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1. Abstract 
 

 Brainstem hypoglossal motoneurons (HMs) exclusively innervate tongue muscles and are 

severely damaged in the neurodegenerative disease called amyotrophic lateral sclerosis (ALS). One 

mechanism leading to such cell death is proposed to be glutamate-mediated excitotoxic stress. HMs 

are particularly vulnerable to excitotoxicity due to their expression of calcium-permeable α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors and scarcity of 

intracellular Ca2+ binding proteins like parvalbumin and calbindin. Indeed, blocking glutamate 

uptake in medullary slices can lead to pathological bursting and motoneuron damage. 

 The endocannabinoid system is widely distributed in the brain and is believed to be an 

important regulator of synaptic transmission. Several studies reported neuroprotection mediated by 

the endocannabinoid system in such pathological insults like brain ischemia, traumatic brain injury 

or excitotoxicity. Moreover, in ALS animal models, up-regulation of the endocannabinoid system 

has been detected, suggesting it can play a role during disease development. Thus, detailed 

information on how the endocannabinoid system can affect cells during pathological insults like 

excitotoxicity is a valuable asset for future investigations of novel therapy approaches for ALS.  

 The objective of this work was to investigate the effect of modulation of the 

endocannabinoid system during excitotoxic stress in hypoglossal motoneurons in vitro. Thin 

medullary slices (for electrophysiology and viability assay) or whole brainstem isolates (for 

Western Blot) from postnatal Wistar rats were used. Each slice/brainstem containing hypoglossal 

nuclei was transferred to a recording/incubation chamber and superfused with oxygenated Krebs 

solution. Excitotoxic stress was evoked by application of DL-TBOA (DL-threo-β-benzyloxyaspartic 

acid, 50 μM), a potent and selective inhibitor of excitatory amino acid transporters, with consequent 

build-up of extracellular glutamate.  

 It was observed that modulation of endocannabinoid CB1 receptor (CB1R) function affected 

TBOA-evoked bursting, an event previously correlated with TBOA toxicity. Co-application of the 

endocannabinoid anandamide (AEA, 10 μM), a CB1R agonist, with TBOA resulted in lowered 

probability of the occurrence of pathological bursting, whereas co-application of the CB1R 

antagonist AM251 (10 μM) disrupted TBOA-induced bursts, leading to their “fragmentation”. 

Furthermore, AEA significantly decreased the frequency of spontaneous excitatory postsynaptic 

currents (sEPSCs) isolated by co-application of bicuculline and strychnine (10 μM and 0.4 μM, 

respectively) and caused occurrence of biphasic activity in spontaneous inhibitory postsynaptic 
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currents (sIPSCs; isolated by co-application of DNQX and APV at 10 μM and 50 μM, respectively) 

in some of the recorded cells.  AM251 caused a decrease in the frequency of sIPSCs, but during 

application of bicuculline and strychnine it evoked activity which partly resembled bursting 

observed during TBOA application. Moreover, co-application of AEA with TBOA significantly 

decreased the number of damaged propidium iodide-positive cells with respect to counterstained 

Hoechst 33342-positive cells, which suggests a protective effect of this CB1R agonist against 

TBOA-induced toxicity. In addition, Western blot analysis showed a significant increase in CB1R 

protein levels after only 4 hours of TBOA incubation, indicating that the endocannabinoid system is 

activated during this excitotoxic insult. We suggest that a likely role of the endocannabinoid system 

in our brainstem preparation is to counteract the effects and consequences of elevated glutamate 

levels in the extracellular compartment. 
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2. List of abbreviations 
 

Δ9-THC - delta-9-tetrahydrocannabinol  

[Ca2+]i - intracellular calcium concentration 

2-AG - 2-arachidonylglycerol  

4-AP - 4-aminopyridine 

ADP - afterdepolarization 

AEA - anandamide  

AHP - afterhyperpolarization 

ALS - Amyotrophic Lateral Sclerosis  

AM251 - N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-

carboxamide  

AMPA - α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

ASK1 - apoptosis signal-regulating kinase 1 

ATF-3 - activating transcription factor 3 

B - bicucullune 

BAPTA-AM - 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl 

ester) 

BCA - bicinchoninic acid 

cAMP - cyclic adenosine monophosphate 

CB1/CB1R - cannabinoid receptor 1 

CHI - closed head injury 
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CNS - central nervous system 

COX-2 - cyclooxygenase 2  

CPG - central pattern generator 

D-APV - d-amino-phosphonovalerate  

DAGL - diacylglycerol lipase  

DL-TBOA - DL-threo-β-benzyloxyaspartate 

DNQX - 6,7-dinitroquinoxaline-2,3-dione  

EAAT2 - excitatory amino acid transporter 2 

ECB - endocannabinoids 

ER- endoplasmatic reticullum 

FAAH - fatty acid amide hydrolase 

fAHP - fast afterhyperpolarization 

FALS – Familial Amyotrophic Lateral Sclerosis 

FUS - fused in sarcoma 

GABA - γ-Aminobutyric acid 

GLT1- glutamate transporter 1  

GluR2 - glutamate receptor 2 subunit 

h - hour 

HEPES - 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

HMs - hypoglossal motoneurons 
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IA - A-type potassium current 

ICaHVA - high-threshold calcium current 

ICaLVA - low-threshold calcium current 

ICaP - persistant calcium current 

ID - D-type potassium current 

Ifast - A-type, fast sodium current 

Ih - hyperpolarization-activated, mixed-cation current 

IIn - inward current 

IKCa(BK) - calcium-activated potassium current with large conductance 

IK Ca(SK) - calcium-activated potassium current with small conductance 

IKDR - delayed rectifier potassium current 

IKir - inwardly rectifying potassium current  

IM - M-type potassium current 

INa - fast sodium current 

INaP - persistant potassium current 

LOX - lipoxygenase  

mAHP - afterhyperpolarization of medium duration 

mGluR - metabotropic glutamate receptors  

NMDA - N-methyl-D-aspartate 

RIn - input resistance 
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ROS - reactive oxygen species 

Rs – series resistance 

S - strychnine 

SDS-PAGE - sds polyacrylamide gel electrophoresis 

sEPSC - spontaneous excitatory post-synaptic current 

sIPSC - spontaneous inhibitory post-synaptic current 

SOD1 –superoxide dismutase 1 

sPSC - spontaneous post-synaptic current 

TBST - Tris-buffered saline and Tween 20 

TDP43 - transactive response DNA binding protein 

TEA - tetraethylammonium 

TTX - tetrodotoxin 

UPR - the unfolded protein response  

VAPB - (vesicle-associated membrane protein)-associated protein 

VDAC - voltage-dependent anion channels 

VDCC - voltage-dependent calcium channels 

Vh - holding potential 

Vm - membrane potential 

WB - Western blot 
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3. Introduction 

 

3.1 Amyotrophic lateral sclerosis 

 

3.1.1. ALS: epidemiology 

 Jean-Martin Charcot was a French neurologist, whose accomplishments for modern 

neurology remain invaluable. One of his achievements was the first description of the disease which 

in 1874 was given its final name: Amyotrophic Lateral Sclerosis (ALS) (Kumar et al., 2011). The 

name 'ALS' refers to the atrophy of the denervated muscle fibers (Amyotrophic) and the hardening 

of the anterior and lateral corticospinal tracts (Lateral Sclerosis). 

 In the majority of cases, ALS is an adult onset disease, withamean age of symptoms starting 

between 55-65 years. Except for rare cases, the progression of the disease is rapid and leads to death 

due to respiratory failure within 2-3 (for bulbar onset) or 3-5 (for limb onset) years. It has rather 

uniform prevalence (around 5.2 per 100,000) and incidence (around 1.89 per 100,000/year) in 

Western countries (Wijesekera and Leigh, 2009).  

 

3.1.2. Symptoms and diagnosis 

 Currently, the name ALS is used to describe a spectrum of neurodegenerative syndromes, 

which are characterised by progressive degeneration of motor neurons. The simplest classification 

divides ALS into spinal or bulbar onset. Most of the typical ALS patients (around 2/3) develop the 

spinal-onset form of the disease. The symptoms can start asymmetrically, but the other limbs will 

later develop weakness. Most patients also develop bulbar and eventually respiratory symptoms. In 

the case of bulbar onset ALS, patients initially present dysarthria (motor speech disorder), or rarely 

dysphagia for solid or liquids. At the same time of bulbar symptoms, limb symptoms can appear. 

The most common causes of death for ALS patients in both classifications are respiratory failure or 

other pulmonary complications (Wijesekera and Leigh, 2009). 

 Despite a large-scale search for specific markers, the diagnosis of ALS is still based on the 

presence of clinical features and the exclusion of other motor disorders. Most commonly, patients 
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are admitted to the doctor with weakness, twitching muscles (fasciculation), or hyper-reflexia of 

facial or limb muscles (Redler and Dokholyan, 2012). During years of studies on the ALS, El 

Escatorial research diagnostic criteria for ALS were developed by The World Federation of 

Neurology (WFN) Research Group on Motor Neuron Diseases. For the diagnosis of the disease, 

they require both upper and lower motor neuron degeneration, progressive spread of symptoms or 

signs within a region or to other regions, in the absence of evidence of other disease processes that 

might explain the symptoms. Moreover, they classify patients as 'possible', 'probable', and 'definite 

ALS (Redler and Dokholyan, 2012; Wijesekera and Leigh, 2009). 

 

3.1.3. Causes of ALS 

 The disease is highly specific for motoneurons. In the majority of cases cognitive ability, 

sensation and autonomic nervous functions are preserved up to the very late stage. Nonetheless, 5-

Fig 3.1 Diverse pathological processes in superoxide dismutase 1 (SOD1)-related familial ALS 
(FALS). FALS are highly interrelated and many step directly from SOD1 misfolding/aggregation 
and cytosolic calcium overload. Abbreviations: mutSOD1, mutant SOD1,; UTP, untranslated 
region; VDAC, voltage-dependent anion channel; ETC, electron transport chain; UPR, unfolded 
protein response; ROS/RNS, reactive oxygen species (adapted from Redler and Dokholyan, 2012). 
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10% of patients develop frontotemporal lobar dementia (FTLD) together with their ALS (Redler 

and Dokholyan, 2012).  

 ALS is a complex disease and its mechanisms are still elusive. Understanding this 

devastating condition is complicated by the fact that motoneuron death seems to result from a 

combination of numerous insults and not a single pathological event. During years of investigation 

numerous theories behind the development of ALS emerged, including oxidative insult, 

mitochondrial dysfunction, endoplasmic reticulum stress, protein aggregation, cytoskeletal 

dysfunction, environmental factors, neuromuscular junction alterations and excitotoxic stress. A lot 

of information was gathered thanks to the discovery of mutations causing ALS that led to the 

development of genetically-mutated rodents which gave significant input to the understanding of 

the pathogenic mechanisms involved in this disease (Fig 3.1).   

 

3.1.3.1. Genetic causes 

 Genetic mutations are responsible for familial cases of ALS (FALS). The first gene 

associated with ALS was superoxide dismutase 1 (SOD1) responsible for around 20% of familial 

cases of the disease (Pasinelli and Brown, 2006). Currently there are over 30 genes reputed to be 

involved in the pathogenesis of ALS. In addition to SOD1, occurrence of ALS has been connected 

to TDP-43 (transactive response DNA binding protein), FUS, C9ORF72, alsin, VAPB, optineurin, 

alsin, ubiquitin, dynactin and many others. The vast diversity in function of those genes suggests 

that ALS can develop as the result of multiple cellular system disturbances (Wijesekera and Leigh, 

2009).  

 

3.1.3.2. Oxidative stress 

 Discovery of SOD1 involvement in ALS led to the theory of oxidative stress as the origin of 

motor neuron degeneration (Rosen et al., 1993). Studies have found wide-spread evidence for 

oxidative stress damage in both patients and animal models of the disease (Carrì et al., 2015; Carter 

et al., 2009; D’Amico et al., 2013; Liu et al., 1999; Poon et al., 2005; Tohgi et al., 1999). Excessive 

reactive oxygen species (ROS) can damage various cellular components including proteins, DNA, 

lipids, and cell membranes (Bogdanov et al., 2000; Girotti, 1998; Shaw et al., 1995). Oxidative 

stress isaserious threat to vulnerable neurons, regardless of whether it is a secondary consequence of 
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other pathological processes or a primary cause of the disease. Despite obvious oxidative insults 

related to ALS, trials with antioxidant therapies were not successful so far (Orrell et al., 2008). 

 

3.1.3.3. Non-neuronal cell contribution 

 The discovery that astrocytes expressing mutated SOD1 protein are toxic to healthy neurons 

in co-culture has led to the theory of a glial-origin of ALS (Nagai et al., 2007). Activated microglia 

(which is one of the pathological features of ALS) can release a vast array of inflammatory and pro-

apoptotic factors, which activate cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase 

(iNOS), which result in increased levels of prostaglandins and nitric oxide (Sargsyan et al., 2005). 

Moreover, programmed cell death signals such as Fas ligand (FasL) and tumor necrosis factor-alpha 

(TNF-α) are released and might contribute to motoneuron death in ALS (Raoul et al., 2002; 

Sargsyan et al., 2005). 

 

3.1.3.4. Axonal structure and transport defects 

 Motoneurons have extremely long axons reaching up to 1m, with a very high energetic 

demand and established polarity (Shaw and Eggett, 2000). In such conditions, maintenance of 

axonal integrity is crucial to cell survival (Julien, 1997; Kawamura et al., 1981). Neurofilaments are 

fundamental structures of the neuronal cytoskeleton and their proper assembly is essential for the 

survival of large neurons like motoneurons. Accumulation of neurofilaments is one of the hallmarks 

in ALS pathology (Bruijn et al., 2004; Carpenter, 1968; Gurney et al., 1994; Hirano et al., 1984; Tu 

et al., 1997). Miss-assembly, mutations or deficient transport of individual subunits, hyper-

phosphorylation causing detachment from motor complexes and aberrant self-association (Ackerley 

et al., 2003; Jung et al., 2005; Shea et al., 2004; Wagner et al., 2004) can all contribute to this 

process. Occurrence of such a neurofilament accumulation can further jeopardize axonal transport, 

leading to motoneuron death (Beaulieu et al., 1999; Collard et al., 1995; Côté et al., 1993; Lee et al., 

1994; Millecamps et al., 2006; Yuan et al., 2003).  

 Neurofilaments are not the only ones affected by axonal transport malfunction. Mouse 

models of the disease showed alterations in both retrograde (mediated by dynein/dynactin motor 

protein complexes) and anterograde (mediated by kinesin motor protein complexes) transport 

(Perlson et al., 2009; Warita et al., 1999; Williamson and Cleveland, 1999) in the pre-symptomatic 
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stage of the disease. Retardation of mitochondrial and cytoskeletal component trafficking seems to 

be particularly vulnerable (De Vos et al., 2007; Magrané and Manfredi, 2009; Williamson and 

Cleveland, 1999). Distal accumulation of mitochondria, especially near the neuromuscular junction 

is essential to meet high energetic and calcium-buffering needs in this particular synaptic area 

(Rowland et al., 2000). Sporadic ALS patients show accumulation of that important organelle in 

proximal axons to support the role of axonal transport alterations in the pathological processes 

contributing to motoneuron death (Sasaki and Iwata, 1996).  

 

3.1.3.5. Mitochondrial dysfunction 

 Mitochondria are key organelles in motoneurons. Not only do they supply energy to 

maintain all physiological processes in the cells, but they also play a crucial role in calcium 

homeostasis. Abnormalities such as vacuolization and swelling are well documented not only in 

ALS patients, but also in numerous rodent models of the disease (Bendotti et al., 2001; Jaarsma et 

al., 2000; Martin, 2007; Martin et al., 2007; Wong et al., 1995). Misfolded SOD1 proteins are 

known to accumulate at the cytoplasmic site of the outer mitochondrial membrane, and directly 

interact with voltage-dependent anion channels (VDAC), thus depolarizing the membrane and 

perturbing the electron transport chain (ETC) (Jung et al., 2002; Liu et al., 2004; Mattiazzi et al., 

2002; Vande Velde et al., 2008). Moreover, the mutant G93A of SOD1 has the ability to bind 

cytosolic malate dehydrogenase, an event which disrupts the malate-aspartate shuttle (Mali and 

Zisapels, 2008).  

 Additionally, mitochondria are key players in intracellular calcium homeostasis. 

Experiments on animal models of ALS showed a CNS-specific decrease in mitochondrial calcium 

loading capacity (Damiano et al., 2006). Mitochondrial damage is detected concomitantly with 

increased intracellular calcium (Damiano et al., 2006; Siklós et al., 1996), although it is not clear 

which one of them occurs first.  

 Disturbed mitochondrial function can release cytochrome c (Kirkinezos et al., 2005) which 

can trigger apoptosis. Mitochondrial pathologies are observed in sporadic and familial cases of ALS 

(Borthwick et al., 1999; Swerdlow et al., 1998; Vielhaber et al., 2000). Moreover, the mitochondrial 

genome instability in the ageing process accords with the late disease onset in the majority of 

sporadic cases of ALS (de Grey, 2004; Khrapko and Vijg, 2007; Kujoth et al., 2005; Trifunovic et 

al., 2004; Vermulst et al., 2007).  
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3.1.3.6. Deficient protein quality control and protein aggregation 

 The ubiquitin-proteasome system (UPS) is the intracellular machinery that degrades miss-

folded and old proteins. Malfunction or overloading of this system has been implicated in the 

development of ALS. Protein aggregates have been found in familial and sporadic cases, implying 

that disturbance in this protein clearance pathway is a common feature of neurodegeneration 

(Bendotti et al., 2004; Bruijn et al., 1997; Leigh et al., 1991; Mendonça et al., 2006; Sasaki, 2010; 

Watanabe et al., 2001). Nevertheless, studies on SOD1 mutant mice have revealed that proteosomal 

impairment occurs after the onset of the symptoms, making it unlikely to be the initiator of the 

pathology in familial SOD1-related cases of ALS (Cheroni et al., 2009; Sau et al., 2007). As the 

disease progresses another proteasome system is activated, namely the immunoproteasome that 

consists of inflammatory cytokine-responsive subunits and it replaces the active proteasomal 

components. Furthermore, this complex has another role, i.e. to prepare fragments of the degraded 

protein to the class 1 major histocompatibility complex (Cheroni et al., 2009; Kabashi et al., 2008; 

Puttaparthi and Elliott, 2005). This immunoproteasome may be seen as a response to glia-mediated 

inflammation in the ALS-affected CNS (Papadimitriou et al., 2010). 

 The ubiquitin-proteasome system is not the only protein control system which is affected by 

ALS. Earlier studies show that mutated SOD1 interferes directly with ER-associated degradation 

(Kikuchi et al., 2006; Nishitoh et al., 2008). This system plays a critical part in protein quality 

control. Its dysfunction or overloading can result in triggering the unfolded protein response (UPR) 

which can lead to apoptosis via ASK1 activation (Kozutsumi et al., 1988; Schröder and Kaufman, 

2005). The activated UPR system has been detected even before symptom onset in mouse models 

(Saxena et al., 2009), and mutations in its component VAPB have been linked to ALS (Nishimura 

et al., 2004). Moreover, sporadic ALS patients have up-regulated UPR components (Atkin et al., 

2008; Ilieva et al., 2007; Sasaki, 2010), thus hinting that ER stress may be a primary contributor to 

the pathogenesis of this disease. 

 

3.1.3.7. Neuromuscular junction 

 Denervation of some neuromuscular synapses (especially fast-fatigable synapses) is a very 

early event in the mutated SOD1 gene model of ALS with onset prior to the loss of the motoneuron 

cell body (Fischer et al., 2004). Moreover, indication of dying-back mechanisms of the disease was 

found in one ALS patient, who died unexpectedly. His motoneurons were not expressing 
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pathological changes, but there were changes in the innervation of the neuromuscular junction 

(Fischer et al., 2004). Other studies showed that changes in electrophysiological parameters of the 

neuron-muscle synapses predicted the onset and survival time of the rodent model of ALS (Casas et 

al., 2013; Mancuso et al., 2014, 2011). These data are intriguing because they raise the possibility of 

the disease starting not at the level of the motoneuron soma, but more distally at the level of the 

peripheral synapse. 

 

3.1.3.8. Environmental and life-style risk factors 

 The sporadic occurrence of ALS suggested the theory that environmental exposure or life-

style factors might influence the development of this disease. To date, there have been several 

associations between external factors and ALS. For instance, chemical exposure to pesticides 

(McGuire et al., 1997; Park et al., 2005) or heavy metals (Callaghan et al., 2011; Kamel et al., 2008; 

Mitsumoto et al., 1988; Vinceti et al., 2000), military service (Coffman et al., 2005; Horner et al., 

2003), sport trauma and intensive exercise (Abel, 2007; Armon and Nelson, 2012; Belli and 

Vanacore, 2005; Chiò et al., 2005; Mattsson et al., 2012), diet (Morozova et al., 2008; Okamoto et 

al., 2007b) and smoking  (Schmidt et al., 2010; Sutedja et al., 2007; Wang et al., 2011) have been 

proposed as causative factors. Although significant correlations between those factors and the 

increases in ALS occurrence were reported, their statistical impact was not very strong, thus 

indicating that coexistence of several factors must occur for the ALS to develop. 

 

3.1.3.9. Excitotoxicity 

 Excitotoxicity has been shown to play an important role in many neuronal disorders 

including neurodegenerative diseases like ALS, stroke, neurotrauma, and epilepsy (Coyle and 

Puttfarcken, 1993; Doble, 1999; Lipton and Rosenberg, 1994). It is propagated mainly via calcium- 

permeable membrane channels. Excessive intracellular calcium induces many deleterious effects on 

cells as it activates catabolic enzymes like proteases, phospholipases, and endonucleases. Moreover, 

disruption of the mitochondrial calcium-buffering system can lead to production of ROS, electron 

chain dysfunction and eventually apoptosis (Clapham, 2007; Emerit et al., 2004). 

 Initially, N-methyl-D-aspartate (NMDA) was thought to play a major role in glutamate 

mediated excitotoxicity, because of the calcium permeability of the channel associated to the 
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NMDA receptor (Choi, 1988). More recently, certain α-amino-3-hydroxy-5-methylisoxazole-4-

propanoic acid (AMPA) receptors were found to be also permeable to calcium. This AMPA 

receptor lacks the GluR2 subunit, which is responsible for low permeability to calcium (Burnashev 

et al., 1992a, 1992b; Hollmann et al., 1991). Some neurons, like hypoglossal motoneurons, which 

do not express this subunit, are particularly vulnerable to excitotoxicity mediated by glutamate 

(Essin et al., 2002; Laslo et al., 2001). Nonetheless, complete lack of GluR2 expression is not 

sufficient to cause motor neuron disease (Jia et al., 1996), but it does accelerate motoneuron damage 

in SOD1 mutated animals (Van Damme et al., 2005). Moreover, intraperitoneal injections of 

AMPA antagonists prolong survival of the ALS animal model (Van Damme et al., 2003).  

 Due to their calcium permeability, NMDA receptors are contributors to excitotoxicity 

(Hardingham and Bading, 2003). For the activation of these receptors not only glutamate is needed, 

but also a co-agonist like D-serine or glycine (Mothet et al., 2000; Panatier et al., 2006), with the 

former having 3 times lower affinity for NMDA binding (Furukawa and Gouaux, 2003; Matsui et 

al., 1995; Mothet et al., 2000; Panatier et al., 2006). Binding of D-serine contributes to NMDA 

excitotoxicity, while glycine does not (Shleper et al., 2005). In normal conditions, the brainstem and 

spinal cord have relatively low levels of D-serine (Schell et al., 1995). During excitotoxicity, 

activation of AMPA receptors increases the activity of serine racemase (SRR), an enzyme which 

produces D-serine (Kim et al., 2005). Activation of microglia and inflammatory stimuli can up 

regulate the expression of SRR in microglia, which further increases the release of D-serine (Sasabe 

et al., 2007; Wu and Barger, 2004). Indeed, in the spinal cord of ALS patients and SOD1 mouse 

models, raised levels of D-serine have been detected (Sasabe et al., 2007). Removal of this 

compound from spinal cord cultures of the SOD1 mouse ALS model attenuates NMDA-mediated 

death of motoneurons, supporting the view that D-serine can amplify excitotoxicity mediated by 

NMDA receptors (Sasabe et al., 2007). Further confirmation of involvement of those receptors in 

ALS is indicated by the fact that a NMDA blocker prolongs the life of SOD1 animals (Joo et al., 

2007; Wang and Zhang, 2005). 

 When considering excitotoxic stress in ALS, one cannot forget the influence of inhibitory 

neurotransmission since, in ALS patients, abnormal levels of glycine and GABA have been found 

in the serum (Niebroj-Dobosz et al., 1999), and a decreased level of glycine in the spinal cord of 

autopsied ALS patients (Malessa et al., 1991). GABA-A receptor mRNA is decreased in spinal 

cords and motor cortex of ALS patients, together with low binding of GABA (Lloyd et al., 2000; 

Petri et al., 2006, 2003; Whitehouse et al., 1983). Also decreased levels of glycine receptors in 

lower motoneurons of ALS patients have been detected (Hayashi et al., 1981; Whitehouse et al., 
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1983). One can surmise that impaired inhibitory circuits can trigger overstimulation of the nervous 

system and excitotoxicity. 

 The main excitatory input to motoneurons is mediated by glutamate. Clinical data have 

shown elevated glutamate levels in the cerebrospinal fluid of ALS patients (Perry et al., 1990; 

Spreux-Varoquaux et al., 2002). This effect was attributed to decreased levels of the excitatory 

amino acid transporter 2 (EAAT2) in patients and mutant SOD1 mice (Fray et al., 1998; Howland et 

al., 2002; Rothstein et al., 1995; Sasaki et al., 2000). Further studies confirmed that deletion of the 

gene encoding this protein was sufficient to induce progressive neurodegeneration (Rothstein et al., 

1996). Analysis of glial excitatory amino acid transporter promoter activity and transcript quality in 

SOD1 mutant mice revealed a substantial decrease which overlapped with the onset of the disease 

(Yang et al., 2009). This transporter protein is susceptible to oxidative stress with alterations in the 

C-terminus region impairing glutamate uptake (Trotti et al., 1998, 1997; Volterra et al., 1994). A 

truncated version of the protein, which is inactive, can also be due to caspase-3 activation, which 

takes place during the disease development (Boston-Howes et al., 2006).  Moreover, neuronal 

signalling significantly affects EAAT2 expression in the astrocytes, and synaptic dysfunction can 

result in diminished expression of this protein (Yang et al., 2009).  

 PET (positron emission tomography) scans of ALS patients show abnormally widespread 

activation, while transcranial magnetic stimulation of the motor cortex shows hyperexcitability (Bae 

et al., 2013). 

Currently there are several therapies under investigation for ALS. Nonetheless, the first 

agent marketed and still widely used is riluzole, which stimulates glutamate uptake (Lacomblez et 

al., 1996; Meininger et al., 2000). It is noteworthy that this drug extends the lifespan for patients for 

a few months only (Van Den Bosch et al., 2006). 

 

3.2 Hypoglossal motoneurons 

 

3.2.1 Anatomy and presynaptic inputs 

 The hypoglossal nucleus is located near the medullary midline bilaterally. Its caudal end is 

oriented ventro-laterally with the rostral end localized ventrally to the IVth ventricle. Axons of 
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hypoglossal motoneurons exit the medulla 

via the XIIth cranial nerve (hypoglossal 

nerve) and innervate intrinsic and extrinsic 

muscles of the tongue (Berger et al., 1996). 

Intrinsic muscles include: longitudinal, 

transverse, vertical muscles. They are 

located in the body of the tongue and 

possess no bone attachments. They alter the 

shape of the tongue. Extrinsic muscles 

consist of genioglossus (tongue protruder), 

hyoglossus (tongue retractor and depressing 

tongue), and styloglossus (tongue retractor 

and elevating tongue): they all have bony 

attachment (Berger et al., 1996; Lowe, 1980; Sokoloff and Deacon, 1992). 

 The organization of the hypoglossal nucleus is somatotopical, i.e. different subregions of the 

nucleus are responsible for innervating distinct tongue muscles (Altschuler et al., 1994; Berger et 

al., 1996; Krammer et al., 1979; Sokoloff and Deacon, 1992). The adult-like somatotopic 

organization of this brainstem region is achieved very early in the postnatal period within the first 

few days (Sokoloff, 1993).  The vast majority of neurons in the hypoglossal nucleus (over 90%) are 

motoneurons. They are large, multipolar cells with a soma of around 25-50 μm, whose dendrites 

spread extensively within the hypoglossal nucleus and into the reticular formation (Boone and 

Aldes, 1984; Withington-Wray et al., 1988). During the first two postnatal weeks, motoneurons 

undergo morphological changes as the dendritic tree of cells innervating genioglossal muscles is 

pruned. The remaining dendrites become more elongated, so there is no net change in total dendritic 

surface. Later, dendritic branches and diameters increase so that the dendritic surface area doubles 

(Mazza et al., 1992; Núñez-Abades et al., 1994; Núñez-Abades and Cameron, 1995). Surprisingly 

the soma of these neurons remains unchanged (Núñez-Abades and Cameron, 1995). Among 

motoneurons, there are intermingled small interneurons, which represent around 5% of neuronal 

population of this nucleus, and are mainly restricted to its dorsolateral, lateral and ventral margins 

(Popratiloff et al., 2001; Sawczuk and Mosier, 2001; Takasu and Hashimoto, 1988). 

 In the initial postnatal days, motoneurons are electrically and dye coupled as detected with 

Lucifer yellow or neurobiotin. This connectivity is later lost and is thought to allow their firing 

synchronization (Mazza et al., 1992). 

 
Fig 3.2 The course of hypoglossal nerve (XII) (from 
http://medical-dictionary.thefreedictionary.com). 

http://medical-dictionary.thefreedictionary.com).
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 The greatest distribution of hypoglossal premotor neurons is located in the medullary and 

pontine reticular formation (Chamberlin et al., 2007; Dobbins and Feldman, 1995; Peever et al., 

2002; Rekling et al., 2000), whose projections are largely bilateral (Cunningham and Sawchenko, 

2000). Other sources of input are the spinal trigeminal nucleus (Borke et al., 1983), the nucleus of 

the solitary tract (Borke et al., 1983), the pre-Bötzinger complex (Smith et al., 2007), interneurons 

within the hypoglossal nucleus (Peever et al., 2002) and the nucleus of Roller which is a source of 

inhibitory interneurons (both glycinergic and GABAergic) and lies just ventrolateral to XII nucleus 

(Aldes et al., 1988; Umemiya and Berger, 1995; van Brederode et al., 2011).   

 It has been shown that electrical stimulation of some components of trigeminal nerve 

(alveolar and masseter nerve) results in complex post-synaptic potentials in HMs, both inhibitory 

and excitatory (Sumino and Nakamura, 1974). Stimulating the lingual nerve (part of the trigeminal 

nerve) also evokes depolarizing and hyperpolarizing synaptic potentials in HMs (Porter, 1967). 

Thus, at least some premotoneurons process sensory information from the periphery and then 

project it to HMs. Medullary interneurons, which are excited by sensory afferent fibers, generate 

monosynaptic EPSCs (glutamatergic) and IPSCs (glycinergic and GABAergic) on HMs. 

Fig 3.3 A photomicrograph of the hypoglossal nucleus near the level of the 
obex, illustrating motoneuron cell bodies and processes infected by injection 
of pseudorabies virus (PRV)-152 into the genioglossal muscle. Neurons 
were labelled by using immunoperoxidase procedures. An arrow indicates a 
motoneuron cell body that could be readily distinguished (modified from 
Shintani et al., 2003). 
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 GABAergic neurons within the XII motor nucleus are few (van Brederode et al., 2011). This 

observation is compatible with the data indicating that HMs do not possess axon collaterals, 

implying lack of local feedback inhibition (Mosfeldt Laursen and Rekling, 1989; Withington-Wray 

et al., 1988).  

 

3.2.2 Excitatory synaptic transmission in hypoglossal motoneurons 

 The primary excitatory drive to hypoglossal motoneurons is mediated by glutamate 

neurotransmission (Berger, 2000). Ionotrophic glutamate receptors, which mediate fast excitatory 

synaptic transmission, are heterotetramers and are divided into three classes: AMPA receptors, 

kainate receptors (often referred collectively as non-NMDA receptors) and NMDA receptors 

(Traynelis et al., 2010).  

 Non-NMDA receptors have fast activation and deactivation rates, followed by strong and 

rapid desensitization. On the contrary, NMDA receptors have slower activation and deactivation 

rates followed by slow and modest desensitization (Traynelis et al., 2010). At the glutamatergic 

synapses in HMs, all three types of glutamate receptors are present, as demonstrated 

electrophysiologically (Berger et al., 1998; Funk et al., 1993; Greer et al., 1991; O’Brien et al., 

1997; Rekling, 1992) and immunocytochemically (García Del Caño et al., 1999; Williams et al., 

1996). Synaptic transmission in the neonatal rat is mainly mediated by non-NMDA receptors (Funk 

et al., 1993; Greer et al., 1991). This condition changes in adulthood, when all three classes of 

receptors are involved in the respiratory drive to HMs (Chitravanshi and Sapru, 1996; Steenland et 

al., 2008, 2006). During the postnatal period, NMDA receptors have another role because their 

block inhibits motoneuron dendritic branching and somatic growth (Kalb, 1994). Activation of 

NMDA receptors during this postnatal period can lead to bursting behaviour in the majority of 

hypoglossal motoneurons, which resembles the pattern involved in suckling (Sharifullina et al., 

2008). While NMDA receptors need glycine for their activation, the glycine binding site is not 

saturated during the first two postnatal weeks (Lim et al., 2004). 

 Another receptor group activated by glutamate comprises metabotropic glutamate receptors 

(mGluRs). It is well known that in forebrain networks, mGluR activation can lead to oscillatory 

activity (Beierlein et al., 2000; Cobb et al., 2000; Hughes et al., 2002; Whittington et al., 1995), 

including network synchronization of inhibitory transmission (Beierlein et al., 2000; Whittington et 

al., 1995). In hypoglossal motoneurons, mGluRs are known to modulate excitability of those cells 
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and facilitate glycinergic inhibitory neurotransmission (Donato et al., 2003; Donato and Nistri, 

2000). In addition, it has been shown that stimulation of group I metabotropic glutamate receptors 

with their selective agonist (dihydroxyphenylglycine – DHPG) generates persistent, regular 

oscillations, with large outward slow currents alternated with fast, repeated inward currents. These 

events require intact transmission via AMPA receptors and electrical coupling via gap junctions of 

neighbouring neurons (Sharifullina et al., 2005). It is likely that the role of mGluR Iis to facilitate 

rhythmic firing, for example, during suckling behaviour (Berger et al., 1996; Sharifullina et al., 

2005). 

 

3.2.3 Inhibitory synaptic transmission in hypoglossal motoneurons 

 The main inhibitory transmission on hypoglossal motoneurons is mediated by glycinergic 

and GABAergic synapses originating from reticular formation neurons (Li et al., 1997), respiratory 

centers like the pre Bötzinger complex (Paton and Richter, 1995) and hypoglossal interneurons 

(Peever et al., 2002). Both neurotransmitters might be co-released from a low number of fibers 

(O’Brien and Berger, 1999) and are transported by the same vesicular transporter (Berger, 2000). 

Although receptors for both transmitters are found on HMs (Muller et al., 2004), these receptors 

have different kinetics, and generate responses of distinct frequency and amplitude. Glycinergic 

events have higher amplitude and frequency in comparison to GABAergic ones (Donato and Nistri, 

2000; O’Brien and Berger, 1999). Since glycinergic transmission is very fast, co-transmission 

mediated by GABA can enable those inhibitory signals to occur for much longer duration. The 

GABA receptor, which belongs mainly to the GABAA class, is blocked reversibly by bicuculline 

whereas glycine receptors are blocked by strychnine (Barnard et al., 1993; Donato and Nistri, 2000; 

Kuhse et al., 1995). GABA and glycine receptors are both Cl- channels and, in the neonatal animal, 

events elicited by such receptors are always depolarizing, and later become hyperpolarizing due to 

maturation of the chloride ion transport system (Singer and Berger, 2000). Nonetheless, their action 

is always inhibitory due to increased membrane conductance, thus making cells less responsive to 

excitatory signals, an effect which is defined as shunting inhibition (Marchetti et al., 2002). 

Shunting conductances can have profound effects not only on the excitability of neurons, but also 

on neuronal gain control (Bonin et al., 2007; Bright et al., 2007; Stell et al., 2003) and network 

excitability (Semyanov et al., 2003). 
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3.2.4 Intrinsic properties of hypoglossal motoneurons 

 Hypoglossal motoneurons display a wide range of currents which contribute to the intrinsic 

properties of these cells (see Table 3.1 and Fig 3.4). Their role is to integrate the synaptic inputs and 

generate firing behaviour. Beside voltage-activated fast sodium and potassium ion flow, responsible 

for generation of action potentials, other conductances include calcium conductances elicited by 

both low-threshold activated (LVA; T-type) and high-threshold activated (HVA; N-, P/Q- and L-

types) (Rekling et al., 2000; Umemiya and Berger, 1994) calcium channels, K+ conductances 

responsible for afterhyperpolarization (AHP) which follow the  action potential, hyperpolarization-

activated current comprising mixed cationic current of Na+ and K+ (Ih) (Bayliss et al., 1994), and 

persistent inward conductances mediated by Na+ and /or Ca2+ channels (INaP and ICaP) (Del Negro et 

 
Fig 3.4 Supra- and subthreshold membrane behaviour of motoneurons 
Ionic currents underlying the action potential waveform (A).Tonic currents 
underlying subthreshold membrane behaviour, in this case, elicited by a short-
lasting depolarizing/hyperpolarizing square current pulse (B). Different phases 
of adaptation during repetitive firing and postdischarge hyperpolarization after 
a long-lasting current pulse (C) (adapted from Rekling et al., 2000). 
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al., 2005; Lamanauskas and Nistri, 2008; Powers and Binder, 2003).  

 Neonatal and mature hypoglossal motoneurons have different firing patterns elicited by 

membrane depolarization. In neonatal animals, after stimulation of motoneurons by a supra-

threshold current, most cells steadily fire a set of discharges with a linear-current frequency relation, 

with an initial brief period of frequency adaptation (Haddad et al., 1990; Mosfeldt Laursen and 

Rekling, 1989; Núñez-Abades and Cameron, 1995; Viana et al., 1995, 1993a, 1993b). Only a 

smaller group shows progressive acceleration of firing to a steady state level (Viana et al., 1995). In 

the case of adult motoneurons, these fire at a higher rate with three different phases of adaptation 

(Sawczuk et al., 1995; Viana et al., 1995). Neonatal HM adaptation is controlled by Ca2+-dependent 

afterhyperpolarization of medium duration (mAHP) (Lape and Nistri, 2000; Viana et al., 1995).  

 

Table 3.1 Main membrane currents in hypoglossal motoneurons and their proposed function (from 

Cifra, 2011) 

Current Abbreviation Description and function References 

Fast Na+ current INa TTX-sensitive, 

fast-activating and inactivating, 

responsible for the depolarizing phase 

of AP 

Mosfeldt et al., 1989; 

Haddad et al., 1990; 

Lape and Nistri, 2001 

Delayed rectifier 

K+ current 

IKDR, Islow TEA-sensitive, 

AP repolarization, fAHP 

Mosfeldt et al., 1989; 

Haddad et al., 1990; 

Viana et at. 1993a; 

Lape and Nistri, 1999 

Fast K+ current A-type, Ifast 4-AP-sensitive, 

initial spike frequency adaptation, 

fAHP 

Mosfeldt et al., 1989; 

Viana et at. 1993a; 

Lape and Nistri, 1999 

Ca2+- activated K+ 

current 

IK Ca(BK) 

IK Ca(SK) 

mAHP (IK Ca(BK)), 

repetitive firing properties, 

Mosfeldt et al., 1989; 

Viana et at. 1993a; 
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(two types of 

channels: BK= 

large 

conductance; SK= 

small 

conductance 

AP repolarization (IK Ca(SK)) 
Umemiya and Berger, 

1994; Lape and Nistri, 

2000; Rekling et al., 

2000 

Low- threshold 

Ca2+ current 

ICaLVA Rebound depolarization bursting 

behaviour, AP repolarization (via 

activation of IK, Ca(BK)), ADP  

Viana et al., 1993b, 

Umemiya and Berger, 

1994 

High- threshold 

Ca2+ current 

ICaHVA ADP, mAHP (via activation of IK 

Ca(SK)) 

Viana et al., 1993b; 

Umemiya and Berger, 

1994 

Na+ / K+ 

hyperpolarization- 

activated current 

Ih Rebound potentials, stabilize Vm 

around rest, reduces mAHPs as well as 

response for inhibitory synaptic inputs 

Bayliss et al., 1994; 

Viana et al., 1994 

Persistent inward 

currents (Na+ and 

Ca2+) 

INaP 

ICaP 

Integration of synaptic inputs, 

rhythmic discharges 

Powers and Binder, 

2003; Zeng et al., 

2005; Moritz et al., 

2007 

TTX: tetrodotoxin; AP: action potential; TEA: tetraethylammonium; fAHP: fast 

afterhyperpolarization; 4-AP: 4-aminopyridine; mAHP: medium AHP; ADP: afterdepolarization: 

VM: membrane potential 

 

3.2.5 Function of hypoglossal motoneurons 

 Hypoglossal motoneurons are involved in several activities like breathing, mastication, 

swallowing, vomiting, licking, vocalization and coughing (Gestreau et al., 2005). These activities 

involve tongue rhythmic contractions and proper coordination, and are crucial for survival shortly 

after birth (Berger, 2000; Feldman and Del Negro, 2006; Horner, 2008).  
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 There are numerous studies investigating the discharge patterns of hypoglossal motoneurons 

during breathing (Hwang et al., 1983; Peever et al., 2002; Withington-Wray et al., 1988). During 

inspiration, genioglossus muscle activity is enhanced in order to increase airway patency, the 

retrusor muscles help stiffening of the pharyngeal wall, and the activity of the intrinsic tongue 

muscles contributes to lingual stiffness (Bailey and Fregosi, 2004). During sleep, especially the 

rapid-eye-movement phase, the activity of respiratory muscles changes. The airway narrows and the 

resistance to breathing increases (Horner, 2008). This change can lead to pathological conditions 

like obstructive sleep apnea in individuals with constitutively narrow upper airways (Remmers et 

al., 1978). Experiments on naturally sleeping animals demonstrated that some tonic excitatory drive 

to HMs is withdrawn during sleep and the additional dominance of inhibitory GABAergic inputs 

results in suppression of respiratory muscle activity (Horner, 2009). 

  During swallowing of food or fluids, inspiration is inhibited in order to prevent aspiration of 

food and the tongue retrusor muscles propel food towards the pharyngeal cavity. Additionally, the 

geniohyoid and thyrohyoid muscles close the laryngeal vestibule and elevate the entire larynx 

facilitating the upper esophageal sphincter opening (Gestreau et al., 2005). During those activities, 

hypoglossal motoneurons discharge complex patterns of firing in order to coordinate the tongue 

muscles (Amri et al., 1991; Tomomune and Takata, 1988). Involvement of hypoglossal 

motoneurons in other activities, including coughing, have been also investigated, but to a lesser 

extent (Dick et al., 1993; Dinardo and Travers, 1994; Hayashi and McCrimmon, 1996; Ono et al., 

1998; Roda et al., 2002; Satoh et al., 1998; Umezaki et al., 1998).  

 Recording from hypoglossal motoneurons shows that 20% of HMs change their membrane 

potentials only during one behaviour (swallowing), 30% receive synaptic drive during both 

breathing and swallowing, 35% exhibit membrane potential changes in relation to the three tested 

behaviours (coughing, breathing and swallowing), and 15% show no change in their membrane 

potential (Gestreau et al., 2005; Roda et al., 2002). All motoneurons active during coughing display 

respiratory-related activity, with similar frequencies and amplitudes of synaptic potentials 

indicating that they formed a common subset with equal synaptic drives (Roda et al., 2002). Other 

investigations revealed a distinct subset of HMs recruited only during swallowing (Gestreau et al., 

2000). The results from those studies indicate that hypoglossal motoneurons represent distinct 

functional pools activated during different behaviours (Baekey et al., 2001; Gestreau et al., 2000; 

Ono et al., 1998; Roda et al., 2002; Tomomune and Takata, 1988; Umezaki et al., 1998). 

Hypoglossal motoneurons do not possess intrinsic rhythmic activity as they discharge only when 

driven by central pattern generators (CPGs) like those involved in breathing (Rekling and Feldman, 
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1998; Smith et al., 1991; Suzue, 1984), swallowing (Jean, 2001) and mastication (Nakamura and 

Katakura, 1995).  A single CPG can have divergent inputs on distinct pools of HMs and a subset of 

HMs can receive convergent excitatory and inhibitory synaptic drives arising from divergent CPGs 

(see Fig 3.5) (Gestreau et al., 2005; Roda et al., 2002). Moreover, several results suggest the 

existence of multifunctional XII premotoneurons, which share several CPGs inputs (Ono et al., 

1998; Roda et al., 2002). A very useful feature of the medullary slice is the preservation of CPGs. 

Many studies used such a preparation and recorded from the XII nerve in order to study outputs of 

the respiratory centers and functional changes in respiratory rhythm generation and modulation 

(Funk et al., 1993; Ramirez et al., 1997; Shao and Feldman, 2005; Smith et al., 1991; Telgkamp and 

Ramirez, 1999). 

 

3.2.6 Hypoglossal motoneurons in pathological conditions 

 As mentioned above, hypoglossal motoneurons mediate several functions important for 

 
Fig. 3.5 Output patterns of lingual muscles are achieved by activation of various 
subsets of XII motoneurons.  

Brainstem neural networks (or central pattern generators, CPGs) producing
breathing, swallowing and coughing motor activities form neural ensembles including 
XII premotor neurons (black circles). The latter send convergent and divergent 
projections onto subsets of motoneurons. Several results suggest the existence of 
multifunctional (or shared) premotor neurons (see overlapping CPGs). The cough 
motor pattern is likely generated by reconfiguration of the breathing CPG (adapted 
from Gestreau et al., 2005). 
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survival. Thus, dysfunction of these cells contributes to certain pathological conditions and ALS is 

certainly one of them. Little is known about the early pathogenesis of HMs during ALS onset, 

although they are among the most strongly affected neurons, especially in bulbar form of the 

disease (Krieger et al., 1994; Laslo et al., 2001; Lips and Keller, 1998). Even in the case of limb-

onset ALS, most patients eventually develop bulbar symptoms (Haverkamp et al., 1995; Yamauchi 

et al., 2014). Respiratory failure is the most common cause of death in ALS and deterioration of 

hypoglossal motoneurons creates life-threatening events like choking more probable (Haverkamp et 

al., 1995; Yamauchi et al., 2014). Tongue muscle motoneurons play a major role in sleep apnea, a 

breathing disorder associated among others with sleepiness, stroke, cardiovascular disorders, 

depression, attention deficit disorder, and learning impairments (Saboisky et al., 2009). Under 

normal conditions in the awake state, the respiratory output is controlled, among others, by 

hypoglossal motoneurons, whose activity prevents airway collapse. During sleep, the central 

respiratory drive to the muscles weakens and may result in occlusion, especially in the individuals 

with narrowed airways (Ramirez et al., 2013). 

 

3.2.7 Hypoglossal motoneurons and excitotoxicity studies 

 Our laboratory has previously reported a simple in vitro model of excitotoxicity (Sharifullina 

and Nistri, 2006). By applying a glutamate uptake inhibitor DL-threo-β-benzyloxyaspartate (DL-

TBOA) via the perfusion system to the brainstem medullary slice of the neonatal rat, a gradual rise 

in extracellular glutamate concentration is elicited. DL-TBOA is suitable for this kind of 

experimental investigation, because it does not affect glutamate receptors and is not transported by 

glutamate carriers (Anderson et al., 2001). Hence, following TBOA application, about half of the 

HM population develops strong bursting. These events are synchronous due to electrical coupling 

among neighbouring motoneurons, and are accompanied by strong enhancement in excitatory 

synaptic transmission (Cifra et al., 2011a, 2011b; Sharifullina and Nistri, 2006). Bursts have a 

network origin, since tetrodotoxin (TTX) application or the cell-permeable Ca2+ chelator (BAPTA-

AM) suppress them. Development of bursts requires interplay of several glutamate receptors 

including AMPA, NMDA and metabotropic glutamate receptor 1 (mGluR1), while the role of 

GABA and glycine is to inhibit bursting occurrence. Previous data have indicated that NMDA and 

mGluR are not accessible for glutamate during normal, fast synaptic transmission, but they can be 

activated by ambient glutamate (Brasnjo and Otis, 2001; Campbell and Hablitz, 2004; Huang and 

Bordey, 2004; Huang et al., 2004). NMDA most likely supports bursting by spreading membrane 
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depolarization, while the mGluR activation increases membrane resistance, thus making neurons 

electrotonically more compact and sensitive to excitatory inputs (Sharifullina and Nistri, 2006).  In 

addition, gap junctions are also important for bursting occurrence, most likely by recruiting cells 

and synchronizing their discharges (Sharifullina and Nistri, 2006). Co-activation of all three types 

of glutamate receptor combined with electrical coupling triggers bursting. Riluzole, a drug which is 

used for ALS therapy, suppresses bursting evoked by TBOA (Cifra et al., 2011a, 2009). Processes 

which most likely contributed to termination of the TBOA-evoked bursts are the cyclic operation of 

the Na+-K+ pump and synaptic fatigue, a mechanism which may control bursting in the rat spinal 

motoneurons (Rozzo et al., 2002). 

 In almost half of the motoneuron population, TBOA induces an irreversible rise in calcium 

levels, apparently leading to motoneuron death (Sharifullina et al., 2005). After application of 

TBOA, Ca2+ waves are observed in HMs, possibly because of a persistent activation of mGluRs 

which trigger calcium release from intracellular stores (Schoepp et al., 1999), depolarization-

dependent Ca2+ influx, and opening of Ca2+-permeable AMPA and NMDA receptors (Sharifullina 

et al., 2005). With ongoing TBOA application, Ca2+ imaging reveals a rise in [Ca2+]i baseline in 

some of the cells indicating patchy excitotoxic effects (Sharifullina et al., 2005). Motoneurons with 

large bursts and Ca2+ deregulation are probably more likely to be affected and prone to die during 

the insult (Sharifullina and Nistri, 2006). TBOA also significantly increases the number of 

propidium iodide (a dye which penetrates cells via disrupted cell membranes to bind to DNA) 

positive cells in medullary slices, an effect blocked by drugs which suppressed bursting 

(carbenoxolone - a gap junction blocker, glutamate receptor antagonists, or riluzole) (Cifra et al., 

2009; Sharifullina and Nistri, 2006). Also immunohistochemical studies with ATF-3 (a well-known 

marker for motoneuron distress), or analysis of occurrence of pyknotic nuclei (condensation of 

chromatin associated with cell death) confirm that riluzole diminishes the pathological action of 

TBOA (Cifra et al., 2011a). 

 The TBOA model offers a number of advantages for the investigation of pathological 

mechanisms correlated with excitotoxicity and presymptomatic stage of ALS. First of all, 

pharmacological inhibition of glutamate uptake resembles the gradual build-up of the glutamate 

levels observed in the cerebrospinal fluid of ALS patients, a phenomenon which is most likely due 

to down-regulation of glutamate uptake in ALS (Rothstein et al., 1995, 1992). Moreover, the patchy 

pathology of hypoglossal motoneurons is analogous to the human pathology (Swash and Ingram, 

1988). Furthermore, medullary slices allow for tight control over experimental conditions and fast 

changes in parameters such as ion composition or drug application. Thus, despite the large 
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simplification of neuronal networks in our preparation, it represents a useful tool for studying 

pathological processes and potential new approaches to treat ALS.    

 

3.3. Endocannabinoids in central nervous system 
 

3.3.1. Endocannabinoids 

 Cannabis sativa is a plant known and used for thousands of years for medical and mood-

altering purposes. Its psychoactive component is delta-9-tetrahydrocannabinol or Δ9-THC which, by 

binding to cannabinoid type 1 receptors (CB1Rs), is responsible for its psychoactive actions (Gaoni 

and Mechoulam, 1964). The first endogenous compound which activated cannabinoid receptors 

(endocannabinoid) was anandamide (AEA) or N-arachidonylethanolamide (Devane et al., 1992). 

Later, a second endocannabinoid, namely 2-arachidonylglycerol (2-AG) was identified (Mechoulam 

et al., 1995; Sugiura et al., 1995). Endocannabinoids induce a variety of actions on the nervous 

system, such as reduced motor activities, immobility, hypothermia, analgesia, impairment of 

memory, stimulation of appetite, inhibition of adenylyl cyclase, inhibition of voltage-gated Ca2+ 

channels, activation of an inwardly rectifying K+ current, reduction of gap junction permeability, 

inhibition of neurotransmitter release, and the inhibition of long-term potentiation (LTP) in 

hippocampal slices in vitro (Di Marzo, 1998; Felder and Glass, 1998; Hillard, 2000; Hillard and 

Campbell, 1997; Mechoulam et al., 1998; Pertwee, 1997; Piomelli et al., 1998; Schmid et al., 2002). 

AEA behaves as a partial agonist for both CB1 and CB2 receptors (Sugiura et al., 2002) and is also 

an endogenous ligand for transient receptor potential vanilloid receptor 1 (TPRV1) receptors 

although with significantly lower affinity (Di Marzo et al., 2001; Ross, 2003). 2-AG is much more 

abundant in the brain than AEA and reaches nM concentrations per gram of tissue (Sugiura et al., 

2006). Currently there are also other compounds considered to be endocannabinoids. These include: 

dihomo-linolenoyl ethanolamide (Hanus et al., 1993), docosatetraenoyl ethanolamide (Hanus et al., 

1993), 2-arachidonyl glycerol ether (noladin ether) (Hanus et al., 2001), O-

arachidonoylethanolamine (virodhamine) (Porter et al., 2002), and N-arachidonoyldopamine 

(Huang et al., 2002). 
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3.3.2. Synthesis of endocannabinoids 

 Both AEA and 2-AG are synthesised on demand in an activity-dependent manner and are 

released into the extracellular space (Di Marzo et al., 1994; Piomelli, 2003).  

 During studies on the synthesis of AEA it was discovered that a rise in intracellular calcium 

is necessary for its production, so it can be induced by the Ca2+ ionophore ionomycin, 

depolarization with high potassium solution, electrical stimulation and/or carbachol (muscarinic 

receptor agonist) or glutamate application (Di Marzo et al., 1994; Di et al., 2005; Stella and 

Piomelli, 2001). Currently it is known that synthesis of endocannabinoids from postsynaptic 

neurons can be triggered by strong depolarization with associated elevation in intracellular Ca2+ 

concentration (Ca2+-driven endocannabinoid release) (Kreitzer and Regehr, 2001; Ohno-Shosaku et 

al., 2001; Wilson and Nicoll, 2001), strong activation of postsynaptic Gq/11 protein-coupled 

receptors at basal Ca2+ level (basal receptor-driven endocannabinoid release) (Maejima et al., 2001; 

Varma et al., 2001), or simultaneous Ca2+ elevation and Gq/11 protein-coupled receptor activation 

(Ca2+-assisted receptor-driven endocannabinoid release) (Kim et al., 2002; Ohno-Shosaku et al., 

2002; Varma et al., 2001).  

 Synthesis of AEA is composed of two reactions. Increase in intracellular calcium activates 

N-acyltransferase (NAT), which transfers an arachidonate group from phospholipids like N-

arachidonoyl-phosphatidylethanolamine (NAPE) to the primary amino group of 

phosphatidylethanolamine (PE), creating N-arachidonoyl PE. During the second step, the enzyme 

N-acylphosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) hydrolyses N-

arachidonoyl PE to anandamide and phosphatidic acid (Cadas et al., 1997; Fonseca et al., 2013). 

NAT activation is thought to be rate-limiting for AEA production. NAPE-PLD-knockout mice 

(Leung et al., 2006) do not show any obvious behavioural abnormalities, suggesting that there are 

other NAPE-PLD-independent pathways for AEA synthesis (Okamoto et al., 2007a).  

 Currently there are several pathways for 2-AG synthesis known. The main one consists of 

initial hydrolysis of the arachidonic acid-containing membrane phospholipid (such as 

phosphatidylinositol) by phospholipase C (PLC) enzyme and creation of the arachidonic acid-

containing diacylglycerol. Further on, diacylglycerol lipase (DAGL)  hydrolyses this compound to 

2-AG (Bisogno et al., 2003; Jung et al., 2007, 2005b; Kondo et al., 1998; N. Stella et al., 1997). 

Other pathways for 2-AG synthesis involve sequential reactions by the phospholipase A1 (PLA1) 

and the lysoPI-specific PLC (Sugiura et al., 1995; Tsutsumi et al., 1994; Ueda et al., 1993), 

conversion from 2-arachidonoyl lysophosphatidic acid by phosphatase (Nakane et al., 2002), and 
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formation of 2-AG from 2-arachidonoyl phosphatidic acid through 1-acyl-2-arachidonoylglycerol 

(Bisogno et al., 1999; Carrier et al., 2004). 

 

3.3.3. Transport and degradation of endocannabinoids 

 Endocannabinoid removal from the extracellular space is thought to be a two step process, 

which consists of the transport into the cells followed by the enzymatic degradation (McFarland and 

Barker, 2004; Hillard and Jarrahian, 2000; Fowler and Jacobsson, 2002). Uptake of AEA has been 

observed in many preparations, including neuronal primary cultures, and described as saturable and 

temperature dependent (Beltramo et al., 1997; Di Marzo et al., 1994; Di Marzo and Matias, 2005). 

Currently there are several models proposed for AEA uptake. The first one implies the existence of 

a carrier protein which transports AEA (Fegley et al., 2004; Ligresti et al., 2004). The second model 

neglects the existence of the carrier and considers that AEA passes through the membrane by 

simple diffusion, followed by intracellular degradation (Glaser et al., 2003). The third model 

implies that AEA undergoes endocytosis through a caveolae-related uptake process (McFarland et 

al., 2004). There is not much information concerning any 2-AG uptake mechanism, although 

 
Fig 3.6 ECB synthesis and degradation 
Main pathways of synthesis and degradation of the 
endocannabinoids AEA and 2-AG (adapted from El Manira 
and Kyriakatos, 2010). 
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several studies suggest that it can be transported by the system involved in the AEA uptake 

(Beltramo and Piomelli, 2000; Bisogno et al., 2001; Piomelli et al., 1999). 

 Two pathways for endocannabinoid degradation exist, namely hydrolysis and oxidation 

(Vandevoorde and Lambert, 2007). The AEA degradation enzyme was cloned from rat liver and 

named fatty acid amide hydrolase (FAAH) (Cravatt et al., 1996). FAAH primary substrate is AEA, 

but it can recognize a variety of other fatty acid amides. The main enzyme involved in the 

hydrolysis of 2-AG is termed monoacylglycerol lipase (MGL) (Dinh et al., 2004, 2002; 

Vandevoorde and Lambert, 2007). In the oxidative degradation of endocannabinoids two enzymes 

are involved: cyclooxygenase 2 (COX-2) and lipoxygenase (LOX). For the COX-2 enzyme the 

preferred substrate is arachidonic acid, nonetheless it can act on both 2-AG and AEA, although with 

low affinity for the former one (Vandevoorde and Lambert, 2007). There are known several kinds 

of LOX enzymes, which can use both 2-AG and AEA as a substrate (Vandevoorde and Lambert, 

2007).  

 

3.3.4. Endocannabinoid receptors 

 There are two major cannabinoid receptors (CBs): CB1 (Matsuda et al., 1990) and CB2 

(Munro et al., 1993). Both are seven trans-membrane domain receptors coupled to G proteins; while 

CB2 is distributed primarily within the immune system, CB1 is abundant in the central nervous 

system (CNS) (Glass et al., 1997; Kano, 2014; Herkenham, 1990; Pertwee, 1997). Studies with 

CB1R-knock-out mice and CB1R-specific antagonists indicate that this receptor is mainly 

responsible for the psychoactive responses to exogenous cannabinoids and physiological actions of 

endocannabinoids (Elphick and Egertová, 2001; Ledent et al., 1999). The CB1R of the rat is 

composed of 473 amino acids and its human and mouse analogues are sharing 97-99% sequence 

identity (Chakrabarti et al., 1995; Gérard et al., 1990; Matsuda et al., 1990). In vivo CB1Rs exist as 

homodimers (Mackie, 2005; Wager-Miller et al., 2002) or in form of heterodimers, for example 

with D2 (dopamine 2) receptors (Kearn et al., 2005). 

 Anther receptor which can be activated by AEA is the transient receptor potential vanillinoid 

receptor 1 (TRPV1R) (Starowicz et al., 2007). It is a Ca2+ permeable, non-selective cation channel 

(Caterina et al., 1997). It is best known for its role in the sensory nociceptive neurons of the 

peripheral nervous system, although it is accepted that it has a broad distribution in the central 

nervous system, and is involved in several functions like modulation of the neuronal and glial 
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activities (Martins et al., 2014). 

 Other cannabinoid receptors are also likely to exist, but their role and characterization is still 

under investigation (Hájos et al., 2001).  

 The first insights into the distribution of CB1Rs in the brain came from studies using the 

synthetic radio-labelled cannabinoid ligand [3H]CP55,940 (Herkenham et al., 1991, 1990; Mailleux 

and Vanderhaeghen, 1992). Those data have shown that CB1Rs are widely distributed across the 

brain areas. Moderate levels of labelling were detected in the brainstem and spinal cord areas. 

CB1Rs can be very often found in the terminals and pre-terminal axons as indicated by studies in 

the hippocampus dentate gyrus, pyramidal neurons and cerebellum (Egertová et al., 2003; Eggan 

and Lewis, 2007; Harkany et al., 2005; Katona et al., 2000, 1999; Mailleux et al., 1992; Mailleux 

and Vanderhaeghen, 1992; Marsicano and Lutz, 1999; Pettit et al., 1998; Tsou et al., 1999, 1998).                  

3.3.5. Intracellular signalling elicited by endocannabinoids with focus on CB1 receptors 

 One of the best known effects elicited by CB1Rs is inhibition of neurotransmitter release. 

Many studies associate CB1R activation with suppression of the release of glutamate (Lévénés et 

al., 1998), GABA (Szabo et al., 1998), glycine (Jennings et al., 2001), acetylcholine (Gifford and 

Ashby, 1996), norepinephrine (Ishac et al., 1996), dopamine (Cadogan et al., 1997), serotonin 

(Nakazi et al., 2000), and cholecystokinin (Beinfeld and Connolly, 2001). Research on neurons and 

transfected cells also link activation of the CB1Rs with activation of A-type (Hampson et al., 1995) 

and inwardly rectifying K+ channels (Mackie et al., 1995), inhibition of N- and P/Q-type Ca2+ 

channels (Twitchell et al., 1997) and D- and M-type K+ channels (Mu et al., 1999; Schweitzer, 

2000), modulation of activity of focal adhesion kinase (Derkinderen et al., 1996), mitogen-activated 

protein kinase (Sánchez et al., 1998), phosphatidylinositol 3-kinase (Bouaboula et al., 1995), and 

some enzymes involved in energy metabolism (Guzmán and Sánchez, 1999). At biochemical level, 

the CB1R signalling pathway significantly inhibits cAMP synthesis, thus being considered the 

principal effector of CB1R activation. 

3.3.5.1. Regulation of intracellular cAMP 

 The first pathway connected to the cannabinoid receptor system was the one mediated by 

Gi/oprotein (negatively coupled to adenylyl cyclase) (Howlett et al., 1986; Howlett and Fleming, 

1984). Both exo- and endocannabinoids inhibit adenylyl cyclase activity in cells in culture and in 

brain homogenates. In 1988, Howlett and his colleagues presented data on the potency of various 

cannabinoids to inhibit cAMP formation and correlated it with antinociceptive effects of those 
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drugs in vivo (Howlett et al., 1988) indicating that this pathway is responsible for the analgesic 

effects of these compounds. Both 2-AG and AEA induce CB1-mediated inhibition of adenylyl 

cyclase (Felder et al., 1993; Mechoulam et al., 1995; Stella et al., 1997; Vogel et al., 1993). 

 Further studies indicated that, when interaction of the CB1R with Gi/o is not possible, it can 

 
Fig 3.7 Model of retrograde AEA action 

1. Presynaptic depolarization leads to calcium influx, which in turn activates glutamate 
exocytosis. 2. Glutamate diffuses through synaptic cleft and activates postsynaptic 
glutamate receptors. 3. Activation of NMDA, AMPA and other glutamate-subtype 
receptors leads to postsynaptic depolarization and calcium influx. 4. Elevated 
postsynaptic calcium levels activate a transacetylase (TA), which converts 
phosphatidylethanolamine (PE) into N-arachidonoyl phosphatidylethanolamine 
(NAPE). 5. NAPE is hydrolysed by a phospholipase D (PLD), which yields AEA. AEA is 
released from postsynaptic cell and diffuses back to presynaptic CB1 receptors. 6. Upon 
activation of CB1 receptors by AEA, Gi/o proteins are released, which inhibit N-, and 
P/Q-type voltage sensitive calcium channels. 7. Closing of voltage-sensitive calcium 
channels results in reduced release of neurotransmitters, such as glutamate or GABA 
(adapted from Van der Stelt et al., 2002). 
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interact with Gs proteins, known to have stimulatory effect on adenylate cyclase (Felder et al., 1998; 

Glass and Felder, 1997; Maneuf and Brotchie, 1997). 

 Studies from several laboratories have demonstrated that different cannabinoid ligands can 

promote interactions with different G proteins (Bonhaus et al., 1998; Glass and Northup, 1999; 

Griffin et al., 1998; Kearn et al., 1999; Mukhopadhyay et al., 2000; Selley et al., 1996). For 

example, one study on hamster ovary cells with PTX (pertussis toxin) pretreatment (to observe 

coupling with Gs) reports that different CB1R agonists had different potencies to stimulate or inhibit 

cAMP accumulation (Bonhaus et al., 1998).  

 

3.3.5.2. Regulation of ion channels 

 During studies on endocannabinoid receptors it has been shown that they can affect several 

ion channels crucial for cellular excitability. N- and Q-type voltage-dependent calcium channels 

(VDCC) are inhibited by AEA (Mackie et al., 1995, 1993). Interestingly, inhibition produced by 

AEA is apparently not due to the cAMP pathway, but a direct interaction of the G subunits with 

those channel proteins (Ikeda, 1996; Mackie et al., 1993).  

 Currently a vast array of studies in different brain regions have shown that activation of the 

CB1Rs on axon terminals leads to decrease in the neurotransmitter release by inhibition of calcium 

channels (Brown et al., 2003; Castillo et al., 2012; Kreitzer and Regehr, 2001; Pertwee, 1997; 

Petrocellis et al., 2004; Wilson et al., 2001). This signalling is elicited in a retrograde fashion, which 

is in line with apresynaptic CB1R distribution and postsynaptic localization of the enzymes 

involved in metabolism of endocannabinoids (Di Marzo et al., 1994; Egertová et al., 1998; Elphick 

and Egertová, 2001; Stella et al., 1997). Retrograde signalling of endocannabinoids was 

demonstrated during studies on depolarization-induced suppression of inhibition or excitation (DSI 

or DSE) (Kreitzer and Regehr, 2001; Ohno-Shosaku et al., 2001; Wilson and Nicoll, 2001). In a 

study on hippocampal slices, Wilson and his colleagues demonstrated that endocannabinoids target 

specific subtypes of GABAergic interneurons and inhibit N- type VDCCs to decrease the release of 

GABA (Wilson and Nicoll, 2001). In the cerebellum, CB1R activation leads to inhibition of firing 

due to activation of K+ current and, thus a decrease in the neurotransmitter release (Kreitzer et al., 

2002). CB1Rs can also inhibit L-type calcium channels, as demonstrated in cat cerebral vascular 

smooth muscle cells (VSMC) (Gebremedhin et al., 1999). In the retinal slices cannabinoids both 

enhance (in rods) and inhibit (in cones) L-type calcium channel activity (Straiker and Sullivan, 
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2003). The enhancement of L-type calcium currents in rods is due to modulation of the cAMP 

pathway by CB1Rs. Moreover, in both rods and cones, potassium currents are also inhibited 

(Straiker and Sullivan, 2003). 

 Moreover, CB1Rs have been reported to influence calcium release from intracellular stores 

(Hampson et al., 1998, 2011; Netzeband et al., 1999). For example, it has been indicated that 

activation of CB1Rs at hippocampal glutamatergic synapses can modulate the ability of NMDA 

receptor-gated Ca2+influx to potentiate calcium-sensitive endoplasmic reticulum ryanodine (RYR) 

receptors. Activation of the CB1Rs reduces the release of intracellular calcium most likely by 

facilitating phosphorylation of RYR receptors (Hampson et al., 2011).  

 In addition to those presented above, CB1Rs or even their ligands can modulate other 

signalling pathways. Effects of CB receptor dependent and independent actions are summarized in 

Tables 3.2. and 3.3.  

Table 3.2. CB receptor-mediated signal transduction targets (acquired from Demuth and Mollean, 

2006) 

Receptor Signalling target Suggested Effect References  

CB1R Gi/o Activation Bonhaus et al., 1998; 

Bouaboula et al., 1999 

 Gs Activation Maneuf and Brotchie, 1997; 

Jarrahian et al., 2004 

 Adenylate cyclase Inhibition Felder et al., 1993; Wade at 

al., 2004 

  Activation Felder at al., 1998; Busch et 

al., 2004 

 p38 mitogen 

activated protein 

kinase 

Activation Derkinderen at al., 2001 

 p42/p44 mitogen Activation Bouaboula et al., 1995b; 
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activated protein 

kinase 

Derkinderen et al., 2003 

 phosphatidyl 

inositol-3-kinase/ 

protein kinase B 

Activation 
Sánchez et al., 1998; Galve-
Roperh et al., 2002 

 Ceramide Activation Sánchez et al., 1998; Galve-

Roperh at al., 2000 

 Voltage-activated 

Ca2+ channels: 

  

 N-type Inhibition Pan et al., 1996; Wilson et 

al., 2001 

 P/Q-type Inhibition Twitchell et al., 1997; 

Hampson et al. 1998 

 L-type Inhibition Gebremedhin et al., 1999; 

Straiker at al., 1999 

 K+ channels:   

 G-protein couples 

inwardly 

rectifying K+ 

channel 

Activation McAllister at al., 1999; 

Robbe et al., 2001 

 IA Activation Hampson et al., 1995; Mu et 

al., 2000 

 ID Inhibition Mu et al., 1999 

 IM Inhibition Schewitzer, 2000 
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 N-methyl-D-

aspartate receptor 

Inhibition Hampson et al., 1998; 

Netzeband et al., 1999 

 [Ca2+]i Activation Fimiani et al., 1999; Begg et 

al., 2001; Demuth et al., 

2004 

 Arachidonic acid Activation Demuth et al., 2005; 

Shivachar et al., 1996 

 Phospholipase C/ 

inositol 1,4,5-

triphosphate 

Activation Sugiura et al., 1997; 

Netzeband et al., 1999 

 Nitric oxide Activation Fimiani et al., 1999; 

Mombouli et al., 1999 

CB2R Gi/o Activation Beyewitch et al., 1995; 

Kobayashi et al., 2001 

 Adenylate cyclase Inhibition Bayewitch et al., 1995; 

Slipetz et al., 1995 

 p42/p44 mitogen 

activated protein 

kinase 

Activation Bouaboula et al., 1996; 

Kobayashi et al., 2001 

 [Ca2+]i Activation Zoratti et al., 2003 

 Phospholipase C/ 

inositol 1,4,5-

triphosphate 

Activation Zoratti et al., 2003 
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Table 3.3. CB receptor-independent signal transduction pathways (from Demuth and Mollean, 

2006) 

Signalling Target Cannabinoid Suggested Effect References 

Transient receptor 

potential vanilloid 1 

receptor 

Anandamide Activation Smart et al., 2000; De 

Petrocellis et al., 2001 

5-hydroxytryptamine 

receptor 

Anandamide Inhibition Barann et al., 2002; Oz 

et al., 2002 

 CP 55,940 Inhibition Fan, 1995; Godlewski 

et al., 2003 

 WIN 55,212-2 Inhibition Barann et al., 2002; 

Godlewski et al., 2003 

 Δ9-THC Inhibition Barann et al., 2002 

 LY 320135 Inhibition Barann et al., 2002 

Nicotinic acetylcholine 

receptor 

Anandamide Inhibition Oz et al., 2003 

 2-AG Inhibition Oz et al., 2004 

 CP 55,940 Inhibition Oz et al., 2004 

N-methyl-D-aspartate 

receptor 

Anandamide Activation Hampson et al., 1998 

T-type Ca2+ channel Anandamide Inhibition Chemin et al., 2001 

TWIK-related acid- Anandamide Inhibition Maingret et al., 2001 
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sensitive K+ 1 (TASK-

1) channel 

 CP 55,940 Inhibition Maingret et al., 2001 

 WIN 55,2122 Inhibition Maingret et al., 2001 

Na+ channel Anandamide Inhibition Nicholson et al., 2003 

 WIN 55,212-2 Inhibition Nicholson et al., 2003 

 

3.3.6. Endocannabinoids in pathological conditions 

 A systematic description of the endocannabinoid system properties and function has led to 

the proposal that it may play a role in the pathological processes occurring in the central nervous 

system. Numerous studies have correlated the endocannabinoid (ECB) system with many various 

conditions including brain ischemia, traumatic brain injury, Huntington's and Alzheimer's diseases, 

excitotoxicity, multiple sclerosis and ALS (Bilsland and Greensmith, 2008; Croxford, 2003; 

Fernández-Ruiz, 2009; Hillard, 2008; Pacher et al., 2006; Pertwee, 2005; Scotter et al., 2010; 

Shouman et al., 2006). 

 

3.3.6.1. Excitotoxicity 

 Excitotoxicity is taking part in many pathological conditions like brain ischemia, traumatic 

brain injury and also neurodegenerative diseases like Huntington's disease or ALS (Dong et al., 

2009; Hillard, 2008; Van Den Bosch et al., 2006; Werner and Engelhard, 2007). Studies on the 

endocannabinoid system reveal that it can significantly influence the extent of damage caused by 

this type of insult. For example, CB1R activation protects cells in cultures of hippocampal neurons 

during toxicity induced by Mg2+ removal (Gilbert et al., 2007; Shen and Thayer, 1998). In those 

experiments, cell death is due to excessive Ca2+ influx via NMDA receptors which results in 

calcium spiking. CB1Rs most likely decrease the release of glutamate from synaptic terminals 

(Shen and Thayer, 1998). The endocannabinoid system seems to be a part of an endogenous 

neuroprotective mechanism recruited during the insult, as shown by studies with kainic acid on 
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hippocampal cells (Khaspekov et al., 2004; Marsicano et al., 2003). Data from those studies prove 

that ablation of CB1Rs or co-application of a CB1R antagonist makes the cells more susceptible to 

damage caused by kainate application, for example by reducing the threshold for neuronal 

excitation (Marsicano et al., 2003). Also mice with deleted CB1Rs in glutamate neurons of the 

hippocampus and in the wild type mice treated with rimonabant, a CB1R antagonist, elicit more 

severe seizures induced by kainate, which indicate that CB1R signalling protects from excess 

excitability (Marsicano et al., 2003; Monory et al., 2006). Moreover, Marsicano and his colleagues 

detected an increase in the AEA levels in the wild-type hippocampal neurons after kainate 

application (Marsicano et al., 2003). Such up-regulation further supports the theory that 

cannabinoid signalling is triggered to fight against excess excitation. 

 

Fig 3.8 Glutamatergic neurotransmission and excitotoxicity 
Under normal conditions, glutamate released from the presynaptic neuron activates the NMDA 
and AMPA receptors. This results in an influx of both Na+and Ca2+ ions, the depolarization of 
the postsynaptic neuron and ultimately in an action potential. (A) Excitotoxicity is induced by an 
elevation of the extracellular glutamate concentration. This can be caused by an increased 
release of glutamate or a deficient re-uptake of glutamate into the astrocytes by the 
EAAT2/GLT-1 transporter. The excessive stimulation of the glutamate receptors gives rise to an 
increased intracellular concentration of Na+ and Ca2+ ions and this can result in neuronal 
death. The disintegration of neuronal cells causes a further increase of extracellular glutamate 
and amplifies the excitotoxic damage (B) (adapted from Van Den Bosch et al., 2006).   
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3.3.6.2. Brain ischemia and traumatic brain injury 

 The most damaging consequences occurring during brain ischemia and traumatic brain 

injury are the generation of free radicals and increase in calcium and sodium intracellular levels 

(Leker and Shohami, 2002; Lipton, 1999). There are indications that the endocannabinoid system is 

activated during both pathological events. Experiments on rats confirmed that occlusion in the 

middle cerebral artery (MCA) resulted in a significant increase in AEA (Berger et al., 2004; 

Muthian et al., 2004), but not 2-AG (Muthian et al., 2004) concentrations. While transient MCA 

occlusion increases expression of CB1Rs (Jin et al., 2000), permanent occlusion does not (Sommer 

et al., 2006), thus indicating that increase in the CB1R staining is not due to ischemia per se, but 

probably tore-perfusion. In contrast to brain ischemia, a study on traumatic brain injury (TBI), using 

the closed head injury mouse model (CHI), detected elevated levels of 2-AG, but no change in the 

AEA levels (Panikashvili et al., 2001). 

 There are several studies supporting a protective effect of CB1R activation. For example, in 

rats exposed to global ischemia, pretreatment with the CB1R agonist WIN 55212-2 produces a 

dose-related increase in the number of surviving neurons (Nagayama et al., 1999). Furthermore, 

CB1R knock-out mice show increased mortality, increased infarct size and neurological deficits 

following transient MCA occlusion (Parmentier-Batteur et al., 2002). Another study has 

investigated if elevation of endocannabinoids during the ischemia is protective: application of a 

FAAH inhibitor significantly decreases infarct volume 24 hours after injury (Degn et al., 2007). 

CB1R activation can mediate protection in ischemic brain by several mechanisms. One of them is 

CB1R-mediated protection against glutamate-induced excitotoxicity because of inhibition of 

glutamate release from the presynaptic terminals (Hillard, 2008). In addition to anti-excitotoxic 

effects, activation of CB1Rs can lead to a decrease in body temperature (hypothermia) (Hillard et 

al., 1999), which has been shown to have beneficial effects in ischemia (Hoesch and Geocadin, 

2007; Krieger and Yenari, 2004). For example, treatment with the synthetic cannabinoid HU 210 

decreases body temperature (by nearly 6°C) and reduces infarct size in rats which underwent 

permanent occlusion of the MCA (Leker et al., 2003). This effect is abolished partially by 

application of a CB1R antagonist and completely by warming up the animals. Furthermore, CB1R 

activation is reported to reduce oedema, which commonly accompanies ischemia (Hillard, 2008).  

 In the CHI model, external application of 2-AG significantly reduces brain oedema, 

improves clinical recovery, reduces infarct volume and hippocampal cell death (Panikashvili et al., 

2001). CB1R knock-out mice show less spontaneous recovery and no improvement in neurological 
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performance and oedema formation after administration of 2-AG (Panikashvili et al., 2005). 

 

3.3.6.3. Neurodegenerative diseases 

 In Huntington disease (HD) loss of the CB1Rs from GABAergic efferent terminals and 

soma is one of the first signs of cellular dysfunction (Glass et al., 2000). Several studies on lesion 

models of HD, when excitotoxic drugs were used to evoke the insult, cannabinoid administration or 

up-regulation of their natural synthesis reduced the symptoms. For example, administration of an 

endocannabinoid uptake inhibitor attenuated the neurotransmitter deficits and improved motor 

function in animals treated with the excitotoxic 3-nitropropionic acid (de Lago et al., 2006; Lastres-

Becker et al., 2002). Treatment with Δ9-THC prevented development of lesions caused by this drug 

(Lastres-Becker et al., 2004). Ms 

 

 In Alzheimer's disease (AD) CB1R expression on neurons is reduced (Ramírez et al., 2005; 

Westlake et al., 1994). Studies in rodent models of this disease correlate elevation of 

endocannabinoid levels (AEA and 2-AG) with attenuation of the neuronal loss (van der Stelt et al., 

2006). 

 Glial and some cells of the immune system expressing CB1 and CB2 receptors are reported 

to gather around plaques in multiple sclerosis (MS) (Benito et al., 2007). AEA is elevated in the 

cerebro-spinal fluid and plasma of the patients suffering from MS (Centonze et al., 2007a; Jean-

Gilles et al., 2009). At the moment, several countries allow Δ9-THC and cannabidiol therapy for the 

treatment of neuropathic pain and sleep disturbance correlated with MS (Rog et al., 2007, 2005; 

Wade et al., 2006).  

 

3.3.6.4. ALS 

 Several studies of ALS have focused on the endocannabinoid system. In rodent models of 

ALS, both AEA and 2-AG accumulate in the lumbar spinal cord during disease progression 

(Bilsland et al., 2006; Witting et al., 2004). Another study reports increased levels of CB1R mRNA 

and protein in symptomatic ALS animals (Zhao et al., 2008). This may explain heightened control 

of both inhibitory and excitatory transmission by striatal CB1Rs in symptomatic SOD1 ALS mice 
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(Rossi et al., 2010). These data suggests that the endocannabinoid system is mobilised during 

disease development. 

 Administration of Δ9-THC to SOD1 ALS animals modestly prolongs survival (by 5%) and 

delays symptom onset (by 6%) (Raman et al., 2004).A study with WIN55,212-2 administered after 

symptom onset has shown delayed disease progression, yet unchanged survival (Bilsland et al., 

2006). The same study has shown that administration of cannabinoids in the late phase of the 

Fig 3.9 Summary of the potential neuroprotective mechanisms of the endocannabinoid system in 
ALS 

Endocannabinoids may exert neuroprotective actions in ALS by targeting two main neurotoxic 
mechanisms; excitotoxicity and inflammation. This illustration gives a basic overview of the 
potential neuroprotective actions of endocannabinoids in ALS, and shows the actions of 
endocannabinoids against excitotoxicity on the left hand side and against inflammation on the 
right hand side. Activation of CB1 receptors by cannabinoids may alter the calcium and 
potassium permeability of the pre- and postsynaptic neuron reducing their excitability. This will 
result in the inhibition of glutamate release, causing a reduction in postsynaptic calcium influx, 
thereby minimising the effects of excitotoxicity. Meanwhile CB2 receptor activation will 
similarly act to reduce cellular excitability and the localisation of the CB2 receptor to glial cells 
will result in a reduction in the release of pro-inflammatory cytokines such as tumor necrosis 
factor (TNF) and interleukin-1 (IL-1), thereby inhibiting further propagation of the 
inflammatory response, so that for example COX-2 levels do not increase. The endocannabinoid 
system may also exert neuroprotective effects in a non-receptor mediated manner, although 
these mechanisms are not depicted in this diagram (adapted from Bilsland and Greensmith, 
2008). 
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disease (120 days in ALS mouse model) has a beneficial effect on motor unit survival. 

Improvement in motor neuron survival could be also obtained by crossing ALS mice with FAAH 

knock-out animals (Bilsland et al., 2006). 

 Putative pathways by which endocannabinoids can influence pathological processes 

occurring during ALS are presented in Fig 3.9. Despite preventing excitotoxicity by glutamate 

release inhibition (via CB1Rs), in addition, they can target inflammation (via CB2Rs) (Bilsland and 

Greensmith, 2008).  
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4. Aims 

 Previous immunostaining studies have shown CB1R localization in the brainstem region and 

that hypoglossal motoneurons are stained by a CB1R antibody (Glass et al., 1997; Herkenham et al., 

1991; Jin et al., 2014; Herkenham, 1990; Xing et al., 2011). In thepresent study we investigated if 

the endocannabinoid system is active and functional in this brainstem region, with special focus on 

the TBOA-evoked excitotoxic insult. We aimed at clarifying the following issues: 

 Evaluate the effect of the endocannabinoid system modulation on hypoglossal motoneuron 

responses to glutamate uptake inhibition caused by TBOA.  

 Investigate if endocannabinoid receptor modulation (either stimulation with agonist or block by 

antagonist) can influence spontaneous synaptic activity (both inhibitory and excitatory) of 

motoneurons of the XII nucleus of the rat brainstem. 

 Analyse changes in the CB1R expression in the brainstem during excitotoxic stress caused by 

TBOA. 

 Test if a CB1R agonist or antagonist can affect motoneuron survival following excitotoxic insult 

caused by TBOA. 
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5. Materials and methods 

 

 All experiments were carried out in accordance with the regulations of the Italian Animal 

Welfare act (DL 27 ⁄ 1 ⁄ 92 n.116) following the European Community directives no. 86 ⁄ 609 93 ⁄ 88 

(Italian Ministry of Health authorization for the local animal care facility in Trieste D 69 ⁄ 98-B), 

and approved by the local authority veterinary service. 

 

5.1. Electrophysiology 

 

5.1.1 Slice preparation 

 Experiments were carried out on the brainstem slices isolated from Wistar rats (postnatal 

day 2-4). Animals were terminally anaesthetized with urethane and decapitated (Lamanauskas and 

Nistri, 2006; Quitadamo et 

al., 2005). The brainstem 

region was isolated in 

modified, continuously 

oxygenated (95% O2 and 

5% CO2 mixture), ice-cold 

Krebs solution (see below). 

The lower medulla was 

pinned to an agar block for 

stabilization and cut inside 

a Vibratome (Vibratome 

1000 S, Leica) chamber 

(filled with modified Krebs 

solution) into 270 μm 

slices. Slices were 

transferred into the 

incubation chamber filled 

 
Fig 5.2 Hypoglossal nucleus identification within brainstem slice 
with some of the surrounding structures 
ECu, external cuneate nucleus; Cu, cuneate nucleus; Gr, gracile 
nucleus; AP, area postrema; X, dorsal motor nucleus of vagus; XII, 
hypoglossal nucleus; Sp5I, spinal trigeminal nucleus, interpolar 
part; PCRt, parvicellular reticular nucleus; IRt, intermediate 
reticular nucleus; LRt, lateral reticular nucleus; IO, inferior olive; 
py, pyramidal tract (adapted from Paxinos and Watson, 2006). 
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with modified Krebs to recover for 20 min at 32°C under constant oxygenation. Later, the 

temperature was lowered to ambient level and samples were maintained in this condition for around 

1 h before use. All the following procedures were performed at room temperature (23°C). 

 

5.1.2 Electrophysiological recordings  

 Single slices were placed into a small recording chamber filled with oxygenated Krebs 

solution. They were held in place by fine nylon strands glued to a horseshoe-shaped platinum wire. 

The hypoglossal nucleus region was visualised with an infra-red video-camera. Motoneurons were 

identified on the basis of their size and shape. Voltage clamp experiments used borosilicate glass 

electrodes (pulled with a Narishige PC-10 puller; DC resistance of 2.5-4 MΩ) connected to a patch 

clamp L/M-EPC7 amplifier (List Medical). When advancing the patch pipette toward the cell, a 

positive pressure was applied to the electrode in order to prevent blockage. Offset potentials were 

cancelled with the DC offset control. Seal resistance was usually exceeding 2 GΩ. Upon seal 

rupture and obtaining voltage clamp, the holding potential (Vh) was kept at the value of -70 mV 

while series resistance (Rs; 5-25 MΩ) was routinely monitored and compensated. Data were 

discarded when changes in Rs exceeded 20% of the initial value. Voltage pulses and recordings 

were obtained with Clampex 9.2 software (Molecular Devices). Currents were filtered at 3-10 kHz 

and sampled at 10 kHz.  All recordings were performed at room temperature.  

 

5.1.3 Solution and drugs 

 For the dissection and subsequent incubation of the brainstem slices, a modified Krebs 

solution was used with the following salt composition (values in mM): NaCl 130, KCl 3, NaH2PO4 

1.5, MgCl2 5, CaCl2 1, NaH2CO3 25, glucose 10 (osmolarity = 290-330 mOsm). During recording, 

slices were superfused with oxygenated Krebs solution (NaCl 130, KCl 3, NaH2PO4 1.5, MgCl2 1, 

CaCl2 1.5, NaH2CO3 25, glucose 10, osmolarity = 290-330 mOsm) at the speed of 2 ml/min. The 

patch pipette was filled with intracellular solution containing CsCl 130, NaCl 5, MgCl2 2, CaCl2 1, 

HEPES 10, EGTA 10 (ethylene glycol tetraacetic acid), ATP-Mg salt 2, glucose (osmolarity 

ranging between 290 and 330 mOsm). The solution pH was set at 7.2 with CsOH. The reason to use 

CsCl for the intracellular solution was to minimize the leak current of the recorded cell. All drugs 

were applied via the perfusion system for at least 10 min in order to reach equilibrium conditions. 

The following drugs were used during the experiments: DL-TBOA (Tocris), bicuculline methiodide 
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(Abcam), strychnine hydrochloride (Tocris), DNQX (Tocris), D-APV (Tocris), AEA (Tocris), 

AM251 (Tocris).  

 

5.1.4 Data analysis 

 Cell RIn was calculated by measuring the current response to 10 mV hyperpolarizing steps 

from Vh. All electrophysiological data were analysed using Clampfit 10.0 software (Molecular 

Devices). Spontaneous post synaptic currents, both excitatory and inhibitory, were detected using 

the template search function of the Clampfit software. Burst parameters were calculated according 

to Fig 5.2, where A indicates period, B duration, C half-width and D amplitude of the burst. Burst 

fragmentation is defined as alteration in burst shape (for example double peaks, humps in rise or fall 

phase of the burst). 

 

 
 

Fig 5.2 Burst parameters 

A-period, B-duration, C-half-width and D-

amplitude of the burst. 
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5.2. Western blot 

 

5.2.1 Sample preparation 

 The brainstem was isolated as indicated in section 5.1.1 of this chapter. The medullary 

region containing the hypoglossal nuclei was cut out and incubated in a chamber filled with 

oxygenated, modified Krebs solution for 20 min at 32°C and then allowed to settle at room 

temperature for over 10 min before drug application. After test incubation, which lasted 4 h, 

samples were briefly rinsed in fresh Krebs solution, transferred to Eppendorf tubes and rapidly 

frozen in the liquid nitrogen and kept at -80°C until further processing.  

 After defrosting, brainstem regions were briefly rinsed in phosphate-buffered saline (PBS) 

buffer, transferred to 1.5 ml tubes containing lysis buffer and homogenized twice for 30 s with a 

T10 Basic ULTRA-TURRAX homogenizer (IKA). Samples were then centrifuged for 5 min at 

4,000 rpm at 4°C and transferred to clean Eppendorf tubes. When necessary, protein isolates were 

additionally sonicated (with Sanyo sonicator Soniprep 150) in order to remove nuclear 

contamination. Protein levels were evaluated with the bicinchoninic acid (BCA) kit (Sigma-

Aldrich) according to manufacturers’ protocol. Their light absorbance was measured with a 

Multiscan FC spectrophotometer (Thermo Scientific). 

 

5.2.2 Western Blot procedures 

 Proteins were separated via the standard SDS-PAGE technique. Samples were mixed with 

loading buffer and boiled at 95°C for 5 min. For each well, a sample of 50 μg protein was used. 

After separation on the gel, standard Western blot was performed in order to transfer proteins to the 

nitrocellulose membrane. Membranes were briefly washed in Tris-buffered saline and Tween 20 

(TBST) solution and blocked with 1% milk diluted in TBST for approximately 1 h. For anti-CB1R 

antibody staining, membranes were incubated overnight at 4°C in the antibody solution (dilution 

1:1000). For anti-β-actin staining, 1 h incubation at room temperature was used (dilution 1:10000). 

Bands were detected with the Amersham ECL WB detection reagents (GE Healthcare), and 

visualized via the Uvitec Cambridge system.  
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5.2.3 Solutions and drugs 

 For the brainstem isolation and incubation see section 5.1.3. Lysis buffer contained (in mM) 

HEPES 10 (pH 7.9), MgCl2 1.5, KCl 10, dithiothreitol (DTT) 1, and protease inhibitors (Sigma-

Aldrich). The loading buffer used for SDS-PAGE was composed of 1 % sodium dodecyl sulfate 

(SDS), 5% 2-β-mercaptoethanol, 10% glycerol, 0.002% bromophenol blue, and 60 mM Tris HCl 

(pH 6.8). Anti-CB1R antibodies (Abcam) and anti-β-actin antibodies (Sigma-Aldrich) were 

respectively diluted in 1 % or 10 % dry milk (Delicat Gramm) dissolved in the TBST. 

 

5.2.4 Data analysis 

 ImageJ software was used to analyse the WB results. Quantification and band density were 

calculated with a gels analysis plug-in. All protein levels were normalised to β-actin and compared 

to control sample (incubated simultaneously in Krebs with no additional drugs). 

 

5.3. Viability assay 

 The brainstem region was isolated and cut into slices as described in section 5.1.1 of this 

chapter. Two slices from the same brainstem were paired with each other for the control and 

treatment. 250 μm thick slices were transferred to the incubation chamber filled with Krebs and 

allowed to settle for 10 min at room temperature under constant oxygenation. Drugs were then 

applied to the Krebs solution. At the end of the exposure time (4 h), slices were rinsed and 

transferred into a fresh Krebs solution. Propidium iodide (Sigma-Aldrich, final dilution 1:3000) 

(staining for non-viable cells) and Hoechst 33342 (Invitrogen, final dilution 1:1000) (cell-permeant 

nuclear stain) were applied via the Krebs solution and incubated for 45 min. Thereafter, slices were 

rinsed in Krebs solution, transferred to small Petri dishes and analyzed under a Nikon Eclipse T 

confocal microscope (x20) with NILS-Elements software (Nikon Instruments S.P.A.) without 

fixation. Data were processed with ImageJ 1.48 software (Wayne Rasband, National Institutes of 

Health, USA) using the cell counter plug-in. The number of PI and Hoechst 33342-positive cells 

was recorded and compared.  
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5.4. Statistical analysis 

 Results are presented as means±SEM and medians±SEMD as indicated in the figures 

description, which were calculated automatically using the following equations: 
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Where തܺ represents mean, ෨ܺ median, n sample size, ௜ܺ  ith value of the sample and sx	ℎ݁ݐ	

sample standard deviation. The reason to use medians in some data presentation was due to a fact 

that this statistical parameter is less influenced by extreme values in compare to mean (Harding et 

al., 2014). Some of the data presented in this work were marked by significant data spread, 

particularly burst parameters in the electrophysiological recordings. This can markedly influence 

the value of the mean giving inaccurate impression of the observed parameters. In order to grant 

most reliable data presentation, some histograms in this work are presented as medians instead of 

more commonly used means.  

 In the Results section n refers to the number of cells/slices/brainstems used in the 

experimental procedures. Data were analysed with the GraphPad statistical online platform 

(GraphPad Software, Inc.) and SigmaStat 3.5 software (Systat Software). When samples passed the 

normality test, the Student's t-test was used (power of performed test with alpha = 0.050). 

Otherwise the Mann-Whitney test (for unpaired) or the Wilcoxon Signed Rank test (for paired) was 

used. For burst occurrence and fragmentation, the statistical analysis used the Chi-squared test 

without Yates correction. In all cases, statistical significance was considered only if P ≤ 0.05. 
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6. Results 

 

6.1 Anandamide action on hypoglossal motoneurons 

 

6.1.1 Anandamide action on hypoglossal motoneurons during glutamate uptake inhibition 

 In the past years, our laboratory has studied responses of hypoglossal motoneurons of the 

neonatal rat to excitotoxic stress caused by glutamate uptake inhibition (Cifra et al., 2011a, 2009; 

Sharifullina and Nistri, 2006). Accumulation of glutamate at synaptic level not only increases the 

number of dead cells in the medullary slice, but it also elicits prolonged, repetitive depolarisations 

(bursting) in about 50% of the motoneuron population. This bursting process is exemplified in Fig 

6.1.  Furthermore, pharmacological agents which suppress bursting also prevent motoneuron death 

caused by DL-TBOA, a drug used to fully block excitatory amino acid transporters in the medullary 

slice (Cifra et al., 2011a, 2011b, 2009; Sharifullina and Nistri, 2006).  

 In the initial phases of my experiments I have gathered control responses from hypoglossal 

motoneurons whose electrophysiological properties were studied before and after application of 

TBOA alone. After patching cells and obtaining stabilization of the baseline current, I applied 50 

Fig 6.1 Example of TBOA-evoked bursts recorded in a hypoglossal motoneurone under 
voltage clamp (Vh =-70mV). 
Application of DL-TBOA evoked long-lasting, large inward currents referred to as 
bursts characterized by fast superimposed oscillations and spikelets. These events reflect 
group bursting of motoneurons, originating within the premotoneuron network and are 
supported by a combination of gap junctions and glutamatergic synaptic transmission. 
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µM DL-TBOA via the bathing solution. In these experiments I did not observe any significant 

change in the baseline inward current or input resistance (Fig 6.2 A and B). Despite lack of 

development of baseline currents, the majority of recorded cells generated strong bursting activity 

(around 70%) as shown in Fig 6.2 C.  

The recorded parameters were comparable to those previously reported (Cifra et al., 2011b; 

Sharifullina and Nistri, 2006). In order to better understand the properties of bursting, in the present 

study I divided bursts into early (first two) and late (third to fifth) ones. Usually, the number of 

bursts in a cell varied from three to five. Because cells displaying more than five bursts were not 

frequent, and previous reports have indicated that the phenomenon is connected to early cellular 

damage, I decided to limit my systematic analysis to the first five bursts.  

 
Fig 6.2 Parameters of TBOA- treated cells (n=15); Vh=-70mV. 

Application DL-TBOA did not change significantly inward current (A) or input 
resistance (B) of the cells under study (Wilcoxon Signed Rank Test P>0.05). 
Application of TBOA elicited bursting in majority of the cells recorded (C). Data 
presented as means±SEM. 
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 I measured multiple burst parameters: amplitude, half-width, duration and frequency (see 

Fig 5.2 of Materials and methods section). I observed that, in the case of TBOA-evoked bursts, the 

 
Fig 6.3 Parameters of bursts in TBOA- treated cells (n=11); Vh=-70mV. 

Comparison of early versus late bursts revealed a decrease in amplitude (Mann-Whitney 
Rank Sum Test, P = 0.036; A) and increase in half-width with time (Students t-test, P 
=0.014; B). Duration (C), area (D), and frequency (E) however, remained comparable 
(Students t-test P>0.05). Data presented as medians±SEMD. 
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amplitude of early bursts was the largest (Rank Sum-Test, P=0.036; Fig 6.3 A), while the half-

width of late bursts was wider (Students t-test, P=0.014; Fig 6.3 B). However, the total burst 

duration, despite an apparent increase, was not statistically changed (Fig 6.3 C). Area under the 

burst (Fig 6.3 D) and burst frequency (Fig 6.3 E) were similar in early and late bursts. 

 In order to investigate how AEA might affect bursting properties of HMs, I first applied 10 

μM AEA for 10 min to reach equilibrium. Afterwards, it was co-applied with DL-TBOA (50 μM) 

as illustrated in the representative experiment shown in Fig 6.4 where the first arrow points to the 

start of AEA application.  

 Several reports have shown that high doses of AEA can negatively affect cells causing 

damage and even death (Fonseca et al., 2009; Movsesyan et al., 2004). Many reports (including 

electrophysiological studies) indicate that this AEA effect might be present even at low doses 

(ranging from tens of nM to few μM) in sensitive cells (Al Kury et al., 2014; Correa et al., 2008; 

Evans et al., 2004; Gebremedhin et al., 1999; Golovko et al., 2014; Howlett and Mukhopadhyay, 

2000; Li et al., 2009; Oz et al., 2007; Spivak et al., 2007; Wacnik et al., 2008). In a study by Tree 

and his colleagues, who investigated modulation of the respiratory rhythm by this drug, the effect 

was evident only after application of 30 μM. Note that 15 μM concentration failed to produce 

significant change in electrophysiological recordings from the fourth cervical roots of the neonatal 

mouse preparation (Tree et al., 2010). Thus, I decided to use 10 μM AEA in the recording solution 

in order to minimize possible negative effects, while ensuring drug effectiveness.  

 Anandamide application did not caused significant change in baseline inward current 

(Student t-test P=0.080; Fig 6.5; A). Although in the majority of recordings I detected an increase in 

Fig 6.4 Example of time profile of the electrophysiological experiment with AEA and TBOA 
co-application (Vh =-70mV). 
First arrow indicates start of drug application (AEA example presented here), second arrow 
shows start of TBOA co-application. Asterisks marks TBOA-evoked bursts. 



60 

input resistance, in some of them it did not change or it even declined, so that statistical significance 

was not reached (Student t-test P=0.113; Fig 6.5; B). Co-application of TBOA evoked outward 

current. Change was significant with respect to AEA alone, but not to control inward current before 

drug application (Student t-test P<0.005; Fig 6.5; A). There was no significant change in input 

resistance after TBOA co-application (Fig 6.5; B). 

 One example of TBOA-evoked bursts in the presence of AEA can be seen in Fig 6.6 A. 

When I analysed burst parameters in cells co-treated with AEA, I observed a significant decrease in 

the occurrence of the bursting (Chi-squared test, P=0.0393; Fig 6.6 B). When I compared early and 

late bursts in TBOA and AEA co-treated cells, I did not find differences in their amplitude (Mann-

Whitney Rank Sum Test, P>0.05; Fig 6.7 A). Half-width (Students t-test, P=0.021) and duration 

(Mann-Whitney Rank Sum Test, P = 0.032) both increased (Fig 6.7 B and C respectively) in late 

bursts in compare to early ones. There was no change in burst area or frequency (Paired Student t-

test P>0.05; Fig 6.7 D and E respectively). 

Fig 6.5 Parameters of AEA and TBOA co-treated cells and bursts (n=18); Vh=-
70mV. 
Application of AEA did not change significantly inward current of the HM. After 
co-application with TBOA IIn increased significantly in respect to AEA alone, but 
not to control current (Student t-test P=0.003; A). Despite a general decrease 
there were no significant changes in RIn (Student t-test P>0.05; B). Data 
presented as means±SEM. 
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When I compared burst characteristics between early and late bursting in TBOA alone and 

co-applied with AEA, no statistically significant difference was detected in amplitude, half width, 

duration, area or frequency (Student t-test P>0.05; Fig 6.7 A-E). 

 

 

Fig 6.6 TBOA-evoked bursts in the presence of AEA (n=15, n=18 for TBOA and 
TBOA+AEA respectively) (Vh=-70mV). 

Example of TBOA-evoked bursts in the presence of AEA (asterisks indicate 
TBOA-evoked burst; A). TBOA-evoked burst occurrence in hypoglossal 
motoneurons in the presence or absence of AEA (Chi-squared test P=0.0393; B). 
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Fig 6.7 Parameters of bursts from AEA and TBOA co-treated cells (n=11 and n=6 for TBOA 
and TBOA+AEA respectively); Vh=-70mV. 

Although AEA-treated samples in general had smaller amplitude than early TBOA-evoked 
bursts, statistical significance was not reached (Mann-Whitney Rank Sum Test P>0.05; A). 
Amplitude of early and late bursts in the presence of AEA remained comparable. Their half 
width (Students t-test, P = 0.021; B) and duration (Mann-Whitney Rank Sum Test, P = 0.032; 
C) increased in the case of AEA co-treated late bursts in comparison to early ones, but there 
was no statistical significance between late-TBOA and late-TBOA+AEA treatment. Despite 
general increase in burst area (E) and frequency (F) with respect to TBOA- alone treated cells, 
there was no statistical significance in any of those parameters (Students t-test P>0.05). Data 
presented as medians±SEMD. 
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6.1.2 Anandamide modulation of sPSCs of the hypoglossal motoneurons 

Because TBOA-evoked bursting depends on the network synaptic activity impinging on 

motoneurons, I investigated if and how AEA might influence spontaneous postsynaptic activity of 

those cells. 

 Previous data have indicated that endocannabinoids can modulate glycinergic IPSCs in 

hypoglossal motoneurons and the release of synaptic vesicles at glutamatergic synapses (García-

Morales et al., 2015; Lozovaya et al., 2011; Mukhtarov et al., 2005). Thus, I decided to perform two 

sets of experiment: investigating sEPSCs in the presence of bicuculline and strychnine (in order to 

block inhibitory synaptic transmission), and sIPSCs (in presence DNQX and D-APV in order to 

block glutamatergic synaptic transmission). The protocol of both experiments was analogous and is 

shown, as an example, for bicuculline and strychnine application in Fig 6.8.  

 Comparison of example traces during bicuculline and strychnine with those during 

bicuculline, strychnine and anandamide co-application can be seen in Fig 6.9 A. The frequency and 

amplitude of the sEPSCs of individual cells (dark narrow lines) and their means (red thick lines) are 

shown in Fig. 6.9. I observed a statistically significant decrease in the frequency of these events, 

Fig 6.8 Time course of the experiment for investigating modulation of sEPSCs by AEA 
(Vh=-70mV). 

First arrow indicates start of drug application (B-bicuculline and S-strychnine in the 
presented example), second arrow indicates AEA co-application. 



64 

without changes in their amplitude (n=5; Paired Students t-test P<0.05; Fig 6.9 B and C 

respectively). 

 For the co-application of DNXQ, D-APV and AEA, I collected four cells in total. In two of 

them, the frequency of sIPSCc slightly decreased after co-application of AEA. In the other two, I 

observed development of biphasic activity with periods of spontaneous activity comparable to those 

Fig 6.9 AEA modulation of sEPSCs (n=6); Vh=-70mV. 

Examples of traces in the presence of bicuculline (indicated by B) and strychnine 
(indicated by S) at the concentrations of 10 μM and 0.4 μM respectively (top trace) and 
bicuculline, strychnine and AEA 10 μM (bottom trace) (A). Changes in the sEPSCs in 
single cells (dark lines) and means (red lines). Co-application of AEA significantly 
decreased frequency (Paired Students t-test P<0.05; B) but not amplitude (Paired t-test 
P>0.05; C) of the sEPSCs. Data presented as means±SEM. 
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before AEA application, with the irregular occurrence of high sIPSC frequency epochs when 

synaptic events were clustered together (Fig 6.10 A and B). The average amplitudes of sIPSCs did 

not significantly changed during AEA co-application (n=4, Paired t-test P>0.05; Fig 6.10 C).  

 

 
Fig 6.10 AEA modulation of sIPSCs in HMs (n=4); Vh=-70mV. 

Examples of the traces in the presence of DNQX and APV (at the concentration of 10 μM and 
50 μM respectively; top trace) and DNQX, APV and AEA (10 μM; bottom trace) (A). Asterisks 
mark regions of high frequency of sIPSC. After 10 min of AEA co-application I detected an 
increase in the frequency of spontaneous activity in two and a decrease in other two cells 
(thin dark lines). Mean value from all cells remained unchanged for 10 and 20 minutes of 
AEA co-application (thick red line; Paired t-test P>0.05; B). The average amplitudes of 
sIPSCs did not change significantly during AEA co-application (Paired t-test P >0.05; C). 
Data presented as means±SEM. 
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6.2. AM251 action on hypoglossal motoneurons 
 

6.2.1 AM251 action on hypoglossal motoneurons during application of TBOA 

 My observations on the AEA effect on HMs led me to investigate what would be the effect 

of blocking CB1R signalling during glutamate uptake block. The experimental protocol was 

analogous to the one for the AEA experiments (Fig 6.4). First, I applied 10 μM AM251, a well-

known CB1R inverse agonist/antagonist (Pertwee, 2006; Sink et al., 2010), and later co-applied it 

with 50 μM TBOA. 

 

 Application of AM251 evoked small inward current in the recorded cells (n=11; Paired t-

test, P=0.038; Fig 6.11 A). Co-application of TBOA resulted in even larger inward current (Paired 

t-test and Wilcoxon Signed Rank Test; P<0.05). This increase in inward current was in general 

larger in comparison to TBOA alone, but the change was not statistically significant. No significant 

change in RIn was observed (Fig 6.11 B). 

 
Fig 6.11 Parameters of AM251 and TBOA co-treated cells (n=15 and n=19 for 
TBOA and TBOA+AM251, respectively); Vh=-70mV. 
Application of AM251 evoked small change in negative inward current IIn of the 
recorded cells. Co-application with TBOA evoked further increase in inward current 
(Paired t-test and Wilcoxon Signed Rank Test; P<0.05; A). There were no 
significant changes in RIn (Wilcoxon Signed Rank Test P>0.05; B). Data presented 
as means±SEM. 
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Fig 6.12 Example of TBOA- evoked bursts in the presence of AM251 (n=11, n=10 for TBOA 
and TBOA+AM251 respectively); Vh=-70mV. 

Some of the TBOA-evoked bursts in the presence of AM251 became fragmented (fragmented 
bursts indicated by asterisks; A). During co-application of AM251 with TBOA I observed a 
slight, but statistically insignificant drop in burst occurrence (Chi-squared test P>0.05; B). 
The fragmentation of the bursts occurred in the majority of the bursting cells (Chi-squared 
test P=0.001; C). 
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 An example of TBOA-evoked bursting in the presence of AM251 is shown in Fig 6.12 A. 

For TBOA co-application with AM251, while there was no statistically significant decrease in burst 

occurrence (Fig 6.12. B). A striking change in some burst quality emerged as bursting cells showed 

burst fragmentation (Fig 6.12 C). Bursts with such alteration in shape were present in the majority 

of bursting neurons co-treated with the CB1R antagonist and the change was statistically significant 

in comparison to TBOA alone (Chi-squared test P=0.001; Fig 6.12 C). 

 When I compared burst parameters of TBOA with AM251 and TBOA alone, I observed that 

there was an increase in the burst amplitude in case of AM251 co-treatment, but this change was 

statistically significant only in the case of late bursts (n=10; Mann-Whitney Rank Sum Test, P = 

0.006; Fig 6.13 A). There was no statistically significant change in half-width, duration or 

frequency (Fig 6.13 B, C and E, respectively).  The area of the bursts increased significantly in the 

case of late bursts (Mann-Whitney Rank Sum Test, P = 0.013; Fig 6.13 D). 
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Fig 6.13 Parameters of bursts in AM251 and TBOA co-treated cells. (n=11, n=10 for 
TBOA and TBOA+AM251 respectively); Vh=-70mV. 

The amplitude of TBOA-evoked bursts increased during AM251 co-application. Change 
in amplitude was significant only in case of late bursts (Mann-Whitney Rank Sum Test, 
P = 0.006; A). I did not observe any statistically significant change in case of the half- 
width (B) and duration (C) (Student t-test P>0.05). Area of the bursts significantly 
enlarged during AM251 co-application in the case of late bursts (Mann-Whitney Rank 
Sum Test, P = 0.022; D). There was no change in bursts frequency (Student t-test 
P>0.05; E). Data presented as medians±SEMD. 
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6.2.2 AM251 effect on sPSCs of hypoglossal motoneurons 

 I further investigated how CB1R inhibition might affect spontaneous synaptic activity. The 

protocol of the experiment was analogous to the one with AEA (Fig 6.8). Examples of sPSCs in the 

presence of DNQX and APV (top trace) and DNQX, APV and AM251 (bottom trace) are presented 

in Fig 6.14 A. Co-application of AM251 with DNQX and APV did not significantly change both 

amplitude and frequency (Paired t-test P>0.05; Fig 6.14 B and C, respectively) of sIPSCs.    

Fig 6.14 AM251 modulation of sIPSCs in HMs (n=5); Vh=-70mV. 
Example of the recording during DNQX and APV (top trace) and DNQX, APV and AM251 
co-application (bottom trace,  same cell; A). Co-application of AM251 did not significantly 
changed average frequency (Paired t-test P>0.05; B) or amplitude of sIPSC (Paired t-test 
P<0.05; C).Data presented as means±SEM. 
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 Lack of time prevented a systematic study of co-application of bicuculline and strychnine 

with AM251, however, the example illustrated here provided some interesting preliminary 

observations. Traces recorded in the presence of bicuculline (B) and strychnine (S) (top trace) and 

bicuculline, strychnine and AM251 (bottom trace, same cell) are illustrated in Fig 6.15 A. First of 

all, frequency and aplitude of sEPSCs after AM251 application increased vs. control in bicuculline 

and strychnine solution (Fig 6.15 B and C). Further experiments are needed to confirm if this 

Fig 6.15 AM251 modulation of sEPSCs in HMs (n=1); Vh=-70mV. 

Recording with bicuculline (B) and strychnine (S) application (top trace) later co- 
applied with AM251 (bottom trace). Under block of inhibitory transmission AM251 
caused occurrence of small burst-like activity (marked by asterisks; A). After AM251 
co-application I observed increase in both frequency (B) and amplitude (C) of sEPSCs. 
Data presented as means±SEM. 
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change is statistically significant in larger population of cells. After 10 min of AM251 co-

application, a series of events resembling bursts occurred (Fig 6.15 A), although they were much 

smaller than TBOA-evoked bursts with amplitude of around -35 pA, and clustered in series of four 

to five events occurring one after another. The parameters of this phenomenon are presented in 

Table 6.1.  

 

6.3. Bicuculline and strychnine co-application with TBOA 

 After investigating the responses of HMs in the presence of TBOA and CB1R drugs, it 

seemed interesting to find out if the observed changes in responses were due to inhibitory or 

excitatory transmission modulation. In order to answer this question, I performed a series of 

experiments in which I first co-applied bicuculline and strychnine together with CB1R agonist or 

antagonist (as in the protocol of the previous experiment represented in Fig 6.4) and then co-applied 

them with TBOA.  

 

6.3.1 Effects of AEA on TBOA-evoked bursting in the presence of bicuculline and strychnine 

 In the case of bicuculline and strychnine co-application with AEA, I did not observe 

significant changes in inward current in comparison to bicuculline and strychnine alone. Co-

application of TBOA evoked inward current only in the fraction of the cells, thus statistical 

significance has not been reached (Paired t-test P>0.05; Fig 6.16 A). In case of input resistance, 

AEA co-application with bicuculline and strychnine evoked a significant increase in this parameter 

(Paired t-test P=0.036; Fig 6.16 B), with respect to control value. There were no statistically 

significant differences during TBOA co-application with bicuculline, strychnine and AEA.  

Table 6.1 Parameters of AM251 evoked bursts in the 
presence of bicuculline and strychnine
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One example of TBOA-evoked bursting in the presence of bicuculline and strychnine (top 

trace), and bicuculline, strychnine and AEA (bottom trace) is presented in Fig 6.17 A. Burst 

occurrence in the presence of bicuculline and strychnine did not change between TBOA and TBOA 

co-treated with AEA (Chi squared test P>0.05; Fig 6.17 B), but due to the small sample number, 

this issue should be verified with a larger number of experiments. Nonetheless, when I compared 

burst occurrence between TBOA and AEA (with 33.33% of bursting neurons; n=18) and TBOA, 

AEA, bicuculline and strychnine (with 100% of bursting neurons; n=7; Chi-squared test P= 0.0027; 

graph not shown), there was a statistical significance. In addition, bursts elicited by TBOA in the 

presence of bicuculline, strychnine and AEA became fragmented (Chi-squared test P=0.0384; Fig 

6.17 A, C). 

 In terms of bursting properties during co-application of bicuculline, strychnine and AEA, 

TBOA evoked bursts did not change their amplitude, or half-width (Mann-Whitney Rank Sum Test 

P>0.05; Fig 6.18 A and B respectively). Late bursts in AEA co-treated cells were longer in compare 

to TBOA with bicuculline and strychnine alone (Mann-Whitney Rank Sum Test P=0.018; Fig 6.18 

C). In terms of area and frequency, bursts were comparable to those in TBOA with bicuculline and 

Fig 6.16 Bursting parameters of TBOA (n=8) and TBOA with anandamide- treated 
slices in the presence of bicuculline (B) and strychnine (S) (n=7); Vh=-70mV. 
In case of IIn I did not observe significant change in the presence of AEA, 
bicuculline and strychnine when compared to bicuculline and strychnine alone 
(Paired t-test P>0.05; A). There was a significant increase in RIn with respect to 
control after application of bicuculline, strychnine and AEA (Paired t-test P = 
0.036; B). No changes were observed in IIn and RIn in case of TBOA co-application 
with B+S (Wilcoxon Signed Rank Test P>0.05). Data presented as means±SEM. 
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strychnine (Students t-test P>0.05; Fig 6.18 D and E, respectively). 

 
Fig 6.17 TBOA and TBOA+AEA bursts in the presence of bicuculine and strychnine (n=8, n=7 for 
TBOA+B+S and TBOA+B+S+AEA respectively); Vh=-70mV. 

Examples of TBOA-evoked bursts in the presence of bicuculline and strychnine without (top trace) 
and with AEA (bottom trace, asterisk marks burst with fragmentation; A). There was no statistically 
significant difference between TBOA and TBOA with AEA for burst occurrence (Chi-squared test 
P>0.05; B). During co-application of AEA with TBOA and B+S many cells generated fragmented 
bursting (Chi-squared test P= 0.0384; C). 
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Fig.6.18 Bursting parameters of TBOA (n=5) and TBOA with anandamide (n=7) treated slices in the 
presence of bicuculline and strychnine (Vh=-70mV). 

There were no significant changes in amplitude (A) and half width (B) of the bursts (Mann-Whitney 
Rank Sum Test P>0.05). In the presence of AEA, TBOA-evoked late bursts became longer (Mann-
Whitney Rank Sum Test P= 0.018; C). Area (D) and frequency (E) of the bursts were not significantly 
changed (Students t-test P>0.05). Data presented as medians±SEMD. 
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6.3.2 Effects of AM251 on TBOA-evoked bursting in the presence of bicuculline and 

strychnine 

 Co-application of TBOA with bicuculline and strychnine or bicuculline, strychnine and 

AM251 evoked inward current, but this change after 10 min did not reach statistical significance 

(Fig 6.19 A). I did not observe any significant changes in input resistance (Paired t-test P>0.05; Fig 

6.19 B).  

 

 Fig 6.20 A illustrates an example of TBOA-evoked burst in the presence of bicuculline, 

strychnine and AM251. I did not observe any significant changes in the TBOA-evoked burst 

occurrence after co-application of bicuculline, strychnine and AM251 (Fig 6.20 B), but I observed 

fragmentation of the bursts (Fig 6.20 C). Burst parameters during co-application of AM251 

remained comparable to TBOA, bicuculline and strychnine co-treated cells (Mann-Whitney Rank 

Sum Test and Student t-test P>0.05; Fig 6.21 A-E). 

  

Fig 6.19 Bursting parameters of TBOA (n=8) and TBAO with AM251 (n=7) 
treated slices in the presence of bicuculline and strychnine (Vh=-70mV). 

10 min co-application of TBOA evoked inward current, but the change was not 
statistically significant (Paired t-test P>0.05; A). There were no significant 
changes in RIn (Paired t-test P>0.05; B). Data presented as means±SEM. 
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Fig 6.20 TBOA and TBOA with AM251 bursts in the presence of bicuculline and strychnine 
(n=8 and n=7 respectively); Vh=-70mV. 
Example of the bursting evoked by TBOA in the presence of bicuculline, strychnine and 
AM251 (A). I did not observe any significant changes in the burst occurrence during AM251 
co-application (Chi-square P>0.05; B). Fragmentation of the TBOA-evoked bursts in the 
presence of AM251 during bicuculline and strychnine co-applicatin was still present (Chi-
square P=0.0057; C). 
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Fig 6.21 Bursting parameters of TBOA (n=5) and TBAO with AM251-treated slices in the presence of 
bicuculline and strychnine (n=6) (holding potential=-70mV). 
There were no significant changes in burst parameters between TBOA+B+S and TBOA+B+S+AM251, 
including amplitude (Mann-Whitney Rank Sum Test P>0.05; A), half width (Mann-Whitney Rank Sum Test 
P>0.05; B), duration (Mann-Whitney Rank Sum Test P>0.05; C), area (Student t-test P>0.05; D) and 
frequency (Mann-Whitney Rank Sum Test P>0.05; E). Data presented as medians±SEMD. 
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6.4. Change in CB1R expression in the brainstem region 

 After investigating the functional action of CB1R on HMs, I become interested if the 

exposure to excitotoxic conditions can alter the expression of these receptors in the brainstem 

region containing such motoneurons.  

 In the view of technical difficulties in obtaining one hypoglossal nucleus in isolation, I 

isolated the whole medullary region containing this area. After isolating samples from six rats, I 

incubated them in six different conditions in parallel. In particular, in addition to untreated controls, 

I incubated brainstems in TBOA, TBOA co-applied with either AEA or AM251, and AM251 or 

AEA alone. In the protocols of TBOA co-application with CB1R agonists or antagonists, the latter 

were pre-applied for 10 min in order to activate/deactivate the CB1Rs before the excitotoxic insult 

and then co-applied with TBOA.  

Fig 6.22 Changes in CB1R expression in the brainstem region of the rat during 
excitotoxic stress (n=4). 
Comparison of CB1R expression levels during different treatments of the brainstem 
medullary regions (A). We have observed a clear CB1R protein level increase in the 
presence of TBOA in different drug co-application variants, and in AM251 alone 
(data normalized to β-actin; Mann-Whitney Rank Sum Test, P<0.05; B). Data 
presented as means±SEM. 
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 Results from Western Blot analysis of these samples showed a significant increase in CB1R 

expression in the brainstems incubated with TBOA alone or co-incubated with AEA or AM251 

(Mann-Whitney Rank Sum Test, P<0.05; Fig 6.22 A and B). Moreover, incubation with AM251 

alone was sufficient to trigger a CB1R expression increase in a relatively short period of time (4 h) 

(Fig 6.22 B).  

 

6.5. Viability of the hypoglossal motoneurons 

 Previous results from our laboratory reported that inhibition of glutamate uptake can cause 

cell damage and even death especially in those motoneurons with intense bursting (Cifra et al., 

Fig 6.23 Comparison of cellular viability after TBOA and TBOA+AEA treatment 

Comparison of PI staining during control for TBOA (A) and TBOA (B) and control for 
TBOA+AEA (C) and TBOA+AEA (D) incubation (4h). 
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2011a, 2009). Since I observed that modulation of endocannabinoid system has important effects on 

the excitotoxic stress responses in HM and enhanced CB1R protein expression in the medullary 

region containing the hypoglossal nuclei, I wondered if activation of CB1R by anandamide might 

protect cells from damage caused by TBOA over a relatively short time frame.  

 
Fig 6.24 Quantification of cellular viability after TBOA or TBOA+AEA treatment (n=5; indicates 
number of slices). 

I observed no change in total cell number in the treated slices, measured as Hoechst 33342-positive 
cells in TBOA alone or in TBOA+AEA (Paired t-test P>0.05; A and C). 4h of TBOA incubation 
significantly increased percentage of PI-positive cells expressed, as a percent of Hoechst-positive 
cells (Paired t-test P=0.010; B). During co-application of AEA and TBOA this effect was abolished 
(Paired t-test P>0.05; D). Difference between TBOA and TBOA+AEA treated slices (expressed as a 
percentage of control PI-positive cells) was significant (Students t-test P= 0.047; E). Data presented 
as means±SEM. 
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 For this purpose, a viability assay was carried out by incubating brainstem slices in AEA (10 

μM) for 10 min and subsequently with AEA and TBOA (50 μM) for further 4h. Other samples were 

kept in Krebs solution or just TBOA (50 μM) in Krebs for the same time period. Slices were stained 

with PI, to visualize damaged cell nuclei, and Hoechst 33342 for counter-staining. These samples 

were analysed with confocal microscopy (Fig 6.23 A-D). As expected, TBOA alone increased the 

fraction of PI stained nuclei without changing the average Hoechst positive cell number (n=5, 

where n is number of slices treated; Student t-test P=0.010; Fig 6.24 A and B). However, when 

AEA was co-applied with TBOA there was no significant change in either PI positive or Hoechst 

positive cells in comparison to control conditions (n=5; Fig 6.24 C and D). When I compared the 

differences between PI staining in TBOA and TBOA+AEA experiments, I observed significant 

decrease in PI positive cells during co-application with AEA (Student t-test P= 0.047; Fig 6.24 E) 

suggesting a protective effect.  

 

6.7 A summary 
A summary of the main experimental observations obtained is presented below in Table 6.2. 

Table 6.2 Main observations on the role of endocannabinoids on TBOA-induced busting and 

excitotoxicity. 

Electrophysiology - Drug 

treatment 

Endocannabinoid agents Burst electrophysiological 

characteristics 

TBOA  AEA  Decrease in burst occurrence 

  Abolished difference in the 

amplitude between early and late 

TBOA-evoked bursts 

  Increase in the half-width and 

duration of the late bursts 

 AM251  Occurrence of the burst 
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fragmentation 

  Increase in the amplitude and 

area of the late bursts 

TBOA+bicuculline+strychnine  AEA  Occurrence of the burst 

fragmentation 

  Increase in the late burst duration 

Drug treatment Endocannabinoid agents Synaptic events 

bicuculline+strychnine  AEA  Decrease in the frequency of 

sEPSCs 

 AM251  Emergence of burst-like activity 

DNXQ+APV  AEA  Emergence of biphasic activity 

(not all cells) 

Molecular biology: Western 

blot – Drug treatment 

Endocannabinoid agents Main observations 

TBOA   Increase in CB1 receptor 

expression 

 AEA  Increase in CB1 receptor 

expression 

 AM251  Increase in CB1 receptor 

expression 

No TBOA AEA No change in CB1 receptor 

expression  

No TBOA AM251 Increase in CB1 receptor 
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expression 

Cell viability assay Endocannabinoid agents Main observations 

TBOA  Increase in PI staining 

 AEA  Decrease in PI staining vs. 

TBOA treatment 
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7. Discussion 
 

7.1 Hypoglossal motoneurons as a model of excitotoxic stress 

 Coronal medullary slices offer a valuable system for studying pathological processes which 

can lead to the development of life-threatening diseases like ALS. This experimental preparation is 

relatively easy to obtain. Its small size allows for tight control of experimental parameters and rapid 

change of drug and extracellular solution composition, while preserving most of the dendritic tree 

of the neuronal networks (see section 3.2) (Sharifullinaand Nistri, 2006; Nüñez-Abades et al., 

1994). Hypoglossal motoneurons (HMs) are of particular interest for studies on the early 

mechanisms involved in the development of ALS. These cells are severely damaged during the 

course of the disease leading to major problems in swallowing, talking and breathing (Atsumi and 

Miyatake, 1987; DePaul et al., 1988, 1988; Janzen et al., 1988; Langmore and Lehman, 1994; 

Rosen, 1978). Specific properties of HMs like their calcium permeable AMPA receptors (Essin et 

al., 2002; Shaw et al., 1999; Van Damme et al., 2002) and diminished calcium buffering capacity 

(Alexianu et al., 1994; Appel et al., 2001; Lips and Keller, 1998; Palecek et al., 1999) make them 

particularly vulnerable to excitotoxic damage, one of the proposed primary sources of pathological 

insult occurring during the early onset of ALS (Redler and Dokholyan, 2012). One critical 

disadvantage of this preparation is its survival for a short time frame (a few hours). Afterwards, the 

spontaneously occurring deterioration of the cells within the nucleus makes them unsuitable for 

scientific investigations and, thus, limits the possibility for performing long experiments (Cifra et 

al., 2011a, 2011b).  

 One of the possible protective mechanisms against excitotoxicity in hypoglossal 

motoneurons may be endocannabinoid signalling. Numerous studies have connected the 

endocannabinoid system with modulation of neuronal signalling, especially with its effect on 

neurotransmitter release from the nerve terminals (Di Marzo et al., 1998; Köfalvi et al., 2005; 

Pertwee and Ross, 2002; Schlicker and Kathmann, 2001). The well-known mode of action elicited 

by endocannabinoids is inhibition of cAMP production via activation of the CB1 receptor (Chen et 

al., 2010; Chevaleyre et al., 2007; Dalton et al., 2009; Howlett et al., 2010) and modulation of ionic 

channel activity (in particular Ca2+ and K+ channels; see section 3.3.7), which depress the release of 

neurotransmitters from presynaptic sites. Earlier reports pointed out that the endocannabinoid 

system elicits neuroprotection during pathological insults like traumatic brain injury or brain 

ischemia (Mechoulam et al., 2002a, 2002b; van der Stelt et al., 2002; Veldhuis et al., 2003; 
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Zogopoulos et al., 2013). Therefore, it seemed worth investigating whether this signalling pathway 

could function as a protective mechanism during excitotoxic stress in the hypoglossal nucleus. The 

principal finding of the work presented here is a characterization of how the endocannabinoid 

system influences HMs in a pathological model caused by glutamate uptake inhibition induced by 

TBOA.  

 

7.2 Endocannabinoid system moderate responses of hypoglossal motoneurons to TBOA 

 Very modest changes in passive properties of the recorded cells (baseline current level and 

input resistance) found during stimulation or inhibition of CB1Rs in our preparation might suggest 

that any tonic activity exerted by CB1R signalling on HMs is slight, at least in the reduced slice 

preparation. This is in accordance with the proposed 'on demand' mode of action of the 

endocannabinoid system in the CNS. Earlier studies of endocannabinoid signalling indicate that the 

primary target of CB1Rs are presynaptic terminals (Alger, 2002; Freund et al., 2003; Hoffman and 

Lupica, 2000; Kreitzer and Regehr, 2002; Mackie, 2006; Wilson and Nicoll, 2001). In such a 

situation, cells affected by cannabinoid signalling should be premotoneurons innervating HMs, so 

that minimal changes in passive properties of HMs would be expected. 

 Previous experiments done in our laboratory suggest that the occurrence of strong bursting is 

a predictor of subsequent cell damage (Cifra et al., 2009; Sharifullina and Nistri, 2006). Moreover, 

drugs which suppress bursting facilitate cell survival in viability assays (Cifra et al., 2011a, 2011b, 

2009; Sharifullina and Nistri, 2006). Results from the aforementioned studies indicate that bursting 

can be treated as an in vitro readout for testing the efficiency of neuroprotective drugs to inhibit 

excitotoxicity and pathological discharges of brainstem motoneurons (Cifra et al., 2011a, 2011b). In 

my work, I observed that co-application of AEA together with TBOA significantly decreased the 

occurrence of bursting in HMs. One important indication of the role of endocannabinoid system 

during bursting in HMs came from comparing early and late bursts. In fact, in the case of bursting 

produced by applying TBOA alone, I observed a significant drop in the amplitude of late bursts 

versus early ones. This difference was abolished when AEA was co-applied with TBOA and the 

median of the amplitude of early bursts was visibly lower in comparison to those in TBOA alone, 

although we did not reach statistical significance. In contrast, AM251, a CB1R antagonist, when co-

applied with TBOA, significantly increased the median burst amplitude of late bursts in comparison 

to TBOA alone. In case of early bursts median amplitude was elevated, but statistical significance 

was not reached. 
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As mentioned in the Introduction (see section 3.3.2), the synthesis of endocannabinoids is 

triggered by postsynaptic depolarization and rise in the intracellular calcium that accompany this 

event. Large, prolonged depolarizations like the bursts evoked by TBOA might potentially stimulate 

endocannabinoid production and release from postsynaptic neurons in a time-dependent fashion. 

This is supported by my observation that early bursts evoked by TBOA alone were generally larger 

than late ones. This change was probably due to activation by endogenous endocannabinoids of 

presynaptically localized CB1Rs which negatively moderated late burst amplitude. In contrast, 

when we flooded the slice with AEA prior to TBOA application, the difference between early and 

late bursts was abolished, presumably due to pre-activation of CB1Rs. Moreover, inhibition of 

CB1R signalling with the antagonist AM251 increased burst amplitude, thus confirming that CB1R 

activation was necessary to obtain the time-related reduction in the burst amplitude detected in the 

recordings with TBOA alone. 

 

7.3 Modulation of endocannabinoid signalling can lead to disturbance in the network which 
may result in burst fragmentation 

 An interesting observation was that, during co-application of AM251 and TBOA, some 

bursts showed alterations in shape, which in this work we called 'fragmentation'. The fragmentation 

was not present in all bursts in the individual cells, but rather concerned one or two bursts in the 

recording series. A similar effect was present during co-application of bicuculline and strychnine 

with TBOA and AM251, suggesting it was not the result of mere disruption of the network 

inhibition. Moreover, during co-application of AEA with bicuculline, strychnine and TBOA, burst 

fragmentation could also be observed. This bursting feature could arise for several reasons. The 

fragmentation might have resulted from deconstruction of an individual burst or from the 

coalescence of two independent events. Fragmented bursts are longer in comparison to normal ones, 

but the ones that may result from coalescence are expected to be even longer because they should 

represent the summation of the length of two bursts. 

 We know from previous studies that the occurrence of bursting evoked by TBOA requires 

coordination of several different ion channel activities and drive from the network of interconnected 

neurons (Sharifullina and Nistri, 2006). Thus, the observed alterations in burst shape may result 

from uncoupling among neurons connected via gap junctions, desynchronization of the network due 

to modulation of neurotransmitter release, modulation of intrinsic properties of hypoglossal 

motoneurons, or other yet unknown mechanism. A previous study on the properties of TBOA-
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evoked responses in the HMs has concluded that the role of GABA and glycine neurotransmission 

is to constrain bursting (Sharifullina and Nistri, 2006). The observed fragmented shape in TBOA-

evoked bursts obtained during AEA or AM251 co-application with concomitant inhibition of 

GABA and glycine receptors indicate that increased network excitability originating from 

bicuculline and strychnine application was further exacerbated by any endocannabinoid system 

perturbation. This combination of altered signalling could further impair the robustness of the 

network to prevent bursting and led to their fragmentation. It is also noteworthy that when we 

applied exogenous AEA, we flooded the slice with this agent and lost any pulsatile release of AEA 

related to rhythmic neuronal depolarization and network firing, which may have contributed to 

synchronization of the network. In addition, in AEA, TBOA, bicuculline and strychnine solution, all 

recorded neurons produced bursting thus indicating that concomitant disruption of the inhibitory 

signalling is abolishing AEA-evoked decrease in the burst iccurence. 

 

7.4 Endocannabinoid system modulates sPSCs in hypoglossal motoneurons 

In order to further understand the effect of endocannabinoid system modulation on HMs in 

the condition of elevated glutamate level, I have analysed the effects of AEA or AM251 application 

on spontaneous postsynaptic currents (sPSCs). Available studies indicate that both inhibitory 

(Mukhtarov et al., 2005) and excitatory (García-Morales et al., 2015) neurotransmission can be 

attenuated by application of endocannabinoids. My results confirm those data. AEA application 

resulted in a decrease in spontaneous excitatory postsynaptic current (sEPSC) frequency, which 

could be correlated with the decrease in burst occurrence during co-application of AEA with 

TBOA. Preliminary data on the AM251 effect on glutamatergic neurotransmission in the HMs 

revealed a very interesting phenomenon. Co-application of AM251 after initial suppression of 

inhibitory neurotransmission resulted in occurrence of burst-like activity, accompanied by increase 

in sEPSC amplitude and frequency. The AM251-evoked bursts had smaller amplitude in 

comparison to TBOA-evoked ones and were clustered in four to five events. AM251-evoked bursts 

were not detected in previous experiments in which we first co-applied AM251 with bicuculline and 

strychnine for 10 min and then co-applied TBOA. This may be due to longer time frame necessary 

to observe those events, which overlapped with TBOA co-application. This bursting activity 

appearance after co-application of AM251 with bicuculline and strychnine further supports the 

notion that the role of the endocannabinoid system is to decrease network excitation.  

 Inhibitory neurotransmission has been previously reported to be a factor, which diminishes 
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bursting probability (Sharifullina and Nistri, 2006). Previous studies have shown that activation of 

endocannabinoid signalling decreases both amplitude and frequency of glycinergic spontaneous 

events (Mukhtarov et al., 2005). In my recordings I observed that amplitude of sIPSC in two of the 

recorded cells had decreased after 10 min of AEA co-application with DNQX and APV (one of 

them regenerated after 20 min). In the other two cells changes were not observed thus statistical 

significance was not reached.  The frequency of these synaptic events was increased in some cells, 

and had a bimodal change in others. In the presence of AM251 the mean value of both amplitude 

and frequency in the recorded cells of sIPSC did not change. Nonetheless frequency during AM251 

application decreased after first 10 minutes in case of two cells. After 20 min of co-application of 

AM251 amplitude in three out of four cells (1 cell lost after around 10 min) amplitude increased, 

therefore it cannot be excluded that increase in the number of recordings would result in statistical 

significance in this value.  

It is important to emphasise that in our experiments, spontaneous activity was network 

dependent, thus we cannot exclude that modulation of certain elements of the inhibitory network 

could have potentiated others, giving rise to complex, time related changes in sIPSCs. Enhancement 

of certain inhibitory mechanisms through inhibition of other upstream ones could also contribute to 

AEA-elicited decrease in burst occurrence observed during AEA and TBOA co-application. It is an 

interesting possibility, especially in the view that GABAergic transmission in HMs mainly depends 

on network activity and thus may be a source of complex pattern of sIPSCs observed in my 

recordings (Donato and Nistri, 2000). 

 Further experiments on miniature inhibitory (and excitatory) postsynaptic currents (mIPSCs, 

mEPSCs), in the presence of tetrodoxin (to block network activity), are necessary to clarify the 

effect of AEA or AM251 on IPSCs (and EPSCs). Such experiments would give us information on 

the possible effects of cannabinoid system modulation on true spontaneous release of 

neurotransmitter in isolation from the network and allow for better understanding of the processes 

occurring in our model.   

 

7.5 TBOA evoked changes in CB1R expression in medullary brainstem 

 Due to the very small size of the tissue samples, we were not able to investigate hypoglossal 

nuclei alone for CB1R expression. Nonetheless, we isolated the medullary area, which contains the 

region of our interest and performed Western blot analysis on whole lysates from those samples. 

Due to the fact that hypoglossal motoneurons receive inputs from other areas in the brainstem 
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(Borke et al., 1983; Peever et al., 2002; Smith et al., 1991), this analysis is still valuable in order to 

understand possible delayed mechanisms activated after excitotoxic stress. Our data showed a 

significant increase in CB1R expression after TBOA-treatment. The fast triggering of CB1R over-

expression during excitotoxic insult (4h) supports the early impact of endocannabinoid signalling. 

This is in accordance with data from other experimental systems indicating that some insults, like 

for example stroke, can also increase CB1R expression (Jin et al., 2000). The increase in CB1R 

protein in such a short time advocates against canonical neosynthesis. One possibility is the 

existence of a pre-assembled CB1R pool which is not detected by Western blot because it exists in 

the form of a tightly bound complex, but it might be mobilized by excitotoxic insult. Nonetheless, 

studies on CB1R degradation rates suggest another possibility. A study on neuroblastoma cells 

expressing CB1Rs estimated that the vast majority (~70%) of newly synthesized CB1R protein is 

degraded rapidly with a degradation rate half-time t1/2=4.8 hours, with the remaining proteins most 

likely representing functional receptors (McIntosh et al., 1998). Another study has reported that in 

baby hamster kidney (BHK) cells expressing CB1Rs, these proteins are even more rapidly degraded 

with only ~10% remaining after 1 hour (Andersson et al., 2003). The same study has investigated 

the effect of inhibition of proteasome on CB1R expression, and has confirmed a significant receptor 

increase in less than one hour (Andersson et al., 2003). Thus, inhibition of CB1R degradation 

through intracellular signalling pathways or non-coding RNA regulation can perhaps result in the 

very rapid accumulation of CB1R protein observed in my experiments. Further detailed 

investigation is needed in order to understand if there are regional differences in the CB1R 

accumulation triggered by excitotoxicity and eventually evaluate their relation to signalling in the 

HMs.  

 

7.6 Anandamide application protects cells in hypoglossal motoneuron nuclei from 
TBOA-induced damage 

 The present analysis of the effects of an endocannabinoids on hypoglossal motoneurons led 

us to explore an important question: does AEA actually protect HMs from TBOA-induced 

excitotoxicity. As previously mentioned, numerous studies indicate that endocannabinoid system 

activation has protective effect on cells (Mechoulam et al., 2002b; Veldhuis et al., 2003; 

Zogopoulos et al., 2013; Kano et al. 2009). For example, administration of the CB1R agonist 

WIN55, 212-2 decreases hippocampal neuronal loss during cerebral ischemia (Nagayama et al., 

1999). In a mouse model of kainate-induced excitotoxicity it has also been demonstrated that 

CB1Rs on glutamatergic synapses of hippocampal neurons protect from kainate-induced seizures 
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(Monory et al., 2006).  

 Our laboratory has observed that TBOA increases the number of (damaged) propidium 

iodide (PI)-stained cells in the hypoglossal region of medullary slices (Cifra et al., 2009). At the 

same time, agents that suppress bursting, like riluzole, promote cell survival (Cifra et al. 2009, 

2011a). Riluzole therapy is the only one currently available for ALS, but it prolongs the life of the 

patients for a few months only (Bensimon et al., 1994; Meininger et al., 2000; Miller et al., 1996). 

Thus, a search for alternative therapies for ALS treatment is urgently necessary. In my experiments, 

I have confirmed that TBOA increased the number of damaged cells identified with PI staining. Co-

application of AEA with TBOA attenuated the number of PI-positive cells and thus, confirmed the 

protective effects of this endocannabinoid agonist. In analogy to the effect of riluzole on HMs 

(Cifra et al. 2011a), application of AEA produced burst inhibition, that correlated with an increased 

survival of the cells in the HM nuclei. The cellular protection was likely due to a decrease in 

glutamate release from presynaptic terminals, as indicated by my experiments on sEPSC 

modulation by AEA. This observation is in accordance with recent studies indicating that the 

administration of cannabinoids or modulation of the cannabinoid system can delay disease 

progression in SOD1 ALS transgenic animals, thus outlining a possible target for new therapies for 

this devastating disease (Bilsland et al., 2006; Raman et al., 2004; Weydt et al., 2005).  

 

7.7 Summary 

 In summary, my work described the effect of modulating endocannabinoid signalling on the 

responses of hypoglossal motoneurons to excitotoxic stress induced by glutamate uptake inhibition. 

I provided a preliminary description of the modulation of inhibitory and excitatory synaptic events 

by agonism or antagonism of CB1Rs. My data indicated that CB1R expression could be up-

regulated in a short time frame in response to the excitotoxic insult, which is in accordance with 

previous studies on CB1R expression during pathological events (Jin et al., 2000; Zhao et al., 2008). 

Moreover, I have confirmed the protective effects of AEA application on cell viability during 

excitotoxic stress caused by TBOA. The data presented here are, therefore, a useful contribution to 

the knowledge of the likely involvement of endocannabinoid signalling during excitotoxicity. In 

conclusion, my experiments provide a rationale for future work, especially in vivo, to target the 

endocannabinoid system as a potential neuroprotectant system against excitotoxicity in 

neurodegenerative diseases.  
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