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Introduction

Ceramic materials are expected to be insulators, certaiotysuperconductors,
but that is just what Georg Bednorz and Alex Muller found witeey studied
the conductivity of a Lanthanum-Barium-Copper oxide cacaim 1986 [1]. Its
critical temperature 080K was the highest which had been measured to date,
but their discovery started a surge of activity which diss@ad superconducting
behavior as high a$25K. Indeed, from that day since now, the field of high-
temperature superconductivity (HTSC) evolved very rapidue to the improve-
ment in the quality of the samples and in experimental tegles, providing a
great amount of results. The discovery of HTSC in cupratepmmds has been
one of the most fascinating issues in modern condensed miagery for two
main reasons. The first one is merely applicative, namelpdssibility that new
technologies may take advantage of these materials, opeein possibilities for
superconducting devices with commercial applicationse 3é&cond reason is the
theoretical interest in the microscopic mechanism behipetsconductivity, since
there is a strong evidence that the pairing mechanism is atp different from
the standard one, described by the old theory proposed yeBar Cooper, and
Schrieffer (BCS) [2]. In this respect, despite the greabref§pent to understand
the remarkable physical properties of these ceramic nad$éea consistent micro-
scopic theory is still lacking and this fascinating problesmains still unsolved.
The transition metal oxides represent prototype examglesterials in which
the strong electron-electron and strong electron-phomi@nactions lead to phases
with a very poor electrical conductivity, or even an insirigtbehavior. For ex-
ample,Ti,O3 and VO, are dimerized insulating material$j,O; andV,0O- are
charged ordered insulator€rO, is a ferromagnetic metalyinO and NiO are
Mott insulators with antiferromagnetic order. In this cext the discovery of
HTSC gives rise to a renewed interest into this class of nas$giopening a new
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era of unconventional superconductivity. Cuprates areri&y materials with a
complex perovskite chemical structure: Copper-oxide g0, are alternated
with insulating blocks of rare and/or alkaline earth and @aty atoms. At the
stoichiometric composition, cuprates are insulators \aithiferromagnetic order
of the spins localized on the Copper atoms. The richnesseopkiase diagram
of these materials depends upon the fact that the electnositgdecan be varied
by substituting the rare earths with lower valence elementsy adding Oxy-

gen atoms in the insulating blocks. It is widely accepted tha CuO, layers

play a fundamental role in determining the physical prapserof these materi-
als. Therefore, the two important ingredients that mustakern into account in
any microscopic theory are the strong-coupling charadténeelectron-electron
interaction, due to the narrow bands determined bydtloebitals of the Copper
atoms, and the low dimensionality induced by the presendesdfuO, layers.

Since the early days from the discovery of these materidtgdame clear that
many of their properties are unusual and a proper understgrsthould have re-
qguired new concepts. Certainly, the more striking behagiéound in the normal
(i.e., non-superconducting) regime, where many anomsiiggest that the metal-
lic phase, above the critical temperatdig cannot be described by the celebrated
Landau theory of Fermi liquids [3], used to describe usualatse Within this
picture, though the interaction between the electrons eaveby strong and long
range (i.e., through the Coulomb potential), it is posstblélescribe, at low en-
ergy, the whole system with weakly interacting quasi-jgéet, adiabatically con-
nected to the non-interacting system. The Landau theogkisrdown when there
IS a spontaneous symmetry breaking, e.g., if the gas of queascles is unstable
against pairing or magnetism. This is the basis of the mashmato the ordinary
low-temperature superconductivity: if the net interactietween quasi-particles
is attractive in some angular momentum channel, it drivesiistem towards the
superconducting state. Another interesting way to breaklLiindau theory, is
when the residual interactions among quasi-particles affeciently strong that
it is no longer possible to use a description of a weakly adgng gas. The
anomalies detected in cuprate materials are usually irgerp as the existence of
a non-Fermi liquid behavior. In particular, the linear belbain temperature of
the electrical resistivity down t@. led many authors to suggest novel concepts
for describing the metallic phase, like for instance thegmaal-Fermi liquid [4].
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The proximity between superconductivity and an insulastege has been con-
sidered fundamental by several authors; in this respett flggtuations can be a
natural generalization of phonons for the onset of eleatrpairing. Moreover,
the strong correlation can also induce huge density flucgtleading either to
charge instabilities, like phase separation or chargesitiewaves, or to supercon-
ductivity [5].

On the other side, the superconducting state seems to beaooventional
and it is associated to pairing of electrons, inducing a gabeaFermi level. The
difference with the conventional superconductors, whieesgap opens isotrop-
ically along the Fermi surface, is that, for HTSC, the gap &adrong angular
dependence, with &,:_,. symmetry. However, the existence opaeudogapn
the single-particle excitation spectrum also in the metplhase abové, clearly
marks a spectacular difference with standard BCS theorycanttl indicate the
predominant role of phase fluctuations of the order paranjéie By contrast,
one of the great advantage of the low-temperature supevotoid is that the crit-
ical temperature is mainly determined by the amplitude €latbns of the order
parameter, and the mean-field approach of the BCS theorg givexcellent de-
scription also very close to the transition.

The theoretical approach is complicated by a large numbeffetts (like for
instance, strong electronic correlation, antiferromaigne electron-phonon cou-
pling, polaronic effects, and disorder) that cooperateatetmining the physics
of these materials. A full understanding of all the expemnia¢ phenomenol-
ogy is practically impossible and, as a consequence, it iemely important
to study simple theoretical models, that are able to repredbe main features
of cuprate materials and especially superconductivitythla respect, assuming
that the strong correlation is the dominant ingredient, sbecalledt—.J model
in two spatial dimensions can represent a very good stapoigt. Mean-field
solutions are often misleading due to important quantuntdhtons, which are
far from being negligible, while perturbative calculatsoare inadequate, being
the relevant physics related to the strong-coupling regiiteerefore, in the last
years, correlated electrons have been deeply and sucltgsstlied by numer-
ical approaches. These methods allow one to evaluate gistatel properties of
finite-size systems, without assuming a small electronteda correlation. As an
example, Lanczos method, though in two dimensions is otsttito extremely
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small cluster sizes, allows to compute exact static and myced properties of
a model Hamiltonian. The restriction to fairly small clustés due to the huge
dimension of the Hilbert space, that increases exponéntiatih the size of the
lattice. In order to overcome this problem, alternativerapghes are necessary,
like for instance the ones based upon statistical apprsadtes, Monte Carlo
techniques. In this thesis, we have used variational MoaroGnethods, which
allow us to study ground-state properties of strongly datesl systems (in our
case, the—.J model), making also possible to afford calculations ondases
and extrapolate very accurate thermodynamic properties.

The art of the variational approach is based on the physitaition and the
ability to find a trial wave function for the ground state. Thhall the physical
properties, like the energy and the correlation functiczemy be calculated by
stochastic methods, based upon Markov chains. Moreowversttibility of the
variational state can be checked by using more advanceddvarto techniques,
that can iteratively project out the high-energy composdram the trial wave
function, eventually filtering out the ground state.

In this thesis, we consider an improved variational wavefiom that contains
both the antiferromagnetic and the d-wave superconductidgr parameters, by
considering also a long-range spin-spin Jastrow factordmoto reproduce the
correct behavior of the spin fluctuations at small momentathis way, we ob-
tain the most accurate state available so far for descritiag—./ model at low
doping. Using this wave function, the quantum Monte Canowsations clarify
several problems raised in this introduction: among théma,role of the phase
separation in the physics of the HTSC and the relation betveegiferromag-
netism and superconductivity. We mainly focus our attenta the physically
relevant region//t ~ 0.4 and find that, contrary to all previously reported but
much less accurate variational ansatz, this state is ségjaliest phase separation
for small hole doping. Moreover, by performing projectioroie Carlo methods
based on the fixed-node approach, we obtain a clear evideatthet—.J model
does not phase separate fot < 0.7 and the compressibility remains finite close
to the antiferromagnetic insulating state.

After that, we consider the effect of a next-nearest-neaghitmpping in the
antiferromagnetic and superconducting properties. Wegurea systematic study
of the phase diagram of the-t'—.J model by using the projection Monte Carlo
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technique, implemented within the fixed-node approxinmatibhis enables us to
study the interplay between magnetism and pairing, comgdhe Monte Carlo
results with the ones obtained by the simple variationalr@ggh. The pair-pair
correlations have been accurately calculated for the firs within Green’s func-
tion Monte Carlo by using the so-called forward walking teicjue, that allows
us to consider true expectation values over an approximaieng state. In the
case oft’ = 0, there is a large region with a coexistence of supercondtycand
antiferromagnetism, that survives up&o~ 0.1 for J/t = 0.2 andd,. ~ 0.15 for
J/t = 0.4. The presence of a finit¢/¢ < 0 induces a strong suppression of both
magnetic (withs. < 0.03, for J/t = 0.2 andt’/t = —0.2) and pairing correla-
tions. In particular, the latter ones are depressed bothanddw-doping regime
and around ~ 0.25, where strong size effects are present.
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Overview

The thesis is organized as follows:

¢ In Chapter 1, we introduce the physics of the HTSC, startiitly an histor-
ical overview of the problem and describing some experimeesults that
characterize these materials. Subsequently, we introthece-.J model,
which allows a microscopic description of the HTSC and weoidtice the
Resonating Valence Bond (RVB) wave function.

¢ In Chapter 2, we will describe the numerical techniques dsedbtaining
the results of our thesis. We start from the Lanczos methuat, énable
us to obtain exact results for small cluster size and then nteren the
topic of the quantum Monte Carlo technique. We describe drational
Monte Carlo method, the optimization algorithm and we witroduce the
Green'’s function Monte Carlo and fixed-node approximattbat improve
the variational results.

¢ In Chapter 3, we will introduce our new variational wave ftiao which
generalizes the RVB state we show our results on the chargeidltions
(phase separation problem) for the two-dimensigral model. The main
results of this chapter has been published in Physical ReBig7].

e In Chapter 4, we will study the magnetic and supercondugpiragperties
of the two-dimensional—.J andt—t'—J model, trying to understand the
role of the next-nearest-neighbor hopping term on the miagaad super-
conducting phases. We will show a phase diagram of the miagaed su-
perconducting correlations, which qualitatively reproduhe actual phase
diagram of HTSC and gives some indication on the origin ofeleetronic
pairing. The main results of this chapter were submittedigsital Review
B [8].



Chapter 1

General Properties of High'T,
Superconductor

1.1 Introduction

Twenty years ago, Bednorz and Muller [1] discovered highgerature supercon-
ductivity (HTSC) in Sr-doped.a,CuQO,, a class of transition-metal oxides that
shows a wide range of phase transitions. Subsequently, HHES®een found in
a large variety of cuprate compounds, also stimulatingtssis of new materials,
with unconventional electronic properties. Even if sel/preysical details, such
as the critical temperaturé., are not universal, there are properties which are
common to all these materials. In this respect, importaahgdes are the crystal
structure, the presence of strong electron-electronastems, and the closeness
to an insulating phase. Moreover, it turn out that the mietglhase cannot be
described in general by the usual Landau theory of the Fequids, and shows
many anomalous properties, like a linear temperature behat the resistivity
down toT,. [9].

The HighT. compounds have a layered structure made up of one or more
CuO, planes per unit cell; the Copper atoms lie inside a cage ofgémyatoms,
forming octahedra, see Fig. 1.1. These planes are sepdatddcks containing
for instance rare-earth elements or Oxygen atoms. The peesafCuO-, layers
in all HTSC compounds led to the belief that a lot of the impottphysics is
contained in these two-dimensional structures. This ig sigported by the fact
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that theCu—O in-plane bond is more than three times smaller than thertista
between planes, so that, at first approximation, the interlaoupling can be ne-
glected. Therefore, it is usually assumed that all the ingrphysics is governed
by processes occurring in tli@1O, planes, while the other blocks, called charge
reservoirs, are almost inert and simply provide charge@ar{l0, 11].

One of the most celebrated examples of HTSC materials isdftwyrndoping
LayCuQy, i.e., by partially substituting La by Sr, leading ta,_,Sr,CuQO,4. For
x = 0, there is an odd number of electrons per unit cell and, tbezefrom gen-
eral principles, a metallic behavior should be expectedadh band structure cal-
culations (based on the so-called Local-Density Approxiomd predict that the
Fermi level lies within a band mainly constructed from the_,. orbital of Cop-
per atoms. On the contrarka,CuQO, is a Mott insulator, with antiferromagnetic
order below the Neel temperatufg ~ 300K. This is one of the most spectac-
ular example in which the single-electron picture fails @ne electron-electron
correlation is important to determine the physical projsrof the system. The
fact is that3d-orbital wave functions are confined more closely to the auslthan
s or p states with comparable energy, implying a small overlag/beh neighbor-
ing atomic sites and a tiny bandwidth. On the other hand, thddnb repulsion
between electrons occupying the same orbital with oppasgites (the so-called
HubbardU) can be very large, even when including screening effedies@ two
aspects determine a competition between itineracy andizatan, that can lead
to an insulating behavior when a metal should be expecteel aftiferromagnetic
properties also arise from the strong effective Coulomerenttion, that generates
a super-exchange coupling between Copper atoms [12].

The antiferromagnetic order of the undoped compound isr@gsed by dop-
ing and eventually superconductivity, with a high-tralssitemperature, emerges.
The behavior off,. with doping exhibits a characteristic dome-like shape. iRor
stanceLa,_,Sr,CuQO4 undergoes a transition from an antiferromagnetic insulato
to a paramagnetic metal at~ 0.03 and the superconducting transition temper-
ature has a maximum of abod® K" aroundz,, ~ 0.15, called optimal doping.
Above the superconducting transition temperature, thaliephase shows un-
usual properties in the underdoped regior< =z,,, whereas it becomes more
Fermi-liquid-like when moving towards the overdoped regioe.,x > x,,. It
should be mentioned that there are two ways to inject chaag®ecs: either re-
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Figure 1.1: (a) Typical cubic perovskyte structure of tiios-metal compounds.
Transition-metal atoms are the small grey spheres, at thieicef Oxygen octa-
hedra (dark spheres). (b) Different arrangements @dn tope, orbitals, at the
bottomt,, orbitals) andp orbitals in transition-metal oxides.

moving electrons from th€uO, planes (like for instance substituting La with Sr
in La,CuQ,) or adding electrons to the planes (like or inserting furt@eygen
atoms inLa,CuQO, or substituting Nd with Ce ilNd,CuO, [13]). In Fig. 1.2, we
show the phase diagrams of two compounds, prototypes fdndleedoped and
electron-doped material. While electron and hole doped Ei$Bare many com-
mon features, they do exhibit significant differences, fikeinstance the stability
of the antiferromagnetic phase upon doping.

There is enough evidence suggesting that supercondyativduprate mate-
rials is fundamentally different from the one described gy standard BCS the-
ory, valid for alkaline metals. For instance, in HTSC thetage effect is absent
(or very small); this fact indicates that probably the attaachanism leading to
Cooper pairs is different from the standard electron-pmooiee. Moreover, in a
BCS superconductor the gap has s-wave symmetry, i.e.p@otin the momen-
tum space, while there is now a wide consensus that in highuperconductors
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pairing occurs with al,2_,. symmetry [14-18]. These facts, together with the
proximity of a magnetic phase, induced many authors to kefancalternative
mechanisms for superconductivity, not based on the elegihmnon coupling.

All the unusual observations stimulated an enormous amaiugtperiments,
as well as theoretical works on HTSC, which gave importasigint into these
fascinating compounds. In addition, new sophisticatedyinal and numerical
techniques have been developed and now they provide us vpd#rteal under-
standing of correlation effects in electronic systems.

1.2 Experimental Results

The discovery of the HTSC stimulated the development of re¢experimental
techniques. Here, we expose some key experimental facteoung these mate-
rials, without entering in the details that are availabléterature [17, 19, 20].

300}  Nd, Ce CuO, La, Sr CuO,

“Normal”’
Metal

200 T

100 T
AF  |AF ‘e,

. ., |

0 s -
0.3 0.2 0.1 0.0 0.1 0.2 0.3
Dopant Concentration x

Temperature (K)

2
%
(@]
2,

Figure 1.2: Schematic phase diagram for hole-doped (rigl#t) sand electron-
doped (left side) high-temperature superconductors.

In general, the attention is restricted to the hole-dopedmmunds, partly be-
cause they are better characterized and more extensiwagtigated, but also
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because, in the underdoped regime, the hole-doped HTSC sitgowery inter-
estingpseudogap phasén which the system does not have a superconducting
long-range order, but still presents a large and anisatrgpp in the excitation
spectrum [18, 21-23]. The onset temperature of the psepddgereases lin-
early with doping and disappears in the overdoped regimee diigin of the
pseudogap is one of the most controversial topics in the HTi&G. More-
over, its relationship with other important features, sashthe presence of a
Nerst phase [24, 25], charge inhomogeneities [26], therapwgcattering reso-
nance [27], or disorder [28] is still unclear. In the follavg, we will briefly de-
scribe some results from angle resolved photo-emissioctsseopy (ARPES),
scanning tunneling microscopy (STM) and nuclear magnesomance (NMR):
these techniques have seen significant advances in recanstamed provided us
with important insight into the nature of the low-energy igaiions in the metallic
and superconducting samples.

By measuring the energy and momentum of photo-electron ERtech-
niques provide useful information about the single pagtspectral functiod (&, w),
that is related to the electron Green’s functiondl:, w) = —2ImG(k,w). As a
consequence, it is possible to obtain the Fermi surfaceladdp of the system
under study. We will briefly summarize some key results froRPES that any
theory of HTSC has to address. For an extensive discusstba general review
about experimental details one can see, for instance, frerplay Damascelli and
collaborators [19] and by Campuzano and collaborators [29]

Fig. 1.3 shows a schematic picture of the Fermi surface ofatap in the first
guadrant of the first Brillouin zone. It can be obtained by ASPscans along
different angles) by looking at the minimum energy of the photo-electron along
a given direction in momentum space. A typical energy distion curve, that is
given by the photo-emission intensity as a function of epetdixed momentum,
is shown in Fig. 1.4. The figure shows the photo-emissiomgitg at the(r, 0)
point of a photo-electron in the superconducting and in tireval state. Below,,
we observe the characteristic peak-dip-hump structuespéak being associated
with a coherent quasiparticle; on the other hand, aliyeoherence is lost and
the sharp peak disappears.

Immediately after the discovery of HTSC, it was unclear & thairing sym-
metry were isotropic (i.e., s-wave) as in conventional mhmwmediated super-
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Figure 1.3: A schematic picture of the two-dimensional Feanface (thick black
line) of cuprates in the first quadrant of the first Brillouiore. The lattice con-
stanta is set to unity an@ indicates the Fermi surface angle.

conductor, or anisotropic. But later experiments have isbastly confirmed an
anisotropic gap with d-wave symmetry [14, 15]. The angukgsehdence of the
gap function can be clearly seen in ARPES measurements oiCHiBich ac-
curately determine the superconducting gap along the Fermi surface of the
normal state. As shown in Fig. 1.5, the gap vanishier 45° (nodal point) while

it is maximum atp = 0°,90° (antinodal points). There are, however, other exper-
imental data that support s-wave (or even more complicgaestof symmetries,
like d+s, d+s) [30]. Very recently, Muller and collaborators gave somgication

in favor of the existence of two gapsiin, g35rg17CuO,: a large gap with d-wave
symmetry and a smaller one with s-wave symmetry [31].

Unlike conventional superconductor, HTSC exhibits a sgrdaviation from
the BCS-ratio of2A /kgT. ~ 4.3 for the superconductor with a d-wave gap
function [whereA is the gap at: = (7,0)]. Moreover, in HTSC, this ratio is
strongly doping dependent and becomes quite large for doged samples. In-
deed, whereas the critical temperature decreases apjngable Mott insulator,
the magnitude of the superconducting gap increases. Ariawnial information
that can be extracted from ARPES data is the doping depeadsdrtbe spectral
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Figure 1.4: Energy distribution curve at fixed momentkra: (7, 0) for an over-
dopedBi,SryCaCuy0g, s Sample in the normal state (NS) and superconducting
state (SC).

weight of the coherent quasiparticle peak, that strongbyekeses with decreasing
doping and finally vanishes close to the Mott insulator [33, 3

Probably, the mostinteresting feature seen in ARPES axeits is the shrink-
ing of the Fermi surface aboVE. in the underdoped regime, i.e., the opening at
T of a pseudogap in the normal phase. Indeed, by decreasirigrtiperature,
more and more states around the antinodal region becomedapu the Fermi
surface becomes smaller and smaller with continuity. bibtef a closed Fermi
surface, the system exhibits Fermi arcs [22, 23] that finediifapses to single
nodal Fermi points d@f’ = T, see Fig. 1.6. Interestingly, the opening of the pseu-
dogap atl™* seems to be related to the magnitude of the supercondudng g
For a detailed discussion on this and related ARPES obsemgabne can see for
instance reviews in the literature [19, 29]. This is a strikdifference with the
conventional BCS superconductors. While, in the overdapgdne, the HTSC
materials behave as a reasonably conventional metal walhga Fermi surface,
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Figure 1.5: Momentum dependence of the spectral yegdong the Fermi sur-
face in the superconducting state of an overddpgfr,CaCu,Og, s Sample from
ARPES. The black line is a fit to the data. For a definition of &ingley see
Fig. 1.3.

the underdoped regime is highly anomalous, having the dsected Fermi arcs
described above. A fundamental question, is to understaticeie is a phase
transition that could change the topology of the Fermi sagfdt should be men-
tioned that, very recently, measurements of quantum asicilis in the electrical
resistance revealed the possibility that the Fermi arcguateportions of small
pockets aroundr /2, w/2). The fact that ARPES only see a segment of these hole
pockets could be due to the fact that the other portion hasydoe intensity, not
measurable at present [34].

A complementary experimental technique to ARPES is giveBDW, that is
a momentum integrated probe. Its ability to measure thd ldeasity of occu-
pied as well as unoccupied states with an high-energy resolgives valuable
insight into the properties of HTSC. A key advantage of STNhispossibility to
obtain spatial information: STM experiments allow for tieestigation of local
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Figure 1.6: Schematic illustration of the temperature ettoh of the Fermi sur-
face in underdoped cuprates as observed by ARPESd Fheave node below
T, (left panel) becomes a gapless arc abbyémiddle panel) which expands with
increasingd!’ to form the full Fermi surface at™ (right panel).

electronic structure around impurities [35—-37] and arounidex cores [38—40] in
the superconducting state. Two interesting features tcerported by STM are
the possibility to have a checkerboard-like charge-dgngéve [41, 42] and the
existence of spatial variation in the superconducting g&p. [The origin of these
observations is currently being debated intensely.

Several authors [44, 45] suggested that superconductwiiid be connected
with the tendency toward charge segregation of electrodshates in theCuO,
layers. For instance, phase separation was observed inxyge® doped com-
poundsLa,CuO,4.s, by using Neutron Powder diffraction [46] and NMR [47].
The experimental data obtained with these two techniquasesth that the system
is separated in an Oxygen rich and in an Oxygen poor regiamstedd, no ev-
idence of phase separation has been found in other holeddwpepounds, like
Lag_Sr,CuOy.

Through Neutron scattering and NMR experiments it is pdsdib carefully
analyze the change of the magnetic properties of the HTS@rmakst upon dop-
ing. Measurements of the Neutron scattering cross sectiovige information
on the spin-spin structure factor. As a consequence of ttieanmagnetic long-
range order, the undoped compound shows a sharp peak inithemp structure
factor at the wave vectof) = (mw, 7). In the case olf.a,_,Sr,CuQy, this peak
broadens and disappearszat> 0.05, where incommensurate spin fluctuations
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arise at(w, m + 2er) and (7 + 2em, ) [48]. The dependence of the incommen-
surability e with doping is linear for0.05 < 6 < 0.12 and then saturates [48].
A striking feature is that the angular coefficient of the Aneelation between the
incommensurability and the doping fraction is exa@ty X-ray diffraction mea-
surements [49] has shown that similar incommensurate palaksoccur in the
charge structure factor but close to the= (0, 0) point, with an incommensura-
bility which is twice the spin structure one. This behaviaslbeen explained by a
domain walls ordering of holes in thHeuO, layers. Half-filled hole stripes sepa-
rate antiferromagnetic region, which are correlated withshift across a domain
wall. The modulation connected with the charge is then atlsmamenta, close
to thel point, while the spin-spin structure factor presents a geimsity wave at
incommensurate momenta close to the antiferromagnetie weaetor [50].

1.3 The Hubbard and thet—.J models

Since the earliest days of the HTSC era, it was realized thatreeoretical model
willing to describe superconductivity had necessarilyriclude strong electronic
correlation. In this regard, the Hubbard model is the sirsigexample of a micro-
scopic Hamiltonian that takes into account the electroeradtion and its compe-
tition with the kinetic energy. It was independently inttmeéd by Hubbard [51],
Gutzwiller [52] and Kanamori [53] in963 in order to understand magnetism in
transition metals. In the recent past, the Hubbard modegétter with its strong-
coupling limit, the so-called—.J model, was widely considered in order to clarify
the possibility that superconductivity arises from strahgctronic correlation.

1.3.1 Definitions and simple properties

The one-band Hubbard Hamiltonian is defined on a latticé eftes and can be
written as:

H=—t Z (el cjo + hc) + UZ”jT”jl , (1.1)
(i:),0 J

where(i, j) denotes nearest-neighboring sitemndj, c;fc, (ciy) creates (destroys)
an electron with spirr on site: andn;, = c}acjg is the occupation number
operator. The ternone-bandefers to the assumption that only one Wannier state
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per site is considered. This approximation is valid whenFeemi energy lies
within a single conduction band, implying an irrelevant tdoution of the other
bands. Since only one atomic level per atom is consideregth kdtice site can
appear in four different quantum states:

|0); empty site,

| 1), = ch|0) site j occupied by arf electron,

| 1); = ”|0) site j occupied by & electron,

| 11); = ﬂ u|0> site j doubly occupied.

The first term in Eq. (1.1) expresses the kinetic gartvhich delocalizeghe
N electrons in the lattice. The hopping parameteontrols the bandwidth of the
system and depends on the overlap between neighboringisrbit

- / dr ¢ (r) (% + Vn) &(r) (1.2)

whereg;(r) is a Wannier orbital centered on siteandV;,,, is the potential cre-
ated by the positive ions forming the lattice. In translaslhy invariant systems,
t;; depends only upon the distance among the sitasd j and in Eq. (1.1) we
have considered only a nearest-neighbor hoppinghe kinetic term/C can be
diagonalized in a single-particle basis of Bloch states:

d
K= Zekczacka € = —Qthos(k:j) , (1.3)
k,o j=1

WherecLU = \% > e""fjc§c, and a simplel-dimensional cubic lattice has been
considered.

The Hubbard/ comes from the Coulomb repulsion of two electrons sharing
the same orbital:

2
h
=14

Of course, this term is only an approximation of the true ©aub interaction,
since it completely neglects the long-range componentsiwaie present in re-
alistic systems. Nevertheless, in spite of its simpliditg Hubbard model is far
from being trivial and the exact solution is known only in tbee-dimensional
case [54]. Its phase diagram, depends on the electron gensit N/ and the

U= [ drydralosin) 9(r2) 2 (L.4)
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ratio U/t. Moreover, different lattice geometries and the additibfonger-range
hopping terms could influence the resulting phase diagram.

The form of the Hubbard Hamiltonian given in Eq. (1.1) immegdly suggests
that its phase space comes out from two competing tenderfimasone side, the
hopping term tends to delocalize the electrons in the drgstd, from the other
side, the interaction term encourages electrons to occifigyeht sites, otherwise
the system must pay an energy cbsper each doubly occupied site. Whenever
the electron density is away from half filling, i.e.,= 1, the number of holes or
doubly occupied sites is different from zero and charge tiatons are possible
without a further energy cost. In this case, the ground sihthe system is pre-
dicted to be metallic for any value éf/¢, unless for special charge-density wave
instabilities at particular wave vectors, that could hapfm small dopings and
weak correlations [55]. Moreover, the possible occurrenicsuperconductivity
in the Hubbard model for. # 1 has been widely investigated and there are now
important evidences that superconductivity emerges aéftoping [56]. Instead,
at half filling (i.e., forn = 1), there are no extra holes (or double occupancies)
and each site is (in average) singly occupied. The two teridsmf delocalizing
and localizing the system are strictly dependent on theevafd/ /¢, according to
the two limiting cases:

e for U/t = 0 (band limif) the system is a non-interacting metal;

e fort/U = 0 (atomic limif) the system is an insulator with no charge fluctu-
ations.

The presence of different phases, for the two limiting vala&U /¢, suggests the
existence of a phase transition, which is purely driven leyabrrelation: théVott
metal-insulator transition It should be stressed that the Mott transition is often
accompanied by a magnetic ordering of the insulating ph&se.instance, the
ground state of the Hubbard model with nearest-neighbopimgpon the square
lattice is insulating for any interactioli/¢: at weak coupling, because of the so-
called nesting property of the Fermi surface, that leadsiwergent susceptibility
as soon as the interacti@nis turned on; at strong coupling, because an effective
super-exchange interaction is generated at the @fgér, giving rise to the anti-
ferromagnetic long-range order. These two limits are aatighlly connected, im-
plying that the ground state is always insulating with gaplepin excitations. In
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the following, we will show the canonical transformatiomtiallows one to derive

an effective spin Hamiltonian, which describes the Hublmaodiel at strong cou-
pling (i.e.,U/t > 1) and acts on the Hilbert space without double occupancies.
This define the so-callett-J model that is very useful to study superconduct-
ing and magnetic properties of correlated systems, sirfoeuises on low-energy
properties, without considering high-energy processeth@forderlU/t. In par-
ticular, the pairing-pairing correlations could be veryahand it would be very
difficult to detect the superconducting signal within thegoral Hubbard model,
containing huge charge fluctuations.

1.3.2 Larged limit: t—J and Heisenberg model

The t—J Hamiltonian was pioneered by Anderson [57] and rederivedhgng
and Rice [58], starting from the three-band Hubbard modegrder to describe
the low-energy properties of theuO, planes of HTSC. The general procedure
for the derivation consists in looking for a Schrieffer-Waanonical transforma-
tion [59], which allows one to achieve a separation betwean &nd high-energy
subspaces. In the Hubbard model at laitye, these subspaces are characterized
by a different number of double occupancies The operator that mixes these
different sectors of the Hilbert space corresponds to thetig part (1.3), which
can be rewritten as:

K=H+H +H, (1.5)
whereH,"” (H, ) increases (decreases) the number of doubly occupiedysitase
and H corresponds to the hopping processes which do not changeithieer of

double occupancies. The effective Hamiltonian is obtatheaugh the rotation:
2
H.py = eSHe ™ = H + S, H] + %[S, 1S, H]) + ..., (1.6)
where the generatdt is chosen such thdf.;; does not contain the operatdifs"
andH, . In order to eliminate the terms which are first ordet,ithe generatof
reads:

v .
S = —E(HT — H;), (1.7)

and, to the ordet® /U, we obtain the effective—J model:

Hy ; = —t Z (1 = ni_o)cl cin(1 —nj_g) + hc]+
<Z7]>7U
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+J S; - S; — 1y + three sites term 1.8
; (i85 - =) (1.8)

whereS; = %ZUU, cjarw/cw/ is the spin operator for site(r,,- being the Pauli
matrices) and/ = 4t /U is a magnetic coupling that favors an antiferromagnetic
alignment of spins. The first term of Eqg. (1.8) describes logmonstrained
on the space with no doubly occupied sites. The nature ofupersexchange
coupling/J is due to the possibility of a virtual hopping of antiparaiieighboring
spins, which creates an intermediate doubly occupied sitie an energy gain
—t?/U, see Fig. 1.7.

Figure 1.7: In second order of perturbation theory/fY, if the spins of neighbor-
ing sites are antiparallel, they gain energy by a virtuacpss creating a double
occupation.

Finally, the canonical transformation generates a thites-¢erm, which is
proportional to the hole doping and usually neglected forgdicity. At half fill-
ing, the first term of Eq. (1.8) is zero, because every sitdresady occupied by
one electron, and one obtains the Heisenberg model:

Hpeis = JZ Si - 55, (1.9)
(i,9)

The ground state of this Hamiltonian is obviously insulgtamd in 1988, by using
Monte Carlo techniques, Reger and Young demonstratedtthasian antiferro-
magnetic long-range order with a magnetization reducedy with respect to
the classical value [60].
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1.4 Resonating Valence Bond theories

Anderson suggested that a good variational ground stateedfieisenberg model
of Eq. (1.9) could be represented as a resonating-valenoe (iRVB) state, de-
scribed as a liquid of spin singlets. One important consegeevas that, once
the system is doped, the holes inside the RVB liquid can mpessibly leading

to superconductivity. This idea has led to a consistentrétaal framework to

describe superconductivity in the proximity of a Mott traim. In this section,

we will discuss possible realizations of RVB supercondigcémd give an outlook
on the implementations of the RVB picture by BCS projectesenanctions.

q:. ."“'H.h L] L] - L] » ]
\__ x"'m_
.T' Q\ . - o . »
r”J-T_H"-t | - -
/
D B
(a) (b)

Figure 1.8: Schematic illustration of the RVB state. Stickzresent singlet bonds.
(a) and (b) represent two particular Valence Bond (VB). ArER3fate is superpo-
sition of different VB:|RV B) = . a,|V B;). (a) Atrue spin liquid is a superpo-
sition of VB of this kind. (b) A non-magnetic RVB state withdiken translational

symmetry is a state where the dominant weightsissociated to VB are of this
kind.

In spite of a Neel state with a broken SU(2) symmetry, an R\desis de-
scribed by superposition of states in which two electrontheflattice are paired
to form a singlet, see Fig.1.8. Indeed, especially for smallies of the spin,
guantum fluctuations reduce the classical value of the ggdeameter, favoring
a disordered ground state. Liang, Doucot, and Anderson $6bjved that the
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RVB state regain some of the lost antiferromagnetic exchamgrgy by resonat-
ing among many different configurations, becoming, theesfoompetitive with
the Neel ordered state. The resonating singlet state issianjar to benzene ring
with its fluctuatingC—C links between a single and a double bond: this analogy
motivated the term RVB. Such bonds can be either homogehedistributed
over the lattice, giving rise to a true spin-liquid with naoken symmetries [see
Fig.1.8(a)] or they can be mostly arranged in some specistmwa which breaks
some of the symmetries of the lattice [see Fig.1.8 (b)].

TEo

Figure 1.9: Left panel: Antiferromagnetic Neel state witime holes. The motion
of a hole (bold circles) frustrates the antiferromagnetubeo of the lattice. Right
panel: A configuration of singlet pairs with some holes isvgioln this case the
singlets can rearrange in order to avoid frustration.

Though an ordered state is realized in the undoped insyBdyrthe antifer-
romagnetic order parameter melts with some percent of dbpéss. To under-
stand this, we can consider the example shown in Fig. 1.9.ilddwles naturally
causes frustration in the antiferromagnetic order, andsadly it is better to have
a paramagnetic background. The problem of a single hole mgowvi the back-
ground of a Neel state was studied extensively by severhbau{see for exam-
ple [11]); In particular, analytical calculations showdét the coherent hole mo-
tion is strongly renormalized by the interaction with thénsgxcitations [62, 63].
On the other hand, since singlets can easily rearrangeyésemce of holes in an
RVB background does not alter its nature and, thereforehenpresence of dop-
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ing, the RVB state can be competitive with the Neel one, sgelF9. Moreover,
the holes may condense and give rise to a superconductiteg snce, pairing
could be due to RVB and not to antiferromagnetism. One of tbstmemark-
able prediction of the RVB theory was the d-wave nature ofstingerconducting
state. Indeed, a d-wave superconducting state was foun®¥BysRidies as early
as in 1988 [64—-68], long before the pairing symmetry of HTS&Swxperimen-
tally established. These early calculations also coyeatiscribed the vanishing
of superconductivity above abott% doping. By implementing the RVB idea
by projected wave functions, one finds a natural explanatiadhe suppression of
the Drude weight and of the superfluid density in the undeedapgime, as well
as the particle hole asymmetry in the density of single plarstates. Further suc-
cesses of the RVB theory are the prediction of a weakly dogdemendent nodal
Fermi velocity and a quasiparticle weight that is stronghpithg dependent (de-
creasing with doping in agreement with ARPES experimerithese effects can
be understood by a decrease in the density of freely movingecaat low doping,
which results in a dispersion mainly determined by virtuapping process pro-
portional to the super-exchange In addition to the above key features of HTSC,
RVB theory has also been successfully applied to severar gihenomena such
as charge density patterns [69—72], the interplay betwapersonductivity and
magnetism [73-78], impurity problems [79], and vortex c0oj&0].

In conclusion, analytical and numerical results providggicant support to
the RVB concept. Even if most RVB studies are restricted to zemperature,
as in our work, from the ground state obtained in this way gassible to extract
important information on the finite temperature properta®wing a description
of the finite temperature picture described above. Howexdending the cal-
culations to finite temperature is certainly an importard apen problem in the
theory of RVB superconductivity that should be addressetiemear future.

1.5 The RVB concept within the variational approach

In general, the variational approach offers a simple roatddal with strongly-
correlated systems, since a good guess of the ground-state fanction allows
one to derive the properties of the corresponding phasestira@htforward way.
The variational approach starts from a guess on the furaitifmmm of the trial
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wave function ¥ ({v;, A;})), which is supposed to be as close as possible to the
true ground state. The trial wave function depends on a sedradtional param-
eters{v;, A;}, which are properly changed in order to minimize the expema
value of the variational energy, .

Vr({vi, A H[Vr({vi, Ai}))
(Wr({vs, A [Wr({vi, Ai}))
The energyEy, gives an upper bound of the ground-state endigyas a conse-
guence of the variational principle that we will describsame details in the next
chapter.

A simple form for a correlated wave function can be given by:

By = (1.10)

[Wp{vi, Ai}) = P({ui})ID({A})), (1.11)

whereP{v;} is the correlation factor (oprojector) and |D({A;})) is a mean-
field Slater determinant. Indeed, for fermionic systems,wlave function gener-
ally must contain a determinantal part that ensures thecbantisymmetry when
particles are interchanged. The correlation fagtas commonly expressed as the
exponential of a two-body operator, like density-densitgpin-spin, whose ex-
plicit form will be specified in the following. At this levelt is important to stress
that the projector inserts correlation into the wave fumttiwhose remaining part
corresponds to the mean-field Slater determinanht Notice that the term pro-
jector is often used in the context of spin models, whEréotally projects out
the configurations with a finite number of double occupancieghat caseP is
denoted asull projector.

The Slater determinant generally corresponds to the gretate of a mean-
field Hamiltonian. In the simplest case, it is the uncoredatermi sea:

78y = ] ciyeiyl0), (1.12)
ex<ep
which is the ground state of the free tight-binding Hamiitonwith energy dis-
persione,:
Hps = Z@cczgckaa (1.13)

ko

wheree, = —2¢ Z?zl cos(k;) andep is the Fermi energy. Nevertheless, also the
determinant can be parametrized, for example it can be thengr state of the
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BCS Hamiltonian:

Hpcs = Z ekc;rwckg + Z Aii(eirej) + c}chTT), (1.14)
k,o 2,]
where{A,;;} depend on the distan¢e— j| and are chosen in order to minimize
the expectation value of the energy. The BCS ground statesiisget state that
corresponds, in the case of total projection, to a partrdRi£&B state with a given
amplitude for the singlets. Another possible Slater deteamt comes from the
mean-field antiferromagnetic Hamiltonian:

Hup =Y exch Cho+ Dap Y _(=1)" (nip — ni)), (1.15)
k.o i

with the variational antiferromagnetic paramet®y». In this case, the corre-

sponding Slater determinant breaks the translational aadpin SU(2) symme-

tries.

It should be stressed that, in general, the projector maddmy the ampli-
tudes of each configuration, while the parameters insidel¢erminant are also
responsible of the phases: the nodal structure of the tg@kwunction strongly
depends upon the choice of the determinant.

The t—J Hamiltonian is the best known model for studying RVB suparco
ductivity, because it includes the super-exchange ternhagthyy and this is the
term which is responsible for the formation of singlets. he following we start
with thet—J Hamiltonian as an appropriate microscopic model for HTSRe T
wave function which is constructed by projecting out doubtgupied sites and
fixing the number of particles from the ground state of the BG#iltonian (1.14)
provides an elegant and compact way to study the occurrdrsegerconductivity
in thet—J model:

|Vrvs) = PaPn|BCS), (1.16)

whereP; andPy are the Gutzwiller projector (that forbids doubly occupstes)
and the projector that fixes the number of particles to be lague number of
sites, respectivelyBC'S) is the ground state of the BCS Hamiltonian (1.14). The
form of this RVB wave function provides an unified descriptiof the Mott in-
sulating phase and the doped superconductor. Moreovermediately suggests
the presence of singlet correlations in the undoped inguéatd relates them to a
superconducting state away from half filling.
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In this thesis we will generalize the RVB wave function by solering a
mean-field Hamiltonian which possesses both BCS pairingaatiterromagnetic
order parameter. In particular, for obtaining the corredifarromagnetic prop-
erties, we will consider the antiferromagnetic term in the- y plane, together
with a projector considering spin-spin correlations altmg: axis. We anticipate
that the eigenstate of this mean field Hamiltonian is somgthiore complicated
than the mean-field Slater determinant, since it is desdrilyean algebraic ob-
ject calledPfaffian Moreover, we will apply to this object, projectors that fhet
number of particles, forbid the double occupancy, and fdragicing the charge
and spin correlations we will apply the Jastrow factors taivill describe in the
following section. We will see in the next chapter how to ci¢édt¢e the variational
energy and other interesting observables of a state by waitgfional techniques.
Here, we will just say that the projected wave functions hiéneadvantage that
they can be studied both analytically, by considering thé&z®iller approxima-
tion, and numerically, by using pure variational techngaad exact diagonaliza-
tion. Since these wave functions provide a simple way toystliffierent kind of
correlations, they have been widely used in the literature.

1.6 Long-range correlations: The Jastrow factor

In this section we briefly discuss how projected states cagxbended to study a
wide variety of strongly correlated systems, by highly ilmygng their accuracy.
Apart from HTSC, these wave functions have been used for ésergtion of
Mott insulators [81], for the superconductivity in orgagi@mpounds [82, 83] and
for the Luttinger liquid behavior in low-dimensional mod¢84, 85].

Historically, the Jastrow factor was introduced for contim systems [86] in
order to take into account correlation effects through abedy term of the form:

P; =exp [% Z v(rij)ninj] , (1.17)

i,J

wherev(r;;) = v(|r; — r;|) are variational parameters (which for homogeneous
and isotropic systems depend only on the relative distanmueng the particles),
andn; is the particle density at position. Itis useful to consider also the Fourier
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transformed Jastrow factor:
1
Py =exp 3 Z VgNgN—q| (1.18)
q

wherev, = 37 v(r)e” andn, = =3 n.e'"" are the Fourier transformed
Jastrow parameters and particle density, respectively.ekponential form (1.17)
guarantees the size consistency of the wave function. FFmidaic systems, the
Jastrow factor is applied to a Slater determinant or to afidfafD), in order to
recover the correct antisymmetric form:

W) =P4|D) . (1.19)

The Jastrow wave function has been widely studied on comtmaystems,
with the employment of a large variety of analytic and numartechniques. For
instance, in a series of papers, Sutherland showed thaagtew wave function
corresponds to the exact ground state of a family of one-d#o@al Hamiltonians
defined on the continuum [87]. The lattice version of the 8d#nd’s problem
was found for a spin system by Shastry and Haldane [88, 89, edmsidered
a spin1/2 chain with a long-range /r? antiferromagnetic exchange. By using
previous results by Metzner and Vollhardt on the exact spoperties of the fully-
projected Gutzwiller state, they found the exact grountestéthis model.

The most interesting analytic and numerical results caningrthe properties
of the Jastrow wave function come from its wide applicationslelium physics.
In this field, starting from the very early approach of Mc Mitl [90], who used a
parametrization of the Jastrow term coming from the solutbthe correspond-
ing two-body problem, the form of the Jastrow factor has bmdrsequently fine
tuned [91-94] in order to reproduce accurately the propertif the*He liquid
state. It turned out that, even if the ground-state energyeis approximated by
using a short-range correlation term, the addition of acttme in the parame-
tersv(r;;) at large distances is fundamental, in order to reproducesctly the
pair-distribution function and structure factor of theuid.

The fact that the Jastrow factor involves many variatiorsabmeters, whose
number grows with the lattice size, constitutes the maiwdexck for the applica-
tion of this wave function. For this reason, in many caldolas, a functional form
of the Jastrow parameters is considered and fixed, henceingdine number of
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independent parameters. This implies an easy-to-handie fmaction, which on
the other hand could be biased by the choice of the functimmad, spoiling the
variational flexibility of Eqg. (1.17). There are examplesesh a good guess for
the functional form of the Jastrow parameters gives acewedults also for lat-
tice models. Indeed, a long-range Jastrow wave functioh avibgarithmic form
v;; = In(r; — r;) turns out to be the correct ansatz which induces Luttiniggerid
correlations in the one dimensiortal./ model [84]. In the one-dimensional Hub-
bard model an appropriate choice of the density-densitydasactor in momen-
tum space allows to distinguish between metallic and insgebehavior [81].
In the two-dimensionat—.J model, the Jastrow wave function is often used to
improve the variational energy of a projected supercoridgdtate [95, 96].

Moreover, the use of the spin-Jastrow factor on the Heisgnimedel gave
strong indications that a wave function of this type is vergwate for quantum-
spin systems [97]. The spin-Jastrow factor has the follgviomm:

PS: = exp [% vaijS;] , (1.20)
i,J

whereS? is thez-component of the spin associated to the particle orysitethis
case, the spin-Jastrow factor is applied to a classicalreddstate and the long-
range form ofv;;, deduced from analytic calculations, allows one to repcedu
the correct spin-correlation functions in the quantum gspiodel [98, 99]. An
appropriate spin-spin Jastrow factor can also createeamrdgihagnetic order in a
non magnetic wave function. This fact can give us the idedefability of the
Jastrow term to induce a new long-range order not preseheiarnprojected wave
function.

However, there are also several cases in which a functiamal df the Jas-
trow factor is not known a priori: in these cases a full opzation of all the
independent parameters is needed. This is the strategyvithdite used in this
thesis, where we will use a numerical technique that allosv®wptimize several
variational parameters within the Monte Carlo approacle (sext chapter). So
the incorporation of Jastrow factor provides an additigp@derful way to extend
the class of projected wave function. Finally, we would ltkeremark that the
spin-Jastrow factor is as often used as the density-deositlye holon-doublon
Jastrow terms. However, we will show in this thesis that tietusion of the spin-
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spin Jastrow factor is also very important when considecimayge fluctuations in
thet—J model.






Chapter 2

Numerical Methods

Monte Carlo methods allow one to evaluate, by means of a astichsampling,
integrals over a multidimensional space. This is very useiuquantum many-
body problems, where in general the calculation of expextatalues cannot be
handled analytically, since the wave function of the systamnot be factorized
into one-patrticle states.

The core of all Monte Carlo methods is the Metropolis aldgont100] which
generates a Markov chain, i.e., a random walk in configunagjgace. The config-
urations sampled during the random walk are distributeigr & certain number
of steps required to reach equilibrium, according to a gstationary probability
distribution.

The variational Quantum Monte Carlo approach consists endirect appli-
cation of the Metropolis algorithm to sample the probapitiistribution given by
the modulus squared of a given trial wave function.

Since the topic of Monte Carlo methods is covered by manyto#s we will
not describe its general principles in this thesis. In th®fang, we will focus on
the direct implementation of the Monte Carlo statisticakmoel in our quantum
variational problem. The general techniques used herdaneatriational quantum
Monte Carlo and the Green'’s function Monte Carlo techniqUé®y allow us to
describe remarkably large systems with a numerical metivateover, we will
describe in some detail the stochastic reconfigurationréilgo which allows us
to minimize the variational energy in presence of a large Ibeinof parameters.
At the beginning we will also briefly describe the Lanczos moel, which has
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been used in this thesis for making a comparison of the exsagees for small
system size$L < 26), with the corresponding energy expectation values of our
new improved variational wave function.

2.1 Lanczos

From a general point of view, the ground stadg) of an HamiltonianH can

be obtained by thpower methodrom a trial wave function W), provided that
(Ur|®y) # 0 and that the ground state is unique, that we will assume in the
following (simple extensions are possible). Indeed, if veérte the operatofr =

A — H, with A a suitable constant chosen to allow us the convergence to the
ground-state, we have that:

G"Wr) = (A — Ep)" {ao‘@o>+z (j\\:g;) @i|q>i>}> (2.1)

i£0

where E; and |®;) are the eigenvalues and eigenvectordiofespectively, and
a; = (®;|Vr). Therefore

that is, asn goes to infinity, the iteration converges to the groundestitthe
HamiltonianH, becausgt:—gé < 1 for large enoughh.

Starting from the power method, it is possible to define a nmaoke efficient
iterative procedure for the determination of the lowestagiate of Hermitian
matrices, known as the Lanczos technique. Indeed, witl@mptwer method, the
ground-state is approximated by a single state,|ibg) ~ G"|¥r), by contrast,
the basic idea of the Lanczos method, is to use all the infaomaontained in the
powersG'|¥r), withi = 1,. .., n to reconstruct the ground-stdt®,), namely

Do) ~ | > oH|D). (2.3)

However, the vectors generated by the power method are tinaigwnal, whereas
within the Lanczos method a special orthogonal basis istoacted. This basis
is generated iteratively. The first step is to choose anraryitvector|¥;) of the
Hilbert space, the only requirement is that this vector hasrazero overlap with
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the true ground-state. If there is @opriori information about the ground-state,
this requirement is satisfied by selecting random coefftsienthe working basis,
so that there is only a vanishing probability to be orthodotlidome information
about the ground-state is known, like its momentum, spintsoproperties un-
der rotation, then it is useful to initialize the startingct@r using these properties,
choosing a vector that belongs to the particular subspadgaednthe right quantum
numbers.

The Lanczos procedure consists in generating a set of atiayectors as
follow: we normalize|¥,) and define a new vector by applying the Hamiltonian
H to the initial state, and we subtract the projection guan

ﬁg‘\:[]2> = H‘\D1> — Oél‘\:[]1>, (24)
the coefficientsy, and /3, are such thatV,|V,) = 1 and(¥,|V,) = 0, that is:

ap = <‘I’1‘H|q’1> (2-5)
By = (ol H[Wy). (2.6)

Then we can construct a new state, orthogonal to the previoes as

ﬁ3|‘1’3> = H|‘I’2> - 042|‘1’2> - 52|‘1’1>7 (2.7)

with
Qo = <‘I’2‘H|‘I’2> (2-8)
Bz = (U3|H[Ws). (2.9)

In general the procedure can be generalized by defining ogwhal basis recur-
sively as
ﬁn+1|\1jn+1> - H|\Ijn> - an‘lpn> - ﬁn|an71>> (210)

forn=1,2,3,..., being|¥y) =0, #; = 0and

Boy1i = (Ypu|H|V,). (2.12)

It is worth noting that, by construction, the vectdr,,) is orthogonal to all the
previous ones, although we subtract only the projectionth@flast two. In this
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basis the Hamiltonian has a simple tridiagonal form

ar o 0 0
fo az  [3 0

H= 0 B3 a3 B¢ ... |,
0 0 0BG ay

and once in this form, the matrix can be easily diagonalizgediding standard
library subroutines. In principle, in order to obtain theaekground-state of the
Hamiltonian, it is necessary to perform a number of iteraiequal to the dimen-
sion of the Hilbert space. In practice, the greatest adgentd this method is that
a very accurate approximation of the ground-state is obthafter a very small
number of iterations, typically of the order of 100, depemgpon the model.
The main limitation of this technique is the exponentiahgrg of the Hilbert

space. Indeed, although the ground-state can be writtdnaagireat accuracy in

terms of few|V,,) as
~100

[Po) ~ > W), (2.13)

n=1
it is necessary to express the general vector of the Lancasis|l¥,,) in a suit-
able basis to which the Hamiltonian is applied. For exanfplethet — J model,
each site can be singly occupied by a spin up or down, or enptyis way the
Hilbert space needed for describe all possible configurdigcame enormous yet
for small lattice sizes requiring an huge computer memanyprhctice this prob-
lem can be alleviated by using the symmetries of the HaméatonFor example,
in the case of periodic boundary condition (the ones that sesin our work),
there is translational invariance and the total momenturthefsystem is a con-
served quantity. Moreover, in a square lattices also diseations ofr/2 and
reflections with respect to a particular axis are defined amdgive rise to good
guantum numbers.

In principle the Lanczos procedure, as described in Eq40§2(2.11) and
(2.12), can give information about both the ground-statrgnand the ground-
state vector. In practice, during the Lanczos matrix carsion, only three vec-
tors are stored, i.e|V, 1), |¥,) and|¥, ;) (by using an improved algorithm,
it is possible to store only two vectors), because each elenig ) of the basis
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is represented by a large set of coefficients, when it is exparn the basis se-
lected to carry out the problem. Therefore, it is not coneanto store all th¢l,,)
vectors individually, since this procedure would demandeary requirement
equal to the size of the Hilbert space times the number of t@msteps. A possi-
ble solution of the problem is to run the Lanczos twice: infihst run we find the
coefficientc,, of Eq. (2.13), in the second run the vectois,) are systematically
reconstructed one by one, multiplied by their coefficierd atored in|®).

Within Lanczos and Variational Monte Carlo method, it isfusé consider
not only theN x N cluster, but also other tilted square lattices, which haiesa
forming non-zero angles with lattice axes. In general itasgble to construct
square cluster witl, = [? 4+ m?, beingl andm positive integers. Only cluster
with [ = 0 (or m = 0) or [ = m have all the symmetries of the infinite lattice,
while clusters withl = m can have rotations but not reflections with respect to a
given axis. In our work we used tilded cluster witk= m as we will show.

2.2 Variational Monte Carlo

One of the most useful properties of quantum mechanics tsthieaexpectation
value of an Hamiltonia#/ over any trial wave functioh’) gives an upper bound
to the ground-state energy,

WHW) (2.14)

A (T

This can be easily seen by inserting the complete set of gentinction®;) of
H with energyF;

(Y|H|V) (D] D)2 [(@;| ) ?
EjE —F E:E-—E7>E. 2.1
(U|w) (0| 0) ot Z, (Ei = Ey) (wjwy =7 (2.15)

In this way, if we have a set of different wave functions, we choose the best
approximation of the ground-state by looking for the lonegbectation value of
the energy.

In general, due to the rapid growth of the Hilbert space whid lattice size,
the variational expectation values (2.14) can be calcdlatactly only for very
small clusters unless the wave function is particularlyariike e.g. a Slater
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determinant. On larger sizes only a Monte Carlo approachlvatuate Eq. (2.14)
is possible for correlated wave functions. In order to show Btatistical methods
can be used to calculate this kind of expectation values, useful to introduce
complete sets of statés) *in Eq. (2.14)

(UHW) o U Ho o (2)
(w[w) )

whereV (z) = (z|¥), H, ., = (2'|H|z), and for the sake of simplicity, we have
restricted to real wave functions. Defining tloeal energyFE, as

(2.16)

_ 1Y) )
E, = ) gw Hy o, (2.17)

Eqg. (2.16) can be written as

(WIH|W) 3, B V2 ()

(Tlw) 3, 0(x)
The local energyr, depends crucially on the choice of the wave functidn,
in particular, if|¥) is an eigenstate off with eigenvalueF, it comes out from
Eq. (2.17) thatt, = F, and the Monte Carlo method is free from statistical
fluctuations.

The evaluation of Eg. (2.18) can be done by generating a safMpbf N

configurationse; according to the probability distribution

E =

(2.18)

U2 (x)
P(x) = 2.1
) (249)
and then averaging the values of the local energy over tredearations
1
E~— E,. 2.20
I 2;( (2:20)

In practice, the simplest method to generate a set of couwfligms according
to the probability distributionP(x) is the Metropolis algorithm [100]: given a

1For example, for thepin — % Heisenberg model, in which each site can have an up or a down
spin, it is convenient to work in the Ising basis, whéteis defined at every site, i.e. a generic
elementis givenbyx) = | 1,1,1,7,1,7, ).

For thet — J model, each site can be singly occupied, by a spin up or domempty, and the
generic elementsreagls) = | 1,1,0,1,1,1,0,0,7,---).
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configurationr, a new configuration’ is accepted if a random numbgrbetween
0 and 1, satisfies the condition

e 2@ _ {\D(‘”/)r, (2.21)

otherwise the new configuration is kept equal to the old aher: x. We will
explain in some more details the Metropolis algorithm inftikowing subsection.

Here we wish to note that, by using the variational Monte @atlis possible
to calculate any kind of expectation value, over a given wawetion in a similar
way as what was done for the energy:

_ (Yjo) 3, 0.9%(x)

Oy TS e 2:22)

et @lOY) ()
|0\ W (2!
O, =—+= ——0y 4. (2.23)
(W) Z W(x)
An important point is that the only rigorous result is the apgppound to the
ground-state energy, and there are no criteria about theracyg of other prop-
erties of the ground-state, such(@s).

2.2.1 The Metropolis algorithm for quantum problems

We have seen in Section 1.5 that the general form of a coecklatve function is
constituted by a correlation term acting, in the fermiorase, on a Slater deter-
minant, i.e.|V) = P|D). In the following, we show how the statistical evaluation
of integrals containing the square modulus of this wave tionds efficiently im-
plemented.

The first step in the variational Monte Carlo algorithm caeisiin choosing
the initial coordinateq z;}, for the V particles on the lattice, either randomly
(with the condition that¥ (z)|* # 0) or taking them from a previous Monte Carlo
simulation. Then a new trial configuration:! }, is chosen by moving one of
the particles from its old position to another site. The Markhain is then con-
structed following the Metropolis algorithm, as shown veléor any move from
the n-th configuration of the Markov chaif;},, to the new trial configuration
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{zI},,, the latter is accepted, i.€.z;},1 = {«7 },, with a probability equal to:

v
P=min[l,R] with R= ‘ , (2.24)

V({zi}n)

whereV ({z;},) is the wave function of the system associated to the contigara
{z;},. Thisis done in practice by extracting a positive random berfi < n < 1;
if R > nthen{z;},., = {zI},, otherwise the proposed move is rejected and
{z;}n+1 = {z:}n. The calculation of the rati® would require, for fermions, the
evaluation of two Slater determinants, which scaléVds The fact that the two
configurations are related among each other by the dispkaceai one particle,
allows us to perform a more efficient calculation, which fermhions corresponds
to O(N) operations. Also the ratio among the correlation termst(dasfactors)
can be performed in an efficient way, taking into account tmdy one particle
changes its position.

After a certain number of steps, known as thermalizatioretithe configura-
tions {z;}, generated at each stepin the Markov chain are independent from
the initial condition{z; }, and are distributed according to the probability:

SN | 1C€203)
B S ey ({2

Notice that this algorithm does not require to know the ndrmation of the wave
function, since it always deals with its ratios over differeonfigurations. This
is a big advantage of Monte Carlo methods, since in geneeahtitmalization
constant is not known or it is difficult to compute.

Finally, the expectation valu@)) of any operato©O reduces to average over
the values assumed loy along theM steps of the Markov chain:

1 XM
0= ; O({x;}n), (2.25)

whereO({x;},) is the observabl® calculated for the configuratiofw;},. In-
deed the central limit theorem ensures that:
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where(O) is the true expectation value 6f calculated from the probability,.
The statistical error related to the fact that we are sargg@ifinite set of configu-
rations can be deduced from the variance:

One can show that the statistical error scales as the sqoateof the inverse
length A/ of the Markov chain, namely:

o*(0) ~ %02(0),

whereo?(0) = ((0O* — (0)?)) andr is the autocorrelation time, i.e., the number
of steps of the Markov chain which separate two statisidaliependent config-
urations. Therefore, for large enough samplings, the aeegaiantities calculated
with the Metropolis algorithm give reliable estimates oé tinue expectation val-
ues of the system. In order to calculate expectation valoesng uncorrelated
samplings, théin techniques usually employed. This corresponds to average
first among)M,;,, configurations, according to (2.25):

A[bin

> O({wiln) (2.26)

In this way the quantitie®)"™ are less correlated than the origir@({x;},).
Then, the calculation of the expectation value follows:

1 Nbin
O=—Y O 2.27
— Z " (2.27)

where Ny;,, = M/M,;,. In this way we getr ~ 1, henceO = (O) and the
variance can be evaluated in the standard way as:

2 1 R ~bin 2
o*(0) = N =1 ;(Oﬁ —(0)) (2.28)

2.3 The minimization algorithm

Consider the variational wave functiow(«)), wherea = {«y.} generally cor-
responds to the set of variational parameters for both thesledion factor and
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the Slater determinant/Pfaffian introduced in Section Tlse expectation value
of the variational energy can be written as:

(Ur ()| H V() _ 32, [(@[Yr(a))fer(@)
(W (a)[Ur(a)) 2 [{2[Ur(a))?

whereL, is the ground-state energy and the completeness refatiop) (x| over
all possible configurationsr) has been inserted. The quantitye (z) is called
local energyand is given by:

Er(a) = > E, (2.29)

(x| H[Vr(a))

er(z) = 2T (@)) (2.30)

Eq.(2.29) shows that the expectation value of the energgsponds to the mean
value of the the local energy; (z) calculated among all possible configurations
|z), each weighted according to the square modulus of the naedalave func-
tion. As shown in the previous section, this can be done stsidally by means
of a sum over the Markov chain in configuration space:

LM
= — ZeL(xn).
M n=1

Let us now explain how to vary the parameters= {«a;} in order to min-
imize the variational energy, following the stochasticamfiguration algorithm
introduced in [101]. To this purpose consider the startingl tvave function
|Ur(a)), wherea® = {a?} is the set ofy initial variational parameters (where
k =1,...p). 2 Inlinear approximation the new wave function, obtaine@mét
small change of the parameters, can be written as:

Ur(e) = |¥r(a +25a,ﬁ“1’a+k>>:
k=1
= |14 60x0x | [Wr(a)), (2.31)
k=1

where the operator®,, are defined for any configuratign) as the logarithmic

2For simplicity we indicate withz) the configuratio{z;} for N particles.
3In the following let us assume for simplicity thak 7 (a”)) is normalized.



2.3 The minimization algorithm 41

derivative of the wave function with respect to the paramsaig *:

Oln Vg (x)
= — 2.32
Ok() o (2.32)
andVg(z) = (x| Vr(a)). PuttingOy = 1, doyy = 1 we can write:
[Wr(a Z5Oék0k|‘IIT( °))- (2.33)

k=0

In generaldoyy # 1, due to the normalization df+(’)), and one can redefine
day = % for each variational parameter,. In order to find| V(o)) such
that it approaches the ground state, one possibility residprojection methods.
A standard procedure of projection methods corresponddténs Gut the exact
ground-state wave function by iteratively applying the Hliéanian operator to
the trial ground state. Therefore, we can apply plog&ver methodo the starting
wave function:

Tr(a®)) = (A — H)|[Wr(a)), (2.34)

where A is a positive constant, which ensures convergence to thengrstate.
The next step, in order to ensure thét-(«’)) has a lower energy with respect to
|Ur(a)), corresponds to equate Egs. (2.33) and (2.34) in the subgpanned
by the vectord O, |1 (a))}.

Combining the r.h.s. of Egs. (2.33) and (2.34) and projgdirem on thé'-th
component we get:

(Ur(a®)|Op (A = H) [Tz (a 25% U (a”)|OpOx|¥r(a”)).  (2.35)

In this way the quantitieda,, correspond to the variations of the wave function
parameters that lower the variational energy fotarge enough that the linear
approximation is correct. They can be calculated by solWglinear system of
equations of the type given in (2.35). It is a systen{;of- 1) equations, which
can be written as:

p
S = ZfSOékSkzk/, (2.36)
k=0

4For example ifo, = vy, i.€., the Jastrow parameter associated to the distartbe operator
Oy, is defined a®y (z) = >, nj()n;1r(2)
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where f,, are thegeneralized forces
fir = (Ur(a®) O (A — H)[Wr(a?)) (2.37)
andSy. isthe(p + 1) x (p + 1) positive definite matrix given by:
S = (Urp(a®)|Op Ok W7 (a?)). (2.38)

The system can be reduceditequations sincéq is related to the normalization
of the wave function. Indeed, considering Eq.(2.35)io 0, since we have put
Oy = 1in (2.33), the value of«, reduces to:

p
Sog = A — Ep(a®) = > dcSo- (2.39)
k=1
Substituting (2.39) in (2.35) we obtain the reduced systéagaoations:

p
fk’ = Z (SOék/Skk/, (240)

k'=1

where:

fi = (U (a®) Ok U7 () (W () [ H|Ur(a”)) — (W (a”)|OpH [V (a?))
(2.41)
and

S = S — SkoSwo. (2.42)

Notice that the forceg), correspond tof;, = %ﬁf). Since at equilibrium one has
fr = 0, implying doy, = 0, this corresponds to satisfy the Euler equations for the

variational minimum?
GET(a)

= 0.
80ék

Moreover, from the definition (2.41), the fact thAat = 0 implies that the varia-
tional wave function fulfills the same property of an exagegistate, namely:

(OcH) = (Or)(H), (2.43)

SThis is strictly valid in the case in which the Hamiltonianesanot depend on the variational
parameters, which is our case.
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which suggests a good accuracy of the variational statevéitsorespect to the
expectation values of the operat@rg.

Let us remark that the stochastic reconfiguration methoeig glose to the
steepest descent method. The main difference, which allews obtain a more
stable algorithm, is that the stochastic reconfiguratiothoe takes also into ac-
count the variation of the wave function. Indeed it is stdigrward to show,
by using the linear approximation (2.33), that Eq. (2.4@qdsivalent to the Euler
equation with the addition of a constraint related to themof the wave function,
namely:

0 [Er(a®) = A((¥r(a®)[Tr(a’)) — 1)]
da?
where) is a Lagrange multiplier that ensures that the norm of theviaee func-
tions does not differ of a large quantity. The fact that wedaange the parameters
of a large amount, without changing notably the wave fumgtadlows us to reach
the minimum in a stable way, with fewer iterations.

Indeed, in the stochastic reconfiguration algorithm, theati@nsda,, are re-
lated not only to the forces, but also to the inverse covadanatrixS—!, namely,
by writing Eq. (2.40) in vectorial notations:

=0, (2.44)

ba=57F.

The diagonal elements of the reduced covariance matri)2j@e direct infor-
mation about the fluctuations of the parametefs The fact that each component
of the force is multiplied by the inverse of the fluctuation®ws us to move
mainly along the directions where the variance of the cpoasing operatoO;
is small, i.e., where the signal-noise ratio is small. Thsids undesired instabil-
ities due to the fluctuations of the stochastic system. Maredhe presence of
non-zero off-diagonal elements; allows us to move each parameter by taking
into account all the other directions at the same time. Tbesewe reach the
variational minimum being driven not only by the high-eneagntributions, but
also by the parameters which contribute at low energy.

The equations (2.40) are solved stochastically with thetel@arlo algorithm.
In practice, we perform\/sz Metropolis steps in order to calculate the expecta-
tion values of (2.41) and (2.42) and have small enough fltictoss Then the
linear system (2.40) is solved in order to find the variationg. Finally, once
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the variationg{ oy, } are calculated, the variational parametgsg } are modified
according to:

/ 0
oy = o + Aday,

whereA is a number that can be tuned in order to control the chandeeqiaram-
eters. Generally one starts with a largein order to reach the minimum in few
iterations, and consequently is decreased in order to reduce the fluctuations of
the converged parameter. The new wave functiofa/)) is then considered as the
starting staté¥ (a)) and the method is reiterated, until convergence is achieved
Indeed, the stochastic nature of the system (2.40) imptiasthe forcesf;
are always determined with some statistical nojseand by iterating the mini-
mization procedure several times, even when the varidtiromamum is reached,
the parameters will fluctuate around their mean values. &ibex, once conver-
gence is reached, one must average over a certain numberations in order
to find the optimal parameters that are close to the energymmim. Indeed, in
the case of a quadratic energy landscape, the averagedgiararoorrespond to
the minimum energy. However, in many cases it is possiblat@ mon-harmonic
contributions, and the larger are the fluctuations, theslaigthe bias that is intro-
duced. Indeed, one can describe the evolution of the vamatparameters during
the minimization iterations by means of a standard Langdymamics. The sta-
tistical fluctuations are similar to the thermal noise of tlamgevin equation:

oo = fr + M, (2.45)
where the thermal noise is defined as:
<77k: (t)nk’ (t/>> - 2Tn0ise(5(t - t/)ék,k" (246)

By increasing the number of sampled configuratidhs,. diminishes, since the
fluctuations are reduced, namély,;,. M;é. Therefore, there is an optimal
value of Mg, which guarantees a fast convergence and avoids the panamet
to be biased within the statistical accuracy of the sampliNgreover, we find
that the optimall/sr also depends on the type of operat6lsincluded in the
minimization, hence on the type of variational parameteiset minimized.

It is possible to introduce another appropriate iteratisleesne for the mini-
mization of the energy, based on the variational technigaéih some case im-
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prove the stochastic schemes. Indeed, by using a very effisiatistical evalua-
tion of the first and second energy derivatives, it is posdibddefine a very rapidly
converging iterative scheme (the Hessian minimizatioa},tvithin the varia-
tional Monte Carlo, is much more convenient than the stahtlwton method.
We refer to the original paper [102] for a detailed descdptof this method.

2.4 Green’s Function Monte Carlo

2.4.1 Basic Principles: importance sampling

The Green'’s function Monte Carlo (GFMC) [103] is a stochagtchnique that
allows us to filter out the ground-stdtg,) of an HamiltonianX from a trial wave
function|¥), provided that W, |®,) # 0, by using the power method Eg. (2.1).

In practice we define a basis) (e.g. the spin configuration of the lattice) and
the iterative application of the Green’s functioh. , given by Eq. (2.1) reads

Vo (2) =Y Go o V(). (2.47)

On large sizes itis not possible to evaluate exactly thigngee equation. Indeed,
after few steps, the application 6f generates transitions to a very large number
of different states, implying a huge amount of memory octiopa Therefore an
alternative approach is necessary. The solution is to samal statistical way the
matrix-vector product (2.47) by defining a Markov process.

In order to implement efficiently the power method, it is cenient to consider
not the original matrixG, but the slightly more involved non-symmetric one

= \Ijg(xl)
Gy o= ——Gp, 2.48
3 qu(I‘) 5 ( )

whereV () is the so-calledjuiding wave functionThe convenience of using
instead ofG comes out from the following argument. If we considgrthe local
energyFk, is given by

\Ifg(l’/) —
B = H., = H. ... 2.4

Thus if U¢(z) is exactly equal to the ground-state Bfthen £, = E,, indepen-
dently onz. This is the so called zero-variance property, namely ifgba&ling
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wave function approaches an exact eigenstaté ofhe method is free of statis-
tical fluctuations. The guiding wave function has to be agptnas possible to
be efficiently implemented in the calculation of the matremeents and as close
as possible to the ground-state@f Moreover, it is easy to show that &;(x)

is an eigenvector ofr with eigenvalueF;, then¥ . (x)®;(z) is an eigenvector of
G with the same eigenvalue, i.€& andG have the same spectrum. It is worth
noting that, after the importance sampling transformafiba8), the iteration step
(2.47), reads

U (2)Wa(a!) =) Gor o V(1) V(). (2.50)

For simplicity, from now on the bar over an operator représéime same operator
after the importance sampling transformation.

2.4.2 Statistical implementation of the power method by the
many walker formulation

In order to define the statistical implementation of Eq. (2,5%ve decompose the
matrix Gmg in terms of three factors:

G:c/,:c - Sx’,xpx’,xb:m (251)

wheres,, , is the sign of?xx,x, b, Is a normalization factor ang, ., is astochastic
matrix, i.e. it fulfills the condition,/ , > 0 and)_ , p,/, = 1.

The basic element of the stochastic process ismakker, which, in the sim-
plest formulation, is defined bz, w), i.e. by its configuration in the latticeand
by a weightw. Stochastically, the iteration (2.50) is interpreted asaagition of
the walkerr — 2/, whereas the weight of the walker is scaled- ' = s,/ ,b,w.
This scheme defines a Markov process in the walker spaee). The basic idea
of the stochastic implementation of Eq. (2.50) is that, @ltih the number of
non-zero elements af,. ., is of the order of the Hilbert space times the num-
ber of sites, the number of non-zero entries in each colunontise order of the
number of sites. Therefore all the non-zero elemen@_pyfr for a fixedx can be
computed, even for large size systems.

The previous Markov iteration allows us to define the evoluif the proba-
bility distribution P, (w, x) to have a walker with weight) and configuration,
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namely:

/
Po(w',2") px *P, ( v ,x). (2.52)

bySy »

The first momentum of the probablllty distributia®, (w, z) completely deter-
mines the wave functiof,, (z) of the power method (2.1)

U, (2)¥q(x) = /dwan(w,x). (2.53)

Indeed, it can be easily seen that the evolution (2.52) ctiyreeproduces the
dynamics of the wave function, Eq. (2.50). Therefore, adieequilibration, the
probability P, (w, z) converges to its equilibrium limif*(w, x), which defines
the ground-state wave function

Op(z)Vg(z) = /dwa*(w,x). (2.54)
Therefore, the ground-state energy is given by

(Vo |H| Do) Dy Horw [ dww Py(w, )
(W[ Do) >0 J dww Po(w, x)
Using the fact that the local enerdy, = >, Hxx we have that the ground-

state energyr, can be computed over a sampleof independentV values of
configurations

By = (2.55)

Z(w,x)GX why,
Z(w,a:)EX w
In addition, within the same Monte Carlo sampling, it is gi&ssible to calculate
the so-callednixed averagefL03] of arbitrary linear operator®,

(Ve|O]D0)

(We|®o)
In fact, such mixed averages can be calculated using Ed)(Byssubstituting the
local energyF, with the local estimator associated to the operatpnamely

0r =Y Ouwa. (2.58)

(O)ia = (2.57)

whereQ,. , are the operator matrix elements transformed accordirggtguiding
wave function.
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In the practical implementation of the method, since thekesmlveights grow
exponentially with the Markov iteration, the procedure fbe statistical eval-
uation of the ground-state energy and the mixed averagdglslg different.
We can consider that, after many iterations, the configomatj generated in the
Markov process, is distributed according to the maximurhtrgjgenstate of the
matrix p, .. This state is different from the stafe;(x)®,(z) we are interested
in, and we can consider it as a trial state in the power metAbdny Markov iter-
ation we can compute the weight of the walker assumingth&grations before
it was equal to 1. In this way the ground-state energy is gbsen

E,, GE
B, = Zi e, (2.59)
where
L
o | . (2.60)
j=1

In principle, the previously described procedure is fremfrany approxima-
tion, and, it gives exact results within the statisticabesr Unfortunately there are
two main technical problem. The first one is that the weightgrows exponen-
tially by increasingl, implying a divergent variance in the energy average. lddee
GL is a product off different factors and it can assume very large or very small
values. This problem has a simple solution by consideriegGRMC technique
with many walkers and by introducing a reconfiguration scegwhich enables
to drop out the irrelevant walkers with small weights. Calie@nand Sorella [104]
have introduced a reconfiguration scheme working at fixedbarraf walkers, in
a way that allows us to control the bias due to the finite watlkgrulation, which
we will describe in the following.

The second problem is much more serious and it is relatece®igh problem
It is due to the fact that the average sign,

>0 G
(sp) = S GE (2.61)
vanishes exponentially with. Indeed walkers with positive and negative weights
cancel almost exactly, giving rise to an exponentially $rgahntity to sample,
with huge fluctuations. In the following section we will inttuce the fixed node
technique that is an approximation that allow us to avoidsiga problem.
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Let us focus on the first problem and, in order to show how theméguration
scheme works, let consider a case without sign problemwiith s,/ , = 1. We
considerM walkers and label the corresponding configurations and heigith
a couple of vectorgx, w), with each componerts;, w;), ¢ = 1,..., M corre-
sponding to theé'* walker. It is easy to generalize Eq. (2.52) to many indepahde
walkers

/ : hxy oo Pl ey
Pon(w,x)= S P, (;”_1 o Z"M) pzlél 72 I (0 6D)
T TN 5 M

T1yeesTM

Again, the wave functio®,,(x) is completely determined by the first momentum
of the probability?, (w, x), namely
Y Wile s,
¥, () ¥e(a) = [ fdw] > E R ) (2.69
If the evolution of P,,(w, x) is done without any restriction, we have that each
walker is completely uncorrelated from the other

Puw,x)= [] Pulwsz). (2.64)
In order to prevent the divergence of the weights, we definecanfiguration
process that changes the probability distribution withchiinging its first mo-
mentum, i.e. the wave function:

P(w' x') = /[dw] ZK(W’,X/,W,X)PH(W,X), (2.65)

where the kerneK (w’, x’, w, x) is given by

’o ! " Zj wj(sl”é@j / 1
K(W,X,W,X)—;l_[l ( S, )5(@02- M;w]), (2.66)
where the symbo|[dw] indicates thel/ dimensional integral over the, vari-
ables.

In practice this reconfiguration process amounts to geaexatew set of\/
walkers(x’, w') in terms of the old\/ walkers(x, w) in the following way: each
new walker will have a weighth = % Zj w; and a new configuration; among
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the possible old ones;, chosen with a probability; = w;;)/ >, wi. After this
reconfiguration scheme, all the new walkers have the samghivand most of
the irrelevant walkers with small weight are dropped out.ré&twer it is easy to
show that this kind of reconfiguration does not change therfimmentum of the
probability distribution [104].

2.4.3 Fixed node and Gamma Correction

When the weights of the walkers are not all positive it is glsvaossible to de-
fine the transition probability for the stochastic procdas, even if the Markov
process converges to a probability distribution which detees the ground-state
wave function, calculations are unstable due to wild cdatiehs between posi-
tive and negative weights. It is then necessary to consml®eskind of approx-
imation. The most popular one is the fixed node (FN) approtong105]. In
this approach an effective Hamiltonian is defined, starfiogh /7, by adding a
perturbationO:

Here we follow [106] and introduce the external parametethe original FN

approximation [105] being recovered for= 0. The operato© is defined through
its matrix elements and depends upon a given guiding fum¢fio, which in our

case is the variational stat® ;¢ ):

— Iy x if x’x:qj:c’ :c’:cqj:c>0
Omz{ =2 t Sa, 2 (2.68)

‘I’y /I
Zy,sy,po Hy,w\p—m for ' = x,

where¥, = (x|¥). One have to notice that the above operator annihilates the
guiding function, namely | W) = 0. Therefore, whenever the guiding function is
close to the exact ground state’kfthe perturbatior{1 + )O is expected to be
small and the effective Hamiltonian becomes very closeeamtiginal one.

Let us review the properties of the FN Hamiltonian in thisesole. Trivially,
for~v = —1, Hsz coincides withH, as the perturbation vanishes. The most im-
portant property of this effective Hamiltonian is that fpr> 0 its ground state
|W{) can be efficiently computed by using the Green’s function Md@arlo tech-
nique [103, 104] (becauS}erf is free from the sign problem), which allows one



2.4 Green’s Function Monte Carlo 51

to sample the distributiofl, o (z|¥)(z|¥]}) by means of a statistical implemen-
tation of the power methodI « lim,,_.., G"II°, wherelI" is a starting distribu-
tion andG,r , = V(2')(Adw o — H 4,0 .)/ ¥ (2), is the Green's function, defined
with a large or even infinite [107] positive constantd, , being the Kronecker
symbol.

The statistical method is very efficient for > 0, since in this case all the
matrix elements of> are non-negative and, therefore, it can represent a tran-
sition probability in configuration space, apart for a nolizetion factorb, =
> G . In this case, it follows immediately that the asymptotistdbutionII
is also positive and, therefore, we arrive at the importanttusion that fory > 0
the ground state dHfo has the same signs of the chosen guiding function.

Within the FN approximation, we have a direct access to tbhermpl-state en-
ergy E}, of the effective Hamiltonian by sampling the local energyz) =
(x|H|¥)/(z|¥) over the distributioril,. In the following, we will denote the
standard FN energy foy = 0 simply by Ery. It should be noted that, since
O|¥) = 0, we have thatr}.  is also the mixed average of the original Hamilto-
o (VM) (o)

By =" 2 = o (2.69)

(Wg|W) (W|wg)
E7. gives a rigorous upper bound of the exact ground-state grigyg= E}}*l
since it is an increasing function ofas the operato® is positive definité® and
by the Hellman-Feynman theorem:
dE] _ d{H. ) _ <dHfo> —(0) >0, (2.70)

dry dry dry
here(...) indicates the expectation value ov&r]). This upper bound is also
certainly below or equal to the variational energy of thediyug functionE =
(W|H|¥)/(¥|P), since fromO|¥) = 0 it follows that £ is also the expectation
value of the FN Hamiltonian ovew), namelyE = (W|H] [W) /(¥|V).

One of the advantages of having introduced the parameiethat it is pos-
sible to extract the expectation value of the original Héonilan over the FN
state| V). Indeed, by applying Eq. (2.70), we have that:
d(H.sy)

dry

5This has been shown in [105], by proving th@{O|®) > 0 for any wave function®)

E\%O =(H) = <Hfo> —(1+7)
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dE} N
dy ’

and therefore, by doing simulations for different valuesyab calculate numeri-
cally the derivative, it is possible to evaluate the expimtavalue of H over the
ground state of the FN Hamiltonian. Moreover, by using thieniteon (2.71) and
the fact that&}.  is a convex function [106], it turns out that:

dE},

dy
namelyZy, is monotonically increasing with. A practical estimate oE}UjO, the
best variational energy that can be obtained within a ststhléstical method, can
be worked out by performing two calculations fpr= 0 andy = 5 > 0 via:

- 1 -
Ejp;o = FErny — =(E}y — Ern). (2.73)

= Epy—(1+7)

(2.71)

d*E}
dv?

= —(1+7) > 0, (2.72)

E};O certainly improves the standard FN upper bound of the enargy still
E3.-0 > Ey-°. This latter inequality follows from the convexity éf}. ., implying
that its first derivative ay = 0 is certainly larger or equal than the corresponding
finite difference estimate. In order to obtain a compromisgveen having small
enough statistical errors and a reasonable energy gainresgect to the mixed
average of Eq. (2.69), we have computeg® usings = 1 for obtaining our
results that we will show in the following chapter.

2.4.4 Forward walking technique

The GFMC technique can be used with success to compute atstation func-
tions on the ground-state df. In particular, it is simple to compute expecta-
tion values of operators that are diagonal in the workingshas thatO,, ,, =
d..(x|O|x). By using GFMC, the configurations of the walkers are disitil
as¥q(x)®(x), however, in order to compute

(0) = {Tulolte)

0lWo)

a further work is required. To this purpose, the desired etgi®n value is written
as

(2.74)

(0) = lim (LalHYOHN|¥)
NN (U HNFN )

(2.75)
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From a statistical point of view, Eq. (2.75) amounts firstample a configuration
x after N’ GFMC steps, then to measure the quantity)|x), and finally to let the
walker propagate forward for furthe¥ steps. In order to evaluate the stochastic
average, an approach similar to that done for the energyssiple. In this case

we have:
>, 0"G

2 Gh
whereO" is the average over the walker population of the operétat the gen-
erationn, i.e. O" = % Zj 07, being O} the value of the operata® on the
configurationz; of the ;' walker at the iteratiom, and

(0) = (2.76)

L—1
Gh= ] @ (2.77)
j=—N

Notice that the correcting factoiG% are different from the case of the energy.
Indeed, in this case&;~ contain a further propagation &f steps as compared to
the previous expression.

A further condition is necessary in order to control the biashe forward
walking technique. The set of measured val@swith weight factors given by
Eq. (2.77) has to be modified after each reconfiguration @®oecurring in the
forward direction. In practice after each reconfiguratiore have to bookkeep
only the value®)? of the observable that survive after the reconfiguratioreréh
fore, after each reconfiguration)” = O;;), fori = 1,..., M and the function
j(i) describing the reconfiguration scheme has to be computedwaitker with
indexi assumes the configuration with indg) before the reconfiguration.

In order to implement recursively the forward walking, ituseful to store
at each reconfiguration the integer functigi) for each reconfiguration and
the value ofO? of the operator for each walker. Then it is possible to coraput
the relevant configurations contributing to the oper&iafter N reconfiguration
steps by recursive application of the integer functjpf).






Chapter 3

Phase Separation in theD t—J
model

3.1 Introduction

The possible existence of charge and spin inhomogeneitgethair relevance for
the low-temperature physics of cuprate superconductadasg-standing prob-
lem, not yet completely clarified [26, 108]. In particulanetissue is twofold:
on the one hand, one is interested in understanding the ih@rgg behavior of
microscopic models and the possibility to have or not inhgereous phases in
physically relevant regions; on the other hand, it is alspantant to clarify the
possible relation between charge or spin inhomogeneitidglze electronic pair-
ing, which may lead to a high critical temperature for supeductivity.

The original interest in the role of these inhomogeneitiated back to the
works by Emery and Kivelson [5, 44] and raised when neutraitedng ex-
periments [109, 110] suggested the possible formation atlgoting hole-rich
regions separated from hole-poor ones with strong antifieagnetic moments.
Indeed, in most materials, the presence of a true phaseatigpa(PS) instability
is ruled out by the existence of the long-range Coulomb fonee¢ prevents the
charge from accumulating in macroscopic regiénesnly allowing the possibility

To our knowledge, the only cuprates superconductor shoR®Bigs La;CuO, s, due to the
presence of mobile apical oxygens atoms that can screendbi@b potential of the mobile
charges in th&€'uO, plane [46].
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to have a mesoscopic charge segregation, i.e. charge ylevesies (CDW) or
the celebrated stripes. In the last decade, a great numlgérest and indirect
pieces of evidence for such charge segregation have besanpeel in different
cuprate and nickelate materials, stimulating theoreiivastigations in simple
microscopic models [26, 108]. Several authors addressegadssibility of the
emergence of PS or CDW generating from the competition benwbe kinetic
energy, which tends to delocalize charge carriers, anawariocal interactions
(like, for instance, the on-site Coulomb repulsion, thefambmagnetic superex-
change, or the coupling with some local phonon), which edteend to freeze
electrons. Given the complexity of the strongly correlapedblem, which con-
tains different energy scales, it is very difficult to stutlty ground-state and low-
energy properties. For instances, by considering meaah-digroaches it is very
easy to overestimate the tendency of charge segregatida-I14]. In this re-
spect, a great advantage of the variational Monte Carlo (Y#Chnique is that
it allows one to consider highly correlated wave functiombkich are well beyond
a simple mean-field ansatz [68, 115, 116]. Then it would bg waportant to
compare the validity of the ansatz considered with exactigestate properties
on fairly large system sizes, since the variational apgroaay fail, especially for
low-energy properties. This comparison is possible onfypfisonic nonfrustrated
models by means of quantum Monte Carlo (QMC) projectionregles, but for
fermion systems the so-called sign problem prevents ome feaching the exact
zero temperature properties in a stable way. Neverthelesg,well-established
and efficient approximate approaches are known for fermisystem that consid-
erably improve the quality of a given variational guess. iRstance, the so-called
fixed-node (FN) method, that we have described in detail@ypttevious chapter,
allows one to obtain the lowest-energy state constrainédve the same signs of
a given variational wave function. Therefore, the FN sch@mwides a simple
procedure to assess the stability of a particular varialiarave function, its accu-
racy being related to the differences between its proedie the ones obtained
with the improved FN state.

In this chapter, we will revisit the problem of the PS instépiin the ¢t — J
model on the square lattice. This issue has been largelyidemes by several
authors in the recent past [78, 117-122]. Although a grdattdfas been done, a
general consensus fdy't < 0.6 and small-hole doping is still lacking.
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For very large//t, at small hole doping, the ground state is phase separated be
tween undoped regions, with long-range antiferromagreeticelations, and con-
ducting hole-rich regions. The simple explanation is basedhe fact that the
magnetic gain in accumulating the holes in a given regiorpats is much larger
than the loss of kinetic energy. Therefore, a phase-segzhsste will have a lower
energy than a homogeneous one. By decreagjitgthe situation is much less
clear, since the magnetic gain becomes comparable withitieti&one. Emery,
Kivelson, and Lin [44], by using simple variational argurtgrclaimed that the
ground state of thé — J model should phase separate for all values of antifer-
romagnetic coupling/ and close to half filling. This claim was first confirmed
by using a more sophisticated Monte Carlo technique [11@]{Hen disclaimed
by other authors, using slightly different Monte Carlo aggwhes and series ex-
pansions [119-122]. In particular, Calandra, Becca anélBgishowed that, by
filtering out the high-energy components of a projected B@8enunction, it was
possible to obtain a homogeneous ground state/for~ 0.4 [121]. Later, this
approach was questioned in Ref. [123], since it was notedhleaground state is
still unstable against PS for very small hole doping, whieesdrevious variational
ansatz had technical problems. In particular, it has beewsthat Monte Carlo
results could indicate an instability for < 0.05. Moreover, it was disappoint-
ing that it was not possible to define a stable variationaleMawnction and that a
homogeneous state was obtained only after the filteringgohee. From all the
calculations done by different numerical techniques, asv clear that, in any
case, the — J model forJ/t ~ 0.5 is on the verge of charge instabilities and both
PS or CDW can be stabilized with small perturbations [124}12

A key issue that was absent in the previous calculations arst be included
in a correct description is the presence of antiferromagregtrrelations at low
doping. Recently, by using a variational approach thataostboth antiferro-
magnetism and/—wave pairing, lvanov [78] suggested that antiferromagnetic
ordering could enhance the instability towards PS. Howewdris approach, the
presence of an antiferromagnetic order parameter in thmiéeic determinant
without the presence of a Jastrow term to take into accountfituations im-
plies a wrong behaviour of the spin properties at small mdmenhich in turn
could also induce incorrect charge properties. In fact, §ing, a spin-wave ap-
proach for the Heisenberg model, it has been shown [99] thagxaeptionally
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accurate description of the ground state is obtained byyapph long-range spin
Jastrow factor to the classically ordered state. In theesponding variational
wave function, it is important that the Gaussian fluctuatimuced by the jastrow
term are orthogonal to the direction of the order paraméatesrder to reproduce
correctly the low-energy excitations. A simple generdlaa of this wave func-
tion was used to study the Hubbard model at half filling andderdoping [127].
On the other hand, it is well known [96, 128, 129] that a prgdcBCS state
with d,._,» symmetry and no antiferromagnetic order provides an atewave
function for the low-doping region of the— J model and remains rather accurate
in energy even at zero doping, where a magnetically orderedingl state is well
established in two dimensions. Therefore, in order to havacaurate variational
ansatz to describe lightly doped correlated insulatorse@ms natural to include
both antiferromagnetic correlations and electronic paifL30].

Following these suggestions, we construct a very accurat@tional wave
function that describes an energetically stable homogenpbase. Moreover, by
considering the FN approach, we have strong evidence irufavba homoge-
neous ground state fof/¢t < 0.7 for all accessible hole doping.

Our results give support to the RVB description of the supedeticting pairing
solving an old debated question rised long time ago. Fromsuthe Kivelson
and collaborators were convinced that superconductiveiydnCDW or stripes,
which give the origin of pairing. In contrast to this argurh&ice and Anderson
supported the idea that the J model can show HTSC also with a homogeneous
phase, supporting in this way the idea that the origin ofipgimust be addressed
to the RVB state. Our results show one more evidence that i $kate gives
the correct way for describing the properties of the HTSC.

This chapter is organized as follow: first of all we will pres&ow is possible
to study in a simple way the PS problem starting from the Mdkeanstruction;
after that we will present our improved variational wavedtion; and at the end
we will show our numerical results and finally we will draw azonclusions.

3.2 Maxwell construction for Phase Separation

Let us enter a little bit more in detail in the problem of a #nitumber of holes in
an antiferromagnetic background. At finite hole doping ¢hisrcompetition be-
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tween the kinetic energy, which favors a homogeneous ditedsstate, and the
interaction energy, which favors an inhomogeneous loedlstate. This competi-
tion may give rise to strong charge fluctuations and evelyttmphase separation
or charge density waves.

In order to gain insight into the possible charge inhomogeasain the lightly
dopedt — J model, it is instructive to consider the case of two holes &ng .
In this limit the kinetic energy can be neglected, and thegnef a state with two
widely separated hole I8 = F, — 8 B.J, whereE, is the energy of the uniform
antiferromagnetic background argl is the antiferromagnetic energy per bond.
By contrast the energy of a state with the two holes clustévgdther to form
aparisk = FEy — 7BJ (see Fig. 3.1). A similar argument hold for a finite
number of holes and therefore this simple variational datcan shows that, for
very large values of, the state in which the holes are segregated, leaving the res
of the system undoped, is favored over the uniform one. Atdihthe loss in
antiferromagnetic energy competes with the gain in kinetiergy, and it is not at
all obvious if the homogeneous state should have higheggreemot.

@) £ 2 l (b) £ A
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Figure 3.1: Two holes in an antiferromagnetic backgroundhé.J > ¢ limit, the
energy loss with respect to the ordered state is given by euawiibroken bonds.
If the holes are apafi) the energy loss i8B.J whereas if they form a clustéb)
itis7BJ.

In the thermodynamic limit, the compressibility of a stagystem is finite and
positive. Since the compressibility can be related to tluvoise derivative of the
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energy per site(d) with respect to the doping density

—(55) 31)

it turns out that, in an infinite system, the stability criten requires that the en-
ergy per site is a convex function of the density, see Fig. (3)2 By contrast,

if the compressibility is negative, the system phase ségmrae. it creates two
macroscopic regions with densitiés andd . In this case, the energy of the ho-
mogeneous state can be lowered by forming two separatechewgiith different
densities, being the total energy given by the Maxwell cmasion, see Fig. 3.2
(b).

In Ref. [44], a very clever way to detect phase separationsoygienergy cal-
culations has been suggested. Assuming that, at a fixed dplagh, the system
is composed of a hole-free and a hole-rich phase, with demsiand assuming
that the volume is large enough that the surface interaci@nbe neglected, the
energy per site can be written in the form

e(d) = mine(d, z) = min { <1 - &) eo + &ex} , (3.2)
x x L L
where L is the total number of sited,, is the number of sites in the hole-rich
phaseg, is the energy per site of the Heisenberg (hole-free) phaske ais the
energy per site of the uniform hole-rich phase, which is afiom of z = N}, /L.,
with N, number of holes, finally the hole density of the total system+ N, /L.
For fixed values ofV, and L, i.e. for a given doping, (4, x) is a function of
L.. The system phase-separatesg(if, ) has a minimum as a function @f, at

L, < L. The energy per site can be rearranged into the form
e(6,x) = eg + de(x), (3.3)

where

e(x) = ; (3.4)

is the energy per hole in the uniform hole-rich region. Tiemephase separation
occurs ife(x) has a minimum at finite;, see Fig. 3.2¢) and(d). It is worth
noting that, in the thermodynamic limit, if the system phasparates;(z) is a
flat function ofz for 0 < x < J., whereas, in a finite size lattice, due to surface
terms,e(x) can be slightly convex.
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Figure 3.2: Energy per site landscape versus doping forldesta) and a phase
separatedb) system. Energy per hole versus doping for a stéabl@nd unstable
(d) system. The dashed line is the Maxwell construction.

In their work, Emery and co-worker [44] claimed that, at lowpihg the

ground-state of the — J model is phase-separated for all the interaction strength

J. Their statement was supported by an exact diagonalizatioam small lattice
cluster and by a variational calculation fér< ¢t. Although the exact diagonal-
ization results give insight into the physical propertiéthe cluster under consid-
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eration, for fermion systems it is impossible to consideesiwith more thai32
sites and, for such small lattices, any size scaling in moae bne dimension is
highly questionable. Since the phase separation is a lawgength instability, it

is crucial to consider large systems. Moreover, on smdltkand for low doping

it is not easy to distinguish between phase separation andgaFor example,
for a16-site lattice, the clustering of two holes can represent lpairing or phase
separation at a doping of~ 0.12. Therefore, calculations with larger cluster size
are needed.

By using quantum Monte Carlo and series expansion techsjgaveral au-
thors have addressed the problem of finding out the critighlez/. above which
there is phase separation at low doping inthe J model [117-124, 131]. Al-
though there is no general consensus on the valuk,ghost of the calculations
agree that is betweet5¢ and 1.2¢. Different quantum Monte Carlo calcula-
tions [119-121, 131] agree with.& ~ 0.5¢, by contrast in Refs. [118, 123] it
was found that there is phase separation at all the interastrengths. These dis-
crepancies are probably due to the fact that in the lattek W different dopings
are not achieved by varying the number of holes while keepheglattice sizes
constant, but by varying the lattice size while keeping tbenher of holes con-
stant. Although this procedure probably overcomes thelprob of having shell
effects, it forces one to use fairly small size in the dekdatv-doping region.

3.3 Thet — J model: variational approach

Thet—J model is defined by:
t 1
H=—tY (dociothe)+IY (S-S~ ). (35)
(i,j)o (i,9)

where(...) indicates the nearest-neighbor siteléd (ci») creates (destroys) an
electron with spinr on the sitei, S; = (S7, 57, S7) is the spin operators?® =

123, o Cg,aﬁffa/ci,a', being7® the Pauli matrices, and;, = c}aci,a is the
density operator.
We consider a square lattice with sites and periodic boundary conditions

rotated by 45 degrees such that= 2/? (tilted square lattice)] being an odd
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integer, so that the non-interacting ground state is nagederate at half fill-
ing. Finally, J is the antiferromagnetic exchange constant atide amplitude
for nearest-neighbor hopping. In the following we will take- 1.

3.3.1 \Variational wave function: RVB projected WF

As pointed out by Gros [68], a very good variational wave tiortin the low
doping regime is given by the projectéd- wave BCS state

W3y s) = PrPalli (1+ fich i) 10). (3.6)

WherePy projects onto the subspace@fparticles,P is the Gutzwiller projec-
tor, which completely forbids doubly occupied sites, gpds the pair amplitude
given by

Ay
& + &+ Ai’
with A, = A(cosk, — cosky) , & = —2t(cosk, + cosk,) — pu, A being a
variational parameter andthe chemical potential.

The non-projected wave function (3.6) can be obtained agrinend-state of
the mean-field Hamiltonian

Jr

(3.7)

Hpcs = Z &gc,lgck,g + Z Ay [CLTCik’l + h.c.] ) (3.8)
k k

It is worth noting thatf; is highly singular for al—wave superconducting order
parameter: it diverges along the diagonal directions¢fok 0, i.e. inside the

bare electronic Fermi surface. Therefore, it comes out thatwave function

(3.6) is ill-defined on every finite cluster containihg points along the diagonal
direction. In order to avoid these singularities, it is us¢d perform a particle-

hole transformation on down-spin

di = (—1)fcl | (3.9)

Ci = Cig (310)
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where R; is the lattice’s position of thé' particle. After this transformation,
the average number of electronsis related to the difference betweerandd
particles as follows

N = Z( Tcm lcll) L+Z<ccz de)) (3.11)

whereas the average magnetization is given by

M= Z(mczT Zlczl>——L+Z<ccz (didy)).  (3.12)

After the particle-hole transformation, the wave funct{@r6) can be written as

Wy p) = PnPolly (udeQ + UkCL> 0), (3.13)

wherePy and P are the particle-hole transformed projectdts and P, re-
spectively, whileQ) = (7, 7).

_ |1 &k

[Ag| |1 Ek
v =—4|=1— 3.15
b v\E vy (3.15)
and|0) is the vacuum of: andd particles, i.e.c,|0) = di|0) = 0, defined by
0) = de,t\0>. In this case the singular points are occupied by the pestidt is
worth noting that, if the magnetization is zero, the syste@ways at half-filling.

In order to improve this variational wave function, one cad & the wave
function (3.15) a density-density Jastrow factor [132]

1
Jq = exp (5 Z u,»jnmj> ) (3.16)
i,

Therefore, at the end the variational RVB projected wavetion reads

[hie) = Jal PRy 5)- (3.17)
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This wave function will be used in the following and represethe best non mag-
netic wave function at finite doping. In the next section, wk describe how to

introduce antifferromagnetism (AF) and obtain a very aateiwave function in

the low doping regime.

3.3.2 Improved variational wave function: PfaffianWF

Our improved variational ansatz is constructed by apphdifterent projector
operators to a mean-field state:

(U3 = TP PelUarr), (3.18)

where, P is the Gutzwiller projector that forbids double occupie@sjPy is the
projector onto the subspace with fixed numbeAfbparticles,7; is a spin Jastrow

factor
= exp ( Z UUSZSZ> (3.19)

beinguv;; variational parameters, and flnalmi is a density Jastrow factor

= exp ( Zu”n,nj> , (3.20)

beingu;; other variational parameters. The above wave function eafficiently
sampled by standard variational Monte Carlo, by employimgrelom walk of a
configuration|z), defined by the electron positions and their spin components
along thez quantization axis. Indeed, in this case, both Jastrow temas/ery
simple to compute since they only represent classical vigigtting on the con-
figuration.

The main difference from previous approaches is the presefithe spin Jas-
trow factor and the choice of the mean-field staltg; ), which includes both su-
perconducting and antiferromagnetic order parametersuay, |V, ) is taken
as the ground state of the mean-field Hamiltonian

H]WF = Z tiJ (C;UC]'J + hC) — K Zni7a
%,J,0 1,0

+Y A (cZTc;l +che |+ h.c.) T+ Hap, (3.21)
(4,9
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where, in addition to the BCS pairing; ; (with d-wave symmetry), we also con-
sider a staggered magnetic field, » in thez—y plane:

Har = Aap Y (1) (CI,TCi,L + CI,&‘J) : (3.22)

whereA 4 is a variational parameter that, together with the chenpo&éntialy
and the next-nearest-neighbor hopping of Eq. (3.21), casrebsrmined by mini-
mizing the variational energy dft (3.5). This kind of mean-field wave function
was first introduced by Bouchaud, Georges, and LhuillieB]l&hd then used to
study3He systems and small atoms and molecules [134, 135]. Recénligs
been also used to study the.J model on the triangular lattice [136]. However,
in these approaches the role of the long-range spin Jasacarfwas missed. We
emphasize that, in the mean-field Hamiltonian (3.21), thgma#c order param-
eter is in ther—y plane and not along thedirection like:

Har = Aap Z(—l)Ri <C;[7TCZ'7T — c;lcm) . (3.23)

Indeed, as already mentioned at the beginning of this chapily in the case of
Eqg. (3.22), the presence of the spin Jastrow factor (3.19)irdaoduce relevant
fluctuations over the mean-field order paramelgy-, leading to an accurate de-
scription of the spin properties. By contrast, if the Jastpmtential is applied to
the mean-field ansatz (3.23), it cannot induce correct spatufations and it is not
efficient in lowering the energy.

Finally, as already shown in Ref. [96], the presence of thesig Jastrow
factor helps to reproduce the charge correlations of themgmducting regime,
giving rise to the correct Goldstone modes.

The mean-filed Hamiltonian (3.21) is quadratic in the femntcoperators and
can be easily diagonalized in real space. Its ground statéhleageneral form:

|Wprr) = exp Z UZU] jazc}’aj |0}, (3.24)

ZJU,LU]

0,05

the pairing functlonf‘“‘” being an antisymmetri¢L x 4L matrix, i.e. f;
—f;j 7. Notice that in the case of the standard BCS Hamiltoniarh WLF =0
or even withA , along z, we have thats! = f*' = 0, while in presence of
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magnetic field in the:—y plane the pairing function acquires non-zero contribu-
tions also in this triplet channel. The technical difficwiten dealing with such

a state is that, given a generic configuration with defigitdmponent of the spin
lz) =¢l ...l 10), we have that:

11,01 " ViN,ON

fLT g
(@|Wnr) =PfIF]=Pf ( foT flfl ) , (3.25)
ij ij
where P f[F] is the Pfaffian of the pairing function. See the Appendix,rfare
technical details on the Pfaffian and how it is used for desasur new variational
wave function. It should be noticed that, wheneygr = f+' = 0, the usual form
of (x| Wy, ) written in terms of a determinant is recovered.

The fact of dealing with Pfaffians makes the algorithm slothien the case of
determinants, but the important point is that the algebiafaffians still allows us
to have a very efficient updating procedure in the Monte Cealoulation. Then,
by using the minimization technique described in Ref. [10& are able to deal
with a large number of variational parameters and in padicwe can optimize
all the independent coefficient; and;;, beside the parameters contained in the
mean-field Hamiltonian (3.21).

3.4 Results: Properties of the PfaffianWF and Phase
Separation

3.4.1 Half-filled case

The inclusion of the magnetic field and the spin Jastrow fagttongly improves
the energies with respect to the non-magnetic wave functiorst we consider
the half-filled case of a 26-site cluster, where the FNxact(within the error-
bars), i.e.,.Ery/L = —1.184450(2) (in unit of J = 1) and also the variational
energy is very goody /L = —1.18213(1). On the other hand, although the
signs of the non-magnetic wave function are correct (with ¢hoice oft; ; and
A; j connecting opposite sublattices gme- 0), this state vanishes on many rele-
vant configurations. This implies that, due to the imporeasampling procedure
described in the previous chapter, such configurations averrnvisited by the
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Markov process, leading tbry/L = —1.1833(3), despite the fact that the vari-
ational energy is not so podty /L = —1.15334(1). We also notice that in
this case the FN is highly unstable and many walkers are detedstabilize its
convergence.

20—
s RVB+AF f
= Pfaff N
15 e FN Pfaff .
N\
YNn 10+ 4 -
V
. ,
5, _
A | |
. ,
| |
O 20 %0 156 200 350 300

Figure 3.3: Results for the total sp{8?) at half filling as a function of the clus-
ter sizeL for the wave function of Eq. (3.18) defined by the mean-fielaniii-
nian (3.21) and the two possible orientations of the magffield, i.e., Egs. (3.22),
indicated by “Pfaff”, and (3.23), indicated by “RVB+AF”". BFN results for the
former case are also shown.

It is important to stress that the concomitant presence ehtagnetic order
paramete\ 4, that breaks th&U(2) spin symmetry of the electronic part, and
the spin Jastrow factor of Eq. (3.19), that also breaks tle sgmmetry, gives
rise to an almost symmetric state, even for large sizes. ddmsbe verified by
calculating the total spi$?: In Fig. 3.3 we report the results for the two wave
functions with magnetic order in the-y plane and along thedirection, usually
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considered to describe the half-filled case and the lightlyedi region [74, 78].
In the same figure, we also report the FN valugd{by using the former state as
the guiding function) in order to show that a totally symnestate is eventually
recovered.

0.2 ‘ ‘ ‘
" | O <S'S’> RVB+AF ]
c A <SS> RVB+AF
S 0.2 ¢ <S> Pfaff WF .
© v <SS> Pfaff WF
) [ ® 3<SS™> Pfaff FN ]
S i o %_7___:_______2___,%_,:_—_—_—::::% ..... .
s | " T
& 0" Exact i
k= ’
& 0.05- . .
0 s \ & @ * \ s
0 0.04 0.08 0.12 0.16
L L2

Figure 3.4: Spin-spin correlations at the maximum distaatdealf filling for the
wave functions of Fig. 3.3. The exact value in the thermodyigdimit is marked
by the arrow.

By a direct calculation of the spin-spin correlations atitieeximum distance,
we obtain that also the value of the magnetization at halfidjlis in a very good
agreement with the exact result [104, 137], see Fig. 3.Adtkl be noted that the
variational wave function with the magnetization in they plane and the spin
Jastrow factor has very accurate isotropic spin-spin taroms, though in the
direction they decay to zero in the thermodynamic limit. Byrfprming the FN
approach (withy = 0), a finite value for the correlations alongs recovered. By
contrast, when the magnetization is directed alomgthe variational ansatz, the
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spin correlations are almost Ising-like in the same diggtind lead to overesti-
mate the thermodynamic value of the magnetization, namely 0.37, instead
of the well established value af ~ 0.30, see Fig. 3.4.

3
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Figure 3.5: Spin structure factof(q) at half filling for the variational wave func-
tion of Eq. (3.18) defined by the mean-field Hamiltonian of E§21) and (3.22)
with long-range and short-range (i.e., nearest-neighbasjrow factors. Inset:
Detail for small momenta.

Finally, we want to stress that the long-range tail of thenslastrow factor,
obtained by minimizing the energy and leadingufjo~ 1/|g| for small || (v,
being the Fourier transform ef;), is necessary to correctly reproduce the small-
behavior of the spin-structure factor

1 .
S(g) == e ttfi-fmgeg: (3.26)

L

lym
Indeed, as it is clear from Fig. 3.5, only with a long-rangesjastrow factor, it
is possible to obtaiy(g) ~ |¢| for small momenta and, therefore, a gapless spin
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Table 3.1: Ground state energy fbholes or26 sites and different values ofy/t.
Two wave function with and withouh 4 are indicated with “Pfaff” and “RVB”,
respectively. The variational results are indicated by Vi@ the Fixed-node
ones by FN. In the last two columns we report the extrapoleddiak of Eq. (2.73)
with the Pfaffian wave function and exact results by Lanczegwd, respectively.

Jjt BRE/L EBRS/L B /L B L B/ Bu/L
0.3 -0.48334(1) -0.49256(1) -0.48476(1) -0.49325(1) 9045(2) -0.50097
0.4 -0.57664(1) -0.58625(1) -0.57978(1) -0.58770(1) 88&(2) -0.59452
0.5 -0.67045(1) -0.68091(1) -0.67568(1) -0.68327(1) 88FBI(3) -0.68945
0.6 -0.76463(1) -0.77645(1) -0.77228(1) -0.77960(1) 8062(3) -0.78537
0.8 -0.95410(1) -0.96920(1) -0.96706(1) -0.97414(1) 7B(5(3) -0.97935
1.0 -1.14483(1) -1.16385(1) -1.16352(1) -1.17052(1) 713B(2) -1.17538

spectrum. By contrast, with a short-range spin Jastrow {gominstance with a
nearest-neighbor termy,(¢) ~ const, for smallg, that is clearly not correct.

3.4.2 Doped region

In order to show the accuracy of the wave function (3.18) endbped region,we
report in Table 4.1 and 3.2 the energies3@nd4 holes in26 sites compared with
the exact diagonalization data. In the same table we alse 8teresults obtained
from the wave function without the antiferromagnetic ordarameter. Finally, we
report the values of the extrapolated energﬁ%sjo given by Eq. (2.73). Also in
these doped cases, the inclusion of the magnetic field witspin Jastrow term
substantially improves the accuracy of the non-magnetie@vianction.

Let us move to the central issue of this chapter. In order tede possible
PS instability, it is convenient to follow the criterion g in Ref. [44], described
briefly at the beginning of this chapter, and consider thegnper hole:

e(9) — e(0)

en(0) = 5 : (3.27)

wheree(0) is the energy per site at hole dopifignde(0) is its value at half filling.
For a stable system,, (4) must be a monotonically increasing functiorsokince
in this case the energy is a convex function of the dopingea () represents the
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Table 3.2: The same as in Table 4.1 but4droles or6 sites.
J/t B/ EBRP/L By /L EgyT/L ERC/L Eu/L
0.3 -0.61372(1) -0.62752(1) -0.61478(1) -0.62754(1) 203B(3) -0.64262
0.4 -0.68894(1) -0.70101(1) -0.68946(1) -0.70106(1) 0Q92(2) -0.71437
0.5 -0.76461(1) -0.77571(1) -0.76512(1) -0.77595(1) #@7/0(4) -0.78812
0.6 -0.84065(1) -0.85132(1) -0.84170(1) -0.85189(1) 5B84B(3) -0.86337
0.8 -0.99361(1) -1.00476(1) -0.99709(1) -1.00659(1) 0&aHB(2) -1.01733
1.0 -1.14760(1) -1.16072(1) -1.15479(1) -1.16422(1) 6%66(3) -1.17493

chord joining half filling and the doping On the other hand, the PS instability is
marked by a minimum at a given on finite clusters, and a flat behavior upsto
in the thermodynamic limit where the Maxwell constructisnmplied.

Firstly, Fig. 3.6 shows the results @f(d) for different ratios//t on the 26-site
cluster, where the exact data are available by the LanczdsoaheAlthough these
data are already contained in tables 4.1 and 3.2, their gralplepresentation bet-
ter shows our accuracy to estimate the slope of the energygder In particular,
we stress the fact that, even though already the variaticezallts of the wave
function (3.18) are very accurate, there is a strong imprey@ by considering
the FN approach, both in the mixed average of Eq. (2.69) atitkiextrapolation
of Eq. (2.73), for which a perfect estimation of the slopebsained.

Then we can move to large cluster to extract the thermodynanaperties.
We report in Fig. 3.7 the results of the energy per holefor= 0.4. For compar-
ison, the FN calculations foy = 0 are performed by using two different guiding
functions, including or not the antiferromagnetic ordergmeter and the spin
Jastrow factor. At large doping the results are independerthe choice of the
guiding state, clearly indicating that the antiferromatigra is not essential in that
region. However, by decreasing the hole concentrationjritlesion of the an-
tiferromagnetic order becomes crucial for the stabil@atof the homogeneous
phase, whereas the simple projected BCS state is eventuadhable at small
doping. This latter outcome actually is in agreement with gnevious calcula-
tions [121] and confirms what has been noticed by Hellberg\dawousakis [123]
and interpreted as an evidence for PS close to the insulitnitg

By contrast, our present FN results, based on the wave imetith antifer-
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Figure 3.6: Energy per hole,(d) as a function of the doping for the 26-site
cluster calculated by different approaches: The variatiaalculations for the
Pfaffian wave function (circles), the FN approach of Eq. 92 @quares), and the
expectation value of the Hamiltonian over the FN grouncesgiaten by Eq. (2.73)
(triangles); the exact results are also shown (diamonds).

romagnetic fluctuations, strongly improve the accuracy revjpus calculations
for small doping and point towards the stability of the homogous phase for
all hole concentrations. Quite impressively, the energresvery accurate on the
whole doping regime analyzed and there is not a qualitaiierence if one con-

siders the expectation value of the Hamiltonian (2.73),/8ge.7. These results
indicate that the ground state is stable for all the hole eotrations, namely
down toé ~ 0.01 (i.e., two holes on 242 sites). Remarkably, also the vaméaili

wave function is stable for such value of the super-exchamgeaction and small
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Figure 3.7: Energy per hole,(0) as a function of the doping for J/t = 0.4
and different sizes. The results are obtained by using thepioach described
in the text. Two different states are used as guiding functibhe simple non-
magnetic state, denoted by “RVB” and the state with pairargiferromagnetism
inthez—y plane, and the spin Jastrow factor, denoted by “Pfaff”. Thpmeetation
value of the Hamiltonian over the FN ground state are alswatfor L. = 162 for
the latter case. Inset: Variational resultsgfo) for the Pfaffian wave function.

hole concentrations, see the inset of Fig 3.7. To our knogdethis is the first
successful attempt to obtain a variational state whichdaarty stable towards the
formation of regions with segregated holes, when approgcthie Mott insulating
regime.

From the energy calculation it is straightforward to estienthe compressibil-
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Figure 3.8: The inverse compressibility of the half-filled®insulator forJ/t =
0.4 calculated by extracting the second derivative of the paiyial fit of the FN
energy. Inset: The chemical potential, defined through tfierdnce of ground-
state energies, as a function of the doping for differerésif the cluster.

ity x foro — O:
2

1= 886;25)-
Recently, Imada and coworkers [138, 139], by using hypaltsg arguments and
numerical simulations on the Hubbard model, proposed tiatbompressibility
must diverge when the insulating phase is approached byasiag the doping
concentration. Their arguments imply thét) ~ ¢ for small doping, as in the
one-dimensional case, where the charge properties cammpdysinderstood by
considering spinless fermions. Instead, within our FN apph, we find that the

(3.28)
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compressibility stays finite up to half filling. Indeed, féft = 0.4 and in general
for the stable magnetic phase, the variational calculghimvides a finite com-
pressibility that is further decreased by the more accufteapproximation. It
should be noticed that a much larger compressibility, onareinfinite one, could
be worked out when considering only small size calculatitike the ones used
in Ref. [138] to obtainy ~ |p — p.| /> ~ 6~ (wherey is the chemical potential
and p. is nothing but the charge gap at half filling): In this casdsipossible
to underestimate the slope of the energy at small doping thedefore, also to
overestimate the value gf. Instead, from our large cluster calculations, we have
a clear evidence that the chemical potential is linear withdoping close to half
filling or, equivalently, thate(§) ~ 42, implying a finite compressibility when
0 — 0, see Fig. 3.8. Our calculations are rather robust and do eye¢d upon
the number of holes considered and a very accurate polymdinad the energy
turns out to be very stable. We argue that the infinite congilbdgy scenario
proposed by Imada and coworkers could be correct when thiegomagnetism
does not play an important role and the undoped system isndigpid with no
magnetic order. This is also supported by dynamical meda-fieory calcula-
tions by Kotliar and coworkers [140] on the Hubbard modelevathe mean-field
solution without an antiferromagnetic order parametedse® a diverging com-
pressibility close to the Mott regime.

By increasing the antiferromagnetic super-exchange, weeccoloser to the
PS region. Indeed, fof/t = 0.6 we obtain that the energy per halg(d) shows
a slightly non-monotonic behavior with a minimum f&@r ~ 0.17, when consid-
ering the FN energies. This minimum disappears by perfogrtiie extrapolation
of Eq. (2.73) to estimate the expectation value ofthg Hamiltonian over the
FN ground state, see Fig. 3.9. This fact would indicate floathis value ofJ/¢,
the FN Hamiltonian (2.67) has an higher tendency towardsh@s the original
t—J model. In this case, the mixed average of Eq. (2.69) is dlightised, and
this bias can be eliminated by considering the actual egpiectvalue of the—.J
Hamiltonian over the FN ground state. In doing this, we apphothe exact re-
sult (by improving the energy) and an homogeneous phask avitonotonically
increasing energy per hole, is obtained. Within this moreueate scheme, we
substantially improve previous results which were basethermixed average of
the FN approximation and indicated a rather high criticgdidg [121]. Unfortu-
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Figure 3.9: The same as in Fig. 3.7 foft = 0.6.

nately, within our numerical approach, it is very difficutstudy the possible for-
mation of hole droplets close to the PS instability, as satggkby Poilblanc [141].
Indeed, this would require a very delicate size scaling etiimding energy of few
holes, which is beyond our present possibilities.

By further increasing the super-exchange coupling, we texadly enter into
the PS region: For/t = 0.8, the energy per hole has a rather deep minimum
at finite doping and also the expectation value (2.73) gleidlicates a non-
monotonic behavior, see Fig. 3.10.

Finally, it is important to stress that very similar resuten be also obtained
by considering the density-density correlation function

N(q) = % Z el A= Rm)p (3.29)

lym
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Figure 3.10: The same as in Fig. 3.7 fbft = 0.8.

In this case, sincéV(q) is a diagonal operator in the configuration space, it is
easy to compute its average value over the FN ground statsibg the so-called
forward-walking technique [104]. This quantity is themnefdree from possible
bias coming from mixed averages. The PS instability is dephdy the diver-
gence at small momenta df(¢). In a previous paper of Calandra, Becca and
Sorella [121], was reported the calculations of this qugrghowing the presence
of a finiteq peak, linearly depending upon the doping, close to the R&biisy.
Here, thanks to the accuracy of the guiding function and tlogness in stabi-
lizing the statistical implementation of the FN technique, are able to present
much more accurate results that confirm the previous onéeelh the existence
of this peak is due to the closeness of the PS: Figs. 3.11 4r2dsBow the evo-
lution of N (¢) by increasing//t for two values of the doping, near the insulating
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Figure 3.11: FN results for the density correlation funitior 8 holes onl62 sites
and different values of /t. The high-symmetry points are markedlas- (0, 0),
X = (m,m),andM = (m,0).

regime. In particular, we obtain the evidence for a stablabgeneous phase for
J/t ~ 0.4, confirming the indications given by the analysis based upernergy
per hole. Then also the progressive development of a hudegrveandg = (0, 0)
for J/t ~ 0.7 is in good agreement with the energy calculations.

Alltogether, these results allow us to draw our final phasgdim of Fig. 3.13,
where we report, for comparison, also some of the previotisiatons for the PS
boundaries.
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Figure 3.12: The same as in Fig. 3.11 butférholes onl62 sites.

3.5 Conclusion

We have revisited the problem of the PS instability in the/ model. By gen-
eralizing the Pfaffian wave function introduced some time E333], we have
defined a very accurate variational state that, for the fingt t@ our knowledge,
is stable against PS at low doping. In particular, we havevshihe necessity
to consider both an antiferromagnetic order parameteth@nférmionic determi-
nant) and a spin Jastrow factor, to mimic the spin fluctuation this way all the
low-energy properties of the exact ground state are cdyreegproduced. Then,
by using a more sophisticated Monte Carlo technique thafitanout the high-
energy components of a given trial wave function, we caniolitee ground state
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Figure 3.13: Boundary for the phase separation (PS) ingtabi he results of
previous works are also shown for comparison. The line isidegio the eye.

of an effective Hamiltonian and, at the same time, assesstdbdity of our initial
guess. So, we have shown that foftt = 0.4, the ground state does not phase
separate at any hole doping downdte- 0.01, giving a serious improvement on
the possible PS boundaries at smalt. Remarkably, the analysis based on the
energy per hole is also corroborated by the calculation®sthtic density-density
correlations. The phase separation, in the low doping regappears at a criti-
cal antiferromagnetic coupling slightly larger than théueagiven in Ref. [121],
namely here we find/./t ~ 0.7. Although future improvements in the Monte
Carlo technique or in the accuracy of the variational wavecfion may lead to
an higher coupling, it looks unlikely to reach the criticalipt recently obtained
by high-temperature expansion, i.é./t ~ 1.2 [117, 122]. In fact, as shown in
Fig. 3.6, our present accuracy in the energy per hole is ab®it and its slope is
almost correct. This holds rather independently/¢f and system sizes, at least
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for the clusters where exact results are available.For= 0.8 (see Fig. 3.10), the
minimum of the energy per hole implies an energy gain for til@mogeneous
phase of about.05¢ per hole, i.e., comparable with our maximum possible error
estimated before. Thus we expect thigtt cannot be much larger thang even

for a numerically exact method.

Moreover, we do not expect that different variational wawedtions (used as
guiding states for the FN approach) can strongly modify esutts. Indeed, for
the simplet—J model of Eq. (3.5) there are strong evidences thatj fer0.4 and
J/t between).2 and (.7, the best variational state is given by projecting a state
with electron pairing (and possibly a finite antiferromagoerder). Different
choices for the wave function, containing for instance flnages or stripes, have
higher energies and they become competitive only when iadditinteractions,
like a next-nearest-neighbor Coulomb repulsion, or défertopologies of the
Fermi surface are considered in the microscopic Hamiltoii25, 142, 143].

Finally, we have obtained that, in contrast with what wasfbin the Hub-
bard model, the compressibility stays finite by approachhegMott insulator.
A simple explanation of a finite compressibility in two dinsgons is obtained
by assuming that the holes form hole pockets around the rpmdats [i.e.,q =
(+7/2,£7/2)] and behave as spinless fermions, implying thd) ~ §'2/7,
where D is the spatial dimension. In this simple scenario the cosgbdity is
divergent only in one dimension, whereas it is finite in twmdnsions, and should
approach zero in three dimensions, leading to a more coiovetiimetal-insulator
transition.

The stability against phase separation of a wave functitin @4plicit antifer-
romagnetism and d-wave superconducting order parametgid@s new insight
for understanding the phase diagram of the high-temperatuperconductors.
Remarkably, in the clean system, possibly idealized bytthé model, the an-
tiferromagnetism and the d-wave order parameter shouléxadtide each other,
at least at the variational level, and actually cooperatdetrease the energy and
lead to a stable homogeneous phase.



Chapter 4

Magnetism and superconductivity in
the t—t'—J

4.1 Introduction

As already discussed in the first chapter, after more thantymeears from the dis-
covery of high-temperature superconductivity, a compmnshe description of the
cuprate materials is still lacking. One of the main concsraldout the origin of the
electron pairing, namely if it is due to electron-phonon g, like in the stan-

dard theory by Bardeen, Cooper and Schrieffer (BCS) [2]t oan be explained
by alternative mechanisms, based on the electronic irtteraalone. From one
side, though the isotope effect in cuprates (if any) is muohlkr than the one
observed in BCS superconductors, there are experimenggstigg a strong cou-
pling between electrons and localized lattice vibratid¥4], 145]. On the other
side, besides a clear experimental outcome showing unb&lmviors in both

metallic and superconducting phases, there is an incigaiseoretical evidence
that purely electronic models can indeed sustain a robushgapossibly leading

to a high critical temperature [96, 146, 147]. Within thedatscenario, the mini-
mal microscopic model to describe the low-energy physicshieen proposed to
be the Hubbard model or its strong-coupling limit, namely#h ./ model, which

includes an antiferromagnetic coupling between localg@ds and a kinetic term
for the hole motion [57, 58]. Anderson proposed that eletpairing could nat-

urally emerge from doping a Mott insulator, described by sorating valence
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bond (RVB) state, where the spins are coupled together faggrailiquid of sin-
glets [57]. Indeed, subsequent numerical calculationgHer—.J model [68],
showed that, though the corresponding Mott insulator (dlesd by the Heisen-
berg model) has magnetic order, the RVB wave function withiadkle symmetry
in the electron pairing can be stabilized in a huge regionagig close to the
half-filled insulator. These calculations have been imptblay studying the ac-
curacy of such a variational state, giving solid and convig@rguments for the
existence of a superconducting phase intthé model [96]. However, other nu-
merical techniques, like Density Matrix RenormalizatioroGp, provided some
evidence that charge inhomogeneities can occur at patidiliing concentra-
tions. These stripes are probably enhanced by the strorsgtampic boundary
conditions used in this approach [50, 125, 126].

Coming back to the projected RVB wave function, it is worthntiening that
an approximate and simplified picture can be obtained byghermalized mean-
field theory (RMFT), the so-called “plain vanilla” approafti8]. When this
approach is applied to the— J model, it is possible to describe many unusual
properties of the high-temperature superconductors aptiathe most impor-
tant aspects of the cuprate phase diagtam

However, at present, most of the calculations have beenlapneglecting an-
tiferromagnetic correlations, that are definitively imfzort at low doping. Within
RMFT and most of the variational calculations, the magneticelations are
omitted, implying a spin liquid (disordered) state in theutating regime. Al-
though antiferromagnetism can be easily introduced in lapitroaches, it is of-
ten not satisfactorily described, since the presence ohéifeeomagnetic order
parameter in the fermionic determinant implies a wrong behaf the spin prop-
erties at small momenta [78, 149], unless a spin Jastrowirfestised to describe
the corresponding spin-wave fluctuations. Indeed, it is me@l known that the
accurate correlated description of an ordered state israuatdy applying a long-
range spin Jastrow factor to a state with magnetic order997127]. The impor-
tant point is that the Gaussian fluctuations induced by te&aa term must be
orthogonal to the direction of the order parameter, in otdeeproduce correctly

IFor a recent review on the RMFT and variational Monte Carledolon the RVB wave func-
tion, see for instance, B. Edegger, V.N. Muthukumar, and ©s(Xo be published in Advancesin
Physics.
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the low-energy spin-wave excitations. Moreover, by geliwng the variational
wave function to consider Pfaffians instead of simple deiteants [7, 133], it is
possible to consider both electron pairing and magnetierptat are definitively
important to determine the phase diagram oftthg model.

The interplay between superconductivity and magnetisrhassubject of an
intense investigation in the recent years. In most of thentbeynamic measure-
ments these two kinds of order do not coexist, though elastidron scattering
experiments for underdopedBa,Cu3;O, could suggest a possible coexistence,
with a small staggered magnetization [150-152].

On the contrary, in the—.J model, there is an evidence in favor of a coex-
istence [96], the antiferromagnetic order surviving up teekatively large hole
doping, i.e.0 ~ 0.1 for J/t = 0.2 [7]. Therefore, the regime of magnetic order
predicted by these calculations extend to much larger dpihian the experimen-
tal results and also the robustness of the coexistence @rcsupductivity and
antiferromagnetism seems to be inconsistent with the @xeatal outcome. Of
course, disorder effects, which are expected to be impbetgpecially in the un-
derdoped region, would affect the general phase diagrain F28vever, without
invoking disorder, one is also interested to understandkef@ative ingredients
can modify the phase diagram of the simple/ model. For instance, band struc-
ture calculations support the presence of a sizable segeigitbor hopping’ in
cuprate materials, showing a possible connection betweewvdiue of the highest
critical temperature and the ratit/¢. [153] Moreover, an experimental analysis
suggests an influence of the valuetfft on the pseudogap energy scale [154].
From a theoretical point of view, the effect 8fis still not completely elucidated,
though there are different calculations providing evidetiat a finite’ could sup-
press superconductivity in the low-doping regime [143,4B5]. On the other
hand, recent Monte Carlo calculations suggest that theepoesoft’ (as well as
a third-neighbor hopping’) could induce an enhancement of pairing in optimal
and overdoped regions [158, 159].

In this chapter, we want to examine the problem of the intgrpletween mag-
netism and superconductivity in the J model and its extension including a next-
nearest-neighbor hoppingby using improved variational and Green’s function
Monte Carlo (GFMC) techniques. Indeed, especially thetapproach has been
demonstrated to be very efficient in projecting out a veryuaai® approximation
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of the exact ground state and, therefore, can give usefigiihgto this important
issue related to high-temperature superconductivity.

4.2 Model and Method

In this section, we introduce the basic notations fortth€—.J model and for the
techniques used to obtain our numerical results. Firstlpiva give the definition
of the model and next we briefly describe the GFMC method witihe fixed-node
approximation, that is used to work out the main results f thapter.

We consider the—t'—J model on a two-dimensional square lattice with
sites and periodic boundary conditions on both directions:

1

—t Z ol o —t Z CLUCLU + h.c. (4.1)
(i.5)o ((k:l))o

where(. .. ) indicates the nearest-neighbor sitgs, . )) the next-nearest-neighbor
sites,c;g (ci,») creates (destroys) an electron with spiron the sitei, S, =
(SF,S7,57) is the spin operatorsy = > CI)UTgalciJ/, being 7 the Pauli
matrices, andh; = ) czacw is the local density operator. In the following, we
sett = 1 and considet’ = 0 andt’/t = —0.2. Moreover, we consider two kinds
of square clusters: Standard clusters with= [ x [ sites andi5° tilted lattices
with L = 2 x [? sites. Besides translational symmetries, both of them hHve
reflection and rotational symmetries.

The variational wave function that we used, is the one defindlde previous

chapter by:

Wy = TP Pal@ur), (4.2)

wherePg is the Gutzwiller projector that forbids double occupie@sjPy is the
projector onto the subspace with fixed numbefbparticles,7; is a spin Jastrow
factor(3.19), and finally7; is a density Jastrow factor(3.20).

As explained in the second chapter, the above wave functinme efficiently
sampled by standard variational Monte Carlo, by employimgredom walk of
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a configurationz), defined by the electron positions and their spin components
along thez quantization axis. Indeed, in this case, both Jastrow temas/ery
simple to compute, since they only represent classical htgigcting on the con-
figuration.

As reported in the previous chapter, the main differencenfimrevious ap-
proaches is the presence of the spin Jastrow factor and thieechf the mean-
field statg®,, ), defined as the ground state of the mean-field Hamiltoniah3.
where we include both BCS pairindy; ; [with d-wave symmetry, i.e., for nearest-
neighbor sites\, = A(cos k, — cos k,)] and staggered magnetic field in the-y
plane(3.22) wheré\ 4 is a variational parameter that, together with the chemi-
cal potential, and the next-nearest-neighbor hopping of Eq. (3.21), catebsr-
mined by minimizing the variational energy &f. As seen in the previous chapter,
whenever boti\ andA 4 are finite, the mean-field staji¢,, ) can be described
in terms of Pfaffians, instead ik = 0 or A, = 0 it can be described by us-
ing determinants. Moreover, only in the case where the ntagoeler parameter
is in thex—y plane, the presence of the spin Jastrow factor (3.19) caodinte
relevant fluctuations over the mean-field order paramater, leading to an ac-
curate description of the spin properties. The variatiggaahmeters contained in
the mean-field Hamiltonian (3.21) and in the Jastrow fagi®:59) and (3.20) are
calculated by using the optimization technique describeRlafs. [160, 161], that
make it possible to handle with a rather large number of tianal parameters.

The optimized variational wave functidd|}+./) can be also used gsiiding
function within the GFMC method to filter out an approximatiof the ground
state|¥Y). Indeed, due to the presence of the fermionic sign problerarder
to have a stable numerical calculation, the GFMC must beemphted within the
fixed-node (FN) approach, that imposes¥g ™) to have the same nodal structure
of the variational ansatz [105]. We have seen in the secoagtehthe basic
definitions of the standard FN method. Here, we just recatlesbasic definitions
that can be useful in the following.

Since| [} is an exact eigenstate of the effective Hamiltoritar ,; (2.67),
the corresponding ground-state energy can be evaluatecbeffy by computing

(Oyarc|Hers|TEY)
(ype|TEN) 7

namely the statistical average of the local enengyt) = (Vv yo|H|z) / (Vv el )

Eya = (4.3)
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over the distributiorl, o (z|Uy ) (x|UEN). The mixed average (MA) quan-
tity Faa < Eyvye because, by the variational principle

(Vvare|Her | Yy o)

Eyva < = Eyuc. (4.4)

(Uyvrre|Yyvace)
Moreover, E,; 4 represents an upper bound of the expectation valpg of H
over| W ™) [105]. In the following, we will denote by FN the (variatioijaesults
obtained by using the GFMC method with fixed-node approxmonatwhereas
the standard variational Monte Carlo results obtained hysittering the wave
function of Eqg. (3.18) will be denoted by VMC.

Summarizing, the FN approach is a more general and powedftihtional
method than the straightforward variational Monte Carlothwd the FN method,
the wave function ! ™), the ground state of(°// is known only statistically,
and, just as in the variational approadty; y depends explicitly on the variational
parameters defining the guiding functipby ;). The main advantage of the FN
approach is that it provides the exact ground-state wavetifmfor the undoped
insulator (where the signs of the exact ground state are kjyaand therefore it
is expected to be particularly accurate in the importantttayping region. More-
over, the FN method is known to be very efficient in variousesadg-or instance,
it has allowed to obtain a basically exact description ofttitee-dimensional sys-
tem of electrons interacting through the realistic Coulgmotential (in presence
of a uniform positive background) [162]. Therefore, it repent a very powerful
tool to describe the electron correlation in electroniasyss.

4.3 Results

4.3.1 Phase separation

Before showing the results on magnetic and supercondugtoperties, we briefly
discuss the stability against phase separation. In ordaetiect a possible phase
separation, it is very useful to follow the criterion givemthe previous chapter
and in Ref. [44] and consider the energy per hole:

e(9) — e(0)

eh(é) = 5 ) (4.5)
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Figure 4.1: Energy per holg,(0), calculated by using the FN method, as a func-
tion of the dopingd for L = 98 and 162 and two values of the next-nearest-
neighbor hopping’/t = 0 and—0.2.

wheree(d) is the energy per site at hole dopidgande(0) is its value at half
filling. In practice,e,(9) represents the chord joining the energy per site at half
filling and the one at doping For a stable system, () must be a monotonically
increasing function o, implying that energy is a convex function of the doping.
By contrast, the phase separation instability is markedtimyramum at a given,.

on finite clusters, and a flat behavior upiton the thermodynamic limit where the
Maxwell construction is implied. In the previous chapteg demonstrated exis-
tence of an homogeneous stateffo 0 and.J/t < 0.7. As shown in Table 4.1,
the FN approximation, that is exact at zero doping [7], pdegia substantial low-
ering of the VMC energy, especially away from half filling afad a finitet’. This

is a first indication that the simple variational approachldaot be adequate to
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Table 4.1: Variational (VMC) and fixed-node (FN) energiessite for.J/t = 0.2
andt’ = 0 (third and fourth columns), and/t = —0.2 (fifth and sixth columns)
for two clusters with, = 98 and 162 and different hole concentrations, =

L—N

L N, Eyuc/L Epn/L Evye/L Epn/L

98 0 -0.233879(1) -0.23432(1) -0.233879(1) -0.23432(1)
98 2 -0.274144(5) -0.27752(1) -0.27290(1) -0.27808(1)
98 4 -0.31429(1) -0.32053(1) -0.31189(1) -0.32123(1)
98 6 -0.35482(1) -0.36328(1) -0.35132(1) -0.36405(1)
98 8 -0.39550(1) -0.40563(2) -0.39028(1) -0.40575(1)
98 10 -0.43581(1) -0.44728(2) -0.42814(1) -0.44561(1)
162 0 -0.233707(1) -0.23409(1) -0.233707(1) -0.23409(1)
162 2 -0.258002(5) -0.26020(1) -0.257260(5) -0.26012(1)
162 4 -0.282117(5) -0.28621(1) -0.28067(1) -0.28698(1)
162 6 -0.306324(5) -0.31212(1) -0.30429(1) -0.31307(1)
162 8 -0.33060(1) -0.33793(1) -0.32807(1) -0.33925(2)
162 10 -0.35498(1) -0.36360(2) -0.35207(1) -0.36514(2)
162 12 -0.37954(1) -0.38912(2) -0.37567(1) -0.39079(2)
162 14 -0.40406(1) -0.41446(2) -0.39939(1) -0.41520(2)
162 16 -0.42838(1) -0.43946(2) -0.42232(1) -0.43936(2)

provide a reliable quantitative description of the growstate properties.

The FN results clearly indicate that the inclusion of a negatext-nearest-
neighbor hopping contributes to further stabilize the hgemeous phase at finite
doping, see Fig. 4.1. This result is compatible with the onte of recent calcula-
tions based on cluster dynamical mean-field theory on thebBiebmodel, where
a negative ratia’/t enhances the stability of the homogeneous phase, whereas
positive values of’ favor phase separation [163]. Here, we do not want to address
in much detail this issue and we will focus our attention oa tfore interesting
magnetic and superconducting properties.
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4.3.2 Antiferromagnetic properties

Here we present the results for the magnetic properties @ttt —J model
and compare the FN approach with the VMC one, based upon the fuac-
tion (3.18). As already discussed in the previous chapher,dptimized wave
function (3.18) breaks the SU(2) spin symmetry, becaus@@fimagnetic order
parameter\ 4, » of Eq. (3.22) and the spin Jastrow factor (3.19). It turnstbat

at half-filling and in the low-doping regime, the variatidsgate (3.18) has an an-
tiferromagnetic order in the—y plane, whereas the spin-spin correlations in the
z axis decay very rapidly. Therefore, in order to assess thgnetic order at the
variational level, we have to consider the isotropic sppm<orrelations:

Uy rrelSo - SrlWyare)
(Yvme|Yvme)

(8-8,) = (4.6)

The FN approach alleviates the anisotropy betweencthg plane and the
axis; in this case, we find that a rather accurate (and muchdesputational
expensive) way to estimate of the magnetic moment can bénebtérom thez
component of the spin-spin correlations:

(U5 ]55571%5 ™)

<SOS7’> = <mg‘N|qjg'N> ’

4.7)

that, since the operatd#;S? is diagonal in the basis used in the Monte Carlo
sampling, can be easily computed within the forward-wajkechnique [104].

From the spin-spin correlations at the maximum distancés gossible to
extract the value of the magnetization. In particular, foe wariational wave
function, that is not a singlet when the antiferromagnetdeo sets in,M =
lim, . v/(So - S,), whereas for the FN one, the magnetization can be estimated
by M = lim, ., \/3(S;SZ). The spin isotropy of the FN wave function can be
checked by explicitly computing the mixed-average of thaltspin square

(WyrelS?[TE)
(Tyae|TEY)

(S*)pra = (4.8)
that vanishes ifU[") is a perfect singlet, evenifty ;) has not a definite value
of the spin.

In Fig. 4.2 we report the results of the magnetization intthd model with
J/t = 0.2 and0.4. At finite doping, it is not possible to perform a precise size
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Figure 4.2: Magnetization obtained from the spin-spin elations at the maxi-
mum distance calculated for thte-J model with .J/¢ = 0.2 (upper panel) and
J/t = 0.4 (lower panel). For the VMC calculations the error-bars anaker than
the symbol sizes. The VMC magnetization has been obtaimed fine isotropic
correlations, whereas the FN one from the correlationsgatbaz axis (see text).

scaling extrapolation since it is very rare to obtain the s@oping concentration
for different cluster sizes. Moreover, though the FN applos able to recover
an exact singlet state at half fillings?),,4 increases by doping, reaching its
maximum around ~ 0.06, e.g.,{S?) ;4 ~ 1 for 8 holes onl62 sites. This could
explain that, especially fof /t = 0.2, the FN results are a bit larger than the VMC
ones foré ~ 0.06. Definitively, close to the transition point, where the mean
field order parametei 4~ goes to zero (together with the parameters defining
the spin Jastrow factor), both the VMC and FN wave functioresadmost spin
singlets. Therefore, we are rather confident in the estonaif the critical doping
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d., where long-range antiferromagnetic order disappeargahticular, we find
d. = 0.10+0.01 andé. = 0.13 4+ 0.02 for J/t = 0.2 andJ/t = 0.4, respectively.
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Figure 4.3: Static spin structure factstq) for L = 16 x 16 cluster and different
hole concentrations for the-J model with.J/t = 0.2. ' = (0,0), X = (7, 7),
andM = (r,0). Inset:S(q) for the variational state (empty symbols) and for the
FN approximation (full symbols).

At low doping, we have evidence that long-range order is gdn@mmen-
surate, with a (diverging) peak & = (m, 7) in the static spin structure factor,
defined as

1 7 — z Qz
S(q) =7 D et tingr g (4.9)

lm
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Figure 4.4: Spin structure factdt(q) for the t—.J with J/t = 0.2 and doping
5 = 1/8 and different clusters/{ = 8 x 8, 12 x 12, 16 x 16, and20 x 20). The
case of the Hubbard model &/t = 4 andL = 16 x 16 is also reported for
comparison. Inset: Size scaling of the peak as a functidrf bf

This outcome is clear for all kinds of cluster considerednaby both for standard

[ x [ and45° tilted lattices. By contrast, close to the critical dopings have
the indication that some incommensurate peaks develop aRaily, we do not
find any strong doping dependence of the peak positions. & #ie results of
S(q) for the16 x 16 cluster and//t = 0.2 in Fig. 4.3, where the evolution of the
peak as a function of the dopirdgs reported. By increasing the hole doping, the
commensurate peak at reduces its intensity and eventually shifts to a different
k-point, i.e.,(r,m — 27 /L). This is a genuine effect of the FN projection, since
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the variational wave function always shows commensuratelkaions, see inset
of Fig. 4.3. Moreover, this feature can be obtained only wienBCS parameter
is considered, a FN calculation with a fully projected fedeetron determinant
cannot reproduce an incommensurate peaK(iq) (see Fig. 4.5).Interestingly,
for all the cluster sizes we considered, i.e., ugte= 20 x 20, the peak always
appears atm, m — 2w/ L), namely the closest k-point t§ along the border of the
Brillouin zone. This indicates that, in the thermodynarmiat, the peak should be
located very close t& and itis not compatible witkwr, 7 —274), found in cuprate
materials [48]. As one can see from Fig. 4.6 and Fig. 4.7, bov@ mentioned
peak, besides to be quite independent from doping, is alabtatively indepen-
dent from the presence of tiieterm, which frustrates the antiferromagnetic order
of the system.

ooFN o-oFN
1 ooVMC -4 1F -0 VMC il

 Free Electrons

- BCS+Jastrow ’ 2

(= o e
B
0.5 4 -
P
&
I po |
¢
L=144 18 holes
O 1 | O 1 |
T2 Tt T2 Tt

Figure 4.5: Static spin structure factsfq), calculated with a BCS wave function
(Left panel) and with a free-electron wave function (Rigangpl).
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Figure 4.6: Static spin structure fact8(q) for thet—.J model on thel, = 12 x 12
cluster with.J/t = 0.2.

Although size scaling extrapolations are not possible fpe@eric hole doping,
we do not have evidence that the incommensurate peak ds/ergiee thermody-
namic limit, implying no incommensurate long-range ordefirdate doping con-
centrations. Nevertheless, once the commensurate magmdér is melted, the
ground state is characterized by short-range incommetgssipan correlations. In
Fig. 4.4, we show the results foi/t = 0.2 andé = 1/8, where different clusters
with the same doping are available. Interestingly, thetpwsiof the incommen-
surate peak is the same as the one found in the Hubbard mddél at 4 (where
our FN results correctly reproduce the previous data reyplari Ref. [164] on the
10 x 10 lattice), though its intensity is much more reduced comgdéoethe case
of thet—J model. This fact suggests that the peak is not related tottbhags
coupling limit.
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Figure 4.7: The same as Fig.4.6 for thet'—.J model with.//t = 0.2 andt’/t =
—0.2.

Coming back to the commensurate magnetic order close tefilialf), we
stress that the pure-J model shows robust antiferromagnetic correlations, with a
critical doping much larger than the one observed in the-doleed cuprates mate-
rials, where the long-range order disappear&. at 0.05 [48]. This smaller value
of the critical doping cannot be explained by reducing thidemomagnetic super-
exchange/, given the fact that, by changing/t from 0.4 to 0.2, the variation of
J. is smaller thaB0%. Besides disorder effects that can be important in the un-
derdoped regime [28], one important ingredient to be carsidlin a microscopic
model is the next-nearest-neighbor hopping, that was shovave remarkable
effects on both magnetic and superconducting propertigs, [156, 158, 159].

In particular, in spite exact diagonalization calculas@uggest a suppression of
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antiferromagnetic correlations for negatit/¢t [155], more recent Monte Carlo
simulations (also including a further third-neighbor hompt”) do not confirm
these results, pointing instead toward a suppression arsapducting correla-
tions [159].
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Figure 4.8: The same as in Fig. 4.2 for thet'—.J model with.J/t = 0.2 and

t'/t = —0.2. For the VMC calculations the error-bars are smaller thasymbol

sizes. The dashed line indicates a tentative estimationh®thermodynamic
limit.

In Fig. 4.8, we report the magnetization féft = 0.2 andt’/t = —0.2. The
first outcome is that the VMC results, though pretty renorreal with respect
to the case’ = 0, present a critical doping. very similar to the one found
for the puret—J model. By contrast, the FN approach strongly suppresses the
spin-spin correlations, even very close to half filling. histcase, the FN results
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have rather large size effects, that prevent us to extraeliabie estimate for
the thermodynamic limit. However, it is clear that the agrtibmagnetic region
is tiny and we can estimate th&t < 0.03. It should be emphasized that for
t'/t = —0.2 the variational wave function is not as accurate as for thre pu.J
model witht’ = 0, but nevertheless the projection technique, even if apprate,
is able to reduce the bias (e.g., the presence of a large magneer up toj ~
0.1), showing the importance of alternative numerical methodsssess the actual
accuracy of the simple variational approach. Indeed, weanédent that our FN
results represent a good approximation of the true growaidproperties. On
the contrary, the VMC calculations clearly show that the evéwnction (3.18)
overestimates the correct value of the magnetic moment.

4.3.3 Superconducting properties

In the following, we want to address the problem of the supedcicting proper-
ties of the Hamiltonian (4.1). In particular, we would like dbtain an accurate
determination of the pair-pair correlations as a functiérthe hole doping and
clarify the role of the next-nearest-neighbor hoppihgThe effect of such term
has been recently considered by using different numerezdirtiques. Density-
matrix renormalization group for-leg ladders (withn = 4 and6) showed that
the effect of a negativ& is to stabilize a metallic phase, without superconducting
correlations [156]. Moreover, improved variational Moi@arlo techniques sug-
gested that’ could suppress pairing at low doping, whereas some inecrgadisu-
perconducting correlations can be found in the optimal dgpegime [158, 159].
A further variational study [157], suggested the posdipthat a sufficiently large
ratio ¢’ /t can disfavor superconductivity and stabilize charge Intees (stripes)
nearl/8 doping.

The pair-pair correlations are defined as

A" (r) = S,.,.S0,, (4.10)

whereS,T,V creates a singlet pair of electrons in the neighboring si@sdr + p,
namely

i Pt
St = Ottt = Ot (4.11)
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Most importantly, for the first time, we implemented the fand-walking tech-

nique in order to compute true expectation values of thargacorrelations over

the FN state:

E AR (r)[Tg )
SRR

(@) = ¢ @.12)
Indeed, given the fact thak*”(r) is a non-diagonal operator (in the) basis,
defined above), within the FN approach all the previous datmns [96] were
based upon the so-called mixed average, where, similafggto4.3), the state
on the left is replaced by the variational one. Now, by using @.12), it is pos-
sible to verify the fairness of the variational results agaa much more accurate
estimation of the exact correlation functions given by tinedpproach.

The superconducting off-diagonal long-range order ingpéienon-zero value
of (A*¥(r)) at large distance. In the following, we consider the pair-pair cor-
relation at the maximum distance apnd= v (parallel singlets) both for the vari-
ational case and for the FN approximation and derte= 4 lim, ., (A%¥(r)).

It is worth noting that, as far as the superconducting cati@hs are concerned,
there is no appreciable difference between the resultsr@atavith and without
the antiferromagnetic order parameter and the long-rapgelastrow factor. The
results for the pure—.J model are reported in Fig 4.9, where we report two dif-
ferent values of the antiferromagnetic coupling, i/t = 0.2 and.J/t = 0.4.

In this case, variational and FN calculations are in faittypd agreement, giving
a similar superconducting phase diagram. In contrast to RMikat predicts a
guadratic behavior of the pair-pair correlations, the a@onal results show that
these correlations have instead a linear behavior sviththe underdoped regime,
even in the simplest case without Jastrow term [165]. lstergly, the optimal
doping, i.e., the doping at which the maximum in the pair-parrelations takes
place, occurs in both casesdat- 0.2, whereas the actual value of the correlations
is proportional taJ/t. At high doping, where antiferromagnetic fluctuations play
a minor role, the behavior of the pairing is unchanged wh&nvaried. Although

in this region there are some size effects, we can safelynasti that supercon-
ductivity disappears arountd~ 0.35 and§j ~ 0.4 for J/t = 0.2 and.J/t = 0.4,
respectively.

It is worth noting that the density Jastrow term (3.20) isyvenportant to
obtain an accurate estimation of the pairing correlatiohedeed, whereas the
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Figure 4.9: Pair-pair correlations at the maximum distaage function on the
doping forJ/t = 0.4 (upper panel) and /¢t = 0.2 (middle panel). The results for
the variational wave function (3.18) (empty symbols) andtifie FN approxima-
tion (filled symbols) are reported. The results for the wawection without the
Jastrow factors (both for spin and density) and magnetiergpdrameter are also
reported (lower panel).

gualitative behavior as a function of doping is correctlpttaed by the simplest
variational wave function with BCS pairing and on-site Gutker projector, the
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variational results based on such a state overestimatathegycorrelations at op-
timal doping by a factor two. Remarkably, the FN approactbis #o correct this
bias and give approximately the same results as the onenebitatarting from the
wave function with the long-range Jastrow factor, see Fig. Zhis fact demon-
strates once more the reliability of the FN method, that @&tuce significantly
the dependence of the results upon the choice of the varadtamsatz.
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Figure 4.10: The same as in Fig. 4.9 for thet’—J model with.J/t = 0.2 and
t'/t = —0.2. The dashed line indicates a tentative estimation for teentbdy-

namic limit.

The inclusion of the next-nearest-neighbor hopping indusizable modifi-
cations in the pairing correlations, though the qualimtme-like behavior re-
mains unchanged, see Fig. 4.10. At low doping there is a lgizakppression
of the superconducting pairing, particularly evident aftee FN projection, see
Fig. 4.11. Indeed, while for the pute-J model we clearly obtain a linear behav-
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ior of the pair-pair correlations with, indicating a superconducting phase as soon
as the Mott insulator is doped, in the case of a finifghe FN results could be
compatible with a finite critical doping, below which the &% is not supercon-
ducting. This outcome is in agreement with earlier Montd@ealculations done
by Anisimov, Sorella et al., [166] where it was suggested tha extended—.J
model with hoppings and super-exchange interactions eéfrom structural data

of the La,CuO, compound could explain the main experimental featuresgif-i
temperature superconducting materials, with a finiteaaitdoping for the onset
of electron pairing.
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Figure 4.11: Detail of the pair-pair correlations reportedrigs. 4.9 and 4.10 at
low doping.

Remarkably, fromy ~ 0.1 to 6 ~ 0.4 there are huge size effects. Though,
for 6 ~ 0.3, small clusters, e.gl, = 98, indicate stronger pairing correlations
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than the puré—.J model withoutt’, larger clusters point out a large reduction of
PZ. Nonetheless, we have a rather clear evidence that fo0.3 there is a finite
superconducting order parameter in the thermodynamid,lsee Fig. 4.12. This
strong reduction of the superconducting correlations iy Wnteresting effect,
demonstrating that the superconducting wave functionn@supplemented by
magnetic order) deteriorates its accuracy by increasiag#tue oft’, that could
eventually stabilize competing phases with modulatiorhen¢harge distribution
and/or a magnetic flux through the plaquettes [167]. Howedwer'/t = —0.2,
our variational wave function (3.18) remains a better epavhen compared to
the one used in Ref. [167].

0.02—— . . . . .
oo1g 703 e
I 7 L=98 |
o N=30
0.012- . _
N L=162
2l i L=24 N=50 |
0.008=" N=72 -
0.004- _
000002 0004 0006 0008 001 0.012
0

Figure 4.12: Size scaling of the Pair-pair correlationshat inaximum distance
for t—t'—J model with.J/t = 0.2 andt’/t = —0.2 atj ~ 0.3.
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4.4 Conclusion

In this chapter, we considered the magnetic and superctindgugroperties of
the t—t'—J model within the variational and the FN approaches. We sdowe
that for¢ = 0 the ground-state properties can be accurately reprodugea b
state containing both electron pairing and suitable magnetrelations, namely a
magnetic order parameter in the mean-field Hamiltoniandb&hes the fermionic
determinant and a spin Jastrow factor for describing thie 8pctuations. In this
case, we obtain a rather large magnetic phase, with a ¢ritegang that slightly
depend upon the super-exchange coupling.e., . = 0.10 £ 0.01 andé. =
0.13 +0.02 for J/t = 0.2 andJ/t = 0.4, respectively. The superconducting
correlations show a dome-like behavior and vanish when tlogt Msulator at
half filling is approached. Interestingly, compared to thdf that predicts a
guadratic behavior of the pair-pair correlations as a fiomcdf the doping), here
we found that a linear behavior is more plausible.

Then, we also reported important modifications due to theeee of a finite
ratio ¢’ /t. The first effect of this further hopping term is to stronglyppress an-
tiferromagnetic correlations at low doping, shifting théical doping t00.03 for
t'/t = —0.2. Thisis a genuine effect of the FN method, since, within tinewari-
ational approach, though the spin-spin correlations gop®ssed with respect to
the case of = 0, the values of the critical doping for these two cases argsier-
ilar. Most importantly, the presence of a finite value of tletnearest-neighbor
hopping has dramatic effects on the superconducting ptiegeAt small doping,
i.e.,0 < 0.1thereis a sizable suppression of the electronic pairingsipdy point-
ing toward a metallic phase in the slightly doped regime,rasipusly suggested
by using improved Monte Carlo techniques [166]. Moreover,0f1 < ¢ < 0.4,
though small lattices seem to indicate an increasing of regpeuctivity com-
pared to the puré—J model, larger clusters show huge size effects that strongly
renormalize the pairing correlations at large distanceweier, for the value of
considered in this work, we are rather confident that supetacting off-diagonal
long-range order takes place in a considerable hole regioany case, the huge
renormalization of the electronic pairing for~ 0.3, together with the fact that
the FN results are very different from the VMC ones based oragewunction
containing pairing (and magnetic order at low doping), isnpog towards the
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possibility to the existence of a non-superconducting plfasth magnetic fluxes
and/or charge order) that could be eventually stabilizefubiyer increasing the
ratiot'/t.



Conclusions and perspectives

The variational approach, based upon the definition of agarsal wave function,

is certainly one of the most powerful and general methodstiotying fundamen-
tal problems in several fields of Physics. This approachnallto obtain funda-
mental and sometimes surprising results, as well as predgtor new phenom-
ena. In particular, among many different applications, veeild like to mention

the cases of the fractional quantum Hall effect explainedheyLaughlin wave

function and the elegant description of superconductilifyBardeen, Cooper,
and Schrieffer in 1957. The most important aspect of thig@ggh is to give an
immediate and straightforward description of the physprablem, by allowing

to clarify the most relevant effects. Sometimes, a goocaviamal ansatz, though
approximate, is even better than knowing the exact solusorte the latter one
can be so complicated that it is very hard to handle and to teegreted, like for

instance the Bethe ansatz solution of the Hubbard model@rdonension.

On the other hand, within the variational approach, coti@efunctions can
be generally computed by means of Monte Carlo techniques,alfow one to
study very large systems and give the possibility to obtacueate phase dia-
grams. The limitation of Monte Carlo approaches is givenigydomputer mem-
ory and the computational time. In fact, the quantum MontddCalgorithms,
that are continuously developing even in the very recentsyesgale at most with
the third power of the system size, making possible effiaaitulations on rather
large clusters.

In analogy with the standard BCS theory, the search of aquaatily accurate
variational wave functions is extremely important to agdréhe (still open) prob-
lems raised by the recent discovery of high-temperaturersanductors (HTSC).
Of course in the case of HTSC there are much more complicatath respect to
the conventional superconductors, due to the competifiorany different energy
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scales. At present, the state of the art on the study of-themodel by the vari-
ational approach is given by the Resonating Valence BondjRvave function
and it generalization to the case containing flux phases angelhdensity waves.
Most calculations have been done taking non-magneticsstaten though they
are usually considered in relation to the underdoped andcafly doped regimes.
One of the great success of the RVB states was the predidtedaré the experi-
mental evidence) of the d-wave symmetry of the pairing fiomctHowever, they
still present some problems, because they are not able toloeshe correct mag-
netic properties close to the insulating regime at halfnigli Indeed, until now,
many attempts have been done, but all of them contained scawdadck, like for
instance a wrong spin-wave spectrum.

In this thesis, we introduced a new variational wave functimat provides a
much better approximation than all the previous ones, atigws to tackle in a
very accurate way a series of open problems. By means of auivagational
wave function, it is possible to obtain the correct magnetaperties at low dop-
ing: a very accurate estimation of the antiferromagnetiomaot at half filling, a
very accurate estimation of the spin velocity, and the abtoehavior of the spin-
spin structure factor, implying a correct spin-wave spautr Therefore, this state
gives us the possibility to obtain the (so far) most accurasellts at low dop-
ing. The fundamental ingredients in our trial wave functame thelong-range
spin Jastrow factor and an uncorrelated state containitig fmagnetism and su-
perconductivity. In contrast to the previous attempts, iehbe Jastrow factor
was either missing or, at most, parallel to the axis of theme&igation, by using
very accurate numerical simulations, we have been abledw fhat the Jastrow
factor must be orthogonal to this axis in order to generagecibrrect quantum
fluctuations and reproduce the exact gapless behavior cfinevaves.

The impressive accuracy of our wave function at low dopirigves us to ad-
dress different aspects of the phase diagram ot thé model. In particular, we
considered the problem of the possible emergence of a plegsgadion in the
physical regime for HTSC, i.e., fof/t ~ 0.4. This issue is particularly impor-
tant for understanding the actual mechanism that leadsstirehic pairing and
it was intensively discussed in the last 10 years. We fouatl tthet—.J model
does not phase-separates fot < 0.7, giving a strong indication of the valid-
ity of the RVB description as the origin of superconductivioreover, we find
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that, by approaching half filling, the compressibility stdinite, suggesting that,
close to the Mott insulator, holes form hole pockets aroungdrtodal points, i.e.,
q = (7 /2,+7/2), and behave as spinless fermions.

In the second part of the present thesis, it was possibledieead the magnetic
and superconducting properties, considering also thetedfiea further second-
neighbor hopping’, in order to understand whether this extra coupling coristan
can allow a connection between the microscopic modelraid-dopedcuprate
materials. Indeed, we have found that the simpld model is not adequate to
reproduce the phase diagram of the HTSC materials, and mgredients have
to be considered. Indeed, there is a very large region, ¢tbalf filling, with a
coexistence of superconductivity and antiferromagnetisat strongly contrasts
with the experimental observation. In this respect, withowoking the relevance
of disorder effects, the presence of a finitecould help to have a closer con-
tact with hole-doped materials. In fact, the presence ofcarsgneighbor hop-
ping dramatically shrinks the antiferromagnetic regionpyénormalizing also the
pairing correlations. These results suggest a possiblesnparconducting phase
close to the Mott insulator. Moreover, we do not find a sizaleancement of the
electron pairing by increasing the ratig't. This could be in contradiction with
the empirical relation betweety/t and the value of ., that has been recently put
forward. However, we have to remark that we only consideredigd-state prop-
erties, without a direct calculation @f. and, in a strongly-correlated system, the
relation between the critical temperature and the pairorgetations can be highly
non trivial. On the other hand, itis possible that the seeoeidghbor hopping term
deteriorates the accuracy of the variational wave func¢taod the presence of a
finite (and large)’ could eventually stabilize competing phases with modaitati
in the charge distribution and/or a magnetic flux throughglagjuettes. Also in
this case, the relevance of this exotic phase on the actii@attemperature is
not clear.

Finally, work is in progress to considelectron-dopeduprates, i.e., by chang-
ing the sign oft’ with respect to thénole-dopedcase and the effect of a further
frustrating super-exchange temi. The latter ingredient, even if it is not proba-
bly relevant for HTSC, can be very useful to clarify the rofdlte antiferromag-
netic long-range order to establish pairing between adastr Preliminary results
clearly indicate that’ leads to an enhancement of the antiferromagnetic order at
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low doping, which is in agreement with the experimental oute.



Appendix A

Pfaffian wave function

A.1 Definition and properties of the Pfaffian

The Pfaffian is

Pf [A] = A [CL172(I374CL576 e aN—l,N] (Al)
where A is the antisymmetrization operator, the result is nornealizuch that
every equivalent term occurs only once, and = —a;;. For the case where

N = 4 this becomes

Pf[A] = a12a34 — a1 3024 + Q1 402 33. (A.2)

The Pfaffian is zero ifV is odd and hagsN — 1)!! terms otherwise.
The Pfaffian can be constructed recursively as

Pf [A] = Z &12./4 [a374a576 e &Nfl,N] s (A3)

N—1 cyclic permutations of 2—N
which we will rewrite as

N
Pf[A] = Z a1 Pu(ay ). (A.4)

Here P.(a, ;) is defined to be the Pfaffian cofactor @f ;, and since there are an
odd number of indices in the cyclic exchange, the sign istpesiFor N = 4 it
becomes
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a1,2034 + A13042 + G140 3 (A.5)

and using the fact that, » = —a» 4, we will obtain the Eq. (A.2). The case with
N = 6 gives a slightly more complicated example with the Pfaffiarten as

a1,2A [a3,4a5 6] +a1 3.A [ag 506 2] +a1 4.A [a5 602 3] +01 5.A [a6 203 4] 401 6A [a2,304 5]
(A.6)
which applying the Eq. (A.2) gives all the 15 terms.
In general, given a skew-symmetric matrix

0 1.2 13 a14
—a1.2 0 Q23 d24
—a13 —a23 0 3.4

—Q14 —0A24 —A34 0

the Pfaffian of this matrix is defined to be Eq. (A.1l) and as ome see, the
determinant of4 is the square of the Pfaffian.

A.2 Variational Monte Carlo implementation of the
Pfaffian wave function

We have seen in Chaptgythat the mean-filed Hamiltonian (3.21) is quadratic in
the fermionic operators and can be easily diagonalizedahgpace. Its ground
state has the general form:

‘\I]MF = exp ( Z fZU; 10 jgz j%) ‘O> (A?)

1,5,04,05

0,05

the pairing function/;;”’ being an antisymmetri¢L x 4L matrix, i.e. f;
—f;7”". Notice that in the case of the standard BCS Hamiltoniarh va =0

or even withA , along z, we have thatf/s! = f*' = 0, while in presence of
magnetic field in thec—y plane the pairing function acquires non-zero contribu-
tions also in this triplet channel. The technical difficwithen dealing with such
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a state is that, given a generic configuration with defigittmponent of the spin
! |0), we have that:

|’r>_6210'1" ’LNO'N

( FLT o ghl )

(2| Uur) = PAIF = Pf( 00 50, (A8)
fij fz’j

where P f[F] is the Pfaffian of the pairing function. It should be noticédtt
wheneverf'! = f:' = 0, the usual form of(z|¥,r) written in terms of a
determinant is recovered.

Let us enter,in this section, in more details giving a shoobpof the statement
given above. First of all we emphasize thé&t, ) has neither a fixed number of
particles due to the presence of tB€'S pairing, nor a fixed totab” due to the
x—y plane magnetic order.

When we consider the projector onto the statéVgbarticles, we obtain

N/2
‘lIlMF Z fgl 7 :,ral ]0'] ‘O>’ (Ag)
1,5,04,05
then, expanding the product we have
|Warr) = Z {f(Rl R) - (R RN/Q)} C;ﬁckg - 'CEN/QCE;W 10)

(A.10)
where we used the notatios = (x;, 0;). Then the projection on the basis state
(x| = (0|cg, . ..cr, is given by:

(@|Warr) = {JE(PR1 Pry) f(PRN_l,PRN)} (—1)7om?) (A.11)

P

where the sum is done on all possible permutafrandP(R;) = Ry, where
k = P(i). At this point, defining the following skew matrik;; = fr, r;, we can
note that

Z {f(PRl Pry) =+ f(PRN,yPRN)} (_1)Si9n(7p) = Pf[F] (A.12)
P

and this conclude the proof.
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In conclusion, we find that the wave function projected on sidatatez),
when BCS pairing and magnetization on the y plane are present, is the Pfaf-
fian of the anty-symmetrized matrix:

P AR
([Wyp) = Pf[F] = Pf < g ) (A.13)

where P f [F'] denote the Pfaffian of the matriX. Using this last relation, the
wave function can now be evaluated numerically using a MQa#o procedure
with Pfaffian updates, as introduced in Ref. [133].

In the particular case wherg! = fI = 0 (this happen if in the mean field
Hamiltonian is present just the BCS interaction, or justehgferromagnetic term
or both BCS and the plane antifferomagentic terms), the Pfaffian reduces to a
simple determinant. In fact, the matrixreduces to diagonal blocks:

F= ( _OBT ﬁ ) = Pf[F] = det(B), (A.14)

where the matrix elements &f are thefg;.l of the equation (A.7). We emphasize
that the matrix that we need to update in the Pfaffian MontdoCamulations
has linear sizes twice larger than in the usual calculatwitts determinants. In
conclusion, the Pfaffian Monte Carlo procedure is nothiisg &ut an extension of
the usual variational wave function method, which allowséat generally every
order parameter contained in the mean field Hamiltonianl{3r2 which we are
interested.
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