
SISSA ISAS
SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

INTERNATIONAL SCHOOL FOR ADVANCED STUDIES

Large Scale First-Principles Simulations

of Water and Ammonia

at High Pressure and Temperature

Thesis submitted for the degree of

“Doctor Philosophiæ”

CANDIDATE SUPERVISORS

Carlo Cavazzoni Dr. Guido L. Chiarotti

Dr. Sandro Scandolo

October 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/287415907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This thesis is available on the Web at the URL: http://www.sissa.it/cm/thesis/1998/



a Roberta ed ai miei genitori





Contents

1 Introduction 1

2 Theory 5

2.1 Parrinello–Rahman Molecular Dynamics . . . . . . . . . . . . . 5

2.2 Car–Parrinello Molecular Dynamics . . . . . . . . . . . . . . . . 9

2.3 Constant PressureAb initio Molecular Dynamics . . . . . . . . . 11

3 Parallel Implementation of CP algorhitm. 15

3.1 Reciprocal space representation . . . . . . . . . . . . . . . . . . 16

3.2 Parallelization strategy . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Data distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 The FFT routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Water and Ammonia 35

4.1 Ammonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Planetary Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusions 73



ii CONTENTS

6 Appendix 77

6.1 Orthogonalization and Parallel Diagonalization . . . . .. . . . . 77

6.2 Code benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Forces and Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . 85



List of Figures

3.1 CP Flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 G vectors distribution . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Real space grid distribution . . . . . . . . . . . . . . . . . . . . . 28

3.5 Communications Flow chart . . . . . . . . . . . . . . . . . . . . 29

3.6 FFT implementation . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Neptune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Ammonia IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Ammonia Experimental PT . . . . . . . . . . . . . . . . . . . . . 42

4.4 Ammonia IV structure factor . . . . . . . . . . . . . . . . . . . . 44

4.5 Ammonia EOS 300K . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Ammonia Bond symmetrization . . . . . . . . . . . . . . . . . . 46

4.7 Superionic Ammonia: MSD . . . . . . . . . . . . . . . . . . . . 49

4.8 Ammonia Phase Diagram . . . . . . . . . . . . . . . . . . . . . 54

4.9 Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.10 Water ice X structure . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Order parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.12 Density of Hydrogens . . . . . . . . . . . . . . . . . . . . . . . . 61

4.13 O-O and O-H pair correlation functions at 300 GPa . . . . . .. 63



iv LIST OF FIGURES

4.14 O-O pair correlation functions at 150 GPa . . . . . . . . . . . .. 64

4.15 O-O pair correlation functions at 300 GPa . . . . . . . . . . . .. 65

4.16 Water Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . 66

4.17 Water Kohn-Sham states . . . . . . . . . . . . . . . . . . . . . . 68

4.18 Water DOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.19 Planetary equations of state . . . . . . . . . . . . . . . . . . . . . 71

6.1 Diagonalization routine . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Diagonalization routine speed-up . . . . . . . . . . . . . . . . . 81

6.3 Code benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Code speed-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 New Code benchmark . . . . . . . . . . . . . . . . . . . . . . . . 86

6.6 New Code Speed-Up . . . . . . . . . . . . . . . . . . . . . . . . 87



Chapter 1

Introduction

In the last years the behavior of simple molecular systems athigh pressures

and temperatures has become increasingly attractive, thanks to the develop-

ment of new experimental and theoretical tools. Numerous shock-wave and

diamond anvil cell experiments have been carried out on these systems, and

many observed phenomena still lack a theoretical explanation. Moreover, pres-

sures and temperatures reached in the laboratory are now comparable to those

of the planetary deep interiors, and the interplay between high-pressure and

planetary physics is, therefore, increasing. On the theoretical side,ab initio

techniques are now extremely effective in determining structural properties and

phase transitions of molecular and other systems at high pressure. Among oth-

ers, constant pressureab initio molecular dynamics, a recently developed com-

putational scheme combining Car-Parrinello (CP) and Parrinello-Rahman (PR)
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molecular dynamics, has been shown to be quite accurate and predictive. This

scheme borrows from PR the idea of treating the edges of the molecular dynam-

ics simulation cell as additional degrees of freedom, and from CP the quanto-

mechanical calculation of the internal stress driving the cell as to equilibrate the

external pressure (introduced here as a parameter). This allows phase transitions

to take place even during the short time scales ofab initio simulations.

In this thesis we present results of extensive constant pressure ab initio

molecular dynamics simulations of water and ammonia at highpressures and

temperatures. New superionic, ionic and metallic phases will be presented and

characterized, and their possible consequences on planetary physics discussed.

Water and ammonia, together with hydrogen and methane, are the most

abundant simple molecules in the universe. They are largelypresent especially

in the interiors of the giant planets. Two planets in the solar system, Uranus and

Neptune, are supposed to be composed mainly of a mixture of water, ammonia

and methane ( also called “ices”); the properties of these planets are therefore

linked to the behavior of these molecules in the ranges of pressures and tempera-

tures typical of their interiors (T: 2000-8000 K, P: 20-800 GPa). The simulations

of water and ammonia in these conditions are precisely aimedto study the prop-

erties relevant for planetary physics, like electrical conductivity and density.

In this regard, the present work is the natural extension of arecent theoretical

study of methane, the other component of ices. Using constant pressureab ini-

tio molecular dynamics, Ancilottoet al.[1] have shown that, inside Neptune,

methane dissociates into hydrocarbons of higher molecularweight, suggesting

that this could be the source of the anomalous atmospheric abundance of ethane

observed by the Voyager II spacecraft.

While the structure of solid water at high pressure has been extensively stud-
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ied both theoretically and experimentally, the structure of solid ammonia is still

not known above a few GPa. We performed simulations at high pressures and

room temperature of ammonia to individuate possible new solid structures. In

particular the possibility of a symmetric hydrogen bond phase has been investi-

gated.

The work presented in this thesis was made possible by the design and the

implementation of an architecture-free parallel code, able to exploit the compu-

tational power of modern massively parallel computers, which use is mandatory

for intensiveab initio simulations of large systems.

In Chapter 2 I give a brief review of the Constant Pressureab initio Molecu-

lar Dynamics, together with the key ideas of the original Parrinello-Rahman and

Car-Parrinello Molecular Dynamics methods. In Chapter 3 the main features of

the parallel implementation of the code are presented. In Chapter 4 the results

of the simulations on water and ammonia are presented and discussed with par-

ticular attention to their implications on the physics of Uranus and Neptune.

Finally, in Chapter 5 conclusions are outlined. An appendixfollows with some

benchmarks of the code on different architectures.
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Chapter 2

Theory

Constant pressureab initio Molecular Dynamics, used in this work to simu-

late water and ammonia systems, is a theoretical scheme recently introduced

by Focheret al.[2, 3] that extends the well-known Car–Parrinello [4] method

including the Parrinello–Rahman [5] scheme for molecular dynamics. In this

chapter we briefly review, as in the original work of Focheret al.[3], first the

Parrinello–Rahman and the Car–Parrinello molecular dynamics schemes, and

then the Constant Pressureab initio Molecular Dynamics.

2.1 Parrinello–Rahman Molecular Dynamics

The Parrinello–Rahman method (PR) is the natural extensionof Andersen [6]

molecular dynamics. In the original Andersen method the simulation cell is

allowed to change its sizeisotropically, by equilibrating the calculated internal
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pressure to an assigned value representing the external pressure. This is done by

introducing the volume of the cell as a new dynamical variable, still preserving

the periodic boundary conditions. In the PR method, the cellcan change, more

generally, both its shape and its size. This is done, according to PR, in the

following way.

Let us consider a generic simulation cell for Molecular Dynamics (MD),

which fill all the space by repeating it at infinity with periodic boundary condi-

tions. The MD cell is described by the three primitive Bravais vectors(a;b; c).
Defining the matrix h = (a;b; c) (2.1)

(where the vectors constitute the columns of the matrix), the real space position

of a generic particle in the box,R, can be written as:R = hS; (2.2)

S being the vector of the so calledscaledcoordinates of the particle, whose

components assume values between 0 and 1 inside the cell. (Inother words,

in the scaled variable space, the cell is always a cube of side1.) The relation

between distances in real and in scaled coordinates will be determined by the

metric tensorG = hth, so that:(Ri �Rj)2 = (Si � Sj)tG(Si � Sj): (2.3)

Since we want the cell to change in time, the basic idea of the PR method,

in analogy with Andersen dynamics, is to consider anextendedLagrangian sys-

tem, where the nine components of the matrixh are classical degrees of free-

dom, whose trajectories are determined by appropriate generalized forces. This
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is obtained by writing the LagrangianL of the extended system as:L = 12 NXi=1Mi( _StG_Si)� V (R1; :::;RN ) + 12WTr( _ht _h)� p
; (2.4)

whereMi is the mass ofi-th particle,V the inter-particle potential,W an inertia

parameter controlling the cell motion,p the external pressure, and
 = deth the

volume of the simulation cell.

The first two terms of Eq. 2.4 define the Lagrangian for the usual fixed cell

molecular dynamics. Note however that when the cell varies in time, the kinetic

energy term in Eq. 2.4 does not correspond to the actual kinetic energy of the

particles in the real system.

The Euler-Lagrange equations of motion derived from Eq. 2.4are:�S�i = � 1Mi @V@R�i �ht��1�� �G�1�� _G� _Si ; (2.5)�h�� = 1W (�� � p��)
 �ht��1� ; (2.6)

where: �� = 1
  Xi Miv�i vi � @V@h��ht�! (2.7)

and v�i = h� _Si (2.8)

(Greek indices indicate the components of vectors and matrices, and the con-

vention of implicit sum over repeated indices is assumed). InterpretingMivi
as the momentum ofi-th particle, it can be shown [3] that� coincides with the

stress tensor. @V@h ht = @V@� : (2.9)
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The time variation of the cell matrixh (Eq. 2.6) is driven by the imbalance

between the external pressurep (a fix parameter of the simulation) and the in-

stantaneous value of the stress tensor (�).

The Lagrangian (Eq. 2.4) is conservative with the constant of motion given

by: H = 12 Xi Miv2i + V (R1; :::;RN ) + 12WTr( _ht _h): (2.10)

PhysicallyhHi corresponds to the enthalpy of the system [7], apart for the last

term, which becomes negligible for largeN .

The key point of the above scheme [8, 6] is that trajectories generated with

the PR dynamics give averages of thermodynamical quantities that are equiva-

lent, in the thermodynamical limit, to Gibbs averages in the(H,p,N) statistical

ensemble, i.e. the ensemble where enthalpy, pressure and number of particles

are fixed.

The parameterW in the equations is related to theinertia of h. It is clear

thatW does not influence equilibrium properties. For an optimal choice ofW
(i.e. faster equilibration of the combined cell and ions system) Andersen has

suggested thatW should be tuned so as to obtain a relaxation time of the cell

of the order of� = L=c, whereL is the linear dimension of the cell andc the

sound velocity of the system. One can estimate the characteristic frequency of

the cell by linearizing Eq. 2.6. Assuming this frequency to be roughly1=� , one

obtains [7]:W = 3PiMi=4�2.
Additional comments on the applicability of the method can be found in Ref.

[9].
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2.2 Car–Parrinello Molecular Dynamics

The Car–Parrinello method (CP) [4, 10, 11] is a very elegant and powerful

scheme forab initio MD simulations, successfully used in the last years in a

wide variety of problems otherwise inaccessible to standard simulation meth-

ods (see, for example, Ref. [12] and references therein). Inthe CP method the

forces acting on the atoms are not calculated from a parameter-dependent po-

tential — usually determined via an empiricalad hocprocedure — but from the

full quantum treatment of the electronic system, based on Density Functional

Theory (DFT) [13, 14, 15]. This is done by introducing afictitiousdynamical

system, associated with thephysicalsystem, whose potential energy surfaceE
is an appropriate functional of both ionic and electronic degrees of freedom,

with electronic wave-functions treated as classical fields. The fictitious system

is devised in such a way that the ionic trajectories generated by its dynamics

reproduce very closely those of the physical system in the Born–Oppenheimer

(BO) approximation, that is in the approximation where the energy surfaceV
for the atomic dynamics is defined byV (fRIg) = minf igE [f ig ; fRIg] : (2.11)

The generalized classical Lagrangian of the fictitious system is defined as:L = � occXi Z dr ��� _ i (r)2���+ 12 XI MI _R2I � E [f ig ; fRIg] (2.12)+Xij �ij �Z dr �i (r) j (r)� �ij� ;L depends on the ionic positionsRI and electronic wave-functions i. The

parameter� (of units mass� length2) is a generalized mass for the electronic

degrees of freedom. The sums overi andj are taken on the occupied electronic

states, and the sum overI on the ions. The first and second term in Eq. 2.12 are
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the (classical) kinetic energy of the electronic and ionic degrees of freedom;E,

given by the DFT total energy functional, is the potential energy of the coupled

electron–ion fictitious system.�ij are Lagrangian multipliers associated with

the orthonormalization constraints of the wave-functions1. The Euler–Lagrange

equations of motion derived from Eq. 2.12 are:� � i(r) = � �E� �i (r) +Xj �ij j(r); (2.13)�RI = � 1MI @E@RI : (2.14)

In general, the ionic trajectories generated by Eq. 2.14 andthose obtained by:�RI = � 1MI @V (fRIg)@RI ; (2.15)

do not coincide, unlessE [f ig ; fRIg] is fully minimized with respect tof ig
(see Eq. 2.11). However, themass� and the initial conditions on the wave-

functions can be chosen in such a way that the dynamics of the electronic de-

grees of freedom is much faster than that of the ions, allowing the electrons,

initially lying on the BO surface, to follow adiabatically the ionic motion re-

maining close to the instantaneous ground state. If this condition for the adia-

batic motion is satisfied, the instantaneous value of the forces acting on the ions

does not exactly coincide with the Hellmann–Feynman forces, but theiraverage

value does to a very high degree of accuracy [16, 12].

Although entirely classical, the fictitious dynamics of theelectronic wave-

functions accounts for the properties of the quantum eigenvalue spectrum of the

electrons. It has been shown [17] that for small deviations from the ground state,

the dynamics of the wave-functions can be well described as asuperposition of

1The Lagrangian in Eq. 2.12 is correct for a system where the occupied electronic states are de-
scribed by a set of mutually orthogonal wave-functions.
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oscillations whose frequency is given by:!ij =  2(�j � �i)� !12 ; (2.16)

where�j and�i are the eigenvalue of an empty and an occupied state respec-

tively. From Eq. 2.16 one gets that the lowest characteristic frequency for the

electronic degrees of freedom is:!min = (2Eg=�) 12 , whereEg is the energy gap.

Since the condition for the adiabatic separation of electronic and ionic de-

grees of freedom is that!min is much higher than the highest ionic frequency,

the CP method works well, with a proper choice of parameter�, for systems

with a clearly defined single-particle gap, like semiconductors and insulators.

The use of CP for metals is more subtle due to an irreversible transfer of energy

between ions and electrons [17, 12, 3]. To overcome this problem the use of

two different Nośe [18] thermostats has been proposed [19]: one coupled to the

ions, to keep them at the desired temperature, and the other to the electronic

wave-functions, to keep them “cold”, which means close to the BO surface.

2.3 Constant PressureAb initio Molecular Dynamics

In this section we present the recent extension, introducedby Focheret al.[3],

of the Parrinello–Rahman method to the case of Car–Parrinello ab initio MD

described above.

In Ref. [3] a new classical Lagrangian is introduced where the degrees of

freedom are the scalar fields (not explicitly dependent onh) associated to the

electrons, the scaled ionic coordinatesS and the cell matrixh. This Lagrangian

preserves the physical meaning of the PR equations of motion, and reduces to

the original CP Lagrangian (Eq. 2.12) in the fixed cell case. This was obtained

by substituting the original wave-functions h(r) (where the lower indexh now



12 Theory

indicates a wave-function defined and normalized on the cellgenerated byh)

with new wave-functions defined onto the scaled variable spaces = h�1r
(normalized on the unitary cube): h(r) = 1p
 (h�1r) = 1p
 (s); (2.17)

where the prefactor1=p
 preserves the normalization. As required (s) is inde-

pendent onh. From Eq. 2.17 we obtain the transformation law for the electronic

charge density, which appears in the DFT energy functional (see Eq. 3.1 in the

next section): �h(r) = 1
�(h�1r): (2.18)

This choice for the transformation of the wave-functions corresponds to con-

sider that the onlydirect effect of the deformation of the cell on the wave-

functions and on the electronic density in real space is a “stretching” of them,

in order to satisfy the changed boundary conditions.

The new Lagrangian can be written as:L = �Xi Z ds j _ i(s)j2 + 12XI MI( _StIG_SI)� E [f ig ; fhSIg] + (2.19)Xij �ij �Z ds �i (s) j(s)� �ij�+ 12WTr( _ht _h)� p
;
where the integrals are taken on the scaled cell (of volume
0 = 1). Notice

that if the cell is kept fixed, Eq. 2.19 reduces to the originalCP Lagrangian

(Eq. 2.12), written for the scaled wave-functions, apart for the constant termp
. From Eq. 2.17 the integrals in the first and fourth term of Eq.2.19 are, in

fact, invariant under scale transformation:Z
0  �(s) (s)ds = 
 Z
0  �h(hs) h(hs)ds = Z
  �h(r) h(r)dr: (2.20)

Notice also that using the scaled wave-functions, in the kinetic term (first

term of Eq. 2.19) the contribution due to the deformation of the cell is neglected



2.3 Constant PressureAb initio Molecular Dynamics 13

(exactly in the same way as in Eq. 2.4). This ensures that the equations of

motion for the electronic wave-functions are formally the same of the original

CP scheme (Eq. 2.13). The equations for the ionic degrees of freedom have

exactly the same form as in the PR case (see Eq. 2.5), with the replacement of

the classical forces�@V=@R by�@E=@R, which give, as in Eq. 2.14, the actual

quantum-mechanical forces acting on the ions [16]. The independence of the

integrals in Eq. 2.19 onh ensures also that no extra terms with respect to Eq.

2.6 appear in the equations for the cell parameters. Here in the tensor� (Eq.

2.7)@V=@h is replaced by@E=@h:�� = 1
  Xi Miv�i vi � @E@h��ht�! : (2.21)

In the original work of Focheret al.[3] it is also shown that the term(@E=@h)ht
is the actual quantum-mechanical stress tensor [20, 21]. For this reason, this

extension of the PR dynamics in the CPab initio scheme is physically mean-

ingful.

All the equations of motion derived from the Lagrangian in Eq. 2.19 can be

formally written as:� � i(s) = � �E� �i (s)+Xj �ij j(s); (2.22)�S�i = � 1Mi @E@R�i �ht��1�� �G�1�� _G� _Si ; (2.23)�h�� = 1W (�� � p��) 
 �ht��1� : (2.24)

The next chapter is devoted to the description of the implementation of a

parallel code in which equations 2.22–2.24 are integrated in time.
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Chapter 3

Parallel Implementation of CP
algorhitm.

It is well known thatab initio molecular dynamics simulations of large systems,

such as those presented in this work, are computationally demanding in terms

of both memory and CPU time. Today such a computational poweris available

only on massively parallel computers. To exploit these facilities a paralleliza-

tion of the codes implementing molecular dynamics algorithms is then required.

This porting is not as simple as that between two different scalar computers,

because optimization of communications and data distribution imply often a

change in the logic flow of the code. In most cases numerical algorithms have

to be rewritten.

One of the main achievements of this work is the implementation of an archi-

tecture-free parallel version of the SISSA CP code, which contains a constant
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pressure variable cellab initio MD as described in the previous chapter and in

Ref. [3]. In this chapter we will describe briefly the structure and the character-

istics of the new parallel version, while speed-up performance and benchmarks

on different architectures are reported in Appendix 6.2.

3.1 Reciprocal space representation

As explained in the previous chapter in the Car-Parrinello molecular dynamics,

interactions between ions are calculated throughab initio density functional

theory (DFT). In the local density approximations (LDA) theenergyE of an

interacting ionic and electronic system is written as :E [f ig ; fRIg] =occXi fi Z dr �i (r)��12r2 + V psnl � i (r)+ (3.1)Z drV psl (r) �e (r) + 12 Z drdr0�e (r) �e (r0)jr� r0j + Exc [�e] + XI 6=J Z2vjRI �RJ j ;
where:  i (r) are the Kohn-Sham orbitals,RI is the vector position of ionI,V psnl andV psl are the non-local and local ionic potentials respectively;�e(r) =Pi fi j i(r)j2 is the electronic charge density,fi the occupation numbers of elec-

tronic states,Zv is the valence charge density of the atoms, andExc the exchange-

correlation energy functional. Periodic boundary conditions allow the expan-

sion of the electronic wave-functions in plane-waves. As a consequence, con-

sidering the�-point representation of the Brillouin zone (which will be our prac-

tical choice), a generic wave-function is written as: h (r) = 1p
 XG ch (G) eiG�r; (3.2)

where
 is the volume of the simulation cell,G the reciprocal lattice vectors,

andch (G) the coefficient of the plane-waves expansion. The basis set for the
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expansion in 3.2 is reduced to a finite set by truncating the sum overG to include

only those plane-waves with a kinetic energyK = 12G2 less than a given energyEc. It is clear that the choice ofEc determines the accuracy of the calculation of

the DFT energy. In the present case we are interested in performing calculation

of the DFT energy while the simulation cell varies in shape and size. A fixed

value ofEc along the simulation would imply that the size of the plane-waves

basis set also changes. In the Car-Parrinello method, however, the plane-wave

coefficientsch (G) are the actual Lagrangian electronic degrees of freedom, and

their number cannot be varied during the simulation. The fact that the number

of wave-functions is no more consistent with a fixedEc constitutes a source

of error. As explained in Ref. [3] this problem has been however solved by

modifying the kinetic energy factorG2 in equations 3.3 in order to force zero

occupancy for those plane-waves whose kinetic energy exceedsEc [22]. This is

done by adding toG2 a smooth step function of heightA and width�, so that:G2 = G2 + A[1 + erf(G2=2� E0� )]:
In theA ! 0 limit, the constant number of plane-waves results are recovered.

In the opposite� ! 0; A!1 limit, all waves with12G2 > E0 drop out from the

ground-state wave-function, therefore mimicking a constant Ec. The optimum

practical choice lies somewhere in between these two extrema, since one would

like to work as close as possible to the constantEc; while avoiding unphysical

discontinuities. MakingA > 0 introduce an additional term in the stress tensor,

which corresponds, in the large-A limit case, to the so called Pulay stress [23]

(difference between the stress tensor@E=@h, and the “true” constant cut-off

stress). For more details we refer to Ref. [3].

Expression 3.1, shows that some terms are diagonal in reciprocal space and
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others are diagonal in real space, therefore computationalresources could be

saved calculating each quantity in the space where it is diagonal. This is the

strategy adopted in our CP algorithm, where a fast Fourier transform (FFT) is

used to transform quantities between the two spaces.

Substituting 3.2 into those terms of 3.1 which are diagonal in the reciprocal

space one obtains:E = Eke + Exc + Epsloc + Epsnl + EH + Esr � Eself ;
with Eke = 12 NbXi fiXG G2c�i (G)ci(G);Exc = Z dr�xc(�e(r))�e(r);Epsloc = 
XG ��e(G)S(G)vloc(jGj);Epsnl = NXI=1 NbXi=1Xl;m fi�l;m ���F l;mI;i ���2 ; (3.3)EH = 4�
2 0XG ��T (G) 1G2�T (G);Esr = 12 NXJ 6=I Z2vjRI �RJ j erf c0@ jRI �RJ jqR2c +R2c 1A ;Eself = 1p2� NZ2vRc ;
whereN is the number of atoms,Nb the number of electronic states,�xc the

exchange correlation energy density,S(G) = PI e�iG�RI the structure factor,vloc(jGj) the Fourier components of the local part of the pseudopotential. More-

over, �l;m = D'l;m j�vnlj'l;mE�1
and F l;mI;i =X ch (G) eiG�RI D�vnl'l;mYl;mjGE



3.2 Parallelization strategy 19

are the contribution to the total energy of the non local partof the pseudo-

potential�vnl in the form of Kleinman and Bylander [24], whereYl;m is the

spherical harmonic of angular momentuml, while
���'l;mE is the atomic radial

pseudo-function, for the same angular momentum. The last three equations in

3.3 are the electrostatic interaction energy. In order to efficiently treat the slowly

decaying Coulomb forces the second, third and last term of Eq. 3.1 are rewritten

by splitting out from the full ionic core charge a smeared Gaussian distribution

of widthRc, centered at the ionic sites:�ion = �X Zv�3=2R3c exp 24�jr�RI j2R2c 35 ;
that added to the electronic charge density, lead to a total electrostatic pseudo-

charge: �T = �e + �ion:
3.2 Parallelization strategy

The algorithm, that implements the above method is summarized in its essen-

tial parts in the flow chart 3.1. All contributions to the total energy, forces, and

stress are calculated through the wave-functions coefficients (ch (G)) in recipro-

cal space, and the charge densities in real (�T (r)) and reciprocal space (�T (G)),
their expressions, as implemented in the code, are reportedin appendix 6.3.

As a consequence arrays storing wave-functions and charge density are the key

quantities to work on for distributing the workload in a parallel implementation

of the CP algorithm. Three main parallelization strategiesdriven by these data

structures, as suggested also by other authors [25, 26, 27, 28], could be easily

identified:
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Figure 3.1: Schematic flow chart of our implementation of the CP algorithm.
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a)Distribute bands. Wave-functions ( i) with different band index (i) could

be assigned to different processors. Since the number of bands grows linearly

with the system size, this suggests the possibility of obtaining optimal perfor-

mances keeping constant the number of bands per processor [25]. This strategy

has however an intrinsic bottle neck in terms of redundancy and memory allo-

cation, since a copy of the charge density must be present on each processor.

b) Distribute real space and reciprocal vectors. Computations involvingG
vectors in reciprocal space, and those involving values of the charge density on

a grid in real space, are completely independent. It is thus possible to distribute

bothG vectors and elements of the charge density grid across processors [27].

This solution does not suffer for the bottle neck of case a) but necessitates of a

parallel FFT algorithm, and more complex communications.

c) Combinations ofa)andb). It is possible to subdivide processors in pools

assigning different bands to each pool and spreading bands over processors

within each pool, exploiting the benefits of the linearity ofthe size-bands re-

lation, and avoiding the redundancy of the charge density allocation [26]. How-

ever the resulting algorithm and communications in this case are tightly linked

to the underlying architecture, since in order to have a realimprovement of the

communication performance, the topology has to be taken into account while

designing the code. In fact, processors inside a pool have tobe physically close.

Note that in those cases where more than one k-point is used for the Brillouin-

zone sampling, an additional way of distributing the workload is possible [27].

In fact, most of the operations (in particular the most time consuming ones,

as FFT and orthogonalization of the wave-functions) are k-point independent,

hence wave-functions with different k-points could be assigned to different pro-

cessors to perform these operations concurrently. It is also possible to mix the
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k-points distribution with one of the other distribution method, in particular

codes combining b) and k-points distribution show good scaling performance

and do not have memory redundancy problems [29]. However, for a large sys-

tem the number of k-points needed is usually small (in our case we restrict to the�-point only), and does not allow an efficient implementationon a large number

of processors.

We have chosen, for our parallel implementation, the distribution method

b) because it is theoretically bottle-neck free, and thus well suited for all sys-

tem sizes and processor numbers. Although method c) shares the same prop-

erty, its communications have to be tuned on the underline hardware, which

is against our purpose to have an architecture-free code with the best possible

performances.

The code has been written in such a way to satisfy as much as possible the

following guidelines:portability, load balancing, minimization of communica-

tions, maximization of parallelism.

Since different parallel machines are available on the market with differ-

ent architectures, and since the underlying technologies are rapidly evolving

without a leading standard, we believe that developing a portable code will be

extremely useful and time saving.

To make the code as portable as possible we have designed it tohave a layer

structure (see Fig. 3.2). The topmost layer, containing allCP subroutines, is

written in plain F77-F90 without any architecture-dependent specific calls or

data structures; below this layer, there is a layer containing communications

routines, architecture-dependent routines and blas lapack routines. In the code

hierarchy, under the communication layer there is the communication library,

that is completely isolated from the CP subroutines. In thisway the communi-
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Figure 3.2: Structure of our code. The topmost layer, containing all CP subrou-
tines, is written in plain F77-F90 without any architecture-dependent specific calls
or data structures; below this layer, there is a layer containing communicationsrou-
tines, architecture-dependent routines and blas lapack routines. In the code hierarchy,
under the communication layer there is the communication library, that is completely
isolated from the CP subroutines.
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cation library could be substituted (i.e. changing from PVMto MPI1), without

modifying the CP subroutines, improving the portability ofthe code itself. The

architecture-dependent subroutines are reduced to a minimal set, and only few

hours of work are needed to rewrite them for a new architecture. However,

for testing purposes, it is also possible to substitute the communication layer

with a dummy layer, and to compile the code on a standard scalar workstation

with only a very little overhead, due to calls to these dummy subroutines. It

is important to note that in NUMA (Non Uniform Memory Access like SGI

Origin2000) and UMA (Uniform Memory Access like SUN Ultra HPC 10000)

machines, where a processor could address all the memory, explicit communi-

cation routines, contained in the communication layer, could be substituted by

pointers exchanges. This is expected to give an improvementin the performance

for a small number of CPUs, i.e. smaller than eight or sixteen.

In order to maximize parallelism we distribute, across the processors grid,

all arrays storing quantities that are function of real and reciprocal space co-

ordinates,r andG. Only arrays storing positions and forces on ions are not

distributed, and redundantly present on all processors. Their size is however

always very small (few thousands of elements) forab initio simulations, rep-

resenting a very small fraction of the total allocated memory, that could eas-

ily reach several GigaByte. In particular we distribute wave-functions, charge

density and all their related quantities; the resulting code shows good scaling

properties (see Appendix 6.2).

The minimization of communications and the load balancing are often an-

tagonist goals. Balancing the load in fact involves redistribution of data between

processors (see for example the FFT section below). In designing the code we
1PVM (Parallel Virtual Machine) [30] and MPI (Message Passing Interface) [31] are two popular

communication subsystem present on many parallel machines.
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have assigned to the load balancing a higher priority with respect to the reduc-

tion of the total amount of data communications. As stated above, optimizing

load balancing implies heavier communications, which in turn imply a larger

number of synchronization points. Since in modern parallelcomputers the data

transfer rate is usually very high, while synchronization could be time consum-

ing, a large part of the work was dedicated to the reduction ofthe number of

synchronization points (coarse-graining). In fact, whilethe mean performances

of a single processor are obviously the same, locally (in time) the performances

of more processors could be very different, especially whena large number of

Processing Elements (PEs) is used, mainly due to different use of cache and

memory accesses. Therefore, too many synchronization points could level off

the performance of processors to that of the locally slowestone. This problem

is dramatic when there are both many synchronization pointsand a non perfect

load balancing.

3.3 Data distribution

As already stated, we need to represent physical quantitiesin both spaces be-

cause some of them are diagonal (local) in reciprocal space (as the kinetic en-

ergy), and others instead are diagonal in real space (as the exchange correlation

potential). This determines the presence of two types of arrays in the code: 3D

arrays to represent quantities in real space, and 1D arrays for quantities in re-

ciprocal space, whereG vectors are ordered according to their length. A fast

Fourier algorithm (FFT) is used to transform quantities from one space to the

other.

While in real space there is a unique 3D mesh for charge density and po-

tentials, in reciprocal space there is a mesh for wave-functions (G vectors up to
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tentials span a larger space since they are function of the charge density which,

in reciprocal space, is a convolution of wave-functions :�e (G) = 1
 NbXi fi XG0 ci �G0� ci �G�G0� ei(G�G0)�r: (3.4)

The presence of quantities spanning both reciprocal meshes, implies a careful

data distribution to balance the workload. In Fig. 3.3 we show how recip-

rocal vectors are distributed in our code, for an example with four (Np = 4)
PEs;Ng andNgw are the number of vectors whose kinetic energies are smaller

than4Ec andEc respectively. Vectors up toEc are divided among processor

with a blocking factor ofNgw=Np (the firstNgw=Np G vectors to the first pro-

cessor, the secondNgw=Np G vectors to the second processor, and so on); the

remaining (Ng � Ngw) vectors up to4Ec are distributed with a blocking fac-

tor (Ng � Ngw)=Np. This distribution balances perfectly all loops within both

meshes and eliminates any redundancy for quantities in reciprocal space.

Real space 3D arrays are subdivided by planes across processors (see Fig.

3.4), with the only limitation that optimal performance is achieved when at least

one of the dimensions of the 3D array is a multiple of the number of processors.

However, in most cases this is not a real limitation, becausetypical dimensions

of the 3D real space mesh are three or four times the number of processors

available (in a massively parallel computer).

With real and reciprocal meshes distributed in this way it ispossible to con-

fine communications and then synchronizations (see Fig. 3.5) only to FFT rou-

tines, orthogonalization and global reduction operations(such as those required

to obtain global quantities as total energy or total forces).
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Figure 3.3:G vectors distribution. Left:G vectors stored in a one dimensional array
ordered according to their modules. Right:G vectors distributed across four proces-
sors.
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Figure 3.4: Real space 3D mesh data distribution. Left: 3D array storing the real spacer vectors mesh. Right: The real mesh distributed by planes across four processors.

3.4 The FFT routine

The FFT routine, in the code, is called a number of times to transform wave-

functions, charge density and potentials back and forward between reciprocal

and real space (for many systems almost half of the time is spent performing

this task). The size of the real space mesh is fixed by the charge density, and

corresponds, in reciprocal space, to the mesh containing the sphere of G vectors

smaller than4Ec. Wave-functions, whose elements are smaller thanEc, must

be transformed on the same real mesh as the charge density. Since standard

FFT algorithms operate between meshes of the same size, in our case the wave-

functions should be copied into a bigger mesh, and then transformed. It is clear

that in this way, a lot of time is wasted in transforming elements whose value is

zero. To optimize this operation, we adopt anad hocFFT algorithm for wave-

functions.
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Figure 3.5: Communications Flow chart. Left: Computations involving communica-
tions and synchronization. Right: complexity of the communications (per processor).
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of the FFT mesh.



30 Parallel Implementation of CP algorhitm.

The algorithm we have implemented is sketched in Fig. 3.6, for the case of

four PEs (Np = 4) and transformation form reciprocal to real space. It takes

advantage of the fact that a 3D FFT is a linear superposition of three subsequent

series of 1D FFTs, along the Cartesian coordinates. For eachseries, only those

1D FFTs containing non zero elements are evaluated. In the upper panel of Fig.

3.6 a top view of the FFT grid (Nx; Ny; Nz) together with the cut-off radius are

shown. In this example we consider the case in which we start transforming

from the 1D FFTs along the z direction. Columns (xy small squares) are allo-

cated by the processors only if they contain at least one G vector of the inner

sphere. Allocated columns are assigned to the processors (see colors code) in

such a way that the number of FFTs per processors differs at maximum by one

(in the case that the number of columns is not a multiple of thenumber of pro-

cessor). Since G vectors are distributed as shown in Fig. 3.3, the columns for a

given processor could result incomplete, and exchange of data is needed before

starting the FFT. The total number of 1D FFTs calculated in this step is approx-

imately1=8 (NxNy=8) the number of a standard 3D FFT algorithm (NxNy). The

transformed columns are then transposed to distribute the zdirection across pro-

cessors by planes, giving rise to the correct data distribution as for the real 3D

arrays. After that, only those xz columns that contain at least one element dif-

ferent from zero are transformed along the y direction (Fig.3.6 middle panel).

Here the number of 1D FFTs is reduced by1=2 ( NxNz=2) with respect to stan-

dard routines. Finally all yz columns are transformed alongx direction. The

complexity (order of the number of operations) of the above algorithm is :NyNzNx ( ln (Nz)8 + ln (Ny)2 + ln (Nx)) ;
It is then convenient to chooseNz as the largest dimension andNx as the smallest
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one. This algorithm is obviously used also in the backward direction from the

real to the reciprocal space.

FFTs on the bigger mesh used to construct the potential from the charge

density, are instead performed using a standard 3D parallelFFT algorhitm. In

this case, in fact, the number of zero elements is low and the gain obtained with

the previous algorithm usually is less than the gain obtained using optimized

FFT subroutines available from machine libraries.

Communications within the FFT are quite complex and for thisreason a

communication setup has been introduced in the initialization part of the code.

Through an index array, each G vector is associated to the ID (identification

number) of its source and destination PEs. In this way, during the communica-

tion event, vectors could be packed and exchanged without computations. The

use of buffers and global gather scatter communication operations allowed us, in

ourad hocFFT, to introduce only two synchronization-communications points,

at the beginning and between the first and second series of 1D FFT.

3.5 Orthogonalization

The orthogonality constraints for the wave-functions i at timet+�t; are satis-

fied by solving a matrix equation of sizeN2b (see Appendix 6.1), whereNb is the

number of electronic states. Terms entering this equation are calculated through

scalar products between wave-functions, so that the computational complexity

of these operations isNgwN2b . The solution of the matrix equation has instead a

complexityN3b and involves both matrix multiplications and a matrix diagonal-

ization.

The procedure has been fully parallelized writing parallelversions of the
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Figure 3.6: Scheme of ourad hocFFT routine. Upper grid: top view of the FFT
reciprocal space mesh, the xy columns are distributed across four processors according
to the color code scheme. Each processor performs its 1D FFTs in the z direction.
Middle grid: lateral view of the FFT grid, the xy columns are transposed in order to
distribute the FFT grid by plane across processors. Each processor performs its 1D
FFTs in the y direction. Lower grid: lateral view of the FFT grid, no communication
is needed, each processor performs its 1D FFTs in the x direction.
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above matrix operations. The computational complexity perprocessor isN2b (Nb +Ngw)Np ;
while the communication complexity per processor isN2b logNbNp :

It is remarkable to observe that, in the limit of large size problems the com-

munications become negligible with respect to the computations.
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Chapter 4

Water and Ammonia

In this chapter we present the results ofab initio simulations done on water

and ammonia in the pressures and temperatures range 30–300 GPa and 300–

7000 K. The simulations were aimed to study the behavior of the high-pressure

high-temperature phases of these simple molecules, with particular attention to

the properties of interest in high-pressure and planetary physics.

In the last years, in fact, a large number of shock-wave and diamond anvil

cell experiments have been carried out in these range of pressures and temper-

atures on hydrogen-bounded systems, raising a number of newand interesting

questions.

The high-pressure phase diagram of water at room temperature is quite well

understood. At 2 GPa the water crystalline structure is the so called ice VII [32].

Recent studies have shown that ice VII transforms at about 70GPa, into sym-
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metric ice X, where hydrogen and covalent bond distances between H and O be-

come identical, so that the molecular character is lost [33]. This phase is stable

up to 300–400 GPa where a transition to a new phase has been predicted [34].

The room temperature phase diagram of ammonia has also been investigated

up to 80 GPa [35, 36, 37]. Above 3 GPa the crystalline structure of ammonia is

the orientationally ordered orthorhombic pseudo-hcp (Ammonia IV, see Fig.

4.2). This phase has been found to be stable in the range 3–15 GPa [38]. Above

15 GPa the crystalline structure is still unknown, and different structures have

been proposed [35, 36]. Claims of hydrogen bond symmetrization at 60 GPa,

have been made [35], but they have not been confirmed by subsequent stud-

ies [38, 36].

At higher temperature, a recent study has shown a high protonconductivity

in water at 2000 K and 300 GPa [34]. However, no detailed studyhas been made

on the behavior of the hydrogen bond in water and ammonia in the range of

pressure and temperature of interest in planetary physics.Moreover, the melting

line and the properties of both molecules in the fluid phase atthese pressures are

not known.

Many open questions in planetary physics related to the properties of water

and ammonia at these extreme conditions exist. In particular, Uranus and Nep-

tune density profiles suggest that, buried between a rocky core and a gaseous

atmosphere, their interiors are mostly composed of a thick intermediate layer of

“hot ices”, predominantly water, hydrocarbons and ammonia(Fig. 4.1) in solar

proportions (molar fractions: 56% H2O, 36% CH4 and 8% NH3) [40]. Pressure

and temperature conditions within the ice layer range from 20 GPa – 2000 K,

to 600 GPa – 7000 K [39], along the planetary isentrope1. Many observable

1The ice layer is supposed to be almost adiabatic (provided it is uniformly mixed and convective),
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Figure 4.1: Sketch of the internal structure of Neptune and Uranus. Three layers
model [39]: external gaseous layer, middle ice layer and rocky core. Using constant
pressureab initio molecular dynamics, Ancilottoet al.[1] have shown that, in the ice
layer, methane dissociates into hydrocarbons of higher molecular weight, suggesting
that this could be the source of the anomalous atmospheric abundance of ethane ob-
served by the Voyager II spacecraft. In this thesis, using the same tool, wepredict the
ionization of water and ammonia in the ice layer and, if temperature are sufficiently
high (�7000 K), near to the ice-core boundary we predict water and ammonia to be
metallic.
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properties of these planets, such as gravitational moments, and partially also

their atmospheric composition, are thought to be determined by the physical and

chemical properties of matter within this layer. In particular the ice layer is con-

sidered to be the source of the strong magnetic field measuredby the Voyager

II spacecraft on Uranus and Neptune [41]. Electrical conductivities in the ice

layer of the order of 10(
 cm)�1 are necessary to sustain the planetary dynamo

mechanism for the generation of such a magnetic field [42]. Since water is by

far the most abundant component of the mixture, it has been suggested [42, 43]

that the large conductivity may arise from nearly complete ionization of H2O.

However, water metalization can not be ruled out at the extreme conditions of

the deeper regions of the ice layer. If this is the case, electronic conduction may

also contribute [44].

The only non-astronomical data available on the behavior ofices at these ex-

treme conditions come from shock-wave experiments. The equation of state of

both water and ammonia and of a mixture of water, ammonia and isopropanol

dubbed “synthetic Uranus” have been measured in shock-waveconditions up

to 200 GPa [43, 45]. The shock-wave measurements provide constraints on the

density profiles of Uranus and Neptune [46] and show that the electrical conduc-

tivity in water and ammonia increases exponentially along the shock Hugoniot2

up to� 20 GPa and then levels off [43, 45]. These data are consistentwith acti-

vated molecular dissociation at low pressure, whereas the high-pressure plateau

suggests a nearly constant concentration of dissociated species. The measured

value of the conductivity of water above 20 GPa (10(
 cm)�1) was also shown

to support planetary dynamo models [43]. However, the absence of conductiv-

the values of pressure and temperature, as functions of the distance from the center of the planet, lay on
a curve of constant entropy.

2In a shock-wave experiment the thermodynamic variables are related to thekinematic parameters
of the shock-wave itself through the Rankine-Hugoniot relations [47].
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ity data above 77 GPa (i.e. below 0.7 planetary radii) and theuncertainty on the

conduction mechanisms largely prejudice the constructionof reliable models for

the origin of the planetary magnetic field. Moreover, shock-wave experiments

provide information on the equation of state only along the shock Hugoniot

which of course does not uncover the full phase diagram.

Looking at the high-pressure experimental data on ammonia and water it

emerges that between the room temperature diamond anvil cell data and the

thousands Kelvin shock-wave data, there is a vast region of the PT phase dia-

gram yet unexplored.

Computer simulations can be extremely effective to exploreregions of the

phase diagram not directly accessible by experiment, providing a detailed pic-

ture of the behavior of matter under extreme conditions. Useof ab initio is

essential to describe hydrogen bonding and molecular dissociation in water and

ammonia [48].Ab initio simulations have already been used to clarify the high-

pressure, high-temperature behavior of methane [1] (that together with water

and ammonia is supposed to form the planetary ice layers), and to study the

structural phase transitions of ices at high pressure [34].

Severalab initio molecular dynamics simulations have been performed to

gauge the phase diagrams of ammonia and water at planetary conditions of tem-

perature and pressure. Water has been simulated at 60, 150 and 300 GPa, with

a super-cell of 32 molecules, while for ammonia simulationshave been per-

formed at 5, 30, 60, 150, 300 GPa with a super-cell of 64 molecules. A larger

super-cell for ammonia is needed to obtain a satisfactory convergence of the

calculated quantities with size. Temperature in all simulations was varied be-

tween 300 and 7000 K. In all simulations we have used Martins Troullier norm-

conserving pseudopotentials [49], and gradient corrections to the local-density
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approximation in the form proposed by Becke [50] for the exchange energy and

by Lee-Yang-Parr [51] for the correlation energy which describe well the hydro-

gen bonding [48, 52]. Electronic wave-functions were expanded in plane wave

up to a kinetic energy cutoff of 80-100 Ry, while the Brillouin zone sampling

was restricted to the� point. The time step for the integration of the equation of

motion was in the range 1-6 atomic units depending on the temperature of the

simulated system.

In the following part of this chapter we analyze the results for ammonia

(section 4.1), for water (section 4.2), and their implications for planetary physics

(section 4.3).

4.1 Ammonia

Ammonia (NH3) like water, is a polar hydrogenous molecule. With respect to

water, however, ammonia has a weaker hydrogen bond, that in the solid phases

becomes shared, with three hydrogen atoms bonding to a single lone pair (see

Fig. 4.2). The crystal structure of the solid phases, and themolecular interac-

tions in the fluid phases of these two simple molecules are determined by the

properties of their hydrogen bond. Of fundamental interest, therefore, is to un-

derstand its behavior under different conditions of pressure and temperature and

how this bond determines the physical properties of the systems.

The low-pressure low-temperature phase diagram of ammoniais shown in

Fig. 4.3 and the corresponding crystal structures are listed in Tab. 4.1. The high-

pressure side of the phase diagram has been fully characterized up to ammonia

IV, which has an orthorhombic pseudo-hcp crystal structurewith four molecules

per unit cell and P212121 space group (see Fig. 4.2), and it is stable in the range

of pressure 3–15 GPa. Two further phases have been proposed for ammonia
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Figure 4.2: Ammonia IV orthorhombic unitary cell, small and big balls represent hy-
drogen and nitrogen atoms respectively. Molecules labeled 1-4 are within thecell.
Sheared H-bond geometry : each hydrogen is H-bonded to two nitrogens (dotted lines),
while each nitrogen is H-bonded to three hydrogen (dashed and dotted lines starting
from nitrogen labeled 1).

Phase Structure Symmetry
I Cubic (pseudo fcc) P213 Ordered
II HCP P63/mmc Disordered
III FCC Fm3m Disordered
IV Orthorhombic (pseudo hcp) P212121 Ordered
V Cubic (?) I4̄3m Ordered
VI Cubic (?) Pn3m or Pm3m Ordered

Table 4.1: Structure and space group of ammonia known phases.
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Figure 4.3: Experimental P-T Phase Diagram of Ammonia (from Lovedayet al.[38]).
The structure of the phases is reported in Tab. 4.1
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Lattice parameters Theory Experiment
a 6.16 6.142
b 10.65 10.693
c 10.20 10.122

Table 4.2: Theoretical and experimental [38] lattice parameters of ammonia IVat
5 GPa.

on the basis of Raman scattering [35]: one with cubic structure and symmetry

I4̄3m above 15 GPa, and the other with cubic structure and symmetry Pn3m or

Pm3m above 60 GPa. In this last phase hydrogen bonds were suggested to be

symmetrical [35] with bond angles H-N-H of 90 degrees. A subsequent X-ray

diffraction study by Ottoet al. found, in contrast, that ammonia IV is stable up

to 60 GPa [36].

Before starting simulations at higher pressures, we testedour “machinery”

on ammonia IV at 5 GPa and room temperature, where data on the values of

the lattice parameters and atomic positions are well established. A satisfactory

agreement with experimental data has been obtained with a super-cell of 64

atoms and an energy cut-off of 100 Ry. Values of lattice parameters are reported

in Tab. 4.2 while in Fig. 4.4 the experimental (upper panel) and the theoretical

(lower panel) structure factors are compared.

It is well known that at low pressure van der Waals interactions are impor-

tant in determining the structure of molecular crystal [53,54]. However in this

calculation we do not include any van der Waals corrections to the molecular

interactions. The good agreement with experimental results might mean that in

this pressure regime van der Waals interactions are alreadynegligible. Neglect-

ing van der Waals interactions is even more justified at higher pressure where

electronic wave-functions overlap increases and covalentand ionic interactions
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become stronger.

Other runs at 30, 60, 150, 300 GPa and room temperature have been made

to calculate the low temperature equation of state (Fig. 4.5) and to look for an

hypothetical hydrogen-bond symmetric phase, that, as already mentioned, has

been claimed to occur around 60 GPa. Upon compression, distortions of am-

monia IV from the ideal hcp structure was found to decrease. For example, at

300 GPa we find c/a=1.634 and b/a=1.726, to be compared with those at 5 GPa:

c/a=1.648 and b/a=1.741, and with those of an ideal hcp lattice: c/a=1.633 and

b/a=1.732. No sign of hydrogen bond symmetrization has beenobserved. Even
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at 300 GPa molecules are quite distinct objects, with hydrogens far from any

bond center position. If we consider the distance between nearest neighbor ni-

trogens d(N-N) and the distance between nitrogen and its neighbor hydrogens

d(N-H), in a symmetric arrangement the relation 2d(N-H)�d(N-N) must be sat-

isfied, the inequality (>) referring to the case in which the two N-H bonds are

not collinear. In Fig. 4.6 we plot the d(N-N) and 2d(N-H) vs. pressure for

Ammonia IV. As can be seen, in this structure, symmetrization becomes geo-

metrically possible only at pressures of the order of 10 Mbar. This is of course

an upper limit and does not role out symmetrization at lower pressure, in a phase

different from ammonia IV. However if the symmetrization process is similar to

that of water, the actual transition could be expected to be not too far from this

limit [33, 55]. In order to answer to the question about the possibility of other

structures for ammonia with symmetric bond, we tried to optimize the simple

cubic structure proposed by Gautieret al.[35] at 300 GPa. The cubic structure

resulted energetically disfavored with respect to pseudo-hcp (by about 4 eV /

molecule) and the bond-center positions for H atoms are not in stable equilib-

rium. In fact, relaxing the structure, H atoms go off center and, in a constant

pressure simulation, the system transforms into an fcc structure, with a slid-

ing of the (100) planes along the [110] direction and a large volume reduction

(�3 a.u. / molecule). The energy of this new fcc phase at 300 K is compara-

ble, within our accuracy, to that of the pseudo-hcp structure. We have also tried

the fcc symmetric structure proposed by Gautieret al. at 300 GPa, but relaxing

the structure we again find that the hydrogens leave the bond center positions

and form ammonia molecules. However, in a constant pressuresimulation the

structure remains fcc. The energy of this structure is againcomparable with

that of the pseudo-hcp structure. These two results make thefcc an alternative
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candidate structure for ammonia at 300 GPa. This is not a surprise because hcp

and fcc structures differ only starting from the third nearest neighbor, and both

structures are present in the phase diagram of ammonia. We conclude stating

that our short simulation times and small cell sizes are not sufficient, in this

case, to discriminate between fcc and hcp, but do safely ruleout the occurrence

of hydrogen bond symmetrization.

The first simulation exploring the high-pressure high-temperature phase dia-

gram of ammonia has been performed at 60 GPa. The super-cell of 64 molecules

with the structure of ammonia IV has been first equilibrated at 300 K. We found

that both the geometry of the cell and the relative orientation of the molecules

did not change significantly with respect to that at 5 GPa. In particular, the

relative position of the peaks in the structure factor did not change. As the tem-

perature was increased, the system transforms, between 500and 1000 K into an

hcp plastic phase with free rotating molecules. This is not asurprise, as also the

low pressure hcp solid phase, at room temperature (see Tab. 4.1) is orientation-

ally disordered. This implies that in a close packed configuration forces on the

molecules have a low degree of directionality even at high pressure. Between

1000 K and 1200 K the system becomes superionic. Hydrogen atoms break their

covalent bonds and start diffusing through the lattice while nitrogen atoms are

still vibrating around their hcp equilibrium positions. Wehave located the phase

transition looking at the mean square displacement (m.s.d.) of N and H inde-

pendently. In Fig. 4.7 (upper panel) we report the m.s.d. during a simulation

at 60 GPa; diffusion clearly starts slightly above 1000 K. A subsequent visual

inspection of the atomic positions for the same run validates the high mobility

of diffusing hydrogens. In Fig. 4.7 (lower panel) the trajectory of an H through

the N crystal lattice during the same simulation of the upperpanel is reported.
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Work is still in progress with the aim of clarifying the statistics of the diffu-

sion process in the superionic phase. Visual inspection of the trajectories reveals

that the motion of the hydrogens is quite correlated; in fact, in spite of the large

diffusivity of hydrogens, nitrogen atoms are on average coordinated with three

hydrogens. The lattice parameters of the superionic phase are those of an ideal

hcp ( c/a=1.63 and b/a=1.73), possibly a consequence of the quasi-spherical dis-

tribution of the hydrogens around each nitrogen.

Around 2000 K also the N sublattice melts and the system transforms into

a superprotonic fluid, the diffusion constant of nitrogen and hydrogen being at

3000 K 1 � 0:3 � 10�4cm2s�1 and6:5 � 0:5 � 10�4cm2s�1 respectively. In the

superprotonic fluid phase the observed correlations between hydrogen jumps

are lost. This phase is electronically an insulator with a gap between valence

and conduction band of 3–4 eV, but its electrical conductivity is expected to be

high due to the high mobility of protons.

We calculate the conductivity���, in the linear response approximation,

where conductivity is related to the fluctuations of the polarizability via the

Green–Kubo formula [56]:���= 1kbTV 1Z0 D _P� (t) _P� (0)E dt; (4.1)

whereT is the temperature andP� the polarizability vector in Cartesian compo-

nents. Since ammonia in this phase is electronically insulating, we can calculate

the polarizability through the method proposed by King-Smith and Vanderbilt

through the Berry–phase formalism [57, 58, 59]:P� = 2 jejjG� jV Im ln det hcij exp (�iG�r) jcji ; (4.2)

whereG� are the reciprocal lattice basis vectors andci are the�-point electronic

wave-functions. Expression 4.1 can be simply rewritten, inthe limit t !1, as
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the Einstein relation:��� = limt!1 12tkbT D[P� (t)� P� (0)]2E ; (4.3)

where only the polarization itself (and not its derivative)is present. Unfortu-

nately, the values ofP� calculatedab initio through Eq. 4.2 are subject to large

fluctuations related to the fact that, within the CP scheme, wave-functions os-

cillate around the BO surface, and are not instantaneously in the ground state.

In order to get rid of such unphysical fluctuations we computethe conductivity

using Eq. 4.3, but expressing the polarization as:P� = 1V 0@q+ NHXI R�I + q� NNXI R�I1A ; (4.4)

whereq+ and q� are mean effective charges for the two species, and are re-

lated by3q+ + q� = 0 through the charge neutrality. We estimateq+ andq�
by averaging their values as obtained, at each MD step, equating the change in

polarization computedab initio with that computed using 4.4 . With this pro-

cedure we obtain for ammoniaq+ = +0:6e and consequentlyq� = �1:8e in

the superionic phase, andq+ = +e andq� = �3e in the fluid phase, indicating

that in the fluid phase hydrogens move as bare protons and the system resem-

bles a two component ionic liquid, where anions and cations are hydrogen and

nitrogen atoms, respectively.

We then compute the conductivity using 4.3 and 4.4 for the fluid phase. Re-

sults are shown in Fig. 4.9 and can be compared with shock-wave experimental

data. The agreement is rather good.

Since, as already observed, the ionic motion in the fluid phase is highly un-

correlated the conductivity obtained through the simple Nerst-Einstein relation:� = q2+nHDHkbT + q2�nNDNkbT ; (4.5)
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whereq, n andD are the charge, density and diffusivity of carriers, turn out

to be at most 10% different from the reported values. This is however not true

in the superionic phase, where hydrogens jumps are highly correlated. This

forbids the evaluation of the conductivity for the superionic phase using 4.5. On

the other hand, evaluating� using 4.3 in the superionic phase, that is including

correlations, was found to be unreliable because of large statistical fluctuations.

In order to find out a lower boundary for the pressure at which the superi-

onic and superprotonic phases start to appear, we simulatedammonia at 30 GPa.

Again, the system becomes plastic above 500 K, but increasing temperature fur-

ther, contrary to what occours at 60 GPa, solid ammonia transforms directly into

a molecular liquid around 1500 K. This places the triple point between liquid,

superionic and solid between 30 and 60 GPa, and between 1000 and 1500 K.

Further simulations at 150 and 300 GPa have been made in orderto complete

the phase diagram. At both pressures the superionic phase boundary appears,

within our resolution, at the same temperature as observed at 60 GPa. This

suggests that, according to the Clausius-Clepeyron relation, the phase transition

does not imply an appreciable volume change. The plastic phase, present at

30 and 60 GPa, did not appear in simulation runs at 150 and 300 GPa, where

in fact no complete molecular rotations have been observed.However large

random reorientations are still present above 500 K, makingthe system at least

orientationally disordered.

A simulation, with a super-cell containing 31 molecules anda vacancy, has

been done at 150 GPa to check the stability of the superionic phase against melt-

ing. Up to 2500 K the system was stable with the mean square displacement of

nitrogen almost constant. However as soon as the temperature was increased

to 3000 K the nitrogen lattice melts. Upon a subsequent cooling, the nitrogen
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30 GPa 60 GPa 150 GPa 300 GPa
ordered-plastic � 500K � 500K — —
plastic-molecular fluid � 1500K — — —
plastic-superionic — � 1000K � 1000K � 1000K
superionic-ionic fluid — � 2000K � 3000K � 4000K
ionic fluid-metallic — — — � 5500K

Table 4.3: Calculated phase boundaries.

lattice frizes below 3000 K, although not in a crystalline structure, while hydro-

gens continue to diffuse.

Melting temperatures values are reported in Tab. 4.3 together with other

phase boundary temperatures.

In Fig. 4.8 we sketch the high-pressure high-temperature ammonia phase

diagram as results from our simulations. Gray regions represent our uncertainty

obtained cycling between the two phases (hysteresis loop).They are mainly due

to the small cell size and short simulation time.

At pressures above 60 GPa the melting line is much higher thanthat extrap-

olated from low pressure data, possibly due to the presence of the superionic

phase and the changes in the hydrogen bond interaction.

It is interesting to note that the fluid phase is characterized by three differ-

ent regimes: molecular, ionic and metallic. In the molecular regime molecules

are intact, while in the ionic one they are completely dissociated, resembling

a molten salt. The crossover between the two regimes is characterized by an

exponential increase in the number of dissociated molecules, and thus of the

protonic carriers. The metallic regime is characterized bythe closure of the

electronic gap induced by the temperature. This regime is certainly character-

ized by an electronic conductivity which is typically a few orders of magnitude

higher than in the ionic regime. However a precise calculation of the conductiv-
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ity, in the metallic regime has not been attempted yet.

4.2 Water

Water is by far one of the most studied molecules in nature, and its high-

pressure high-temperature behavior is particularly relevant in planetary physics.

For a detailed overview of the high-pressure low-temperature behavior of water

we refer to the article of M. Bernasconiet al.[62]. The high-pressures high-



56 Water and Ammonia

temperatures region of the phase diagram has been investigated experimentally

through shock-waves. Conductivities up to� 80GPa and the equation of state

up to� 150GPa have been measured [43, 47, 61, 60].

The low temperature crystal structure of water up to 300 GPa is known from

previous theoretical and experimental work. The crystalline structure at room

temperature and for pressure in the range 2-60 GPa is ice VII [32, 63, 64]. Above

60-80 GPa ice VII is believed to transform into the symmetrichydrogen-bonded

ice X structure (space group Pn3̄) [33, 65, 55]. In this phase the crystal structure

is of the cuprite type and the picture of ice as a molecular crystal breaks down

entirely. Both in ice VII and ice X oxygen atoms form a body-centered-cubic

(bcc) sublattice (Fig. 4.10 a, red circles). Hydrogens, that in ice X sit in the

middle of the O-O separation and are slightly off-center in ice VII, occupy four

of the eight allowed nearest neighbor distances, designingan ideal tetrahedron.

Two of such tetrahedron are possible (Fig. 4.10 b, blue and green tetrahedron),

and the structure of the ice X can be seen as the compenetration of two simple

cubic oxygen sublattices, the first with nearest hydrogens in a given tetrahe-

dron configuration and the second with nearest hydrogens in the other one (see

Fig. 4.10 a, A and B sublattices). The existence of ice X, firstinferred from

spectroscopy [65] but not yet observed directly, has been confirmed byab initio

molecular dynamics, that yielded a transition pressure of 102 GPa by treating

the protons as a classical particles [33], and of 72 GPa treating them as quantum

particles [34].

Three runs has been performed in the high-pressure high-temperature region

of the PT phase diagram, at 60, 150 and 300 GPa. Our low temperature starting

configuration has been the ice VII structure at 60 GPa and ice Xphase at 150

and 300 GPa. After an equilibration at 300 K, by increasing temperature at all
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three pressures we have seen an abrupt transition taking place around 2000 K,

after which the protons become highly diffusive (DwaterH (150GPa; 2500K) =6 � 10�4cm2=s), similarly to what observed in ammonia. Again we have located

the transition looking at the m.s.d. of hydrogen and oxygen atoms separately,

and with a subsequent visual inspection of the trajectories.

In this superionic phase the oxygen atoms still vibrate around the bcc lattice

positions of crystalline ice VII and X. Proton diffusion occurs via jumps among

equivalent site along the O-O separation (Fig. 4.10 c, gray-white circles). At

150 GPa in the superionic phase all sites of both tetrahedra are equally visited

by hydrogens leading to the Pn3̄m space group. This can easily be monitored,

across the phase transition, with the help of the following order parameter:� = 1Noch NoXi=1 (hocc:i � hunocc:i ) ; (4.6)

whereNo is the number of oxygens in the simulation cell,ch is the coordination

of hydrogens with respect to oxygen, that is always 4. As already stated, the

hydrogens, in ice X, can be arranged in two different tetrahedral configurations

(blue and green tetrahedron in Fig. 4.10a) around the oxygens. An oxygen

atom, therefore, is classified (A or B type) depending on the configuration of its

nearest hydrogens. Oxygens of type A and B (see Fig. 4.10a) form two sim-

ple cubic compenetrating sublattices. We mark as occupied site the blue(green)

tetrahedron vertices around an oxygen of type A(B) (gray circles in Fig. 4.10a),

and as unoccupied site the green(blue) tetrahedron vertices around an oxygen

of type A(B) (yellow circles in Fig. 4.10a). In Eq. 4.6hocc:i andhunocc:i for each

oxygen in the simulation cell are the number of hydrogens in sites marked as

occupied and unoccupied. This can be understood with the help of Fig. 4.10b

where the oxygen type is A,hocc:i is the number of hydrogens occupying gray
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circles positions andhunocc:i is the number of hydrogens occupying white dotted

circles. With this definitions� = 1 for the ice X configuration (all hydrogens

in sites marked as occupied),� = �1 for its complementary configuration (all

hydrogens in sites marked as unoccupied), i.e. exchange oxygen sublattice type,

and� = 0 for a configuration were all eight sites are occupied with equal prob-

ability independently on the sublattice type (Fig. 4.10c).In Fig. 4.11 we report

the values of� during a run at 150 GPa where the system becomes superionic.

Within this phase� approaches zero indicating that in the system there is no

memory of the sublattices type A and B, i.e. all sites allowedfor hydrogen are

equally visited. In order to confirm that the preferred position for hydrogens

are still the bond centers we record the positions of oxygensand hydrogens in

the superionic phase and we plot the mean density of hydrogens and oxygens in

3D, see Fig. 4.12. As expected oxygens are still in their equilibrium positions

while the density of hydrogens is peaked at the middle of any O-O distance.

At 60 GPa, instead, water is in the ice VII structure, and along the O-O dis-

tance there are two equilibrium positions allowed to hydrogens. This slightly

complicates the situation because it doubles the number of sites between which

hydrogen jumps occur. If one considers the two neighboring sites along O-O

distance to be the same site3, and performs the same analysis as above the

overall picture is unchanged. Actually, inside the superionic phase there is a

smooth transition between the two regimes while the barrierat the middle of

O-O distance is lowering due to volume decrease.

At 300 GPa the transition to the superionic phase involves also a change in

the crystalline structure of oxygen sublattice from ice X toice XI. Ice XI has

been discovered and characterized by Benoitet al.[33], usingab initio constant
3this approximation is correct as long as the energy barrier between neighboring sites along the same

O-O distance is much lower than the energy barrier between sites on different O-O distances
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Figure 4.12: Density of hydrogens (gray) and oxygens (red) in the superionic phase of
water at 150 GPa.
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pressure molecular dynamics. In particular they found a transition from ice X

to ice XI at room temperature between 300 and 400 GPa. Figure 4.13 shows the

calculated oxygen-oxygen and oxygen-hydrogen pair correlation functions at

300 GPa of: ice X at 1000 K (solid phase), ice X at 2000 K before the transition

and superionic ice again at 2000 K after the transition. During the superionic

phase the positions the peaks in the oxygen-oxygen pair correlation function,

move from those of ice X to those of ice XI (see Figs. 4.15 and 4.14 lower

panel), and the coordination with the nearest neighbor changes from 8 to 12

(see Figs. 4.15 and 4.14 upper panel).

A further increase in temperature (T > 3500K depending on the pressure)

leads to the melting of the oxygen sublattice, (DwaterO (150GPa; 4000K) = 3 �1:5 � 10�5cm2=s), but only to a slight increase in the proton mobility (DwaterH(150GPa; 4000K) = 1:8 � 10�3cm2=s), which varies with continuity across the

melting line. As in the case of ammonia this fluid is dissociated, and resembles a

two-component ionic liquid (molten salt). As anticipated in the previous section

cross correlation between atoms displacements are negligible in the fluid phase,

and the mean effective charge of the hydrogens ise. Using the relation 4.3 we

calculate the conductivity of water, near to the planetary isentrope, its values

are reported in Fig. 4.9, and the agreement with the experimental data, where

they exist, is rather good. It has to be noted that if we use theexpression 4.5,

in the fluid phase, the contribution coming from the diffusivity of oxygen atoms

is about the 10% that of the hydrogens (protons) (DwaterH (300 GPa; 5000 K) =2 � 10�3cm2=s) (DwaterO (300 GPa; 5000 K) = 8 � 10�5cm2=s). At 300 GPa and

5000 K along the planetary isentrope, the predicted conductivity of water and

ammonia are200 (
 cm)�1 and170 (
 cm)�1 respectively.

With decreasing pressure in the fluid phase a cross-over fromionic to molec-
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pair correlation functions (lower panel) and its integral (upper panel) at 150 GPa.
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pair correlation functions (lower panel) and its integral (upper panel) at 300GPa.
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Figure 4.16: Phase diagram of Water as emerged from theab initio simulations. At
fixed pressure the temperature has been increased from 300 to 7000 K. The gray re-
gions indicate the error bar on the predicted phase boundaries, their size is estimated
from the simulated hysteresis loop. The Neptune isentrope is taken from Ref. [39].
The experimental melting line of water at low pressure is taken from Ref.[66]
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ular liquid is obviously expected. In ammonia (see above) the cross-over lies

between 30 and 60 GPa. We have not attempted to simulate waterat pressures

below 60 GPa and therefore the position of the molecular-ionic boundary in the

fluid region of Fig. 4.16 is somehow arbitrary and chosen to bethe same as

in ammonia. Our results provide also a simple interpretation of the experimen-

tal pressure dependence of the conductivity. At low pressures molecular water

exhibits a low ionic conductivity arising from dissociatedmolecules. By in-

creasing pressure the number of dissociated molecules (andthus of the protonic

carriers) increases exponentially across the molecular-ionic cross-over. In the

ionic regime all the protons contribute equally to the conductivity and a further

increase in pressure increases only slightly the proton mobility and concentra-

tion, without changing the number of carriers .

Both the superprotonic solid state and the ionic liquid state reveal an elec-

tronically insulating character, as shown by the electronic density of states at

300 GPa, reported in Fig. 4.18. At low temperatures filled andempty states are

separated by a gap 10 eV wide, which decreases continuously with increasing

temperature in the superionic (2500 K) and fluid (5000 K) phases. Finally at

7000 K the fluid gradually turns metallic, as suggested by thefinite density of

states at the Fermi level in Fig. 4.18. The same behavior is observed at lower

pressures (150 GPa), where the metalization temperature isfound to be slightly

higher. In Fig. 4.17 (lower panel) we also report the energy of the highest filled

states (continuous lines) and of the lowest empty states (dotted lines) for our

simulation cell, as a function of time, during a simulation run. Again this points

to a value of about 7000 K for the metalization temperature at300 GPa.
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4.3 Planetary physics

In the previous sections we have presentedab initio molecular dynamics simula-

tions aimed at gauging the phase diagram of water and ammoniain the range of

pressure and temperature of the planetary ice layer. The simulations also yield

the equation of state (pressure-vs-density) of water and ammonia (Fig. 4.19)

needed for the calculation of the radial density distributions to be compared

with those derived from the gravitational field measured by spacecraft. More-

over, the simulations provide data on the electrical conductivity needed for the

calculation of the magnetic field generated by the planetarydynamo. At the

conditions of the Neptune isentrope both species are fluid and fully dissociated

in a two component plasma. In the fluid phase both species display a protonic

conductivity of the order of 10-100(
 cm)�1, sufficiently large to sustain the

dynamo generation of the planetary magnetic field. Only at higher temperatures

(� 7000 K in water and� 5500 K in ammonia at 300 GPa) do the fluids become

metallic.

The computed equations of state of water and ammonia close tothe Nep-

tune isentrope are compared in Fig. 4.19 with shock-wave data. Previous theo-

retical results on methane [1] and the shock-wave measurements on “synthetic

Uranus” [43] are also included. By using the additive volumelaw [67] we esti-

mated the pressure versus volume curve of the mixture of water, ammonia and

methane in solar proportions. The results (crosses in Fig. 4.19) are in good

agreement with shock-wave data available for “synthetic Uranus” and provide

an estimate of the equation of state of ices mixture at higherpressure and tem-

perature.

We can now outline the consequences that the above results may have on the
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understanding of the ice layers of Uranus and Neptune. The precise location of

the planetary isentrope in Fig. 4.16 is subject to large uncertainties depending on

the model of the planet’s interior. Within the uncertainties of our simulations,

we find that the melting line runs below all the presently accepted planetary

isentrope of Neptune [39, 68] (see Fig. 4.16), confirming that planetary ices

are in the fluid state. Within the fluid phase three distinct behaviors have been

observed: a molecular regime at low pressure, a non-metallic ionic regime at

intermediate pressure and temperature and a metallic regime at high pressure

and temperature. Along the Neptune isentrope both NH3 and H2O components

of the ice layer are predicted to be electronically insulating up to 300 GPa. Thus

the electrical conductivity in the outer part of the ice layer can only come from

the large proton mobility in the ionic liquid phase. Indeed our computed ionic

conductivity is in excellent agreement with shock-wave data measured up to 60

GPa, as shown in Fig. 4.9. The simulation further allows us tocompute the

ionic conductivity at higher pressures not reached in shock-wave experiments.

Moving deeper into the planet, the ice-core boundary is met at 600 GPa

and 7000 K according to the presently accepted Neptune isentrope [39]. At

these conditions we predict water and ammonia to be metallic. A model of

the dynamo generation of the magnetic field should thereforeinclude both the

contribution of the high electronic conductivity due to themetallic H2O and

NH3 liquid in the inner part, and the lower electrical conductivity due to the

proton mobility in the H2O and NH3 electronically insulating ionic liquid in the

outer part of the ice layer. However, it must be noted that alternative models

of the giant planets have been proposed which assume that above 150 GPa the

interior is isothermal at a temperature of�5000 K [69]. In this latter case the

ices will keep electronically insulating in the whole planet.



Chapter 5

Conclusions

The main result of this thesis is the determination of the very-high-pressure

and temperature phase diagram of water and ammonia by means of ab initio

constant-pressure molecular dynamics.

A new superionic phase has been found above 60 GPa between thesolid and

the fluid phases, both in water and ammonia. Due to the presence of this new

phase, the melting lines of water and ammonia are pushed at much higher tem-

perature than those predicted by extrapolating available low pressure data, and

the melting line of water lies near the planetary isentrope.In the fluid phase of

both molecules we have found and characterized an insulating ionic regime with

complete molecular dissociation, that becomes metallic upon heating at very

high pressure (T>7000 K for water and T>5500 K for ammonia, at 300 GPa).
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The simulations also show that at room temperature hydrogenbonds in ammo-

nia remains asymmetric up to a pressure of at least 300 GPa. This is at variance

with water, where hydrogen bonds symmetrization occurs at�300 GPa.

The conditions of pressure and temperature considered in this thesis are typ-

ical of the interior of giant planets Uranus and Neptune. Implications on the

physics of these planets have been discussed.

In particular, we have shown that the planetary isentrope (according to the

current planetary models) runs above the melting line of water and ammonia,

which implies that the middle ice layer is in the fluid state. In this state the

molecules are fully dissociated and the electrical conductivity arising from the

mobility of protons is large enough to sustain the dynamo mechanism for the

generation of the planetary magnetic field. The theoreticalresults on the equa-

tion of state and electrical conductivity are in good agreement with experimental

data available at low pressure (up to 60 GPa) and provide reliable predictions of

the behavior of water and ammonia at the conditions of the inner part of the ice

layer (300 GPa and 5700 K) not reached in shock-wave experiments. Near the

ice-core boundary (600 GPa and 7000 K) we predict water and ammonia to be

metallic. Moreover our results allow a simple explanation of the experimentally

observed behavior of the conductivity as a function of pressure.

All the above results were made possible by the development of a highly

efficient parallel code for theab initio molecular dynamics, capable of exploit-

ing the computational power of present supercomputers. Thecode has been

designed as architecture-free, and displays an almost linear speed-up, in a wide

range of number of processors, on many massively parallel supercomputers.

We conclude with a few perspectives for future work. A bettercharacter-

ization of the superionic phase, mainly of the mechanism of proton diffusion
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would be required, especially in the range of pressures and temperatures nowa-

days accessible experimentally by laser-heated diamond anvil cell techniques.

Moreover, a study of the properties of binary and eventuallyternary mixtures of

water, methane and ammonia at planetary conditions would beextremely impor-

tant to confirm that the present understanding of planets interior, based on the

separate study of the three species, is not affected by theirmutual interaction.

Of particular relevance would be, for example, the case of the ternary mixture of

solar proportions, that should closely resemble the composition of the ice layers

of Uranus and Neptune.
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Chapter 6

Appendix

6.1 Orthogonalization and Parallel Diagonalization

In this brief appendix we will explain how the orthogonalization of the wave-

functions is performed assuming velocity Verlet algorithm[70] and Fourier ac-

celeration [71] for time integration, and using the method of Ryckaertet al.[72]

for constrained dynamics.

The constraints to be satisfied during the dynamics are the set of equations:<  i(t+�t)j j(t +�t) >= �ij ; (6.1)

where i(t +�t) are the wave-functions at timet +�t; obtained as:

 i(t+�t) = 2 i(t)� i(t��t)� (�t)2� 24�Etot(t)� �i �Xj �ij(t +�t) j(t)35 : (6.2)
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Substituting Eq. 6.2 into 6.1 we obtain the matrix equation for the Lagrange

multipliers: A+ �B +B+�+ + �C�+ = 1 (6.3)

with � = �t2��(t+�t)=�; (6.4)Aij =< � ij � j >; (6.5)Bij =<  i(t)j � j >; (6.6)Cij =<  i(t)j j(t) >; (6.7)

where � i = 2 i(t)�  i(t��t)� (�t)2� �Etot(t)� �i (6.8)

are the unconstrained wave-function at timet+�t. With the introduction of the

Fourier acceleration the fictitious mass� is no more a constant but a matrix in

the Fourier space whose element are�GG0 = �minf�; �c=G2g�GG0; (6.9)

where� is the electronic mass without Fourier acceleration,�c is a cut-off (as

a lower bound) on the wave-function to be accelerated andG, G0 are reciprocal

space vectors. We could still use the equation 6.3 redefiningthe various quantity

in the following way: � = �t2��(t +�t); (6.10)Bij =< ��1 i(t)j � j >; (6.11)
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and � i = 2 i(t)�  i(t��t)� (�t)2��1 �Etot(t)� �i : (6.13)

Here all products involving� are matrix products among quantities stored in

reciprocal space, therefore equation 6.3 is evaluated in reciprocal space.

Eq. 6.3 is solved iteratively [73]. If we decompose matrixB into Hermitian

(Bh) and anti-Hermitian (Ba) parts,B = Bh +Ba (6.14)

it is straightforward to see thatBa vanishes in the limit of small�t. In the first

iteration�(0) can thus be obtained from�(0)Bh +Bh�(0) = 1� A; (6.15)

where the C-dependent term has been neglected because of higher order in�t.
Equation 6.15 can be solved exactly introducing the unitarymatrix U , which

diagonalizesBh (UBhU = D, whereDij = di�ij). The solution to Eq. 6.3 can

be obtained by iterating�(n+1)Bh +Bh�(n+1) = 1� A� �(n)Ba � Bya�(n) � �(n)C�(n):
The parallelization of this algorhitm is quite straightforward, in fact only

two parallel tasks are present: parallel matrix multiplication and parallel matrix

diagonalization. Both operations are available in machinelibraries of many

vendors. Their interfaces however in many cases are different. Moreover we

observed that, especially for the parallel diagonalization, in all tested cases,

the data distribution required to obtain the highest performance changes with
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Figure 6.1: Parallel diagonalization routine execution time for different matrix sizes
and number of processors, compared to the standard Eispack routine.

the number of processors. This is not acceptable, since, a part special cases,

the required data distribution is not compatible with our fixed one. We decide,

hence, to rewrite a parallel version of these two routines, working at a given data

distribution. The overall performance of our routines are now slightly worse

than that of the library routines with optimal data distribution, but dramatically

better by considering our particular data distribution (the rows of a matrix are

distributed with a blocking factor of one: the first row to thefirst processor, the

second one to the second processor, and so on).
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For the practical implementation of the two algorithms we refer to refer-

ence [74]. Here we only point out that the matrix diagonalization has been im-

plemented using the Householder algorhitm. In Fig. 6.1 the performance on a

T3E600, of the diagonalization subroutine for different matrix sizes and differ-

ent number of processors is compared with the standard scalar Eispack routine

( the two codes have been compiled with the same compiler options). Note that

the parallel routine running on a single processor has the same performance as

the Eispack one.

In Fig. 6.2 the speed-up is shown1 . This reveals that for each matrix size

1defined asSp = T1=Tp, with T1 andTp being the execution time on one andp processor respec-
tively; sometime this definition is also known as thealgorithmic speed-up, not to be confused with the
speed-up ratiowhich compares the best possible scalar algorhitm with the parallel algorhitm.
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there is a limit for the number of processors above which the routine speed-

up saturates, due to the communication and synchronizationoverheads. The

empirical role:

matrix size
number of processors

< 16; (6.16)

can be derived and has to be taken into account in choosing thenumber of

processors for a particular run, in order to obtain optimal performance.

6.2 Code benchmarks

In this appendix code benchmarks on different architectures are presented and

discussed.

In Fig. 6.3 we report the execution time of a molecular dynamics step as a

function of the number of processors, while in Fig. 6.4 the correspondent speed-

up is shown. The system considered is a super-cell (15, 19.5 and 15 atomic

units) containing 16 ammonia molecules with an energy cut-off of 100 Ry.,

gradient corrections and pseudopotentials in the Kleinman-Bylander [24] form

with s and p non-locality. At each time step the forces on atoms, on electrons

and the stress on the cell have been calculated. The version of the code used for

this benchmark does not include thead hocfast Fourier transform described in

chapter 3, because that was implemented later.

Note that, apart the absolute speed which is dependent on thearchitecture,

the speed-up is the same on all architectures tested. This demonstrates that

our code is not only portable, but, most important, it does not loose in parallel

performance from one architecture to another. Therefore, our implementation

requirement to build an architecture-free parallel code isfulfilled.

The graph 6.4 also shows that the code speed-up is almost linear for a given
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ent architectures.

problem in a wide range of number of processors, clear evidence of a good load

balancing and an efficient implementation of the communications.

It is remarkable that in Fig. 6.4, for some architectures, the speed-up is

super-linear. This apparent violation of the Amdahl’s law [75] ( well known

law of parallel programming stating that the algorithmic speed-up of a code can

never be super-linear because of communication overheads ), is a consequence

of the presence of caches on processors. In nowadays computers the importance

of the cache is increasing and a good use of it could improve the speed of the

code. While on a scalar computer little could be done a part for a careful writing
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of the code, in a parallel computer the local size of the arrays can be changed by

increasing the number of processors. In fact, as in our case,the reduction of the

size of local arrays could reduce also the cache miss events,giving rise to a gain

in computational speed greater than that lost in the communication overhead

due to the larger number of processors.

Another important part of the computational work done on thecode, is the

effort devoted the code optimization, after its implementation. A careful anal-

ysis of the performances using both profiler system tools andtiming routines

has been carried out. This has helped us in tuning load balancing and commu-

nications, and in optimizing numerical algorithms. At the end of this work the

execution time of the code decreased, on average, by more than 40% [76].

To conclude this section, we present in Figs. 6.5 and 6.6. ourvery last bench-

mark on T3E 1200 machine with the last revision of the code (including thead

hoc fast Fourier transform routine) The benchmark has been performed with a

square super-cell ( 20x20x20 atomic units) containing 64 ammonia molecules,

all other details are the same as for the previous benchmark.Note the high effi-

ciency of the code (almost linear speed-up obtained using the same data for all

numbers of PEs) in the whole range from 8 to 128 PEs.

6.3 Forces and Stress.

In this section we report the full expression of the forces onions, electrons and

cell (stress) as they are implemented in the scalar and parallel code (for a more

detailed derivation and description of these quantities weaddress the reader to

Ref. [3]). The computational effort needed to calculate themain contributions

to these quantities is also reported.
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Starting from ions, the expression of the force on ionI is:FI = � @E@RI = @(Eke + Exc + Epsloc + Epsnl + EH + Esr � Eself )@RI ;
where @(Eke + Exc � Eself )@RI = 0;@Epsloc@RI = 
XG �iGeiG�RI��e(G)vloc(jGj);@Epsnl@RI = 2RefNbXi=1Xl;m fi�l;mF l;mI;i XG (�i)Ge�iG�RI c�i (G) DGj�vnl'l;mYl;mEg;@EH@RI = 4�
2 XG6=0 ��T (G)iGe�iG�RIG2 Zv
 exp "�R2cG24 #+ c:c:;@Esr@RI = �Z2v NXJ 6=I8>><>>:erf c � jRI�RJ jRcp2 �jRI �RJ j3 + p2Rcp� exp�� jRI�RJ j22R2c �jRI �RJ j2 9>>=>>; (RI �RJ) :
The meaning of all quantities appearing in these expressions is reported in chap-

ter 3. In the parallel code, the sums over theG vectors, of the first three expres-

sions, are evaluated only over theG vectors of the local processor, while the

arraysfi; �l;m andRI are shared. In the fourth expression, the arrayRJ is tem-

porarily distributed across the processors (with a blocking factor of one) and

each processor sums only on its ownRJ . At the end of these sums each pro-

cessor has only a partial value of the forces, then a global parallel sum of theN
forces is performed. In table 6.1 the order of the number of operations required

for the computation of the forces, on the scalar and parallelcode are shown.

The Fourier components of the forces on thei electronic state are obtained

from: Fi(G) = � @E@ �i ;
expandingE and calculating the derivatives one obtains:@Eself@ �i = 0;
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Scalar Complexity Parallel Complexity@Epsloc=@RIand @EH@RI N �Ng N �Ng=Np@Epsnl =@RI N �Nb �Ngw N �Nb �Ngw=Np@Esr=@RI N �N N �N=Np
communications N �Np logNp

Table 6.1: Computational complexity for the determination of the Forces on the atoms.N is the number of atoms,Nb the number of electronic states,Ngw andNg the number
of G vectors up toEc and4Ec respectively, andNp the number of processors.@Eke@ �i = 12fiG2ci (G) ;@EH@ �i = 4�fi XG0 6=0 �T (G0)G02 ci �G�G0� ;@Exc@ �i = FFT (@Exc@ �i (r) = fi "�xc(r) + @�xc@�e(r)�e(r)# i(r)) ;@Epsloc@ �i = fiXG0 S �G0� vloc(���G0���)ci �G�G0� ;@Epsnl@ �i = fiXI Xl;m �l;mF l;mI;i e�iG�RI DGj�vnl'l;mYl;mE :
In both codes, to calculate the contributions fromEH ; Exc andEpsloc; the Hartree

potentials and the local part of the pseudopotentials are calculated in reciprocal

space and transformed in real space to be added to the exchange and correlation

potentials. Then each wave-function is transformed in realspace, multiplied

by the potentials and the result (@ �EH + Exc + Epsloc� =@ �i ) is transformed back

in reciprocal space. The computational complexity for the determination of all

the Fourier components of all the electronic states is shownin table 6.2. Note

that contrary to the case of the forces on ions, where each processor calculates

only a part of the total force, here each processor calculates the full force of the

Fourier components relative to itsG vectors. No additional global parallel sum

is needed.

An explicit derivation of the stress components has been carried out by
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Scalar Complexity Parallel Complexity@ (EH + Exc + Epsloc) =@ �i 2Ng +NbNxNyNz+2Nb FFT
(2Ng +NbNxNyNz)=Np+2Nb parallel FFT@Epsnl =@ �i N �Nb �Ngw N �Nb �Ngw=Np@Eke=@ �i Nb �Ngw Nb �Ngw=Np

communications 2Nb comm. within FFT

Table 6.2: Computational complexity for the determination of all the Fourier compo-
nent of all the electronic states. Symbols as in Tab. 6.1

Focheret al. in the case of both norm-conserving and ultra-soft pseudopoten-

tials. Here we report only the expression of the stress components for the norm-

conserving case. As already shown (Chapter 2), the stress tensor is defined as:� = � 1
 @E@h ht;
with:@Eke@h�� = � NbXi=1 fiXG G�G �ht��1� c�i (G) ci (G) ;@Exc@h�� = �Z dr [�xc(�e(r))� vxc(r)] �e(r)� �ht��1�� ;@Epsloc@h�� = �
XG S (G) ��e(G) "2@vloc(jGj)@G2 G�G + vloc(jGj)��# �ht��1� ;@EH@h�� = 24�EH�� + 4�
 XG6=0 ��T (G)G2  �T (G)G2 + 12�ion(G)R2c!G�G35 �ht��1� ;@Esr@h�� = �12Z2v 2664 NXI NXJ 6=I8>><>>:erf c � jRI�RJ jRcp2 �jRI �RJ j3 + p2Rcp� exp�� jRI�RJ j2Rcp2 �jRI �RJ j2 9>>=>>;3775(R�I �R�J ) �RI �RJ� �ht��1� ;@Epsnl@h�� = 2 NbXi=1 fiXl;m �l;mXI Re 264@ �F l;mI;i ��@h�� F l;mI;i 375
with @ �F l;mI;i ��@h�� =XG (�i)l c�i (G) e�iG�RI 4�
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Scalar Complexity Parallel Complexity@Eke=@h�� Nb �Ngw Nb �Ngw=Np@Exc=@h�� NxNyNz+FFT NxNyNz=Np+parallel FFT@Epsloc=@h��and@EH=@h�� Ng Ng=Np@Esr=@h�� N �N N �N=Np@Epsnl =@h�� N �Nb �Ngw N �Nb �Ngw=Np
communications comm. within FFT +Np logNp

Table 6.3: Computational complexity for the determination of each of the nine com-
ponents of the stress. Symbol as in Tab. 6.1" @Yl;m@h�� � 12Yl;m �ht��1��!Z dxx2'l;m (x) jl (jGj x)+Yl;m Z dxx2'l;m (x) @jl (jGjx)@h�� # :
Like in the previous cases, in the parallel code, all sums over G vectors are

taken only on the localG vectors. To evaluate the fifth term (@Esr=@h��), as for

the ions, position vectors are distributed. The total stress components are then

obtained with a global parallel sum. The computational complexity for each of

the nine components of the stress is shown in table 6.3.
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