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Introduction

In Elasticity Theory an important role is played by structures presenting small length-scales of geometric
or constitutive nature. In particular, understanding the behaviour of such materials and modeling them
in an efficient way have recently become a very active research line in Materials Science, especially in
view of the development of new technologies. Significant examples are thin objects, like membranes,
shells or rods, and systems which are microscopically heterogeneous, like porous media or finely mixed
composites. The major task in the study of these problems concerns the derivation of auxiliary simpler
models which capture the overall properties of the initial ones.

In the case of thin structures, in which one or more dimensional extensions are small compared to the
others, it is natural to reduce the original problem to a new one in a lower dimensional space, where the
small dimensions disappear. Hence, lower dimensional theories are deduced by taking the limit as h goes
to zero, where h is the parameter describing the smallness of the object, that is, the thickness in the case
of membranes and the diameter of the cross-section in the case of rods.

In a similar way, in the case of fine scale miztures one tries to replace the original heterogeneous
material with a homogeneous fictious one (the homogenized material) as the size ¢ of the microstructure
goes to zero. Indeed, in a composite the heterogeneities are small compared to its global dimension,
and the limit process represents the transition from a microscopic to a macroscopic description of the
material. We notice that, while in dimension reduction problems the small length scale is of geometric
nature only, composites and highly heterogeneous media can exhibit several scales, of both geometric
(size of the heterogeneities) and constitutive (toughness of the material) nature.

In mathematical terms, a common approach to these problems is the study of the asymptotic behaviour
of integral functionals depending on a small-scale parameter, as this parameter goes to zero. We focus on
the variational method, which is based on the analysis of the limit, in the sense of I'-convergence, of the
elastic energy associated to a deformation (in the nonlinear setting) or to a displacement (in the linear
case) of the domain.

We now give an overview of the content of this thesis, which consists of two parts.

In the first part we present some results concerning the derivation of asymptotic models for thin curved
rods (see Chapters 2 and 3).

The second part is devoted to the study of homogenization problems for composite materials (see Chapters
4 and 5) and for porous media (see Chapter 6).

Part I: Asymptotic models for thin curved rods

One of the main problems in nonlinear elasticity is to understand the relation between the three-
dimensional theory and lower dimensional models for thin structures. In the classical approach these
theories are usually deduced via formal asymptotic expansions or adding extra assumptions on the kine-
matics of the three-dimensional deformations (see, e.g., [16]). Recently the problem of the rigorous
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derivation of lower dimensional theories has been studied using a variational approach, which is based
on the analysis of the limit of the 3D elastic energy in the sense of I'-convergence. The first step in this
direction is due to E. Acerbi, G. Buttazzo and D. Percivale (see [1]), who deduced a nonlinear model for
elastic strings by means of a 3D-1D reduction. The analogue in 3D-2D reduction was studied by H. Le
Dret and A. Raoult, who derived a nonlinear model for elastic membranes (see [37]). The more delicate
case of plates was justified more recently by G. Friesecke, R.D. James and S. Miiller in [30] (see also [32]
for a complete survey on plate theories). The case of shells was considered in [38] and [31].

As for one-dimensional models, nonlinear theories for elastic rods have been deduced by M.G. Mora,
S. Miiller (see [40], [41]) and, independently, by O. Pantz (see [45]). In all these results, as in [1], the
beam is assumed to be straight in the unstressed configuration.

In this part of the thesis we study the case of a heterogeneous curved beam made of a hyperelastic
material.

In the following we shall denote by Q the set (0, L) x D, where L > 0 and D is a bounded Lipschitz
domain in R? with £2(D) = 1. Given h > 0, we shall consider a beam, whose reference configuration is
given by _

Q= {v(s) + h&wa(s) + hCrs(s) : (s,&,C) € O,

where v : (0,L) — R?® is a smooth simple curve describing the mid-fiber of the beam, and vo,v3 :
(0,L) — R3 are two smooth vectors such that {y’,vs,v3} provides an orthonormal frame along the
curve. In particular, the shape of the cross-section of the beam is constant along 7 and is given by the
set hD. Its orientation in the normal plane to v, which may vary along the curve, is determined by the
orientation of the two vectors v5(s), v5(s).

A natural parametrization of 0 is given by
Q= (5,6,0) = y(s) + hEa(s) +hCus(s),

which is one-to-one for h small enough.
The starting point of the variational approach is the elastic energy per unit cross-section

N 1 _
™ (g) = 7/ W (¥ (2), Vi(x))da

h? Js,
of a deformation § € W2(Qy,;R3). The stored energy density W : Q x M3*3 — [0, +-00] is required to
satisfy some natural properties:

o W is frame indifferent: W(z, RF) = W(z, F) for a.e. z € Q, every F € M3*3  and every
R e SO(3);

o W(z, F)> Cdist>(F,SO(3)) for a.e. z € Q and every F € M3*3,
o W(z,R)=0 for a.e. z€  and every R € SO(3).

For the complete list of assumptions on W we refer to Section 2.1 in Chapter 2. }
We provide a description of the asymptotic behaviour of the different scalings of 1", as h — 0, by
means of I'-convergence (see Section 1.1 in Chapter 1).

In Chapter 2 we study the case of energies 1" of order h? with 3 € [0,2]. This is done by considering
the T-limit of h=2I") as h — 0.

As suggested by heuristic arguments, different scalings of the energy in terms of the thickness param-
eter h may correspond to different elastic behaviours. By means of I'-convergence we shall provide an
asymptotic description of all the meaningful scalings of I(") | as h — 0. This will lead to the identification
of a complete hierarchy of one-dimensional models for curved beams.
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We prove that, as for straight beams, the case 8 = 0 corresponds to stretching and shearing defor-
mations, leading to a string theory as I'-limit, while the case 8 = 2 corresponds to bending flexures and
torsions keeping the mid-fiber unextended, leading to a rod theory as I'-limit. This last result has been
obtained also by P. Seppecher and C. Pideri in [51], independently. Finally, we also show that the case
0 € (0,2) provides a degenerate model.

The main results of Chapter 2 are contained in Section 2.2, where we identify the I'-limit of the
sequence of functionals (I~ (h) / h2). We first show a compactness result for sequences of deformations

having equibounded energies (Theorem 2.3). More precisely, given a sequence (g](h)) C Wl’g(ﬁh;R?’)

with T (5(")/h? < C, we prove that there exist a subsequence (not relabelled) and some constants
¢ € R? such that

g oW — M g strongly in WH2(Q;R?),

% O¢ (gj(h) o \I/(h)) — dy strongly in L?(€; R?),

%34 (gj(h) o \I/(h)) — d3 strongly in L*(€; R?),
where (y,d2,ds) belongs to the class

A= {(y,dz, d3) € W22((0,L); R®) x WH2((0, L); R®) x WH((0, L);R?) -
(v (s) | da(s) | d3(s)) € SO(3) for a.e. s in (0, L)}.
The key ingredient in the proof is the Geometric Rigidity Theorem proved by G. Friesecke, R.D.

James and S. Miiller in [30]. In Theorems 2.5 and 2.6 we show that the I'-limit of the sequence (I /h?)
is given by

1 [t .
Hsdodg) = 4 3 [, Qo (TG ) = BEWRY(s))ds i (y.davds) € A "
400 otherwise,
where R := (y'|d2|ds), Ro :== (7' |v2|vs), and @ is a quadratic form arising from a minimization

procedure involving the quadratic form of linearized elasticity (see (2.28)). We point out that in Theorems
2.5 and 2.6 we do not require any growth condition from above on the energy density W .

We notice that in the limit problem the behaviour of the rod is described by a triple (y,ds,ds).
The function y represents the deformation of the mid-fiber, which satisfies |y’'| = 1 a.e., because of the
constraint (y'|dz|ds) € SO(3) a.e.. Therefore, the admissible deformations are only those leaving the
mid-fiber unextended. Moreover, the triple (y,ds, d3) provides an orthonormal frame along the deformed
curve; in particular, do and ds belong to the normal plane to the deformed curve and describe the
rotation undergone by the cross section.

Since R = (y'|d2|d3) is a rotation a.e., the matrix RTR’ is skew-symmetric a.e. and its entries are
given by

(RTR)1, = —(RTR)jy =/ - d}, for k=2,3, (RTR)o3 = —(RTR')3 = dy - dj.

It is easy to see that the scalar products ¥’ - d), are related to curvature and therefore, to bending effects,
while ds - dj is related to torsion and twist. We remark also that the energy depends explicitly on the
reference state of the beam through the quantity R Rj), which encodes information about the bending
and torsion of the beam in the initial configuration. Hence, due to the nontrivial geometry of the body,
the limit energy depends on the position over the curve v even for a homogeneous material.

We notice that, specifying Ry = Id in (1), we recover the result for straight rods obtained in [40] and
[45].
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The last section of Chapter 2 is devoted to the study of lower scalings of the energy, ie., 0 €
[0,2). Assuming that the energy density W satisfies a growth condition from above, we prove the T'-
convergence of the sequence (1(*)) to a functional corresponding to a string model. Finally we show that
the intermediate scalings of the energy corresponding to 5 € (0,2) lead to a degenerate I'-limit.

In Chapter 3 we consider the scalings h® with § > 2. More precisely, we prove that in the case
B =4, the corresponding relevant deformations are close to a rigid motion, so that the I'-limit describes
a partially linearized model. This result generalizes to the case of curved rods what was proved in [41]
for straight rods. Furthermore, we show that the scalings 3 > 4 lead to the linearized theory for rods,
while the scalings 8 € (2,4) correspond to a constrained linearized theory.

We first present a compactness result for sequences of deformations having equibounded energies
R BT with 3 > 2 (Theorem 3.1). The key tool is again the Geometric Rigidity Theorem which
ensures that, as in the case treated in Chapter 2, the limit of the rescaled gradients of the deformations
is a rotation. Moreover, since we are dealing with higher scalings of the energy, we obtain the additional
information that this limit rotation is constant. More precisely, we prove that if (%) (g<h>) <ch?, p>2,
then there exist some constants R € SO(3) such that R™ — R and, up to subsequences,

V((RM)T M) o w™ - Id  strongly in L2(€; M3*3),

In other words, up to a rigid motion, the deformations §* converge to the identity. This naturally leads
to introduce a new sequence of scaled deformations Y™ | given by (R(h))Tg](h) o gh) (up to an additive
constant) and to study the deviation of Y from W,
displacement

To this aim, we define the scaled averaged

v (s) = W /D (Y(s,6,¢) = 0™ (s,€,0)) d dg

and the twist angle of the cross-section

0= 7z (g [ 065,60 = ¥06.6.0) - (€0als) — Coato) dac).

where p(D) := [, (52 + C2) d¢ d¢. Finally, we introduce a function u(® , which measures the extension
of the mid-fiber and is given by

1 S
5 [ ([ o660 - ¥"(s6.0) 10 dedc) doit 2< 5 < 4,
u(h)(s) — Sh D
1 ( 0. (YW (5,6,¢) — UM (5,€,0)) - 7(0) dgdg) do it B> 4
h/B/Q s D S ) 7 ) 9 — )
where s;, € (0,L) is chosen in such a way that u(") has zero average on (0,L).

In Theorem 3.1 it is then shown that, up to subsequences, the following convergence properties are
satisfied:

e v") v strongly in WH2((0, L); R?), for some v € W22((0, L); R?) with v’ -7 = 0;
e wM —~w weakly in W2(0, L), for some w € W"2(0,L);

o u™ —~y weakly in W2(0, L), for some u € WH2(0, L).

In Theorems 3.5 and 3.6 the I'-limit of the functionals (f(h)/hﬁ) , for B > 4, is identified.

In the case § =4 we show that it is an integral functional depending on u, v and w, of the form

L
Iy(u,v,w) == %/ Q" (s,u' + %((v’ 1)+ (v v3)?), B + 2skW(RgR6B)) ds,
0
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where B € W12((0, L); M3*3) denotes the matrix

0 —v vy =V 13
B:=| v -1 0 —w (2)
v g w 0

and QU is a quadratic form arising from a minimization problem involving the quadratic form of linearized
elasticity (see (3.31)).
If B > 4 the limit functional is fully linearized and it is given by

L
I(u,v,w) = %/0 Q°(s,u', B + 2skw (R R)B)) ds,

where B and QU are defined as before. We notice that Iz coincides with the functional obtained by
dimension reduction starting from linearized elasticity (see Remark 3.3).

Finally, in the case 8 € (2,4), it turns out that v and w are linked by the following nonlinear
constraint:

= - %((v’ ) 4 (o vs)?). (3)

Therefore, the function w is completely determined, once v is known, and hence the limit functional
depends on v and w only. More precisely, it is given by

L
Is(v, w) ;:%/O Q(s, B’ +2skw(R{ Ry B)) ds,

where B is defined as in (2) and Q is obtained by minimizing the quadratic form Q° with respect to its
second argument (see (3.32)).

The last section of Chapter 3 is devoted to the extension of the previous results to the case of a thin
ring. In other words, the mid-fiber of the beam is assumed to be a closed curve in R3. We prove that in
this case the limiting functionals are finite only on the class of triples (u,v,w) such that v and w satisfy
the periodic boundary conditions v(0) = v(L) and w(0) = w(L) (see Theorem 3.8). Moreover, on this
class the I'-limits coincide with the previous functionals Iz (see Theorem 3.9).

Part II: homogenization

Composite materials are widely used since they have very interesting properties. Indeed, they often
combine the attributes of the constituents but sometimes the properties of the composite can be strikingly
different from the properties of the constituent materials (see [39]).

In a good composite, the heterogeneities are very small compared with the global dimension of the
sample. Heuristically, as the size of the microstructure becomes smaller and smaller, the microscopic
structure of the material becomes finer and finer, while, on the other hand, from a macroscopic point
of view the behaviour of the composite tends to be simpler. So we expect the limit behaviour of the
material to be described in terms of a different homogeneous material, that captures the main features
of the original constituents.

The results contained in Chapters 4 and 5 describe the homogenization of a material composed of
two constituents which have a very different elastic behaviour. More precisely, we consider the case
of an unbreakable elastic material presenting disjoint brittle inclusions arranged in a periodic way. In
other words, we assume that cracks can appear and grow only in a prescribed disconnected region of the
material, composed of a large number of small components with small toughness.



6 Introduction

In what follows, let Q@ C R™, with n > 2, be the region occupied by the material and let € > 0 be a
small parameter. Let @ := (0,1)" be the periodicity cell and let Qs C @ denote the concentric cube
(6,1— 6)™ for 0 <& < 1. We define the set I§ C Q representing the brittle inclusions in the material as

Is:=an | (@ +h). (4)

heZm™

In Chapter 4 we assume the material to be linearly elastic, and we restrict our analysis to the case
of anti-plane shear. More precisely, we assume that the reference configuration is an infinite cylinder
2 x R and the displacement v : Q x R — R"*! has the special form v(x,y) := (0,...,0,u(z)) for every
(z,y) € 2 xR, where uv: Q — R.

Since we are taking into account the possibility of creating cracks, displacements are allowed to have
discontinuities. Therefore, the natural functional setting for the problem is the space of special functions
with bounded variation SBV(Q2). More precisely, we consider displacements u € SBV?(Q2), that is,
we assume in addition that the approximate gradient Vu is in L? and that the (n — 1)-dimensional
Hausdorff measure of the jump set 5, is finite.

The elastic energy F¢ associated to a displacement v € SBV?2(Q) is defined as

/WWW+%W”@J if S, C Ig,
u) = Q
+00 otherwise in SBV?(Q),

F(

where a. is a positive parameter depending on ¢.

The volume term in the expression of F¢ represents the linearly elastic energy of the body, while the
surface integral describes the energy needed in order to open a crack in a material with toughness a.,
according to Griffith’s model of brittle fractures (see [33]).

We are interested in the asymptotic behaviour of the sequence F¢ as e goes to zero, in the framework
of I'-convergence. We consider the case in which § is fixed and independent of e, while a. converges
to zero as ¢ — 0. We show that the limit model depends on the behaviour of the ratio <= as € goes to
zero. However, it turns out that the different limiting models present a common feature: they describe
an unbreakable material. This means that, even if at scale ¢ many microscopic cracks are present in the
material, they are not equivalent in the limit model to a macroscopic crack, due to the fact that they are
well separated from one another. Indeed, in the periodicity cell eQ the brittle inclusion Qs is set at a
distance €0 from the boundary 9(e@), with ¢ > 0 independent of . The size of the separation between
different inclusions prevents the small cracks contained in the brittle region of the material from having
the same asymptotic effect of a macroscopic fracture.

A different situation occurs when the parameter § depends on e and converges to zero as ¢ — 0.
This case has been partially solved in [10], assuming «. = 1.

We show that three different limit models can arise, corresponding to the limit 2= being zero (sub-
critical case), finite (critical case) or +oo (supercritical case).

In the subcritical case a. << ¢, the limit functional turns out to be

FO ) = /Qfo(Vu) dr  in HY(Q),
+o0 otherwise in L?(12),

where fy is a coercive quadratic form given by the cell formula
@) =min{ [ |+ Vul Py we TL@\ @0}, )
QA\Qs

and H;E(Q\Qg) denotes the space of H'(Q\ Qs) functions with periodic boundary values on Q. Hence
there exists a positive definite matrix Ag € R™ ™ with constant coefficients such that fo(§) = Ap€ - &
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for every & € R™. Notice that F° represents the energy of a linearly elastic homogeneous anisotropic
material. Moreover, since w = 0 is a competitor for the minimum in (5), the density fo satisfies

Ao €= fo(§) < (1 - L™(Qs))[€]* <[] for every € € R”,

and the second inequality is strict for & # 0. This means that “Ay S Id” in the usual sense of
quadratic forms. This is due to the fact that in this regime, for the problem at fixed e, displacements
presenting discontinuities are energetically convenient. Hence, although the limit energy F° describes
an unbreakable material, the possibility to create a high number of microfractures in the approximating
problems leads to a damaged limit material, that is, a material whose elastic properties are weaker than
the original ones.

In the supercritical regime a. >> ¢ the limit model is described by the functional

(W) = /Q |Vul>dz in HY(Q),
+00 otherwise in L2().

FOO

Hence, the (possible) presence of small cracks in the problems at scale € does not affect the elastic
properties of the original material. Indeed, in this regime the formation of microfractures is penalized
by the energy, that is, displacements presenting jumps are not energetically convenient. Therefore the
macroscopic result describes an undamaged material.

The critical regime corresponds to the case where a. is of the same order as €, so we can assume
without loss of generality that a. = . The limit functional is

j):hom(u) _ /Q fhom (VU) dx in HI(Q),
+oo otherwise in L?(€2),

where the density from is given by the asymptotic cell formula

1
from (&) := lim o inf {/ &+ Vw|Pdz +H" 1 (S,) :w e SBVE((0,6)™), Sw C 15}. (6)
(07t)n

t——+oo

According to the notation used so far, the set Is is defined as

Ii=(0,)"n [ J (Qs+h). (7)

hezZm

Notice that, since in this case the coefficient . and the size £ of the microstructure have the same
order, there is a competition between the bulk energy and the surface term. Indeed they both contribute
to the expression of the limit density.

Moreover, the limit functional describes an intermediate model with respect to the subcritical and
the supercritical regimes. More precisely, the limit density satisfies

fo(€&) S from(&) < min {|€]?, fo(&) +¢(6)}, (8)

for every £ € R™\ {0}, where ¢(9) is the (n — 1)-dimensional measure of 9(Qs) (see Lemma 4.17).
Notice that (8) entails that for |£| large enough fhom (&) S [€]2. Therefore, the limit functional
describes a damaged material. Using estimate (8) it is also possible to show that the limit density from
is not two-homogeneous, and hence it is not a quadratic form (see again Lemma 4.17).
The analysis developed so far can be applied also to the case in which the brittle region is an arbitrary
Lipschitz domain well contained in @), or more in general, when it consists of an n-dimensional Lipschitz
set together with an (n — 1)-dimensional component, as shown in Chapter 4.
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Chapter 5 is devoted to the extension of the homogenization results presented in Chapter 4 to the
vector-valued case in linearized (possibly anisotropic) elasticity. As before, we consider a linearly elastic
material presenting brittle inclusions arranged in a periodic structure. Moreover, we impose a linearized
non-interpenetration constraint between the lips of the fracture. We notice that in the case of anti-planar
shear treated in Chapter 4 the non-interpenetration constraint is automatically satisfied.

Since also in this case the displacements are allowed to have discontinuities, the natural functional
setting for the problem is the space SBD(2) of special functions with bounded deformation. Moreover,
we consider as admissible the functions v € SBD?(2) satisfying the infinitesimal non-interpenetration
condition [u] - v, > 0 H" -a.e. on the jump set J,, where [u] is the jump of u and v, is the normal
to the jump set.

Let C = (C;jx) be the elasticity tensor and let u € SBD?(f) be a displacement. We denote by Eu
the absolutely continuous part of the symmetric gradient of u.

The energy associated to u is given by the functional F¢ defined as

. / C&u : Eudr + aH () if S, C I§, [u] - v, > 0 a.e. on Jy,
Fo(u) =4 Jo
+00 otherwise in SBD?(12),

where the set I§ is defined as in (4), and o, is a positive parameter depending on €. The volume term in
the expression of F¢ represents the elastic energy, while the surface integral describes the energy needed
to open a crack.

The overall properties of the composite material described by the functional F¢ can be expressed in
terms of a homogenized simpler integral, which is given by the I'-limit of F¢, as € goes to zero. As in
the case treated in Chapter 4, we assume that a. — 0 as ¢ — 0, and we show that the limit model
depends on the behaviour of the ratio <= as ¢ goes to zero. Moreover, also in the present case the limit
functionals describe an unbreakable material.

We will show that three different limit models can arise, corresponding to the limit <= being zero
(subcritical case), finite (critical case) or +oo (supercritical case).

In the subcritical case a. << €, the limit functional is given by

FO(u) = /Qfo(é'u) dz in H*(;R™),
+o0 otherwise in L?(Q;R").

The density fo is given by the cell formula
fo(&) := inf{/Q(C(fs +Ew): (8 +Ew)dr:we SBD;E(Q),JU, C Qs, [W] - vy >0 ae. on Jw}, (10)

where SBD%(Q) denotes the space of SBD?(Q) functions with periodic boundary conditions on 9Q
and &° denotes the symmetric part of &.
An interesting remark is that in general fp is not a quadratic form. Indeed, if we assume C to be
isotropic, that is,
C=2ul+XId® Id,

where )\,,u > O, (]I)ijkl = 5ik5jla and (Id@ Id)ijkl = 6ij5kla then it turns out that fo(Id) 7é fo(*[d) (see
Lemma 5.8).

This is in contrast with the situation in which the non-interpenetration constraint in not assumed.
Indeed, in that case, proceeding as in Chapter 4, one can prove that the density function fo is defined as

fo(g) := inf { /Q ClP+Ew): (6 4+ Ew)dx :w € SBDi(Q), Jw C Q5}7 (11)
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and is a quadratic form for every choice of the tensor C.

A possible interpretation of this result is the following. For & = Id the body is subject to a boundary
deformation of pure extension in all directions. In this case, the solutions to (10) present discontinuities,
since the non-interpenetration constraint is compatible with the boundary conditions and it is energeti-
cally convenient to have a nonempty jump set.

On the contrary, when £ = —Id, i.e., in a regime of pure compression, it turns out that the optimal
w in (10) is w = 0. This happens because the minimizers of the problem (11) corresponding to £ = —Id
are not admissible for (10), since they do not satisfy the non-interpenetration constraint.

In the critical regime, corresponding to a. = ¢, the limit functional is

fhom(u) = /thom(gu) dz in Hl(Q;Rn)’
+00 otherwise in L?(2;R"),

where the density from is given by the asymptotic cell problem

from(§) = lim € inf{/(ot)nC(gwsw) (€5 + Ew)da +H" () s w € SBDE((0,6)"),

t—-—4oo T

Juw C Is, [w] - vy >0 H* L-ae. on Jw},

and the set I5 is defined as in (7).

Since in this case the coefficient a. and the size £ of the microstructure are of the same order, there
is a competition between the bulk energy and the surface term. Hence the limit functional describes an
intermediate model with respect to the subcritical and the supercritical regimes.

In the supercritical regime a. >> ¢, the limit model is given by the functional

Céu : Eudx in HY(Q:; R™),
-1, (R (13)

+00 otherwise in L?(Q;R").

Therefore, the (possible) presence of cracks in the approximating problems has no effect on the limit.
Indeed, as one may expect, in this case the energy penalizes the jumps of the deformations, so that the
limit material has the same elastic properties as the original one and no damage occurs.

We want to underline that in this regime the I'-limit is the same as if the non-interpenetration
constraint were not imposed. The feature which makes this case mathematically different from the
corresponding one in Chapter 4 is the lack of a lower semicontinuity result in SBD when no a priori
bound for the L norm of the deformations is given. Hence, in order to prove the I'-convergence result
for this scaling, we need a modified version of the proof of lower semicontinuity in SBD given in [11],
where the assumption of the equiboundedness of the L°° norm of the deformations is replaced by the
fact that the measure of their jump sets goes to zero (see Lemma 5.12).

The methods of homogenization can also be applied to describe the asymptotic behaviour of degenerate
structures, like periodically perforated domains. A wide literature deals with these models under the
assumption that the material is unbreakable, that is, in the Sobolev setting. We recall that completely
different situations are produced according to the type of boundary condition (Dirichlet or Neumann)
imposed on the boundaries of the holes.

Indeed, in the case of Dirichlet boundary conditions, a typical phenomenon is that the limit energy
contains an extra term of capacitary type, called strange term in [18, 19], that can be interpreted as a
relaxation of the original constraint imposed on the displacements in the holes (see [22] and references
therein).



10 Introduction

On the other hand, the study of the case of Neumann boundary conditions requires the construction
of suitable extension operators in order to fill the holes and to deal with displacements defined in the
whole domain (see [2, 36]).

These results may be extended to more general functionals, as those describing the elastic energy of
a brittle material, in the SBV setting. Recently, this problem has been addressed in [29], where the
authors study the limiting behaviour of the Mumford-Shah functional in periodically perforated domains,
under homogeneous Dirichlet conditions on the boundaries of the holes. In Chapter 6 we continue this
analysis, considering the case of the same energy treated in [29], but imposing homogeneous Neumann
conditions on the perforations.

The main result of Chapter 6 is the existence of an extension operator for special functions with
bounded variation with a careful energy estimate. Our motivation comes from [2], where the same
problem is addressed in the context of Sobolev spaces (see also [36]).

The main achievement in the quoted paper is the existence of a suitable extension operator in periodic
domains, with extension constants invariant under homothety. This result turns out to be the fundamental
tool for the analysis of the asymptotic behaviour of integral functionals on perforated domains.

It seems very natural to look for an extension of the homogenization results in [2] to non-coercive
functionals consisting of a volume and a surface integral, as those occurring in computer vision and in
the mathematical theory of elasticity for brittle materials. More precisely, we are interested in the study
of the asymptotic behaviour of the Mumford-Shah functional on a periodically perforated domain, as the
size of the holes and the periodicity parameter of the structure tend to zero.

Therefore, we are led to consider energies of the form

MS(u, Q%) if ue L™(Q°) N SBV2(QF),

14
+o00 otherwise in L2 (), "

Fo(u,Q) = {

where 2 C R™ is open and bounded, and ¢ is obtained by removing from ) a periodic array of holes.
More precisely, let @ := (0,1)™ denote the periodicity cell, and let F CC Q be a Lipschitz set. We define
QF :=Q\ E, where
ES:=qn |J e(E+h). (15)
hezn

In order to analyze the behaviour of the family (F¢) as e — 0, we need the analogue in the SBV
framework of the extension estimates obtained in [2].

This will be a direct consequence of the following theorem that is the main result of the chapter.

Theorem (Extension Theorem). Let D, A C R"™ be bounded open sets with Lipschitz boundary and
assume that D C A and 0D N A CC A. Then there exists a constant ¢ = c¢(n,D,A) > 0 and an
extension operator T : SBV?2(D) N L>°(D) — SBV?(A) N L>*(A) such that
(i) Tu=wu a.e in D,
(4) [|Tul[zo(ay = l|ullLo(D)s
(#it) MS(Tu, A) < cMS(u, D).

The constant ¢ in invariant under homotheties.
In the case of Sobolev spaces, the classical argument to prove the estimate

/A|V(Tu)\2d:v§c/D|Vu|2 (16)

for the extension relies on Poincaré-Wirtinger inequality (see [36] and [52]). In the SBV case (16) cannot
be obtained. Indeed, it is possible to construct non constant SBV functions whose absolutely continuous
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gradient is zero almost everywhere. Moreover, the available extension of the Poincaré-Wirtinger inequality
(see [26]) does not lead directly to (ii3).
For this reason we decided to follow a different approach.

To prove the theorem, we first consider a local minimizer of M S, that is a solution ¢ of the following
problem:
min {MS(w,DUW):w e SBV*(DUW),w=uin D},

where W CC A is a sufficiently small neighbourhood of 9D N A. Then, we carry out a delicate analysis
of the behaviour of the function ¢ in the set W. More precisely, we define the extension Tu in A\ D
modifying the function ¢ in different ways, according to the measure of the set S; N W.

If this measure is large enough, then we consider the extension of u defined as ¥ in DU W and zero
in the remaining part of A. In this way we have essentially increased the energy in the surface term only,
of an amount that is comparable to the measure of S, N D. This guarantees that properties (i)—(ii7)
are satisfied in this case.

On the other hand, if H"~1(S; N W) is small then we may use the elimination property proved in
[26, 23] to detect a subset of W \ D where the function ¢ has no jump (see also Theorem 1.13). This
allows us to apply the extension property proved in the Sobolev setting.

As already mentioned, the previous result finds an immediate application in the study of the asymp-
totic behaviour of the functionals F* defined in (14).
Indeed, for every u € SBV?2(Q) N L>=(QF), the Extension Theorem provides an extension @ of u to the
whole of Q, such that @ € SBV?2(Q) N L*>(£2) and

MS(@, Q) < ¢ F=(u,Q), (17)

where the constant ¢ = ¢ (n, E,Q) depends on n, E and Q, but is independent of 2, € and u.

This means that we can fill the holes of 2* by means of an extension of u, whose Mumford-Shah energy
is kept bounded by ¢F*(u, ). Inequality (17) is the key estimate to prove compactness of minimizing
sequences for (F°¢) and thus, to identify a class of functions where the I'-limit is finite. Within this class,
we give a more explicit expression for the I'-limit, characterizing the volume and the surface densities by
means of two separate homogenization formulas (see Theorem 6.6).

The results of Chapter 2 are published in [49], while the results of Chapter 3 correspond to [46].
The content of Chapters 4 and 5 are contained in [47] and [48], respectively.
Finally, in Chapter 6 we present [14], a work in progress in collaboration with Filippo Cagnetti.






Chapter 1

Preliminaries

The purpose of this chapter is to present some known results that will be used in the thesis.

1.1 TI'-convergence

In this section we introduce the notion of I'-convergence and state its main properties. For an exhaustive
treatment of this topic we refer to [21].

Definition 1.1 Let (X,d) be a metric space. We say that a sequence Fj, : X — R T -converges to
F: X — R with respect to the convergence induced by the metric d (or simply that Fy, T'(d)-converges
to F') if for all x € X we have

(i) (liminf inequality) for every sequence (xp) converging to x

F(z) < liminf Fp(xp);

h—+oco
(i) (existence of a recovery sequence) there exists a sequence (xp) converging to x such that

F(z) = hEIfoo Fy(zp).
The function F is uniquely determined by conditions (i) and (ii) and it is called the T -limit of (Fp).
More in general, given a family of functionals (F;) labelled by a real parameter € > 0, we say that
F. T -converges to F if F is the T -limit of (F.,) for every sequence e, — 07 .

Proposition 1.2 (Comparison with pointwise convergence) If (F}) is an increasing sequence of
lower semicontinuous functionals which converges pointwise to a functional F', then F is lower semi-
continuous and (Fy) T -converges to F. If (Fy) is a decreasing sequence of functionals which converges

pointwise to a functional F' and F' is lower semicontinuous, then (Fj,) I'-converges to F'.

Proposition 1.3 (Convergence of minima and of minimizers) Assume that (Fy) T -converges to
a functional F. For every h € N let xp be a minimizer of Fy, in X . If x is a cluster point of (xy),
then x is a minimizer of F' in X, and

F(z) = limsup Fp(xp).

h—+oco

13
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If (xn) converges to x in X, then x is a minimizer of F in X, and

F(x) = hgrfoo Fy(xp,).

Definition 1.4 Let (X,d) be a metric space, let Q0 be an open subset of R™, and let £ be an arbitrary
class of subsets of Q0 containing Ag, where Aq is the class of all subsets A of Q0 such that A CC Q.

We say that a functional F : X x & — [0,+00] is increasing (on &) if for every x € X the set
function F(z,-) is increasing on &.

Definition 1.5 Given a functional F : X x & — [0,+00], we define its inner reqularization as
F_(z,A) :=sup{F(z,B): B€&,BcCC A}.
Observe that if F is increasing, then also F_ is increasing.

Definition 1.6 Let (F}) be a sequence of increasing functionals defined on X x &, and let F', F" :
X x & = R be the functionals defined by

F'(-, A) ::F—l}imianh(-,A) and F"(-,A):=T —limsup Fj(-, A), (1.1)

1 — 400 h—4o00

for every A€ €.

Definition 1.7 We say that a sequence (F},) is T -convergent to a functional F whenever
F=(F)_=(F")_.
We have the following compactness theorem.

Theorem 1.8 Every sequence of increasing functionals has a I -convergent subsequence.

1.2 Functions with bounded variation

We need to recall some properties of rectifiable sets and of the space SBV of special functions with
bounded variation. We refer the reader to [8] for a complete treatment of these subjects.

A set T' C R™ is rectifiable if there exist Ny C I' with H""1(Ny) = 0, and a sequence (M;);en of
C'-submanifolds of R™ such that

I\ No c | M.
€N

For every x € I' \ Ny we define the normal to I" at = as v (z). It turns out that the normal is well
defined (up to the sign) for H* 1-a.e. z €T.

Let U C R™ be an open bounded set with Lipschitz boundary. We define SBV (U) as the set of
functions u € L'(U) such that the distributional derivative Du is a Radon measure which, for every
open set A C U, can be represented as

Du(A) = /AVudac—i—/AmS [u](z) vy () dH™ " (z),

where Vu is the approximate differential of w, S, is the set of jump of u (which is a rectifiable set),
vy (x) is the normal to S, at x, and [u](x) is the jump of u at z.
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For every p €]1,+o0[ we set
SBVP(U) = {u € SBV(U) : Vu € LP(U;R™), H"~1(S,,) < +o0}.

If we SBV(U) and I C U is rectifiable and oriented by a normal vector field v, then we can define the
traces u™ and u~ of u € SBV(U) on T' which are characterized by the relations

im L lu(y) —uF(z)|dy =0 for H" ' —ae xzel,
=0 1" JonBE (2)
where Bf(z):={y € B.(x): (y —z)-v=0}.
A set E C U has finite perimeter in U if the characteristic function x g belongs to SBV (U). We denote
by 0*E the set of jumps of xg and by P(E,U) the total variation of the measure Dy g, that is, the
perimeter of E in U.
Finally, if E C U, we denote with E (o) the set of points of density o € [0,1] for E, i.e.,

E(o) := {xEU:}iL%E”(EﬂBT( z))/L"(B,(z)) =0c}.

Theorem 1.9 (Closure of SBV') Let ¢ : [0,+00) — [0,+00], ¥ : (0,400) — (0,400] be lower semi-
continuous increasing functions and assume that

lim —('O(t) = 400, }m ( )

e . 1.2
t—+oo ¢ 0 t = oo ( )

Assume moreover that ¢ is convex and that ¥ is concave. Let Q C R™ be open and bounded, and let
(up) C SBV () such that

sup{ [ e(udo+ [ o are} < v (1.3)

Uh

If (up) weakly™ converges in BV () to u, then u € SBV(Q), the approzimate gradients Vuy, weakly
converge to Vu in L'(Q;R™), DIuy, weakly* converge to D7 in Q and

/ o(|Vul) dz < hmlnf/ (IVup]) dz (1.4)

/ I(|[u]]) dH"~" < liminf I(|[un]]) dH™ L. (1.5)
h—+oo Suh

Theorem 1.10 (Compactness in SBV') Let ¢,3,Q be as in Theorem 1.9. Let (up) C SBV () be a

sequence satisfying (1.3) and assume, in addition, that ||up||pe~ is uniformly bounded in h. Then, there
exists a subsequence (up(ry) weakly” converging in BV () to u € SBV(Q).

1.2.1 The Mumford-Shah functional

Let © C R™ be open and bounded and let w € SBV2(Q2). For every A C €2 open and bounded, the
Mumford-Shah functional at (w, A) is defined as

MS(w, A) ;:/ |Vw|?*dz + H" (AN S,). (1.6)
A

We give now the definition of local minimizer for the Mumford-Shah functional.
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Definition 1.11 We say that w € SBV?(Q) is a local minimizer of MS in Q if MS(w, A) < MS(v, A)
for every open set A CC 2, whenever v € SBVZ(Q) and {v#w} CC ACC Q.

Next theorem provides an estimate of the measure of the jump set for a local minimizer of the
Mumford-Shah functional (see [26]).

Theorem 1.12 (Density lower bound) There exists a strictly positive dimensional constant 99 =
Jo(n) with the property that if u € SBV2() is a local minimizer of the functional MS(w,Y) defined in
(1.6) with Q@ C R™ open set, n > 2, then

H" (S, N By(x)) > 9po" " (1.7)
for all balls B,(x) C Q with centre x € S, and radius ¢ > 0.

An equivalent but more appealing formulation of the previous theorem is the following elimination
property (see [23]).

Theorem 1.13 (Elimination property) There exists a constant 3 > 0 independent of Q0 such that,
if u is a local minimizer in SBV?(Q) of the functional M S(w,) defined in (1.6) and By(zo) C Q is
any ball with centre xo € Q with

H" " (Su N By(0)) < B" (18)

then Sy N Bya(xo) = 0.

We state a theorem which provides an approximation result for SBV functions with the property
that the Mumford-Shah functional along the approximating sequence converges to the Mumford-Shah
functional on the limit function. For the proof we refer to [20].

Theorem 1.14 Assume that 99 is locally Lipschitz and let u € SBV2(Q). Then there exists a sequence
(up) C SBV2(Q) such that for every h € N

(7) Sy, is essentially closed;

(#4) Sy, is a polyhedral set;
(iii) up, € WH(Q\ Sy, ) for every k € N;

and such that (up) approximates u in the following sense:

(iv) up, — u strongly in L*(Q),
(v) Vup, — Vu strongly in L*(Q),
(vi) H* 1 (Su,) = H*1(Sw).-

1.3 Functions with bounded deformation

Let U C R™ be an open bounded set with Lipschitz boundary. We define BD(U) as the set of functions
u € LY(U;R™) such that the symmetric part of the distributional derivative Du is a Radon measure with
bounded total variation.

We denote with Eu the symmetric part of Du, that is,

Eu:={(Eu);j}, (Eu);j:= % (Diuj + Dju;).



Preliminaries 17

We can split the symmetric gradient into its the absolutely continuous, jump and Cantor parts, as
FEu= E% + E’u+ E° = Eudx + E/u + Eu.

Now we summarize some results on functions of bounded deformation which will be useful in the
sequel.

Sections of BD(U) functions. Let u € BD(U), let £ € S"~! and let y € R™. We denote by 7¢ the
hyperplane orthogonal to ¢ and by U® the orthogonal projection of U on m¢. Moreover the section of
U corresponding to y is denoted by UE, that is, U§ ={teR:y+t{eQ}.

We can define the section ug : U§ — R as ug(t) =u(y+1t&) - &, for every t € Uf. Then
(i) for H" !-a.e. y € U* the function uf belongs to BV (US);

(ii) (Euly +1€)¢&,€) = Vuy(t);

omwwosz%MWWmm@%@b/|wﬁmwwn
943 Ué¢
muﬂ%@zﬁgme*@,MﬂmawﬁQW%MW*@;

wwﬂwaaLU%mwwxwamzﬁyﬂﬁwww»

SBD(U) functions. We define SBD(U) as the set of functions u € L'(U;R™) such that the sym-
metric part of their distributional derivative Du, that is Fu, is a Radon measure which, for every open
set A C U, can be represented as

Bu(A) = Eu(A) + E'u(A) = /

; Eudr + /Am]u [u](z) © vy () dH" ™ (z),

where J, is the set of jump of u (which is a rectifiable set), v, (x) is the normal to J, at z, and [u](x)
is the jump of w at . For every p €]1, +oo[ we set

SBD?(U) = {u € SBD(U) : Eu € LP(U; MIX™)}.

sym
We have that if u € SBD(U), then its sections are in SBV (U§) for every £ # 0 and for H" '-a.e.
yeUs.

Theorem 1.15 (Compactness in SBD) Let ¢ : [0,+00) — [0,+00] be a non-decreasing function
such that

L op(t)
Let (up) be a sequence in SBD() such that
/ lup| dz + | Eup| () +/ o(|Eup|) dz + H" (Jy,) < K, (1.10)
Q Q

for some constant K > 0 independent of h. Then there exist a subsequence, still denoted by (up), and
a function u € SBD(Q) satisfying

up — u  strongly in L}, (Q,R"),

Eup — Eu weakly in L' (Q, M5,

Flup — Eu weakly™ in My (9, Mg )
H" M) < Emiann_l(Juh)~
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Theorem 1.16 (Lower semicontinuity in SBD) Let f: QxM"*" — [0,+00] and g : Qx M?X" —

sym sym
nxn .
sym *

[0, +00] satisfy the following properties for every x € 0 (resp. x € Q) and for every A € M

e f(z,") s conver and lower semicontinuous on Myl ;

o f(-,A) is measurable on ;

e g is lower semicontinuous on € x Mg 5

e g(z,-) s conver and positively 1-homogeneous on Mg <h.

Let (up) be a sequence in SBD(Q) satisfying (1.10) and converging to a function w € SBD(Q) in Lj,,.
Then

f (z,Eu)dx < 11m+1nf f(z, Eup) d, (1.11)

/ gz, [u] ©v,)dH" ™ < hminf/ g(x, [up] ® vy, ) dH™ L, (1.12)
Ju h—+oo /g,

H L, )<11T_~1_1£H" Y(Ju,)- (1.13)

1.4 Extension operators in the Sobolev setting

We state some extension results for H! functions defined on perforated domains. They will be an
important tool in the study of the homogenization problems treated in Chapters 4-6.

Theorem 1.17 (Existence of an extension operator) Let E be a periodic, connected, open subset
of R™, with Lipschitz boundary, let € > 0, and set E° := ¢ E. Given a bounded open set Q C R™,
there exist a linear and continuous extension operator T¢ : H (2N E°) — H} (Q) and three constants
ko, k1, ko > 0 depending on E and n, but not on € and 2, such that

T°u=u a.e. in QN E*,

/ |T5u|2dx < kl/ |u|2dx,
Q(eko) QnEe

/ |D(T¢u)|*dx gkg/ | Du|?dz,
Q(eko) QNE®s

for every u € HY (2N E?). Here we used the notation Q(ekg) := {x € Q : dist(x,00) > eko} .

For the proof we refer to [2].

Remark 1.18 Theorem 1.17 applies to a very large class of domains F. In particular, it covers the
case in which F is obtained by removing from the periodicity cell @ := (0,1)™ a set B with Lipschitz
boundary such that dist(B,0Q) > 0, and repeating this structure by periodicity (see also [36]).

Definition 1.19 Let w be an unbounded domain of R™ with a Q -periodic structure, where @ := (0,1)™
Assume that the cell of periodicity w N Q is a domain with a Lipschitz boundary. Given a bounded open

set Q CR™ and a positive parameter € > 0, we set Q° := QNew. Moreover, we set ¥¢ := 0Q2New. We
define the space H'(2F,4°) as

HY(Q%,~%) :={v € H'(Q):v =0 a.e. on~°}. (1.14)
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Theorem 1.20 Let Qy be a bounded domain such that Q° C Qo and dist(0Q0,Q) > 1. Then for
every sufficiently small € there exists a linear extension operator T¢€ : HY(Qf,+%) — H(Qo) and three
constants ko, k1, ko > 0 such that

T=ul| g1 o) < Fallullm ey,
[[D(Tu)||L2(00) < k2l|Dul|p2(e),
[|E(Tu)||L2(00) < k3l[Eul|r2(s),

for any u € H*(Q,~°), where the constants ko, ki, ks do not depend on €.
Moreover, (T*u)|a =0 for any open set A such that A C Qo \ Q, if € is sufficiently small.

For the proof we refer to [44].

1.5 Integral representation

In this section we present some classical results concerning the integral representation of I'-limits, both
in the Sobolev and in the SBV settings.

Let © be a bounded open set of R™, let A(Q2) be the class of all open subsets of 2, and let Ag(£2) denote
the class of all open subsets of ) which are well contained in 2.

Theorem 1.21 Let F : L?(Q) x A(Q) — [0,+0cc] be an increasing functional satisfying the following
properties:

(a) F is local;

(b) F is a measure;

(c) F is lower semicontinuous;

(d) F(u+c,A) = F(u,A) for every u € L?>(Q), A€ A(Q), and c € R;

(e) there exist b € R and a € L}, () such that
0< F(u,A) < / (a(z) + b|Dul?) dx
A

for every u € HY(Q) and for every A € A(S).
Then there exists a Borel function f:Q x R"™ — [0, +00] such that

(i) for every w € L*(Q) and for every A € A(Q) such that uja € H}, (Q) we have
F(u,A) = / f(z, Du(z)) dx;
A

(i) for almost every x € Q the function f(x,-) is convezr in R™;

(#i3) for almost every x € Q we have
0 < f(x,€) < a(z) + blef?

for every € € R™.
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Let T be a finite set and denote with BV (Q,T) the class of Borel functions u : @ — T such that
{u =t} is a set of finite perimeter in 2 for every t € T'.

Theorem 1.22 Let F: BV(Q,T) x A(Q) — [0, +00[ be a functional satisfying the following conditions:
(a) F is local;
(b) F is a measure for every u € BV (Q,T);
(c) there exist a constant A > 0 such that
0< F(u, A) < XH" AN S,)
for every w e BV (U, T) and for every A € A(Q);
(d) if up, — u almost everywhere in A, then F(u, A) < lminfy, 4o F(up) for every A € A(Q);

(e) for every A € Ag(QY) there exists a continuous function wa : [0, +oo[— [0, +00[ such that w4(0) =0
and

|F(u, B) — F(v, B+ 2)| <wa(|z)H* (BN S,)
whenever B € A(A), z € R, |z] < dist(A,00)/2 and v(z + z) = u(x) in B.

Then, there exists a unique continuous function f: QxT x T x S*~1 — [0, \] such that for every x € 2,
ivj €T and v € Snil f(l’,i,j, V) = f(x7j>i77’/)7

p— f(ac,z',j, %)|p| is convex in R™,
p
and F(u, A) is representable as
F(u,A) = / flz,u™ u™ v, dH !
ANS,

for every u € BV (Q,T) and for every A.
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Asymptotic models for
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Chapter 2

The nonlinear bending-torsion
theory for curved rods as ['-limit of
three-dimensional elasticity

In the first part of the thesis (Chapter 2 and Chapter 3) we study the case of a heterogeneous curved
beam made of a hyperelastic material. We will consider different scalings of the elastic energy associated
to a deformation of the beam and we derive a complete hierarchy of one-dimensional models for curved
rods.

2.1 Notations and formulation of the problem

Let us describe the geometry of the unstressed curved beam.

Let v : [0,L] — R3 be a simple regular curve of class C® parametrized by the arc-length and let

T = % be its unit tangent vector. We assume that there exists an orthonormal frame of class C? along

the curve. More precisely, we assume that there exists Ro € C2%([0, L]; M3*3) such that Rg(s) € SO(3)

for every s € [0, L] and Ro(s)e; = 7(s) for every s € [0, L], where e;, for i = 1,2,3, denotes the i-th
vector of the canonical basis of R* and SO(3) = {R € M3**3: RTR = Id, det R = 1}. We set

vi(s) := Ro(s) ey, for k = 2,3.

We can introduce three scalar functions o, ko and k3 in C1([0, L]) such that
7'(5) = ka(s) va(s) + k3(s) v3(s),

vy(s) = — ka(s) 7(s) + o(s) vs(s),

— o(s) va(s)

~

vs(s) = — ka(s) 7(s) s) va(s). (2.1)

. . 5 5 . kokl — ksk)

Note that the curvature of v can be easily recognized as /k35 + k3 and the torsion of 7y as Q—’_W

2 3
Let D C R? be a bounded open connected set with Lipschitz boundary such that
[ ecagac—o (29)
D
and
| edgac— [ cacac—o, (23)
D D

23
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where (&, () stands for the coordinates of a generic point of D. Without loss of generality, we can also
assume L£2(D) =1. We set Q:=(0,L) x D.
The reference configuration of the thin beam is given by

ﬁh = {7(8) + hf’/Z(S) =+ h<V3(5) : (S7£v<) € Q}:

where h is a small positive parameter. Clearly the curve v and the set D represent the mid-fiber and
the cross-section of the beam, respectively. The set €2}, is parametrized by the C? map

TP Q= (5,6,0) — y(s) + hEva(s) + hCws(s),

which is one-to-one for A small enough.
We assume that the thin beam is made of a hyperelastic material whose stored energy density W :
Q x M3*3 — [0, +00] is a Carathéodory function satisfying the following hypotheses:

(i) there exists § > 0 such that the function F +— W (z, F) is of class C? on the set
{F e M*<3 : dist(F, SO(3)) < 6} for a.e. z € €;

(ii) the second derivative 9*W/9F? is a Carathéodory function on the set
Q x {F e M**3 : dist(F, SO(3)) < §} (2.4)
and there exists a constant C7 > 0 such that

Pw
W(Z’F)[G’G] < C1|G|? for ae. z € Q, every Fwith dist(F,SO(3)) < ¢
and every G € M3
(iii) W is frame indifferent, i.e., W(z, RF) = W(z, F) for a.e. z € Q, every F € M3*3 and every
R e SO(3);

(iv) W(z,R) =0 for every R € SO(3);

(v) 3 Cy > 0 independent of z such that W (z, F) > Cydist®(F,SO(3)) for a.e. 2z € Q and every
F e M3*3.

Notice that, since we do not require any growth condition from above, W is allowed to assume the value
+00o outside a neighborhood of the set (2.4). Therefore our treatment covers the physically relevant case
in which W = 400 for det ' <0, W — 400 as det I — 0F.

We conclude this section by analyzing some properties of the map U™ | which will be useful in the sequel.
We will use the following notation: for any function z € W2(Q; R?) we set

Vnz = (852 ‘ %852 ’ i@gz) .

We observe that V,¥(®) can be written as the sum of the rotation Ry and a perturbation of order h,
that is,
Vil (s,6,¢) = Ro(s) + h (€5 (s) + Cvi(s)) @ e (2.5)

From this fact it follows that, as h — 0,

ViU (s,6,¢) — Ro(s) and det (Vh\ll(h)) — 1 = det Ry uniformly. (2.6)
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This implies that for A small enough V, %™ is invertible at each point of €. Since the inverse of V¥ ")
can be written as

(VA®™M) ™ (5,€,¢) = RE(s) = h RE (s) [ (§vh(s) + C4(s)) @ 7(s)] + O(h?) (2.7)

with  O(h?)/h? uniformly bounded, (Vh\I/(h))_l converges to R} uniformly.

Let y € leQ(ﬁh;H@) be a deformation of Q. The elastic energy per unit volume associated to g is
defined by

IM(g) = %/ﬁ W((\Iz<h>)‘1(x),vg(x))da:. (2.8)

The main part of this chapter is devoted to the study of the asymptotic behaviour as h — 0 of the
sequence of functionals (") /h%. In the final part we will also discuss the scaling I /he for 0 < a < 2.
Furthermore, we show that the scalings 3 > 4 lead to the linearized theory for rods, while the scalings
B3 € (2,4) correspond to a constrained linearized theory.

2.2 Derivation of the bending-torsion theory for curved rods

The aim of this section is the study of the asymptotic behaviour of the sequence of functionals
Limg =L / W (¥ (2), Vi(x))da
h2 Wt Ja, )

under the assumptions (i)-(v) of Section 2.1.

2.2.1 Compactness

We will show a compactness result for sequences of deformations having equibounded energy I /h2.
A key ingredient in the proof is the following rigidity result, proved by G. Friesecke, R.D. James and S.
Miiller in [30].

Theorem 2.1 Let U be a bounded Lipschitz domain in R™, n > 2. Then there exists a constant C(U)
with the following property: for every u € WH2(U;R™) there is an associated rotation R € SO(n) such
that

IVu — R||L2(U) < C(U) ||dist(Vu, SO(m) || 21y -

Remark 2.2 The constant C(U) can be chosen independent of U for a family of sets that are bilipschitz
images of a cube (with uniform Lipschitz constants), as remarked in [31].

We introduce the class of limiting admissible deformations

A= {(y,da,d3) € W»?((0,L); R*) x W"2((0,L); R*) x WH2((0,L); R?) :
(v'(s) ] d2(s) | ds(s)) € SO(3) for a.e. sin (0,L)}. (2.9)

Now we are ready to state and prove the main result of this subsection.

Theorem 2.3 Let (g](h)) be a sequence in W2 (?Z;L;Ria) such that

1 -
= I (M) < ¢ < 4o0. (2.10)
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Then there exist a triple (y,ds,d3) € A, a map R € WH2((0,L); M>**3) with R(s) € SO(3)
for a.e. s €0,L], and some constants M e R3 such that, up to subsequences,

g™ oM — W oy strongly in WH2(Q; R?), (2.11)

1

- e (g(h) o \Il(h)) — dy  strongly in L*(Q;R3), (2.12)

1

W ¢ (g(h) o \I/(h)) —d3  strongly in L*(Q;R3), (2.13)
V" o U™ R strongly in L2(Q; M*3), (2.14)

Moreover, for a.e. s € [0, L], we have (y'(s)|da(s)|ds(s)) = R(s) Ro(s), where Ry = (7 |va|v3).

Proor. — Let (5") be a sequence in Wh2(Q,; R3) satisfying (2.10). The assumption (v) on W
implies that

/~ dist? (V™ (), SO(3))dz < C h*
Qp,
for a suitable constant C'. Using the change of variables ¥") | we have
/ dist® (Vg™ o &™), SO(3)) det (V,¥™)ds de d¢ < ch?. (2.15)
Q

From (2.6) and the estimate
1
dist?*(F, SO(3)) > 3| F 1> -3,

we get the bound
/ | V5™ 0 WW|ds de d¢ < c. (2.16)
Q

Define the sequence F) := Vj") o UM from (2.16) it follows that there exists a function F €
L2(Q; M3*3) such that, up to subsequences,

FW ~ F weakly in L2(Q; M3*3). (2.17)

Using Theorem 2.1, we will show that this convergence is in fact strong in L? and that the limit function F
is a rotation a.e. depending only on the variable along the mid-fiber and belonging to W1:2((0, L); M>*3).
The idea is to divide the domain ﬁh in small curved cylinders, which are images of homotetic straight
cylinders through the same bilipschitz function. Then, we can apply the rigidity theorem to each small
curved cylinder with the same constant. In this way we construct a piecewise constant rotation, which is
close to the deformation gradient V4 in the L? norm.

For every small enough h > 0, let Kj € N satisfy

L

h

h <

< 2h.

L
For every a € [0,L) N 7 N, define the segments
h

L
(a,a+2h) if a<L——,
Sa, iy, = Kh

(L—2h,L) otherwise.
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Now consider the cylinders C, j := S, k, X D and the subsets of (NZh defined by éa,h = \I/('L)(Cath).

Remark that éaﬁ is a bilipschitz image of a cube of size h, that is (a,0,0) +h ((O, 2) x D) , through the
map V¥ defined as

U:[0,L] x R? =R (s,v9,v3) = Y(8) + va va(s) + vz v3(s).

By Theorem 2.1 we obtain that there exists a constant rotation REﬁ) such that
/~ | Vi ™ — R Pde < ¢ /~ dist*>(Vg™M, SO(3))dz. (2.18)
Ca,h, Ca‘h

The subscript a in ]N%((lh) is used to remember that the rotation depends on the cylinder Cw'a’h . In particular,

since ¥ ((a,a + KfL}) x D) C Can, we get

| Vg™ — R Pde < ¢ / dist?>(Vg™, SO(3))da. (2.19)

/I/(h)((a,aJrlg‘h)XD) aa,h

Changing variables in the integral on the left-hand side, inequality (2.19) becomes
/ | Vi o w™ — R \2 det (V¥ M) ds de d¢
(a,a+ﬁ) xD
<c / dist®(Vg™, SO(3))d
Ca,n
<ec / W((\D(h))_l(m‘),vg(h) (z))dx.
aa,h
Notice that det (V\I/(h)) = h2det (Vh\ll(h)) and, since det (Vh\ll(h)) — 1 uniformly,

a,h

/ | V5™ o w™ — RI|ds dg d¢ < 1762 /~ W (U™ (), Vi () da. (2.20)
(a¢a+%h) xD C

Now define the map R : [0, L) — SO(3) given by
~ L L
M (g) := R
RY™W(s) := R} forse{a,a—i— h),aE[O,L)ﬁ hN.

Summing (2.20) over a € [0,L) N KL} N leads to
_ 2 c ~1 .
A | v o g — R(h)| dsd¢d¢ < 72 /ﬁh W((q/(h)) (gg),Vy(h)(x))dx (2.21)
for a suitable constant independent of h. By (2.10) we obtain
/ | V5™ 0w — RM|?ds dg d¢ < ch?. (2.22)
Q

Now, applying iteratively estimate (2.20) in neighbouring cubes, one can prove the following difference
quotient estimate for R : for every I’ CC [0, L] and every ¢ € R with |§| < dist(I’, {0, L})

| R (s + 6) — R™(s) |*ds < c (16| + 1), (2.23)
I/
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with ¢ independent of I’ and d (see [40], proof of Theorem 2.1). Using the Fréchet-Kolmogorov criterion,
we deduce that, for every sequence (h;) — 0, there exists a subsequence of R(") which converges strongly
in L2(I';M3*3) to some R € L2(I';M3*3), with R(s) € SO(3) for a.e. s € I'. From (2.17) and (2.22)
it follows that F' = R a.e.. Moreover (2.6) and (2.15) imply the convergence of the L? norm of F) to
the L? norm of R, hence

FM — R strongly in L?(Q; M>*3).

This proves (2.14), once the regularity of the function R is shown. To this aim, divide both sides of the
inequality (2.23) by (6] + h)? and let h — 0; then

|R(s +9) _ RO 4 <o (2.24)
I 0]

and so R € WH2(I'; M3*3). But this holds for every I’ CC [0, L] with a constant independent of the
subset I’, hence R € W'2((0, L); M3*3).
Now notice that

Vi (5" 0 ¥™) = (V5 0 ¥M) v, w0 = g, g*); (2.25)

by (2.6) and (2.14) we deduce that
Vh (gj("‘) o \I/(h)) — RRy strongly in L?(Q;M>*3). (2.26)
In particular, we have
V(" o w™) — (RRye1) ®er  strongly in L?(Q; M>*3). (2.27)

By Poincaré inequality there exist some constants ¢™) € R? and a function y in W12(€; R?) such that
(2.11) is satisfied. Moreover (2.27) entails that the function y depends only on the variable s in [0, L]
and satisfies 3y’ = R Roe;. Setting dy := R Roe, for k = 2,3, we have that (y,ds,ds) € A and (2.12),
(2.13) are satisfied by (2.26). O

2.2.2 Bound from below

Let Q3 : Q x M3*3 — [0, +00) be twice the quadratic form of linearized elasticity; i.e.,

2
Qs(2,6) 1= T (2, 14)(G, €]

for a.e. z € Q and every G € M3*3. We introduce the quadratic form Q : [0, L] x Mflfei’v — [0, 4+00)
defined by

0
Q(s.P):= inf {/ Q3<s,5,<,Ro<s><P< 5>+9
aeW}’zﬂérop;R% D ¢
ge

dedr

a&) Rg“(s)>dg dg‘}. (2.28)

Remark 2.4 It is easy to check that the minimum in (2.28) is attained; moreover the minimizers depend
linearly on P, hence @ is a quadratic form of P. Notice also that if P € L2((0,L);M3*3), then
a € L?(R3) with 0¢a,0:a € L2(Q;R?), and g € L2((0,L); R3) (see [41, Remarks 4.1 - 4.3]).
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In the following theorem we prove a lower bound for the energies (") /h? in terms of the functional

1 L
I(y, d2’ d3) = 5 A Q(57 (RT(S)R/(S) - Rg(S)RB(S)))dS if (y, d27 d3) € .A, (229)
+o00 otherwise ,

where R € W12((0, L); M®*3) denotes the matrix R := (y'|dz|d3) and A is the class defined in (2.9).

Theorem 2.5 Let y € WH2(Q;R3) and let da,ds € L*(Q;R3). Then, for every positive sequence (h;)
converging to zero and every sequence (gj(hf)) cwh2 (Qh].;]R?’) such that

g) o W) — o strongly in WH2(Q; R?), (2.30)

1
7 0 (gj(hj) o \Il(hj)) —dy  strongly in L*(S;R3), (2.31)

J

1
7 O¢ (g](hj) o \I/(hj)) — dz  strongly in L*(;R?), (2.32)

J

it turns out that )
I(y,dy,ds) < liminfj/~ w((v")) " (@), Vi) (z)) da. (2.33)
j—00 i th

Proor. — In the following, for notational brevity, we will write simply h instead of h;. Let (gj(h)) be

a sequence satisfying (2.30), (2.31) and (2.32). We can assume that

lim inf%/ W ((w")) " (@), Vi) (z))da < C < 400,
j—oo hj O,

otherwise (2.33) is trivial. Therefore, up to subsequences, (2.10) is satisfied. By Theorem 2.3 we deduce

that (y,dg, ds) S A,
FM .= v o™ — R strongly in L2(Q; M3*3) (2.34)

with R € W12((0,L); M?*3), R € SO(3) a.e., and
R:=(y' |d2|ds) = R Ry. (2.35)

Moreover, as in the proof of Theorem 2.3, we can construct a piecewise constant approximation R :
[0, L] — SO(3) such that

|FM — R ds de d¢ < ch? (2.36)
)
and R — R strongly in L?(I';M?®) for every I' CC [0, L]. Define the functions G : Q — M3*3 as
1 1 _
a .— E((R(h))TF(h) — Id) = E((R(h)):rvhy(h) (th,(h)) L. Id). (2.37)

By (2.36) they are bounded in L?(€;M?3*3), so there exists G € L?*(Q;M>*?) such that G — @
weakly in L?(Q; M?*3). We claim that

h—0

liminfhlél/ﬁh W((\Iﬂh))’l(x),vg<h>(x))dm > %/QQg(s,g,Q,G)dsdde. (2.38)
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Performing the change of variables ¥(")  we have

1 _ ) 1
h“/ﬁh W((\I/(h)) 1(x),Vy(h)(x))dx: ﬁ/QW(s,f,(,F(h))det (VAU ™) ds d d¢

1
=3 / W (s,¢,¢, (RM)TF®M) det (V4,0 ™) dsded¢  (2.39)
Q
where the last equality follows from the frame indifference of W . Define the family of functions

KM (5,6,0) :_{ Loin 20 {(s,60) |6, < h 7t}

0 otherwise.
From the boundedness of G in L?(Q;M>*?) we get that Y — 1 boundedly in measure, so that
WG G weakly in L2 (Q; M3*3). (2.40)

By expanding W around the identity, we obtain that for every (s,&,¢) € Q and A € M3*3

1 9*°W

where 0 <t < 1 depends on the point (s,&,¢) and on A. By (2.39) and by the definition of G

5,6, ¢ 1d+t A)[A, A]

— 1M (gW) = % /Q W (s,&,¢ Id+hGM) det (V¥ ™) ds d d¢

1

> ﬁ/Qx(h)W(s,f,C,Id+hG(h))det (Vi ™)ds d¢ d¢

2
- %/ x™ (ZFVZV (s,&.¢, Id + ht(h) G™) [G(h),G<h>]) det (V,UM)dsdedC  (2.41)
Q

where 0 < t(h) < 1 depends on (s,&,¢) and on G . The last integral in the previous formula can be
written as

1 o*w
§/Qx<h> <8F2 (5,6,¢,1d + ht(h) G<h>)[G<h>,G<h>}) det (VM) ds dé d¢

1 *W
=5 | (0 (G (5.1 ) G [, 6] = Qa(s,6,6.G) ) ) det (70" g de

+% / Qs (5,6 ¢, X" GM) det (V, ¥ ™)) ds de d¢. (2.42)
Q

By Scorza-Dragoni theorem there exists a compact set K C € such that the function 9?W/9F?
restricted to K x Bs(Id) is continuous, hence uniformly continuous. Since ht(h)x™ G is uniformly
small for h small enough, for every € > 0 we have

1/X(h) (82W (s,6,¢,1d + ht(h) GM) [GM,GM] - Qs (s,g,g,G<h>)> det (V¥ M)ds d¢ d¢

> f%/ XM GM|? det (V, M) ds de d¢ > —Ce
K
for h small enough. As for the second integral in (2.42), by (2.6) and (2.39) we get

li}nigf% Qs(s,&.¢,x" GM) det (V, ¥ ™)) ds de d¢ > % / Qs(s,€, ¢, G)ds dé d¢ (2.43)
v Q Q
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since (3 is a nonnegative quadratic form. Combining (2.41), (2.42) and (2.43) we have

R T 1
hgyﬁﬂkﬁhzié%@@amwﬁﬂ—ce

and, since ¢ is arbitrary, (2.38) is proved. It remains to identify G.

Fix (50,60) € D; let oo = (50(50,&)) > 0 be such that B250(£O,<0) C D and let Uy := (O,L) X
Bs,(€0,C0). Fix t e R— {0}, |t]| < do. For every (s,&,() € Uy we can define the difference quotients of
the functions G with respect to the variables ¢ and ¢ along the direction 7, given by

B (5,6,0) = (GW(5,64,0) ~ G(5,6,0) (s),

1
K560 = 7 (G (5,6, +0) = GM(5,6,0) (),
and the corresponding difference quotients of the limit function G
1
Hi(s,6,0)i= 7 (Gls,6 +6,0) = G(s5,6,0)) 7(5),

Ki(s.6.0) = 1 (Os.6.C+1) ~ G(s.60) 7(s)

t
Since G — G in L?(Q;M3*3) and R") — R boundedly in measure, we have
Ht(h) — H; weakly in L*(Up; R®) and
RMHM ~RH, weakly in L2(Uy; R?). (2.44)

In terms of F(" the left-hand side of (2.44) reads as
0 () g™ _ L (pm ()
RO (s)HM (5,6,0) = — (F (5,6 +£,0) = FM(5,,0)) (). (2.45)
Now recall that, if we set y) := (" o UM we have
vy = p) gy, (2.46)

in particular, taking the first column of the two matrices, we obtain
F"(5,6,¢)7(s) = 09" (5,6,¢) = h " (s,€,0) (va(s) + (i (5)).
By the last equality and (2.45) we get
RO () (5,6,0) = (0™ (5,6 4+ 1,0) — 0.9 "(5,6,))
(€D FW (5,6 41,0) ~ 6F0(5,€,0)) 1)
L (C P56+ 1,0~ CFM (5,€,0)) vh(s). (2.47)

For the first term we have

£+t
%85 <y(h)(s,§+t,<) _y(h>(s,§,§)) = hltas(/g agy(h)(s,ﬁ, <) dﬂ)

t
:as (1/ laéy(h)(8,5+ﬁa<-) dfl9>7
i)y h
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so by (2.32) and (2.35)

% 33( ( 40—y h)( L€, C)) — d5(s) = 05(R(s) va(s)) weakly inWﬁl’Z(Uo;Rg).

By (2.34) the second term in (2.47) converges to

% ((€ +1) Bls) ~ € R(s)) vh(s) = R(s) vi(s) strongly in L*(U: BY)
and the last term to 1
e (g R(s) — C R(s )) '(5) =0 strongly in L2(Up; R®).
Putting together (2.48), (2.49), (2.50) and (2.44)

R(s) Hy(s,£,¢) = 0s(R(s) va(s)) — R(s) vh(s) a.e. in Uy

and so
Hy(s,€,¢) = (R(s))T R'(s) va(s) a.e. in Up.

Repeating the same argument for Kt(h)

Ki(s,6,¢) = (R(s))T R'(s) v3(s) a.e. in Uj.

we get

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

From the last two equalities we deduce that the functions H; and K; depend only on the variable s.
Moreover, letting ¢ go to 0 both in (2.51) and in (2.52), we get that the gradient of G7 w.r.to the

variables (£, () depends only on s, i.e.,

Vie,o) (G(s7 £ Q) T(s)) = (R(s))T R/(s) (vra(s) | v3(s)) a.e. in Uy.

(2.53)

Being this equality valid in Uy = (0, L) x Bs, (&0, (o), for an arbitrary (£o, (o) € D, we can conclude that

it holds a.e. in the whole Q. Since D is connected, we obtain that for a.e. (s,£,¢) € Q

G(s,6,Q)7(s) = (R(5))" R'(s) (Evals) + Cva(s)) + g(s)
with ¢ : [0, L] — R3. Remark that from the previous formula g € L?((0,L);R?).

It remains to identify the components G(s,&,() v2(s) and G(s,&,¢) v3(s). By (2.46) we have

GW (5,6, Omls) = 3 ((RO()TFW (5,6, vals) — mals))

h
= % (h_l(R(h)(s))TaEy(h)(sv5»4) . V2(S))
and

(M ()T FM (s,¢,¢) va(s) = ws(s))
(h(RM ()7 0y ™ (5., ) — va(s)).

M(s,&,Q)vs(s) =

S =

so, if we define .
) (5,6,¢) == 5 (W1 RD)TY M (5,6,0) — as) — Cwa(s))

it turns out that

Dea™ (5,6,0) = GM (5,6, wa(s) and 9ol (5,€,0) = G (s5,€,C) va(s),

(2.54)
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Applying the Poincaré inequality to the functions o™ for fixed s we obtain that for a.e. s € [0, L]
2 2 2
/D |a®(s,6,¢) — o (s) [ de d¢ < ¢ /D (10ea™ (5.6, + | 0™ (s,¢, Q") dg dc.
where a(()h)(s) = fD aM)(s,€,¢)de d¢. Integrating over [0, L], we have

1o = 0l 220y < ¢ (1060 [y + l10ca™ | }2e)-

Since the right-hand side is bounded by (2.54), there exists a function « € L?(2;R?) such that, up to
subsequences,

o — a((] ) o weakly in L (O RY).
Moreover, from (2.54) we conclude that
8504(5,5,4) = G(5757<) VQ(S) and aCOZ(S,g,C) = G(Sagvg) V3(S)7 (255)

therefore g, Ocav € L2(Q;R?). Now, define the functions a(s,&,¢) := R (s)a(s,&,¢) and §(s) =
RI(s) g(s). Thanks to these definitions and to (2.35), G can be written as

. /0
G:((RR{)T(RRg) RO< ¢ > +g‘afa a<a> RT
¢
0
~ Ry ((RTR’ (RT)’R0)< ¢ ) + | 0edi a¢a> Rl
¢
0
R ((RTR’ —ROTR6)< ¢ ) +§|0ca a<a> RY, (2.56)
¢

where the last equality follows from the identity (Rg)/Ro + RI R} = 0. Combining (2.38) and (2.56),
we obtain

1"f1f(h)~(h)>1 R P . J | O
1211_}61 ﬁ (y )— 24@3(5557C5 0(5) (5) g +g‘ cQ

a<a> ROT(S))ds de de,

with P(s) := RT(s)R'(s) — RE(s)R}(s). By the definition of the quadratic form @ in (2.28) we clearly
have [, Qs(s,&,¢,G)dEd¢ > Q(s, (s)) and so

L
hmmf— / ), Vi (2))dx > % /0 Q(s, (RT(s)R'(s) — RE (s)Rj(s)))ds.

2.2.3 Bound from above

In this subsection we show that the lower bound proved in Theorem 2.5 is optimal.
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Theorem 2.6 For every sequence of positive (h;) converging to 0 and for every (y,ds,ds) € A there
erists a sequence (g](hf)) c wh2 (QhJ;RS) such that

g o whi) — g strongly in WH2(Q; R?), (2.57)

1
— O¢ (g](hf) o \I/(hj)) — dy  strongly in L?(;R?), (2.58)

J

1
7 O¢ (Q(hﬂ) o \I/(h")) —ds  strongly in L*(Q;R?), (2.59)

J

and )
I(y,ds,d3) = Jim o /~ W ((w*)) 7 (z), VP (2))da, (2.60)
—00 j th

where the class A and the functional I are defined in (2.9) and (2.29), respectively.

PROOF. — Let (y,da,d3) € A. Assume in addition that y € C?([0, L];R?) and do,d3 € C*([0, L]; R?).
Consider the functions y™ : Q — R3 defined by

Y (s,€,¢) == y(s) + h&da(s) + hCds(s) + ha(s) + h? B(s,&,C),

with ¢ € C1([0, L];R3) and 8 € C'(;R3). We define g := yM o (\Il(h))_lg these functions clearly
satisfy (2.57). Moreover, since

Vi (5" 0 ¥™) = Viy™ = (y/ |do | ds) + h (Edy + Cdy + ¢ | 0eB| 9 B) + h20sB ® e, (2.61)

also (2.58) and (2.59) follow easily. In order to prove (2.60), we first observe that, performing the change

of variables (s,&,¢) = (™) "(z), we obtain

%ﬂh) (5™) :% / W (s, ¢, V§™ o W) det (V, 0 ds de d¢
Q

:% / W (s, ¢, Vi (5™ o W) (vhqﬂ’l))’l)det (V5 ¥ ™)ds d¢ de, (2.62)
Q

where the last equality is justified observing that
A (g(h) o \I/(h)) - (Vg(h) ° \Il(h)) (Vh\p(h))_
Then, by the definition of )

%ﬂh) (5" = % / W (5,€,¢, (Viy™) (Vi 8™) ™) det (V5,0 ™M) ds de dC. (2.63)
Q
Using (2.7) and (2.61) we get

Vay™ (V™) =RRY + h(€d) + Cdl+q | 98| 0c8) RY
—hRRE[(Evh+ (Vs ®ei] RE + O(R?),

where R = (y/|da|d3) and O(h?)/h? is uniformly bounded. Now consider the rotation R(s) = R(s) R (s).
Then

RTV,y™ (vhq/<h>)‘1 = Id+hR"(€dy+ Cdy+q |98 0cB) RE — h[(£vh + (V) @ er] RE + O(h?).



3D-1D asymptotic analysis for thin curved domains in nonlinear elasticity 35

If we define the functions

B(h)(87£7C) = (RT vhy(h) (vh\:[j(h))il - Id)a

==

it turns out that

B™ = (RoRT)(€d5+Cdi+q' |95 OB RS — [(€v5 + Cva) @ er] R + O(R)

0 0
RORT<R’< £ ) +q”65ﬁ‘845>R0T— (R{)( 13 )) ® ey
¢ ¢

0
- Ry ((RTR’ - RYR}) < g ) + RTq| RT0:3 ‘ RT8<B> RT + O(h)

=i Ggp+O(h) (2.64)

R +0(h)

where O(h)/h is uniformly bounded. By frame indifference and the definition of B we have

1 _ 1 _ _
W (.66 Vg™ (Vi) ™) = 5 W (s,6, ¢ RTVay™ (7,90) )

1
73 W(s,& ¢, Id+hB™).

Using (2.64) and the expansion of W around the identity, we obtain

1 — 1
EW(S,f,C,Vhy(h)(Vh\II(h)) 1) — 5@3(3,5,@“,6{175) a.e..

Moreover, the assumption (ii) gives the uniform bound

1 —1 1
e W (s,&,¢ Vay™ (Vae™) ™) < 5 C11Gas ?+Ce LY(Q),

so, by the dominated convergence theorem and by (2.63) we conclude that

lim — / w (99 (@), V5" (@) ) da = ! / Q3(5,€, ¢, Gy p) ds d dC. (2.65)
h-0 h* Jg, 2 Jo
This holds for every ¢ € C1([0, L];R3) and for every 3 € C1(;R?).

Consider now the general case. Let (y,ds,ds) € A, and let a(s, ) € WH2(D;R3), §(s) be a solution
to the minimum problem (2.28) for P = RT R’ — R R{,. By Remark 2.4, & € L*(Q;R?) with 0¢&,0ca €
L?(Q;R3) and g € L?((0,L);R3). In order to conclude the proof it is enough to construct a sequence of
smooth deformations converging to (y,ds, ds), on which the energy I") /h? converges to the right-hand
side of (2.65) with ¢ and 3 replaced by RT§ and RTé, respectively. This can be done by repeating the
same construction as in [40]. O

Remark 2.7 (Homogeneous rods) If the rod is made of a homogeneous material, i.e., W(z, F) =
W(F), for a.e. z in Q and every F' € M®*3 then the limiting energy density @ is given by the simpler

formula
0
0t Lo (£ o

a<d> Rf{(s)>d5 d(}. (2.66)
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In other words the optimal choice for § in (2.28) is § = 0.
In order to show this, let & € W12(D;R3) and let § € R3. We introduce the function

G(5.6,0) = als.6,0) — € /D D de d¢ — ¢ /D Dcér de dC. (2.67)

0 0
Ry <P< 3 ) -‘rﬁ‘@gd a<@> RY =Ry <P< ¢ ) ‘8564 8<&>ROT
¢ ¢

+ Ro (g‘/D@gddde‘/D@Cddde> RT
=G+ Z.

Then,

By expanding the quadratic form @3, we have
[ @u@ragdc = [ @u@racac+ [ Quziagac > [ @uGag. (2.68)
D D D D

where we used (2.3), the fact that J:& and J;& have zero average on D and the non negativity of Q.
From this inequality the thesis follows immediately.

Notice that, due to the nontrivial geometry of the body, the limit energy depends on the position over
the curve = even for a homogeneous material.

Remark 2.8 (Homogeneous and isotropic rods) Assume the density W is homogeneous and
isotropic, that is,
W(F)=W(FR) forevery R € SO(3).

Then the quadratic form @3 is given by

2

T
Gre + A (trG)?

Qs(G) = QM‘

for some constants A, € R. It is easy to show that for all G € M3*? and R € SO(3)

Q3(RGR") = Q3(G),

and so, formula (2.66) reduces to

0
Q(P) = dew}ng;Rs){/DQg <P< g > ‘8@4
+

L p(BA+2p)

_ b 2
o 7)\4_” (P12 + P13)

where the last equality follows from [40, Remark 3.5]. This means that in the case of a homogeneous and
isotropic material the quadratic form @ is exactly the same as in the case of a straight rod treated in
[40].
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Remark 2.9 (Homogeneous and isotropic rods with a circular cross section) Assume that the

cross section D is a circle of radius ﬁ centred at the origin. In this case, the quadratic form ) can be

w) Rg(s)>

computed by a pointwise minimization. More precisely, for every s and for every P,

P13
v) Rg(s)> + Qs (RO(S) < D23
0

The proof is completely analogous to [40, Remark 3.6].

u v

1 P12
Q(s,P) = o H})lrul} Q3 <R0(s) ( 0
—D23

2.3 Lower scalings of the energy

The content of this section is the study of the asymptotic behaviour of the functionals 1" /he for 0 <
a < 2,as h — 0. In addition to conditions (i)-(v) of Section 2 we assume also that W (z, F)) = W (z1, F)
for every z = (21,22,23) € R® and every F € M**3 and that

(vi) 3C3 > 0 independent of z; such that W(zy, F) < Csdist?(F, SO(3)) for a.e. 2
and every F € M3*3,

It is convenient to write the functionals 1) as integrals over the fixed domain Q = (\Il(h))fl(Qh).
Changing variables as in (2.62) and setting y := 7 o U(*) | we have

F0) = [ W (s, (Tag) (09) ) det (990)ds g ¢ = T o).

We extend the functional to the space L?(2;R?), setting

J(h)( ) _ j(h) (y) if Yy e WLQ(Q;RS)a
A P otherwise in L2(£2; R3).

The aim of this section is to determine the I'-limit of J(h)/h“ Jfor 0 < a<2,as h — 0, with respect
to the strong topology of L2.

2.3.1 Derivation of the nonlinear theory for curved strings

For this first part we specify a = 0, so we are interested in the asymptotic behaviour of the functionals
representing the energy per unit volume associated to a deformation of the reference configuration.

Theorem 2.10 (Compactness) For every sequence (yM) in L*(Q;R®) such that
JM (yM) < ¢ < +oo (2.69)
there exist a function y € W12((0, L);R?) and some constants ¢ € R3 such that, up to subsequences,

y M — M)~y weakly in Wh2(Q; R3).

PRrROOF. — Let (y(h)) be a sequence in L?(£2;R?) satisfying (2.69). From the definition of the functional
we have immediately that 3" € W1H2(Q;R?). The assumptions on W and the uniform boundedness
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of (Vh\Il(h))fl and of det (Vh\I/(h)) give the boundedness in L?(Q;M?*3) of (Vhy(h)) and hence of
(Vy(h)) . Therefore, using the Poincaré inequality

[|y™ — C(h)HLz(Q;RS) - Hvy(h)Hﬂ(ﬂ;M“a)’

where ¢®) € R3 is the mean value of y® over Q, it turns out that the sequence y™ — ¢ is bounded
in W12(Q;R3); hence there exists a function y € WH2(Q;R3) such that, up to subsequences,

y" — M~y weakly in Wh2(Q; R3).
Moreover since (Vhy(h)) is bounded in L2(£2; M?*3), we have
3§y(h) — 0 and a<y<h> — 0 strongly in L?(Q; R?).

Therefore the limit function y depends only on the first variable. O

Theorem 2.11 (I'-convergence) Let I be the functional defined as

L
sk / - 1,2 .3

=1 | W) ds it yew 0.0, (2.70)
+00 otherwise in L?(;R3),

where Wi* is given by the convex envelope of the function Wy : [0, L] x R? — R defined as
Wo(s, z) :=inf {W (s, (2 |va | v3)R] () : va,v3 € R?}.
Then

[ — lim J® =1,
h—0

i.e., the following conditions are satisfied:
(i) (liminf inequality) for every y € L?(;R3) and every sequence (y(h)) C L2(;R3) such that y™ — y
strongly in L*(Q;R3), it turns out that

I(y) < liminf J™ (yM); 2.71
(y) < Timinf J (y™)); (2.71)

(ii) (limsup inequality) for every y € L*(Q;R3) there exists a sequence (y(h)) C L?(;R3) converging
strongly to y in L*(S;R?) such that

limsup J® (y™) < I(y). (2.72)
h—0

Remark 2.12 Notice that, if A := (z|vg|v3) RY, then A7 = 2 and Ay, = v, for k = 2,3. In other
words, in the definition of Wy, the minimization is done with respect to the normal components of the
matrix in the argument of W, keeping equal to z the tangential component.

Remark 2.13 Observe that conditions (iv) and (v) imply that for a.e. s € [0, L],
W5*(s,z) =0 if and only if |z| <1, (2.73)

(see [1]).



3D-1D asymptotic analysis for thin curved domains in nonlinear elasticity 39

PROOF. — (of Theorem 2.11) (i) Let y and y") be as in the statement. We can assume that

liminf J™ (1)
im in J (y )<—|—oo,

otherwise (2.71) is trivial. Therefore, up to subsequences, (2.69) is satisfied. From Theorem 2.10 we
deduce that y € W12((0, L); R?) and that the convergence is indeed weak in W12(Q;R?).
Now define the function Wy : [0,L] x R?* — R as

Wo(s, z) :=inf {W (s, (2 |va | v3) R} (5)) : va,v3 € R?}.

Due to the coerciveness assumptions this function is finite.
Notice that, since Ry Rl = Id, we can write

W (5, Vg™ (V0 0) ) = W (5, 3™ (7,0 ®) " RoRY)
and using the explicit expression of (Vhllf(h))_l given in (2.7), i.e

(VT ™) ™ (5,6,0) = RE(s) — R RE(s) [(€v4(s) + Ch(s)) @ e R (s) + O(h2),

we have )
Viy™ (Vh\I'(h))_ Roe; — ' weakly in L?(Q;R?). (2.74)

So, from the definition of W)
J) (yh)) - > / Wo (s, Viy™ (Vo0 ™M) ™ Rey) det (V8 M) ds dé d¢
Q
> /Wg*(s,vhy<h>(vh\11<h>)’1R0e1) det (VM) ds d€ dC.
Q

Now we pass to the liminf in both sides of the previous inequality, using the uniform convergence of the
determinant remarked in (2.6), and we get

v

liminf J® (y") lim inf / Wi (s, (Vay™ (Va8 ™) " Ro)er) det (V0 ™) ds dé d¢

= liminf / Wi (s, (Vay™ (V0 ™) ™ Ro)ey) ds de dC.

Since the functional

/W (s,u)dsd€ d¢

is convex, it is sequentially weakly lower semicontinuous in L2(2;R?); so, by (2.74) we can conclude that

lim inf J) (1) /W (s))ds (2.75)

(ii) Let y be a function in Wh2((0, L); R3), otherwise the bound in (2.72) is trivial. Let wq,ws €
W12((0,L); R3) be arbitrary functions and consider y® : Q — R3 defined by

Y™ (5,€,¢) = y(s) + h€wa(s) + h Cws(s).
Clearly, as Vy") =y @ e, + h (Ewh + Cwh | wy | ws), we have that

yM — gy strongly in Wh2(Q; R®). (2.76)
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Now we want to study the behaviour of the sequence
J® (y) = / W (s, (Viy™) (Vae®™) ) det (V, 0™M) ds dg d¢
Q

when h — 0. Notice that the scaled gradient of ") satisfies
Viy"™ = (¢ | w2 | ws) + h (wh + (wh) @ er — (y | w2 | ws) ace.. (2.77)

So, by (2.6) and (vi), using the dominated convergence theorem we get

lim J ") (™)) = fim | W (s, (05y™ [ws | ws) (VAT ™M) ™) det (V, 0 ™) ds dé d¢

L
— / W(s, (v | wa | ws) Rg) ds.
0

Up to now we have shown that for every choice of wq, w3 € W12((0, L); R?), there exists a sequence
(y™) such that (2.76) is satisfied and

L
lim 7 (W)Y — / / T\ s,
Jim T (™) ; W (s, (y' |wa | ws) Ry )ds
Therefore,

I — limsup J™ (v) := inf {lim sup JM (u(h)) :u™ — y strongly in LQ(Q;R?’)}
h—0 h—0

L
< inf {/ W (s, (y' | wa | ws) RY) ds : wa, w3 € W1’2((O,L);R3)}
0

L
= inf{/o W (s, (y' w2 |ws) RY) ds : wa, w3 € LQ((O,L);R?’)}, (2.78)

where the last equality is a consequence of the dominated convergence theorem and of the density of
WH2((0,L);R?) in L2((0,L);R?).
By the measurable selection lemma (see for example [27]) applied to the Carathéodory function
g:[0,L] xR3xR3 = R, (s,v2,v3) — g(s,v2,v3) := W(s,( '(8) | vz | v3) RE (s))
we obtain the existence of two measurable functions w3, w) : [0, L] — R? satisfying

W (s, (y'(s) | wh(s) | w§(s)) R (5)) = oonf W (s, (y'(s) [ v2] vs) RE (5)) = Wo(s,y/'(s))-

Moreover, from the coerciveness of W it follows that w3, w) belong indeed to L?((0, L); R?) and so they
are in competition for the infimum in (2.78). Hence, for every y € W12((0, L); R?) we have

r— III}ILIS(I)lpJ(h / Wo(s,y/'( 5 =: j(y)
Now define the functional _ s
_ ] Jy) if ye WH((0,L);R )
T = { 400 otherwise in L?(Q;R3); (2.79)
clearly it turns out that
T —limsup J® (y) < J(y) for every y € L*(Q;R®). (2.80)
h—0

As the lower semicontinuous envelope of J with respect to the strong topology of L?(2;R?) is given by
the functional I (see [21] and [37, Lemma 5]), the thesis follows immediately from (2.80). O
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2.3.2 Intermediate scaling

In this subsection we show that scalings of the energy of order h*, with o € (0,2), lead to a trivial
T -limit.

Theorem 2.14 (Compactness and I'- convergence) Let Wy be the class of functions defined as
Wy = {y € WH2((0,L);R?) : |¢/(s)] < lae.}. (2.81)
For every sequence (y(h)) in L2(;R3) such that

1

o J* (y(h)) <c< 40 (2.82)

there exist a function y € Wy and some constants ¢™ € R such that, up to subsequences,

Yy — M)~y weakly in Wh2(Q; R3).

Moreover,
1 0 in Wy,
I lim — J® = ' (2.83)
h—0 h® +o0o otherwise in L?(; R3).
PRrROOF. — Let (y(h)) be such that (2.82) is satisfied. Then
J0) (y(h)) < ch®. (2.84)

By Theorem 2.10 this implies that there exist y € W12((0,L); R?) and some constants ¢ € R such
that the sequence y — ¢ converges to y weakly in Wh2(Q; R?). Moreover by Theorem 2.11 and by
(2.84)

L
0= liminf 7™ (™) 2/ W5™(s,y'(s))ds,
- 0

and this gives the additional condition that |y'(s)] < 1 for almost every s € [0, L], thanks to Remark
2.13. Therefore v € W;.

Let us prove (2.83). The liminf inequality follows directly from the fact that the energy density W is
nonnegative and from the compactness. As for the limsup inequality we first notice that we can restrict
our analysis to functions y € Wy, being the other case trivial. Since |y/(s)] <1 for a.e. s € [0, L], there
exist two measurable functions ds,ds : [0, L] — R? such that

(y'(s) ] d2(s) | ds(s)) € Co(SO(3)) for a.e. s € [0, L],

where Co(SO(3)) denotes the convex hull of SO(3). As first step, we assume in addition that (y'|dz|ds)
is a piecewise constant rotation; for simplicity we can limit ourselves to the case

Ry if s €]0,s0],

(y'(s) [da(s) |d3(s)) = { Ry if s € [sg, L]

with Ry, Ry € SO(3). Now, let w(h) be a sequence converging to zero, as h — 0, and let P be a smooth
function P : [0,1] — SO(3), such that P(0) = R; and P(1) = Ry. Now consider a reparametrization

of P, denoted by P and given by
P (s) .= p( 21220,
=755
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Define the sequence y" : Q — R3 as
s
R1< hé& ) on s € [0, s0[xD,
h¢

s 0
y M (s,6,¢) = / (P(h))(a)el do + P(h)(s)< h¢ ) +o™  on [s0,50 + w(h)] x D,
h¢

S0

s
Rz( h§ ) +d™ on |sg+w(h), L] x D,
h¢

where the constants b and d™ are chosen in order to make y") continuous. It turns out that the
scaled gradient has the following expression:

Ry on [0, so[xD,
0
vhy(h) - P(h)(s) 4 <(P(h))/(s)< hé )) ®e; on I:SOaSO —|—u)(h)] X D, (2.85)
h¢
R on }so +w(h),L] x D;

moreover Viy" — (y'|dy|ds) strongly in L*(Q;R3). In order to evaluate the functional on this
sequence we use the fact that, by (v) and (2.6),
1

T T () < h% / dist? (Viy™ (V™) ™, SO(3)) ds dé dC. (2.86)
Q

From (2.85) the integral on the right-hand side of the previous expression can be written as

S0 L
/ /dmﬁ(R1 (Vi ™)™ SO(3)) ds de d¢ + /distQ(Rg (V™)™ SO(3)) ds de d¢
o JD sotw(h) /D
sotw(h) 1
+ / / dist® (Vpy™ (VAT ™) ™7, S0(3)) ds dé d¢. (2.87)
S0 D

The first two terms in (2.87) give a contribution of order h? since, by (2.7), for i = 1,2,

dist? (R, (V¥ ™) ™1 SO(3)) < h2 dist®(R; RY [(¢vh + Cvh) @ e1] R, SO(3))
< ChAdist®([(€vh + (vh) ®e1], SO(3)),

so they can be neglected in the computation of the limit of (2.86). The only term we have to analyze is

the last integral in (2.87). Set
0
AP (5,6,0) = ((PW)’( h¢ )) ®er.
h¢

dist? (V™ (V, 071 S50(3)) < dist? (AP (v, 8M) 7' 50(3)) < Ch2 (&2 +¢2) | (PM)

Using again (2.7) we have that

12

9
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so we get the following estimate:

so+w(h) . sotw(h) 9
/ / dist® (Vg™ (V4 ¥ ™)™, SO(3)) ds dé d¢ < C h? / | (P™M)"] ds
S0 D

S0

h2 1
=C —/ | P'|*ds.
w(h) Jo
Notice that, if we choose w(h) ~ h?, with 0 < 3 < 2—a, also this term can be neglected in (2.86), hence

1
- ) (4 () =
pimy 7 T ) =0

and this concludes the proof in the case (y'|dz2|ds) is a piecewise constant rotation.

Consider now the general case. Since (y'|dz2]|ds) € Co(SO(3)) a.e., there exists a sequence of piece-
wise constant rotations R; : [0, L] — SO(3) such that R; — (y'|d2|ds) strongly in L?((0, L); M3*3).
For each element R; of the sequence we can repeat the same construction done in the previous case and
](-h) ) converge to R; as h — 0 and such that for every j

find a sequence y; ' whose scaled gradients Vhy](-h

1 _
lim h*a/ W (s, Vay™ (V4 0™) ™) det (V4,0 M) ds de d¢ = 0. (2.88)
- Q
Now we can choose, for every j, an element of the sequence y§h), say y](-h'j), in such a way that
Hv (ki) _ R, <1 (2.89)
hab Mrzmexa) = '

and
1 | - 1
lTa/ W (s, Vi, (W3, 00)) 7Y det (9, 009 ds de d¢ < 5 (2.90)
7 JQ

These estimates show that the sequence y(hj) converges to (y'|da | d3) strongly in L2((0, L); M3*3) and

that ) ’
lim 7/ W (s, Vi, y ") (V5,00 71 det (V, 09)) ds de d¢ = 0. (2.91)
5 JQ

j—oo h

This concludes the proof. O






Chapter 3

Asymptotic models for curved rods
derived from nonlinear elasticity by
I'-convergence

In this chapter we continue the analysis of the asymptotic behaviour of the elastic energy associated to
a displacement of a curved thin rod started in Chapter 2, considering the higher scalings of the energy.
For the notation we refer to Section 2.1 at the beginning of Chapter 2.

Let 7 € W12(Qu;R3) be a deformation of €2;,. The elastic energy per unit cross-section associated
to g is defined by

™ () - 1/ W (™)™ (2), Vii(z)) da.

= —2 5
h Qp,

We study the sequence of functionals I(") /h8 | with 3 > 2.

3.1 Compactness results

In this section we analyze the compactness properties of sequences of deformations having energy 1" of
order h? with 3 > 2. For notational convenience we prefer to write 3 > 2 as 2o — 2 with o > 2. The
main ingredient in the proof is the rigidity result, proved by G. Friesecke, R.D. James and S. Miiller in
[30]. For the statement of the theorem we refer to Thorem 2.1 in the previous chapter.

Before stating the compactness theorem, let us introduce some sequences which will be widely used in the
sequel. Given a sequence of deformations Y(® : Q — R?, we consider the functions v® : (0,L) — R3,
w u™ :(0,L) — R, defined as

o) = s [ (F5.6,0) — 90(s.6,0) de e, (31)
W) = s (s [ 76560 = ¥0(6.6.0) - (€0a(s) — Crato) dc). (32)

h2(i_2) ) (/ 0y (YW (s,€,¢) — UM (5,€,0)) - (o) de dg) doif 2 < a <3,
D

(3.3)

hal_l / (/Das (Y (s,6,¢) = 0™ (s,€,0)) - 7(0) dgdc) do  if a >3,

45
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where s, € (0,L) is chosen in such a way that u(") has zero average on (0,L) and u(D) := [, (£2+
Cg) d¢ d¢. Notice that v is the averaged displacement associated with the deformation Y. The
function w™ describes the twist of the cross-section. Finally, u(") is related to the tangential component
of the displacement. More precisely, up to a suitable scaling, its derivative (u(h))/ coincides with the
average on the cross-section D of the tangential divergence of Y(") — w(h)

We are now in a position to prove the compactness result.

Theorem 3.1 Let (g](h)) c wh? (ﬁh;R3) be a sequence verifying

1

BT IM (M) < ¢ < 400 (3.4)

for every h > 0. Then there exist an associated sequence R C C>°((0,L1);M3*3) and constants
R™M € SO(3), ¢™ € R® such that, if we define Y ) := (R(h))ng(h) o W) — M) " we have

RM(s) € SO(3) for every s € (0, L), (3.5)
1RO = Td]| e 1y < B2 (IR ooy < OB (3:6)
thy(h) (th;(h))—l . R(h)HLQ(Q) < O he—1. (37)

Moreover, defining v, w® and u™ as in (3.1), (3.2) and (3.3), we have that, up to subsequences,
the following properties are satisfied:

(a) v — v strongly in WH2((0, L); R?), with v € W22((0,L); R3) and v’ -7 =0;
(b) wh —w  weakly in W2(0,L);

0 u™ — u strongly in WY2(0,L) if 2 < a < 3,
c
uM — u weakly in WH2(0,L)  if a > 3.

In addition, for 2 < a < 3 the function u satisfies the following constraint:

u = —% ((v’ )2 (v 1/3)2); (3.8)

(d) (VyY®W (Vh\Il(h))flf]al)/h‘”‘*2 — A strongly in L*(Q; M>*3) | where the matriv A € WH2((0, L))

is given by
0 —v' vy —v g
A= Ry | v 1» 0 —w RY; (3.9)
v g w 0

(e) (R™ —1Id)/ho=2 — A weakly in WY2((0, L); M3*3)

(f) sym(RM — Id)/h* =2 — A%/2 uniformly on (0,L).
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PROOF. — Let (g<h>) be a sequence in W12 (Qy; R3) satisfying (3.4); using the change of variables W(")
and the fact that V&) = p2V, W) | this estimate becomes

1 ~
= /Q W (s,6,¢, Vi o M) det (V0 ™)ds dé d¢ < c.
The coercivity assumption (v) and (2.6) imply that
1 : _
72a2 /Q dist? (Vg™ o W) SO(3))ds de d¢ < e.

Step 1: Construction of the approximating sequence of rotations.
Proceeding exactly as in Theorem 2.3, we can construct a sequence of piecewise constant rotations
Q™ :[0,L) — SO(3) (denoted by R™ in the cited Theorem) satisfying the estimate (2.21), that is,

/Q’Vg(h) ) —Q(h)fdsdfd( < % /5 W((\I,(h))—l(x),vg(h)(x))dx
h
for a suitable constant independent of h. By (3.4) we obtain
/Q (V5™ 0 0™ — QM| ds de d¢ < ch?*2, (3.10)
Moreover, as in Theorem 2.3, for every s € (h, L — h) and every |d| < h it turns out that

|Q(h)(s+5)_Q(h)(s)|2 gch2a—3’ (311)

and for every I' CC (0,L) and every ¢ € R with |§] < dist(I’,{0,L}) we have
QM (s +8) — QM (s)[*ds < ¢ h* =D (|8] + h)?, (3.12)
I/

with ¢ independent of I’ and §. Now, let n € C§°(0,1) be such that n > 0, and fol n(t)dt = 1. We set
nM(t) == +n(%) and we define, as in the proof of [41, Theorem 2.2],

~ h
Q) = [ A OQWs = dr s .1

where we have extended Q™ out of (0, L) putting Q" (s) := QU (0) for s <0 and Q" (s) := Q) (L)
for s> L.
By (3.11) and (3.12) it easily follows that, for every h > 0,

0% = @3 < CH @Y 1) < 0 e
Q™ ~ Q(h)HiOO(O,L) <Ch*e? (3.14)

In particular, estimates (3.10) and (3.13) yield
[95%) 0 W) — QW] o < chot. (3.15)

Let 7 : U — SO(3) be a smooth projection from a neighborhood U of SO(3) onto SO(3). From
(3.14) it is clear that the functions Q") take values in U for h small enough; therefore, we can define
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RM .= W(Q(h)). Since H(R(h)) < Ch*=2 by (3.13), using Sobolev-Poincaré inequality we

deduce

/
20,09

1R = POy < 1 |y < €1, .10

!
| |L2(0,L

where P is the mean value of R over (0,L). This implies that
dist (P, SO(3)) < ch*~2,

so there exists a sequence of constant rotations (R(h)) such that | P _ R(h)| < c¢h®~2. By this and
(3.16) we get

1R~ RO, g1y < (1B~ PO, + | PO — RO < cho.

0,L) 0,L)

Finally, define R(") := (R(h))TR(h); this sequence is of class C*° and satisfies (3.5) and (3.6). Moreover,
from (3.15) we obtain

= T. a—
[V((R™) §™) ow™ —RM| , o < Ch* (3.17)

Let ¢®) € R3 be the average of the function (R(h))T 7Moo — g on Q and let us define the sequence
YW .= (R(h))T g o W) — (M) Then we can write (3.17) in terms of V, Y and we get

| |VhY(h) (vh\Ij(h)) -1 o R(h) | |L2(Q) S C hOéfl’ (318)
which is exactly (3.7).

Step 2: Definition of the matriz A.
As in the case of a straight rod treated in [41], we consider the sequence A" defined as

A(h)(s) — ha,l—z

(R (s) — Id),
which converges uniformly and weakly in W2 to a matrix A € WH2((0,L); M3*3). This is exactly
property (e). Since R € SO(3), we have

A®) 1 (AM)T = —pe=2 (AT 40, (3.19)

Passing to the limit as h — 0, we deduce that A is skew-symmetric. Moreover, after division by 2h®~2

in (3.19), we get
! ® gy -2 yniforml
Wsym(R -1 ) — 5 uniformly,
so property (f) follows. The convergence of the sequence A", together with the estimate (3.7), imply

that
1

ho—2
Step 3: Identification of A wia limiting deformations v and w.
Now we characterize the elements of A in terms of some limiting deformations. By (2.6) and (3.20) we
get

(vhy<h> (V™)™ - Id) A strongly in L2(Q; M%), (3.20)

1

= Vi(Y® —wM) 5 AR, strongly in L*(Q; M**3), (3.21)

so, in particular,

1
a3 0s (Y(h) - \I!(h)) — A7 strongly in L*(Q;R3). (3.22)
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Let v be the sequence introduced in (3.1). By the choice of ¢\, it has zero average on (0, L) and
by (3.22) its derivative is bounded in L?((0,L);R3). Therefore, by Poincaré inequality, there exists a
function v € W12((0, L); R3) such that

o™ — v strongly in W12((0, L); R?).

Moreover, by (3.22) we obtain that v" = A7. As A belongs to W2((0, L); M3*3) and is skew-symmetric,
we deduce that v € W22((0,L); R?) and v' - 7 = 0. Then (a) is proved.
Considering the second and the third columns in (3.21) we have
1
ho—1

0 (Y(h) — \Il(h)) — Avy  and % O¢ (Y(h) — \Il(h)) — Awvg strongly in L2(Q;R?).  (3.23)
If we apply Poincaré inequality to the function Y(") — ¥ on D, we get
Y0 —0® — (y® 0 ®) |7, ) < e[| 9(Y® =0 ®) |1+ 0 (v =0 D) |7, ) ) (3:24)

for a.e. s € (0,L), where (Y(*) — \Il(h))D(s) =/p (YW — ¥ d¢ d¢. Integrating both sides of (3.24)
with respect to s, we obtain that the sequence (Y(h) -yt — (Y(h) — \Il(h))D)/ho‘_l is bounded in
L?(Q; R3); moreover, (3.23) yields that there exists a function ¢ € L?((0, L); R3) such that

1 .
W(YW — o™ — (v —gM) )~ ¢ Ay +(Avs  strongly in L*(Q;R?). (3.25)
Let w™ be the sequence defined in (3.2). Thanks to (2.3), it can be rewritten as
1 1
() - - - () _ gy _ (yh) _ gh) . _
Rt WD) /D (Y gy g )D) (€ vy — C o) dE dC. (3.26)

From this expression it is clear that, using (3.25),
1
’LU(h) — W = 7/ (fAl/g + CAZ/3) . (51/3 - CZ/Q)dgdC = (AVQ) - U3 (327)
(D) Jp
strongly in L?(0,L), where the last equality follows from (2.2) and from the fact that A is skew-

symmetric. It remains to show that the convergence in (3.27) is actually weak in W12(0,L). To this
aim it is enough to verify the boundedness of the derivative of w® in the L?- norm. We get

(w(h)>/ = halq (,u(lp) /D B (Y — M)y (guy — Cp) de dC)—i—
+ % (M(ID) /D (Y —w®) - (€vh — Cvh) dg d<>. (3.28)

For the last integral on the right-hand side of (3.28) the required bound can be proved using the conver-
gence in (3.25), arguing in a similar way to (3.26)-(3.27). For the first integral notice that
1
ho—1

/ Ds (Y — WM (v — Cv) dEdC = / (0 Y " — RM, W) - (¢ v — Cwy) dE dC
D D

hafl
+

In virtue of (3.18) and (2.6), the first term on right-hand side is bounded in L?, hence it remains to
control the L?-norm of the second integral. Now, using (2.5), we have

/ (RMa, 0™ — 9w M) . (£ 1y — ¢ 1) de d¢ = h/ [(Rw) — 1d) (¢ vh +¢yg,,)} (Evs — Cwa)dEdC.
D D
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The required bound follows from (3.6), hence (b) is shown.
As A is skew-symmetric and AT =", (Avy) - v3 = w, we conclude that

0 —v vy =0 g
RIAR = | ¢ -1 0 —w ,
v g w 0

which gives (3.9).

Step 4: Convergence of the sequence (u(h)) .
Let (u(™) be the sequence defined in (3.3).

Consider first the case 2 < a < 3. It is easy to verify that its derivative is bounded in L2(0,L).
Indeed,

1 1
h)\/ h h h h h
(u™) :m/[)asm )M rdedc = W/D(&,Y( )~ RMauM) . 7 dg d¢
1
D

Since a < 3, the first term converges to zero strongly in L? by (2.6) and (3.18). As for the second term,
using (2.5), the fact that R is independent of & and ¢ and (2.3), we have

1
h2(a—2)

1

720D (R(h)T — T) T

/ (RMo, ™ — 9,0 M) . 7 dgd¢ =
D

= h2(i*2) sym(R(h) —Id)T-7.

By property (f) this converges to (A%7)-7/2 uniformly on (0,L). As u(® has zero average, by Poincaré
inequality we deduce that u(") converges to u strongly in W2, where u satisfies

u = (122 7') T = —% ((v’ )2+ (v V3)2). (3.29)

In the case o > 3 the derivative of (u(h)) can be written as

(u(h))/ o ].

= jai sym(R(h) —Id)T- 7.

1
h h h
/ (8™ — RMa,u M) . 1 de d¢ + T
D
The first term is bounded in L?(0,L) by (2.6) and (3.18), while the second term converges to zero
uniformly by (f).
This concludes the proof of (c) and of the theorem. a

3.2 Liminf inequalities

In this section we will show a lower bound for the energy (f(h))/h(2“_2) , for all the scalings a > 2, and
we will describe the limiting functionals.
Let Q3 : Q x M?*3 — [0, +00) be twice the quadratic form of linearized elasticity, i.e.,

PW

Qs(z,G) = W(z, I1d)[G, G] (3.30)
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for every z € Q and every G € MP*3. Let Q°: (0,L) x R x M3 — [0, +00) and Q : (0, L) x M3*3 —
[0,400) be defined as

0
Qb= min [ Qs (s,a,gRo (F( ; ) +ter | e | 5:@) ROT) dgdc (331)
and
Q($7F) = tei]lg QO(S,taF)a (332)

respectively. For u,w € W12(0, L) and v € W22((0,L); R®) we introduce the functionals

1 [* 1
3 / Q° (s,u’ + 5((1}’ 1)+ (v - v3)?), B + QSkW(ROTRf)B)) ds ifa=3,
I (u,v,w) := ) OL
5/ Q°(s,u', B’ + 2skw(R{ R(B)) ds if a > 3,
0
(3.33)
and, for 2 < a < 3,
1 /L
I,(v,w) == 5/0 Q(s, B’ + 2skw(R{ Ry B)) ds, (3.34)
where B € W12((0, L); M3*3) denotes the matrix
0 T Y L 7
B:=| v- v 0 —w ) (3.35)
v g w 0

Remark 3.2 Tt is easy to see that the minimum in (3.31) is attained, it is unique and it can be computed
on the subspace

vim {p e W2(DiRY) /Dsodgdczo,/Dso-<<u2—§u3>d£d<=0}7 (3.36)

(see [41, Remark 4.1]). Moreover the minimizer ¢ depends linearly on the data ¢ and F'. More precisely,
if t € L2(0,L) and F € L?((0,L); M2)3 ), then denoting with ¢(s,-) € V the solution of the problem
(3.31) with data t(s) and F(s), we have that ¢ € L?(;R?) and also 9¢p, d:¢ € L?(£;R3). Analogously,
if ¢ solves (3.32), then t depends linearly on F. So, if F' € L*((0,L);M3*3 ) and t is the solution to

skew
(3.32) corresponding to F(s), then ¢t € L(0,L).

Remark 3.3 The limit functionals corresponding to the scalings 2 < a < 3 and a > 3 turn out to be
linear. Notice that, in the case 2 < o < 3, the deformation u is completely determined by v in virtue of
the constraint (3.8) in Theorem 3.1. This explains the reason why the T'-limit obtained for this scaling
does not depend on w. On the other hand, for « > 3, the function « is independent of v and w and
the functional I, describing the one-dimensional problem coincides with the one obtained by dimension
reduction, starting from 3D linearized elasticity (see [34], [35] and [50]).

More precisely, if we assume in addition that the density W is homogeneous and isotropic, that is,

W(F)=W(FR) forevery R € SO(3),

then the quadratic form Q3 is given by

2

T
Chst VIO

(@) =20
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for some constants A, € R. Since for all G € M3*3 and R € SO(3) we have

Qs(RGRT) = Qs(G),
by [40, Remark 3.5] formula (3.31) reduces to

(BXx+2p)

Qs t, F) = S5 S (8 4 I Fly + L) 4+ T (3:37)

where I3 = fD £2dede, I, = fD ¢2d¢ d¢ and T is the so-called torsional rigidity, which depends on the
section. Therefore by (3.37), (2.2) and (2.3) the limit functional reads as follows

pBA+2u

1 L 1 L
I (u,v,w) = SR ) /0 ((W)? + I3 + I3q3) ds + 3 MT/O qids,

where

q1i=w +ko(v-vs) —ks(v-ve) + 0 (ka(v- o) + ks(v-v3)),
g2 i=kow— (v-v3)" =20 12) — (v-7) (0ka + K}) + (v-12) (koks + o) + (v-v3) (0® — k3),
g3 i=ksw+ (v-v2)" =20 vs) — (v-7) (0ks — k) — (v-12) (0 — k3) + (v~ v3) (k2 ks — o).

This is the functional derived in [34], [35] and [50], starting from linearized elasticity.

Now we are ready to show a lower bound for the functionals h=oT" with 2 < o < 3.

Theorem 3.4 (Case 2 < a < 3) Let w € W12(0,L) and let v € W22((0,L); R3) be such that v'-7 = 0.
Then, for every positive sequence (h;) converging to zero and every sequence (§"1)) C Wl’Q(QhJ;R?’)
such that the sequence Y 5) .= (1) o W(hi) satisfies the properties (a), (b) and (d) of Theorem 3.1, it
turns out that

1 _
liminfhz—a/~ W((\I/(hf)) l(x),ng(hj)(:E))dx > I(v,w), (3.38)
J—00 ] th

where I, is introduced in (3.34).

PROOF. — In the following, we will write simply A instead of h;. Let (5)) be a sequence such that
Y (") .= g(h) o UM gatisfies the required assumptions.
First step: lower bound for the energy. We can suppose that

1 —1
iminf — (h) ~(h) <
hin_}(l)lf h2«a /ﬁh W((\IJ ) (.Z‘), Vy (x))dx <c< +oo,

otherwise (3.38) is trivial. Therefore, up to subsequences, (3.4) is satisfied. By Theorem 3.1 we get the
existence of a sequence R™ : [0, L] — SO(3) such that

IVRY P (7, M) = RO ) < ch®! (3.39)

and R™ — Id uniformly. Define the functions G : @ — M?3*3 as

1
hafl

G = ((R<h>)thy<h> (Vaw) - Id). (3.40)
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By (3.39) they are bounded in L?(€;M?3*3), so there exists G € L?(Q;M>*?) such that G — @G
weakly in L?(Q;M3*3). We claim that

1 _ 1
lim inf -7 /ﬁhW((‘P(”)) (@), Vi (@) )de > 5 /Q Qs(5,€,¢, G)ds de dC. (3.41)

Performing the change of variables (") and using the frame indifference of W, we have

1
h2a ﬁh

w((e®) ™ (@), V5™ ) dz = h2i72 /Qw(s,g,c,vg(h)oqf(h))det (V@) ds de d¢

= #/ W(s,g,g, (vhwh))(vhqf(h))’l) det (V,¥™)dsdedC.  (3.42)
Q

We introduce the functions

1 if |GM(s,&, Q)| < h*e,

0 otherwise.

X" (s,€,¢) ;:{

From the boundedness of G®) in L?(Q;M>*?3) we get that x(® — 1 boundedly in measure, so that
xMGEW ~ G weakly in L(€Q; M®*3). (3.43)
By expanding W around the identity, we obtain that for every (s,&,¢) € Q and A € M3*3

1 2
W(s,6,C,1d+ 4) = 3 S0 (5,€,C, 1 + 1 )4, 4],

where 0 <t < 1 depends on the point (s,&,¢) and on A. By (3.42) and by the definition of G we
have

1M (g = 1_2/QW(S,g,C,quLha’lG(h))det (Va ™) ds dg d¢

hQia T h2a

> hZa_Q/Qx(h)W(s,f,C,IdJrha’lG(h))det (V5 ™) ds de d¢
1 92w

= 5/Qx(h) (8}72 (s,g,g,ld+ R~ t(h) G(h>) [G(h)’G(h)]> det (vhll,(h))ds de dc,

where 0 < t(h) < 1 depends on (s,&,¢) and on G . For the last integral in the previous formula we
have that

2
/Qx(“ (Z;QV (5,6, ¢, Id+ h~e(h) G [G1, G<’L>}) det (VU M) ds de d¢ =

/Qx(h’ (a;g (5,6, ¢, Id+ h*~ () GM) [GM,GM] - Qs(s,€, ¢, G(’L))) det (VU M)ds de d¢

+ / Qs (5,6, ¢, x ™ GM) det (V5,0 M)ds de dC. (3.44)
Q

Notice that the second integral is lower semicontinuous with respect to the weak topology of L?: so,
the claim follows from (3.43), once we prove that the first term in (3.44) can be neglected for h small
enough. To this aim, we apply Scorza-Dragoni theorem to the function 9?W/9F? and we have that there
exists a compact set K C Q such that the function 9?W/0F? restricted to K x Bs(Id) is continuous,
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hence uniformly continuous. Since ht(h) x"™ G™ is uniformly small for h small enough, for every € > 0
we have

1/XW (82W (5,6,¢, Id + ht(h) GM)[GM,GM] — Qs(s,€, ¢, G(h))> det (V, 0" ds de d¢

> _g /KXUL)\ GW|? det (V4 U ™M)dsde d¢ > —Ce

for h small enough. Hence, being ¢ arbitrary, (3.41) is proved.
Since, by frame indifference, the quadratic form @3 depends only on the symmetric part of G, we
obtain the bound

1 _ 1 ~
tpipt e LW (@)@, Vi @) )dr > 5 | @utsec.Gpasdeac, (3.45)

where G denotes the symmetric part of G.

Second step: identification of G. In order to identify G, we first notice that, since R — Id
uniformly,

R G — %(Vhy(h) (Vw®) ™" - R(h)) N
weakly in L?(Q; M3*3); moreover, by (2.6),
RWGMv, gt = % (vhy<h> - R(h)Vh\Il(h))  GR,. (3.46)
In particular, considering the second and the third columus in (3.46) we get
RMGM yy = hia e (YW — R g™ = hia (agwh) - hR<h>y2) ~ Gy

and
1 1
(h) (x(h) (h) _ ph)gh)) — (h) (h) N
RWG"Wyy = T 0 (Y R™WWU ) o (8CY hR Vg) Gus.

Let us define the functions 3 : QO — R3 as
AW (s,€,¢) = (Y(h) he RMyy — h§R<h>u3).
Easy computations show that
853(}” =RMWGMWy, and agﬁ(h) = RMWGMy,, (3.47)

hence 9" and ;3™ are bounded in L?(£2). By Poincaré inequality, this implies that

13 51y < © (165 [y + 1253 0) <

where /B(}L =[5 5 5,&,¢) d€d¢. Therefore, there exists a function 3 € L?(Q;R3) such that
g .= ) — Bgt) — [ weakly in L?(€;R?). (3.48)

From (3.47), as h — 0, we get
Gry =0 and Guvs=0:0. (3.49)
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Considering the first columns in (3.46) we have

RMGMa,uh — % (0.7 — RWow1) ~ G, (3.50)

Using (2.5) and the definitions of Bj(jh) and A" | we can write

1

hozfl R(h)T

1
RM G g g — — (asy(h) — heRMY, — hCR(’L)ug) _
1 1
=h a8 + = (RM)' (v + Cvs) + = / (0,y"™ — RMr)dedc.  (3.51)
D
By (3.48) it follows that

hd,fM —~ 0 weakly in W~12(Q;R3). (3.52)

Moreover, from (3.39), it turns out that there exists g € L?((0, L); R?) such that

1
hafl

/ (0, Y — R 1) dg d¢ = T / (0, Y — RMa, 0 M) ded¢ — g (3.53)
D D

weakly in L2((0, L); R3). Passing to the limit in (3.51) and using (3.50), (3.53), (3.52), and property (e)

of Theorem 3.1, we obtain
Gr=A(Eve +Cv3) +g. (3.54)

Finally, by (3.49) and (3.54) we have that
0
GRy= (A/Pm( 3 ) +9‘5§5"9€5>-
¢
As sym (RY'G Ry) = RYG Ry, we deduce that
Rgé RO = Sym (R(:)FA/ R() (

)+§]agé\acﬁ>,

where 3 := RIB and g := R¥g. If we define ¢ := B+§(§ ~eg)e1 +C(g-es)er, we obtain the expression

YN O

0
ROTC? Ry = sym <RgA’ R0< £ ) +(g-e1)er
¢

(95@ ’ (9“0) . (3.55)
Now, let us rewrite the previous expression in terms of the matrix B defined in (3.35), noticing that
A= RyBRY'. Tt turns out that
A" = RyBRY + RyB'RY + RyB(RY)’,

hence
RTA' Ry = RTR\B + B' + B(RY)'R,.

Since B is skew-symmetric, we deduce

RYA' Ry = B' + 2skw(R{ R B). (3.56)
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Using this identity in (3.55) we have

RYG Ry = sym ((B’ +2skw (R Ry B)) (

i O

>+(§'€1)€1

Deyp ’ 3<so> -

Finally, as
g-e1=(Rig)-e1=g-(Roer) =g-T,

we conclude that

0
RIG Ry = sym((B' + QSkW(ROTRE)BD ( 13 > +(g-7)e1| e ‘ 8@0) . (3.57)

¢
Third step: description of the limit functional. Since ¢(s,-) € W12(D;R?) for a.e. s € (0,L), using
(3.45), (3.57) and the definition of @, we obtain exactly (3.38). O

It remains to show the lower bound for the functionals h=*I" with « > 3.

Theorem 3.5 (Case a > 3) Let u,w € WH2(0,L) and let v € W22((0, L); R?) be such that v’ -7 = 0.
Then, for every positive sequence (hj) converging to zero and every sequence (gj(hﬂ')) - Wl’Q(th;R3)
such that the sequence Y (i) .= (") o W(h) satisfies the properties (a)-(d) of Theorem 3.1, it turns out
that
hminf%/~ W((\Il(hj))_l(x),ng(h")(x))dx > Iy(u,v,w), (3.58)
Q

—00 ~
7 J

where I, is defined as in (3.33).

hj

PROOF. — We can repeat exactly what we did in the first two steps of the proof of Theorem 3.4. At
this point, let us distinguish the cases @« =3 and «a > 3.
Case o= 3.

Starting from (3.53), we can identify the tangential component of g. Indeed, observe that, if we write

/D (8, Y™ — RMWr) . rded¢ = /

A5 (Y™ —wM) . 7 dgd¢ — / (RMr — 7). Tdedc,
D D

by the definition of (u(h)) we get

! / (0, y™ — R 7). rded¢ = (™) -
D

hafl

1

T /D (RMr — 1) rdedC. (3.59)

If we let h — 0 in (3.59) we obtain, from (3.53) and in virtue of property (f) in Theorem 3.1,

1
g'T:ul—i(AzT)‘T. (3.60)
Notice that, using the explicit expression of A given in (3.9), we have
1 1
3 (A%1) 7=— 3 (0 - v2)* 4+ (v - 13)?). (3.61)

Now, by (3.55),(3.60) and (3.61), we can write the expression of G in this case, which turns to be

~ 0 1
G = Ry Sym<<B’+2skW(R5R{)B)) ( g ) + <u’+ 5((1}/ )+ (v V3)2)> el

dep ’ acgo) RY. (3.62)
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Since ¢(s,-) € WH2(D;R?) for a.e. s € (0,L), using the definition of Q° the bound (3.45) becomes, as
we claimed,

. 1 h)\—1 ~(h 0
h}rln_}(r)lfhﬁ/ﬁhW«\I/( )) (z), Vi )(x)>d1: > I3 (u, v, w),

with I9 defined in (3.33).
Case o> 3.
If we let h — 0 in (3.59) we obtain from (3.53) and in virtue of property (f) in Theorem 3.1,

g-T=1u.
In fact, being « > 3, it turns out that o — 1 < 2(ax — 2), so
sym(R(h) —Id)/h*" — 0 uniformly on (0, L).

Now we can write down the expression of G for « > 3, that is

0
G =Ry sym<(3’ + 2skw(R§RgB)) ( ¢ ) +uer| O ‘ 8@0) RY. (3.63)

¢
Since ¢(s,-) € WL2(D;R3) for a.e. s € (0,L), using (3.45), (3.63) and the definition of Q°, we obtain
exactly (3.58), as we claimed. a

3.3 Construction of the recovery sequences

In this section we show that the lower bounds obtained in Theorems 3.4 and 3.5 are optimal. Also in
this case the scalings 2 < a < 3 and « > 3 will be treated separately. However, we will first consider
the higher scalings h® with « > 3, since as in in [32], the case 2 < a < 3 turns out to be very delicate
and requires a more detailed analysis.

3.3.1 Higher scaling.

Let us consider now the higher scalings of the energy, that is the case a > 3.

Theorem 3.6 (Case o > 3) For every u,w € W'2(0,L) and v € W*2((0, L);R3) such that v’ -7 =0
there exists a sequence (g<h>) C Wh2(Qp; M3*3) such that, setting Y M) := (") o UM ye have

(1) (Vhy(h) (th’(h))_l —1Id)/h*=% — A strongly in L?(Q;M>*3);
(ii) v — v strongly in WH2((0,L);R3);
(iii) w™ — w weakly in WH2(0,L);

(iv) u™ —u weakly in W2(0,L),
where A, v | uM | and wM are defined as in (3.9), (3.1), (3.3) and (3.2). Moreover,

lim sup ——
h—o h?* Jg,

where I, is defined in (3.33).

W((xp(m)*l(x), vyh (x))dx < Io(u, v, w), (3.64)
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PROOF. — As first step we assume to deal with more regular functions; more precisely, we require that
u,w € C1[0, L] and v € C*([0, L]; R3).
As in [41], let us define the functions 7s,vs, (™ : [0, L] — R? in the following way:

Yo(s) :=2w (v v3)er + (W’ + (v - v2)?) e2 + (v - 10) (V' - v3) e, (3.65)
Y3(s) = — 2w (v - va) ey + (v va) (V' - vg) €2 + (W + (V- v3)?) 3, (3.66)
n(s5,6,¢) = (1= h&h = hChs) 7, (3.67)

where ko and k3 are the scalar functions defined in (2.1). Finally, let ¢ € C1(Q;R?) and let 8: Q — R3
be

Ro(s)¢p(s,€,C) — %ﬁRo(S)vz(S) - %CRO(S)Wg(s) if =3,

B(s, & ¢) = (3.68)
Ro(s)¢(s, €, Q) if o> 3.
For every h > 0 consider the function Y : Q — R3 defined as
YW = o™ 4 po=2 g+ ho tu ks 4 RO Avg + BT Avs + 0, (3.69)

where the matrix A is defined as in (3.9).
Let us compute the scaled gradient of the deformation Y™ . First of all notice that V,x() =
(7'| = (7" ~v2e) 7| = (7' - v3) 7) + O(h), and that

<T’] — (7" w) 7| = (7 vs) 7’) =(r"®7-7®7")Ry. (3.70)

>+u'T

+h* tu (T @ —T®1) Ry + O(h®). (3.71)

Hence, the scaled gradient turns out to be

ViYW = v, 0" 4 po=2 ARy + ho~! ((A Ro)’ (

I O

9¢f ’ 5¢5> +

So we have that, by (2.7),

1
ha—2

(VY ® (v, 9®) 7"~ 1d) = 4+ O(h)
and this proves (i). Now remark that, if we define v as in (3.1), we have, using (2.3),
oW = v+ hur + h2/ Bded,

D

so also (ii) follows. For the sequence w™ defined as in (3.2) we get, by (2.2) and (2.3),

w® — ﬁ/D(fAug +CAvs+hB) - (Evs — Crm) dEdC

= (Avz) -v3 + O(h),

which is exactly w, up to a perturbation of order h. This proves (iii).
Moreover, if we define 4" as in (3.3) we have

(uM)' = %/ (V-7 + hu' +h?0,68 - 7) de d¢ = u’+h/ 05 T dEd¢ (3.72)
D D
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hence the convergence property in (iv) is also proved.
Once all these properties are satisfied, we can show (3.64). Using (2.7) and (3.71) we have

0
ZM = v,y ™ (v,u™) 7! = 1d4 po? <A+ hu'T&T+h <A’ R0< ¢ )’agﬁ ‘ a&) RE{)
¢
+h T (reT—T@7) +O(hY). (3.73)

Using the identity (Id + BT)(Id+ B) = Id + 2sym B + BT B, we obtain for the nonlinear strain

0
(Z<h>)Tz<h> =Id+ 2h* tsym ((A’ R0< 13 )‘a&‘a&) ROT> +2h N reT
¢
+hHODATA + g (h*e), (3.74)

where o(h7)/hY — 0 uniformly as h — 0.

Now, let us distinguish the cases & =3 and o > 3.
Case a = 3.

Notice that if we specify a = 3 in (3.74), all the terms are of the same order with respect to h, that
is of order 2. Taking the square root we have that

1/2 ~
[(Z(h))TZ(h)} P a2y om?, (3.75)

~ 0 A2
G::u'7‘®7’—|—sym<<A’R0< & )‘85ﬂ'3<ﬁ> RE{) -5
¢

In order to write G in a more useful way, notice that, by (3.9),

where

0
é :RO sym (RgA/ RO< f ) + (u/ —+ %((’Ul . y2)2 + (’U/ . y3)2)> el 8§(Rgﬁ) ’8<(Rgﬁ)> Rg
¢
0 w (v - vs3) —w (V' - o)
+ %Ro w' -v3)  w W w)? (Vw) (v -vs) | RY. (3.76)

—w (v vg) (V) (W v3) w4 (v vz)?

We can rewrite (3.76) in terms of ¢ and B, using (3.56) and (3.68), as

G = sym

0 1
Ry ((B/ + 2skW(ROTR6B)) ( g ) + (u' + 5((1)’ v)? (V- 1/3)2)> el

deep ‘ 3<s0> R;

From the frame-indifference of the energy density W, since det (VhY(h)) (Vh\I/(h)) 'S0 for sufficiently
small h, we have

W(s,6,¢,2M) =W (s,6.¢, [(20) 2™,

Thus, by (3.75) and Taylor expansion, we obtain

1 1 A
= W(s,{“,C,Z(h)) -3 Qs3(s,6,¢,G) ae.,
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and

1 1 -
ﬁw(s,g,g,zw) < §7|G|2 +Ch<C(|BI*+|B'?+|0co® +|0cp > +|u|* +1) € L'(Q).
Set (" =Y o (\Il(h))fl; by the dominated convergence theorem we get the following equality:

nmsupi/ W((\I!(h))_l(x),Vy(h)(w))dm = 1/ Qs3(s,&,¢, Q) ds dé dC. (3.77)
h—0 h® Q 2 Q

Consider the general case. Let u,w € W2(0,L) and v € W?22((0,L);R3). Let ©(s,:) € V be
the solution of the minimum problem (3.31) defining Q°, with ¢ := «’ + 3 ((v/ - v2)? + (V' - v3)?) and
F:=B'+2 skw(RgR{)B) , where B is introduced in (3.35). As we have already noticed in Remark 3.2,
¢ and its derivatives with respect to & and ¢ belong to L?(£2;R?).

Now, we can smoothly approximate u,w in the strong topology of W2, v in the strong topology
of W22 and ¢, d¢p and dc¢ in the strong topology of L?. Since the approximating sequences satisfy
(3.77), and the right-hand side of (3.77) is continuous with respect to the mentioned topologies, we
conclude that (3.77) holds also in the general case. Hence, using the minimality of ¢, we obtain (3.64).

Case o > 3.

In this case, in the expression (3.74), the term of order 2(a—2) in h can be neglected, since 2(a—2) > a—1
when a > 3. Hence we can write

0
(Z(h))TZ(h) =Id+ 2h* tsym <<A’ RO< ¢ )‘agﬁ ‘ am) ROT> +2h M T @7+ o(hTY),
¢

where o(h7)/hY — 0 uniformly as h — 0. Taking the square root we have that

1/2 ~
[(20)7 2] P e G o (he ), (3.78)

0
G;u’T®T+Sym<<A'Ro< £ )‘@5‘5@5) Rg)'
¢

We can rewrite G in terms of @ and B as

where

G = sym

0
Ry ((B/+25kw(ROTRgB))< 13 ) +u' e
¢

Dep ‘ d; w) R§

From the frame-indifference of the energy density W, since det (VhY(h)) (Vh\ll(h))_l > ( for sufficiently
small h, we have

W<57§7<a Z(h)) - W(S,g,(, [(Z(h))TZ(h)] 1/2);
thus, by (3.78) and Taylor expansion, we obtain

ﬁ W(S,f,C,Z(h)) - %Q3(5a§7<aé) a.c.,

and

1

1 -
ez W66 20) < Sv[GP+Ch< C(IB'P +|BI +|0cp* + 0o [P + [/ +1) € L'(Q).
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Set " =Y o (\I/(h))fl; by the dominated convergence theorem we get the following equality:

limsup ——
h—s0 h2a

Yy T () ) de — & A
QhW((\Ph) (2), V5" (x))d 2LQ3(87£,C,G)dsd£dC- (3.79)

Consider the general case. Let u,w € W12(0,L) and v € W22((0,L); R3). Let ¢(s,:) € V be the
solution of the minimum problem (3.31) defining Q°, with ¢ := v’ and F := B’ +2skw (RgR(’)B) , where
B is defined as in (3.35). It is easy to show that (3.79) remains true, following the same approximation
arguments used in the proof of Theorem 3.7. Hence, using the minimality of ¢, we obtain (3.64). O

3.3.2 Intermediate scaling

We now consider the scalings h* with 2 < a < 3. As in [32], this case turns out to be very delicate and
requires a detailed analysis.

Theorem 3.7 (Case 2 < o < 3) For every w € W"?(0,L) and v € W»2((0, L); R®) such that v'-7 =0
there exists a sequence ( (h)) Wh2(Qp,; M2*3) such that, setting Y = () o W) | we have

(i) ((VhY(h )(Vh\If(h))_l - Id) /he=2 — A strongly in L?(2;M3%3);
(ii) v — v strongly in WH2((0,L); R3);

(iii) w™ — w weakly in W2(0,L),
with A,v" and w™ defined as in (3.9), (3.1) and (3.2). Moreover
. —1 y
timsup 5o | W((\I/(h)) (x),Vy(h)(x)>dx < Io(v,w), (3.80)
— h
where I, is introduced in (3.34).
PROOF. —  As in Theorem 2.6, we preliminarly assume that w € C1[0,L] and v € C%([0,L}; R3). Let
g € C°0,L] and ¢ € CY(Q;R3). Denote by 8 the function 3(s,&,¢) := Ro(s)p(s,&,¢) and by § a
primitive of the function g.

Define the functions vz, 73, 5" as in the proof of Theorem 2.6. Finally define the function u € C''[0, L]

as a primitive of
1
— (01 (%),

In analogy with the cases a > 3, one could make the ansatz
Y = oM 4 =2y 4 pTe Avy + T Avy + (B2 Du + 71 g) k) 4

1
3 hZ2e=3) Ry (€72 + (3) + hB. (3.81)

Hence, by (3.70) the scaled gradient of the deformation Y'(") is

0
vhy(h) — Vh‘I’(h) +ha72AR0+h°‘71 <(AR0)/< ¢ ) ’(%ﬁ‘a(ﬂ) + hoﬁlgT@elJr
¢

+ (hg(a*Q)u +h* g (FTeoT—T7®7 )Ry + %hQ(O‘*Q) Ry (2u'er| —v2| —73) +o(h*h).  (3.82)
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Now, using (2.7) and (3.82) we have

0
70 = v, YW (v, 0" = [d4+ h* 2 A4 he! (A’ R0< 3 ) +97| 08 ’ a&) R{+
¢
1
+ (R Dy po7g) (FPor—T07) + 3 R Ry (2u' er| — 2| —73) Ry +a(h*7H).
(3.83)

This procedure leads to the desired conclusion for « > 5/2, but our ansatz cannot work for « close to
2. Indeed, for o > 5/2, using the identity (Id+ PT)(Id+ P) = Id + 2sym P + PT P, and noticing that
some of the matrices on the right-hand side of (3.83) are skew-symmetric, we obtain for the nonlinear
strain

0
(Z<h>)TZ<h> =Id+ 2h* lsym <<A’ Ro< 13 )‘6‘56 ‘ ew) R{) +2h tgreT
¢
+ h22R, (sym 2u'er| —y| — 73)) REY 4+ p2@=2DAT A 4 5(ho7Y). (3.84)

Moreover, using (3.9) and our definition of u, 7o and 73, we have that

{(Z(h))TZ(h)] 1/2 — Id+ holE 4 U(ha—l)’ (3.85)

0
é:gT®T+sym<<A/Ro< ¢ )‘355‘8<5> Rg)'
¢

As in Theorem 2.6, the frame-indifference of the energy density W and the dominated convergence
theorem give the following equality:

where

tmsup oo [ W((@0) @),V @)de = 5 [ Qusi6CGrdsdgde, (350)
) Q

h—0 ﬁh
and the general case can be proved by approximation. Then, using the minimality assumptions on g and
©, we obtain (3.80) and so the claim.
Unfortunately, this procedure fails for o close to 2, since in that case terms of order h*(®=2) appear
in the expression of the nonlinear strain (Z(h))TZ(h), and they cannot be absorbed in o(h*~1).

Therefore, in the spirit of the proof of [32, Theorem 6.2], we modify the ansatz (3.81) in order to get
an exact isometry. Let us define for every h > 0, the sequence

yh / (Ro7)do + heRovs + h¢ Rovs + hoB, (3.87)
0

where R. := €4, with A defined as in (3.9), and ¢ := h®~2. Notice that, due to the fact that A is
skew-symmetric, the matrix R. turns out to be a rotation.
The scaled gradient of the deformation Y is given by

0
ViYW = R.Ry + h R.(Evy + Cvy) @ ey + R (R; R0< ¢ ) ‘ h* 20,8
¢

ha—26<ﬁ> +O0(h™).  (3.88)
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Now, using (2.5), the expression (3.88) becomes
0
VY™ = RV, o™ 4+ p (R; R0< ¢ ) ’ho‘_Qagﬁ ‘ ha‘28<ﬁ> + O(h®),
¢

and hence, by (2.7) we have

0
ZMW = v,y (v, ") "L =R+ h (R; R0< ¢ > ‘ ho20¢3 ’ h“28<ﬂ> RT +o(he™1),
¢
0
=R. (Id+h (RZR; R0< ¢ )‘thag(RsTﬂ) ’ h“28¢(R36)> R | +o(no ). (3.89)
¢

Now notice that, by definition, the rotation R, verifies the identities:
1
Ro(s) = Id+ e A(s) + o(c), R.(s)=c¢ / (=012 A) 41(5) 7€ A3) g,
0
Therefore we have in particular
RIR. =c A +0(e). (3.90)
Hence, using (3.90) and the fact that e = h*=2, (3.89) simplifies as follows

0
ZM = R, Id+h°‘1<A’RO< I3 )’65[3‘8&)}%{ +o(h*h).
¢

Thus, using frame indifference, we obtain

1
h2 a—2

W (5,66 70) = g W (5,66, (R) 20

- % Q3(sa 57 Ca é) a.e.,

and proceeding as before we get the desired claim.

3.4 The case of a closed thin beam

It appears natural to ask whether the same analysis that we have developed so far can be extended to
the case of a thin rod whose mid-fiber is a closed curve. In this section we will show that this additional
requirement imposes a restriction on the class of admissible limit deformations, while the expression of
the limiting functional is not affected by this constraint.

Throughout this section we will assume « = 3 for simplicity, but the results can be easily extended
to the other cases.

The setting of the problem is exactly the same as before. The additional assumptions are

v(0) =~(L),~'(0) =~'(L) and v4(0) = v (L), for k = 2,3. (3.91)

Notice that, from (3.91) it easily follows that W) (0,¢,¢) = U)(L,€,¢) for every (€,¢) € D.
Now we will state and prove a compactness result which allows to identify the domain of the I'-limit.
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Theorem 3.8 Let (gj(h)) c wh? (ﬁh;RS) be a sequence verifying

% IM (M) < ¢ < 400 (3.92)

for every h > 0. Then there exist an associated sequence R C C°°((0,L); M3*3) and constants
RM™ € SO(3), ™ € R? such that, if we define YY) := (R(h))ng(h) o UM — (M) e have

R(h)(s) € SO(3) for every s € (0,L), (3.93)
|[R™") — Id||L°°(O,L) <Ch, H(R(h))IHL2(O,L) <Ch, (3.94)
thy(h) (vh\I;(h))*l . R(h)HLZ(Q) < Ch2, (395)
|RM(0) — R™(L)| < ch®/?, (3.96)

Moreover, defining v, w® and u™ as in (3.1), (3.2) and (3.3), we have that, up to subsequences,
the following properties are satisfied:

(a) v — v strongly in W2((0,L); R?); moreover, v € W2((0,L);R?), o' -7 =0, v(0) = v(L),
and v'(0) =v'(L);

(b) wh —w weakly in W2(0, L), with w(0) = w(L);
(c) u™ —u weakly in W2(0,L);

(d) (VY™ (Vh\Il(h))fl —1Id)/h — A strongly in L*(Q;M3*%), where the matriz A € W2((0, L))
is defined in (3.9);

(e) (R™W —1Id)/h — A weakly in W2((0,L); M>*3);
(f) sym(R™ — Id)/h2 — A2/2  uniformly on (0,L).

PROOF. — The argument follows the proof of Proposition 4.1 in [42], but we will include the details for
the convenience of the reader. As in the proof of Theorem 3.1, the rigidity theorem provides the existence
of a sequence of piecewise constant rotations Q™ : (0, L) — SO(3) such that, for every small cylinder
Cq,n we have
[ | V™ — QW |*dx < ¢ /~ dist*>(Vg" | SO(3))dz.
a,h Ca,n

Changing variables, the previous inequality becomes

/< +L)XD | Vﬂ(h) o\I/(h) _Q(h)|2d3 d§ dC <c / diSt2 (Vg(h) O\I/(h), SO(S))dS dé. dC (397)

a,a+%h x D

Let us define @ := Q™) (0). If we specify the relation for a = 0 we have

/(0 ) | V™ o W™ — Q|*ds de d¢ < c/( ) dist?(V§™ o U SO(3))dsdedC.  (3.98)

L
0, i, xD

(3.99)
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In order to establish (3.96), we start from the trace inequality
/|v(0,£,C)—@|2d€dCSC/ |V [? ds dg d,
D (0,l)xD
which holds uniformly for 1 <1< 2, with o = [, v(0,£,¢) d¢ d¢. If we write this estimate for

o(s,6,0) 1= 3 (7 0 W) (hs,€,¢) — 3 QU (hs,,0),

we obtain the following relation:
_ _ 2
/ [ (7™ 0 w™ — Qu™M)(0,6,0) / (7" 0 W™ — QUM)(0,€,¢) dg dC | dg dC
D D
< ch/ | Vi (5" 0w — Qv w |2ds dedc. (3.100)
(0,lh)xD
Putting together (3.100) and (3.98) we have, after easy computations,
_ 2
L@ 0v™)0.60 = [ G0 90)0.6.0dsdc = hQ€m(0) + Cm(O)] dedc < el (3101

In a similar way, if we define Q := Q™ (L), we deduce

L@ 0w @60 = [ (50 w0 (L6 ¢ ds dC = h Qe (L) + Con(E)| dedc < e

(3.102)
Now, subtracting (3.102) from (3.101) and taking into account (3.91), we obtain
= = 2
[ 1@ Q)ewal0) + oo dg g < cn,
D
which leads to
Q" (0) — QM (L)| < ch®2. (3.103)

If we define the sequences Q"™ and R™ as in Theorem 3.1, it is easy to check that they also satisfy
(3.103), hence (3.96) is proved. For the estimates (3.93), (3.94), and (3.95) we proceed exactly as in
Theorem 3.1.

Let us define the sequences v® , w™ and u(" asin (3.1), (3.2) and (3.3). The convergence properties
follow from Theorem 3.1. It remains only to verify the boundary conditions for the limiting functions v
and w. Since WM (0,€,¢) = UM(L,£,¢) and YM(0,¢,¢) = YP(L,€,¢) for every (£,¢) € D, we have
by definition that v (0) = v (L) and w™(0) = w™(L). Hence we directly obtain that v and w
satisfy

v(0) =v(L) and w(0)=w(L). (3.104)

Now notice that, by definition,
VY™ (v, uM) 7 = (RM)T(v,5")) 0 w ). (3.105)

Therefore, using (3.105) and the fact that ) (0,¢,¢) = ¥M(L,€,¢) for every (£,¢) € D, we have in
particular that

v, YW (v, M) _ 14 v, Y™ (v, oM _ 14
AL (hh L ("h L1 1)
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for every (£,¢) € D. The last relation, together with property (d), implies that A(0) = A(L). Hence
v'(0) = /(L) and so the proof is concluded. O

Now we are in a position to prove the I'-convergence of the sequence (f (h)) /h*. As we have already
noticed, the limit functional has the same expression as in (3.33), but the class of deformations on which
it is finite includes the boundary conditions. More precisely we have the following convergence result.

Theorem 3.9 (1) Let u,w € W12(0, L) and let v € W22((0,L); R?) be such that v'-7 = 0. Assume also
that v and w satisfy the boundary conditions (3.104). Then, for every positive sequence (h;) converging

to zero and every sequence (g(hj)) C W1’2(f~2hj :R3) such that the sequence Y (i) .= §hi) o W) satisfies
the properties (a)-(d) of Theorem 3.8, it turns out that

liminf%[ W((\I/W)*l(x),vg“m(x))dx > I9(u, v, w), (3.106)
th

j—o0 j

where 13 is defined in (3.33).

(2) For every sequence of positive (h;) converging to 0 and for every u,w € W'2(0,L) and v €
W22((0,L); R3) satisfying the boundary conditions and such that v' -7 = 0, there erists a sequence
(g(hf)) C W1’2(th;M3X3) such that, setting Y (") .= (") o W) | we have

(i) (thY(hJ)(th\I/(hJ))_l —Id)/h— A strongly in L*(Q;M3*3);
(i) vhi) — v strongly in W12((0, L); R?);
(iii) wi) — w weakly in W2(0,L);

(iv) uhs) —u weakly in WH2(0, L),
where A, v\") w5 | and u) are defined as in (3.9), (3.1), (3.2) and (3.3). Moreover,
1 _
1i;nsuph6/ﬁ W ((009)) ™ (@), V5 (@) )d < o0, w), (3.107)
—00 j h;

where I3 is defined in (3.33).

PROOF. — (1) The proof of this part can be done repeating exactly the proof of Theorem 3.5.

(2) As in Theorem 3.7, we preliminarly assume that u,w € C*[0,L] and v € C%([0, L];R3). Let ¢ €
CH(;R3) and define 3:Q — R? as (s, £, () := Ro(s)p(s,&,¢).

Let 72, 73 and (" be as in the proof of Theorem 3.7. For every h > 0 let us consider a function
9" € €10, L] supported in [L — v/h, L], such that 9 (L) =1 and [(9™)'| < £ Then let us define

the function Y : Q — R3 as

Yy = W(h)+hv+h2um(h)+h2w </S(L—0)T’(a)da—h(L—s)(Skz+Ck3)7>
0

+ h2E Avy + W3¢ Avg + B30,

where 3" (s,€,¢) == B(s,&,¢) + 9P (s)(3(0,&,¢) — B(L,€,¢)). It turns out that the function Y )
satisfies periodic boundary conditions in (0, L). Indeed,

Y (0,£,¢) = TM(0,£,¢) + hv(0) + h? u(0) 7(0) — A3u(L) 7(0) (£ k2(0) + C ks(0))+
+ h%€ A(0) v2(0) + h2¢ A(0) v3(0) + h*B(0,€,¢), (3.108)
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and, using the assumptions (3.91) and (3.104), we have
YOUL, € ) = WM (0,6,0) + hv(0) + h? u(L) 7(0) (1 = h & ka(0) — h ks (0))+

(L) -

+h2““(0)/L(L_ ) 7'(0) do + h2€ A(0) v2(0) + h2C A(0) v5(0) + h3B(0,€,¢)
i3 ; o)7 (0)do 1) V3 165

Now notice that, using 7 =+’ and 7(0) = (L), we have

L L
/ (L - o) (0)do = —L7(0) +/ (o) do = —L7(0).
0 0

Plugging this equality into (3.109) we obtain

YL, €,¢) = UM (0,£,¢) + hv(0) + A2 u(L) 7(0) (1 — h £ k2(0) — h { k3(0)+
— B2 (u(L) — u(0)) 7(0) + h2E A(0) v2(0) + h2C A(0) v5(0) + h3B(0, €, C)

which is the same expression in (3.108).

67

(3.109)

(3.110)

Moreover, the convergence properties (i)-(iv) can be deduced as in Theorem 3.6. For the scaled

gradient of Y(®) we have, using (3.70)

0
ViYW = v, 0™ £ h ARy + h? ((ARO)/< ¢ > + ' 7| 9e M) a<@<h>> +
¢
+ R (u + M (L - s)> (F @7 —7@7) Ro+ h30.,8™ @ 1 + O(h?),

where |3sﬂ(h)| < <. Now, since ") — g, a§ﬂ<h> — O0¢ and ada(h) — O¢f strongly in L?(Q;R?),

NG
one can prove a convergence result like (3.77) and obtain the general case by approximation.

0O
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Chapter 4

Damage as I'-limit of microfractures
in anti-planar linear elasticity

In the second part of the thesis we state some homogenization results for functionals describing the elastic
energy of a body where a fracture can occur. Hence the natural setting of the problems we treat is the
space of special functions with bounded variation (in the scalar case) or the space of special functions
with bounded deformation (in the vectorial case).

In this chapter we consider the case of an unbreakable elastic material presenting disjoint brittle
inclusions arranged in a periodic way. In other words, we assume that cracks can appear and grow only
in a prescribed disconnected region of the material, composed of a large number of small components
with small toughness.

4.1 Formulation of the problem

Let n > 2 and let 2 C R™ be a bounded open set with Lipschitz boundary. In the following we will
denote by @ the unit cube (0,1)™ and by @, the inner cube (9,1 — )", for some p € (0,1).
Let § >0 and E, F C Qs be defined in the following way:

e F is a finite union of disjoint sets given by the closure of domains with Lipschitz boundary;

e F' is a finite union of disjoint closed (n — 1)-dimensional smooth manifolds.

Assume also that £ and F' are disjoint.

For every € > 0 let us consider the periodic structure in R™ generated by an e-homothetic of the
basic cell @. For notational brevity we will use the superscript € to denote the e-homothetic of any
domain. In particular, Q° :=¢@.

Let us write the domain 2 as union of cubes of side ¢:

0= ( U (Q+h)6> UR(e),

heEZ,

where Z. :={h € Z™ : (Q + h)¢ C Q}, and R(e) is the remaining part of Q. Notice that L™(R(¢e)) is of
order . Let N(e) be the cardinality of the set Z.; notice that N(e) is of order 1/e™.
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We denote by {Qf }r=1
we can rewrite ) as

N(s) an enumeration of the family of cubes (Q + h)® covering €, so that

N (e)
Q= ( U Q;) UR(e). (4.1)
k=1

.....

In the same way we can define the sets Ef, Ff C Q5 and then E°, F° C Q as
3 N(e) } N(e)
E°:= ] E;, Fo:=|J F (4.2)
k=1 k=1

The starting point of the problem is the energy associated to a function u € SBV?(Q), that is

P = [ vupdes [ go(2) i)

where f, : R™ — [0, 400] is a Q-periodic function defined as

fa(y):{a in EUF,

400 otherwise in Q,

and « is a positive parameter. Clearly, being f, @-periodic, the function
x
T fa (7)
€

turns out to be Q°-periodic.

We are interested in the case in which § is fixed and independent of ¢, while @ = a. depends on ¢
and goes to zero as € — 0.
We will study three different cases, i.e.,

o

1. Subcritical regime — =0 as e — 0,
. . Qe

2. Supercritical regime — — +00 as e — 0,
€
Qe

3. Critical regime — —c€(0,400) as € — 0.
4.2 Subcritical regime: very brittle inclusions

In this section we assume a. << ¢ in the expression of the energy F*¢.
We define the functional F° : L?(Q2) — [0, +o0] as

FOu) = /Qfo(Vu) dv  ifue HY(Q), (4.3)
+o00

otherwise in L?(),

where fy solves the cell problem

fole) = min{ /Q Ty e H#(Q\(EUF))}- (4.4)
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The functional F° will turn out to be the I'-limit of the sequence (F¢) in this case, that is for a. << ¢.
It is convenient to introduce the auxiliary functionals G : L2(2) — [0, +oc] defined by

/a(£)|Vv\2d:E if v e H'(Q\ F9),
Q 9
+o00 otherwise in L?(f2),

G*(v) = (4.5)

where a is a @-periodic function given by

() = 0 in B,
W1 wmo\E

As a preliminary result, we show that G T'-converges to F° with respect to the strong topology of L?.

Theorem 4.1 The sequence of functionals (G%) T -converges to F° with respect to the strong topology
of L?.

Proor. — Let 7 > 0 and let F, be a neighbourhood of F with Lipschitz boundary such that
dist(F,, F) < n and dist(F,, E) > 0. Now we define the functionals Gy : L*(Q) — [0, +00] as

X

)| VoPde ifv e HY(Q
[an(2) i itve ni@
+00 otherwise in L?(12),

G5 (v) = (4.6)

where a, is a )-periodic function given by

o (y) = 0 ifye FUF,,
)= 1 otherwise in Q.

From the standard theory for non-coercive convex homogenization (see e.g. [9] and [12]), we know that
(L?) ~ lim G; = G, (4.7)
where the functional G, : L(Q2) — [0, 400] is defined as

Vo)dx  ifve HY(Q),
6.0 — L] ) @
+o0 otherwise in L?(12),

and f, solves for every £ € R™ the cell problem
p@=min{ [ et vutayswe mi@\(BUF))
Q\(EUFy)

. 27 . 1
- { /Q\<Ean> £+ Vuly)dy e H#(Q)}'

Notice that the last equality is due to classical extension theorems (see, for instance, [3]).
Comparison between G and G . Let v° be a sequence having equibounded energies G° and such
that v® converges strongly to some v in L?. Then we claim that v € H()) and that

liminf G (v®) > G, (v). (4.8)

e—0
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By the fact that G°(v°) are bounded we deduce in particular that the H' (€2 (EE U 157‘;‘)) norm of v¢ is
equibounded.
Therefore, Theorem 1.17 ensures that for every € > 0 there exists an extension of v®, that is a

function 17; such that

o5 =v" inQ\(E°UE), (4.9)
with the property that the H'(Q2) norm of the sequence (@

function v* € H(Q) such that

g

5) is equibounded. Hence there exists a

o, —v*  weakly in HY(Q) ase—0,

hence strongly in L?(Q2). Let x, be the characteristic function of the set Q \ (E U F,), extended by
periodicity with period @Q; then we have that

Xy = Xn(;> — EH(QL\:TL((ZZ?;J Fy)) =:9 >0 weakly"in L>=(Q).

Using the relation (4.9) we get, when ¢ — 0,

O:/ (f)f]fve)xzdmﬂ/ﬂ(v*—v)dx,
Q Q

which entails v = v*, being ¥ > 0. Hence v € H!(Q).
Moreover, the extension we have built allows us to write the estimate
G (v%) > G, (vy), (4.10)

and in virtue of the result (4.7) we get (4.8).

It remains to show that on H'(Q) the T'-limit of the sequence (ga) is given by F°, where FV is
defined by (4.3) and (4.4).

Liminf inequality.
Let v € HY(2) and let (v¥) be a sequence having equibounded energy G¢, such that v® converges to v
strongly in L?. Then (4.8) holds for every 1 > 0.

Since f, converges increasingly to fo, then fo = sup, f,; = lim,_ f,. Hence

sup G, = FO,
7
and then from (4.8) we get the bound
lim inf G (v°) > FO(v).

e—0

Limsup inequality. Let £ € R™ and let us define ve(z) := § 2. Let w be the solution of the minimum
problem defining fo(€), that is, w € Hy(Q\ (EU F)), and

Fol€) = /Q\E € + V|2

- .. . (T
Let w be the periodic extension of w to R™ and let us define the sequence v° := v¢ + ew(f) ; clearly
€

it converges to ve strongly in L?. Moreover
G (vF) = / a(§)|Vv5|2dx = 5"/ a(z) | + Vib|*dz = L”(Q)/ a(@) |€ + Vw|?dz + o(e)
Q Q/e Q

= L"(Q) /Q\E € + Vw[*da + o(e) = L™(Q) fo(&) + o() = F(ve) + o(e),
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where o(e) is a small error that disappears when ¢ — 0 and which is due to the fact that in general /e
is not given by an exact number of unit cubes.

We have therefore proved the existence of a recovery sequence for affine functions. We can extend
the result to piecewise affine continuous functions, thanks to the local character of G°. Then, using the
density in H*(2) of the piecewise affine continuous functions and the continuity of F° on H!(Q), we
get the claim in the general case. O

Remark 4.2 From the previous result we deduce immediately that fy is a quadratic form, being F°
the I'-limit of the quadratic forms G°. Hence there exists a matrix Ay € R™*™ with constant coefficients
such that

fo(&) = Ap€ - & for every £ € R™. (4.11)

Now we can prove the I'-convergence result for the sequence F¢.

Theorem 4.3 (Bound from below) Let u € L?(Q) and let (u¥) be a sequence with equibounded energy
F¢ such that u® — u strongly in L?. Then u € H*(Q)) and

lim inf 7 (") > FO(u). (4.12)
PrROOF. — Let u € L?(Q) and let (u) be a sequence converging to u strongly in L?(Q) and such

that F¢(u®) < ¢ < 4o0o0. From the definition of the functional this implies in particular that the
H'(Q\ (EE U Fs)) norm of (u®) is equibounded.

By Theorem 1.17 it is possible to extend every u® to a new function @° in such a way that the
resulting sequence (@) has H'(2\ F¢) norm equibounded. We claim that ¢ — u strongly in L(Q).

As first step, fix 7 > 0 and define for every € > 0 an extension u;, of 4 to the whole Q, which

coincides with @ out of an n-neighborhood of . As in Theorem 4.1 it turns out that the H'(2)-norm
of the sequence (a) is equibounded, and that @;, — u weakly in H'. This proves in particular that

"
u € HY(Q). Moreover,
/|115—u|2d33=/ |1~f—u|2dx+/ |4 — u|?dx
Q Q\Ee Ee
:/ |u€—u|2daz+/ |€Lf]—u|2dw
Q\Ee Ee

< /Q |uf — u|?dx + /Q |ty —u |*de, (4.13)
and since the right-hand side in (4.13) converges to zero as € — 0, we can conclude that
@€ — u strongly in L*(Q).
Using the sequence u* we can write
Fe(u®) > Go(a®), (4.14)
where the functional G° is defined as in (4.5). Hence by Theorem 4.1 we obtain (4.12). O

Remark 4.4 We underline that the bound (4.12) holds true independently of the rate of convergence of
a. and implies in particular that the I'-limit of F¢ is finite only in H'(12).
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Theorem 4.5 (Bound from above) For every u € H'(Q) there exists a sequence (uf) C SBV?(Q),
with S, C B U F¢, such that

(i) u® —u strongly in L*(Q), (4.15)
(i) lim 75 (uf) = FOu). (4.16)
e—
PROOF. — Let u € HY(Q). The I'-convergence result in Theorem 4.1 guarantees the existence of a

sequence (v¥) C L*(Q) such that
v® — u  strongly in L?(€2),
{ G°(v°) = FO(u).
A recovery sequence for F¢ will be constructed by modifying properly (v°).

Notice that, by the definition of GZ, it turns out that the H'! (Q\ (EE U FE)) norm of v° is equibounded.
We split the proof into three steps.

First step. There exists a sequence (2°) C H'(Q\ F*©) such that
(1) o°=v" inQ\ (E°UF), (4.17)
(2) ||66HH1(Q\F‘E) < C||v€||H1(Q\(EEUF€))’ 4.18)
where the constant ¢ is independent of €. This can be done exactly as in Theorem 4.3.

Second step. The sequence (2°) C H*(Q\ F©) of the previous step is still a recovery sequence for G¢,
ie.,

(3) ©° —u strongly in L*(Q), (4.19)
(4) G5(°) — FOu). (4.20)

Property (3) can be proved as in Theorem 4.3 while condition (4) follows immediately, since G depends
only on the behaviour of its argument in Q \ E€ and v° and ©° agree on that set.

Third step. There exists a sequence (u®) C SBV?(Q) with S, C E° U F* such that

(@) [Ju® = |L2() = o(e); (4.21)
(ii) Fo(u®) = G°(0°) + ole) (4.22)

as € — 0. Define

e(z) ifzxeQ\E",
ut(z) ==
o if 2 € B,
where 9f is the mean value of o° over Ef, for k=1,...,N(¢). Then

N(e)
0 = ey = 3 [ 1o°(@) - G
k=1 " Pk

By Poincaré inequality, for every k we have

J

e
k

W@%@WMSc@%@N”/|Wﬂmwm
E7
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and L"(Ef) is of order €™, hence

N(e)
[0 = oy < e 3 / Vi () 2der < cg/ Vi ()P < ce?,
k=17 EL Q2

and this proves (7). Now, we prove (7i). Let us write explicitly the expression of F¢(uf),
FE(wF) = / Vs 2da +/ oo (2) drr () = / Vs Pda + acH™ (S,
Q Sye € O\ Ee
= / Vot Pdr + acH T (Sue) = G5 () + ae M (Sue N EF).
Q\ Ee

Notice that if we show that a.H" (S, N EE) =o(e) as € — 0, then (7i) follows directly. Actually, we
have

~ 1 e
aH" ! (Su N BY) < aeN(e) P(ES,Q7) = Cae ;" = C %

and <= = o(g) as € — 0 by assumption.
Finally, notice that conditions (i) and (i) are equivalent to (i) and (ii) respectively, hence the theorem
is proved. O

4.3 Supercritical regime: stiffer inclusions

In this section we consider the case a. >> . We have previously shown that for a. << e configurations
exhibiting a high number of discontinuities are favoured by the energy. We will prove that on the contrary
in this regime the energy penalizes the presence of jumps in the displacements.

Before studying this case, we state and prove some technical lemmas which will be used in the
following.

Lemma 4.6 Let us consider a sequence of measurable functions ay : Q@ — Ry such that
ap — a 1N measure.
Then, for every v € L?(Q;R™) and for every sequence (vy,) C L?(Q;R™) such that
v — v weakly in L*(Q;R™),

it turns out that

/a|v|2da:Sliminf/ak|vk|2dx~
Q k—+oo Jo

PROOF. — Let v € L2(;R™) and vy, — v weakly in L?(;R™).
We can extract a subsequence (k;) such that

liminf/ak|vk|2dx: lim /akj|vkj\2da:. (4.23)
k=00 Jo J=t Ja

From the convergence in measure of a; to a we deduce that for every n > 0 there exists a measurable
set E, C Q such that £"(E,) <n and

|aku —a’ S% a.e. on Q\ E,
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for a suitable subsequence (ay;,) of (ax;). By (4.23) we get

liminf/ak|vk|2dz: lim /ak7_|vk_\2dz2 lim ay, |k, |*dx (4.24)
k—+o00 Q 1— 400 Q ot i 1—+00 Q\E, i i

.. 1
> lim inf { / alvk, |2dx [ / vk,
1—+o00 Q\E, o 1 Jo .

Using the lower semicontinuity of the functional L?(Q,R™) > v — fQ\E a|v|?dx with respect to the
n

de}. (4.25)

weak topology of L?, we have

liminf/ak|vk|2d12/ a|v|*dz
Q Q

k—-+oo

for every n > 0. Letting 7 — 0 the claim follows. a

In the next lemma we state and prove a I'-convergence result for an auxiliary functional that will
appear in the proof of the main theorem of this section.

Lemma 4.7 Let us fit 0 <0 <& < 3 such that Qs CC Qz. For every h € N, let " : L*(Q5) —
[0, +00] be the functional defined as

/ Vw2 +H"(Sw)  ifwe SBV2(Q5), Sw C Qs, H"1(Sy) < L,
5

+o0 otherwise in L*(Qj).

Ih(w) =

Then the sequence I T -converges with respect to the strong topology of L? to the functional T :
L*(Q5) — [0, +00] given by

/ VoPde  ifwe H'(Qy),

+o0 otherwise in L*(Qj).

T(w) :=

PROOF. — Let w € L?(Qs) and let (w;) be a sequence converging to w strongly in L? and having
equibounded energy Z". We claim that w € H'(Qj) and that

lim inf 7" (wp) > Z(w). (4.26)

Without loss of generality we can assume that ||Jwp||p~ < ¢ < +00.

Indeed, if the claim (4.26) is proved in this case, then we can recover the general result in the following
way. Let w € L?*(Qz) and (wy) C L?(Qj) converging to w strongly in L? and having equibounded
energy. For every [ € N let us define Tj(wy,) := (wp Al) V (=1). Since T;(wy,) converges to Tyw strongly
in L2, as h — 400 and ||T;(wy)||L=~ <, we have by (4.26) that Tjw € H*(Qj) and

lim inf Z" (T, > T(Tyw).
fim il 7% (Ti(wn)) 2 Z(Thw)
Now, by

I"(Ty(wn)) < I"(wp),

we have that for every [ € N

lim +infzh(wh) > I(Tyw). (4.27)
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Since (wy,) has equibounded energy, this inequality implies that (Tjw) is equibounded in H'(Qj). Hence,
there exists a subsequence (Iz) and a function v € H'(Qjs) such that T, w converges to v weakly in
H'(Qj5), hence strongly in L?(Qj), as k — +o0o. From the uniqueness of the limit, since w is the
pointwise limit of Tyw, it follows that v = w, which entails that w € H'(Qj).

In view of these remarks and of the lower semicontinuity of the Dirichlet functional, in (4.27) we
obtain the chain of inequalities

liminf Z" (wy,) > limsup Z(Tjw) > limsup Z(T;, w) > lkimian(le_w) > T (w),

h—400 l—4o0 k—+o00 —+00
which is exactly (4.26).

So, from now on we will assume that ||wp||r~ < ¢ < +00. Under this further assumption we can
apply directly Ambrosio’s compactness and lower semicontinuity theorems (see for instance [5] and [4])
in order to deduce the compactness for the sequence wj, having equibounded energy and the liminf
inequality. The fact that H"71(S,,) < % ensures in particular that the limit function belongs to the
Sobolev space H'!.

Finally, the existence of a recovery sequence for a function w € H(Qj) follows immediately by taking
wyp, = w for every h € N. a

Next lemma contains a I'-convergence result for the same functionals as in Lemma 4.7, but taking
into account Dirichlet boundary conditions.

Lemma 4.8 Let (¢p,), 0 € HY?2(0Q5) be such that ¢, — ¢ strongly in H'Y?(0Qg). For every h € N,
let I : L*(Q5) — [0,+00] be the functional defined by

/ Vwlde + H1(S,) i w € SBV?(Q5). Su C Qs H' 1 (S0) < 1
Izh (w) = § 79 w = @p, on 0Q3, (4.28)
+00 otherwise in L*(Qj).

Then the sequence (Ifgh) I -converges with respect to the strong topology of L? to the functional Z,:
L?(Q5) — [0, 4+0o0] given by

[ 1Vulisifwe H'(@y). w=pon 0Q;,

Zy(w) = Q;
+o0 otherwise in L*(Qj).
PROOF. —  First step: proof of compactness and liminf. Let (wp),w € L?(Q5) be such that wj, — w

strongly in L? and Z, (wy,) < ¢ < 4+00. From the equality Z?, (wy) = Z"(wy) and the previous lemma,
we get that w € H(Qj); moreover,

lim ianZ (wy) = liminf Z" (wy,) > Z(w).

h—o00 h h—o0
It remains to show that w = ¢ on 9Q;s. First of all we can notice that the bound Zg’,}h (wp) < e < 400
implies that w;, = ¢n on 9Qs5. Moreover we have ||lwp|[f1(gs\@s) < ¢, hence wy, — w weakly in
H'(Q5\ Qs). This convergence entails in particular the convergence of the traces on 9Qj, that is,

on = (wn)joQ; — Wiag; strongly in L*(0Q5). (4.29)

Since @p, — ¢ strongly in H'/2(9Qj), from (4.29) we get the equality w = ¢ on 9Qj.
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Second step: limsup. Let w € H*(Qj) be such that w = ¢ on dQs. The surjectivity of the trace operator
onto H'/? ensures that for every h € N there exists v, € HY(Qjp) verifying the equality vy, = ¢, — ¢ on
0Q; and the bound
lonlla1 Qs < cllon = @lla20;)-
From the assumption we have v, — 0 strongly in H'. Let us define the sequence wy, = w + vy, . It turns
out that wy, = ¢, on Q5 and that wy, — w strongly in H'. Therefore wy, is a recovery sequence for
h

7, -

O

Now we are ready to state and prove the main result of this section.
Define the functional F>° : L*(Q) — [0, +oc] as

/|Vu|2dx in H1(Q),
FP(u) = Q

+00 otherwise in L?(2).

We will show that F° is the I'-limit of the sequence (F¢) in this case, that is, when a. >> ¢.

Theorem 4.9 (Bound from below) Let u € L?(Q) and let (uf) be a sequence converging to u strongly
in L? and having equibounded energy F¢. Then u € HY(Q) and

lim iélf Fe(u®) > F(u). (4.30)
£—
PROOF. — We remark that, as F*(u®) is bounded, the functions u® can have jumps only in the set

E° U F© defined in (4.2).

We now classify the cubes @, according to the measure of the jump set that they contain. More
precisely, let us introduce a positive parameter § > 0 that will be chosen later in a suitable way. We
say that a cube Qf is good whenever H" ! (Sua N Qi) < Be™ 1, and bad otherwise and we denote with
Ngy(e) and Ny(e) the number of good and bad cubes, respectively. First of all we can notice that, by the
fact that the sequence (uf) has equibounded energy, we have in particular that there exists a constant
¢ > 0 such that a.H" 1(S,:) < ¢. From this we deduce an important bound for the number of bad

cubes, that is Np(e) < % We can write, from (4.1),
Qe
a(e) Ny(e)
Q= ( U Qi) U ( U Qi) U R(e) =: (Q)? U (Q)" U R(e). (4.31)
k=1 k=1

First step: energy estimate on good cubes. Let Q)7 be a good cube and consider

Fe(uf, Q5) = / Vs Pda + o H" 1 (Sue N Q5). (4.32)

Q%

Define the function v¢ in the unit cube Qj as u®(ey) =: Jaze v°(y). In terms of v°, (4.32) becomes
F (v, Q%) = aEE”_l{ / Ve |2dz + H"(Sype N Qk)}, (4.33)
Qk

with H""1(S,e N Qx) < B. In other words, by means of a change of variables we have reduced the
problem to the study of the Mumford-Shah functional over a fixed domain, with some constraints on the
jump set. From now on we will omit the subscript k. Let 4,0 be such that Qs CC Q5 CC Q5 CC Q.
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Let us consider the problem of finding local minimizers for the Mumford-Shah functional under the
required conditions, that is

(LMS) locmin {/ |Vw|?dz + H" " (Sy) : w € SBV*(Q;),Sw C EUF, H" *(S,) < 6}.

5

According to the definition given in [22], we recall that a local minimizer is a function which minimizes
the given functional with respect to all perturbations with compact support. Let us denote by Mg the
class of solutions of (LMS).

For a given © € Mg, let us consider the function v solving

. Aw =0 in Qj;
(Dir) {w —0  inQ;\Qs

We want to prove that for every 1 > 0 there exists 8 > 0 such that for every © € Mg and for the
corresponding v we have
/Q

Hence we will take such a  in the definition of good and bad cubes.
Let us prove (4.34) by contradiction. Suppose (4.34) is false. Then there exists 1 > 0 such that for
every (3> 0 there exists ¥ € Mg and a corresponding v for which

|Vo|2de < (1+n)/ | Vi|?da. (4.34)

5 Qs

/ \Vf}|2dx>(1+n)/ Vo2 da. (4.35)

) Q§

In particular (4.35) implies that for every h > 0 there exists o, € M1 and o solution of (Dir) with ¢
replaced by 0, for which

/ \Von|?dz > (1 +77)/ \Von|?da. (4.36)
5 Qs

Since Q5 = (QS \Qg) UQj5, we can split the previous integrals and, using the fact that v, = 0y, in Q;\ Q5
we obtain from (4.36)

/ |V ?de > (1 +n)/ |wh|2dx+n/ |Von|?d. (4.37)
Qs Qs 5\ Qs
Since the problem defining ¥, is linear, we can normalize the left-hand side of (4.37), so that we can
assume
1= / |V |2de > (1 + n)/ |V |[2d + 77/ |V [2da. (4.38)
Qs Qs Q5\Q5
This means that, in particular,
1
/ |Vin|[2de < = < +oo. (4.39)
5 n

5
Without loss of generality we can assume that fQ*\Qo‘ Opdx = 0; therefore, since S;, C Qs, inequality
5

(4.39) implies that |[0n|[m1(Q,\@s) < ¢- Using the fact that 9, is harmonic in Q5 \ Qs we get the
convergence of the traces of 9, on 0Qj, that is

on = (0n)jaq, — ¢ strongly in H'/*(9Q5). (4.40)
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At this point, let us consider the following problems:

. Aw =0 in Qj; . Aw =0 in Q;
D D
(Dir)e, {w =, on 0Qy;, (Dir), {w =¢ on JQ;.

Clearly, @y, is the only solution to (Dir),, for every h. Let us call ¥ the solution to (Dir) . From (4.40)

it turns out that @, — ¥ strongly in H'(Qj), hence,

1:/ |V@h|2d$—>/ V|2 de = 1. (4.41)
5 Qs

s

Notice that the functions @5, defined by the minimum problem (LMS) are absolute minimizers of the
same functional over the same class once we fix the boundary data ¢ . Therefore they are absolute
minimizers for the functional Z" ~defined in (4.28). The I'-convergence result proved in Lemma 4.8 gives
the L? convergence of the sequence 9, to the only minimizer of the functional Z,, that is exactly o,
and the convergence of the energies.

Now, if we let h — +o0 in (4.38) we obtain that

1:/ |Vo|?de > (1—|—77)/ |Vo|?da,
5 Qs

which gives the contradiction, therefore (4.34) is proved.
Let 1 > 0 be fixed; we choose 8 > 0 such that the property (4.34) is satisfied and for every € > 0 we
consider the problem

(MS) min{/ Vw|dz +H" ' (Sw) 1 we SBV*(Q;,),Sw C EUF,
5,k
H*1(Sy) < B,w = v°on 8@87,@}.

For a minimizer ¢ of (MS), let ©° be the corresponding function defined by (Dir), with ¢ replaced by
©0°. We have that, as before,
;

|V 2de < (1 +n)/Q |Vo° |2 da. (4.42)
5,k

5,k

Hence, in particular,

/ |Vve|?de + H" (S, N Qs1) = / |V |2dx + H" (S N Qs 1)

5,k 8.k

n / ~e12
>11—— Vo |“dx, 4.43
(1- %) [ v (1.43)

where v° is the function in (4.33). Now define ¢ as u°(cy) := /ace 7°(y). By (4.33) and (4.43) we

obtain
/Q

Second step: energy estimate on bad cubes. Let Q5 be a bad cube. This means that H"~! (Sus N Qi) >

Be™~L. First of all, recall that we have a control on the number of bad cubes, that is, Ny(g) <

€12 n—1 € n ~c|2

< <
S,k S,k

a.en—1 :
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The idea is to use the obvious inequality

J

where x5 is the characteristic function of the set Q5 \ Q5 and the function 4 coincides with «® in
Qs \Qg,k and is extended to QF, in a way that keeps its H' norm bounded.

VusPde + a.H" Sy NQS) > /Q X5 |Va© Pde,

£
k

Third step: final estimate. Let us define a new sequence w® € SBV?(Q) as
@ in (Q5)°
w =< wt in ((Q9)7\ (Q9)7) UR(e),
€ in (Q9)Y,
where (Q%)9,(Q%)Y and R(e) are given in (4.31) and (Qg)g denotes the set
Ng(e)
g
(QE) = U Qg,k'
k=1

Define also the function a® : Q2 — R as

in e\b
as(x) = {0 (Q6) )

1 otherwise in €,

where the set (Q%)” is defined as
Ny (e)

b._
@5)" = {J Q5
k=1
From what we proved in the previous steps we can write

n 2

Fe(u®) > (1 - ) / a®(z) |[Vw®|*dzx. (4.45)
L+n/ Ja |

It remains to apply Lemma 4.6 to (4.45). First of all we show the convergence of a®. We have

/ﬂ o — 1) dz = £((Q5)) = Ny(e) e"L(Q5) < ¢ —,

g

hence a® — 1 strongly in L!(Q). Once we prove that w® — u weakly in H'(Q), it turns out that

lim inf F= (uf) > <177> / Vu|2dz,
e—0 1 + n Q

and the thesis follows letting 7 converge to zero.

Fourth step: convergence of w* . First of all it is clear from (4.45) and the choice of @ that ||Vw®||p2q) <
c. Then, as in the proof of Theorem 4.1, the fact that w® and u® coincide in a set with positive measure
ensures the convergence.

O
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Theorem 4.10 (Bound from above) For every u € H'(Q) there exists a sequence (u®) such that

(i) u® —u strongly in L*(Q),
(i) lim 7° (u®) = F*(u).

PROOF. — The thesis follows trivially by choosing u® = u for every € > 0. O

4.4 Critical regime: intermediate case

In this section we will analyze the case in which the fragility coefficient of the inclusions in the material
and the size ¢ of the periodic structure are of the same order. We can assume, without loss of generality,
that a. = e. So, the functional we are interested in is given by

/ \Vul|?dz +eH"1(S,)  ifue SBV?(Q),S, C ESUF*,
Fe(u) = Q
+00 otherwise in L?(2).

As first step, we localize the sequence (]—' € ) , introducing an explicit dependence on the set of integration.
More explicitly, for every u € L?(2) and for every open set A € A(Q) we define

/ \Vul?de + e H" (S, NA)  ifue SBV2(A), S, C (E°UF)N A,
Fe(u,A) =< Ja

~+o0 otherwise in L?(12).

For a fixed u € L*(£2) we can extend the localized functional we have just defined to a measure (F° )* (u,-)
on the class of Borel sets B(2) in the usual way:

(fa)*(u7B) = inf {F°(u, A) : A€ A(Q),B C A}.

4.4.1 Integral representation of the I'-limit

In this subsection we are going to prove that the sequence (.7-'5) I'-converges to a functional Fhom™
and that this limit functional admits an integral representation. A preliminary result is given by next
theorem, in which we prove the I'-convergence of a suitable subsequence of (F?).

Theorem 4.11 Let € be a sequence converging to zero. Then there exist a subsequence (o(g)) and a
functional F'om . L2(Q2) x A(Q) — [0, +0c0] such that, for every A € A(Q),

Fhom(., A) =T — lim F7E) (-, A)

e—0

in the strong L? -topology. Moreover, for every u € L%(Q), the set function F'™(u,-) is the restriction
to A(2) of a Borel measure on §.

Next Theorem provides an extension of the fundamental estimate to SBV?2. The proof follows easily
from [13, Proposition 3.1}, but we will include the details for the convenience of the reader.

Theorem 4.12 (Fundamental estimate in SBV?) For every n > 0 and for every A’, A" and B
€ A(Q), with A’ CcC A", there exists a constant M > 0 with the following property: for every € > 0
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and for every u € SBV?(A") such that S, C (EE u FE) N A", and for every v € SBV?(B) such that
S, C (EE Uﬁ’s) N B there exists a function ¢ € C() with ¢ = 1 in a neighbourhood of A’, sptp C A"
and 0 < ¢ <1 such that

Flou+ (1 —p)v,A"UB) < (1+n)F(u, A”) + (1 +n) F (v, B) —|—M/ |u — v|?dz,
T
where T := (A" \ A')N B.

ProOOF. — Let >0, A’, A” and B be as in the statement. Let Aj,... Axr1 be open subsets of R™
such that A’ CC A} CC Ay CC --- CC Apy1 CC A”. For every i = 1,...,k let ¢; be a function in
Cs°(Q) with ¢; = 1 on a neighborhood of A; and sptp C A;1;.

Now, let u and v be as in the statement and define the function w; on A’UB as w; := g;u+(1—¢;) v
(where u and v are arbitrarily extended outside A” and B, respectively). For i = 1,...,k set T; :=
(A1 \ A;) N B. We can write, for fixed ¢ > 0,

Fe(ws, A' U B) = / | Vs 2da + € H" Y (S, N (A’ U B))
A'UB

= (F) (u, (A UB)NA) + (F°) (v, B\ Ais1) + F* (w;, T))
Fe(u, A") + F=(v, B) + F* (w;, Ty). (4.46)

A

We can write more explicitly the last term in the previous expression as
Fe(w, T;) = / | oiVu+ (1 — ;) Vo+ Vi (u— v)|2dx +eH! (Swi N T1)
T
< / | @ivu + (1 - 902') Vo + VSOZ(U - ’U)|2dl‘ + 5Hn71 (Su N rfz) + 5Hn71 (SU N rfz)
T;
= I (T;). (4.47)

We would like to control I£(7;) by means of £™(T;). Let us define My, := maxi<i<k ||V¢i||[2 . Hence

I(T;) §2/ |gaiVu+(1—g0i)Vv|2d:L’+2/ |Vg0i(ufv)\2dz+
Ti Ti
+ eH" N (SuNT;) +eH" (S, NTY)

§2/ |Vu|2d33+2/ \Vv|2dx+2/ | Vi |?lu —v|*dz +
T; T; T;

+ eH" N (SuNT) +eH" (S, NT)

<2F(u,T3) + 2F° (v, T;) + 2Mk/ lu —v|?dx =: J°(T5). (4.48)
T;
Now, let ig € {1,...,k} be such that T}, realizes minj<;<j J(T;). Then, being J¢ a measure, we have
1 & 1
(T;) < — T < = J(T). 4.4
T < Do) < ) (4.49)

Notice that ig = ig(g), it depends on «.
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Combining together (4.46)-(4.49), we get

1
F(wiy, A UB) < F*(u, A") + F*(v, B) + z JE(T)

2 2 2
=F*(u,A") + F*(v, B) + z Fe(u,T) + %fE(U,T) + z Mk/ lu — v|2dx
T

2 2 2
<F(u, A) + F (v, B) + - F(w, A) + 2 F*(0,B) + - My / lu—v|?dz.  (4.50)
T

Now, since the choice of the number k of the stripes between A’iand A" is completely free, we can
assume that k is such that £ < 7. Hence k = k(n). Let us define M, := £M; then in (4.50) we have

Fe(wy, A"UB) < (141n) F(u, A”) + (1 +n) F*(v, B) JrMn/ lu — v|*dx,
T

which is exactly the claim. O

Now we are ready to give the proof of Theorem 4.11.

PROOF. — [Proof of Theorem 4.11] Since for every € > 0 the functional F* is increasing, we deduce by
Theorem 1.8 that there exist a subsequence (o (¢)) and a functional F°™ : L2(Q) x A(Q) — [0, +0o0] such
that From = T(L?) —lim._o F°(*). We put a subscript ¢ in order to underline that the limit functional
may depend on the subsequence. Now define the nonnegative increasing functional J : L*(Q) x A(Q) —
[0, +00] as

J(u, A) = /A\Vu|2d:v if us € H'(A),

400 otherwise.

Clearly, J is a measure with respect to A. Moreover 0 < F?() < J for every ¢ > 0 and the fundamental
estimate holds uniformly for the subsequence (f "(5)) by Theorem 4.12. Then we can proceed as in [21,
Proposition 18.6] and we obtain that

Foom (u, A) = (Fgom) (u, A) = (F77™)" (u, A)

for every u € L?(Q) and for every A € A(Q) such that J(u, A) < +o00.

Fix A € A(Q). As we noticed in Theorem 4.3, we have the bound F7©) (-, A) > G7()(., A), with
G?(¢) defined in (4.5). Hence by Theorem 4.1 the T'-limit of F7()(-, A) is finite only on H'(A), which is
the same domain where J(-, A) is finite, and is given by F°™(., A). This proves the stated convergence
of a subsequence (]—" "(5)) .

Finally, F¢(u,-) is the restriction to A(£2) of a Borel measure on Q. Then, by Theorem 4.12 and [21,
Theorem 18.5] we have that for every u € L?(€2) the set function F"°™(u,-) is the restriction to A(Q)
of a Borel measure on 2. a

Now we show some general properties for the I'-limit of F¢, even if, up to now, we have proved the
convergence only for a subsequence. The fact that the whole sequence converges will follow from the
characterization of the I'-limit, which will depend only on the gradient of the displacement and not on
the subsequence o(¢). From now on let us assume that we have already proved it and postpone the proof
to the end of the section. Hence we can omit the subscript o and call F"°™ the I'-limit of the whole
sequence (.7-" 5).

Lemma 4.13 The restriction of the functional F"°™ : L2(Q) x A(2) — [0,+00] to H*(Q) x A(Q)
satisfies the following properties: for every u,v € H*(Q) and for every A € A(Q)
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(a) F'om s local, i.e., F'om(u, A) = F'™(v, A) whenever UjA = V)A;

(b) the set function Fh°™(u,-) is the restriction to A(Q)) of a Borel measure on Q;
(c) From (., A) is sequentially weakly lower semicontinuous on H'(S2);

(d) for every a € R we have F'™(u, A) = F'm(u+ a, A);

(e) F'om satisfies the bound
0 < From(u, A) g/ Vul?dz.
A

PROOF. — Properties (a) and (c) follow from the fact that F°™ (-, A) is the I'-limit of the sequence
Fe(-, A), while (b) comes from Theorem 4.11. For property (d) we can proceed as follows. Let u € H*(),
A € A(Q) and consider a recovery sequence (uf) C L?(Q)NSBV?2(A) satisfying the usual constraints for
the jump set, converging to u strongly in L?(Q) and such that (F<(u, A)) converges to F'™(u, A).
Then (uf + a) converges to u + a in L?(Q) and

Fhom(y 4 a, A) < limi(r)lffe(ue +a,A) = limiglffe(ua, A) = Fhom(y, A).
On the other hand, F"°™(u, A) = F'"((u + a) + (—a), A) < F"™(u + a, A), hence (d) is proved. For

property (e), we just recall that the T'-limit of the sequence (f E) is bounded from above by the Dirichlet
functional, since that value is reached by a special sequence. a

Next theorem shows that the functional F"°™ admits an integral representation.

Theorem 4.14 There exists a unique convez function f:R™ — [0,4o00[ with the following properties:

(i) 0< (&) <[&* for every £ € R";

(i) F'om(u, A) = / f(Vu)dz  for every A € A(Q) and for every u € H*(A).
A

PROOF. — Notice that the functional F"°™ satisfies all the assumptions of [21, Theorem 20.1], so thanks
to Lemma 4.13 the Carathéodory function f: 2 x R™ — R defined as

hom X
f(y, &) = limsup]: (€@, Bo(y))

U T B, () (4.51)

provides the integral representation
Fhom(y, A) = / f(z,Vu) dz
A

for every A € A(Q) and for every u € L?*(2) such that w4 € H'(A). Moreover the same theorem
ensures that for a.e. x € Q the function f(z,-) is convex on R™ and that

0< f(z,6) < [€]* for ae. z € Qand for every & € R™.

It remains to show that f is independent of the first variable. Using the definition (4.51), it is sufficient
to prove that for every y,z €  and £ € R™ and for every p > 0, we have

Fhem(¢ .z, By(y)) = F'"(€ - 2, B,(2)). (4.52)



88 Chapter 4

Hence, let us fix y, 2 € Q and £ € R™ and o > 0; being F"™ (-, B,(y)) a I'-limit, there exists a recovery
sequence (u®) C SBV?(B,(y)) satisfying the usual constraint on the jump set, such that u® — 0 strongly
in L?(Q) and

lim 726 - 2 + %, By(y)) = F"" (& - 2, Bo(y))-

Without loss of generality we can assume (u®) C SBVF(B,(y)), where the subscript 0 denotes the
functions vanishing on the boundary. Indeed we can always reduce to this case by means of a cut-off
function. Now let us define the vector 7¢ € R™ as

where the symbol [] denotes the integer part. Extend u® by zero out of B,(y) and define the new
sequence v°(z) := uf(x — 7°). It turns out that S, C E° U F*; moreover v° is identically zero out
of By(y) + 7¢ and it converges to zero strongly in L?(2). Observe that for small enough & and for
every r > 1 we have that B,(y) + 7° C B,,(z). Hence the sequence { - x + v° gives a bound for
Fhom(¢ .z, B,y(z)), that is

FrOm(& - w, By(2)) < FMM(E - 3, Bro(2)) < liminf F2(€ - @ + 0%, Bro(2))
= hmlélf{/ ‘f+vv5|2d{£—|—€’}—ln—l(5ﬂ5 mBrQ(Z))} (453)
e BTQ(Z)

We can rewrite the last line of (4.53) in terms of u®, and so we get

FrOME - x, By(2))

IN

lim inf { / | €+ VU Pdz + [ €] L™ (B, \ B,) + e H" 1 (Sy: N Bg(y))}
B, (y)

e—0
= ]:hom(‘f * T, Bg(y)) + |§|2£H(Brg \ BQ)' (4.54)

Now, if we let r — 1 we have that F"™(¢ -z, B,(2)) < F"™(¢ -z, B,(y)). The reverse inequality can
be deduced in the same way, hence the claim follows. O

4.4.2 Homogenization formula

Once we have shown that the I'-limit of the sequence (f c ) admits an integral representation, it remains
to characterize the limit density. We will prove that it solves an asymptotic cell problem.
We define the function fjopm : R™ — [0, +00) as

1 L
from(€) :== li mf{/( | §+Vw|2dx+H"1(Sw):weSBVOQ((O,t)"),SwCEUF} (4.55)
O,t n

m
t—-—4oo T
where, according to the notation used so far, we have

E=an |J(E+h), F=0n ] F+h). (4.56)
hezm hez™

Theorem 4.15 The function fpom in (4.55) is well defined, that is the function

g(t) == tin inf { /(0 ) | &+ Vw|?de + H" 1 (Sy) : w e SBVE((0,)"),Sw C EU F} (4.57)
)t n

admits a limit as t — +00.
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PRrROOF. — Let £ € R™ and let ¢t > 0; by definition of g, there exists a function u; € SBVOQ((O,t)")
with S, € EU F such that

1 1
w{ [ e vulan s s b <o+
(0,)™

Fix s >t and define a subset of N" as

K:={k=(ki,....,k,) EN":0< ([t] + 1) kj <s, for j =1,...,n}.
Then, we define the set I := ([t] +1)K . Now, consider the function u, : R” — R defined in the following
way:

(@) up(x —1i) ifxei+ (0,¢6)",iel,
ug(x) ==
0 otherwise.

The fact that we performed a translation by integers and the )-periodicity of the jumps for the function
us entail S, C EUF. Moreover, ug vanishes on the boundary of (0,s)™. Hence, us is a competitor for
g(s), and so
1
o(s) <~ { / €+ VuPda + H"l(SuS)}.
(O)S)'n,

STI,
Define the set R; C (0,)™ as

Ry = (0,5)"\ | J (i+(0,0)").
iel
Since for the cardinality of the set I we have

< —) (4.58)

then it turns out that

LMRS) = s — ({M%Dnt" <sm - (W)nt" (4.59)

Notice that us =0 on R; and that S, N R; = 0; therefore

~

06 < RIS [ e uPaa s S w0 (s 064 0.0))

ier V(0.0 iel
1 n S n— n
:Sn{c (Rt)|£|2+Z/ |+ VuyPdz+ ) H" (S, N(0,1) )}.
ier /(00" iel
Using (4.58) and (4.59) we obtain, finally,

g(s) < ﬁ (g(t)+%) + €I2<1— (S_Z_l)n(til)n)'

Taking first the upper limit as s — 400 and then the lower limit as ¢t — 400 we get

limsup g(s) < liminf g(t),
t—-+o00

§—+400

and this concludes the proof. ]

Next theorem shows that the I'-limit of the sequence (f E) can be expressed in terms of the homoge-
nization formula (4.55).
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Theorem 4.16 The function f appearing in the expression of the limit functional F"*™ and the function
from defined by the asymptotic cell problem coincide, i.e., for every & € R™ it turns out that

J(&) = from ()

PROOF. — First step: f > from. Let £ € R™ and define u¢(z) :=§ - = for every & € R™. By definition
of T'-convergence, there exists a recovery sequence u® C SBV?(Q) with S, C (E°UF)NQ, such that
u® — ug strongly in L*(Q) and

lim 7° (u®, Q) = F"™ (ug, Q) = f(£).

e—0

Let us write u® =: ug + v, where v* C SBV?(Q) and v* — 0 strongly in L?(Q). Without loss of
generality we can assume v° € SBVZ(Q). Hence

f(&) = lim F*(ue +v°,Q) = lim { / |€ + Vv€|2dx Jr&:H"l(Sq,a)}. (4.60)
e—0 e—0 Q

Now, let us define the function w® € SBVZ(Q/e) as

v¥(z) = ew® (f)

3

Remark that S,- C EU F. Then, rewriting (4.60) in terms of w® we obtain

f(€) = lim 5”{ /Q/ |£+Vw€2d:v+H”1(Swg)}

e—0

> lim " inf {/ € + Vw|*dx + H" " (Sy) : w € SBVE((0,1/¢)"), S C EU F}
e (0)%)71

:fhom(g)'

Second step: f < from. Let &€ € R® and | € N; consider a function w € SBVZ((0,1)"), with S,, ¢ EUF,
such that

/ |€ + Vw|?dz + H"(S,,)

©.n"

< inf { / € 4+ Vo|?dz + H"1(S,) : v € SBVZ((0,))"), S, C EU F} + 1. (4.61)
(O,Z)"

Let us define the sequence u® : Q@ — R as
uw(z) =& x+ 61D<£>,
€

where @ denotes the function defined in the whole R™, obtained through a periodic extension of w. We
have that F¢(u®,Q) < +o0, being S, C E°U F¢, and that u® converges to ¢ - & strongly in L?(Q).
Moreover

TE(uE,Q):/ |Vu€2d$+57-[”_1(5’ue):6"{/ |§+Vzb|2d:c+H"_1(Sw)}.
Q Q

/e

Now, in order to use the periodicity of @, we can write the domain Q/e as union of (suitably translated)
periodicity cells (0,1)™. Assume for simplicity that @Q/e is covered exactly by an integer number of these
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cells, that is by 1/(l&)™ cells. Indeed, in the general case the integral over the remaining part of Q/e is
a negligible term.
Using (4.61), we get

1
Fe(u®,Q) = l"{ /(0 . |€ + Vw|*dz +H”_1(Sw)}

! S
< n inf {/ €+ Vv|2dac +H"HS,) v e SBVoz((O,l)”),Sw c EU F} + X
(O,l)’!L

Taking first the limsup of both sides as € — 0 and then letting | — 400 we obtain

lim sup F* (u°, Q) < from(§),

e—0
hence the claim is proved. O

Notice that from this theorem we deduce that the whole sequence (f S) I'-converges, since the formula
for the limit energy density does not depend on the subsequence.

Up to now we have proved that the I'-limit of the sequence F¢ can be expressed through an asymptotic
cell problem. Nevertheless it is desirable to give a more explicit description of the density fron, and this
will be partially done in the next lemmas.

Lemma 4.17 The functional F"°™ is not a quadratic form.

PROOF. — Flirst step. For every £ € R™ the following estimate holds:

Anggfhom(g) §A0€€+P(E3Q), (462)

where P(F, Q) denotes the perimeter of F in @, according to the notation introduced in Chapter 1.

Indeed, the lower bound follows from (4.12) and Remark 4.4. For the upper bound, by the definition
of T'-limit it is sufficient to find a sequence u® C SBV?(Q)) with S, C E< U F* and converging to
ug := & - ¢ strongly in L?(€2), such that

lim 7°(u) = Ao¢ - £ + P(E, Q).

To this aim, we just take as u® the recovery sequence introduced in the proof of Theorem 4.5.

Second step. For every £ € R™\ {0}, we have
Aog - € 3 1% (4.63)

Indeed, for £ # 0, we have
Ao € = min{/ €+ Vu(y)PPdy : w € SBVE(Q), Sw € EUF}
Q\E
< [Py =£Q\ B €P <[¢P.
Q\E

since 0 < L"(Q\ E) < L™"(Q) =1.
Third step. For every & € R™ \ {0} we have

fhom(g) ; AO& : £ (464)
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To prove (4.64) it is enough to show that, for every £ # 0 and for every admissible sequence u° converging
to ug = £ - x strongly in L?(2), we have

lim sup F¢ (u®) > L£*(2) Ao - €. (4.65)

e—0

We can restrict to the case F*¢(uf) < 400, otherwise there is nothing to prove. For the sake of simplicity,
let us assume that ) = Q. We will treat separately the case in which «® has no jumps and the general
case.

Case Sy= =0 for every e > 0. Being F*¢(u°) = fQ |Vuf|?d x < +o0o, we have that the sequence (u)
is bounded in H'(Q). In particular this implies that Vu® — ¢ weakly in L?(Q). By the weakly lower
semicontinuity of the Dirichlet integral we deduce that

€2 < lim inf 7= (u®),

which together with (4.63), gives (4.65).

Case Sy= # 0 for some ¢ > 0. Let us fix § > 0 independent of ¢ and classify the cubes Q5 according
to H" (S, N ()5,) being smaller or larger than Be™ . From what we proved in Theorem 4.9, it is
possible to choose the parameter 8 in such a way that the cubes where H" (S, N Q%) < "~ ! can
be assumed to be undamaged.

Hence we can divide the cubes @5, in two classes: the undamaged cubes and the ones such that
H" 1 (Sue NQ5) > B!, where 3 > 0 is a small constant, independent of €. Denote by Ng4(e) the
number of damaged cubes. From the expression of the functional no bound for Ng(e) can be derived,
i.e., it may happen that H"1(S,: N Q%) > Be"~! for every k=1....,N(e). In any case it is clear that
€™ Ny(e) is a bounded quantity. According to the behaviour of Ny(e) as € — 0, three different cases may
arise.

1) Assume that the number of damaged cube is small, that is

limsupe”Ny(e) = 0. (4.66)

e—0

Define the function a® : () — R as

‘(@) 0 in the damaged Q5,,
af(x) =
1 otherwise in Q.

From (4.66) we have that a® — 1 strongly in L*(Q). Now,
Fe) = [ Ve 4 RS,
Q
> / af(z) |Vu|Pdz + Be" Nqy(e).

Q

Then, taking the liminf as ¢ — 0 we get
1imi(r)1f.7-'€(u5) > |¢)?,
E—

so also in this case (4.65) follows from (4.63).
2) Assume that the number of damaged cube is high, that is

liminfe™ Ny(e) = C > 0. (4.67)

e—0
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In this case we can say that, for ¢ small enough, we have €"Ny(e) > C/2. Hence, recalling the definition
(4.5) after a suitable extension of u° in E°, we have

Fo(u') = /QIVUE|2dx+€H”_1(5uE) > G°(u) + Be"Na(e) = QE(UEHﬁg-

Then, taking the liminf as € — 0 we get by Theorem 4.1

liminf F*(u®) > Ao€ - £ + ﬁ%v

e—0

so also in this case (4.65) holds.
3) Finally, let us analyze the intermediate case. Assume that

liminfe™ Ngy(e) = 0.
e—0

and
limsupe”Ny(e) = C > 0.

e—0

Consider a subsequence ¢ such that

klim epNg(ex) = limsupe™ Ny(e).

e—0
Then, we can apply the result of the previous case to this subsequence and we get
. e/ e C
limsup F* (u®*) > Ao -+ 0 —.
k—oco 2

Being the limsup of the whole sequence bigger or equal to the limsup of a subsequence, we have the
thesis (4.65).

Fourth step. Assume by contradiction that fp.m, is 2-homogeneous. Hence replacing £ with A¢ in (4.62)
we have that, for every A € R,

>\2AO£ : 5 S >\2fhom(£) S )\2A0§ : g + P(Ev Q) (468)
Dividing by A? and letting A — 400 one gets
fhom(g) = AOS . Ea

which is in contrast with (4.64). This shows that fjom is not 2-homogeneous and therefore F"°™ is not
a quadratic form. O

Remark 4.18 The estimates (4.62) and (4.64) proved in the previous lemma can be summarized by the
formula

Ao € 5 from(€) < min {[¢[*, Ao& - € + P(E,Q)}, (4.69)

that holds true for every £ € R™\ {0}.
It is clear that there exists a threshold M > 0 such that

Aot - €4+ P(E,Q) S |€]* for every |€] > M., (4.70)
Condition (4.70) together with (4.69) entail in particular that

from(€) S €]* for every [£] > M,
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that is, for |¢| sufficiently big, the limit density is strictly smaller than |£|?.
It is not yet clear the behaviour of fom(§) for |£| very small, but we expect that

fhom (g)

=1.
le—o €[

Lemma 4.17 shows also that the functional F"°™ is not a quadratic form and it is not even 2-homogeneous.
Next lemma clarifies how 2-homogeneity is violated.

Lemma 4.19 For every £ € R™ and every A > 1 we have the inequality

fhom(/\f) < )\thom(f); (471)
while for every £ € R™ and every 0 < A <1 we have the reverse inequality
fhom(/\f) 2 )\thom(g)- (4.72)

PROOF. — Let & € R” be given and let w € SBVZ((0,t)") with S,, € EUF. Consider A > 1 and set
wy := Aw. Clearly it turns out that wy € SBVZ((0,t)") and S, C EU E. Moreover

1
/ €+ Vw|*dz + H" " (Sw) > — {/ |)\§+Vw,\|2dx+7-(”_1(5wx)}. (4.73)
(0,6)" A 0,6)m

Now, if we take the infimum of both sides of (4.73) over all w € SBVZ((0,t)") with S, € EUF, we
divide by t™ the resulting expression and let ¢ — 400, we obtain exactly (4.71), using the definition
(4.55).

Proceeding in a similar way we get the reverse inequality (4.72) in the case A < 1. O

4.5 Appendix

In this appendix we present an alternative proof of Theorem 4.9 in the case of a bidimensional domain
Q. This proof is based on the maximum principle, which allows us to estimate the local opening of the
crack in a small ball surrounding the crack. It is therefore strictly bidimensional. A similar method can
be found in [15] and in [23].

We use the same notation as in the previous sections. In particular we denote with @ := (0,1)? the
unit cube and with Qs CC Q3 CC @ the concentric cubes with distance § and $ from 0Q, respectively.
Let E,F C Qs be the sets where a crack may appear, satisfying the assumptions required in (4.1).
Let us fix a boundary displacement on dQ;, given by the trace of a function ¢ € H H@Q), and let
0 < < (6 —0)/2 be a parameter.

Let v be the elastic solution corresponding to the datum ¢, that is the solution to the problem

(Dir) min{ /Q

and let ¥ be a solution to the problem

|Vw|?dz : w € H'(Qz),w = pon 8Q5},

5

(MS) min{/ |Vw|?dz + H' (Sy) : w € SBV(Q;), Sw C EUF,H'(S,) < B,w=¢pon 8@5}.

5

The main result of this section is the following.
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Theorem 4.20 For every 3 small enough, there exists a constant w(B) > 0 with w(f) — 0 as B8 — 0
such that the functions © and © defined by the problems (Dir) and (MS), respectively, satisfy the following

relation:
/;

Remark 4.21 Theorem 4.20 ensures that if a function has a “small” jump set, then it can be replaced
with a function which has no discontinuities, up to a “small” error in terms of the energy, depending on
the measure of the jump set.

This is exactly what we proved in (4.34) within Theorem 4.9. As we have already noticed, the proof
of Theorem 4.20 works only in dimension 2, but it has the advantage of being more direct.

|Vo|?dx + H (Sg) > (1—w(ﬂ))/@ |Vo|2dz. (4.74)

5

PROOF. — [of Theorem 4.20] Let ¢ be a minimizer for the problem (MS) and let us set
=S, (4.75)

We notice that we can arbitraly change the (constant) values of the function ¢ in the regions where the
gradient is zero, and the resulting function is still a minimizer for the same problem. So our first step is
to fix the constants in these regions.

Properties of T'. As a first step, we shall split T' in two parts, called Ty and T'\ T'., where T, will be
related to the sets on which v is constant.

Let G C Q; be a set having finite perimeter in Q(S), maximal with respect to inclusion, such that
0*G C T'. Assume that £2(G) > 0. It is easy to show that the function 9 is constant in G. In fact
otherwise we can define, for a constant ¢ € R, the function

v { in Q(0)\ G,
¢ inG.

It turns out that w is still a competitor for (MS) and that its energy is strictly smaller than the energy
of ¥, which contradicts the minimality. Hence ¢ is constant in G. In view of this, we may also assume
that if © € T'\ 0*G, then z is not a point of density 1 for G. Otherwise we would get [0](x) = 0, where
[0](x) denotes the difference of the traces of ¢ at x.

Let us divide G in the union of its indecomposable components according to [6, Theorem 1], i.e., let
(Gi)ien be a family of sets with finite perimeter such that G = U;enG,, HY(0G) = ¥,y HH(0G)),
L2(GL,NGE) =0, HY(0*GL, N O*Gy) = 0 for every h # k, and such that for every k € N the set Gy,
cannot be written as Gy, = G U G2 with £2(G: N G2) = 0 and HY(9*Gx) = HY(0*GL) + HY(9*G2).
Let us set -

I, :=0"G=|]0G;
§=0
Choice of minimizers for (MS). Let us choose the minimizer ¢ by requiring
ess- inf o7 < )@, < ess- sup T, (4.76)
0*Gj er
where 97 denotes the trace of © external to G;. In this way we have imposed a constraint on the
constant values of ¢ in the connected components of Q(0) that do not touch 9Q(0).

Comparison between ¥ and ©. We now prove (4.74). First of all we have that
/ (Vo = |Vo]?) da :/ (Vo — V) (Vi + Vo) da
Q(9) Q(9)

:/ (Vi — Vo) Vi da. (4.77)
Q)
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The last equality follows from

/ (Vi — Vé) Vida =0,
Q@)

that is the Euler-Lagrange equation satisfied by ¢, using as test function © — ¢. Integrating by parts
(4.77) we get

/ (IVo]? = |Vo[?) dx:—/ (o — ) Mdm+/ (@_@)@(ml
Q) Q(3) 2Q(8) v
ov 4
- /S o [0] dH. (4.78)

Notice that in the right-hand side of (4.78) the first two terms vanish because ¢ is harmonic and ¥ = ©
on 0Q(d). Therefore, (4.78) reduces to

/ (Vo> = |Vo]?) dae = — o [0] dH*. (4.79)
Q) s, W

We want now to give an estimate of the last term in the previous expression. For the normal derivative
of ¥, using the harmonicity of v we get

00 N 2 -
EE sup V3] < C(6,8) [Vl a5 (4.80)
It remains to estimate [ |[0]] dH'.
Estimate for the jump of v. Let us fix © € S; and let us define the set
C(z):={rel0,20]: 0B,(z) NS, = 0}.

As H(S;) < 3, we conclude that

H (C(x)) = B

and this estimate holds true for every x € S;.
Let us now take r € C(z), &,¢ € 0B, (x). Let us consider the angles ¢, € [0,27) such that

E=ax+(rcose,rsing), ¢=xz+ (rcosyp,r siny),

and assume for instance that ¢ < ¢. Then we can write

[8(6) ~ 9(0)| = | /: 00ilr,9) 9| < \/p 0 (/: 00(r,0)? do) vz (4.81)

Using the fact that 9y = —rsind9d; + r cos¥dy and the bound (¢ — 1) < 27, we have
® 1/2 27 1/2
8(8) = 9(0) < ¢ (/ PIvaPas) < (/ 2vifas) .
W 0

Hence, since the previous estimate holds true for every &, ¢ € 0B, (x), we have

1 R . 2m ;. 1/2
v P (/0 r|vopPas) " (4.82)
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Mazimum principle. For every x € S and for a.e. r € C(x) we have

[Pl(z)] < sup  [9(§) —0(C)]- (4.83)
£,(€dB;(x)

Indeed, we can define the new function

) {mr\/(Mr/\f[;) in B, (z),
Vp 1=

0 otherwise in Q(9),
where
m, := min v and M, := max 0.
3B, () BBT(x)

The function o, is still a competitor for the minimum of (MS) and it coincides with & by (4.76). Hence
either 0, = ¥, or the energy associated to ¥, is greater or equal to the energy corresponding to ¥. Since,
by definition, the truncation reduces the energy, we conclude that ¢, = v. This gives immediately that
0 satisfies the maximum principle in the ball B, (z), hence (4.83) is satisfied.

From (4.82) and (4.83) we obtain the inequality

% el <e (/OZWTWFdﬁ)W

Squaring and integrating over C'(z) yields

2m
|[17](:17)|2/ )rdr<c/ )/ Vo2 dr do.

Since C(z) C [0,2 0], we have

)

N | —

/C(m)drsz (C(2)) =

hence we deduce
) 19 1/2
@ <c( [ IviPd)
B3 g ()

for H'-a.e. = € Sy. Moreover, since (3 < (§ — 0)/2, we have that By () C Q(6) for every z € Sy, so

that 1o
@ <e( [ [viPi:)
Q(9)
By integrating the previous expression over S; we obtain
/S 6]l dHY < cHY SVl 200 (4.84)
Combining together (4.79), (4.80) and (4.84) we obtain

/Q(g) (IVo]* = [Vol*) de < 2¢C(6,0) H (Sa) IVl 206 IVl L2 o6 (4.85)
Using in (4.85) the Young inequality 2ab < a? + b2, which holds true for every a,b > 0, we have

+[Volf7,

(Q(ﬁ)))

/. 5, (V9 =199 do < 0 (S I g
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Being H!(S;) < 3, we finally have

1—
/ |w|2dxz( Cﬁ)/ Vo2 da, (4.86)
Q) L+eB7 Jou

where ¢ > 0 is a constant depending only on the geometry of the problem. The estimate (4.86) gives
(4.74) with w(0) :=2¢6/(1 + ¢B). o




Chapter 5

Damage as I'-limit of microfractures
in linearized elasticity under the
non-interpenetration constraint

Chapter 5 is devoted to the extension of the homogenization results presented in Chapter 4 to the
vector-valued case in linearized (possibly anisotropic) elasticity. As before, we consider a linearly elastic
material presenting brittle inclusions arranged in a periodic structure. Moreover, we impose a linearized
non-interpenetration constraint between the lips of the fracture.

5.1 Formulation of the problem

Let n > 2 and let Q C R™ be a bounded open set. In the following we will denote by @ the unit cube
(0,1)™ and with @, the inner cube (p,1 — 0)", for some ¢ > 0.
For every € > 0, let us consider the periodic structure in R™ generated by an e-homothetic of the basic
cell Q). For notational brevity we will use the superscript £ to denote the £-homothetic of any domain.
In particular, Q° :=¢@.

Let us write the domain 2 as union of cubes of side ¢:

0= ( U (Q+h)6> U R(e),

hEZ,

where Z. :={h € Z™ : (Q + h)® C Q}, and R(e) is the remaining part of Q. Notice that L™(R(¢)) is of
order €. Let N(g) be the cardinality of the set Z.; notice that N(e) is of order 1/e™.

We denote by {Qf}r=1,.,~n() an enumeration of the family of cubes (Q + h)® covering €, so that
we can rewrite € as

N(e)
Q= ( U Q;) U R(e). (5.1)
k=1

In the same way we can define the sets @5, and then I§ as

N(e)

Is = Q5 (5.2)
k=1

99
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Let C = (C;jx) be the elasticity tensor, considered as a symmetric positive definite linear operator
from MZX" into itself. It turns out that there exist two constants 0 < A < A such that for any £ € MZ X"

sym sym 7

it holds
AEP < CEE< AP, (5.3)

where ¢ : ) = trace(én) = &;mi; and [€]? = € : € is the standard Euclidean norm. Clearly, the tensor C
is symmetric with respect to any interchange of indices, that is,

Cijkt = Criij = Cjipa. (5.4)

To every function u € SBD?(f2) we associate the energy
€ Z n—1
Fow) = | olw):Eude+ | fu( Ll ) o @),
Q Ju €

where o(u) = CEu, f,:R" x R" x S"~1 — [0, +00] is a Q-periodic function defined as

Q ifye Qs and z-v >0,

+o0o  otherwise,

faly,z,v) = {
and « is a positive parameter. Clearly, being f, @-periodic, the function
x
T = foc (77 2, V)
€
turns out to be Q°-periodic.

As in Chapter 4 we are interested in the case in which ¢ is fixed and independent of ¢, while o = a,
depends on ¢ and goes to zero as € — 0. We will study three different cases, i.e.,

o

1. Subcritical regime — =0 as e — 0,
Q

2. Supercritical regime —= — 400 ase — 0,
€
Qe

3. Critical regime —c € (0,4+00) ase — 0.

5.2 Integral representation

The purpose of this section is to show that, independently of the rate at which «. converges to zero
with respect to e, the sequence (F¢) admits a I'-convergent subsequence. Moreover we will prove that
the limit functionals can be written in an integral form. This will be done in an abstract setting. The
characterization of the limit energy density for the different regimes will be done in the Sections 5.3-5.5.

In order to prove the I'-convergence of a subsequence of (F¢), a crucial step is to show that the
functionals F¢ satisfy the so-called fundamental estimate, independently of the rate of convergence of
Qe .

As a first step, we localize the sequence (F¢), introducing an explicit dependence on the set of
integration. That is, for every u € L?(€2;R™) and for every open set A € A(Q) we define

/ o(u): Eudz + ac H" 1 (J, N A) if ue SBD?*(A),J, CISNA,
Fe(u, A) := 4 [u] - v, >0 H* lae. on J,,

+00 otherwise in L?(Q;R™).
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For a fixed u € L?(£;R™) we can extend the localized functional we have just defined to a measure
(F&)*(u,-) on the class of Borel sets B(2) in the usual way:

(F%)"(u, B) := inf {F=(u, A) : A € A(Q), B C A}. (5.5)

Next theorem provides an extension of the fundamental estimate to SBD?. The proof is obtained by
modifying [13, Proposition 3.1], valid for SBV functions.

Theorem 5.1 (Fundamental estimate in SBD?) For every n > 0 and for every A’, A" and B
e A(Q), with A’ cC A", there exists a constant M > 0 with the following property: for every € > 0
and for every u € SBD?*(A") such that J, C Is N A" and [u]-v, >0 H" '-a.e. on J,, and for
every v € SBD?*(B) such that J, C I N B and [v]-v, >0 H" '-a.e. on J,, there exists a function
© € CS°(Q) with =1 in a neighborhood of A, spt C A" and 0 < ¢ <1 such that

Flou+ (1 —p)v,A/UB) < (1+n)F(u, A”)+ (1 +n) F (v, B) —|—M/ |u — v|*dz,
T
where T := (A" \ A')N B.

PrROOF. — Let n > 0, A", A” and B be as in the statement. Let Aj,..., Axi1 be open subsets of
R" such that A’ CC A} CC Ay CC -+ CC Agy1 CC A”. For i =1,...,k, set T; := (Aip1 \ 4;) N B.
For every i = 1,...,k, let ¢; be a function in C§°(Q2) with ¢; = 1 on a neighborhood of A; and
Spt p C Ai+1 .

Now, let u and v be as in the statement and define the function w; on A’UB as w; := p;u+(1— ¢;)v
(where u and v are arbitrarily extended outside A” and B, respectively). We need to verify that w;
belongs to the domain of F¢(-, A’ U B). By definition we have that w; € SBD?*(A’ U B) and that
Jw; C IS N (A" U B). Hence it remains to check that [w;] vy, >0 H" '-ae. on Jy,,. Clearly, for
x € Jy, \T; the condition is satisfied since it holds true for v and v. Hence we can restrict our attention
to the case z € T; N (J, N Jy). If J, and J,, intersect tangentially at x, then v, = v, = v, and the
non-interpenetration condition is fulfilled, otherwise the normal v, is not defined at x.

Now we can write, for fixed ¢ > 0,

Fe(wi, A/ UB) = / o(w;) : Ew; dz + acH (Jy, N (A’ U B))
A’UB

(F2)"(u, (A" UB) N A) + (F°) (v, B\ A1) + F* (w;, Ty)
< F(u, A") + F (v, B) + F(w;, Ty). (5.6)

Let us define My := maxj<;< ||Vpi||2 . Using (5.3), we can estimate the last term in (5.6) as

Fé(w;, T;) < A/ IE(piu+ (1 — i) v)|Pde + e H" ! (Jow, N T})
T;

Sc/ |€u|2d:v—|—c/ |Ev|2dx+ch/ lu — v|?dzx
T; T; T;

+ a:H"  (JuNT) +acH (I, NT;)

<cF (u,T;)+cF (v, T;) + ch/ lu —v*dx =: L*(T;). (5.7)
T;
Now, let ig € {1,...,k} be such that T;, realizes miny<;<x L°(T;). Then, being L° a measure, we have
1< 1
LE(T; ) < — LE(T;) < = L&(T). .
(1) < f L) < 1D 6.9
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Notice that ig = ig(g), it depends on . Combining together (5.6)-(5.8), we get
Fe(wiy, A"UB) < F(u, A”) + F* (v, B) + %LE(T)
= F(u, A") + Fo(0, B) + £ FE(u,T) + 5 Fo(0,T) + + My /T lu— v|dz
< F(u, A") + F2(0, B) + £ F(w, A") + 5 Fo(0, B) 4+ M /T i oPdr. (5.9)

Now, since the choice of the number & of the stripes between A’ and A” is completely free, we can
assume that & is such that £ <n. Hence k = k(n). Let us define M, := {My; then in (5.9) we have

F(wiy, A"UB) < (141n)F(u, A”) + (1 +n) F*(v, B) —|—M7,/ |u — v|*d,
T
which is exactly the claim. O

Next theorem shows that the functional F’ := T' — liminf. F* is finite only on H!(£;R").

Theorem 5.2 Let G : L2(Q;R") — [0, +00] be the functional defined as

/ Ap€u : Eudx in H(Q;R™),
Q

Gu) = (5.10)

+00 otherwise in L?(£;R™),

where Ay = (Ayijrn) is the fourth order tensor with constant coefficients given by the solution of the cell
problem

Aog;gmin{/Q\Q a(w):Swdy:wnyH;#(Q;R”)},

for £ e MX"  Then,

sym

F'(u) > XG(u) for every u € L*(Q;R™), (5.11)
where F' is defined as in (1.1), with G* replaced by F= and X is the constant in (5.3).
PROOF. — Let u € L?(Q;R") and let (uf) be a sequence converging to u strongly in L? and such that
Fe(uf) < e < 4oo.
Let us define the auxiliary functional G : L?(Q;R™) — [0, +o0] as
/a(f)|5v|2dx it v e H'(Q;R),
Q 9
+o0 otherwise in L?(2;R"),

G*(v) = (5.12)

where a is a @-periodic function given by

a(y) = {O for y € Qys,

1 fory € @\ Qs.

It is well known that the sequence (G¢) I'-converges (with respect to the strong topology in L?) to
the functional G defined in (5.10). For further details we refer to [17].

We would like to compare F*(u®) with the value of G° on a suitable extension of u®. As F¢(uf) < 400
we have in particular that the sequence (€uf) is equibounded in L?(Q°;R™), where Q¢ := Q\ I . Hence,
by Korn inequality we deduce that u® is equibounded in H*(02F;R").



Damage as I'-limit of microfractures in linearized elasticity 103

Let us denote with @° C H'(£2;R™) the extension of u®, whose existence is guaranteed by Theorem
1.20. Tt turns out that @° converges to u weakly in H!, hence v € H*(2;R"™). Moreover, from (5.3) we
have

Fe(u®) > AGE(a®), (5.13)

from which we deduce the bound (5.11). a

Notice that the estimate (5.11) holds true independently of the rate at which «. converges to zero and
implies that the I' — liminf of F¢ is finite only in H*(Q;R").

We can finally state our I'-convergence result for a subsequence of (F*¢).

Theorem 5.3 Let € be a sequence converging to zero. Then there exist a subsequence (o(€)) and a
functional F, : L*(;R™) x A(Q) — [0, +0o0] such that, for every A € A(S),

Fol, A) =T — 1ir%fff(8>(., A)

in the strong L? -topology. Moreover, for every u € L*(; R™), the set function F,(u,-) is the restriction
to A(Q) of a Borel measure on .

PRrROOF. —  Since for every € > 0 the functional F¢ is increasing, we deduce by Theorem 1.8 that
there exist a subsequence (o(¢)) and a functional F, : L2(;R") x A(2) — [0, +oc] such that F, =
T(L?) — lim._ F°(¢). We put a subscript ¢ in order to underline that the limit functional may depend
on the subsequence. Now define the nonnegative increasing functional H : L2(Q;R"™) x A(Q) — [0, +o0]
as

Hu, A) — /A|Eu\2da: if ua € H'(A;R"),
400 otherwise.

Clearly, H is a measure with respect to A. Moreover, by (5.3) we have that 0 < F°(&) < AH for
every € > 0 and by Theorem 5.1 the fundamental estimate holds uniformly for the subsequence (.7-' "(5)) .
Therefore, we can proceed as in [21, Proposition 18.6] and we obtain that

Folu, A) = (Fo)'(u, A) = (F5)"(u, A)

for every u € L?(€;R™) and for every A € A(Q) such that H(u, A) < +o00.
Fix A € A(Q). We recall that in Theorem 5.2 we obtained the bound F'(-, A) > AG(-, A), where the
functional G was defined in (5.10). Notice that, by definition,

Fol A) = (Fo)'( A) = F'(-, A). (5.14)

Hence we deduce that F, (-, A) > AG(-, A). This entails in particular that the T-limit of F7)(., A) is
finite only on H'(A;R™), which is the same domain where J(-, A) is finite, and is given by F,(-, A).
This proves the stated convergence of a subsequence (f "(5)) .

Finally, F*(u,-) is the restriction to A(2) of a Borel measure on . Then, by Theorem 5.1 and [21,
Theorem 18.5] we have that for every u € L?(Q;R™) the set function F,(u,-) is the restriction to A(Q)
of a Borel measure on €. a

We now show general properties for the I'-limit of F¢, even if, so far, we have only proved convergence
of a subsequence. The fact that the whole sequence (F*) converges will follow from the characterization
of the I'-limit, which will depend only on the symmetric gradient of the deformation and not on the
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subsequence o(¢). This will be done separately for the different regimes in Theorems 5.6, 5.11, 5.15,
respectively.

In the remaining part of this section we therefore assume that the whole sequence (F€) converges to
a functional that we call F, and we omit the subscript o.

Lemma 5.4 The restriction of the functional F : L*(Q;R™) x A(Q) — [0, +oc] to HY(Q;R™) x A(Q)
satisfies the following properties: for every u,v € H*(;R"™) and for every A € A(Q)

(a) F is local, i.e., F(u,A) = F(v,A) whenever ujq = v|a;

(b) the set function F(u,-) is the restriction to A(Q) of a Borel measure on Q;

(c) F(-,A) is sequentially weakly lower semicontinuous on H'(Q;R™);

(d) for every a € R™ we have F(u,A) = F(u+a,A);

(e) F satisfies the bound

0 < Flu, A) < A/A Sul2d .

PROOF. — Properties (a) and (c) follow from the fact that F(-, A) is the T'-limit of the sequence F=(-, 4),
while (b) comes from Theorem 5.3. For property (d) we can proceed as follows. Let u € H!(Q;R"),
A € A(2) and consider a recovery sequence (uf) C L%(Q;R")NSBD?(A) satisfying the usual constraints
for the jump set, converging to u strongly in L?(Q; R"™) and such that (}"E(ue, A)) converges to F(u, A).
Then (uf + a) converges to v+ a in L?(Q;R") and

Fu+a,A) < lilrniglf]-'s(uE +a, A) = liminf F°(u®, A) = F(u, A).

e—0

On the other hand, F(u, A) = F((u+a)+(—a), A) < F(u+a, A), hence (d) is proved. For property (e), we
just recall that the I'-limit of the sequence (F¢) is bounded from above by the functional A [, [Eul?dx,
by assumption (5.3). a

Next theorem shows that the functional F admits an integral representation.

Theorem 5.5 There exists a unique convex function f : M™*™ — [0, +oo| with the following properties:

(i) 0.< f(€) < AE® for every & € MM ;

(1) F(u,A) = /Af(Vu) dz  for every A € A(Q) and for every u € H(A;R™).

PrOOF. — Notice that the functional F satisfies all the assumptions of [21, Theorem 20.1], so thanks
to Lemma 5.4 the Carathéodory function f: Q x M"*"™ — R defined as

£, €) = lim sup 2o 22 BeW)

0—0 E”(BQ(ZU)) (5:13)

provides the integral representation

f(u,A):/Af(a:,Vu)dm
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for every A € A(Q) and for every u € L*(Q;R") such that w4 € H'(A;R™). Moreover the same
theorem ensures that for a.e. x € Q the function f(z,-) is convex on M™*™ and that

0 < f(z,6) < Al¢]? for a.e. z € R™and for every & € M™ ™,

It remains to show that f is independent of the first variable and this can be done in the usual way (see
for instance Theorem 4.14 in Chapter 4). a

In order to distinguish the different regimes, in the next sections we will use a different notation for
the limit functional F. It will be denoted by F9 in the subcritical case, by F"°™ in the critical regime,
and by F°° in the supercritical case.

5.3 Subcritical regime: very brittle inclusions

In this section we shall analyze the subcritical case, where the fragility coefficient of the inclusions in the
material is much smaller than the size ¢ of the periodic structure. The energy of the material is thus
given by

/ o(u): Eudr +a. H" *(J,)  ifue SBD*(Q),J, C I,
Fe(u) = ¢ [u] - vy, >0 H*" l-ae. on J,,

+00 otherwise in L?(2;R"),

with ae << e. It is convenient to localize the sequence (F¢) by defining, for every u € L?(2;R") and
for every open set A € A()

/ o(u): Eudr +a. H" ' (J,NA)  ifue SBD?*(A), J, CIiNA,
Fe(u, A) = 4 [u] - v, >0 H" lae. on J,NA,
+00 otherwise in L?(Q;R").

5.3.1 Cell formula

We have already shown that the I'-limit exists on a subsequence and it admits an integral representation.
It remains to characterize the limit density. We shall prove that it is given by a cell problem.
Let & € M™*™; we will denote with £° its symmetric part, that is,

_ e
fs :TEMstW?

Define the function fo: M™*"™ — [0, +00) as
fo(€) :=inf {/ oclx+w): (& +Ew)dr:we SBD;E(Q), Jw C Qs, [w] - vy >0 ae. on Jw}. (5.16)
Q

Next theorem shows that the I'-limit of the sequence (.7-"5) can be expressed in terms of the cell
formula (5.16).

Theorem 5.6 The density f of the limit functional F (see Theorem 2.78) coincides with the function
fo defined by the cell formula (5.16), i.e., for every & € M"*"

f(&) = fo(§).
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PROOF. —  First step: f > fo. Let £ € M™*" and define u¢(x) := £z for every « € R". By definition
of I'-convergence, there exists a recovery sequence u® C SBD?*(Q) with J,= C I§f and [uf] - vue > 0
H"'-a.e. on Jye, such that u® — ug strongly in L?(Q;R"™) and

lim 7*(u", Q) = FO(ue, Q) = f(8).

Let us write u® =: ug +v°, where v € SBD?*(Q), J,- C If, [v°] 1 >0 H" '-a.e. on J,- and v — 0
strongly in L?(Q;R™). Without loss of generality we can assume v* € SBD32(Q). Hence

F(€) = lim 7 (ug +07,Q) = lim { /Q o(Ex+07) : (€5 + EvF)da + aeH”I(Jva)}. (5.17)
Now, let us define the function w® € SBD3(Q/¢) as
o (2
Remark that J,- C Is, where I is defined as
Iy = (o,é)"m U (@s+h). (5.18)

Then, rewriting (5.17) in terms of w® we obtain

f = lima”{/Q/ o(x+w): (§S+5w8)d:c+o‘;7'("_1(<]we)}

e—0

£—

> lime” inf{/ olr+w): (°+Ew)dr:we SBD%((O,l/E)n), Jw C Is
Gk

[w] vy >0 H" !a.e. on Jw}

= fo(&),

where the last equality follows by convexity (see [12, Theorem 14.7]). Indeed, the non-interpenetration
condition is preserved under convex combinations.

Second step: f < fo. Let £ € M™ ™ and [ € N; consider a function w € SBDZ((0,1)"), with J, C Is
and [w] vy >0 H" '-ae. on Jy,, such that

/ olr+w): (& + Ew)dx
(0,
< inf {/ o(Ex+v): (& +Ev)dr:ve SBDE((0,1)"), ], C Is,[v] -1, > 0 ae. on Jv} +1. (5.19)
(O’l)n
Let us define the sequence u® : Q — R™ as

u® () ::§x+ew(§),

where w denotes the function defined in the whole R™, obtained through a periodic extension of w.
We have that F¢(u®,Q) < 400, being J,- C I§ and [uf] - vy > 0 H" '-ae. on J,:. Moreover u®
converges to &z strongly in L?(Q;RR"). We can write

Fe(u®,Q) = /Qa(ug) DU dr + o H T () (5.20)

= 5”{ /Q/E olx+w): (& +Ew)dx + (?H"_l(,]w)}. (5.21)
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Now, in order to use the periodicity of @, we can write the domain /e as union of (suitably translated)
periodicity cells (0,1)™. Assume for simplicity that (/e is covered exactly by an integer number of these
cells, that is by 1/(l€)™ cells. Indeed, in the general case the integral over the remaining part of Q/¢ is
negligible. Then (5.20) reads as

1
Fe(uf,Q) = l”{ /(0 . ofx+w): (& +Ew)dr + 2= H”_l(Jw)}.
Passing to the limsup as € — 0 and using the fact that we are in the subcritical regime, (5.3.1) gives

limsup F* (u®, Q) = ll” /(0 . oz +w): (& +Ew)dx. (5.22)

e—0

Then, using (5.19) and (5.22) we get

1
lim sup F* (u®, Q) < " inf {/ o(x+v): (&5 +Ev)dr v e SBDE((0,1)"),
0,5

-0
) Jw C Is,[v] vy >0 H" l-a.e. on Jv} + li"
Letting | — 400 in the previous expression and using again convexity, we obtain
limsgpfs(us,Q) < fo(§),
e—
hence the claim is proved. O

Remark 5.7 The previous theorem implies in particular that in the subcritical regime the whole sequence
(F¢) T'-converges, since the formula for the limit energy density does not depend on the subsequence.

Moreover, from the cell formula we deduce that f(£) = f(£°), that is, the limit density function
depends only on the symmetric part of its argument.

When the elasticity tensor C is isotropic, we can give a more explicit description of the density fo,
as shown in the following lemma.

Lemma 5.8 Let C be of the special form C=2pl+AId®Id, pu, A >0, and let fo be the corresponding
limit density defined as in (5.16). Then it turns out that fo(Id) # fo(—Id).

PROOF. — By the assumption on C we have that, for every w € SBD?(Q)

oc(w)=2pEw+ NEw: Id)Id =2Ew + AN(trEw) Id € MZX" (5.23)

sym *

First step: fo(Id) S 2pun+ An?.
First of all, we can notice that fy can be rewritten as

fo(§) :==inf {/ o(w): Ewdr :w—Ex € SBDL(Q), Jw C Qs, [w] -1y >0 H" '-a.e. on Jw}, (5.24)
Q

for every & € Mg/ h.

For i =1,...,n, let us denote with {0Q" 5,0Q" s} the opposite hyperfaces of dQs which are orthog-
onal to the vector e;. More precisely,

Qs = {2 €0Qs :x-¢; 2 0}.
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Let £ € M ;7 and assume that there exists a constant c¢¢ = (c1,...,¢,) € R" with the property
max T)-e;) <c < min xz)-e;) foreveryi=1,... n. 5.25
s ((60)-e) << min ((€0)-c) y (5:25)

Then, it turns out that the function w¢ defined as

x ifzeQ\Qs,
we(z) = .
ce if z € Qs,

is a competitor in (5.24). Indeed, we — {x € SBDGF(Q) C SBD%(Q) and J,, C dQs. It remains to
check the non-interpenetration condition for every z € J,, . Notice that if # € GQEH; for some 14, then

[we (2)] - Ve (2) = (€% —ce) - e > wergg}“ ((€2)-ei) —ci >0,

by (5.25). On the other hand, if € Q" ; for some i, then

[we(2)] - Ve (2) = (§& — ce) - (—ei) = ¢ — max ((€2)-e) >0,
z -5
again by (5.25).
Since we is a competitor in (5.24), we obtain by comparison that

fo(6) < /QO’(U)E) tEwedr = L(Q\ Q) (2 [€” + A (trd)?) S (2p[é)* + A(tr)?). (5.26)

In particular, since for & = Id the property (5.25) is clearly satisfied (it is enough to take ¢; = 0 for
every i), we have by (5.26) that
fo(Id) S 2pun + An.

Second step: fo(—Id) =2un+ An?.

In order to prove this relation it is more convenient to use the characterization of the density fo in
the form (5.16).
Let us fix £ € Mg ;. Since o(§x) = C{ € ML, we can assume without loss of generality that o({z)
is a diagonal matrix. Let us denote with (Aq,...,\,) its eigenvalues.

We will derive a necessary and sufficient condition to have w = 0 as a minimizer of (5.16).

Let v € SBD%(Q) such that J, C Qs and [v] - v, >0 H" ' ae. on J,, and let 5 > 0. We define

1(n) :;/Qo@xmv):(unsmdx

and we impose that
d 1/d
I(n)) =- (/ oglx+nv): (E+nEv) da:) >0 (5.27)
<d77 |n=0 2 \dn Jq [n=0

for every admissible v.
Since the functional in (5.16) is convex, we have indeed that (5.27) is a necessary and sufficient
condition for minimality. We notice that condition (5.27) is equivalent to

/ o(fx):Evdx >0 (5.28)
Q
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for every admissible v. Integrating by parts and using the fact that (o(§x));; = Aidi;, the left hand side
in the previous expression becomes

/ o(x): Evdr = — Z/ Vij [vj] v, dH" Y Z/ ;[0 v, dH" L
Q

3,j=1

Therefore, (5.28) reduces to
n
=S / N [0i] Vo, dHP 1 > 0 (5.29)
=

for every admissible v. As v satisfies the non-interpenetration condition, that is,

n

> [vil v, > 0. (5.30)

i=1
and is arbitrary, we conclude that the eigenvalues A; of o(£ ) are forced to be equal and negative, that
is \; = —v forevery ¢t =1,...,n and v > 0. In practice this implies that
1/d
B (d/ ox+nv): (§+n€v) dx) >0 for every admissible v <= o(z) = —vId, (5.31)
nmJQ |n=0

that is, w = 0 is minimal if and only if o({z) = —v Id, with v > 0. By (5.23) this condition is fulfilled
if and only if
2u+ANtré) Id = —vId. (5.32)

that is, £ is a negative multiple of the identity. It is immediate to verify that £ = — Id satisfies (5.32),
hence we have

fo(—1Id) = / (2p|Id|* + X (trId)?) dz = 2 pun + An?.
Q

Remark 5.9 Asimmediate corollary from the previous lemma, we can deduce that, in general, the limit
density fy is not a quadratic form.

5.4 Critical regime: intermediate case

In this section we shall analyze the critical case where the fragility coefficient of the inclusions in the
material is of the same order of the size £ of the periodic structure. We can assume, without loss of
generality, that a. = . The energy of the material is thus given by

/ o(u): Eudr +eH" 1 (J,) if ue SBD?*(Q), J,, C I§,
Fe(u) = “ [u] - vy >0 H" ta.e. on J,
“+o0 otherwise in L?(Q;R").
We localize the sequence (F¢) by defining, for every u € L2(£2; R") and for every open set A € A(Q)
/ o(u): Eudr +eH"H(J, N A) if u e SBD?*(A), J, C If N A,
F(u, A) = 4 [u] - vy >0 H" 1ae. on J, N A,

+00 otherwise in L?(Q;R™).
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5.4.1 Homogenization formula

We have already shown in Theorem 5.5 that the I'-limit exists on a subsequence and it admits an
integral representation. It remains to characterize the limit density. We shall prove that it is given by an
asymptotic cell problem.

Define the function frem : M"*"™ — [0, +00) as

Trhom (&) == lim tl" inf { / o(§x+w): (& +Ew)dx+H"(Jy) : we SBD3((0,6)"),
0,)™

fmoo (5.33)
Ju C Is, [w] - vy, > 0 H* tae. on Jw}
where, according to the notation used so far, we have set
(O,t)n = ( U (Q+ h)) UR(t) and Is := U (Q5 + h),
hEZy hE€Zy
Theorem 5.10 The function from in (5.33) is well defined, that is the function
1
g(t) := — inf { / o(fx+w): (& +Ew)de+H"(Jy): we SBDE((0,t)"),
¢ (0.0)" (5.34)
Jw C Is,[w] - vy >0 H" L-a.e. on Jw}
admits a limit as t — +00.
PrOOF. — For the proof we refer to Chapter 4. a

Next theorem shows that the T'-limit of the sequence (F¢) can be expressed in terms of the homogeniza-
tion formula (5.33).

Theorem 5.11 The density [ of the limit functional F (see Theorem 5.5) coincides with the function
from defined by the cell formula (5.83), i.e., for every & € M™*"

f(&) = from(E)-

PROOF. — First step: f > from. Let & € M"*™ and define ug(z) := { x for every x € R™. By definition
of I'-convergence, there exists a recovery sequence u® C SBD?*(Q) with J,e C If and [uf] - vye > 0
H" t-a.e. on Jye, such that u® — ug strongly in L?(Q;R™) and

lim F°(uf, Q) = F°(ug, Q) = f(£).

e—0

Let us write u® =: ug +v°, where v € SBD*(Q), Jy- C I, [v°] 1 >0 H" t-ae. on Jye and v — 0
strongly in L?(Q;R™). Without loss of generality we can assume v* € SBD32(Q). Hence

e—0

f& = lirr(l]fs(u5 +%,Q) = lim {/ o(§x+v°):(&° +€vs)dx+€H"_l(va)}. (5.35)
& Q

Now, let us define the function w® € SBD3(Q/¢) as
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Remark that Jy,e C I5. Then, rewriting (5.35) in terms of w® we obtain

f(&) = lim 5"{/@/80(596-1-108) : (§5+5w5)dx+H"_1(Jw5)}

e—0

£—

> lim " inf { / o(éx+w): (& +Ew)dr +H"H(Jy) :we SBDF((0,1/2)"),
(0,8)"

Jw C Is, [w] vy >0 H" a.e. on Jw}

= fhom(&)'

Second step: f < fhom. Let € € M™ ™ and | € N; then, consider a function w € SBD3((0,1)"), with
Jy CIs and [w]-v, >0 H" ‘-ae. on J,, such that

/ o(x+w): (£S+5w)dx+H"_1(Jw) < inf{/ o(x+v): (§S+Ev)da:+H”_1(Jv)
o,nm 0,H)m
cv € SBD3((0,1)™), J, C I, [v] - vy, > 0 ae. on Ju} + 1.
(5.36)

Let us define the sequence u® : @ — R" as
uf(x) :=&x+ gw(f),
€

where w denotes the function defined in the whole R™, obtained through a periodic extension of w.
We have that F¢(u®, Q) < 4+oc, being J,- C If and [uf] -1y > 0 H" '-ae. on J,-. Moreover uf
converges to £ strongly in L?(Q;R"). We can write

Fe(u, Q) = /Q o(uf) : (Eus) dateH ™ (Jue) :en{ /Q olewtn): (§S+&D)dx+H"_1(Jﬁ,)}. (5.37)

Now, in order to use the periodicity of w, we can write the domain /e as union of (suitably translated)
periodicity cells (0,1)™. Assume for simplicity that @ /e is covered exactly by an integer number of these
cells, that is by 1/(l€)™ cells. Indeed, in the general case the integral over the remaining part of Q/e is
a negligible term. Then, using (5.36), we get from (5.37)

Fe(us, Q) = 1{/ oz +w): (£ + Ew)dx +H"_1(Jw)}

< in inf {/ o(éx+v): (& +Ev)de +H"1(],) :ve SBDE((0,)™),
l (O,l)"

1
Juw C I, [v] vy >0 H" ae. on Jv} + e

Passing to the limsup as € — 0 and then letting [ — +0o we obtain

limsup F* (u°, Q) < from(§),

e—0

hence the claim is proved. O

Notice that from this theorem we deduce that also in the critical case the whole sequence (F¢)
I'-converges, since the formula for the limit energy density does not depend on the subsequence.

Moreover, we deduce that f(§) = f(£°), that is the limit density function depends only on the
symmetric part of its argument.
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5.5 Supercritical regime: stiffer inclusions

In this section we shall analyze the supercritical case, where the fragility coefficient of the inclusions in
the material is bigger than the size € of the periodic structure.

In the sequel we present a proper modification of the argument used in [7] and in [11] to prove compactness

and lower semicontinuity in SBD.

Lemma 5.12 Let us fir 0<6 <8 < % such that Qs CC Q5. Let w € L*(Q5;R") and let (wy,) be a
sequence converging strongly to w in L?. Assume that ||Ewp||r2(q,) < ¢ and that H" "' (Jy,) — 0 as
h — 0. Then w € HY(Q5R") and

Ewy, — Ew  weakly in L*(Qz; M"™*™).
PROOF. — First of all, up to subsequences, we can assume that
n—1 1
H (th) < ﬁ

First step: w € H(Q5;R™).

Let £ € S"~! y € TI¢ and let us define for every h € N the section (wn)§(t) == wi(y +t&) - €. Tt is

well known that for H" *-a.e. y € II* the section (wp)5 € SBV?((Q5)5). Moreover, from the fact that
wy, — w strongly in L2, it follows that, up to subsequences,

(n)§ = strongly in L2((Q5)5) for H'! —ae. y € T

Let us denote with Ny the set such that for every y € I\ Ny we have (wp)§ € SBV?((Q5)5) and
(wp)§ — w§ strongly in L?. As we have already noticed, H™~'(N;) = 0.
Let us define the set E;, as

E) = U T, -

jzh

From the inequality H"~!(Jy,) < 7%, it turns out that H"~'(E),) — 0 as h — +oo. Hence for every
¥ > 0 there exists h(d) such that H"~(Ejy)) <. Clearly, Jy, C Ep) for every h > h(9).

Let us denote with (Eh(ﬁ))E the projection of the set Ej,y) on II¢. By definition, it turns out that for
every y € (II*\ (Ep(9))*) \ N1 and for h > h(J), the section (wy)§ € H'((Q5)5). Moreover, the H*
norm of (wp,) is equibounded.

Indeed, using Fubini we can write

| lewg-ePar= [ (Tung-an = [ [ [P arie). 6
Qs Qs e LJ(Qy)5
From the fact that ¢ € S"~! we have

/ \Swh§-§|2daz§/ \Ewn|2dz, (5.39)
Qs 5

5

and the right-hand side of (5.39) is equibounded by assumption. Hence from (5.38) we obtain

/HE U(Qé)g IV(wh)§|2dt} dH " (y) < e (5.40)
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Now, let wy,(,) be a subsequence (depending on y) of wy, such that

1iminf/ V(wp)é?dt = lim YV (wi)5 |2 dt. 5.41
lim inf (Qs)§| (wn )3 o (Qs)§| (Wr(y))y | (5.41)

The bound (5.40) guarantees that there exists a function v such that, up to extracting a further subse-
quence wj(,) C W(y), we have

(wjy)5 — v weakly in H'((Q5)5), (5.42)

for H" t-ae. y € II* \ (Ey(y))*. Since for H" '-a.e. y € II° the whole sequence (wh)f/ converges to
w§ strongly in L?, (5.42) implies that

(wj(y))g —wS weakly in H! ((Qg)g). (5.43)

Yy Yy

By the lower semicontinuity in H! and (5.41) we obtain the inequality

V(ws)[>dt < liminf V(w;,n)s|? dt = liminf V(wy, )& 2 dt, 544
/(Q5)§| ( y)‘ iy) oo (Q5)§| Wil h—-+o00 (Qg)f,‘ (wn )y ( )

which holds true for H" !-a.e. y € (II¢\ (Eh(g))g). Integrating (5.44) with respect to y and using Fatou
Lemma we get

/ U V(wg)th} dH" 1(y) < %minf/ [/ |V(wh)§2dt} dH" ' (y). (5.45)
IE\ (B 0))¢ L(Q5)5 —1o0 S\ (Bro))E LS (Q5)5

Hence, by (5.40) we obtain

/ [/ |V(w§)|2dt} dH" (y) < c, (5.46)
I8\ (ER(9))¢ (@55

where the constant ¢ is independent of .

The estimate (5.46), together with the fact that w € L?(QzR"™) and that for H" l-ae. y €
I\ (Epg))¢ the section w§ € H'((Q5)5), allow us to conclude that w € H*(Q5;R™).

Indeed, let us define the sets F, and Ey as

Ey :=NpE, and Ej:= li]?lEh,

where the convergence in the definition of Ej is intended to be almost everywhere with respect to the
Hausdorff measure.
From H" 1(Ej) < % and Ej 1 C Ey, it turns out that

H" Y (Ey) =0=H""(Ep).

Now, since II¢ \ (E4)¢ is contained in II¢ \ (Ej)¢ for h large enough, we have that for H" !-a.e.
y € I8\ (B¢ the section w§ € Hl((Qg)g). Hence, being H""!(E.,) = 0, we conclude that H"!-a.e.
y € II* the section w§ € H'((Q5)5). On the other hand, using the monotone convergence in (5.46), we
have

Jim U V(w§)|2dt} dH 1 (y) :/ U |V(w§)|2dt} dH () < c.
h(9) =00 Je\ (B 9))¢ L/ (Q5)5 e\ (Eo)¢ LJ(Q5)f
(5.47)
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Again, the fact that H"!(Ep) = 0, implies that

At this point we can apply [8, Proposition 3.105] to conclude that
V(wj) = Difw(y + t€) - €] € L*(Q5),

that is, Dw¢ - € = Bwé - € € L?(Qj) and this is true for every ¢. Using the identity

1
Buwg-n = g[Bw(+n) - (§+n) = Bwg- & — Ewn-n) V&,
we conclude that Fw € L?(Q5;M"™*™). Therefore, being w € L*(Qg; R™), Korn inequality ensures that
w e H'(Qs:R™).

Second step: convergence of the symmetric gradient. Let us define, for a given scalar function v € L?(Qj),
the functional

Li(wh,v) = / |V(wh)§ —w(t,y)|* dt.
(@55

Using (5.39) and the fact that v € L?(Qj), we obtain the bound

/ LS (wp, v) dH" " (y) < / |Ewp€ - € —vPdx < c.
I1¢ 5

s

Now, let wy,) be a subsequence (depending on ) of wy, such that

lim inf L8 = 1 L ) 5.49
lim inf L (wp, 0) = | lim Ly (wigy), v) (5.49)

The bound (5.40) guarantees that, up to extracting a further subsequence Wji(yy C Wy(y), We have

(wj(y))f/ — wg weakly in Hl((Qg)g),

for H"'-a.e. y € II¢\ (Ey(9))¢, and in particular
V(wj(y))g —v— ng —v  weakly in LZ((Qg)g).

Y

Hence, by the lower semicontinuity of the functional Lg and by (5.49), we obtain
Lg(w,v) < liminf Lg(wj(y),v) = lhlgl+n;£ Lg(wh,v).

J(y)—+oo

Integrating the previous expression with respect to y leads to

/ Lg(w, v) dH" " (y) < lim inf/ Lg(wh,v) dH" " (y).
T\ (B (9))¢ htoo e\ (B o) )¢

Being w € H'(Q5;R™) we can pass to the limit as ¥ — 0 in the previous expression and we get

/ |EwE - € —v[*dz < lim inf/ |Ewp€ - € —v]da. (5.50)
Qs h=+o0 J@;
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The fact that (5.50) holds true for every v € L?(Qj) implies that, for every ¢ € §7~!
Ewpé - & — Ewé - ¢ weakly in L?(Qj). (5.51)

Now we consider a basis {{1,...,&,} of R such that & + & € S"~! for every i # j, and we specify
£€=¢ +¢& in (5.51). Then we have

Ewp, — Ew  weakly in L*(Q5; M™ ™),
and this concludes the proof. m]

In next lemma we give a I'-convergence result for an auxiliary functional which will be used in the
proof of the main result of this section.

Lemma 5.13 Let us fir 0 < 6 < § < % such that Qs CC Qs. For every h € N, let G" : L?(Q5;R™) —
[0,400] be the functional defined as

/Q o(w): Ewdz +H" ' (J,) if w € SBD*(Q5), Juw C Qs, H" 1 (Ju) < 75,
G"(w) == ’ (W] - vy >0 H" L a.e. on Jy,
+o0 otherwise in L*(Qg; R™).

Then the sequence (G") T -converges with respect to the strong topology of L? to the functional G :
L*(Qs;R™) — [0, +00] given by

/ o(w) : Ewdx if w e HY(Q5R"),

G(w) := 5
+o0 otherwise in L*(Qg;R™).
PROOF. — Let w € L*(Qs;R™) and let (wy) be a sequence converging to w strongly in L? and

having equibounded energy Gy, . Using the bounds (5.3) we can apply the previous lemma to obtain that
w € HY(Q5;R™) and that
Ewp, — Ew  weakly in L(Qg5; M™*™). (5.52)

Hence, by lower semicontinuity we obtain the inequality

G(w) :/ o(w): Ewdr < liminf/ o(wy) : Ewp, dz,
Qs Q5

h—+o0
that implies in particular that

Gl < it "),

Finally, the existence of a recovery sequence for a function w € H'(Qg;R™) follows immediately by
taking wy, = w for every h € N. |

Next lemma contains a I'-convergence result for the same functionals as in Lemma 5.13, but taking
into account Dirichlet boundary conditions.

Lemma 5.14 Let (¢3),0 € H'Y/2(0Q5;R™) be such that @, — ¢ strongly in HY/?(0Qj). For every
heN, let Gh : L?(Q5R™) — [0,+00] be the functional defined by

/ o(w) : Ewdz +H" ' (Jy) if w€ SBD*(Q5), Juw C Qs, H" *(Ju) < 75,
th’ (w) := s [w] - vy >0 H Loae. on Jy, w=ppon dQs, (5.53)

+o0 otherwise in L*(Qz;R™).
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Then the sequence (ggh) I -converges with respect to the strong topology of L* to the functional G, :
L?(Qg5;R™) — [0, 4+00] given by

Go(w) = /Q o(w) : Ewdx if w e HY(Q5;R™), w = p on 9Q5,
plW) =

5

+oo otherwise in L*(Qz; R™).

PROOF. — First step: proof of compactness and liminf. Let (wp,),w € L?(Qs;R™) be such that wy, — w
strongly in L? and g{;h (wp) < ¢ < 400. From the equality th (wp) = G"(wy,) and the previous lemma
we get that w € H'(Qg;R™); moreover
. h s h
= > .
it 07, () = Y " (un) 2 G(4)
It remains to show that w)aq; = ¢.
From G/, (wy,) < ¢, we obtain the equiboundedness of wy, in H'(Q5\ Q5;R™), and hence the conver-

gence
wp, —w  weakly in H'(Q5 \ Qs; R™).

The compactness of the trace operator gives
en = (wn)jag; — wiag; strongly in L?(0Qs; R™).

On the other hand, by assumption, ¢, — ¢ strongly in H/2(9Qs; R™). Therefore, wjpq, = ¢.

Second step: limsup. Let w € H(Qz;R™) be such that wjpg; = . Let us consider the sequence
(vn) € HY(Q5:R™) such that (v)jag, = ¢n — ¥; it turns out that v, — 0 strongly in H'. We claim
that wy, := v, + w is a recovery sequence. Indeed, (wp)jaq; = ¢n and wy — w strongly in H', hence
Ewy, — Ew strongly in L?. Since the functional g{;h gives a norm equivalent to the standard L?-norm,
we have the desired convergence. O

Finally we are ready to state and prove the convergence result for the functional F¢, in the supercritical
regime.
Define the functional F>° : L%(Q; R") — [0, +00] as
/ o(u): Eudr  in HY(Q;R"),
Q
+o0 otherwise in L?(Q;R").

Fo(u) =

Next theorem shows that F°° is the I'-limit of the sequence (F¢) in the case %= — 4o0.

Theorem 5.15 (I'-convergence) (i) Let u € L*(;R™) and let (uf) be a sequence converging to u
strongly in L? and having equibounded energy F¢. Then u € HY(Q;R™) and

limiglf]:g(us) > F(u). (5.54)

(ii) For every u € H(Q;R™) there exists a sequence (uf) such that

e u® —u strongly in L*(Q;R™), (5.55)
. lir% Fe(u®) = F>(u). (5.56)
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PROOF. — (i) We remark that, as F°(u®) is bounded, the functions u® can have jumps only in the set
I defined in (5.2).

We now classify the cubes @, according to the measure of the jump set that they contain. More
precisely, let us introduce a parameter § > 0 that will be chosen later in a suitable way. We say that a
cube @5, is good whenever H"il(Jue ﬁQi) < Be™ !, and bad otherwise, and we denote with N, () and
Np(g) the number of good and bad cubes, respectively. We can notice that, since the sequence (u€) has
equibounded energy, there exists a constant ¢ > 0 such that a. H"1(J,e) < c. From this we deduce an

important bound for the number of bad cubes, that is Ny(e) < 7. We can write (5.1) in the form

Qe

Ny (e) Ny (e)
Q= ( U Qi) U < U Q;) UR(e) =t Q5 UQ; UR(e). (5.57)
k=1 k=1

First step: energy estimate on good cubes. Let )3, be a good cube and consider

Fe(us,Qf) = / o(u®) : Eufdr 4+ acH" ' (Jue N QR). (5.58)
Q%

Define the function v in the unit cube Qy as u®(ey) =: \/a:£v°(y). In terms of v°, the energy (5.58)

can be written as

Fo(us,Q7) = assnl{/Q o(v®) : Evida +H" (T, N Qk)}, (5.59)

with H""1(J,e N Qi) < B. Therefore, by means of a change of variables we have reduced the problem
to the study of a Mumford-Shah like functional over a fixed domain, with some constraints on the jump
set. From now on we will omit the subscript k. Let 5,3 be such that Qs CC Q5 CC Q5 CC Q.

Let us consider the problem of finding local minimizers for the Mumford-Shah like functional under
the required conditions, that is

(LMin) locmin {/ o(w): Ewdz +H"'(Jy): we SBD*(Qj), Ju C Qs, H" 1(Jy) < B,
Qs

[w] - vy > 0 H" la.e. on Jw}.

According to the definition given in [22], we recall that a local minimizer is a function which minimizes
the given functional with respect to all perturbations with compact support. Let us denote by Mg the
class of solutions of (LMin). For a given ¢ € Mg, let us consider the function o solving

(Eul) {(jliv aA(@) =0 %n Qs.
V=10 in Q; \ Q3.

We want to prove that for every 7 > 0 there exists 8 > 0 such that for every © € Mg and for the
corresponding © we have
/ () : E6dx < (1+n)/ o(6) : £bdx. (5.60)
Q Qs

Hence we will take such a § in the definition of good and bad cubes.
Let us prove it by contradiction. Suppose (5.60) is false. Then there exists n > 0 such that for every
B >0 we can find v € Mg and a corresponding ¥ for which

J

5

o(0):Evde > (1+1n) /Q a(0) : Evdu. (5.61)

5
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In particular (5.61) implies that for every h > 0 there exists 05, € M

which
/,

Since Q; = (Qg\Qg) UQj, we can split the previous integrals and, using the fact that o), = 95 in Q;\Q;
we obtain from (5.62),

1 and ¥y, solution of (Eul) for
h

O’(’f)h) : Eopdr > (1 -‘1-77) /Q O’(’lA)h) : Edpd. (562)

5

/ o(tp) : Evpdr > (1 —|—77)/ () : Edpdr + 77/ () : Edpd. (5.63)
Qs Qs Q;5\Q5

Since the problem defining oy, is linear, we can normalize the left-hand side of (5.63), so that we have
1= / O’(ﬁh) : Eopdx > (]. + ’17)/ O’(?A)h) : Evpdr + 77/ J(@h) : Evpd. (564)
Qs Qs Qs\Qs

This means that, in particular,
1
/ |E0p|2dz < = < +o00. (5.65)
8 77
Without loss of generality we can assume that fQA\Qé Opdx = 0; therefore, since J;, C Qs, (5.65)
5
and Korn inequality imply that ||0n|(z1(g\@s) < €.
From this bound we deduce that there exists some o € H'(Q; \ Qs5;R™) such that o, — ¢ weakly in
H' and, in particular, strongly in L?. The local minimality of 9, implies that

/ o(tp) : Epdr =0 for every ¢ € Hj(Q5 \ Qs; R™). (5.66)
Qs\Qs
Now, if we write (5.66) for a test function ¢ = (¢) — 9), with ¢ € C§(Q; \ Qs), we obtain

/ Yo (o) : Evpda = / Yo(vy): E0dx — / o(tp) ((”Dh — ) VZ/J) dx.
Q5\Qs Q5\Qs Q;5\Qs

Since 0, — ¥ weakly in Hl(QS \ Qs;R™), if we let h — +o0o in the previous equation we get

lim Yo (o) : Edpda = / Yo(0): Evdx. (5.67)
h=o0 JQs\Qs Q5\Qs
This means in particular that for every B CC Q; \ Qs
Ebp — £ strongly in L*(B; MZ). (5.68)

Indeed, (5.67) together with the weak convergence of the sequence ¢, in Hl(QS \ Qs) imply that Evy,
converges strongly to £ with respect to the norm induced on L? by the tensor C introduced in (5.3)
and (5.4). The equivalence of this norm to the standard L? norm gives (5.68). Hence, by the strong
convergence of 9y, to © in L?, (5.68) and Korn inequality, we deduce

op, — 0 strongly in H'(B;R").
This entails the convergence of the traces of 05, on dQj, that is,

on = (n)00; — ¢ = (0)joq, strongly in H'/?(0QzR™). (5.69)
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At this point, let us consider the following problems:

dive(w) =0 in Q; dive(w) =0 in Qj
(Eul)g, {w =y on 9Q5, (Bul), w= on Q5.

Clearly, 0y, is the solution to (Eul),, ~for every h. Let us call ¥ the solution to (Eul),. From (5.69) it
turns out that 9, — 9 strongly in H'(Qj;R™), hence,

1= / o(tp) : Evpdar — o(0): Evdr = 1. (5.70)
Qs Q5
Notice that the functions ¢y, defined by the minimum problem (LMin) are absolute minimizers of the same
functional once we fix the boundary data ¢y . Therefore they are absolute minimizers for the functional
g{;h defined in (5.53). The I'-convergence result proved in Lemma 5.14 ensures the L? convergence of
the sequence 75, to the only minimizer of the functional G, , that is exactly ¥, and the convergence of
the energies.
Now, if we let h — +o0 in (5.64) we obtain

1/@80@);5@(1:62 (1+77)/Q§a(17):&7dx,

which gives the contradiction, therefore (5.60) is proved.
Let n > 0 be fixed; we choose > 0 such that the property (5.60) is satisfied and for every € > 0 we
consider the problem

(Min) min {/Q o(w): Ewdr +H"H(J,) :we SBD*(Q; 1), Juw C Qs "1 (Jw) < B,
5,k

[w] - 1, > 0 H" t-ae. on J,, w = v°on 8Q5,k}-

For a minimizer ©° in (Min), let us consider the corresponding ©° defined by (Eul), with ¢ replaced by
©°. We have that, as before,

/ o(0%) : E0%dx < (14 77)/ o(0°) : Ev°du. (5.71)
Qj’k Qé,k
Hence, in particular,
/ o(v) : Evdz + H"(Jue N Q5 ) z/ o(9°) : E6°dz + H"(Joe N Q5 ) (5.72)
Qs k 7 Qs x 7

> (1—117)/@ o(5) : E5°da, (5.73)

8.k
where v° is the function in (5.59).
Now we define ¢ as @°(ey) := y/az€ v°(y). By (5.59) and (5.72) we obtain

J

Second step: energy estimate on bad cubes. Let Qf, be a bad cube. The idea is to use the trivial inequality

o(u®) : Eufdr 4+ acH" " (Jue N Q;k) > (1 - 1_7'7_77) /E o(uf) : Eutde. (5.74)

<
S,k

/ o(uf): Eutdr + a.H" ! (Ju= N QY) > / X5 o(4f) : E4°de,

@k
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where x5 is the characteristic function of the set QF \ Q5 and the function 4° coincides with u® in
Q5 \ Q5 and is extended to @, in a way that keeps its H' norm bounded. We recall also that we

have a control on the number of bad cubes, that is, Np(e) < PP
g
Third step: final estimate. Let us define the new sequence w® € SBD?*(Q) as
@ i (@)
w = win (@99 (@9)") URE),
@ in (@)
where (Q€)9, (Q°)” and R(¢) are given in (5.57) and (Qg)g denotes the set
Ny (e)
e\9d .__ €
(Qs) T U Qé,k‘
k=1
Define also the function a® : @ — R as
0 in (Q%)°,
a®(x) :== (@5)
1 otherwise in 2.
From what we proved in the previous steps we can write

Ui

Fe(u) > (1 1 +n) /Qag(f)o(uf) : Ewsda. (5.75)

It remains to apply Lemma 4.6 to (5.75). First of all we show the convergence of a®. We have

[ 10" =11dz = £7((@3)") = Nu(e) " £7(@) < [

g

hence a® — 1 strongly in L'(Q). Once we prove that w® — u weakly in H'(Q;R™), it turns out that
liminf F°(u®) > (1 — T / o(u): Eude,
e—0 1 + n Q
and the thesis follows letting 7 converge to zero.

Fourth step: convergence of w®. First of all it is clear that |[Ew®[|(z2(q))nx» < c. Then, the fact that w®
and u® coincide in a set with positive measure ensures the convergence.
(ii) The claim follows trivially by choosing u® = u for every & > 0. ad



Chapter 6

An extension theorem in SBV and
an application to the homogenization

of the Mumford-Shah functional

In this last chapter we study the asymptotic behaviour of the Mumford-Shah functional in periodically
perforated domains, under homogeneous Neumann conditions on the boundaries of the perforations.

6.1 Extension property

In this section we state and prove the main result of the chapter, that is, an extension property for SBV
maps.

Theorem 6.1 Let D, A C R™ be bounded open sets with Lipschitz boundary and assume that D C A and
ODNA CC A. Then there exists a constant ¢ = c(n, D, A) > 0 such that for every u € SBVZ(D)NL*>(D)
we can construct an extension @ € SBVZ2(A) N L*>®(A) of u satisfying

(i) t=u a.e in D,
(@1) ||@]| oo ay = [ullzo (D),
(#41) MS(a, A) < eMS(u, D). (6.1)

The constant ¢ in invariant under homotheties.

In order to prove the extension result, we need to use a retraction property for Lipschitz domains.

Theorem 6.2 Let D C R" be a bounded open set with Lipschitz boundary 0D . Then there exist an open
neighbourhood W C R™ of 0D and a bilipschitz map ¢ : W N D — W N (R™\ D) such that ¢jpp = Id.

PrOOF. —  Since the set D has Lipschitz boundary, we can find a finite open cover Uy,...,U,, of
0D such that we can associate to every U; a vector u? € R" and a parameter 7; € (0,1] with the
following property. If € 0D NU; for some j, then for every t € (0,1] and for every u; € R™ such that
luj —ul| < mnj it turns out that = +tu; € D and x —tu; € R*\ D.
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Set 1 := min; n;. Now, for every index j we fix an open set V; CC U; such that Vi,...,V;, is still
a covering of dD. Let (v;);=1,...m be a partition of unity for 0D subordinate to (V;);j=1,.. m:

;€ Cg°(R™), supp ; C V;,0<1; <1onR", Zl/)j =1lon 0D.

j=1
Let us fix ap > 0 so that for every collection of vectors {us,...,u,} satisfying |u; — u?| < n for every
i, we have
m
Qg Z |u;| < dist(V;,0U;) forj=1,...,m.
i=1
Let us define B]"(u’) := {u = (uy,...,um) € (R®)™ : lu; —uf| <7 for every i}. For every |a| < ag and

for every u € B)"(u°), we define the C*° function r¢ : R" — R”
m
ro(x) =z + azwj(x) uj.
j=1

It turns out that by construction r¢ — I'd has compact support and r& — Id — 0 in C§°(R™;R™)
as a — 0. Moreover, following the argument used in [22, Proposition 1.2], it is possible to show that
r®(D) C D for 0 < a < ag, while 7%(R*\ D) C R*\ D for —ap < a < 0.

Let us set W, (x) := > 7", j(x) uy and WO(x) := 377" j(x) uf.
We claim that there exists 79 € (0,7n] such that for every = € 9D we have the following property

0 r+aveED if 0<a<ag,
o=V @)[ <mo = r+aveR"\D if —ap<a<0. (6.2)
We notice that in order to obtain (6.2) it is sufficient to prove that
if v satisfies |[v — UO(2)| < 19, then v = U, (x) for some u € B:,”(uo). (6.3)

Indeed, we know that for every u € B]"(u®) we have +a¥,(z) € D if 0 < a < ag and z+a ¥, (z) €
R*\ D if —ap < a<0.
Let us prove (6.3). Let us fix « € 9D ; we define the linear map L? : (R”)m — R™ as

u=(Ur,...,uy)— L% (u) =¥, (x) = ij(x) uj.

Since z € D, we have that . 4;(z) = 1. Hence, there exists 7€ {1,...,m} such that ¢(z) > L.
We claim that L”(B;*(u’)) contains a neighbourhood of L*(u°). First of all, let us notice that
L¥ (B (u®)) = L*(By(u]) x -+ x By(u,)) 2 A, (6.4)

where A := L7 ({ul} x -+ x {u 1} x By (u?) x {ul,;} x -+ x {ul,}). Easy computations show that

{y —L%(ug) :y € A} = an;(z)(0)~
Therefore we can rewrite A as

A= L*(u®) + By y,(2)(0) = By ya) (L7 (u”)) 2 B (L*(u?)). (6.5)
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The same argument can be repeated for every x € dD. Let us define 7o := ;L. We want to verify (6.3).
Let € 9D and v € R™ such that |[v—U%(z)| < ng, i.e., v € By, (¥0(x)) = By, (L*(u")). From (6.4)
and (6.5) we have that v € A C L*(B;*(u°)), hence there exists u € By (u’) such that v = L*(u) =
W, (z). This proves (6.3).
For every xy € dD let us consider the following Cauchy problem:
L\ 0
{x(t) = 00 (a(t)) 66)
z(0) = g

We denote by ®(x,t) the solution to (6.6). Using (6.2) and the compactness of 9D, we have that
there exists to > 0 independent of z¢ € 9D such that {®(xo,t) : t € (0,t0)} € D and {®(xo,—t) :
t € (0,t9)} € R*\ D. Clearly, the restriction @ 9D (~to,to) 18 bijective. In particular we have that
{‘P(J’JQ,O) X € 8D} =0D.

By classical results, the set W defined as

W = {®(w0,1) : (w0,t) € OD x (~to, o)} (6.7)
is an open neighbourhood of dD. Now we define W+ W= C W as

WH:=WnD = {®(xg,1) : (wo,t) € D x (0,t0)}, (6.8)
W~ :=Wn(@R"\ D)= {®(xo,t) : (xg,t) € ID x (—t0,0)}. (6.9)

Using classical properties of the flow it is possible to show that the map ®5px (—ty,t0) : DX (—to,t0) — W
is bilipschitz.

We define ¢ : WHrUdD — W~ UD in the following way. Let y € WT UdD. There exists a
pair (zo,t) € 9D x [0,t) such that y = ®(zg,t). We set ¢(y) := ®(x,—t). This map is bijective and
bilipschitz. Hence the theorem is proved. O

PROOF. — [Proof of Theorem 6.1] Let u € SBV?(D) N L*=(D).
By Theorem 6.2 we can find a neighbourhood W of DN A, W CC A and a bilipschitz map

¢:WN(A\D) > WnD, ¢opna=Id.
Now we define v: DUW — R as

( ){u(x) ifxeD,
~\u(é(z) ifzeWn(A\D).

It turns out that v € SBVZ(D U W) and that the following estimates hold:
/ |Vo|2de = / |Vu|2dx+/ |V (uo ¢)|?de < C/ |Vu|?d, (6.10)
DUW D W\D D
H (S, N(DUW)) = H" ' (SuND)+H" (S, n(W\ D)) <CH" (S, ND). (6.11)

For the rigorous proof of (6.10) and (6.11) we refer to Theorem 6.8 in the Appendix.
Now, let us consider a solution v of the following problem:

(MMS) min{/ |Vw|?dz + H" 1 (Sy) : w € SBVH(DUW),w = u in D}.
Duw

We have that © = v a.e. in D and that

MS(5,DUW) < MS(v,DUW). (6.12)
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Without loss of generality we can assume that ||9|]zpuwy = [|ul[L (D) -
Let us analyze more carefully the structure of the neighbourhood W. By (6.7) we know that we can
write it as
W = {(D(llfo,t) : (xo,t) € 0D x (7t0,t0)}.

Let W+t and W~ be defined as in (6.8) and (6.9).
Now we set T' := {®(xg, —ty/2) : g € OD}. For every z € I' let o(z) be defined as

o(z) :==sup{o>0:B,(z) CW~},

and let

L.
7= g g o)

Clearly, v > 0. Let w > 0 be defined as w := S+" !, where 8 > 0 is the constant given by the
Elimination Theorem 1.13.

In order to construct the required extension, we need to distinguish two cases, that will be treated in
a different way.

First case: small jump set
We assume that H"7'(S; NW™) < w. Let us fix z € I' and let us consider the ball B,(z) C W~.
Clearly H" 1(S; N By(2)) < H"}(S; NW™) < w. By our definition of w, this implies that

'H"_l(S{) NB,(z)) < B~y L.

Hence, by Theorem (1.13) we have that S; N B, /() = 0.
The same argument can be repeated for every z € I'. Therefore we deduce that the set A C W~
defined as
A= U B, /5(2)

zel

does not intersect the jump set of 0.
Notice that the set A disconnects W~ . We can write W~ \ A := A; U Ay, where 9D C dA;. Now,
let us define the function @ : A — R as

u(z) ifxeD,
a(x) :== < o(x) ifre AfUA,

o(x) otherwise in A,

where © denotes the H' extension of ¢ from A to A\ (DUA;).
It is well known that the function v satisfies the estimate

/ \Vo|?dx < é/ |Vo|2d, (6.13)
A\(DUA,) A

where the constant C' depends on A and on A\ (DUA,), that is, C = (i'(D7 A). Furthermore, up to
truncation, we can always assume that the L> bound is preserved.
Then, it turns out that @ € SBV?(A) and that |[0||g(a) = ||ul|L(p). Moreover, by (6.13), we have

MS(@i, A) = MS(u, D) + MS(d, Ay) + / \Vo|2d
A\(DUA)

< MS(u, D) + MS(0, A1) + C MS(d,A).
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Finally, from the minimality of ¥ and from the estimates (6.10) and (6.11) we obtain
MS(i, A) < MS(u, D)+ (C+1) MS(w,W™) < (1+C(C+1)) MS(u, D). (6.14)

Second case: large jump set
We assume that H""1(S; N W™) > w. Let us define the function @: A — R as

u(z) ifxeD,
(x) ifee W™,
0 ifze A\ (DUW").

It turns out that @ € SBV?(A). Moreover,
MS(i, A) = MS(u, D) + MS(0,W~) +H""(OW~ \ D)
< MS(u, D)+ MS(v, W)+ CH" (S, N W),
where we used (6.12) and the fact that, being w > 0, there exists a constant C' > 0 such that
H* L (OW ™\ dD) < Cw.
Finally, using the estimates (6.10) and (6.11) we obtain
MS (@, A) < MS(u,D)+ (C+1)MS(v,W~) < (14+C(C+ 1)) MS(u, D). (6.15)

Estimate in the general case. B -
Let us define ¢(n, D, A) := max{(1+ C(C +1)),(1+C(C +1))}. By (6.14) and (6.15) we have that
(6.1) holds in the general case. a

Remark 6.3 Estimate (6.1) guarantees that the constant ¢(n, D, A) is invariant under dilations of the
domain, as shown in Theorem 6.4.

6.2 Homogenization of Neumann problems

In this section we consider an application of the extension property to a non coercive homogenization
problem.

Let n > 2 and let 2 C R™ be a bounded open set with Lipschitz boundary. Let @ denote the unit cube
(0,1)™, and let £ CC @ be a Lipschitz set.

For every € > 0 let us consider the periodic structure in R™ generated by an e-homothetic of the
basic cell @. For notational brevity we will use the superscript € to denote the e-homothetic of any
domain. In particular, Q° := Q. Let us write the domain {2 as union of cubes of side ¢:

Q=0Qn ( U (Q+h)5>.
hezm™
In the same way we can define the set EcCQ as
EF:=Qn ( U &+ h)5> (6.16)
hezn

Finally, let Q° := Q\ E*.
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The starting point of the problem is the energy associated to a function u € SBV?2(f2), that is
Fe(u) = / |Vul?de +H"H QN S,).

Notice that we can rewrite the functional F¢ as

fe(u):/ga(g)|Vu|2dx+/S a(g) dH"(z),

where a is a @-periodic function given by

0 in E,
aly) = {1 inQ\E.

6.2.1 Compactness
In this subsection we focus on the compactness for a sequence having equibounded energy F¢. As first

result, we use Theorem 6.1 in order to obtain an extension result from the domain Q° to the whole Q.

Theorem 6.4 Fix e > 0. Let Q C R™ be a bounded open set with Lipschitz boundary. Let E CC @ be
an open set with Lipschitz boundary and consider the sets E defined in (6.16). Let QF =Q\ E-.

Then there exist an extension operator T¢ : SBV2(Q5)NL>®(QF) — SBV2(Q)NL>®(Q) and a constant
ko > 0 depending on E and n, but not on € and 2, such that

e T°u = u a.e. inQ°,

o |[T¢ul| Lo () = [[ullz= (),

o MS(Tu, Q) < ko(MS(u, Q) +H"(99))
for every u € SBVZ(QF).

PROOF. — Let u € SBV?2(QF) N L*°(QF) and let us consider a set Qg DD Q. We can write the set
as union of cubes in the following way:

Qo = ( U s(h+Q)) UR(e),

h€Z,

where Z. := {h € Z" : e(h + Q) C Q}, and Ro(e) is the remaining part of €y. We denote by
{Q%}k=1,....N(s) an enumeration of the family of cubes (Q 4 h)® covering Qq, so that we can rewrite Qg

as
N(¢e)
Qo = ( U Qi) U R(e).
k=1

In the same way we can define the set Ef C Qg as

N(e)
By = | E;.
k=1

Finally, let Q5 := Qo \ E§. Clearly,

N(¢g)
Q5 = ( U @i\ Ei)) U Ro(e). (6.17)

k=1
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Let @ : 25 — R be defined as

~ U in Q°
i = o (6.18)
0 otherwise in €.
Clearly the function 4 satisfies @ = in QF, [|i||L=(qz) = [|ul|L~(a:), and
MS (i, Q) < MS(u, Q) +H"1(09). (6.19)
Notice that, using (6.17) we can write
N(e)
MS(a,Q5) = > MS(i, Q5 \ Ef) + MS(u, Ro(e)).
k=1

Define the function v as @(cy) =: v/ev(y). Then for every k € {1,...,N(g)} we have
MS(i, Q5 \ Bf) =" *MS(v,Qy, \ Ey). (6.20)

Now, we apply the result in Theorem 6.1 in every cube with the same constant and we obtain that
there exists a function @), € SBV?(Qj) such that

e U = v ae. in Q \ Fg,
° MS(@/C,Q]@) < ];?OMS<U7QI€ \Ek)7

where the constant kg depends only on @) and F.
Let us define Léu : Qp — R as

V(%) ifzeqi ke{l....NE
a(x) if # € Ro(e).

(L5a)(z) ==

It turns out that L% € SBV?(Qg) N L>(Qp), L% = @ in QF, and by (6.20)
N(e)
MS(L7ai, Q) ="' > MS(0k, Qi) + MS(ii, Ro (<))
k=1
N(e)

ko' MS(v,Qi \ Ex) + MS(ii, Ro(e))
k=1

IA

N(e)
ko Y MS(i,Q; \ Ef) + MS(ii, Ro(e)) < koMS(ii, ),
k=1

where ko := ko + 1. Therefore, combining the previous expression with (6.19) we have
MS(L@, Q) < ko(MS(u, Q%) +H"1(09)), (6.21)
therefore the claim follows defining Tu := (L°%)q . O

Now we prove the compactness result.

Theorem 6.5 Let (uf) C SBV?(2) N L>®() be a sequence satisfying the following bounds:
[[uf]|poe ey < ¢ and  F*(u®) < e < +o0,

where ¢ > 0 is a constant independent of €. Then there exist a sequence (i) C SBV?(Q) and a function
u € SBV?(Q) such that u¢ = u® a.e. in QF for every € and (i) converges to u weakly* in BV (Q).
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PRrROOF. — Let us define @° := T*u®, where T° is the extension operator defined in Theorem 6.4. Then,
from the assumptions on the sequence (u°) and using the properties of T we obtain

[[@°]| Lo ) < ¢ and  MS(a, Q) < ¢ < 4o0.

Hence, by Ambrosio’s compactness Theorem 1.10 we have directly the claim. O

6.2.2 Integral representation

The present subsection is devoted to the identification of the I'-limit of the sequence (F¢) in SBV?2(),
with respect to the strong convergence in L?((2).
Let us define for u € SBV?(Q) the functional F"™ as

hom w) = hom u T Vs nfl’ )
Fhom () /Qf (V)d+/scp( ) dn (6.22)

u

The limit densities f"*™ : R™ — [0,+occ] and ¢ : S"~! — [0, +0c0] are characterized by means of the
following homogenization formulas:

prom(e) = min{ [ ]+ Gul)ldy s e HY(@)

where H;ﬁ (Q) denotes the space of H'(Q) functions with periodic boundary values on 9Q, and

o) =l

inf {/ a(y)dH" ' 1w € SBV(TQ,), Vw = Oa.e.,w = wy,, on OTQV}, (6.23)
S'KU

where @, is any unit cube in R™ with centre at the origin and one face orthogonal to v, and
1 if (z,v) >0,
wy ,(x) =
(@) {O if (z,v) < 0.

For notational brevity we denote with P the class of admissible functions for the infimum in the definition
of ¢, that is,
P:={we SBV(TQ,) : Vw = 0a.e.,w = wy , on ITQ, }. (6.24)

Theorem 6.6 The family (F¢) T -converges with respect to the strong topology of L?(S2) to the functional
Fhom introduced in (6.22). More precisely for every u € SBV2(Q) the following properties are satisfied:

(i) for every (u®) C SBV?(Q) converging to u strongly in L*(Q)

Fhom(y) < lim inf F* (u),

e—0

(ii) there exists a sequence (u) C SBV?2(Q) converging to u strongly in L?(2) such that

Fhem () > lim sup F* (u).

e—0

For the proof of Theorem 6.6 we rely on [13, Theorem 2.3]. Due to the lack of coerciveness, we cannot
apply the results in [13] directly to the functionals F°. So we first modify the sequence to get the
coerciveness we need, and then we obtain the stated I'-convergence by approximation.
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Let us define for 7 > 0 the approximating functionals F; : SBV?(2) — [0, +00) as

Fal) = /&"(9 |Vul?da + /S an(Z) an,

where a, is a @-periodic function given by

an () = n ifyeFE,
K 1 ifyeQ\E.

Theorem 6.7 The family (F,) I'-converges with respect to the strong topology of L2(Q) to the functional
Flom . SBVZ(Q) — [0,400) defined as

]_-#om(u) = /er}]w'rn(vu) dx_i_/s Spn(yu) dHn_l.

The limit densities f,’]wm : R" — [0,400] and @, : S"1 — [0,40c] are identified by means of the
following homogenization formulas:

€)= min{ [ ool €+ Tty w e Q) (6.25)
on(v) = TEIEOO % inf {/S an(y)dH™ ™ s w e P}, (6.26)

where H;#(Q) and P are defined as before.

PROOF. — The functionals F; satisfy all the assumptions required in order to apply [13, Theorem 2.3]
and hence the thesis follows directly. |

Now we are ready to give the proof of Theorem 6.6.

PROOF. — [Proof of Theorem 6.6] We split the proof into three steps.
First step: approximation. It turns out that

hom __ - hom __ 71: hom
Fhrom = 11%f Fpom = il_r))% Fnom (6.27)

Indeed, since a, | a pointwise as 7 — 0, using Proposition 1.2 one has
From(g) = ir}’f frem(€) = }711{}) £y (). (6.28)

For the surface integral one can proceed as follows. Since (¢,) is decreasing and ¢, > ¢ for every n > 0,
taking the limit as n goes to zero we have directly

<i =1l .
p(v) < inf oy (v) = lim o, (v)
On the other hand for every w € P, where the class P is defined in (6.24), the following estimate holds:

1 B 1 . o
[ e@ar s [ aman s Ze S0 1) (629)
SwNTQ, SwNTQy

In particular for a minimizing sequence (wy) C P of the cell problem (6.23), by (6.29) we have

1
T / an(y) dH" " < s / aly) dH" ™ + o H (S, NTQ,).  (6.30)
wy, "TQ. wy, NTQ

Tn—l
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Notice that, from the definition of the class P, we have
./ a(y) dH™" = MS(wn, Br), (6.31)

where Er :=TQ, N (Z"+ (Q\ E)). At this point, we can apply Theorem 6.4 to obtain an extension wy,
of wy, to the whole domain T'Q, satisfying

MS (i, TQ,) < ko(MS(wh, Ex) + H*H0TQ,)).

This implies in particular that

H Sz, NTQ,) < ko / a(y) dH" ™ + kT 1, (6.32)

Su, NTQ,

where we used (6.31). The minimality of wy, ensures that there exists a constant ¢ > 0 such that

1
Tnfl

H"H(Sa, NTQ,) < c. (6.33)

Since wy, = Wy, a.e. in Er, we can assume without loss of generality that (6.33) holds for the sequence
wy, . Therefore in (6.30) we obtain
LI /“ (y) dH* < — 'f{/ (y) dH™ +
—— in a in a cn.
T weP Js. oro, Y T Il wer Js,nrq, Y !

If we let T'— +o0 and then n — 0 we get

p(v) = inf oy (v) = lim oy (). (6.34)

Hence, from (6.28), (6.34) and monotone convergence we obtain (6.27).
Second step: liminf inequality (i). It is immediate to remark that for every u € SBV?(Q)

Fo(u) < F=(u) +n MS(u, Q). (6.35)

Let u € SBV2(Q) and let (uf) C SBV?(Q) be a sequence converging to u strongly in L?(Q) and having
equibounded energy F¢(u®). By (6.35) we have

Fe(uf) < FE(ul) + 1 MS(uf, Q). (6.36)

Using Theorem 6.4 we can assume that the sequence (u¢) has equibounded energy F=(u®)+nMS(u®, Q).
Hence, since in particular M.S(u®, Q) < ¢, we get from (6.36) and from Theorem 6.7

From(u) < lim inf 7 (u®) < lim inf 7°(u®) + ¢,

that holds true for every n > 0. If we now let 7 — 0 in the previous expression we obtain the required
bound
From(u) = lim Fp™ (u) < lim inf F* (u®).
n—0 e—0

Third step: limsup inequality (i1). In this case we simply use the trivial estimate

Fo > Fe (6.37)
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Indeed, let u € SBV?*(Q) and let (u®) C SBV?(2) be a recovery sequence for the functionals 7. Then

hom ) E( € : €[, E
Fy " (u) = limsup Fp (u®) > limsup F* (u®).

e—0 e—0

This implies in particular that

Fhem (y) = inf fgom(u) > limsup F*© (u®),
n e—0

and therefore the proof is concluded. O

6.3 Appendix

In this last section we prove in a rigorous way an integral estimate for the composition of an SBV
function with a bilipschitz map which provides a stability result for the Mumford-Shah functional under
bilipschitz transformations of the domain. More precisely we have the following theorem.

Theorem 6.8 Let W, W’ be open subsets of R™ with compact Lipschitz boundary, let ¢ : W' — W be
a bilipschitz function and u € SBV?(W). Then the function v : W' — R defined as v(x) := u(¢(x))
belongs to SBV2(W') and the following estimate holds:

/ \Vo2dz +H"1(S,) < C (/ |Vu|>dz + H"‘l(Su)>, (6.38)
’ 1%
where the constant C = C(¢) depends only on the change of variables ¢.

PROOF. — It is well known that the function v belongs to SBV (W') (see for example [8]). In order to
prove the estimate (6.38), we split the proof into two steps.

First step: approximation of .
As first step we approximate u with more regular functions and we prove the claim for the approximating
functions. More precisely, let (up) be the sequence provided by Theorem 1.14, and set vy, := up 0 ¢. We
claim that there exists a constant C' = C(¢) such that

/ |Vop2dy + H"(S,,) < C (/ |Vuh|2dx+H"_1(Suh)>. (6.39)
w w

By property (iii) of Theorem 1.14 we can apply the standard chain rule and we get
Vo, = (V)T (Vup 0 ¢) Lae. on W'\ ¢~ 1(S,,),

that is, since ¢! maps £"-negligible sets into £™-negligible sets,

Vo, = (V)T (Vup 0 ¢) L"-a.e. on W' (6.40)
By (6.40) we have
/ IVon|2dy = / (V)T (Vup 0 6)[2dy < Cl(¢)/ Vun 2de. (6.41)
w w w
It remains to estimate the measure of the jump set of vy, . Notice that S,, = ¢~!(S,, ). Hence, passing
to the measure we obtain
H(S,,) = / LdH" < C2(¢)/ 1TdH™ 1. (6.42)
s 5

Yh Uh
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Therefore (6.39) follows from (6.41) and (6.42).

Second step: limit estimate.
It remains to pass to the limit in (6.39) as h — +o0o. For the right-hand side the convergence is given by
property (v) of Theorem 1.14. So we reduced to prove the following result:

——+00

/ |Vol2dy + H"1(S,) < lhiminf (/ |Vvh|2dy—|—’H”1(SU,L)). (6.43)
W/ W/

The lack of a uniform L* bound for the sequence (v) forces us to use a truncation argument in order to

apply Ambrosio’s compactness theorem. Hence, let M > 0 and define v} := (v, A M)V (—=M); clearly,

oM — oM = (v A M)V (=M) strongly in L?(W’). By Ambrosio’s compactness theorem we have that

v{l\/f — oM weakly* in BV (W’). At this point, by Ambrosio’s lower semicontinuity theorem we obtain

the following inequality:

/ (VoM 2dy + H"1(Sywm) < lim inf (/ |Vor [2dy + H’L‘l(SW)). (6.44)
w w'

— 400

It is immediate to notice that
/ |Vv£/[|2dy + H"_l(SvM) < / \Vvh|2dy + H"_l(Svh),
wr h w
therefore we can write

/ /|VUM|2dy+H”’1(Svm) < lim inf (/W |Vvh|2dy+H”1(Svh)). (6.45)

—+o0

Now we let M tend to +oo in order to pass from (6.45) to (6.43). We treat separately the volume
term and the surface integral in the left-hand side of (6.45). For the jump set we simply notice that,
being M +— S,m an increasing function and S, = Up;S,m , we have the convergence

anl (Sv) = Mlinjoo anl (SUM )

For the volume integral we point out that, from the chain rule formula in BV | we can write the explicit

expression of the absolutely continuous gradient of the truncated function v™ as

UM _ Vo if |v] < M,
o otherwise.

At this point, by Lebesgue dominated convergence theorem we get

VolPdy = i /VM2d7
ety = i [ ooy

and the proof is concluded. O
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