(Ũ) 140 176
mRe(Z̃) 97 156
mIm(Z̃) 95 105
mRe(Ũ) 61 93

Table 5.1: VEV’s, masses and scales for the IIB model with w0 6= 0 and parameters
given by eq.(5.64). Expectation values are expressed in (reduced) Planck units and
masses in TeV units. Ũ ∼ U+Z and Z̃ ∼ U−Z stand for the (approximate) eigenvector
mass states. The definitions are slightly different in the numerical and analytical cases

due to the diagonalization of the kinetic terms.

from some non-perturbative effect, such as stringy instantons [103]. The supersymmetric

vacuum when the χ-sector is turned off is

USUSY = 229 , ZSUSY = 145 , φSUSY = 6.3× 10−2 . (5.65)

We report in table (5.4.1) (left panel) the location of the non-SUSY vacuum, as exactly

found numerically and analytically by linearly expanding around the SUSY solution

(5.65), as well as the F -terms, DX and the potential V at the minimum. It can be seen
11What actually matters are the values of the phenomenological parameters (5.16), which do not

uniquely fix the microscopical ones, as is evident from eq.(5.16). The choice (5.64) is purely illustrative.
The same comment also applies to the next two examples below.
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that U , Z and φ are well reproduced analytically, whereas χ is not, since its VEV is

exponentially sensitive to the values of U and Z by means of the non-perturbative terms

in Weff . For the same reason FU , FZ and Fφ are only roughly reproduced. Fχ, instead,

is better estimated since it essentially depends on Z only through the mild exponential

appearing in the first term in eq.(5.6). The DX term is also well reproduced because

at leading order it is governed by Fχ only, see eq.(5.24). In table (5.4.1) (right panel)

the gravitino and all the scalar masses are reported, in TeV units. For simplicity of

presentation, we have not written the precise linear combination of mass eigenvectors,

but just the main components in field space. As anticipated, there is a hierarchy of

scales. Fixing the overall scale such that m3/2 ' O(1)TeV, the field φ (and the U(1)X
gauge boson AX) is ultra-heavy, whereas the moduli and χ have masses O(100)TeV .

Like for the F-terms, the masses which do not directly depend on the strong dynamics,

namely m3/2, whose mass is governed by w0, and mφ, whose mass is well approximated

by eq.(5.34), are well predicted analytically. In agreement with our general observations,

1/(a1U) ' 1/(b2Z) ' 1/37 ≡ ε. It is easy to check that the values of Fφ, FU and FZ

reported in table (5.4.1) agree with the scaling behaviors predicted by eq.(5.30). As

observed in subsection 2.1, the stability of the system requires a low value for γZ and

hence the exponential dependence on Z of the coupling Y (U,Z, φ) does not help much

in getting a not so small Y . This constraints us to choose a rather large value of the

U(1)X charge of χ, qχ = 6, although such choice might not naturally appear in simple

D-brane constructions. We can also compute the universal gaugino masses at the high

scale, assuming fv = f2 = m2Z. We get

mg ' 380 GeV , (5.66)

which is roughly one quarter the gravitino mass. As explained before, we assume U(1)X
neutral visible matter fields, so that the non-holomorphic soft scalar masses m ∼ m3/2 ∼
O(1) TeV, instead of m ' gX

√
DXqiv ' 70 TeV

√
qiv, valid for U(1)X charged fields.

We have finally considered the reliability of the SUGRA approximation by considering

the α′ correction appearing in KM . For type-IIB orientifolds, this is known to be [89]

V → V +
ξ

2g3/2
s

, ξ = −χ(M)ζ(3)
2(2π)3

, (5.67)

with χ(M) the Euler characteristic of the CY and ζ(3) =
∑∞

n=1 1/n3 ' 1.2. In writing

eq.(5.67), we have frozen the dilaton field S, which is taken non-dynamical and stabilized

by fluxes to some value gs = ReS. We have studied how the correction (5.67) roughly

affects the model given by the input parameters (5.64), which are kept all fixed with

the exception of Y , which is tuned to get an approximately Minkowski vacuum. A

sizable correction is expected when ξ/2g3/2
s ∼ V. This is indeed the case, although
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we have numerically checked that the α′ correction is non-negligible already when it is

O(V/10). In our example χ(CP4
[1,1,1,6,9]) = −540 and for the vacuum shown in table

(5.4.1), roughly speaking, gs & 1/10 in order to trust the SUGRA analysis and neglect

the correction (5.67).

5.4.2 Heterotic model

The second model we consider is inspired by a generic compactification of perturbative

heterotic string theory on a CY 3-fold. In such a case, we identify U and Z with the

dilaton and the universal Kähler modulus, respectively 12. Contrary to the IIB case,

unfortunately we dot not still have a scenario to stabilize in a controlled way the complex

structure moduli in the heterotic string. In addition to that, the presence of a small

non vanishing constant superpotential term w0 is known to be not easily produced. It

is well-known that a flux for H induces a constant term in the superpotential [62], but

being the H flux quantized, such a constant term is typically of order one in Planck

units [104]. In the spirit of our bottom-up SUGRA approach, we do not look for a

microscopic explanation for w0. It might be the left-over term of the F and D terms

vanishing conditions for all the extra fields which are supposed to occur in any realistic

model, or else the left-over of a flux superpotential of an heterotic string compactified

on generalized half-flat manifolds and non-standard embedding, which has been argued

to admit quantized fluxes resulting in a small w0 [105], or the result of approximate R

skiametries broken by higher order operators [106]. The classical Kähler potential for

the moduli is known to be [27]

KM = − ln(U + Ū)− 3 ln(Z + Z̄) . (5.68)

The modular functions αφ and αχ are now functions of Z only and typically expected

to be of the form (Z + Z̄)−n, with −1 ≤ n ≤ 0. We take here n = 1/3, so that

αφ = αχ =
1

(Z + Z̄)1/3
. (5.69)

The parameters entering in the gauge kinetic functions (5.4) and the superpotential (5.3)

are quite more constrained with respect to the IIB case. At tree-level fi = fX = U .

A possible Z-dependence can (and generally does) occur only at loop level by means

of moduli-dependent threshold corrections. The exponential moduli dependence of the

couplings Y and ci is assumed to arise from world-sheet instantons and hence they

depend on Z only. Finally, the size of the hidden gauge groups is bounded. We will
12In the more conventional notation introduced in section (2.3) the dilaton and universal Kähler

modulus are denoted by S and T , respectively.
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look for vacua with U,Z & 1, which are on the edge of perturbativity, but lie in the

phenomenologically most interesting region in moduli space in perturbative heterotic

theory. In fact, one should require ReU ∼ 2 for a successful SUSY GUT model, but

since the 10-dimensional string coupling is given by gs =
√
Z3/U [27], perturbativity of

the 10d heterotic string also requires Z3 < U and hence Z & 1. We then take

N1 = 5, N1f = 4, q1 = 1, c1 =
1
2
, η1,Z = 2π +

3
4
, η1,U = 0, m1 = 0, n1 = 1, p1 = 0

N2 = 4, N2f = 2, q2 = 2, c2 = 1, η2,Z = 0, η2,U = 0, m2 = 0, n2 = 1, p2 = 0

w0 = 3× 10−15 , qχ = 10, Y = 3.1× 10−3, γZ = 2π, γU = 0, nX = 1 .

(5.70)

The supersymmetric vacuum is at

USUSY = 1.76, ZSUSY = 1.19, φSUSY = 0.14 . (5.71)

In the heterotic case, being the tree-level gauge kinetic functions U -dependent only

Numerical Analytical
〈U〉 1.78 1.78
〈Z〉 1.20 1.20
〈φ〉 0.14 0.14
〈χ〉 −3.2× 10−4 −2.0× 10−4

〈FU 〉 −1.9× 10−16 −1.5× 10−16

〈FZ〉 −1.4× 10−15 −1.0× 10−15

〈Fφ〉 −2.1× 10−17 −7.2× 10−18

〈Fχ〉 4.0× 10−15 4.2× 10−15

〈DX〉 5.4× 10−28 5.9× 10−28

〈V 〉 1.3× 10−32 1.7× 10−32

Numerical Analytical
m3/2 1.0 1.0
mφ 3.1× 1014 3.1× 1014

mχ 191 200
mRe(U) 98 115
mIm(U) 87 107
mIm(Z) 56 61
mRe(Z) 42 52

Table 5.2: VEV’s, masses and scales for the heterotic model with w0 6= 0 and param-
eters given by eq.(5.70). Expectation values are expressed in (reduced) Planck units

and masses in TeV units.

(m1,2 = 0), one cannot have both η1,Z = η2,Z = 0, since this would lead to the vanishing

of the effective parameters b1,2 defined in eq.(5.16), which is unacceptable. The particular

choice of η1,Z in eq.(5.70) is required to fix Z in the small window 1 . Z . U , but of

course there are several ways to achieve it in terms of the microscopic parameters,

given that what matters are the effective ones defined in eq.(5.16). The asymmetry

between U and Z in this heterotic inspired model does not allow to straightforwardly

use the general scalings discussed in section 2.1. We do not report the analytical more

elaborated analysis which is now required. One can nevertheless check that the general

scalings (5.27) and (5.30) still give the rough order of magnitude estimate for the shifts

of the fields and the F terms by taking ε ' 1/(a1U) ' 1/28. We report in table (5.4.2)
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(left and right panel) the location of the non-SUSY vacuum, the F -terms, DX , the

potential and the masses for the scalars and the gravitino of the model. As in the IIB

model before, χ is not analytically reproduced to a good accuracy, being exponentially

sensitive to the values of U and Z. Similarly for FU , FZ and Fφ. The hierarchy of

scales appearing in the gravitino and scalar masses are the same as in the Type IIB

model. The large U(1)X charge of χ, qχ = 10, allows for a natural explanation of the

smallness of the up-lifting term without using tiny values for Y , as was done in (5.64)

in the previous example. The tree-level universality of the heterotic holomorphic gauge

kinetic functions (for level one Kac-Moody gauge groups, assumed here) fixes fv = U

and hence the universal high scale gaugino masses are calculable and read

mg ' 240 GeV . (5.72)

Unfortunately it is not possible now to assume all visible matter fields to be U(1)X
neutral, since fv = U . For the U(1)X charged fields we get now m ' gX

√
DXqiv '

42 TeV
√
qiv.

The vacuum reported in table (5.4.2) is barely perturbative since the associated 10d

string coupling constant gs ' 1. One can explicitly see that the situation is similar in

the α′ expansion, due to the low values of the moduli, by considering again the universal

α′ correction to the Kähler potential for Z, which now reads [99]

(Z + Z̄)3 → (Z + Z̄)3 + 4ξ, (5.73)

with ξ defined as in eq.(5.67). We find that the α′ correction (5.73) is generally negligible

for |ξ| . O(1/10) and are deadly for |ξ| & O(1), with the impossibility of achieving

a Minkowski vacuum (ξ < 0) or the appearance of tachyons (ξ > 0). In the range

O(1/10) . |ξ| . O(1) the qualitative properties of the model are unaffected, but the

numerical values reported in table (5.4.2) get corrections of order 100%. Considering

that for |χ(M)| ∼ 102, a typical value for CY manifolds, |ξ| ∼ O(1), it is clear that the

phenomenologically interesting region U,Z & 1 is barely calculable, as we anticipated.

5.4.3 Type-IIB model with w0 = 0

As we have seen, the requirement of a natural Y favors the choice γU 6= 0 for models

with w0 = 0. In an heterotic context, where U is the dilaton, we would be forced to

invoke exotic non-perturbative couplings. In addition to that, hierarchies would also

appear in the mesonic Yukawa couplings ci. The upper bound on the gauge groups

leads to a lower bound on a, a & 15 and a1 − a2 ∼ 3. Using eq.(5.45), it is easy to

see that the phenomenological requirement U ∼ 2 constraints A1/A2 ∼ 103. In light
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of eq.(5.16), this hierarchy in A1/A2 typically induces an even larger hierarchy in the

microscopical Yukawa couplings ci, unless one assumes a hierarchy between them due

to, say, world-sheet instantons. For these reasons, as a specific example of model with

w0 = 0, we again opt here for a type IIB model on CP4
[1,1,1,6,9], with U and Z the

two Kähler moduli of the CY manifold. No bound on the gauge group arises and the

situation seems more favorable. For simplicity we take now trivial Kähler potentials for

φ and χ, namely

αχ = αφ = 1 . (5.74)

The input parameters are as follows:

N1 = 30, N1f = 2, q1 = 2, c1 = 1, p1 =
18
50
, n1 =

1
4π
, m1 = 0, η1,U = η1,Z = 0,

N2 = 29, N2f = 2, q2 = 2, c2 = 2, p2 = 0, n2 =
1

4π
, m2 = 0, η2,U = η2,Z = 0,

N3 = 11, N3f = 1, q3 = 0, c2 = 1, p3 = 0, n3 = 0, m3 =
1

4π
, η3,U = η3,Z = 0,

Y =
867
5000

, qχ = 2, nX =
1

4π
, γZ = 0, γU =

1
6
. (5.75)

The supersymmetric vacuum is at

USUSY = 136, ZSUSY = 63, φSUSY = 0.10, (5.76)

and the exact non-SUSY vacuum, and its properties, is reported in table(5.4.3). Notice

that the model is quite constrained. Given N1,2, N1f,2f and q1,2, for mesonic Yukawa

couplings ci ∼ O(1), the gauge kinetic functions are essentially fixed by the requirement

of low-energy SUSY. A constant threshold correction, appearing in (5.75), can be avoided

by allowing a mild tuning between c1 and c2. The value of the coupling Y is fixed by

the flat condition. As expected from the general arguments of section 4, the gauginos

are now light and indeed we get, for fv = f3 = Z/(4π),

mg ' 270 GeV , (5.77)

which is less than one order of magnitude smaller than m3/2. We can take U(1)X neutral

visible matter fields, so that the non-holomorphic soft scalar masses m ' m3/2, instead

of m ' gX
√
DXqiv ' 80 TeV

√
qiv, valid for U(1)X charged fields. The analytical and

numerical values in this case agree with very good accuracy thanks to the smallness of χ.

We have 1/(b3Z) ' 1/36 ∼ 1/(a1,2U) ' 1/30 and the expected scalings for the shifts of

the fields and the F terms are satisfied. The value of χ as would be roughly predicted by

eq.(5.50) is about one order of magnitude bigger than its actual value, due to accidental

numerical factors for which qχχFχ ∼ φFφ/10. Notice how this hybrid model, where

the KKLT-like and racetrack stabilizations work together, has all the appealing features
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Numerical Analytical
〈U〉 136.0 136.0
〈Z〉 63.3 63.3
〈φ〉 0.101 0.101
〈χ〉 −3.6× 10−6 −7.6× 10−7

〈FU 〉 −2.7× 10−17 −2.6× 10−17

〈FZ〉 −7.2× 10−18 −8.1× 10−18

〈Fφ〉 1.5× 10−16 1.6× 10−16

〈Fχ〉 2.0× 10−13 2.0× 10−13

〈DX〉 1.2× 10−26 1.2× 10−27

〈V 〉 2.4× 10−32 2.4× 10−32

Numerical Analytical
m3/2 3.31 3.31
mφ 1.1× 1014 1.1× 1014

mIm(Ũ) 6.3× 103 6.3× 103

mRe(Ũ) 6.3× 103 6.3× 103

mRe(Z̃) 229 229
mIm(Z̃) 212 212
mIm(χ) 160 160
mRe(χ) 160 160

Table 5.3: VEV’s, masses and scales for the IIB model with w0 = 0 and parameters
given by eq.(5.75). Expectation values are expressed in (reduced) Planck units and
masses in TeV units. Ũ ∼ U+Z and Z̃ ∼ U−Z stand for the (approximate) eigenvector

mass states.

we were looking for. The stabilization via the racetrack mechanism of U allows to get

a natural Yukawa coupling Y , and the stabilization of Z after the uplifting generates

acceptable gaugino masses and avoid the problem of having too heavy scalar soft masses.

We have numerically checked the reliability of the classical SUGRA analysis by looking

at the α′ correction (5.67). As expected, the correction becomes sizable for |ξ|/g3/2
s & V,

i.e, gs ∼ 1/25 and is essentially negligible for |ξ|/g3/2
s . V/10. This results on a mild

lower bound on the string coupling: gs & 1/6. Contrary to the case with w0 6= 0

where the possibility of getting a Minkowski vacuum is lost for gs smaller than the

bound, no dramatic consequences appear now, in the sense that the corrections are only

quantitative, but the non-SUSY Minkowski vacuum is still there, even for gs ∼ 1/30.



Chapter 6

Conclusions and Outlook

In this thesis we have addressed the issue of the Two-Step moduli stabilization in full

detail. We found the conditions for the procedure to be reliable around nearly super-

symmetric vacua for a generic class of SUSY (global and local) theories whose moduli

superpotential is given by1,

W = W0(H) + εW1(H,L) , (6.1)

with ε � 1 and the moduli H the supermultiplets to be frozen out. No constraints on

the Kähler potential are assumed, provided that it is sufficiently regular. The analysis

was performed in full generality first considering only moduli fields and then introducing

matter and gauge interactions.

In chapter 3, devoted to the pure moduli case, we found that the simple supersymmetric

model, where the H supermultiplets are frozen out at the level of the superpotential

and Kähler potential, is a reliable description at leading order in ε, as far as the scalar

components of the frozen multiplet be solutions of the leading F -flatness conditions,

and acquire O(1) masses from the W0 dynamics. In the case of SUGRA theories two

situations were identified: for a generic Kähler potential a mass hierarchy of O(ε) is

compulsory, turning into a constrain on the VEV of the superpotential, namely 〈W0〉 ∼
O(ε). In this case the leading F -flatness condition take the usual flat form ∂HW0 =

0, which turns out to be also the chiral equation for the frozen chiral multiplet H0.

The mass hierarchy condition is relaxed for Kähler potentials realizing an approximate

factorizable form, K = KH(H) + KL(L) + εKmix(H,L), and W0 can take arbitrary

values at the vacuum. In this case the leading F -flatness condition for the H scalar

components are given by ∂HW0 + ∂HKHW0 = 0. Here, however, although the auxiliary

fields FH are still frozen out at vanishing VEV, there is no chiral equation for which the
1By moduli in the L sector we mean any kind of field, also charged and matter like, with O(1) VEV.
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frozen H0, as chiral multiplet, be solution to. It is clear that in order the EFT theory be

described by a superpotential and a Kähler potential, as is the case of the simple SUSY

model, the VEV of the auxiliary fields of the H multiplets should be always suppressed

compared with the ones of the L ones. Indeed, once we are around the leading SUSY

solutions for the H fields this is warranted. For the case of generic Kähler potential

the suppression comes from the hierarchy on the masses, FH ∼ mL/mHF
L, and for the

factorizable case by the small mixing between the two sectors. In both cases, then, we

have FH ∼ O(ε)FL.

In chapter 4 the set-up was generalized allowing gauge dynamics and O(1) Yukawa

couplings in the matter sector. We realize, first of all, that freezing of charged H

fields, besides the fact that due to gauge invariance the leading F -flatness solution may

leave some flat directions, is a gauge non-invariant statement, and freezing of charged

fields seems only possible for heavy fields with vanishing VEV, like the Kaluza-Klein

resonances. Therefore, the Two-Step stabilization procedure can only be realized for

neutral fields, or more general, on gauge invariant combinations of them. This simple

observation, which actually has been already pointed out in several places [50, 36], is in

fact rather often overlooked in models dealing with FI-terms from string compactifica-

tions (see e.g.[107] for an interesting class of F-theory models of this kind). Indeed, as

we have seen, in SUGRA only field dependent FI-term can appear, and depend on fields

that are charged under the corresponding U(1) sector. These fields, therefore, cannot

be regarded as being previously stabilized since the resulting dynamics are potentially

completely different. In particular, their SUSY breaking effects are expected to be of

the same order of the ones from fields stabilized afterwards.

The conclusions in this generalized set-up are mainly the same as in the pure moduli

case. For the case where W0 is tuned at the vacuum, using an approximate manifestly

SUSY approach, we identified the leading corrections in the matter sector due to the

presence of the O(1) couplings, in the form of new induced couplings not reliable in

the simple model. More precisely, a term in the superpotential with schematic from

W ∼ YNCN , induces the following couplings:

Wfull ∼
1
mH

YNlYNmC
Nl+Nm , (6.2)

Kfull ∼
1
mH

YNC
N + h.c. (6.3)

Thus, couplings of order C6, or higher, in the superpotential and holomorphic couplings

of order C3, or higher, in the Kähler potential are not well described in the simple ap-

proach. This situation, however, is cured once one realizes that the simple approach
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cannot be a correct description beyond the mH scale, so that in using naturalness ar-

guments one should use mH instead of the cut-off scale Λ ≥ mH (indeed, the new

cut-off scale is formally mH). In this case the induced couplings are indeed suppressed

compared to the ones with “natural” coefficients.

The assumed form for the moduli superpotential is a quite natural and generic one in

the context of low energy SUGRA theories from string compactification, in particular

resembles the flux compactifications scenarios. Indeed, the first framework where our

results apply are the KKLT-like moduli stabilization models. In this context, the con-

dition we found on the VEV for W0 was mainly assumed in order to trust the leading

perturbative terms in the Kähler potential and the non-perturbative ones in the super-

potential, since was under these circumstances that KKLT [24] where able to stabilize

the Kähler modulus at sightly large values. Later on, it was stressed that in order to

get low energy SUSY breaking this tuning in W0 should be quite large, of order 10−13.

Here, we find again the need of such tuning in order to trust the Two-Step moduli sta-

bilization procedure. We stress, however, that the results presented in this thesis go

beyond the e.o.m. and mass level in the effective action, drawing more information than

the needed for moduli stabilization matters. In fact, we have been able to check the

full low energy EFT action in the case with only moduli fields and find where the first

corrections appear once matter is included.

We have treated in a more particular way the LARGE volume scenario of type-IIB

orientifold compactifications. This scenario, being in the moduli sector of the factorizable

kind mentioned above, gives another explicit realization of decoupling between the two

sectors involved in the Two-Step procedure. In this case the analysis is less generic,

since the scalings on the volume of the CY can be model dependent. For the explicit

model of “swiss-cheese” manifolds we studied such decoupling with only moduli fields

in full detail, finding a matching in the description at leading order in 1/V.

In order to implement the introduction of matter fields in the nearly factorizable scenario,

in section (4.4) we generalized the condition for the Kähler potential allowing for the

matter fields to appear only in suppressed terms,

K = KH(H) +KM (M) + εKmix(H,M,Q) , (6.4)

with M the light moduli and Q the matter fields. We saw that this Kähler potential still

allows a decoupling between the H and L sectors with an arbitrary value of W0 at the

vacuum. We showed that this set-up is naturally implemented in the LARGE volume

scenario, and studied a particular model in this context. The model, although the

simplest possible one, has all ingredients that might play an important rôle for moduli

stabilization: a FI-term dependent on the large Kähler modulus and a single charged
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field Q with no superpotential dynamics, whose VEV is determined through the nearly

cancellation of the D-term. We found for this case that the simple description leads again

to a reliable action at leading order in 1/V, independently of the value for the modular

weight of Q. This analysis, being quite particular, cannot be blindly generalized to

the full set of models realizing the LARGE volume scenario. In fact, being those an

appealing set of vacua for string compactifications, a more generic study on them is one

of the first issues this thesis points to as further directions of investigation.

Using a more heuristic approach, but also more model independent, we glanced the

induced couplings in the visible sector due to the integration of the heavy fields, where

now the possible suppression of the induced couplings comes by inverse powers of the

volume. Interestingly enough we found that the superpotential starts to be corrected

as in the previous case, eq.(6.2), with coefficients of the order of the natural ones, i.e.

O(1). For the Kähler potential, although the corrections look in general harmless, the

analysis is less conclusive, as relays in unknown powers of the volume in the higher order

couplings originally presented.

In chapter 5, by invoking a Two-Step procedure, we studied an explicit realization of sta-

bilized two light moduli in Minkowski vacua. The system assumes a pseudo-anomalous

U(1)X gauge symmetry inducing a field dependent FI-term. The last one, together

with the presence in the superpotential of a term χφqχ for two charged fields φ and χ,

forces the system to break SUSY exactly as in the original FI model. Being the FI-term

moduli-dependent, the stabilization of the moduli is a crucial (and anyway important)

ingredient driving indirectly the breaking. The mechanism can be made stable and rela-

tively natural by invoking a ratio between the U(1)X charges for φ and χ of almost one

order of magnitude, or with the help of non-perturbative generated couplings. When the

moduli are stabilized without a constant superpotential term w0, the mechanism is more

robust and no bound on the U(1)X charges arises. The moduli masses are proportional

to the scale of SUSY breaking and hence a gravity mediation of SUSY breaking, with

a gravitino mass of O(TeV), is preferred for cosmological reasons. In connection with

the bulk of the thesis on the Two-Step stabilization approach, we show in Appendix B

how the single modulus case works explicitly, in a numerical comparison between a the

One-Step and the Two-Step procedures.

A model stabilizing a single modulus and using the same mechanism to realize Minkowski

non-SUSY vacua was first studied in ref.[44]. Generalizing the study to two moduli is

not just an academic complication, because in this set-up one modulus necessarily trans-

forms under the U(1)X gauge symmetry, whereas the second one can be taken neutral.

The two-moduli system is then the simplest scenario that describes more realistic situ-

ations. Moreover, we have shown how the presence of the second neutral modulus can
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considerably help in getting sufficiently heavy gaugino without getting at the same time

very heavy scalar fields, a property which is not so common in string compactifications.

All our analysis on this system has been based on the search for non-SUSY solutions

starting from SUSY ones. It should be stressed that this does not imply that our vacua

are small deformations of SUSY ones, since the small parameter ε introduced there is

fixed by the Planck/weak scale hierarchy and cannot be continuously taken to be zero.

On the other hand, we cannot exclude the existence of other interesting non-SUSY vacua

which are not detectable with our approach. We think that the above SUSY breaking

mechanism, together with the stabilization of moduli by non-perturbative gauge dynam-

ics, is interesting, promising and can be made quite natural, particularly when w0 = 0.

The next crucial step, as always when considering bottom-up SUGRA phenomenological

models, would be to embed this mechanism in a full string theory set-up.

In looking for such realizations in a full string theory set-up, an important question that

is raised, and which can be seen as a continuation to the study of the first chapters of

the thesis, is the possibility of neglecting some of the light stuff in a sort of Three-Step

procedure. Indeed, despite the huge simplification, one obtains by invoking the Two-

Step approach, still one might remain with more moduli than the ones usually regarded

in the toy models for moduli stabilization. The first problem one would face is the

entanglement between the dynamics of all fields, in general far more complicated than

the ones dictated by the superpotential in eq.(6.1). Since these toy models are intended

to explain the stabilization of moduli before, or at most meanwhile, SUSY breaking

happens, it is clear that the neglected fields should have again suppressed auxiliary

fields at leading order. As we have found, this can be obtained by to means: a mass

hierarchy and an approximate decoupling between the two sectors. Therefore, one might

be tempted to generalize the condition by combining these two, although none of them

are as severe as in the cases studied here, so that at the end a strong suppression is still

realized. Of course, this is not enough since a decoupling, at least at the level of the

e.o.m., on the dynamics of both sector is still to be realized, but already gives hints on

a possible approach to be taken. On the other hand, possible effects on the observable

sector, in particular on the soft-terms, are expected to impose further constrains on the

structure of the models where the procedure can be reliable.





Appendix A

Vacuum in presence of D-terms

In this appendix, along the lines of chapter 3, we show in some more detail how the

e.o.m. of the light scalar fields agree at leading order in the full and simple models in

presence of vector fields. Since non-trivial e.o.m. for the fields C appear only at O(ε3),

for simplicity we set them to zero, which is always a solution to their e.o.m., and only

study the e.o.m. for the remaining M fields. In order to keep the notation as simple

as possible, we omit in this appendix the subscript “full”, being understood that any

quantity with no specification arises in the full theory.

The new ingredient with respect to the analysis performed in sections (3.2.1) and (3.3.1)

is the D-term scalar potential

VD =
1
2
g2
AD

2
A . (A.1)

We study the location of the vacuum in both theories in a series expansion in ε:

〈φM 〉 = φM0 + εφM1 + ε2φM2 + . . . . (A.2)

Although the D-term potential does not admit an expansion in ε, being governed by

generally O(1) gauge couplings, at the vacuum the D-terms are related to F -terms and

hence an expansion in ε is still possible.

At O(ε0), ∂iW0(H0) = 0 solve the F -term e.o.m. for the heavy fields and trivialize the

corresponding ones for the light fields: (∂iVF )0 = (∂AVF )0 = 0. Of course, due to the

presence of VD, this is no longer a sufficient condition but it is still necessary. In this

way, the leading order VEV’s for the heavy fields are fixed. At O(ε0) and H i = H i
0, the

e.o.m. for the light fields are entirely given by the D-term potential:

(∂AVD)0 =
1
2

(∂Ag2
A)D2

A + g2
ADA∂ADA = 0 , (A.3)

111



Appendix A. Vacuum in presence of D-terms 112

evaluated at φM0 , which admit the simple solution

DA(φM0 ) = 0 . (A.4)

When the gauge symmetry is unbroken, eq.(A.4) is a solution to all orders in ε. Indeed,

from the explicit expression DA = iXi∂iK, it is straightforward to deduce the following

general bound,
√

2gADA ≤
√
gN̄NKNKN̄mAA , (A.5)

with mAA being the diagonal components of the gauge field mass matrix

m2
AB = 2gA gB gMN̄X

M
A X

N̄
B . (A.6)

For spontaneously broken symmetries, another relation between F and D–terms is valid

at the vacuum, of the form 〈D〉 ∼ 〈F 2〉/m2
V (see eq.(A.17) below), where mV is the

typical scale of the heavy vector fields, parametrically larger than ε. Requiring the F -

terms to be all at most of O(ε), we conclude that at the vacuum 〈D〉 . O(ε2). Eq.(A.4)

is the only sensible solution to eq.(A.3) for vacua with no O(1) SUSY breaking. Eq.(A.4)

also ensures that at O(ε0) the e.o.m. of the heavy fields are automatically satisfied at

H0, since (∂iVD)0 = 0.

At O(ε), the e.o.m. for the light fields are still given by the D-term potential only, so

that

(∂AVD)1 = g2
A

[
∂NDA(φ0)φN1 + ∂N̄DA(φ0)φN̄1

]
∂ADA(φ0) = 0 . (A.7)

Two possible solutions can be taken. Either ∂ADA(φ0) = 0, which implies XAA (φM0 ) = 0,

being Xi
A = 0, or ∂NDA(φ0)φN1 + ∂N̄DA(φ0)φN̄1 = 0. The two situations correspond

respectively to unbroken and broken generators. Indeed, splitting the gauge index A =

(a, â) in eq.(A.6), with a ∈ H, â ∈ G/H, we have

m2
âb̂

= O(m2
V ), m2

âa = m2
aâ = 0, m2

ab = 0 . (A.8)

By taking g2
A and the Kähler metric parametrically of order one, eq.(A.8) gives

〈XM
a 〉 = 0, 〈XM

â 〉 = O(mV ) . (A.9)

So, we have

XM,a(φ0) = XM
a (φ0) = 0, a ∈ H ,

∂NDâ(φ0)φN1 + ∂N̄Dâ(φ0)φN̄1 = 0, â ∈ G/H . (A.10)

Eqs.(A.10) imply that both Da and Dâ vanish at O(ε), in agreement with our previous
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argument that DA ≤ O(ε2). When eq.(A.10) is satisfied, the e.o.m. for the heavy fields

at O(ε) are given by VF only and fix H i
1 as in the pure F -term case studied in chapter

3,

H i
1 = −(K̂−1)ij̄(G

j̄)0 , (A.11)

with K̂ ī
j = gīk(∂kGj)−1 and (Gj̄)0 = (GM̄ )0g

M̄i,following the notation of section (3.3.1),

evaluated at H i = H i
0. At the shifted vacuum H i

0 + εH i
1, we have

Gi = O(1) , GA = O(1) , Gi = O(ε) , GA = O(1) , (A.12)

showing that the matching of the F -term part of the e.o.m. of the light fields at O(ε2),

(∂AVF )full = (∂AVF )sim + O(ε3), continues to hold in presence of D-terms. Hence we

can just focus on VD. The term (∂AVD)2 can be written as follows:

(∂AVD)2 = g2
â(φ0)Dâ(φ0 + εφ1 + ε2φ2)∂ADâ(φ0) , (A.13)

where we have explicitly written the order at which the various quantities should in

principle be known.

A similar expansion of the e.o.m. can be performed in the simple effective theory,

where the D–term reads VD,sim = g2
A(DA)2

sim/2, with (DA)sim = iXAA ∂AKsim, and all

quantities evaluated at the leading frozen vacuum H i
0. At O(ε0) and O(ε) we get

(DA)sim(φ0) = 0, (XAa )sim(φ0) = 0, ∂ADâ,sim(φ0)φA1,sim + ∂ĀDâ,sim(φ0)φĀ1,sim = 0 ,

(A.14)

which implies that Dsim(φ0) ∼ O(ε2). The form of (∂AVD)sim at O(ε2) is the same as

eq.(A.13), but written in terms of (DA)sim and evaluated at H i
0. Thus, the equivalence

of the two descriptions requires that the following non-trivial relation holds:

Dâ(〈φM 〉) = (Dâ)sim(H i
0, 〈LA〉) +O(ε3) , (A.15)

with 〈φ〉 and 〈L〉 expanded up to O(ε2). Luckily enough, we do not need to work out

the vacuum up to O(ε2), since we can trade dimG e.o.m. to write dimG relations

between the F and D–terms at the vacuum1. Indeed, by taking the combination of the

e.o.m. Im(XM
A ∂MV ) = 0 (the real part being identically vanishing by gauge invariance:

δλV = λARe(XM
A ∂MV ) = 0), one easily derive the following equation (see e.g.[108, 39]:

qAMM̄F
MF

M̄ − 1
2
DB
[
m2
AB + δAB(FMFM −m2

3/2)
]

= 0 . (A.16)

1Notice that, modulo global gauge transformations, the vacuum is uniquely determined since the
“missing” dimG e.o.m. are provided by the dimG D-term constraints (A.4).
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where qAMM̄ = ∇M∇M̄DA, m3/2 = exp(K/2)W , FM = eK/2KMN̄ (∂N̄W + ∂N̄KW )

and DA = Re(fA)δABDB/2 2. When A = a, the second term in eq.(A.16) vanishes and

the equations boil down to a set of constraints for the F -terms at the vacuum, dictated

by gauge invariance. When A = â, instead, we can invert eq.(A.16) to solve for Dâ:

Dâ = 2m−2

âb̂
qb̂MM̄F

MF
M̄ +O(ε4) . (A.17)

A similar relation occurs in the simple effective theory upon replacing the indices M and

M̄ with A and Ā. Given the relation between DA and DA and regarding gauge kinetic

terms of O(1) eq.(A.17) tells us that Dâ ∼ O(ε2), since the F–terms are all at most of

O(ε). In addition, since F i(〈φM 〉) ∼ O(ε2), we see that eq.(A.15) is easily proved:

Dâ(〈φM 〉) = 2m−2

âb̂
qb̂AĀF

AF
Ā(φM0 ) +O(ε3) = (Dsim)â(H i

0, L
A
0 ) +O(ε3) . (A.18)

We have then established that even in presence of D–terms the location of the vacuum

as computed by the simple effective theory is reliable.

2If the gauge kinetic functions are not gauge-invariant (e.g. as required by anomaly cancellation), an
extra term appears in eq.(A.17). Being of O(D2) ∼ O(ε4), it is completely negligible for our purposes.
See e.g. [39] for a more general formula including these terms.



Appendix B

One-Step vs Two-Step Moduli

Stabilization: a Numerical Test

In this appendix we apply the results of chapters 3 and 4 to the string-inspired SUGRA

toy model studied in chapter 5 for the case with a single modulus. We add to the system

two heavy moduli to be frozen out in the simple model. Although the model contains

just five complex fields, instead of hundreds as in realistic string models, it is already

sufficiently complicated to make an analytical study a formidable task. For this reason

we opt here for a numerical analysis. In particular we will show how the vacuum and

the scalar mass spectrum as given by the simple effective model is in agreement with

the full–fledged analysis. The Kähler and superpotential terms are taken as follows:

K = −2 ln
[
(T + T̄ − δVX)3/2 + ξ(S + S̄)3/2

]
− ln(U + Ū)− ln(S + S̄)

+
φ̄ e−2VXφ

(U + Ū)nφ
+

χ̄ e2VXχ

(U + Ū)nχ
, (B.1)

W = aU2 + bU + S(cU2 + dU + e) +mUφχ+ βU2φαδ/2e−αT . (B.2)

The heavy fields H = {S,U} mimic respectively the dilaton and a complex structure

modulus of some IIB flux Calabi-Yau compactification, T represents the overall universal

light Kähler modulus, φ and χ are two charged fields with O(1) VEV’s and opposite U(1)

charge with respect to a U(1) gauge field AX . The holomorphic gauge kinetic function

associated to U(1)X is taken to be fX = T . The kinetic mixing between heavy and light

fields is provided by the universal α′ correction to the volume [89], parametrized by ξ in

eq.(B.1) and by the complex structure dependence of the kinetic term for φ and χ. The

expression for the U(1)X D–term is

DX = iXM∂MK =
|χ|2

(2Ur)nχ
− |φ|2

(2Ur)nφ
+

3δT 1/2
r

4(T 3/2
r + ξS

3/2
r )

, (B.3)
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where the subscript r denotes the real part of the field. The first five terms in the super-

potential mimic terms arising from fluxes and should be identified with W0 in our general

analysis (see e.g. eq.(3.53) of [109]). We have introduced non trivial dependencies on

the complex structure moduli in the mass term mUφχ (in chapter 5 Y φqχχ), responsi-

ble for the main SUSY breaking source in the χ direction, and in the non-perturbative

generated part φαδ/2e−αT (denoted in chapter 5 as A(φ)e−aT ), responsible for the sta-

bilization of T . These are the small superpotential terms defining W1. The prefactor of

the exponential is a function of the complex structure moduli, which for simplicity we

have taken to be just quadratic. It should be stressed that the detailed structure of K

and W in eqs.(B.1) and (B.2) is pretty arbitrary and not well motivated; it should just

be seen as a simple, yet not trivial, string–inspired example where to concretely apply

our results.

In choosing the parameters entering in eqs.(B.1) and (B.2) a fine tuning is required in a

and b in order to obtain a tiny W0, ensuring a hierarchy in the masses. We have taken1

a = −2.55− 10−13 , b = 25.5 + 2 · 10−12 , c = 0.25 , d = −2.45 , e = −0.5

α = 1 , β = −0.5 , δ = 1 , m = 2.44× 10−12 , nχ = 1 , nφ = 0 , ξ = 0.1 .(B.4)

The smallness of m, required to get a dS vacuum with a sufficiently small cosmological

constant, justifies the location of the Uφχ operator in W1. The SUSY VEV’s of S and

U , as given by ∂SW0 = ∂UW0 are precisely S0 = U0 = 10, with W0(S0, U0) = 10−11. In

table 1 we report the exact VEV’s and F–terms of the fields as numerically computed in

the full model and their relative shifts compared to those computed, again numerically,

in the simple effective model, with S and U frozen at their values S0 and U0.2 The

model above belongs to the general class of models studied in the main text with an ε

roughly O(10−13). Keeping two significant digits, the physical masses are:

m2
H1

= 1.1 · 10−2, m2
H2

= 1.0 · 10−2, m2
φr = 1.5 · 10−3, (B.5)

m2
Ti = 4.0 · 10−27, m2

Tr = 3.7 · 10−27, m2
χi = 2.3 · 10−28, m2

χr = 2.3 · 10−28.

where H1 ' U+S, H2 ' U−S and the subscript r and i denote real and imaginary field

components, respectively. The masses m2
H1 and m2

H2 refer to both components of the

complex scalar fields, being SUSY breaking effects negligible. The imaginary component

of φ is approximately the Goldstone boson eaten by AX and hence is exactly massless.
1In a realistic string setting, the fluxes are quantized and makes the appearance of terms like a and

b in eq.(B.4) rather difficult, if not impossible. We do not care about this possible issue. As explained
above, we do not pretend our model to mimic a realistic string set-up in any single detail.

2For simplicity of the numerical analysis, we have not integrated out the massive U(1)X gauge field,
as it should be done in both theories. However, this is not going to affect the vacuum or the mass
spectrum and hence the results that follow are reliable.
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〈X〉 ∆〈X〉 FX ∆FX

S 10 + 2 · 10−13 2 · 10−14 −9.9 · 10−28 –
U 10 + 2 · 10−13 2 · 10−14 5.6 · 10−28 –
T 31.4 1.1 · 10−15 −3.4 · 10−15 −1.4 · 10−16

φ 0.15 −1.3 · 10−15 1.4 · 10−16 −7.4 · 10−14

χ 0.05 −7.6 · 10−14 7.5 · 10−15 1.5 · 10−14

Table B.1: VEV’s and FN = eK/2gM̄NF M̄ terms for the fields and their relative
shifts, as derived by a numerical analysis. Here and in the main text ∆X ≡ (Xfull −

Xsim)/Xfull. All quantities are in reduced Planck units.

The relative mass shifts are

∆m2
φr = −4.7 · 10−15 , ∆m2

Ti = −2.1 · 10−14 , ∆m2
Tr = −2.6 · 10−14 ,

∆m2
χi = 1.4 · 10−14 , ∆m2

χr = 1.8 · 10−14 . (B.6)

Finally, we also report the gravitino mass, the DX–term, the cosmological constant and

their relative shifts:

m2
3/2 = 9.5 · 10−31 , ∆m2

3/2 = −2.7 · 10−14 ,

DX = 3.7 · 10−27 , ∆DX = 1.5 · 10−14 ,

V0 = 1.2 · 10−32 , ∆V0 = 8.2 · 10−12 . (B.7)

Notice that being the cosmological constant fine-tuned to be “small”, namely of order

10−2m2
3/2, its relative shift is larger. The latter is inversely proportional to the smallness

of V0.

The relative shifts of the various quantities considered are smaller than ε due to the

fact that the Kähler mixing between the H and L fields coming from (B.1) in the above

vacuum are relatively small. This example shows the excellent agreement between the

Two-Step and the full moduli stabilization procedure.
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