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Abstract

Physics and Chemistry of Biological Systems

Doctor of Philosophy

Information theory in biochemical regulatory networks: a theoretical study

by Francesca Mancini

In this Thesis we consider the optimization of information transmission as a viable design

principle for biochemical networks. We apply this principle to a simple model regulatory

circuit, given by an input and a delayed output that switch randomly between two states

in continuous time.

First we maximize the transmitted information in the network at a given output delay,

when the system has no external constraints and it is in steady state or can optimize

its initial condition. We find that optimal network topologies correspond to common

biological circuits linked to stress response and that circuits functioning out of steady

state may exploit absorbing states to be more informative than in steady state.

We then take into account that biological regulatory networks need to dissipate energy

in order to transmit biochemical signals and that such signaling often happens in chal-

lenging environmental conditions. Hence we explore the system’s trade-offs between

information transmission and energetic efficiency. At fixed delay and dissipated energy,

we determine the most informative networks both in the absence and in the presence of

feedback. We find that negative feedback loops are optimal at high dissipation, whereas

positive feedback loops become more informative close to equilibrium conditions. More-

over, feedback allows the system to transmit almost the maximum available information

at a given delay, even in the absence of dissipation.

Finally, within a game-theoretic maximin approach, we ask how a biochemical network

should be constructed to be most informative in the worst possible initial condition set

by the environment. We find that, in the limit of large energy dissipation, the system

tunes the ratio of the input and output timescales so that the environmental disturbance

is marginalized as much as possible.
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Introduction

“Statistically, the probability of any one of us being here is so small that you’d think the mere

fact of existing would keep us all in a contented dazzlement of surprise. We are alive against

the stupendous odds of genetics, infinitely outnumbered by all the alternates who might, except

for luck, be in our places. Even more astounding is our statistical improbability in physical

terms. The normal, predictable state of matter throughout the universe is randomness, a

relaxed sort of equilibrium, with atoms and their particles scattered around in an amorphous

muddle. We, in brilliant contrast, are completely organized structures, squirming with

information at every covalent bond.” (Lewis Thomas, The Lives of a Cell)

Motivation

Today the common thought is that most of the open questions in biology should be

answered by experiments. In physics the approach is different, since the theoretical

and experimental approaches are considered as partners which equally contribute to

scientific progress. The general theoretical principles in physics, besides explaining what

has been already observed, provide a starting point to investigate what “has” to be seen.

Therefore, inspired by the beautiful book of Bialek [1], we could ask ourselves

• can we reach in biophysics the same level of predictive power that is ubiquitous in

other branches of physics?

• can we harmonize the physicists’ quest for universal theoretical principles with the

incredible diversity of living organisms?

• once such theories are identified, could they be proved meaningful in many different

experimental circumstances and at the same time be expressed by simple and

general principles?

Indeed, many diverse biological phenomena, such as the development of an embryo or the

adaptation of bacteria to different environments, trigger physical fundamental questions.

But how do we frame them into theories?

1
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A starting point could be to observe that life is a macroscopic state which is gener-

ated and maintained by microscopic mechanisms such as DNA replication and protein

synthesis. While we have made a lot of progress in studying the microscopic level, we

still have to identify the “order parameters” that identify the macroscopic level. The

identification of such order parameters is difficult, however it can be tackled by making

quantitative models of specific biological systems and grouping them into different re-

gions of the parameter space. Real and functional biological systems would realistically

belong only to a restricted region of the parameter space. If there is a principle that is

able to single out such region, then we can use it to build a theory and to calculate a

priori the properties of biological systems.

A viable principle is to postulate that biological systems find optimal solutions for the

tasks they need to accomplish, or in other words they maximize specific objective func-

tions. This approach is familiar to physicists, indeed many theories are formulated as

variational principles, such as least action in classical and quantum mechanics or the

minimization of free energy in thermodynamics. Nevertheless, it could be objected that

living systems are still in the evolutionary flow, constantly climbing the “fitness gradi-

ent”, and are thus far from having reached an optimal performance. So our attempts to

theorize biological systems by maximizing a function might be wrong, not because we

chose the wrong function, but more profoundly because life is not at the extreme of any

function.

Still we can support our claim of the existence of an optimization principle by making

it meaningful and predictive. First of all we should be able to measure our chosen

objective function F and compare it to its theoretical maximum, constrained by physical

limits. Then maximizing F should allow us to make predictions testable in different

experiments. We should restrict ourselves to systems where we have direct evidence for

the maximization of F . But even when the systems are not at the maximum of F , our

approach could still be an useful idealization.

Recently many candidates for the objective function F have been taken into considera-

tion [2–8]. Possible choices are minimization of biochemical noise [4, 8, 9], minimization

of losses in case of unknown external signals [6], maximization of positional information

[10] or optimization of resources [11]. Some of these approaches have taken into account

evolutionary effects [3, 10].

It has also been argued that the important process in biology is the flow of information.

Living organisms collect information from the environment or from their internal state

so as to make choices. In this Thesis we choose to explore the principle that biological

systems maximize information transmission, or the efficiency with which information is

represented [12]. From the mathematical point of view, Shannon [13] proved that there



Introduction. 3

is only one precise measure of information, which is connected with statistical mechanics.

From the experimental point of view, such principle has been tested in the embryonic

development of the fruitfly [5].

Here we do not test the principle but rather assume it as a matter of fact. We apply it to

a simple biochemical network in order to devise its maximally informative topologies. We

first allow our system to behave “ideally” and then ask how adding energetic constraints

or imposing unfavorable initial conditions changes the system’s optimal response.

Outline of the thesis

Here follows an outline of the Thesis: in Chapter 1 we first provide a biological mo-

tivation for the choice of optimal information transmission as a design principle. We

then briefly revise the concept of Shannon mutual information as a measure of correla-

tion between two variables, together with its definition and its main properties. After

a short review of the literature on the topic, we introduce our simple model of a bio-

chemical regulatory network: it consists of an input and a delayed output, which switch

randomly in continuous time between an “active” and an “inactive” state. Such states

could describe the presence/absence of a sugar source in the environment, as an input to

the network, and the presence/absence of its degrading enzyme, as the network output,

respectively. In sections 1.4.2.2, 1.4.2.3 and 1.4.2.4 we look for optimally informative

network topologies when the system is in steady state, both in the absence and in the

presence of feedback. Then in section 1.4.2.5 we ask how the optimal solutions change

when the system is allowed to optimize its initial condition. In all the above cases we

look for maximal information transmission at a fixed delay of the output response.

In Chapter 2 we take into account energetic constraints. While the model regulatory

network in Chapter1 was allowed to function extremely far from equilibrium, and thus

to dissipate an infinite amount of energy, it is now constrained to optimize the trans-

mitted information by working close to equilibrium. We start with a quick summary

of stochastic thermodynamics and, after mentioning relevant references, we endow the

“ideal” model of Chapter 1 with an energetic framework. In sections 2.3.2 and 2.3.3 we

analyze the system in steady state in the absence and presence of feedback. Then in sec-

tion 2.3.4 we use the obtained results to estimate the energetic efficiency of information

transmission in the two-component osmoregulatory network EnvZ-OmpR of E. coli.

Finally, in Chapter 3 we consider the realistic event where the system is forced to max-

imize the transmitted information in the worst possible initial conditions. We use a

game-theoretic approach to model the interaction between the system and the environ-

ment as a maximin game, where the first player wants to maximize the transmitted
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information at all times, while the second player wants to minimize it.

We end the Thesis with some concluding remarks and future perspectives.

The material presented in this Thesis is mainly based on the following publications:

• F. Mancini, C. H. Wiggins, M. Marsili and A. M. Walczak, Time-dependent infor-

mation transmission in a model regulatory circuit, Physical Review E 88, 022708

(2013)

• F. Mancini, M. Marsili and A. M. Walczak, Trade-offs in delayed information

transmission in biochemical networks, arXiv:1504.03637 [q-bio.MN] (2015)



Chapter 1

Optimizing information

transmission

1.1 Does Biology care about information?

The optimization principle of maximal information transmission has been successfully

applied to the early embryonic development of D. Melanogaster [14]. This organism is a

case study for spatial patterning : nuclei in the embryo, even if equipped with the same

DNA, differentiate into distinct parts of the body by modulating their gene expression.

The precise and reproducible spatial domains of differential gene expression are possible

thanks to few maternal chemical cues, called mathernal morphogens [15]. In particular,

a maternal mRNA coding for the morphogen Bicoid is laid in the anterior part of the

embryo. After translation, the morphogen diffuses towards the back of the embryo,

establishing a smooth gradient along the anterior-posterior (AP) axis (see Fig.1.1). Each

nucleus reads the local concentration of Bicoid (and other morphogens) and subsequently

modulates the expression of four downstream genes, called gap genes. One of the gap

genes is hunchback : as shown in Fig.1.1b, its expression has a sharp sigmoidal response

to Bicoid concentration, similar to a binary switch [16, 17].

Thanks to simultaneous measurements [17] of the concentrations of Bicoid (c) and

Hunchback (g) (see Fig.1.1a), Tkačik and collaborators [5] were able to sample the

joint probability distribution P (c, g) and compute from that the experimental mutual

information Iexp(c; g) = 1.5±0.1 bits 1. This value is higher than what one would expect

from a truly binary switch, which conveys 1 bit of information. It is therefore instructive

to have another measure to compare 1.5 bits to.

1The mathematical definition of mutual information will be provided in the subsequent section, here
we just want to provide an example of its biological applicability.

5
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(a)

(b)

Figure 1.1: taken from [17] and modified. (b) In the early development of
D. melanogaster embryo, a smooth gradient of Bicoid concentration along the
anterior-posterior (AP) axis is translated into a sharp boundary of Hunchback
expression. (a) Scanning confocal microscope image of a D. melanogaster
embryo in early nuclear cycle 14, stained for DNA (blue), Hunchback (red),
and Bicoid (green); scale bar 50µm. Inset shows how DNA staining allows for
automatic detection of nuclei.

To do so, Tkačik et al. computed the theoretical maximum for the information trans-

mitted between Bicoid and Hunckback (also known as channel capacity). They started

from rewriting the joint probability P (c, g) as P (c, g) = P (g|c)P (c). The conditional

probability P (g|c) of Hunchback expression given the Bicoid signal can be computed ex-

perimentally and approximated with a Gaussian G(g; ḡ(c), σg(c)), where ḡ(c) is the mean

response of the regulatory element and σ2
g(c) the noise in the response. Holding P (g|c)

fixed and optimizing P (c) numerically, yielded the channel capacity of I∗(c; g) = 1.7
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bits. Such finding shows that the real biological system is operating close to what is

achievable given the noise, that is Iexp(c; g)/I∗(c; g) ≈ 90%. This provides a good moti-

vation for taking maximization of information transmission as a viable design principle.

Additionally, the optimal probability distribution of Bicoid P ∗(c) predicts the optimal

distribution of Hunchback expression levels through P ∗(g) =
∫
dcP (g|c)P ∗(c). As it is

shown in Fig.1.2, the predicted probability P ∗(g) (red) matches the experimental one

Pexp(g) (black) extremely well.

Figure 1.2: taken from [5]. The measured (black) and predicted optimal
(red) distribution P (g) of Hunchback expression levels across an ensemble of
nuclei in D. melanogaster embryo. The expression level g goes from 0 (no
induction, posterior) to 1 (full induction, anterior). A significant fraction
(≈ 30%) of the nuclei express an intermediate level of Hunchback which, given
the low noise in the system, could represent a third distinct expression level,
besides 0 and 1. This would agree with the observed information of 1.5 bits,
that intuitively corresponds to 21.5 ≈ 3 distinguishable expression levels.

1.2 Entropy and Mutual information

Having built some intuition about the application of mutual information to biological

systems, we can now provide its formal definition and its main properties (the interested

reader can refer to [18, 19] for a detailed review of the subject). We will indicate the

input signal with z and the output signal with x, and we will consider both signals

to be discrete (however, all the following considerations are valid also for continuous

variables).
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Since biochemical networks are intrinsically noisy, the mapping of the input z to the

output x is a probability distribution P (x|z). If the input itself is drawn from a distri-

bution P (z), then pairs of input/output measurements are jointly distributed according

to

P (z, x) = P (x|z)P (z). (1.1)

We are interested in measuring how strongly input z and output x are dependent on

each other. In other words, we want to find a measure that would quantify “how much”

one can know, in principle, about the value of z by receiving its output x, given a certain

input/output relation P (x|z) and some input distribution P (z).

The first quantity that one thinks of is the covariance

Cov(z, x) =
∑
z

∑
x

(z − z̄)(x− x̄)P (z, x),

where z̄, x̄ indicate the averages of z and x, respectively. However, it is easy to think of

situations where z and x are statistically related but the covariance is 0. Indeed, covari-

ance (or correlation coefficient) only measures the linear dependence between variables.

We would like instead our measure of interdependency to be very general, free of assump-

tions on the probability distribution underlying the data. According to Shannon [13],

there is a unique assumption-free measure of interdependency, called mutual information

I[z, x] between z and x (see Fig.1.3).

Figure 1.3: (taken from [12] and modified). Examples of two variables,
drawn from three joint distributions. On the left, the variables are linearly
correlated, and both the correlation coefficient and the mutual information are
close to 1. In the middle, the variables are interdependent, but not in a linear
sense. The correlation coefficient is 0, but mutual information gives a non-zero
value. On the right, the variables are statistically independent, and both
linear correlation and mutual information give zero signal.

Let us first recall the definition of Shannon entropy

S[P (x)] = −
∑
x

P (x) log2 P (x), (1.2)
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as a measure of uncertainty of the output x, whose distribution is P (x). Given the

input/output relation P (x|z) we can also use the Shannon entropy

S[P (x|z)] = −
∑
x

P (x|z) log2 P (x|z) (1.3)

to indicate the uncertainty in x if we know its input z. If we compute the difference

of the two entropies 1.2 and 1.3, we can measure how much our uncertainty about x

has been reduced by knowing z: ∆S = S[P (x)] − S[P (x|z)]. We can repeat the mea-

sure of ∆S for different concentrations of input z and take an average according to its

distribution P (z). The resulting quantity is our mutual information:

I[z, x] =
∑
z

P (z)(S[P (x)]− S[P (x|z)]). (1.4)

This quantity is a scalar number expressed in bits and measures how much, on average,

our uncertainty in a variable (x in this case) is decreased by knowing the value of

a related variable (e.g. z). Using equations 1.1,1.2 and 1.3, we can reformulate the

mutual information as

I[z, x] =
∑
z

∑
x

P (z, x) log2

P (z, x)

P (z)P (x)
(1.5)

=
∑
z

P (z)
∑
x

P (x|z) log2

P (x|z)
P (x)

(1.6)

=
∑
x

P (x)
∑
z

P (z|x) log2

P (z|x)

P (z)
. (1.7)

From the above expressions the following properties follow:

• information is a symmetric quantity in z and x: the information the input has

about the output is the same as the information the output has about the input.

• if the joint distribution of inputs and outputs factorizes, P (z, x) = P (z)P (x), then

I(z;x) = 0. In this case, the entropy of the whole system would be the sum of the

individual entropies: S[P (z, x)] = S[P (z)] + S[P (x)]. On the other hand, if the

variables are not independent, the entropy of the system is reduced by the mutual

information, S[P (z, x)] = S[P (z)] + S[P (x)] − I[z, x], and mutual information is

bounded from above by the individual entropies, I[z, x] < min(S[P (z)], S[P (x)]).

Moreover, mutual information

• can be defined both for continuous and discrete variables,
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• is reparametrization invariant: I[z, x] = I[f(z), h(x)], where f(z) and h(x) are

one-to-one functions of their arguments,

• obeys the data processing inequality: given a noisy mapping z → x → k, then

I[z, k] ≤ I[z, x], that is information either decreases or stays the same, but it is

never “created” in the noisy transmission process,

• has a clear interpretation: if there are I[z, x] bits of mutual information between

z and x, there are 2I[z,x] distinguishable levels of x obtainable by giving z.

1.3 Making models

To respond to environmental changes, regulatory biochemical networks need to trans-

form the molecular signals they receive as input into concentrations of response molecules.

These processes are inherently stochastic, as both input and output molecules are often

present in small numbers. This observation has motivated a number of recent works

which pose the search for design principles as an optimization problem over the network

topology and reaction rates. Not all designs of biochemical networks are equally rep-

resented in cells [20], which raises the question of whether the prevalence of particular

network motifs arises because they are best suited for specific tasks the cell has to fulfill.

In order to attempt to answer this question, and to explore the functions and limitations

of given network architectures, one can consider a well defined objective function, such

as rapidity of response [20, 21], minimization of noise [8, 22] or information transmission

between the input and output [12, 23–25], and compare the performance of particular

circuits under a set of constraints (e.g. molecular cost, noise). Phrasing the problem as

an optimization over the parameters and probability distributions of these networks al-

lows one to find the optimal circuit that best fits this one specific function. The optimal

architecture corresponds to how one would “design” or “build” a circuit if the objective

was to satisfy a known function.

As previously discussed, a possible objective function could be the optimal information

transmission between a biochemical input and its output. The idea of information opti-

mization in biomolecular networks was tested in early development of D. melanogaster

embryo (see section 1.1). More recently, the information transmission measured in an

inflammatory cytokine signaling pathway of murine fibroblasts [26] was used to find a

tree-like network topology, thus allowing to identify the bottlenecks that limit signal

integration. This combined theoretical and experimental approach singled out the con-

ditions under which feedback, time integration and collective cell response can increase

information transmission. The NF-kappa B and ERK pathways were recently used to
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demonstrate that dynamical measurements of the response can transmit more informa-

tion than static or one time readouts [27]. Lastly, an information-theoretic approach was

used in an experimental and numerical study to show the interdependence of stochastic

processes controlling enzymatic calcium signaling under different cellular conditions [28].

Theoretical studies based on the optimization of information transmission in regulatory

circuits have demonstrated that, within a network that functions at steady state, the

system can exploit the molecular details of the network to transmit information while

paying a molecular cost [23, 29]. Positive feedback was shown to increase the effective

integration time and average out input fluctuations, thus allowing for reliable informa-

tion transmission at low input concentrations [25]. On the contrary, negative feedback

reduces noise at high input concentrations by reducing the effective nonlinearity of the

input-output relation. Molecular strategies, such as using feedforward loops [24] and

slow binding/unbinding dynamics [30], also increase information transmission, because

they lead to a quasi-binary readout and multimodal output distributions.

In many situations biochemical signals change with time, which has led to an interest

in the information-optimal response to pulses in signaling cycles [31] and to oscillatory

driving [32]. Similarly to what was found for stationary signals, circuits that produce

bimodal output states [32] transmit more information. Tostevin and ten Wolde looked

at time dependent Gaussian processes in a linearized regulatory circuit and found that

those network properties that are important for transmitting information about instan-

taneous signals may not be those that are relevant for information transmission of entire

trajectories [33, 34]. Within the same framework de Ronde and colleagues focused on un-

derstanding the role of regulation and found that positive feedback increases the fidelity

of low frequency signals, whereas negative feedback proves better at high frequencies

[35]. In feedforward circuits, they showed that topologies alone are not sufficient to

characterize network properties, but that interaction strength also plays an important

role [36].

One should also take into account that regulatory response is often at a delay relative

to input signaling, because of e.g. transcription and translation processes, cellular com-

partmentalization, etc [37]. Examples include the chemotactic response of bacteria [38]

or amoeba [39] to nutrients or conversely to antibiotics [40]. This delay is intrinsic and

unavoidable in a biological circuit - mRNAs and proteins are not produced instanta-

neously and interpreting the initial signal takes time. Optimal design therefore entails

maximizing information transmission between the input at a given time and the output

at a later time. Nemenman [41] has shown that, in simple regulatory circuits, there is an

optimal time lag for which the mutual information between the input and the delayed

output is maximized.
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1.4 A model regulatory circuit for time-dependent infor-

mation transmission

Z x

Figure 1.4: Cartoon of a simple biochemical regulatory network with an
input z (e.g. transcription factor) and an output x (e.g. gene expression).
Original picture taken from [5] and modified.

Given a fixed unavoidable delay in the response, we ask what is the optimal way to design

a regulatory system to optimally transmit information between an input at an initial

time and an output at a later time. In our approach the delay is an intrinsic property

of the system, which we cannot control, but rather treat as an additional constraint.

Given this constraint, we ask about the optimal parameters and architecture of the

system that maximally transmits information between the input and the output. To

find this optimal system, we optimize over both the initial distribution and the elements

of the network.

Our goal is to focus on how the natural cellular delays constrain the architectures of reg-

ulatory circuits. We find that the design of circuits that optimally transmit information

between the input and a delayed output corresponds to known circuit’s architectures

(push-pull networks) [42–44]. Moreover, we find that this prediction is robust, because

optimal architectures do not change with the length of the imposed delay.

Our strategy is to address these issues within the simplest possible model, composed

of two binary components, z and x, that switch randomly in continuous time. This

can model, e.g., the binding/unbinding of a transcription factor z to its corresponding

gene x, which is subsequently activated/inactivated (see Fig. 1.4). The model sacrifices

molecular details of biochemical regulatory networks, which can be very complex and

whose features can have an effect on their information processing functions. Yet, the

simplicity of our model makes our approach and the resulting results as clear as possible.
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1.4.1 Model description

We consider a system of two dynamical variables x, z that describe two genes, or a gene

and a protein. Each one of them switches between an activated (+1) and inactivated

(−1) state according to the rates defined in Fig. 1.5.

time

+1

- 1

z

+1

- 1

x

um dm up dp

rp sp sm rm

Figure 1.5: Time evolution of random variable z(t), which models a
biochemical input transitioning from/to a down-regulated state (−1) to/from
an up-regulated state (+1), with rates {um, up}/{dm, dp}, respectively.
Random variable x(t) models activation (+1) or deactivation(−1) of a
biochemical output: it is regulated by z, with which it aligns (‘activation’, or
up-regulation) with rates rm or rp or anti-aligns (‘repression’, or
down-regulation) with rates sm or sp. The subscripts m and p in the rates
account for the state of the other variable, that is −1 and +1, respectively.

Specifically, x aligns or anti-aligns with z with rates r or s, respectively. The subscripts

m and p in the rates indicate the state of the other variable (−1 or +1) at the moment

of the flip of the first variable. Our system at any time is fully described by a four-state

probability distribution P (y), where the state y is a joint variable for the output and

the input and it is defined as

y=(x, z) ∈ {(−,−), (−,+), (+,−), (+,+)}. (1.8)

The temporal evolution of the conditional probability P (y′|y) to find the system in state

y′ at time t given state y at t=0 is given by the continuous-time master equation

dP

dt
= −LP, (1.9)

where L is a 4 × 4 transition matrix set by the rates of switching between the states

(shown in Fig. 1.5 and constrained to be in the range [0, 1]):

L =


um + sm −dm −rm 0

−um dm + rp 0 −sp
−sm 0 up + rm −dp

0 −rp −up dp + sp

 . (1.10)
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In P (y′|y) and in the rest of the section, primed variables refer to the system state

at time t, and unprimed variables to the initial time 0. The solution of the master

equation can be formally written as P=e−tL and is conveniently expressed in terms

of its expansion in left and right eigenvectors of L (see Appendix A.1). In particular,

the (normalized) right eigenvector corresponding the null eigenvalue is the stationary

state P∞(y′)= limt→∞ P (y′|y).

As explained above, for the sake of realism we want to take into account the intrinsic

delays with which biochemical regulatory networks respond to signals. Therefore we

compute the mutual information between the input z at time 0 and the output x′ at a

time delay t, which is defined as (see section 1.2)

I[xt, z0] =
∑
x′,z

P (x′, z) log2

P (x′, z)

P (x′)P0(z)
. (1.11)

The joint probability distribution P (x′, z) can be readily derived from the conditional

distribution P (y′|y) and the initial distribution P0(y) (see Appendix A.1).

Intuitively, a system that conveys most information between the input and output re-

quires matching the properties of the network (in the case of our model defined by the

switching rates) with the properties of the input and output distributions. The maxi-

mum information transmitted by a system, termed the capacity of this system [13, 18],

is defined as the optimum of Eq. 1.11 with respect to the input distribution. We discuss

two cases: in the first one the system is in steady state, e.g. the response to a morphogen

gradient such as FGF in development [45]. In the second case the initial state of the

system is not the steady state, e.g. production of an enzyme to metabolize a newly

available sugar [37]. While in the former the initial state of the regulatory network is

determined by L (i.e. P0(y) = P∞(y)), in the latter P0(y) may also be optimized. We

consider both optimization cases in the context of our model. A trivial way to maximize

information transmission is for the input to change infinitely slowly relative to a fixed

delay time t (i.e. ul, dl → 0, with l = p,m following the notation of Fig. 1.5), such that

for any finite t, the output yields a noiseless readout of the input, i.e. P (xt = z0) ≈ 1.

In short, nothing happens. Instead, we are interested in regulatory responses to changes

in the input.

To constrain our optimization such that information is transduced on a timescale set by

the system’s own dynamics, we optimize the quantity

I(τ) = I[xt=τ/λ, z0], (1.12)
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where the rate λ is given by the smallest non-zero eigenvalue of L and is the inverse of

the system’s largest relaxation timescale.

Such time rescaling allows us to keep our model as general as possible and to avoid

making questionable choices for the units of measure. Measuring time in seconds, in

minutes or in hours would restrict our model’s applicability only to the biochemical

networks which operate on that timescales.

For the sake of clarity, we stress that the delay τ is an extrinsic property of the system:

it is not related to one of the network rates but, at the same time, it is not due to

downstream readout. An interpretation of it could be the time needed for the sythesis

of an output protein x after the binding to DNA of a transcription factor z. The

intermediate step of mRNA synthesis is time consuming and unavoidable, so that when

the input changes, the output simply cannot – is extrinsecally forbidden to – change

instantaneously or before τ .

However, since delay τ is measured in terms of the relaxation time of the system 1/λ, it

is comparable to the system’s own dynamics. So the overall delay in real time t depends

on the values of the rates.

We remove arbitrariness in the choice of time units by fixing the magnitude of the

maximum rate to be 1. I(τ) implicitly depends on the rates appearing in L and, if

it is not set by P0(y) = P∞(y), on the initial distribution P0(y). We find network

architectures that maximize I in Eq. (1.12) for each rescaled delay τ = λt over the rates

(code that performs the optimization is available at http://infodyn.sourceforge.net).

To summarize our procedure, for a fixed intrinsic delay of the output, measured in

units of the relaxation time of the system, we look for the optimal rates of the network

defined in Fig. 1.5. We then scan the delay time to see how the properties of the optimal

networks change (see Appendix A.2 for details).

1.4.2 Results

1.4.2.1 A general expression for mutual information

Since our model describes a 1-bit symmetric system, we can write the mutual information

in a general and intuitive form, related to the entropy of an effective two-state spin

variable.

Consider any arbitrary distribution P (a, b) where {a, b} ∈ {−1,+1} and the distribution

enjoys symmetry under flipping −1↔ +1.

In this case P (+,+) = P (−,−) and P (+,−) = P (−,+).
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Let us define −1 < µ < 1 such that

P (+,+) = P (−,−) =
1 + µ

4
, (1.13)

P (−,+) = P (+,−) =
1− µ

4
. (1.14)

From these, we see that P (a) = P (b) = 1/2 and

I[a, b] =
∑
a,b

P (a, b) log2

P (a, b)

P (a)P (b)

=
∑
a,b

P (a, b) log2 4P (a, b)

= 2P (−,−) log2 4P (−,−) + 2P (−,+) log2 4P (−,+)

=
1

2
(1 + µ) log2(1 + µ) +

1

2
(1− µ) log2(1− µ), (1.15)

where µ can be interpreted as the “effective magnetization” of the spin variable 2.

1.4.2.2 Simple activation

In order to gain intuition, we start by considering the simplest possible regulatory net-

work, which will be referred to as model A : here z up-regulates x perfectly, symmetri-

cally, and without feedback. In other words, x is slaved to z and switches only if x 6= z

but, due to the stochasticity of the model, it may not align immediately with z.

Hence the rates of Fig. 1.5 are set in the following way

• um = up = dm = dp ≡ u,

• rm = rp ≡ r = 1,

• sm = sp = 0,

which leaves us with only two timescales, related to u and r. The initial probability

P0(y) is set equal to the steady state P∞(y).

In this case the transition rate matrix L is given by

L =


u −u −r 0

−u u+ r 0 0

0 0 u+ r −u
0 −r −u u

 (1.16)

2Note also that P (a = b, b)− P (a 6= b, b) = P (+,+)− P (−,+) = 1
4
[(1 + µ)− (1− µ)] = µ/2.
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and can be diagonalized analytically: its spectrum is

{λ1 = 0, λ2 = r, λ3 = 2u, λ4 = r + 2u}. (1.17)

The left eigenvectors are 

uT1 = (1, 1, 1, 1),

uT2 = (−1, −u+r
u , +u−r

u , 1),

uT3 = (−1, 1,−1, 1),

uT4 = (1, −u−ru , −u−ru , 1).

(1.18)

The right eigenvectors are

v1 = 1
2(r+2u)


r + u

+u

+u

r + u

 , v2 = 1
2(r−2u)


+u

+u

−u
−u

 ,

v3 = 1
2(r−2u)


−r + u

−u
+u

+r − u

 , v4 = 1
2(r+2u)


+u

−u
−u
+u

 . (1.19)

Using the expressions introduced in Appendix A.1, we find that P (x′, z) is given by the

following 2× 2 matrix:

P (x′, z) =

 (1+e−2tu)r2+2(−2e−rt+e−2ut)ru−4u2

4(r−2u)(r+2u)

(1−e−2ut)r2+2(+2e−rt−e−2ut)ru−4u2

4(r−2u)(r+2u)

(1−e−2ut)r2+2(+2e−rt−e−2ut)ru−4u2

4(r−2u)(r+2u)

(1+e−2ut)r2+2(−2e−rt+e−2ut)ru−4u2

4(r−2u)(r+2u)

.
(1.20)

We can then explicitly compute I[xt, z0], which, after some algebraic manipulation,

reads:

I[xt, z0] =
1

2

(
1 +
−4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)

)
log2

[
1 +
−4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)

]
+

+
1

2

(
1− −4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)

)
log2

[
1− −4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)

]
.

(1.21)

If we introduce the quantity

µ =
−4e−rtru+ e−2tur(r + 2u)

(r − 2u)(r + 2u)
, (1.22)



Chapter 1. Optimizing information transmission 18

we recover the general expression for mutual information derived in Eq. 1.15. For long

times, we see that µ→0 and I[xt, z0]→0, as expected. Moreover, on all time-scales we

find that in the stationary state

P (x′ = z)/P (x′ = −z) = (r/u+ 1) > 1.

As in [41], we can show that the mutual information for a system initially in steady state

has a maximum for a non-zero delay t∗, which is determined by the interplay of the two

timescales u and r introduced above. From Eq. 1.21, taking δI
δt |t∗ = 0 and replacing µ,

we get

t∗ =

log
(

2u+r
2r

)
/(2u− r), r 6= 2u,

1
2r , r = 2u.

(1.23)

However, we are not interested in finding the timescales over which information trans-

mission is maximal, but rather the rates that maximize I(τ) at fixed τ = λt, where

λ = min{2u, r} in model A (optimal information curves are obtained as explained in

Fig. A.1). It is worth noting that, in un-rescaled time, maximal information transmission

occurs for u→ 0 with r finite, for any t > 0, as I[xt, z0]→ 1.

(a)

z

x

(+,+)       (+,-) 

(- ,+)       (- ,-) 

u

u
r r

(x,z)A

(b)

Figure 1.6: Model A (activator in steady state). We show in (a) the
optimal rates, along with transmitted information I∗, as functions of the
rescaled delay τ . The corresponding topology is shown in Fig. (b). Shown
results are valid for nonzero delays τ and subscripts m, p are omitted when
xm = xp (with x = u, d, r, s).
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The dynamics of the simplest model A , where z only activates x, can be summarized by

the network topology shown in Fig. 1.6b. The optimal information I∗(τ) and parameters

(u∗(τ), r∗(τ)) are plotted in Fig. 1.6a. We see a clear crossover in terms of the switching

rate u∗ that regulates the state of the input z (see dashed vertical line in Fig. 1.6a):

it initially increases in time and then plateaus at a value of u∗ = 0.5. This crossover

results from the fact that for r > 2u the relaxation time is dominated by the rate at

which the input changes (λrelaxation = λ3 = 2u), whereas for r ≤ 2u the rate at which

the output changes fixes relaxation times (λrelaxation = λ2 = r).

Information transmission is dominated, over short timescales, by the faster rate r. Over

long timescales, optimality is achieved by matching the characteristic times of the two

processes, that are equal to the inverse of the two smallest non-zero eigenvalues λ2 = r

and λ3 = 2u. The degeneracy of the two smallest non-zero eigenvalues for large τ is a

non-trivial generic feature of optimal networks that we also find in more complex models

(see below).

The above behavior of the rates could also have a physical interpretation: for small

delays τ , the output must react as fast as possible to the input (r/2u � 1), so as

to match its state with the input state. Its optimal behavior is to react on the same

timescale of the delay. However, when delay is above a certain threshold, the optimal

response of the output is to react on the same timescale of the input (r = 2u), in order

not to be too slow. Moreover, for large timescales, the input has already decorrelated

from its initial state, so there is no need for the output to react extremely fast to it.

1.4.2.3 Activation and repression

We can generalize model A by allowing z to regulate x asymmetrically – that is, rp 6= rm

– and to down-regulate it as well — that is, to allow sm, sp 6=0 (model B ). As in model

A , we forbid feedback from x to z, hence the transition rates for z do not depend on

the state of x (i.e. um = up ≡ u and dp = dm ≡ d).

Optimization yields only solutions coinciding with that of model A , or with its symmet-

ric counterpart (wherein z perfectly down-regulates x instead of perfectly up-regulating

it: rp = rm = 0 and sp = sm ≡ s). Optimal rates are shown in Fig.1.7a and the

corresponding optimal topologies are depicted in Fig.1.7b.

Intuitively, in order for information to be transduced between x and z, they either

align or anti-align, resulting in the common simple activator or repressor element [20].

Note that the same topological structure is found at all timescales τ . This is to be

contrasted with previous studies [23, 29] which, taking into account the molecular cost

paid by producing higher copy number (e.g. creating more proteins), have found small
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discrepancies between the information transmitted in the two cases of up-regulation and

down-regulation. Since our model does not explicitly account for protein copies, we do

not observe such a difference.

(a)

B

(+,+)       (+,-) 

(- ,+)       (- ,-) 

z

x

z

x

(+,+)       (+,-) 

(- ,+)       (- ,-) 

u=d

r r

s s

u=d

u=d

u=d

(x,z)

(b)

Figure 1.7: Model B (activator/repressor in steady state). We show in
(a) the optimal rates, along with transmitted information I∗, as functions of
the rescaled delay τ . The corresponding topologies are shown in (b), for the
activator case (top) and the repressor case (bottom). Shown results are valid
for nonzero delays τ , subscripts m, p are omitted when xm = xp (with
x = u, d, r, s) and parameters in square brackets refer to alternative optimal
topologies.

1.4.2.4 Role of feedback

Recent studies [25, 35, 36] have pointed to the important role of feedback in transmitting

information, a form of which we can consider using the full set of 8 rates in Fig. 1.5 (model

C ). Now the hierarchical relation between z and x is broken: both can regulate each

other’s expression, either by down- or up-regulation.

The maximally informative topologies for all possible rescaled delays τ are illustrated

in Fig. 1.8b and reveal a “push-pull” network - one gene (or protein) up-regulates the

other, which in turn down-regulates the first gene/protein. Such push-pull circuits are

very common in biology, from microbes [42] to humans ([43] and references therein) as

a source of oscillations [46] and pulse responses [43] (see discussion below).

Due to the symmetry of the problem, we can flip either x or z and we find four equally

informative solutions (shown in Fig. 1.8b), associated with different sets of the 8 rates
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being driven to zero by the optimization procedure. Qualitatively, these topologies may

all be described as either

1. z activates x, which in turn represses z, or

2. z represses x, which in turn activates z.

As an example, we consider a topology of the first type. Numerical optimization allows us

to observe that certain rates are zero. This fact enables us to perform further analytical

calculations. In particular we have that:

• um = dp,

• up = dm = 0,

• rm = rp,

• sp = sm = 0.

Now the transition rate matrix L is given by

L =


um 0 −rm 0

−um rm 0 0

0 0 rm −um
0 −rm 0 um

 (1.24)

and its spectrum is 

λ1 = 0,

λ2 = rm + um,

λ3 = 1
2

(
rm + um −

√
r2
m − 6rmum + u2

m

)
,

λ4 = 1
2

(
rm + um +

√
r2
m − 6rmum + u2

m

)
.

(1.25)

For any value of rates um and rm, the smallest nonzero eigenvalue is always λ3.

The left eigenvectors are

uT1 = (1, 1, 1, 1),

uT2 = (1,− rm
um
,− rm

um
, 1),

uT3 = (−1,
+rm−um−

√
r2m−6rmum+u2m
2rm

,
−rm+um+

√
r2m−6rmum+u2m
2rm

, 1),

uT4 = (−1,
+rm−um+

√
r2m−6rmum+u2m
2rm

,
−rm+um−

√
r2m−6rmum+u2m
2rm

, 1).

(1.26)



Chapter 1. Optimizing information transmission 22

The right eigenvectors are

v1 =
1

2(rm + um)


rm

um

um

rm

 , v2 =
1

2(rm + um)


+um

−um
−um
+um

 ,

v3 =



−rm+um−
√
r2m−6rmum+u2m

4
√
r2m−6rmum+u2m
−um

2
√
r2m−6rmum+u2m

+um
2
√
r2m−6rmum+u2m

+rm−um+
√
r2m−6rmum+u2m

4
√
r2m−6rmum+u2m


, v4 =



+rm−um−
√
r2m−6rmum+u2m

4
√
r2m−6rmum+u2m

+um
2
√
r2m−6rmum+u2m
−um

2
√
r2m−6rmum+u2m

−rm+um+
√
r2m−6rmum+u2m

4
√
r2m−6rmum+u2m


.(1.27)

We can again express the mutual information as in Eq. 1.15, with µ given by

µ = cosh(t
√
u2
m + r2

m − 6rmum)
rm − um
rm + um

+

+ sinh(t
√
u2
m + r2

m − 6rmum)
u2
m − r2

m − 4rmum

(rm + um)
√
u2
m + r2

m − 6rmum
. (1.28)

For t = 0, µ0 =
rm − um
rm + um

. For large t we can define

x = t
√
u2
m + r2

m − 6rmum

and, noting that

lim
x→0

sinhx

x
= 1,

we obtain

µ =
rm − um
rm + um

+
u2
m − r2

m − 4rmum
rm + um

t.

As for models A and B , we are interested in finding the rates that maximize I(τ) at

fixed τ = λt, where λ is the smallest nonzero eigenvalue (λ3 for the example worked out

in Eq.1.25).

The numerical results are shown in Fig. 1.8a. We find that the optimal value of the

input rates (um[up], dp[dm]) now plateau at a value of 3 − 2
√

2 for τ > τ∗ = 0.5 (see

dashed vertical line): this value is set by competition with the r[s] rate, by matching

the smallest non-zero eigenvalue λ3 with λ4 in order to avoid oscillatory solutions (for

input rates > 3− 2
√

2, the above eigenvalues become imaginary describing oscillations).
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Push-pull networks can oscillate [46] 3, thwarting optimal information transmission by

decorrelating the system, hence the oscillatory regime is not the optimal solution.

(a)

C
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(- ,+)       (- ,-) 

z

x

z

x

(+,+)       (+,-) 

(- ,+)       (- ,-) 

dp

um
r r

up

dm
s s

(x,z)

(b)

Figure 1.8: Model C (activator/repressor with feedback in steady
state). We show in (a) the optimal rates, along with transmitted information
I∗, as functions of the rescaled delay τ . The corresponding topologies are
shown in (b), for the activator case (top) and the repressor case (bottom): they
both represent a “push-pull” network, where one gene (or protein) activates
the other, which in turn represses the first gene/protein (as we can see, the
roles of z and x are interchangeable). Shown results are valid for nonzero
delays τ , subscripts m, p are omitted when xm = xp (with x = u, d, r, s) and
parameters in square brackets refer to alternative optimal topologies.

The optimal solution exploits feedback to transmit more information. For small delay

times feedback does not play a role and model C transmit the same amount of informa-

tion as models A and B . For delay times at which the input rates have reached their

plateau value, the optimal circuit of model C can transmit more information at a fixed τ

than the optimal circuits without feedback (compare Fig. 1.8a with Figs. 1.6a and 1.7a).

Intuitively, this happens because the value of the switching rates of z at the plateau is

smaller in model C than in models A and B , thus z is less likely to switch on/off. As

a result of these slower switching rates, the system in models A and B is more likely to

cycle through the four states and hence to obscure correlations with the initial condition

than in model C . Additionally, feedback leads to a rotational directionality among the

transitions that is not observed in simpler models (cf. Fig. 1.8b). As a result of this

rotational directionality the system never directly ‘flips back’, enhancing the transduced

information. In summary, feedback allows for a combination of slower flipping rates and

3Delay in mRNA production was shown to be a necessary element of stable oscillations, making them
hard to observe in synthetic networks [46].
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imposed order to the visited states that enables to read out more information about the

initial state at later times.

1.4.2.5 Systems out of steady state

Having discussed optimal delayed information transmission of repeated readouts in the

stationary state, we now consider regulatory networks that optimize a one-time response

to an input (e.g. by producing an enzyme to metabolize a nutrient that appeared in the

environment).

We assume that at time t0, the system is in an initial state which is not its steady state.

We ask what is the optimal design of the circuit to produce a most informative output to

this initial state given a fixed delay. Unlike in the previous case where the network was in

steady state (which determined the initial distribution) and would respond repeatedly,

we now also ask what is the optimal initial distribution of the system. We allow the

initial and final distribution to be different. The optimization over the input distribution

describes the matching of the properties of the regulatory network and the initial non-

stationary state corresponding, e.g., to the appearance of a sugar source in the cell,

DNA damage or food shortages. Specifically, we consider the same three models studied

above (A , B , C ), but now optimize simultaneously not only on the rates but also on

the initial probability distribution P0(y) and refer to the associated models as Ã , B̃ and

C̃ , respectively.

To calculate the capacity of the system we optimize over the initial distribution and the

parameters of the network. We could fix the initial probability distribution and opti-

mize only over the network parameters. However this would be an arbitrary choice of

the initial distribution and we would not calculate the capacity of the system. Instead

we consider all possible input distributions and ask which one of them guarantees max-

imal information transmission. Cells often pre-process external signals, for example the

lack of glucose is presented in terms of high cAMP (or more specifically activated crp)

concentration to the lac operon, which gives the cell a certain degree of control over the

distribution of the input to a network.

We start with model Ã , which enjoys the usual symmetry −1↔ +1 for x and z. This

constrains the form of the initial distribution to be parameterized as

P0(x, z) =

(
1 + µ0

4
,
1− µ0

4
,
1− µ0

4
,
1 + µ0

4

)
4. (1.29)

4The case of a steady state initial distribution is a special case of a system that enjoys this property.
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Figure 1.9: Model Ã (activator out of steady state). We show in (a) the
optimal rates, along with transmitted information I∗, as functions of the
rescaled delay τ . The corresponding topology is shown in (b). The optimal
initial distribution P0(y), which is not displayed, concentrates on states (+,+)
and (−,−) at all times. Shown results are valid for nonzero delays τ ,subscripts
m, p are omitted when xm = xp (with x = u, d, r, s).

The probability P (x′, z) then reads

P (x′, z) =

 r+e−2tur−2u+e−rt(−r+rµ0−2uµ0)
4(r−2u)

r−e−2tur−2u+e−rt(+r−rµ0+2uµ0)
4(r−2u)

r−e−2tur−2u+e−rt(+r−rµ0+2uµ0)
4(r−2u)

r+e−2tur−2u+e−rt(−r+rµ0−2uµ0)
4(r−2u)

 , (1.30)

and we can explicitly compute the mutual information:

I[xt, z0] =
1

2

(
1 + µ0e

−rt+
r

r − 2u
(e−2ut − e−rt)

)
log2

[
1 + µ0e

−rt+
r

r − 2u
(e−2ut − e−rt)

]
+

+
1

2

(
1− µ0e

−rt+
r

r − 2u
(e−2ut − e−rt)

)
log2

[
1− µ0e

−rt+
r

r − 2u
(e−2ut − e−rt)

]
.

(1.31)

The above expression for the mutual information can again be rewritten as in Eq.1.15

if we introduce

µ = µ0e
−rt +

r

r − 2u
(e−2ut − e−rt). (1.32)

For t = 0, µ = µ0 and the information is maximized by µ = µ0 = ±1, that is when z and

x are perfectly aligned/anti-aligned. Moreover, µ and I[xt, z0] decrease exponentially

with time t. Therefore, unlike in model A , the information transmission does not
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improve by making a delayed readout. In other terms, the absence of a maximum at

t∗ > 0 in I[xt, z0] for optimal initial states suggests that, at odds with the stationary

case (model A ), the mechanism for information transmission is only governed by the

loss of information about the initial state as the system relaxes to stationarity.

After performing the optimization of I(τ), we find that for each rescaled delay τ the

optimal initial distribution P0(y) concentrates on the states (+,+) and (−,−). We can

understand this result intuitively: the rate for switching out of these states, u, is small,

so the system is more likely to remain in these states than in the other two states (see

Fig. 1.9a and Fig. 1.9b). Posing the system in these long-lived states allows for more

information transmission about the initial condition at small readout delays τ .
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Figure 1.10: Model B̃ (activator/repressor out of steady state). We
show in (a) the optimal rates and initial distribution, along with transmitted
information I∗, as functions of the rescaled delay τ . The corresponding
topologies are shown in (b), for the activator case (left) and the repressor case
(right): each topology features a different absorbing state. States displayed in
gray are never visited. Shown results are valid for nonzero delays τ , subscripts
m, p are omitted when xm = xp (with x = u, d, r, s) and parameters in square
brackets refer to alternative optimal topologies.

We now turn to maximizing information transmission over the initial distribution P0(y)

in the more general models B̃ and C̃ . As above, symmetry provides a number of

optimal networks related by permutations (see Fig. 1.10b and Fig. 1.11b). However,

unlike in model C̃ where all states are visited, in each optimal setting of model B̃ one

state (gray in Fig. 1.10b) is never visited. The optimal rates are shown for the case of

z up-regulating [down-regulating] x in Fig. 1.10a and Fig. 1.11a.

We find a qualitative difference in design as compared to the stationary case (models
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B and C ): while the optimal topology remains the same, now either one of the aligned

or non-aligned states becomes absorbing 5.
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Figure 1.11: Model C̃ (activator/repressor with feedback out of
steady state). We show in (a) the optimal rates and initial distribution,
along with transmitted information I∗, as functions of the rescaled delay τ .
The corresponding topologies are shown in (b), for the activator case (left)
and the repressor case (right): they all represent a “push-pull” network, where
one gene (or protein) activates the other, which in turn represses the first
gene/protein (as we can see, the roles of z and x are interchangeable).
Moreover, each topology features a different absorbing state (dashed lines
mean that feedback exists only until the absorbing state is reached). Shown
results are valid for nonzero delays τ , subscripts m, p are omitted when
xm = xp (with x = u, d, r, s) and parameters in square brackets refer to
alternative optimal topologies.

The occurrence of an absorbing state, with a nearly-equal optimal initial distribution

P0(y) over the initial and final states, limits the system’s dynamics and leads to the

optimal topology for a one time response. In the absence of feedback (model B̃ , e.g. re-

ceptor activation in a complex pathway), when the system, initially in the inactive state

(x, z) = (−,−) is presented with a signal (x, z) → (−,+), it switches on a response

(x, z)→ (+,+) (see Fig. 1.10b). However, in the presence of feedback (model C̃ , e.g. a

nutrient activating the production of an enzyme for its uptake, amino acid biosynthesis)

the optimal dynamics includes “feedback inhibition”, in which the output switches off

the input (see Fig. 1.11b) [37] 6. As in model C , feedback imposes an order to the visited

5In each of the four degenerate topologies, a different state becomes absorbing.
6Such design is reminiscent of Shannon’s Ultimate Machine: a device with a switch that, when it is

turned on, activates an arm that switches it off.
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states, with a smaller rate for z transitions than for x transitions: these two features

allow again for higher information transmission about the initial state (see Fig. 1.11a).

Let us consider a specific biological example - lactose metabolism - for the optimal

network shown in Fig. 1.11b (top left panel) and its corresponding optimal rates and

initial distribution presented in Fig. 1.11a. The system describes two elements: lactose,

z, and the degrading enzyme beta-galactosidase in the lac operon, x. Our optimal

solution consists of the rates and topologies of the network and the initial probability

distribution of the system. The optimal solution is based on the matching between the

statistics of the input and the output (lactose and beta-galactosidase) and the properties

of the network, similarly to the approach taken in neuroscience by Laughlin [47] and

in studying time-independent models of information transmission in molecular systems

[23–25, 29]. We find that the optimal initial distribution limits the system to be with

close to equal probability in either the (x, z) = (−,+) or the (x, z) = (−,−) state, which

correspond to states in which the enzyme is turned off and lactose is either there or not.

These initial states are implemented using the lac repressor, that senses whether lactose

is present or not in the environment and represses the lac operon when needed.

Our calculation does not fix the initial state of network, but assigns initial probabilities

to all states. This network design is optimal given this nearly equal probability of the

input sensing sugar in the environment (for example, activated crp in response to glucose

in the lac operon). However, we did not constrain the initial distribution, but we asked

for a best matching between the properties of the circuit and any initial distribution. If

the probability distribution of the sugar in the environment were known and fixed, we

would have to optimize the network given this additional constraints. The calculation

presented in models A , B and C is a specific example of when the input probability

distribution is constrained to be the steady state distribution of the system (and therefore

uniquely set by the optimal rates).

According to our optimal solution, lactose can either be present or not in the cell. In

both cases the degradation enzymes are switched off. If there is no lactose, the system

at t0 is in the final absorbing state (x, z) = (−,−). If at t0 lactose (z) is sensed, the

enzymes x that degrade sugar are switched off and the system is in the (x, z) = (−,+)

state. The appearance of lactose activates the synthesis of enzymes ((−,+)→ (+,+)),

which cause the depletion of the sugar ((+,+)→ (+,−)). Finally the lack of lactose de-

activates the enzymes and they enzymes are degraded ((+,−)→ (−,−)). This matching

between the initial probability distribution of seeing sugar in the environment and the

regulatory elements of the network allows the system to transmit most information about

the original state of the input with a delay. Given the fast initial rate for leaving the
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state (x, z) = (−,+), if the enzyme is present, then sugar was initially present. If there

is no enzyme, there was no sugar 7.

The signal can directly be the input, as in the lactose metabolism example, or it can

influence the input. A biological example of the push-pull network shown in Fig. 1.11b

(top left panel) with the external signal that triggers an input is the p53-MdM2 circuit

that is involved in DNA repair [43, 48]. The tumor suppressor protein p53 transcrip-

tionally activates the MdM2 gene, the product of which degrades p53. DNA damage

leads to an increase in p53 levels ((x, z) = (−,+)), which in turn up-regulates MdM2

((−,+) → (+,+)) that degrades p53 ((+,+) → (+,−)) and in turn down-regulates

MdM2 ((+,−) → (−,−)). In our optimal solution the initial distribution of this net-

work is tuned to a roughly equal probability of there being DNA damage or not.

In both the lactose and DNA damage case the optimal networks perform one readout,

after which they need to be reset externally: additional sugar needs to be taken up from

the environment or p53 levels need to be increased by new DNA damage.

1.4.3 Discussion and conclusions

In Fig. 1.12 we plot a comparison of all the cases possible within the two-state model.

As the model generality increases (from A to C̃ ), so does the number of parameters;

accordingly, the information capacity of the system also increases. As explained in

section 1.4.2.4, we see that the introduction of feedback in model C does not play a

role in increasing information transmission for small τ . However, the information gain

coming from feedback is substantial for long rescaled delays τ between the input and

output readout. Information transmission can be improved beyond that achieved in the

steady state (A , B and C ) if the system is pushed out of equilibrium in specific ways

(Ã , B̃ and C̃ ) to respond to one time signals (as explained in subsection 1.4.2.5). This

increase in information is achieved by simultaneously optimizing the initial distribution

of inputs and outputs in a way that matches the properties of the regulatory circuit.

Both in the steady state and the non-steady state feedback models we find the optimal

network topology of a push-pull circuit. Such circuits exist in many cells, ranging from

bacterial (heat-shock response [42]) to mammalian (I-κB-NFκB circuit [44] in animal

stress response, p53-Mdm2 network involved in DNA damage response [43]), and of-

ten combine a slow (transcriptional regulation) with a fast (protein-protein interaction)

component, similarly to the design of our optimal architectures. In particular, the non-

steady state optimal topologies feature absorbing states, which result in single pulse

responses. These responses are common in the case of stress signals and in some cases

7In a real system the enzymes could be present at a basal level even with the absence of sugar, but
our coarse-grained model cannot account for that.
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feature a “digital” behavior: the number of pulses, rather than the response intensity,

is proportional to the input strength [43].

We find that allowing for feedback (models C and C̃ ) results in optimal solutions

that transmit more information than models without feedback. This observation is

similar to those found for instantaneous information transmission [24] and for the rate

of information transmission [35]. Our optimal solutions consist of two elements: the

combination of slow and fast rates of reactions and the imposed rotational order of the

states. In non-equilibrium circuits where detailed balanced can be broken, the order of

visited states is further enforced by the appearance of an absorbing state, which means

that each state can only be visited once. These two general design elements make the

readout of the input from the output more distinguishable, which in turn increases the

amount of transmitted information, similarly to what was previously found for more

detailed molecular models and instantaneous information transmission. As noted, many

push-pull networks that take part in stress response have a slow and a fast timescale.

Other molecular implementations of these general principles may be possible, however

this simple model points to very general design elements.
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Figure 1.12: Summary of optimization results: for each of the six models, the
hull curve of the maximized information I(τ) is plotted versus τ . When
feedback is present (model C ) information is higher for τ & 0.4. When the
system is initially in an optimal state (model Ã , B̃ , C̃ ) the information is
higher for each τ and its time decay is qualitatively different.



Chapter 2

The energetic cost of information

transmission

2.1 Stochastic thermodynamics: a short review

Nonequilibrium systems with discrete states can be described [49–51] by a master equa-

tion of the form

dPi(t)

dt
=

N∑
j=1

−wijPi(t) + wjiPj(t), (2.1)

where wij is the transition rate from state i to state j and Pi(t) denotes the probability

of state i at time t, which satisfies

0 ≤ Pi ≤ 1, i = 1, . . . , N,
N∑
i=1

Pi(t) = 1.

One can define the probability current Jij as

Jij = −wijPi + wjiPj , (2.2)

which expresses the difference in the frequency of transitions from state i to j and

backward per unit time.

The above definition for Jij implies that Jij = −Jji and we can easily assume that

Jii = 0 for all i. Then we can rewrite the master equation 2.1 in the following way:

dPi(t)

dt
=

N∑
j=1

Jij . (2.3)

31
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If there exists a stationary solution Pi = limt→∞ Pi(t) to the above equation, then the

probability currents Jij satisfy
N∑
j=1

Jij = 0 ∀i, (2.4)

which reminds of the Kirchhoff’s Current Law for each state i.

The condition of detailed balance

Jij = −wijPi + wjiPj = 0 ∀i, j (2.5)

is sufficient but unnecessary for the existence of a stationary solution. Indeed a station-

ary state can exist also in the presence of probability currents between the states, if they

form a suitable current loop structure.

The nonvanishing probability currents in the stationary state of a nonequilibrium system

are related to the total entropy production rate, which is defined as

σtot =
∑
ij

Pi(t)wij log
Pi(t)wij
Pj(t)wji

. (2.6)

If we use the probability currents Jij defined above and we introduce the affinity Aij =

log
Pi(t)wij
Pj(t)wji

, we can rewrite σtot as

σtot =
1

2

∑
ij

JijAij . (2.7)

We observe that the entropy production rate of Eq. 2.6 can be split in two contributions

σtot = σeq + σ, where

σeq =
∑
ij

Pi(t)wij log
Pi(t)

Pj(t)
(2.8)

and

σ =
∑
ij

Pi(t)wij log
wij
wji

. (2.9)

By using the master equation 2.1, one can easily show that σeq = dS
dt , where S is system’s

entropy under equilibrium conditions:

S = −
∑
i

Pi logPi. (2.10)

We can then conclude that the contribution σ is due to the coupling of the system to

external thermodynamic forces which prevent it from reaching equilibrium and can be

interpreted as the rate of entropy increase in the external medium. If there was also

an external dissipative process, the total entropy production σ would have to include

another term σext to account for the external production of entropy.



Chapter 2. The energetic cost of information transmission 33

2.2 Modeling the trade-off between information and en-

ergy dissipation

Cells respond to the current state of their environment by processing external signals

through molecular networks and cascades. An external chemical stimulus is measured

by receptors, which activate a series of biochemical reactions and lead the cell to produce

an appropriate response. This response can be activating a gene or pathway, producing

proteins that process the signal as in the case of sugar metabolism, result in motion

such as in the case of chemotaxis, or initiating a cellular response such as apoptosis. As

we learn more about the structure of biochemical networks, we need to understand the

functional role of their elements and connections. Yet regulation comes at a cost, which

imposes constraints on the form of these networks. Here we consider the limitations

coming from thermodynamic constraints, caused by the cell’s energy consumption, on

the architecture of regulatory elements that best convey information about input signals

to their outputs.

Despite the large complexity of biological regulatory networks, not all possible molecular

regulatory circuits can be found in living organisms [52]. One can ask whether the

network architectures and parameter regimes are only shaped by the evolutionary history

of these organisms, or whether there are also physical limits that constrain them. In

the last years, a number of groups have explored different physical principles that could

influence the parameter regimes and modes of regulation in living organisms (e.g. [2, 6–

9, 11, 24, 33–35, 53–62]). One approach has been to calculate the limits that the intrinsic

randomness in gene regulation imposes on information transmission between the input

signal and its output responses, in networks of varying complexity [23–25, 29, 30, 32,

63, 64]. These studies showed which network architectures are optimal for information

transmission and found that distinguishing different output states in general increases

the transmitted information. They also pointed to the important trade offs between the

information that the output has about the input and molecular costs.

Many of the current approaches to information transmission have looked at instanta-

neous information transmission [23–25], or the rate of information transmission [33–36].

However, it has been argued that information transmission may be enhanced by dynamic

biochemical readouts at multiple time points [27] or when the regulatory response is at a

delay relative to input signaling [41]. Additionally, many biochemical networks function

out of steady state, responding to inputs that are changing in time. Examples include

the chemotactic response of bacteria or amoebas to nutrients or conversely to antibiotics.

Inspired by these observations, in Chap.1 we previously studied the optimal circuits for

transmitting information between an input and output read out with a fixed delay, in and
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out of steady state. Delayed readouts are natural to most biochemical circuits, since sens-

ing a signal requires production of the response, which takes time. For example, sensing

an increased sugar concentration means the cell has to produce the enzyme to degrade

it. We asked whether different readout delays correspond to different optimal circuits.

We found that topologies of maximally informative networks correspond to commonly

occurring negative feedback circuits irrespective of the temporal delay specified. Most

interestingly, circuits functioning out of steady state may exploit non-equilibrium ab-

sorbing states to transmit information optimally and feedback can additionally increase

information transmission. We found that there are many degenerate topologies that

transmit similar information equally optimally - a degeneracy that will most likely be

lifted by considering more detailed molecular models.

The optimal solutions we found previously function strongly out of equilibrium, so they

must consume energy. Since it has been experimentally shown [65] that sensory sys-

tems may have evolved to reduce their energy expenditure, we were interested in seeing

how energetic constraints impact the form of the optimally informative solutions. This

knowledge will prove useful when constructing artificial biochemical circuits [66], or engi-

neering living organisms for energy production [67]. The energy dissipated (or consumed)

by a given network can be estimated by looking at the thermodynamics of its composite

biochemical reactions. A completely reversible reaction does not consume energy. The

reaction is in perfect equilibrium and the total free energy of the system is completely

balanced. Irreversible reactions, such as certain steps of biochemical cascades, come at

a cost to the cell, which has to prevent the back reaction from occurring. This cost

can be estimated considering the flux balance of the network. The heat dissipated by

the circuit is proportional to its rate of entropy production [68]. Tu et al. [69] looked

at entropy production in biochemical regulatory networks and experimentally showed

that the flagellar motor switch of Escherichia coli operates out of equilibrium, dissipat-

ing energy. A nonequlibrium allosteric model consistent with experimental results was

proposed to explain how the switch operates with high sensitivity at a small energetic

cost.

Energetic cost has also been discussed in relation to cellular precision and the predictive

power of the cell. The chemosensory system of E. coli has been shown to dissipate

energy in order to improve its adaptive speed and accuracy [70]. Reliable readout of input

concentrations has also been bound by the entropy production rate [71–75]. Others have

reversed the perspective and shown that the minimum energy required for a biological

sensor to detect a change in an environmental signal is proportional to the amount of

information processed during the process [76]. In the case of the E. coli chemosensory

system, it was argued that 5% of the energy consumed in sensing is determined by

information-thermodynamic bounds, and is thus unavoidable [76]. Becker et al. [77]
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showed that short-term prediction in a sensory module is possible in equilibrium, but

only up to a finite time interval. For longer times accurate prediction requires large

dissipation. Lastly, the inability of systems to use all knowledge of past environmental

fluctuations to predict the future state has been directly linked to dissipation [78].

We want to see how the structure of optimal networks for information transmission

changes if we impose a penalty on the entropy production of the system. In order to in-

vestigate the non-equilibrium nature of biochemical circuits that are optimal for delayed

information transmission, we choose to study a simple binary model of a regulatory cir-

cuit that allows us to focus on the regulatory logic at small computational costs. Within

this model we consider two interacting elements of biochemical regulatory networks (e.g.

proteins and genes, elements of two component signaling systems, sugars and enzymes)

that take on binary states (on or off) and evolve in continuous time. This simplification

allows us to develop an efficient formalism for calculating information transmission at

different readout delays and consider the connection between dissipation and different

readout times. In the limit of infinite dissipation rates, we recover the results obtained

in Chap.1. For finite, non zero dissipation rates, back reactions decrease the informa-

tion transmission until it goes to zero for systems close to equilibrium. However, when

feedback is allowed, networks are able to transmit almost 1 bit of information at no cost.

2.3 A model regulatory circuit for time-dependent infor-

mation transmission with energy dissipation

2.3.1 Model setup

To focus on the tradeoffs between the ability of the network to transmit information and

the energetic cost of the biochemical reactions that make up this network, we study the

simplest model of regulation that allows us to focus on the logic of the reactions. The

setup is the same as in Chap.1, nevertheless we will shortly review it hereafter.
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Figure 2.1: Sketch of the four network states, with corresponding transition
rates. The dynamics is the same as in Fig.1.5.

We have a simplified network consisting of two binary elements (see Fig. 2.1) that de-

scribe either a transcription factor protein regulating a gene, or a signaling molecule
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activating/downregulating an enzyme or receptor. The first element of the network de-

scribes the input z and can be associated with the state of a receptor, signaling molecule

or transcription factor that responds to the external conditions. For example, it can

describe the presence or absence of a sugar source in metabolism or phosphorylation of

the histidine kinase in a two-component signaling system. The output x describes the

final outcome of the network, such as the gene that produces the response protein to the

external signal. In the examples given above, it corresponds to the enzyme that digests

the sugar or to the expression of the target gene by the response regulator. Both of

these elements can be found in the active (x, z = +1) or inactive (x, z = −1) states. If

the described element is a continuous variable (e.g. protein concentration), the binary

approximation is equivalent to taking very steep regulatory functions, such that the

concentration is well described by two states: below and above the threshold.

Our two-component network can be found in one of four states:

(x, z) ∈ {(−,−), (−,+), (+,−), (+,+)}, (2.11)

corresponding to both elements inactive, the input active — output inactive and vice

versa, and both elements active. The input z up/down regulates x with rates rm(rp)

and sm(sp), that depend on the state of the input (m = −, p = +). The system is

described by the conditional probability P (xt, zt, t|x0, z0, 0) of being in state (xt, zt) at

time t, given the state (x0, z0) at time t = 0. This conditional probability distribution

can be arranged in a 4× 4 matrix, and its evolution is described by the master equation

∂tP = −LP (2.12)

where the 4× 4 transition matrix L is defined in terms of the rates depicted in Fig. 2.1,

as in Eq.1.10 of Chap.1. The central quantity we shall be interested in is the joint

probability distribution of the state xt of the output at time t and the state z0 of the

input at time 0. We shall use the shorthand

P (xt, z0) =
∑

zt,x0=±1

P (xt, zt, t|x0, z0, 0)P0(x0, z0) (2.13)

where P0(x0, z0) is the probability distribution of the system at the initial time.

In analogy with Chap.1, we are interested in finding the network topologies that are

optimal for information transmission over a fixed time scale τ . Specifically we want to

maximize the mutual information between an input signal at an initial time, z0, and the

output of the network which is read out at a later time, xt. We define it as

I(τ) = I[xt=τ/λ, z0], (2.14)
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where

I[xt, z0] =
∑
xt,z0

P (xt, z0) log
P (xt, z0)

P (xt)P0(z0)
, (2.15)

and P0(z0) =
∑

x0
P0(x0, z0), P (xt) =

∑
z0
P (xt, z0).

The maximization of I(τ) is performed over the rates of the biochemical reactions L
of the regulatory network. We measure the time t = τ/λ between the signal and the

delayed read-out in units of the natural timescale of the problem – the relaxation time

λ−1, calculated as the inverse of the minimal non-zero eigenvalue of L.

Previously we found the networks that are best suited for transmitting information at a

delay and discovered that they correspond to systems that function out of equilibrium.

For this reason we are interested in posing the same question, but taking into account

energy constraints. We thus constrain the energy Q̇ dissipated per unit time into an

external medium at temperature T that is in contact with our system. Q̇ is related to

the thermodynamic entropy production rate σ (defined in Eq.2.9):

Q̇ = kBTσ, (2.16)

where kB is the Boltzmann constant [49, 68].

Calculation of the entropy production rate

We perform the calculation of the entropy production rate σ, for the general dynamic

system described by the transition rate matrix L and pictured in Fig.2.1.

We start from the definition of σ:

σ =
∑
i,j

Piwij log
wij
wji

,

where Pi is the stationary probability distribution P∞ for state i. In our specific case,

we explicitly have

σ = P1w12 log
w12

w21
+ P2w24 log

w24

w42
+

+ P4w43 log
w43

w34
+ P3w31 log

w31

w13
+

+ P2w21 log
w21

w12
+ P4w42 log

w42

w24
+

+ P3w34 log
w34

w43
+ P1w13 log

w13

w31
.
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After collecting similar terms we can write

σ = J12 log
w12

w21
+ J24 log

w24

w42
+

+ J43 log
w43

w34
+ J31 log

w31

w13
,

where we have used the definition of probability current Jij , introduced in Eq.2.2, and

we have considered a CW cycle in Fig.2.1. One can easily show that all the currents are

equal to each other:

J12 = J24 = J43 = J31 = J. (2.17)

Hence the entropy production rate σ can be simply cast as

σ = J log
w12w24w43w31

w21w42w34w13
. (2.18)

We then plug in the above expression the rates of the transition matrix L and the

stationary distribution P∞. In our specific case, P∞ is equal to the right eigenvector v1

of L, which corresponds to the null eigenvalue λ1 and is given by

v1 =
1∑4

i=1 v1(i)


dprmrp+dm(dprm+sp(rm+up))
rmrpum+(dmsm+rp(sm+um))up
dprmum+sp(rmum+(sm+um)up)
rmrpum+(dmsm+rp(sm+um))up
dmsm(dp+sp)+dprp(sm+um)

rmrpum+(dmsm+rp(sm+um))up

1

 . (2.19)

Having performed all the substitutions, the current J becomes rather involved and can

be expressed as

J =
(umrmdprm)− (dmsmupsp)

Ja + Jb + Jc
, (2.20)

with

Ja = dp(rm(rp + um) + rp(sm + um)),

Jb = dm(dp(rm + sm) + rmsp + smsp + smup + spup),

Jc = (rp + sp)(rmum + (sm + um)up).

We can finally rewrite the entropy production rate as

σ = J log
umrmdprm
dmsmupsp

. (2.21)

In order to intuitively understand the expression for σ, we link it to the non-equilibrium

properties of our system. In steady state, the general master equation 2.1 satisfies

P∞i wij − P∞j wji = ±J, (2.22)
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with the + (−) sign that holds for all pairs of states where i follows j in the clockwise

direction in Fig. 2.1, and J is the steady state current defined in Eq.2.20. The detailed

balance condition 2.5 is a special case of Eq. 2.22 where J = 0. In order to maintain a

non-equilibrium steady state (J 6= 0) the system has to dissipate energy at rate kBTσ.

We are interested in solving the problem of finding the best network design that can

perform a maximally informative delayed readout given a limited and fixed amount of

kBTσ units of energy per unit time. This question can be addressed quantitatively by

introducing a Lagrange multiplier l, that constrains the energy cost of the transmitted

information, and maximizing the functional

I(τ)− l σ

λ log 2
= I(τ)− lσ̂ (2.23)

over the circuit’s reaction rates, L. We rescale the rate of energy dissipation, σ, by

the constant λ log 2 and call it σ̂, in order to express both information and entropy

production in bits and to measure time in units of the characteristic timescale 1/λ.

For l = 0 the constraint on the dissipated energy does not enter the optimization and

one recovers the results found in Chap.1 without imposing energetic constraints (σ̂ =

σ = ∞). In this limit the system is driven out of equilibrium and at least one of the

rates vanishes. At the other extreme, when l = ∞, any deviation from equilibrium is

severely punished and we expect to find the system in equilibrium.

Some intuition about the optimal solutions can be gained before embarking on detailed

calculations. In general we can write the probability distribution P (xt, z0) as

P (xt, z0) =
a+ bxt + cz0 + µxtz0

4
. (2.24)

The symmetry between the on and off states, P (+,+) = P (−,−) and P (+,−) =

P (−,+), implies b = c = 0 and normalization
∑

i,j P (i, j) = 1 gives a = 1. There-

fore P (xt, z0) has to be of the form

P (xt, z0) =
1 + µxtz0

4
, (2.25)

as derived in section 1.4.2.1 1.

With this form for P (xt, z0), we know from section 1.4.2.1 that the mutual information

1Another argument for getting Eq.2.25 is to remind the reader that
I[xt, z0] < min{S[P (xt)], S[P (z0)]}. So, in order to maximize mutual information, we require the
entropy of the input distribution, S[P (z0)], and of the output distribution, S[P (xt)], to be both equal
to 1 bit. Indeed Eq. 2.25 means P (xt) = P (z0) = 1/2, which independently maximizes both entropies
S[P (xt)], S[P (z0)].
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in Eq. 2.15 becomes:

I =
1 + µ

2
log(1 + µ) +

1− µ
2

log(1− µ), (2.26)

where in general |µ| ≤ 1. The symmetry of the system results in a degeneracy of

solutions, which we break by setting the output flipping rates rp and rm to 1. With this

choice, the allowed range of µ is [0, 1], and information is a monotonically increasing

function of the “effective magnetization” µ and is maximized for µ = 1 giving I = 1 bit.

We compute µ explicitly for specific models in the following sections.

2.3.2 Simplest model

We start by considering the simplest case depicted in Fig.2.2, where the rates for input

z are

up = um = dp = dm ≡ u (2.27)

and for output x are

rp = rm ≡ r = 1, sp = sm ≡ s. (2.28)

Hence we set all the rates for flipping of the input z to be equal, but allow the rates for

the output x to be different if the output is aligning with the input (rp = rm ≡ r) or it

is anti-aligning (sp = sm ≡ s). This models allows z to activate (or repress) x with rate

r(s), respectively, but does not allow for feedback since the flipping rate of the input

does not depend on the state of the output.

(x,z)
 u

 ss
(- , -)       (- ,+) 

(+, -)       (+,+) 

r r

1 2

43

  u
  u

 u

Figure 2.2: The four network states, with corresponding transition rates, in
the simplest case where input z can either up or down-regulate the output x
but there is no feedback. The input z switches with the same rate regardless
of the state of the output x.

The transition rate matrix L has the form

L =


u+ s −u −r 0

−u u+ r 0 −s
−s 0 u+ r −u
0 −r −u u+ s

 . (2.29)
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Its eigenvalues λα are 

λ1 = 0

λ2 = 2u

λ3 = r + s

λ4 = 2u+ r + s

, (2.30)

its right eigevectors vα are

P∞ = v1 = 1
2(r+s+2u)


u+ r

u+ s

u+ s

u+ r

 , v2 =
1

2(r + s− 2u)


u− s
u− s
s− u
s− u

 ,

v3 = 1
2(r+s−2u)


u− r
s− u
s− u
r − u

 , v4 =
u+ s

2(r + s+ 2u)


+1

−1

−1

+1

 .

and its left eigenvectors uTα are

uT1 = (1, 1, 1, 1),

uT2 = (−1, −u+r
+u−s ,

+u−r
+u−s , 1),

uT3 = (−1, 1,−1, 1),

uT4 = (1, −u−r+u+s ,
−u−r
+u+s , 1).

It is possible to write the mutual information in the form of Eq.2.26, where µ is given

by

µ = (1− s)(1 + s+ 2u)e−
2u
λ
τ − 4ue−

(1+s)
λ

τ

(1 + s)2 − 4u2
(2.31)

and time is rescaled with the smallest nonzero eigenvalue λ, as specified in Eq.2.14.

The rescaled entropy production rate σ̂, defined in Eq.2.23, is simply given by

σ̂ =
(1− s)u log 1

s

λ(1 + s+ 2u)
. (2.32)

Given that the smallest nonzero can be either λ = 2u or λ = r+s = 1+s, we can define

the quantity γ = 1+s
2u and distinguish two regimes:

1. 2u < (1 + s)→ γ > 1, the output changes on a faster timescale than the input

2. 2u ≥ (1 + s)→ γ ≤ 1, the input changes more quickly than the output.
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In general, for each set of rates, the two eigenvalues must be compared and the value of

λ (and thus γ) determined.

2.3.2.1 Numerical results

To get an idea about the behavior of the system we will first solve the optimization

problem numerically and then interpret the results in terms of some limiting cases. For

each readout delay τ and entropy production rate σ̂, we look for rates that maximize

I(τ) (given by Eqs. 2.26 and 2.31) and satisfy the expression for σ̂ (given by Eq. 2.32).

The maximal mutual information values (capacities) of the optimal networks display an

intuitive behavior as functions of the dissipated energy and time delay of the readout.
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Figure 2.3: Simplest model. (a) Optimal mutual information I∗ as function
of entropy production σ̂, for different delays τ . One can see that information
saturates very fast to its asymptotic “ideal” value I∗∞, reached for infinite
dissipation. Clearly, larger delays entail smaller asymptotic values. (b)
Optimal mutual information I∗ as function of the delay τ , for different values
of entropy production σ̂ (measured in bits). The maximum value of
information is reached when there is no delay (τ = 0). Such maximum value at
τ = 0 decreases linearly with σ̂.

The mutual information between the input and output of the optimal network decreases

with the delay τ of the input readout for all values of dissipation (see Fig. 2.3b), as the

network decorrelates. The value of I∗ for τ = 0 decreases linearly with dissipation (see

section 2.3.2.2 for derivation). Naturally, the capacities for systems that can dissipate

a lot of energy are much larger than those with large energy constraints. However at

small time delays the rate of decay of the capacity with time delay is larger for circuits
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that function far out of equilibrium than those that are close to equilibrium (see section

2.3.2.3).

Allowing the system to dissipate more energy increases its capacity to transmit informa-

tion, as it is clear from Fig. 2.3a. Above a certain value of dissipated energy the capacity

plateaus and reaches the same value we observed in Chap.1 where we did not constrain

dissipation. The value of the this plateau decreases with an increase of the time delay

τ of the readout (see section 2.3.2.5 for a functional dependence). The transmitted in-

formation decreases to zero linearly with dissipation for all readout delays, I∗ ∼ c(τ)2σ̂
2log 2 ,

where c(τ) is a τ dependent constant derived in section 2.3.2.4.
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Figure 2.4: Simplest model. (a) Contour plot of optimal mutual
information I∗ as function of the readout delay τ and entropy production rate
σ̂. (b) Contour plot of optimal input rate u∗ as function of the readout delay τ
and entropy production rate σ̂. (c) Contour plot of optimal output rate s∗ as
function of the readout delay τ and entropy production rate σ̂. (d) Contour
plot of optimal parameter γ∗ = 1+s∗

2u∗ as function of the readout delay τ and
entropy production rate σ̂.
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The full behavior of the optimal I∗ in the (σ̂, τ) plane is shown in Fig.2.4a. The different

functional dependence on τ and on σ̂ is very clear from the figure: in particular we stress

that, given a fixed delay τ , one cannot transmit information above a certain threshold

by simply dissipating more energy. On the other hand, below a certain value of entropy

production, the output delay τ barely affects the amount of transmitted information.

In Figures 2.4b and 2.4c we plot the values of the rate constants of the optimal networks

that result in the capacities plotted in Fig. 2.4a. We can see that for large dissipation we

recover the results of Chap.1: the input rate u∗ = 0 for τ = 0 and plateaus at 0.5 for any

delay τ & 1.4, while the output rate s∗ ≈ 0 for any τ . At the other limit where σ̂ � 1,

rate s∗ rapidly goes to 1 when σ̂ → 0, while u∗ is again 0 for τ = 0 but now plateaus

at 1 for any delay τ & 0.8 (see more detailed discussion in this and in the subsequent

sections).
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Figure 2.5: Simplest model. (a) Phase diagram in the (σ̂, τ) plane of the
optimal network topologies A, B, C, D sketched in panel (b) (gray arrows
stand for negligible rates).

To gain a better idea about the optimal network topologies, we have used the rates

to broadly classify the circuit topologies in the phase diagram in Fig. 2.5a, with the

topologies defined in Fig. 2.5b. In the limit of large dissipation we recover the results

we obtained in Chap.1: in the optimal circuit at large readout delays the flipping of the

output is governed by an irreversible fast reaction with rate r fixed to 1 (the back reaction

is forbidden, that is s∗ = 0). The output follows the state of the input and the change

in the input is described by a reversible slower reaction with rate u∗ < r∗ (network A

in Fig. 2.5b). For shorter delays the flipping rate of the input decreases, causing the

capacity to increase. As τ → 0, u∗ → 0 and we obtain two separate subnetworks with
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a fixed input in which the output changes quickly to follow the input (network C in

Fig. 2.5b).

At large readout delays, the equilibrium solution at σ̂ → 0 is very similar to the non-

equilibrium one, but now detailed balance must always be satisfied. The detailed bal-

anced condition imposes that the output change is completely reversible and thus s∗ 6= 0.

At σ̂ = 0 the forward and back reactions are completely balanced with s∗ = r (network

B in Fig. 2.5b). Additionally, the input changes on a very fast timescale u∗ ≈ r = 1,

faster than for large σ̂. Not surprisingly, this essentially random flipping in the equi-

librium circuit at large delays is not able to reliably transmit information, and I∗ ≈ 0.

For short time delays and small dissipation, u∗ → 0 and we obtain two sub-circuits with

the output flipping back and forth at the same rate, s∗ = r (network D in Fig. 2.5b).

Allowing for larger amounts of dissipation breaks detailed balance and decreases the

rate of the output’s back reaction (s∗ < 1), so that the output is more likely to be in

the same state as the input.

In summary, network C that has a fixed input, which is followed by the output on fast

timescales, is the most informative solution. The capacity of this system is reached at

finite values of σ̂, and does not increase further as σ̂ →∞. This topology is optimal for a

wide range of σ̂, with the back reaction rate s continuously increasing as the constraints

on dissipation impose solutions closer to equilibrium, until network D with the randomly

flipping output is reached. At small time delays the optimal solution always keeps the

input fixed and adjusts the state of the output to the input (2u ≤ r). But for large τ

the input will change (2u ∼ r) and the amount of energy that can be dissipated controls

whether the output simply follows the input (network A in Fig. 2.5b), or is forced to

switch independently (network B in Fig. 2.5b). Information can therefore be lost both

in circuits where the output does not have the energy to follow the input (network D)

and in circuits where the input decorrelates with time (network A), or where both of

these scenarios apply (network B).

Lastly, one can interpret the optimal circuits in terms of the relaxation rate of the system

(smallest nonzero eigenvalue). The ratio of the two potentially smallest eigenvalues γ is

given by (1 + s)/(2u) – the ratio of the output and the input switching rates. Fig. 2.6

shows the optimal value of γ∗, as a function of the delay τ , in the limit of small entropy

production (σ̂ = 0.0007 bits) and of large entropy production (σ̂ = 7 bits). As noted

before, for small time delays optimal circuits are those where the input changes more

slowly than the output (γ∗ > 1), for all values of dissipation. However for large τ ,

we define a certain value τc at which the input and the output timescales match in

optimal circuits, with γ∗ = 1. The value of τc depends on the rate of dissipation and

corresponds to the optimal rate of input flipping u∗ reaching a constant value. For
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σ̂ � 1, τc = (1 +
√

5)/4 and u∗ ∼ 1 (see section 2.3.2.4 for derivation). For large

dissipation rates σ̂ � 1, this delay increases, τc = (1 +
√

3)/2, and the input switching

rate decreases to u∗ = 0.5 (see section 2.3.2.5 for derivation). We already know from

Chap.1 that the system’s optimality is attained, for small delays τ , when the output is

faster than the input, while for delays τ ≥ τc when the input and the ouput timescales

match. This matching of timescales is possible at τ ≥ τc > 0 even if the system cannot

dissipate energy (small σ̂). On the other hand, even when the system has no energetic

constraints (σ →∞), it picks nevertheless a finite τc > 0.

Finally, the optimal solution is always in the γ∗ ≥ 1 limit, where the input changes more

slowly than the output, as it is clear from the contourplot 2.4d.
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Figure 2.6: The quantity γ = (1 + s)/(2u), is the ratio of two smallest
nonzero eigenvalues, corresponding to the output and the input timescale,
respectively. The optimal value γ∗ is shown as a function of delay τ , in the
two limits of very small and very large entropy production σ̂ (measured in
bits). The time τc after which the output timescale matches the input
timescale (γ∗ = 1) decreases with dissipation from 1 +

√
3/2 when σ̂ →∞ to

1 +
√

5/4 when σ̂ → 0.

Having understood the general behavior of the capacity for this model, we can exploit

its simplicity to obtain precise analytical scaling results in the limits of small and large

delay and dissipation.

2.3.2.2 Limit τ = 0

The simplest case is that of instantaneous readout, τ = 0, where the effective magneti-

zation µ is

µ =

(
1− s
1 + s

)
γ

γ + 1
. (2.33)
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Figure 2.7: Comparison of the analytical (dashed lines) and numerical
solutions (solid lines) for optimal mutual information I∗. In panel (a) the
dependence on entropy production σ̂ is shown for τ = 0.1 and for τ = 1. In
panel (b) the dependence on τ is represented for σ̂ = 0.29 bits and σ̂ = 7.21
bits. The analytical expansions are the ones derived in sections 2.3.2.3, 2.3.2.4
and 2.3.2.5.

We can formally rewrite Eq. 2.32 as:

s = exp [−2β(σ̂, γ)σ̂] , (2.34)

where β(σ̂, γ) is in general a nonlinear function of σ̂ and γ. This form agrees with the

numerical results for s∗ that show a strong decay with σ̂ (Fig. 2.4c). Moreover, with

this parametrization when σ̂ → ∞ we recover the optimal solution s∗ = 0 of Chap.1,

whereas for σ̂ = 0 one correctly gets s = 1 from Eq.2.32 2.

As we know from our numerical exploration, in the τ = 0 limit the capacity strongly

depends on the value of σ̂. First we can explore the limit of large dissipation, where we

know from Chap.1 (and from the results presented in Fig. 2.4c) that s∗ is small. In this

limit Eq. 2.34 simplifies (Eq. 2.32 is explicitly solved for s) and β is a function of only

u and λ, not of σ̂.

To find γ∗ that maximizes µ, we exploit the parametrization 2.34 of s to write

µ = tanh (β(u, λ)σ̂)
γ

1 + γ
. (2.35)

2In the regime where λ = 2u the implication σ̂ = 0 ⇔ s = 1 is straightforward. On the other hand,
if λ = 1 + s, in principle a null value of σ̂ could also be obtained setting u = 0, but this would mean
that 2u < 1 + s and thus λ = 2u. So the only consistent solution demands s = 1.
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At fixed σ̂, the largest value of µ is always achieved for γ∗ =∞. This means the output

changes on faster timescales than the input and the smallest eigenvalue is λ = 2u. More

precisely, as in the dissipation-less case of Chap.1, the optimal rate is u∗ = 0 at τ = 0.

To find s∗, we substitute the parametrization 2.34 for s into Eq. 2.32 with λ = 2u and

obtain at fixed σ̂:

1 +
1

γ
= β tanh(βσ̂). (2.36)

Since γ∗ =∞, β∗ must satisfy

β∗ tanh(β∗σ̂) = 1. (2.37)

Hence, for large dissipation rates, β∗ ∼ 1, s∗ ∼ e−2σ̂ is exponentially small and µ∗ ∼
tanh(σ̂) ∼ 1. This results in the optimal information I∗ ∼ 1 bit.

For small dissipation rates, Eq. 2.37 becomes β∗(σ̂) ∼ 1/
√
σ̂, and Eq. 2.35 results in

the effective magnetization µ ∼ β∗(σ̂)σ̂ ∼
√
σ̂. Finally, the optimal mutual information

goes to 0 linearly with the rescaled dissipation, I∗ ≈ (µ∗)2/2 ' σ̂/2 bits.

2.3.2.3 Limit τ � 1

The results from the τ = 0 limit serve as a basis for considering the scaling of the mutual

information for small but finite τ � 1. Since γ∗ diverges at τ = 0, we assume that for

τ → 0 the smallest eigenvalue is still 2u and γ∗ > 1. We will also use the generalized

nonlinear parametrization of s in Eq. 2.34, as we did for τ = 0.

In the small dissipation limit σ̂ � 1, Eq. 2.36 becomes:

β ∼ 1√
σ̂

√
γ + 1

γ
. (2.38)

Using Equations 2.34,2.38 and the fact that λ = 2u, the effective magnetization of Eq.

2.31 becomes a function of γ and σ̂ only:

µ =
√
σ̂

√
γ + 1

γ

γ

γ2 − 1
[(γ + 1)e−τ − 2e−γτ ]. (2.39)

We maximize the effective magnetization with respect to γ, dµ/dγ = 0, and assume the

scaling

γ∗ ' a0

τ
+ b0 + c0τ. (2.40)
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Solving the resulting equations for the coefficients in orders of τ (see Appendix B.1.1 for

details), the optimal effective magnetization is

µ∗ ∼
√
σ̂(1 +A0τ), (2.41)

where A0 = −0.24... is computed exactly in Appendix B.1.1.

In the large dissipation limit σ̂ � 1, Eq. 2.36 becomes

β ' γ + 1

γ
. (2.42)

Using Eq. 2.34, λ = 2u and the fact that in this limit s→ 0, the effective magnetization

in Eq. 2.31 is

µ =
γ

γ2 − 1
[(γ + 1)e−τ − 2e−γτ ]. (2.43)

Assuming γ∗ ' a∞
τ + b∞ + c∞τ , a calculation analogous to the small dissipation limit

results in the maximized effective magnetization

µ∗ ∼ 1 +A∞τ +B∞τ
2, (2.44)

where A∞ = −0.63... and B∞ = 0.23... are computed exactly in Appendix B.1.1.

Summarizing, in the small dissipation limit we find

I∗ ≈ µ∗2

2
∼ σ̂(1 + 2A0τ)

2
, (2.45)

a linear scaling of the information both with dissipation and with readout delay. In the

large dissipation limit the information is independent of the dissipation and I∗ → 1 bit,

as µ∗ tends to one quadratically in the delay, as given by Eq. 2.44.

All these scaling behaviors are shown as broken lines and compared with numerical

results (solid lines) in Fig. 2.7.

In particular, Eq.2.45 is plotted in panel 2.7a in the range of σ̂ � 1 and for τ = 0.1, and

in panel 2.7b in the range of τ � 1 and for σ̂ = 0.29 bits.

On the other hand, the optimal I∗(µ∗), with µ∗ given in Eq.2.44, is shown in panel 2.7a

in the range of σ̂ � 1 for τ = 0.1.

2.3.2.4 Limit σ̂ � 1

Having explored the behavior of the system for small delays τ , we can now investigate

the limit of σ̂ → 0 at any τ : in order to do so, we recall from Eq.2.34 that in this limit

rate s goes to 1. Hence we can set s = 1− ε and expand in ε to leading order.
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We start from considering the regime in which λ = 2u and hence γ ≥ 1: using Eq.2.32

we get for the entropy production

σ̂ ' ε2γ

4(1 + γ) log 2
i.e. ε ' 2

√
σ̂

1 + γ

γ
log 2, (2.46)

while the magnetization of Eq. 2.31 reads

µ ' ε

2
γ

(1 + γ)e−τ − 2e−γτ

γ2 − 1
. (2.47)

Substituting ε into the expression for µ reads µ ' c+(γ, τ)
√
σ̂, where:

c+(γ, τ) =

√
γ log 2

γ + 1

−2e−γτ + (1 + γ)e−τ

γ − 1
. (2.48)

We then consider the regime with λ = 1 + s and γ < 1: we now get

σ̂ ' ε2

4(1 + γ) log 2
i.e. ε ' 2

√
σ̂(γ + 1) log 2, (2.49)

and

µ ' ε

2
γ
−2e−τ + (1 + γ)e−τ/γ

γ2 − 1
. (2.50)

Again, by substituting ε into Eq.2.50, we find µ ' c−(γ, τ)
√
σ̂ with

c−(γ, τ) =

√
log 2

γ + 1
γ
−2e−τ + (1 + γ)e−τ/γ

γ − 1
. (2.51)

In order to maximize the mutual information I ∝ µ2, we need to solve for

c(τ) = max{max
γ≥1

c+(γ, τ),max
γ<1

c−(γ, τ)}. (2.52)

The coefficient c−(γ, τ) is an increasing function of γ ∈ [0, 1) for any τ . Hence we need

to consider the regime where γ ∈ [1,∞) and maximize c+(γ, τ). For each value of τ , such

function has a single maximum in γ, which is a decreasing function of τ and satisfies the

transcendental equation

e(γ∗−1)τ = 2
1 + γ∗ + 2γ∗2 + 2γ∗τ(γ∗2 − 1)

(1 + γ∗)(1 + 3γ∗)
. (2.53)

In the limit γ∗ → 1+, the delay τc which maximizes c+(γ∗, τ) is found as the solution of

e−τ
(1 + 2τ − 4τ2)

4
√

2
= 0, (2.54)
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and reads

τc =
1 +
√

5

4
. (2.55)

For all larger values of τ , the optimal γ∗ sticks at 1 and the proportionality coefficient

c(τ) = c+(1, τ) is simply

c(τ) =
e−τ (1 + 2τ)√

2
. (2.56)

The optimal mutual information I∗ is linear in dissipation and exponentially decaying

in τ :

I∗ ' c(τ)2σ̂

2 log 2
. (2.57)

It is shown as broken lines and compared with numerical results (solid lines) in Fig. 2.7.

In particular, in panel 2.7a it is plotted in the range of σ̂ � 1 for τ = 1, while in panel

2.7b it is displayed in the range of large τ for σ̂ = 7.21 bits.

2.3.2.5 Limit σ̂ � 1

In this regime, we can extend the observations from the small τ limit to postulate that

the effective magnetization is weakly dependent on the entropy production:

µ ' c+(γ, τ) =
γ

γ2 − 1
[−2e−γτ + (γ + 1)e−τ ], γ ≥ 1 (2.58)

µ ' c−(γ, τ) =
γ

γ2 − 1
[−2e−τ + (γ + 1)e−τ/γ ], γ < 1 (2.59)

The expression 2.59 is maximized always at the boundary γ∗ = 1, while the expression

2.58 has a single maximum in γ for each τ . Such γ is a decreasing function of τ and

satisfies the trascendental equation

e(γ−1)τ =
2(1 + γ2 + γτ(γ2 − 1)

(1 + γ)2
. (2.60)

Similar considerations as in the small dissipation case result in

τc =
1 +
√

3

2
, (2.61)

above which the optimal γ∗ sticks at 1 and the magnetization simply reads

µ ' c(τ) =
e−τ (1 + 2τ)

2
. (2.62)
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Finally, the optimal mutual information approaches a plateau for large σ̂ given by

I∗ '

1 + τ ã log2 (τ ã/e) , γ∗ � 1, τ � 1

c(τ)2

2 log 2 , γ∗ = 1, τ � 1
(2.63)

The coefficient ã = 0.31... is defined as a∞
2(a∞+1) , with a∞ introduced in section 2.3.2.3.

The above limiting behavior of I∗ is plotted as broken lines and compared with the

numerical result (solid line) in Fig. 2.7b for σ̂ = 7.21 bits.

2.3.3 Adding feedback

We now ask how allowing for feedback between the output and the input changes the

energetic constraints on the optimally informative solutions. In terms of our model,

this corresponds to saying that the input switching rates depend on the state of the

output (up 6= um and dp 6= dm), unlike in the simplest case of the model discussed

in section 2.3.2. In circuits with feedback and without additional inputs the difference

between the input and output is no longer clear: z is an input for x and vice versa.

(x,z)
y

α(- , -)       (- ,+) 

(+, -)       (+,+) 
r r

1 2

43
α

y
s  s

Figure 2.8: The four network states, with corresponding transition rates, in a
model with feedback where the input z rates depend on the state of the
output variable x.

We can exploit the symmetry between + and − states to decrease the number of rates in

the network and set the rates of aligning (and anti aligning) of the input to the output

to be equal, regardless of the state of the input. Specifically, the rates defined in Fig. 2.1

simplify to the ones shown in Fig. 2.8, that is

• rp = rm ≡ r = 1,

• sp = sm ≡ s ≤ 1,

• dp = um ≡ α ≤ 1,

• dm = um ≡ y ≤ 1.

We know from Chap.1 that in the infinite dissipation limit the optimal solutions cycle

irreversibly through the four states in a clockwise direction.
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In terms of the rates defined in Fig. 2.8 the rate matrix L now reads

L =


s+ α −y −1 0

−α 1 + y 0 −s
−s 0 1 + y −α
0 −1 −y s+ α

 . (2.64)

It is useful to introduce the quantities A and ρ, defined as

A = 1 + s+ y + α (2.65)

ρ =
√

(1 + s+ y + α)2 − 8(sy + α). (2.66)

Then the eigenvalues λα can be written as

λ1 = 0

λ2 = A

λ3 = 1
2(A− ρ)

λ4 = 1
2(A+ ρ)

. (2.67)

It is clear that the smallest nonzero eigenvalue is always λ = A−ρ
2 .

The right eigenvectors vα are given by

P∞ = v1 =
1

2A


1 + y

s+ α

s+ α

1 + y

 , (2.68)

v2 =
s+ α

2A


+1

−1

−1

+1

 , (2.69)

v3 =
1

4ρ


+(−1 + s− y + a− ρ)

+2(s− α)

−2(s− α)

−(−1 + s− y + a− ρ)

 , (2.70)
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v4 =
1

4ρ


+(1− s+ y − α− ρ)

+2(−s+ α)

−2(−s+ α)

−(1− s+ y − α− ρ)

 , (2.71)

and the left eigenvectors uα are

uT1 = (1, 1, 1, 1), (2.72)

uT2 = (1,− 1 + y

s+ α
,− 1 + y

s+ α
, 1), (2.73)

uT3 =

(
−1,

2(1− y)

1− s+ y − α+ ρ
,− 2(1− y)

1− s+ y − α+ ρ
, 1

)
, (2.74)

uT4 =

(
−1,

2(1− y)

1− s+ y − α− ρ,−
2(1− y)

1− s+ y − α− ρ, 1
)
. (2.75)

After rescaling by the smallest eigenvalue λ = A−ρ
2 , the entropy production reads

σ̂ =
2(α− sy)

A(A− ρ)
log2

(
α

sy

)
. (2.76)

The mutual information is expressed by Eq.2.26 in terms of the effective magnetization

µ = exp

(
− A

2λ
τ

){
q cosh

( ρ
2λ
τ
)
−[

s2 − (1 + y)2 − 4α+ α2 + 2s(2y + α)
]

Aρ
sinh

( ρ
2λ
τ
)}

,

(2.77)

with q = (1 + y − s− α)/A and time rescaled by the smallest nonzero eigenvalue λ, as

explained in Eq. 2.14 (see Appendix B.2.1 for a detailed calculation of µ).

Despite the analytic expressions, the nonlinearities of the problem prohibit finding an-

alytical solutions to this constrained optimization problem. However, we can explore

analytically some limiting cases which provide interesting insights.

2.3.3.1 Limit σ̂ = 0

We start from noticing that, if the rates satisfy the condition

α = sy, (2.78)

then the entropy production of Eq.2.76 is identically zero, whereas the magnetization µ

of Eq.2.77 can be cast in a simple form which allows us to optimize it analytically.
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We start from the expression

µ =
q

2ρ

(
e−τ (A+ ρ)− e−

(
A+ρ
A−ρ

)
τ
(A− ρ)

)
, (2.79)

obtained from Eq.2.77 by setting α = sy and doing some algebraic manipulations.

Then we reparametrize the rates as

w =
4s

(1 + s)2
, v =

4y

(1 + y)2
(2.80)

and define also

φ =
1 +
√

1− wv
1−
√

1− wv . (2.81)

Then ρ is simply

ρ = A
√

1− wv (2.82)

and the final expression for µ is

µ =

√
1− w

2
√

1− wv
(
e−τ − e−φτ

)
+

√
1− w

2

(
e−τ + e−φτ

)
. (2.83)

When τ = 0, the magnetization is simply µ =
√

1− w = 1−s
1+s . It is evident that µ is

maximized when w∗ = 0 (that is s∗ = 0 and hence α∗ = s∗y = 0) at all times, reading

µ∗ = e−τ . The optimal mutual information I∗ thus attains 1 bit for τ = 0 and decays

in time as

I∗ =
1

2

(
log2(1− e−2τ ) + e−τ log2

1 + e−τ

1− e−τ
)
. (2.84)

The two “mixed” states (x, z) = {(+,−), (−,+)} are not accessible, while the two

“aligned” states (+,+) and (−,−) have probability 1/2 (see Eq.2.68 for the steady-

state probability vector P∞).

This optimal solution corresponds to a completely unresponsive network, where there are

no fluxes. The value of the nonzero rate y does not matter, since it leads from completely

forbidden states. The highest possible value of information transmission is guaranteed,

while remaining in an equilibrium configuration in which detailed balance is satisfied and

there is no regulation. If the readout occurs at later times, the transmitted information

decays, however the nature of the solution remains the same. In summary, the optimal

solution in equilibrium corresponds to a “dead” system, which is very informative, but

not necessary useful.

It is much more intriguing to consider the suboptimal solution where s = η and α = ηy,

with η � 1: now the “mixed” states have probability η
(1+y)(1+η) and the full network is

recovered. The system is able to cycle through the four states and transmit almost 1 bit

of information, without dissipating energy.
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 E(- , -)  E(+,+)

 E(- ,+)  E(+, -)

α

sy

1 α

y
σ=0

α=sy

Figure 2.9: Sketch of the network in Fig.2.8, now endowed with an energetic
description. Here we show the limiting case where entropy production σ is
zero and transition rates are related by the condition α = sy, which implies
E(+,−) = E(−,+) > E(+,+) = E(−,−).

In order to better understand the energetic framework, we make use of the detailed-

balance condition 2.5 and of the Boltzmann relation, Pi = exp(−Ei/kBT ), between the

probability Pi and the energy Ei of state i. Then we can write the following conditions:

α/y = ε = e
−E(+,−)−E(+,+)

kBT , (2.85)

s = ε = e
−E(−,+)−E(+,+)

kBT , (2.86)

α/y = ε = e
−E(−,+)−E(−,−)

kBT , (2.87)

s = ε = e
−E(+,−)−E(−,−)

kBT , (2.88)

(2.89)

which immediately imply that

E(+,−) = E(−,+) > E(+,+) = E(−,−). (2.90)

The above considerations are pictured in Fig.2.9: we can see that, as long as only two

finite energetic levels are present - one for the “mixed” states and one for the “aligned”

states - the system is able to cycle indefinitely among them at no cost. Input z can up

and down-regulate output x, thus transmitting information. At s = 0 (which implies

α = 0 from the equilibrium condition) infinite energy barriers separate the aligned states

and lead to the unresponsive dead solution. When s > 0, input z controls output x,

transmitting information. It is worth stressing that such costless informative solution

is present only because of feedback: indeed, in the simpler model of section 2.3.2, rates

α and y are equal to u and s = 1 is the only solution of the dissipation-less condition

α = sy, thus forcing I to be zero.

2.3.3.2 Limit σ̂ � 1

After having explored the singular case with σ ≡ 0, we can ask ourselves what is the

system’s optimal behavior when the rescaled entropy production σ̂ is nonzero but very
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small. In order to do so, we expand α around the dissipationless solution, as α = sy(1−ε),
with ε� 1. For the sake of tractability, we limit ourselves to the case with τ = 0, where

µ =
1− s+ y − α
1 + s+ y + α

. (2.91)

The rescaled dissipation 2.76 in terms of ε and of the parametrization 2.80 is

σ̂ ' wvε2

8(1−√wv) log 2
, (2.92)

where we have kept only the leading order term in ε. Solving for ε > 0 reads

ε = 2

√
2σ̂

1−
√

1− wv
wv

log 2. (2.93)

When expanded to first order in ε, the magnetization µ of Eq.2.91 is simply given by

µ ' 1− s
1 + s

+
2syε

(1 + s)2(1 + y)
. (2.94)

After substituting the solution 2.93 for ε and exploiting the parametrizations 2.80, we

finally get the following relationship between µ and σ̂:

µ '
√

1− w +
√
σ̂ log 2

√
wv(1−

√
1− wv)

√
2(1 +

√
1− v)

. (2.95)

In order to optimize µ at fixed σ̂, we clearly need to take w as small as possible (hence

s ≈ 0), so that the term
√

1− w is close to 1. Then, it is pretty straightforward to show

that taking v = 1 (hence y = 1) maximizes the coefficient of
√
σ̂. Combining the two

terms, it is possible to get µ∗ ≈ 1 and consequently I∗ ≈ 1.

Unlike in the model without feedback, for small delays τ it is possible to achieve almost

1 bit of information even when entropy production is arbitrary small, thanks to the fact

that the back and forward switching rates of the input may now differ from each other

(α 6= y). This allows the system to spend most of its time in the aligned states (+,+)

and (−,−), and thus to make the readout of the input by the output as informative as

possible.

At the same time, since all rates are larger than 0, the network features all the four

states. Such a solution is already present as a suboptimal one when σ̂ = 0, that is

when the optimal network is unresponsive and only the two aligned states are visited

(s∗ = α∗ = 0). Basically, “switching on” dissipation allows the system to become

responsive while being still maximally informative. However, since rates s∗ and α∗ are

close to 0, the flow of probability through the four states, while theoretically present, is

very small and the system practically behaves as in the dissipationless optimal case.
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2.3.3.3 Limit σ̂ � 1

When entropy production is very large, we know from Chap.1 that mutual information is

maximized when rates s∗ and y∗ are equal to zero for all delays τ . Indeed the expression

2.76 for σ̂ diverges for such values of s and y.

In order to find α∗, we can write the magnetization µ in terms of α and τ , after having

set s = y = 0:

µ(α, τ) =
1

2(1 + α)ρ

(
e−τ (1+α+ρ)2

1−α+ρ +e
−τ 1+α+ρ

1+α−ρ (1+α−ρ)2
−1+α+ρ

)
, (2.96)

where ρ =
√

1 + α2 − 6α. Expanding µ to the first order in τ

µτ�1(α, τ) ' 1− α
1 + α

+
(1 + α+ ρ) τ

2(1 + α)
, (2.97)

we find α∗ that maximizes the above expression:

α∗(τ) =
(1− τ)τ

2− τ . (2.98)

α∗ is an increasing function of τ , until it reaches the value α∗c = 3−2
√

2 when τc = 2−
√

2.

For such value of α∗c , ρ = 0 and the two smallest eigenvalues (A − ρ)/2 and (A + ρ)/2

become degenerate. Values of α larger than α∗c are not optimal, since then ρ would

becomes complex and oscillations would be detrimental for information transmission

(see section 1.4.2.4). The values of α∗c and τc are exactly those we found in the previous

Chapter (section 1.4.2.4). The optimal mutual information I∗ as a function of τ is

obtained as the hull curve of I(α∗(τ), τ) and I(α∗c , τ).

2.3.3.4 Numerical results

Having discussed some analytically tractable limits, we can now move to a full numerical

optimization. Our approach is to divide the optimization into two “branches”: in one

branch (called Y A) we constrain y ≥ α, in the other branch (called AY ) we force y ≤ α.

In this way we explore two different topologies: in the first one the system cycles in the

CCW direction in Fig.2.8, while in the second one the system cycles through the four

states in the CW direction, recalling the findings of section 1.4.2.4 for infinite energy

dissipation.

Optimal mutual information I∗ is shown in Figures 2.10a and 2.10b as function of

entropy production σ̂ and delay τ , respectively.
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Figure 2.10: Adding feedback. 2.10a Optimal mutual information I∗ as
function of rescaled dissipation σ̂. Values for τ = 0, τ = 0.07 and τ = 0.34 are
displayed at the top, center and bottom, respectively. Results from the
simulation branch with y ≥ α and with y ≤ α are plotted as dotted red lines
and solid cyan lines, respectively. Rates used to compute such mutual
information are shown in Fig.B.1. 2.10b Optimal mutual information I∗ as
function of delay τ . Values for σ̂ = 0 bits, σ̂ = 0.23 bits and σ̂ = 5.77 bits are
displayed at the top, center and bottom, respectively. Results from the
simulation branch with y ≥ α and with y ≤ α are plotted as dotted red lines
and solid cyan lines, respectively. Rates used to compute such mutual
information are shown in Fig.B.2. The solutions of the two branches y ≥ α
and y ≤ α coincide at large σ̂ and small τ and at small σ̂ and large τ . This
happens because the back and forward input flipping rates are equal: in the
first case y∗ ≈ α∗ ≈ 0, while in the second case y∗ ≈ α∗ > 0 (see Fig. 2.12a).

Let us begin from Fig.2.10a: here we report the dependence of I∗ on the rescaled

dissipation σ̂, for different delays τ . Results of the optimization branches Y A and AY

are plotted as dotted red lines and solid cyan lines, respectively. Optimal rates used to

calculate I∗ are shown in Fig.B.1 in Appendix B.

For τ = 0 we see that the branch Y A delivers ≈ 1 bit of information even for very small

σ̂, as shown analytically in section 2.3.3.2. The branch AY is instead suboptimal for

any finite entropy production rate and matches branch Y A only when σ̂ →∞: in that
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limit, optimal rates s∗, α∗ ≈ 0 for both branches, while y∗ is equal to 1 in branch Y A

and to 0 in branch AY . Such different rates entail the same information, because we

know from Eq.2.91 that the magnetization does not depend on y for τ = 0.

For τ = 0.07, the branch Y A is still optimal for all dissipation values. However, for

σ̂ & 3, it matches the branch AY since the two optimal topologies coincide: s∗ ≈ 0 and

y∗ ≈ α∗ � 1, that is the system starts to cycle through the four states.

For τ = 0.34, branch AY is suboptimal only when σ̂ . 2, where rate s∗ is still much larger

than 0. Then it becomes optimal by featuring a perfect CW cycle where s∗ ≈ y∗ ≈ 0

and α∗ & 3 − 2
√

2. On the other hand, branch Y A is forced to have y∗ ≥ α∗ and thus

reduce information transmission in the CW cycle because of the back reaction y∗. For

small dissipation values, I∗AY is always smaller than I∗Y A because, in order to fulfill both

the conditions α∗ ≈ s∗y∗ and α∗ ≥ y∗, the only admissible solution is to have s∗ ≈ 1.

Such high value of s∗ is detrimental for information transmission, as discussed in the

analytical sections.

Let us conclude the discussion of Fig.2.10a with a general remark: when σ̂ → ∞, we

have shown that the optimal topology is a CW cycle where the system is able to transmit

1 bit of information (see section 1.4.2.4). However, when moving towards finite values

of σ̂, information transmission decreases, until a point where the system is confronted

with a choice: either continue to cycle and reduce I, or to concentrates on the “aligned”

states and reach a finite plateau I = Iσ̂=0.

We now move to the analysis of Fig.2.10b: here we display I∗ as a function of delay τ ,

for different values of the rescaled dissipation σ̂. Results of the optimization branches

Y A and AY are plotted as dotted red lines and solid cyan lines, respectively. Optimal

rates used to calculate I∗ are shown in Fig.B.2.

When σ̂ ≈ 0 bits, the branch Y A is optimal at all times, and provides a mutual infor-

mation I∗Y A which decreases with τ as in Eq.2.84. Optimal rates are s∗ ≈ α∗ ≈ 0 and

y∗ = 1. Branch AY gives always I∗AY = 0, since again s∗ = 1 in order to fulfill α∗ = s∗y∗

and α∗ ≥ y∗.
For σ̂ = 0.23 bits, branch AY is suboptimal until τ ≈ 1.5, where it matches the other

branch. This happens because for τ & 1.5 the two topologies coincide: the system per-

forms a CW cycle where α∗ = y∗ ≈ 0.6 and s∗ ≈ 0.4.

Finally, for very large values of dissipation (σ̂ = 5.77 bits), the branch AY is always op-

timal: for τ ≥ (2−
√

2) it features the optimal topology of a CW cycle with s∗ = y∗ ≈ 0

and α∗ = (3 − 2
√

2). The nontrivial decay of I∗AY with τ was analytically derived in

section 2.3.3.3. Here we just stress that the gain in information for τ & (2−
√

2) is due

to the presence of feedback, as already shown in section 1.4.3.
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Optimal mutual information I∗ is obtained as the hull curve of I∗Y A and of I∗AY . Its

contour plot is shown in Fig.2.11a: we can see that, as in the circuits without feedback

(Fig.2.4a), the maximum information the circuit is able to transmit decreases with the

time delay of the readout for all values of σ̂, as the system decorrelates with time.

However, the system is now able to transmit ≈ 1 bit of information for any value of

entropy dissipation, when τ � 1.
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Figure 2.11: Adding feedback. (a) Contour plot of optimal mutual
information I∗ as function of the readout delay τ and entropy production rate
σ̂. In contrast with the simpler model of Fig.2.4a, where there is no feedback,
mutual information is now equal to ≈ 1 bit for any value of σ̂ when τ � 1. (b)
Contour plot of optimal input rate α∗ as function of the readout delay τ and
entropy production rate σ̂. (c) Contour plot of optimal input rate y∗ as
function of the readout delay τ and entropy production rate σ̂. (d) Contour
plot of optimal output rate s∗ as function of the readout delay τ and entropy
production rate σ̂.

To gain a better idea about the optimal network topologies in the presence of feedback,
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we have used the rates to broadly classify the circuit topologies in the phase diagram

in Fig. 2.12a with the topologies defined in Fig. 2.12b, as we did for the previous model

without feedback (see section 2.3.2.1).
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Figure 2.12: Adding feedback. (a) Phase diagram in the (σ̂, τ) plane of the
optimal network topologies A, B, C, D sketched in panel (b) (gray arrows
stand for negligible rates).

At small but finite dissipation and large readout delays, the system has similar char-

acteristics as the circuit with no feedback: the optimal network consists of reversible

flipping of both the input and output with large rates (network Bf in Fig. 2.12b). These

networks are not useful for transmitting information, but given the constraints of large

time delay and close to equilibrium solutions, better topologies cannot be found. As

described in section 2.3.3.1, at σ̂ = 0 the optimal solution has the input and output

permanently fixed in the same state, providing perfect readout but not functioning as

a switch. This solution is obtained with infinitely high energy barriers between the two

aligned states giving infinite switching times between these two minima. Decreasing

these energy barriers at small but finite dissipation results in a finite lifetime of the
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two aligned states, effectively producing a switch with two stable states, encoded in the

optimal motif of a positive feedback loop (network Df in Fig. 2.12b). These optimal

networks transmit close to 1 bit of information at small but finite time delays. They

feature faster rates for the output and input to align, and slower rates to anti-align,

resulting in larger probabilities that the system is in the aligned states at the time of

the readout.

At large dissipation and small readout delays, we recover the same solution as in cir-

cuits without feedback. The input z does not change and the output quickly aligns

with the input (network Cf in Fig. 2.12b). As the readout time increases, the input

state switches back and forth (network Af in Fig. 2.12b) and the system decorrelates,

causing the transmitted information to decrease. At even bigger delays, the large dissi-

pation rate allows the system to avoid the equilibrium solution of network Bf , but cycle

through the states with an alternating combination of fast (r that aligns the input and

output) and slow (α that anti-aligns them) rates (network Ef in Fig. 2.12b). As a result

the circuit is more likely to be found in the aligned states at all times, transmitting

more information. As discussed above and in the previous Chapter (section 1.4.3), the

optimal network topology for large delays is a negative feedback loop, which is known

to oscillate in certain parameter regimes [46]. Since oscillatory solutions would decrease

the information transmitted at large delays, avoiding the oscillatory regime sets a limit

to the maximum value of α. At σ̂ < 1 and τ & 1, when the rates antialigning the input

and output increase (Figures 2.11b and 2.11d), the transmitted information decreases.
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Figure 2.13: Contour plot of optimal parameter ρ∗ as function of delay τ and
entropy production σ̂. We recall that when ρ is equal to 0 the two smallest
eigenvalues of the system become degenerate and hence the two most relevant
timescales match each other: in this sense, ρ = 0 has the same meaning of
γ = 1 for the simpler model in Fig.2.4d. However, we can see here that, unlike
in Fig.2.4d, the region with ρ∗ = 0 does not reach the axis σ̂ = 0.
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Finally, it is interesting to look at the contour plot of the optimal parameter ρ∗, shown

in Fig.2.13. We remind that ρ is defined in Eq.2.66 and it is equal to 0 when the two

smallest eigenvalues of the system become degenerate. This corresponds to the case with

γ = 1 in the simpler model of Fig.2.4d. However, while γ∗ was allowed to be 1 both

for zero and infinite entropy production (see Fig.2.6), here we see that, when σ̂ = 0, ρ∗

can only be larger than 0. We can understand this behavior intuitively if we recall the

definition 2.82 for ρ at σ̂ = 0. It is clear that in order for ρ to be zero, both s and y

must be 1 (i.e. w and v, respectively). However, looking at Figures 2.11d and 2.11c, we

can easily verify that such condition is never fulfilled.

2.3.4 Comparison with the EnvZ-OmpR signaling system

Figure 2.14: The EnvZ-OmpR phosphorelay (taken from [79]). The
major components involved in osmoregulation in E. coli by the
Histidine-Aspartate phoshorelay are shown. The OmpF and OmpC porins are
trimers located in the outer membrane. EnvZ is an inner membrane histidine
kinase and OmpR is a response regulator located in the cytoplasm of the cell.
In response to an osmotic signal, EnvZ is activated, autophosphorylates and
serves as a phosho-donor for OmpR. After OmpR is phoshorylated, there is a
conformational change which allows DNA binding of OmpR-P as dimers to the
OmpR-P binding sites located upstream of the porin genes ompF and ompC.
Phosphorylation and dephosphorylation of OmpR is regulated by the EnvZ
kinase and phosphatase activities, respectively. At low levels of osmolarity,
there are lower levels of OmpR-P, resulting in the transcriptional activation of
ompF. Conversely, at high osmolarity, there are higher levels of OmpR-P
resulting in repression of ompF and activation of ompC.
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Our optimal network with feedback, at large energy dissipation and relatively large

readout delays (circuit Ef in Fig. 2.12b), may be related to the dynamics of the two-

component signaling network in E. coli used in osmoregulation [79–82]. This network

is composed of the histidine kinase EnvZ and the response regulator OmpR and it is

aimed at reacting to an osmotic shock by regulating the expression of two porin pro-

teins OmpF and OmpC. After phosphorylation by EnvZ, OmpR undergoes a confor-

mational change, dimerizes and binds to the porin promoter region of either the ompF

or ompC gene (see Fig.2.14). Detailed experimental studies of this system show that

phosphorylation-activated dimerization drives an increase in DNA binding [82], suggest-

ing that the biochemical regulation is a clockwise cycle such as presented in network Ef

of Fig. 2.12b.

Figure 2.15: (taken from [82]) and modified. Coupled thermodynamic
cycles linking OmpR dimerization and DNA binding. Blue ovals and
starbursts represent OmpR receiver domains in inactive and active
conformational states, respectively. Red arrows represent OmpR DNA-binding
domains and DNA containing OmpR binding site sequences is depicted in
green. Free energies underlying the steps in the cycle are numbered, with free
energies associated with OmpR in an active conformational state being
indicated by asterisks. Phosphorylation is thought to drive the conformational
equilibrium toward the active state, as indicated by the red arrows pointing
toward the active OmpR reaction cycle (inner cycle).

In order to better understand the thermodynamics of the process, we will consider a

particular cycle in Fig.2.15. Starting from the external cycle, at the top left we have

two monomers of OmpR which are phosphorylated by EnvZ and undergo a energetically

favorable conformational change. Such new state is marked with starbursts at the top

left in the internal cycle. The variation of Gibbs free energy 2∆Gact is not shown and

is composed by

2∆Gact = 2∆Gphospho + 2∆Gconform,
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where the factor 2 stands for the presence of 2 monomers, ∆Gphospho is the free energy

difference due to phosphorylation and ∆Gconform is the free energy release due to the

favorable conformational change. ∆Gact is estimated from the literature [80] and its

value reported in Table 2.1.

The two OmpR monomers then dimerize releasing a free energy ∆G∗1 (top right in the

internal cycle) and then bind to either F1 or C1 DNA 3 as dimer, again releasing a

free energy ∆G∗2 (bottom right in the internal cycle). The values of ∆G∗1 and ∆G∗2 are

estimated from the literature [82] and listed in Table 2.1.

After binding to DNA and activating the transcription of either ompF or ompC, the

OmpR is dephosphorylated and deactivated (bottom right in the external cycle) with

free energy 2∆Ginact, composed by

2∆Ginact = 2∆Gdephospho − 2∆Gconform,

where the factor 2 stands again for the two dimers and ∆Gdephospho is the free energy

release due to dephosphorylation of OmpR. ∆Ginact is estimated from the literature [80]

and reported in Table 2.1.

Finally the dimer 2OmpR unbinds from DNA with free energy −∆G2 (top right, external

cycle) and comes back to the initial state with free energy −∆G1 (top left, external

cycle). −∆G2 and −∆G1 are estimated from the literature [82] and listed in Table 2.1.

By using the values in Table 2.1, we can now compute the free energy released in the

cycle described above, which amounts to

∆Gtot = 2∆Gact+(∆G∗1+∆G∗2)+2∆Ginact−(∆G2+∆G1) = −26.9/−59.3 kBT, (2.99)

where the wide range of values is due to uncertainty in the energetics of the single

reactions and we have considered C1 DNA as the target DNA.
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2ΔGinact

2ΔGact

ΔG1
*    -ΔG1 

  
+ΔG2

* -ΔG2 
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Figure 2.16: A possible matching of our four-state model with the dynamics
of OmpR phophorylation, dimerization and DNA binding shown in Fig.2.15.

As shown in Fig.2.16, we can map the activation of our input z to the process of phos-

phorylation and conformational change of two monomers of OmpR and the activation

3F1 DNA corresponds to gene ompF and codes for porin OmpF, C1 DNA corresponds to gene ompC
and codes for porin OmpC.
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of our output x to the dimerization and binding to DNA of 2OmpR. Conversely, the de-

activation of z corresponds to the dephosphorylation and deactivation of 2OmpR, while

the deactivation of x corresponds to unbinding from the DNA and monomerization of

2OmpR.

We can compute the rate of heat dissipation Q̇ as a function of the optimal information

I∗ for the network Ef of Fig. 2.12b. We first need to scale back all the quantities –rates

α, s, y, r, smallest eigenvalue λ, optimal information I∗ and entropy production rate σ̂

– from absolute time τ to real time t = τλ (expressed in minutes).

We thus associate rate α to the autophosphorylation rate kobs of OmpR 4 taken from

the literature [82], both in the presence and in the absence of C1 DNA (see Table 2.2).

kcal/mol kBT

∆Gact -5/-10 -8.1/-16.2
∆Ginact -1/-6 -1.6/-9.7

∆G∗1 -7.3 -11.9
∆G1 -4.3 -7
∆G∗2 -9.3 -15.1 F1 DNA
∆G∗2 -10.1 -16.4 C1 DNA
∆G2 -7.8 -12.7 F1 DNA
∆G2 -8.5 -13.8 C1 DNA

Table 2.1: Free energy differences ∆G
for the reactions shown in Fig.2.15
[80, 82]. Error bars are not reported
because these values are estimates.
Conversion in kBT units is done
considering a temperature T =310 K.

kobs(min−1)

0.069 DNA n.a.
0.961 C1 DNA

Table 2.2:

Autophosphorylation rate
kobs of OmpR [82], both in
the absence and in the
presence of C1 DNA. Error
bars are not reported because
these values are estimates.

The results are shown in Fig.2.17: in panel 2.17a we set τ = 1.03, while in panel 2.17b

τ = 2. At a given τ we plot the dependence of the heat dissipated per minute Q̇ on the

transmitted information I∗ for two values of the phosphorylation rate α. To transmit

the same I∗, higher phosphorylation rates entail larger amount of dissipated heat. We

also note the steep increase of Q̇ when I∗ approaches its maximum in the allowed range:

getting closer to the channel capacity requires the system to dissipate larger amounts of

energy.

The final step is to compare the total heat Qtot dissipated in one cycle with the total free

energy released ∆Gtot and hence compute the network’s efficiency. How do we know the

duration of a cycle? It has been assessed [83] that porin proteins appear in significant

quantities ≈ 10 minutes after an osmotic shock. This allows us to set such a timescale

as an upper bound for the cycle duration.

4We chose to use the autophosphorylation rate of OmpR as a proxy of the rate of phosphorylation
by the histidine kinase EnvZ, which was not available in the known literature.
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So let us say that the cycle lasts ≈ 3 minutes and we are interested to know how much

energy has been dissipated to optimally transmit information from the input at time

t = 0 to the output at time t ≈ 3 minutes. From Fig.2.17a we get Qtot ≈ 18kBT

and Qtot ≈ 36kBT for transmitting information with the largest and smallest energy

constraints, respectively. For a cycle lasting ≈ 6 minutes (Fig.2.17b) we would get

Qtot ≈ 36kBT and Qtot ≈ 72kBT, respectively. So the energetic performance of the

network is strongly dependent on the cycle duration. For example, considering a cycle

lasting ≈ 3 minutes, the transmission of the minimum allowed I∗ and a ∆Gtot ≈ −59.3

kBT, we may estimate the network’s efficiency to be ≈ 30% (see [70, 76] as a comparison).

In general, the transmission of the optimal mutual information I∗ requires the system

to dissipate into the environment an amount of heat of the same order of magnitude as

the free energy released in the cycle.
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Figure 2.17: Heat dissipation rate Q̇ as function of the maximal transmitted
information I∗, for two different absolute delays τ (panel (a) and panel (b)).
Red lines with open circles and blue lines with asterisks correspond to lower
and higher phosphorylation rates α, respectively (values taken from Table 2.2).

2.3.5 Discussion and conclusions

Most studies that optimize information transmission in biochemical circuits consider

ideal conditions and look for the networks that are only limited by intrinsic physical

constraints coming from noise in the system. However often cells must respond to

signals under natural external constraints: the readout of the input occurs at a delay

and cell energetics are limited. Here we investigated how these difficulties influence the

form of optimal designs of biochemical circuits.
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Most generally, the information transmitted by circuits decreases with the readout delay,

as the system decorrelates with time. Feedback can decrease this decay, but cannot

overcome it completely. In the large dissipation limit, the optimal solution consists of

using a combination of fast rates for output switching and slow rates for input switching,

to increase the probability of the system to be in only two states. Our choice of setting

the output rate r = 1 fixed these two states to be the aligned states, but the natural

symmetry of the system implies that a degenerate solution that transmits the same

amount of information exists for the case when the input represses the output, favoring

the anti-aligned states. We explicitly discussed these solution in the infinite dissipation

regime in Chap.1. In the simplest circuit without feedback the only way to achieve this

separation into favorable and unfavorable states is by dissipating energy and forbidding

back reactions for output switching. Close to equilibrium, in the absence of feedback,

the circuit cannot constrain the back reactions and, as a result, the maximum mutual

information goes linearly to zero with the entropy production rate σ̂ for all values of

the readout delay τ . From the simplest circuit we see that the rate of input flipping

depends on the time delay – longer readouts require slow flipping rates of the input to be

informative, whereas the ability to dissipate energy allows the circuit to irreversible cycle

through the states by eliminating both the input and output back reactions. The fully

non-equilibrium solution is valid for a large range of dissipation values. If long readouts

or energy constraints forbid this solution, the circuit effectively becomes randomly stuck

in one of two states and not informative: the input is fixed with an equal probability

to be in one of the two states, and the output attempts to align with the input. In

summary, the only way for a system without feedback to transmit information is to

dissipate energy.

Feedback significantly increases the range of dissipation values at which circuits can be

informative. When the output feedbacks onto the input, the circuit can transmit ≈ 1

bit of information for any value of σ̂ at small delays. Far from equilibrium, the optimal

solution cycles through all the states, effectively increasing the decorrelation time of

the system. The optimal topology is based on a negative feedback motif with a slow

switching input and rapidly responding output. Such motifs are very common in stress

responses (DNA damage, heat and osmotic shock and immune response) [43] and often

rely on a slow (gene regulation) and fast (protein-protein interaction) step. In perfect

equilibrium, the formally optimal circuit is non responsive – there is no regulation and

the input and output are aligned at all times. However at small but finite entropy

production rates (as well as the suboptimal solution in perfect equilibrium) the optimal

topologies are different from the large dissipation case.

In the presence of feedback, the optimal circuit in the small dissipation range is a positive

feedback loop with two stable states (+,+) and (−,−). Such circuits have long been
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known to be a key mechanism for memory storage [84]. This design of a stable switch

is able to convert a transient stimulus into a permanent biochemical response. These

circuits have been shown to be crucial for the irreversibility of maturation of Xenopus

oocytes [85] and for long lasting synaptic plasticity [86]. It has also been argued that

positive feedback may have a role in enhancing switch-like responses (e. g. in MAP

kinase cascades) and improving energetic efficiency by filtering out noise [87]. This may

explain why we find such optimal topology in the small dissipation regime.

The above examples show that the optimal topology at small dissipation rates is char-

acteristic of stable long term readouts, that commit the cell to one of two responses.

The aligned (or anti-aligned in the other degenerate topology) states are very stable

and large energetic barriers exist to exit these states, resulting in the positive feedback

motif being optimal. Conversely, the optimal motif in the large dissipation limit is a

negative feedback loop, that is characteristic of shock response – a transient response

that is easily exited, but needs to be implemented quickly. It is therefore a typical non–

equilibrium response, whereas the positive feedback loop is characteristic of slow and

stable equilibrium situations.

Intuitively, dissipating more energy allows for larger information transmission because it

lowers the probability of back reactions, which are detrimental when processing a signal.

Interestingly, in the presence of feedback the system is able to build a particular topology

which is suboptimal in terms of information transmission but which does not dissipate

energy at all. The resulting network is such that effectively the system can cycle either

in the clockwise or counterclockwise direction and the probability distribution is mostly

concentrated on the aligned states (+,+) and (−,−). Such costless network topologies

could be of inspiration when designing synthetic biochemical circuits aimed at energy

production.

Feedback is able to slow down the decrease of information transmission with readout

delay, but not to change the monotonic nature of this process caused by decorrelation

of the states of the circuit. Yet feedback does alter the dependence of the information

decay with dissipation compared to circuits without feedback. At large as well as small

dissipation rates the capacity plateaus, leaving a small range of σ̂ values where the

transmitted information is sensitive to the precise magnitude of the energy constraints.

This relatively narrow regime is where the optimal motif changes from a positive feedback

loop to a negative feedback loop. Effectively in this regime the feedback is turned off

(the back and forth input flipping rates are similar) and the circuit resembles the simple

system discussed in section 2.3.2.



Chapter 3

Robust optimization: MaxiMin

strategies

3.1 Motivation

Optimizing biochemical networks for information transmission assumes that the circuit

and its environment have coevolved to best match their statistical properties. For many

networks this is a valid assumption. However, other networks function in a wide variety of

variable conditions. To study what kind of network is best adapted to function in adverse

environments we combine a game-theoretic maximin approach with the framework of

information theory. We ask what system will maximally transmit information even when

presented by the environment with the worst possible initial state - the one that aims

at minimizing information at all time delays. Interestingly, we find that, even if the

amount of transmitted information is inevitably smaller, the structure of the optimal

circuits is the same as when the environment has no detrimental effect and the system

is able to optimize its initial condition.

Game-theoretic approaches have been used to robustly design biochemical networks and

to devise biomimicking algorithms. Given environmental disturbances and uncertainty

about the initial state, minimax strategies were used to match therapeutic treatment

to a prescribed immune response [88], and to make a stochastic synthetic gene network

achieve a desired steady state [89]. The adaptive response in bacterial chemotaxis has

been interpreted as a maximin strategy that ensures the highest minimum chemoattrac-

tant uptake for any profile of concentration [6].
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3.2 A MaxiMin model for cell regulatory networks

In many situations a biochemical circuit needs to reliably respond in many possible

external conditions. In this case, optimization in the typical environment, as the one

discussed in earlier sections, is not the desired criterium. Such a situation is better

described by assuming that the environment chooses the worst possible conditions for

the network to function. Formally this is captured by assuming that the system and

the environment play a zero-sum game, where the circuit is trying to maximize the

mutual information between the input and the output, while the environment is trying

to minimize it.

A game theoretic formulation of the problem requires one to define the strategy space,

which in this case amounts to deciding which variables are controlled by the circuit and

which by the environment. Here we assume that the system will adjust the transition

rates, whereas the environment controls the initial probability distribution P0(x0, z0) of

the input z and output x.

In other words, we are interested in circuits that are optimal for working in the worst

possible environmental conditions, which in game-theoretic terms correspond to maximin

or “minorant” strategies [90]: the player has the goal of maximizing a function, whereas

the opponent has the goal of minimizing it. This strategy is also related to “robust

control” [88, 89]. In our case the circuit behaves so as to ensure that at least a certain

number I of bits are transmitted over a given time-scale.

(x,z)
 u

(- , -)       (- ,+) 

(+, -)       (+,+) 
r r

1 2

43

  u
  u

 u

Figure 3.1: The four network states, with corresponding transition rates,
considered in the maximin optimization where the input z can either up or
down-regulate the output x. x aligns with z with rate r.

We look for the networks that are best adapted to the worst case scenario for the simplest

circuit without feedback presented in Chap.1 and identified as model A . We recall that

in this case the input z flips between the + and the − state with rate u, and the output

aligns with the input with rate r (see Fig.3.1).

We consider this problem on the timescales of the system, which means that the system

wants to maximize the mutual information I(τ) between the input at time 0 and the

output at a time τ = tλ, where λ = min(r, 2u) is the minimal non-zero eigenvalue of

the transition rate matrix L– the inverse of the system’s slowest timescale. As done in
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previous Chapters, we set r = 1 to fix the units of time. The effective magnetization is

the same as Eq.1.22:

µ = µ0e
−τ/λ +

1

1− 2u

(
e−2uτ/λ − e−τ/λ

)
. (3.1)

where µ ≥ 0, and |µ0| ≤ 1 encodes the initial condition

P0(x0, z0) =
1 + x0z0µ0

4
. (3.2)

Unlike in the cases when we optimized the transmitted information between the input

and output for circuits that are in steady state, in the setup considered here the initial

distribution does not need to be in steady state. The space of solutions considered here

is the same as the one in section 1.4.2.5, when we optimized the information transmitted

with a delay in circuits that were out of steady state. There we simultaneously found

the optimal initial distribution and the parameters of the circuit. Here, we vary the

same properties of the system (initial distribution and flipping rates), but with a dif-

ferent underlying optimization criterium – the environment minimizes the transmitted

information by setting the initial distribution and the circuit sets the flipping rates.

In this specific model, the maximin game between the system and the environment takes

the following form:

• The environment E chooses µ0 so as to minimize mutual information, given the

rates of the circuit. This corresponds to finding the value of µ0 which makes µ

as small as possible (since I is an increasing function of µ in the allowed µ > 1

regime).

• Given µ0, the circuit S looks for the rate u that maximizes I (i.e. µ).

The above zero-sum game between the system (circuit) S and environment E is formal-

ized in terms of their respective cost functions FS and FE that satisfy

FS + FE = 0, (3.3)

where FS = −FE = |µ| = F(µ0, u; τ). The optimization problem becomes

max
u

min
µ0
F(µ0, u; τ). (3.4)

The optimal µ∗0 chosen by the environment is a function of u and τ , such that

min
µ0
F(µ0, u; τ) = F(µ∗0(τ, u), u; τ), (3.5)
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and the circuit chooses u∗ = u∗(τ) that satisfies

max
u
F(µ∗0(τ, u), u; τ) = F(µ∗0(τ, u∗), u∗, τ). (3.6)

To make analytical progress, we have to separately consider the regime in which the

smallest eigenvalue is λ = 2u and the one in which λ = 1.

3.2.1 Case λ ≤ 1

In the regime where λ = 2u ≤ 1, the input switches on slower timescales then the output

and the effective magnetization in Eq. 3.1 is

µ(µ0, u; τ) = µ0e
−τ/2u +

1

1− 2u

(
e−τ − e−τ/2u

)
. (3.7)

The best strategy for the environment E would be to choose µ∗0 such that µ = 0.

However, it is constrained to fulfill −1 ≤ µ∗0 ≤ 1. Minimizing Eq. 3.7 with respect to u

subject to the constraint on µ0 results in:

µ∗0 =

−
eτ(1−2u)/2u−1

1−2u , τ < τc(u),

−1, τ ≥ τc(u),
(3.8)

with

τc(u) =
4u

1− 2u
log(1− u). (3.9)

When τ < τc(u), the environment is able to set µ and thus I to zero. However, when

τ ≥ τc(u), the magnetization is

µ(−1, u; τ) = −e−τ/2u +
1

1− 2u

(
e−τ − e−τ/2u

)
, (3.10)

where u is constrained to be in the interval [0,min(1/2, uc(τ))] and uc(τ) is obtained

by inverting Eq. 3.9. Given these forms of µ∗0(u, τ), the circuit tries to maximize the

information by tuning u at each value of τ . In the τ ≥ τc(u) regime the effective

magnetization is maximized by a u∗ that solves

∂µ(−1, u; τ)

∂u
|u∗ = 0. (3.11)

Eq. 3.11 results in a transcendental equation for the auxiliary variable a = τ 1−2u
2u :

ea
∗τ = 1 + a∗τ + 2a∗2τ, (3.12)
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which needs to be solved numerically. However, in the limit τ � 1 we can make some

analytical progress and find that, when τ → 0, u∗ = τ
2(a∗+τ) → 0 sublinearly (see

Appendix C for details of the derivation):

u∗ ' τ

2(− log τ + log(2(log τ)2)− 2 log(2(log τ)2)
log τ )

, τ � 1. (3.13)

The above solution u∗ of Eq. 3.11 is valid as long as the smallest eigenvalue λ = 2u < 1.

This choice of λ constrains u∗ < 1/2, which also constrains τ < τ∗. Setting

∂µ(−1, u; τ)

∂u
|u∗=1/2 = 0, (3.14)

we get the condition for τ∗ = τ(u∗ = 1/2)

1

2
τ∗(τ∗ − 4)e−τ

∗
= 0, (3.15)

which is fulfilled by τ∗ = 4.

In summary, the environment E chooses µ∗0 so as to have µ(µ∗0, u; τ) = 0. However, this

is possible only for τ < τc(u). In this regime the transmitted information is always zero

and there is nothing the circuit can do against the judicious choice of the environment.

For τ ≥ τc(u) the best thing the environment E can do is to set µ∗0 = −1. In order

to counteract the strategy of the environment E, at each readout delay τ the circuit S

chooses u < uc(τ) (with uc(τ) obtained by inverting Eq. 3.9), such that the environment

E is forced into the regime where the best it can do is to set µ∗0 = −1. In this regime,

the circuit S maximizes the function µ(−1, u; τ) in u ∈ [0,min(1/2, uc(τ))] and finds

u∗ = τ
2(a∗+τ) , where a∗ is given by the solution of Eq. 3.12. The maximum value of the

flipping rate for the input u∗(τ) = 1/2 corresponds to the readout delay τ∗ = 4 and

marks the transition to the regime with λ = r = 1. The effective magnetization µ∗ at

the transition is 3/e4 ≈ 0.05 and hence I∗ ≈ 0.002.

3.2.2 Case λ = 1

For τ > 4, the smallest eigenvalue is λ = r = 1, the input switches on faster timescales

than the output and the effective magnetization in Eq. 3.1 is

µ = µ0e
−τ +

1

1− 2u

(
e−2uτ − e−τ

)
. (3.16)
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The environment E chooses µ∗0 to simultaneously set µ = 0 and fulfill −1 ≤ µ∗0 ≤ 1,

which gives

µ∗0 =

−
1−e−τ(2u−1)

2u−1 , τ < τc(u),

−1, τ ≥ τc(u),
(3.17)

with

τc(u) =
1

2u− 1
log

(
1

2(1− u)

)
. (3.18)

If the system S wants to be in the regime τ ≥ τc(u) where µ∗0 = −1, then it must choose

a rate u∗ ∈ [1/2, uc(τ)], with uc(τ) obtained by inverting Eq. 3.18. This choice results

in the effective magnetization

µ(−1, u; τ) =
2(1− u)e−τ − e−2uτ

2u− 1
. (3.19)

For any τ > 4, the effective magnetization in Eq. 3.19 is always maximum at the border

u∗ = 1/2.

In summary, for τ > 4, the optimal response of the circuit is to set u∗ = 1/2, forcing the

environment into the τ > τc regime where the transmitted information is larger than

zero.

3.2.3 Robust Optimization Solutions

In Fig. 3.2a and 3.2b we compare the capacities and optimal input switching rates

at fixed readout delay τ obtained for circuits optimized given fixed best (broken red

line – results from model Ã in Chap.1.4.2.5) and worst (solid blue line – the maximin

strategy discussed in this section) initial conditions to the results of simply optimizing

information given the system is in steady state (dotted black line – results from model

A in Chap.1.4.2.2). In the first case, the environment first fixes the initial probability

distribution that is most limiting (blue line) or most favorable (red line) for information

transmission and the circuit then finds the switching rates that allow it to transmit

most information, possibly neutralizing the harm of the environment. In the second

case, the initial probability distribution is fixed at steady state and the circuit optimizes

its switching rates within this constraint. We find that τc in Eq. 3.9 is always zero,

such that the worst initial condition always corresponds to µ0 = −1 for all τ and the

initial probability distribution P0(x0, z0) is evenly divided between the mixed states

{(−,+), (+,−)}. The best initial condition has µ0 = +1 and the initial probability

distribution P0(x0, z0) = 1/2 for the aligned states {(+,+), (−,−)}. In the latter case

u∗ = 1/2 for all readout delays, and the circuit functions in a regime where the input

timescale 2u and the output timescale r = 1 always match.
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Figure 3.2: Optimal mutual information I∗ (a) and optimal input flipping
rate u∗ (b) when the initial condition P0 corresponds to the stationary state
(dotted black line), is optimized by the system (dashed red line) or is set by an
antagonistic environment in a maximin game (solid blue line). In panel (c) the
optimal topology is shown in the three cases: states in red are the ones with
initial probability P0 = 1/2. Each arrow’s thickness is related to the
magnitude of the corresponding rate at a fixed delay τ = 1.

If the initial distribution is the steady state, u∗ is equal to 0 at τ = 0 and increases with

τ until reaching the plateau u∗ = 1/2 for τ = (1 +
√

3)/2. If the environment sets the

initial distribution to be the worst possible for information transmission by the circuit,

u∗ = 0 for τ = 0 and increases much more slowly in τ than in the steady state circuit,

finally converging to u∗ = 1/2 for τ = 4. When the circuit controls the choice of the

initial state, it maximizes the probability of being in the aligned states, so that output

x matches input z and the timescales of their switching are equal. However, when the

environment chooses the worst initial state, forcing the initial probability distribution

to be in the mixed states, the circuit requires the output x to react as fast as possible to

the input z (r � 2u) to align them. Despite these differences, in all cases the optimal

network takes the form of the same universal form (see Fig. 3.2c).

It is interesting to make a comparison between the effect of different initial conditions

and of different energetic constraints on the choice of optimal rates: we found in Chap.2

that allowing the system to dissipate more energy postpones the matching of the input
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and output timescales (see Fig.2.6). Likewise, as discussed above, posing the system in

the worst possible initial condition, the one where “anti-aligned” states have probability

1/2, entails a larger matching time τc w.r.t. stationary or optimal initial conditions.

A further analysis could consist in assessing the behavior of τc as a function of the

dissipated energy and the initial conditions.

The steady-state I∗ lies in between the optimal information in the maximin case (µ0 =

−1), which we will call I∗min, and the one where the prior is optimized (µ0 = +1), which

we will indicate as I∗max. At τ = 0, all three networks transmit 1 bit of information.

The maximal normalized gain (I∗max − I∗min)/I∗max from optimizing the initial condition

compared to the worst possible initial condition chosen by the environment has a max-

imum at a readout delay τ ≈ 2.5 (see Fig. 3.3). At this timescale, the environment can

be most detrimental for information transmission.
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Figure 3.3: Normalized information gain (I∗max − I∗min)/I∗max as function of
the readout delay τ∗. Optimal I∗max corresponds to the case where the system
optimizes the initial condition P0, while I∗min corresponds to the MaxiMin
solution, where the environment chooses the worst possible P0.

3.2.4 Discussion and conclusions

In the absence of energetic constraints, we compared three different conditions in which

a circuit optimizes the information transmitted at a delay for a model without feedback:

a circuit that functions in steady state (model A of Chap.1.4.2.2), one that is able to

optimize its input distribution (model Ã of Chap.1.4.2.5), and one that is forced to func-

tion with the least informative initial distribution (maximin). Interestingly, all solutions

share the same circuit topology and type of solution. The most informative solution is

to cycle irreversibly through the four states. The difference between the three cases lies

in the rate of flipping the input signal at a given delay. The most informative of the

three strategies, where the circuit has coevolved to match the environmental conditions,
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displays the largest flipping rate of the input (although still small compared to the flip-

ping rate of the output) that is independent of the readout delay. The least informative

circuit, the one that functions in an adverse environment, has the slowest flipping rate of

the input. Intuitively, if the statistics of the environment and circuit match, then as long

as these initial states are long lived the ability of the system to transmit information is

mainly encoded in these states. However, in an adverse environment, extremely small

flipping rates of the input stabilize the initial input states, allowing for a more infor-

mative readout. Since the same circuit, just with different flipping rates of the input,

works optimally in both favorable and antagonistic environmental conditions, one could

imagine that the rate of input switching could be tuned depending on the environmen-

tal conditions. This tuning could be achieved by fast degradation of a “typical” sugar

source (like glucose) and slower degradation of a less typical sugar source (like lactose),

that requires additional elements (such as production of the enzyme beta-galactosidase)

for degradation.





Conclusions

In this Thesis we have applied the design principle of optimal information transmis-

sion to a simple model regulatory network with one input and one delayed output, both

switching randomly between two states in continuous time. In Chapter 1 we have looked

for maximally informative topologies when the system is in and out of steady state, and

when feedback is present and absent. In all the setups we have identified optimal topolo-

gies which commonly occur in biology, such as the push-pull motif, typical of cellular

responses to stress. For output delays larger than a certain threshold, the presence

of feedback allows for more informative topologies. Moreover, when the system is not

initially in steady-state but can rather optimize its initial condition, the appearance of

absorbing states significantly improves the transmission of information.

In all the above setups the system was functioning strongly out of equilibrium, thus

dissipating an extremely large amount of energy. In Chapter 2 we have removed such

unrealistic feature by constraining the system to maximize the transmitted informa-

tion while being close to thermodynamic equilibrium and consuming a fixed and finite

quantity of energy. We have then discovered that at large energy dissipation optimal

topologies feature negative feedback loops, typical of shock responses, while close to

equilibrium positive feedback loops, known for their bistable states, become optimal.

Moreover, the presence of feedback allows the system to transmit almost the maxi-

mum allowed information even in the absence of energy dissipation. A two-component

osmoregulatory system of E. coli, composed by the kinase EnvZ and the response regu-

lator (RR) OmpR, was taken into consideration for testing the biological soundness of

the above results. The amount of energy released in a complete “cycle” of the osmoregu-

latory system through its four states (activation of RR by EnvZ, binding of RR to DNA,

deactivation and unbinding) was roughly computed. It was estimated to be of the same

order of magnitude of the heat dissipated in order to optimally transmit information.

Finally in Chapter 3 we have used a game-theoretic approach to model the interaction

between the system and a detrimental environment as a maximin game. The environ-

ment chooses the initial condition so as to minimize the transmitted information at all
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times, while the system tunes the input and output switching rates in order to marginal-

ize the antagonistic effect of the environment as much as possible. We find that, unlike

in the case where the initial condition is stationary or it is optimized, the system tries

to make the output switch as fast as possible compared to the input. We can think of

situations where the cell is presented with an unfavorable initial condition and tries to

counteract it by tuning its reaction rates (e.g. “Pasteur effect”).

All the above setups assume the limit of very sharp response functions, that simplify

their description to two-state systems. As was previously shown, on one hand smooth

regulatory functions can transmit more than 1 bit of information [5], and on the other

hand the molecular noise coming from discrete particle numbers limits the capacity

[12, 23–25, 33, 34, 75]. The capacity and regulatory details of the optimal systems

can change if we consider more detailed molecular models. However even these simple

models show general principles of how energy constraints and delayed readout drive

optimal topologies. It has previously been argued using more detailed models that a

truly bistable system in equilibrium is not optimal for transmitting information, unless

the system does not have time to equilibrate and manages to retain memory of the initial

condition [25]. The solutions we observe in our optimal networks with feedback at small

dissipation correspond to circuits that manage to retain the memory of the initial state.

All the models with feedback, both in equilibrium and out of equilibrium, corresponded

to two-component systems. These types of networks were previously studied as circuits

that can function out of equilibrium in contrast with one-component signaling systems

that must obey detailed balance [75, 91]. When it comes to precision of a continuous

gradient readout, it was shown that fueling energy into the system makes it possible

to overcome the limitations posed by detailed balance, by decoupling the output and

receptor molecules and providing a stable readout of the input. In our discrete two-

component system, this stable readout of the input state is possible even at equilibrium

with a circuit design that is able to stably store the input state by exploiting timescale

separation and favoring the aligned states over the non-aligned ones. However, such a

stable solution is not very useful for responding to signals that change on fast timescales.

In that case, energy dissipation is indispensable for an informative readout.

By studying simple two-state models of biochemical systems, we cannot interpret our

optimal circuits in terms of the specific molecular designs that could be used to im-

plement these networks. Specifically we do not account for molecular noise that comes

from discrete numbers of proteins, mRNAs and genes in a regulatory circuit and that has

been shown to play an important role in choosing certain regulatory elements over oth-

ers [23, 29]. The role of molecular noise and cost in the design of circuits that transmit
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information at a delay needs to be examined using more detailed models. The results

presented here can be used as a starting point.

In our calculation we do not explicitly model fluctuations in the signal, such as was

done in previous work that considered information of an instantaneous response [31] or

looked at optimal delay times [41]. We just look at the optimal network that would best

respond with a delay to a change in a signal. Due to this formulation we do not study

fluctuations in the signal and we cannot address the question of whether the network is

able to distinguish random (“irrelevant”) fluctuations from a real change in the signal -

a question that is very important in understanding the design of biological circuits.

This Thesis gives a framework for studying information transmission in biochemical reg-

ulatory systems subjected to delays, non-stationary conditions and energetic constraints.

Such an approach can be extended to more realistic models that may explicitly account

protein concentrations, more complex networks or multiple readout times.





Appendix A

Optimizing information

transmission

A.1 Calculating mutual information

In Chapter 1 we calculate the mutual information between the input z at time 0 and the

output x′ at a time delay t, using the temporal evolution of the probability distribution

P (y) (with y = (x, z)) obtained from the master equation 1.9 1.

The transition probability matrix P (y′|y) is a solution of the master equation with initial

condition

lim
t→0

P (y′|y) = δy′,y (A.1)

and it can be written as the (y′, y) element of the matrix e−tL, i.e.

P (y′|y) =
[
e−tL

]
y′,y

=
4∑

α=1

e−λαtvα(y′)uα(y). (A.2)

λα (with α = 1, . . . , 4) are the four (assumed to be distinct for this derivation) eigenvalues

of L, and vα and uTα are their corresponding orthonormal right and left eigenvectors,

with components vα(y′) and uα(y):

Lvα = λαvα, (A.3)

uTαL = uTαλα, (A.4)

uTαvβ = δα,β. (A.5)

1The implied dependence on time is omitted, primed variables (e.g., y′) refer to the state of the
system at time t 6=0 and unprimed ones refer to the state at t = 0.
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In particular, if we choose a normalization such that u1 = (1, 1, 1, 1), the eigenvector v1,

corresponding to the eigenvalue λ1 = 0, is the stationary state P∞(y).

In order to compute the mutual information I[xt, z0], as defined in Eq. 1.11, we need to

derive an expression for the joint probability P (x′, z) in terms of conditional probabili-

ties:

P (x′, z) = (A.6)

=
∑
y,y′

P (x′, z|y′, y)P (y′, y) using the definition of conditional probabilities

=
∑
y,y′

P (x′|y′)P (z|y)P (y′, y) exploiting the conditional independence of x′, z

=
∑
y,y′

P (x′|y′)P (z|y)P (y′|y)P0(y) using the definition of conditional probabilities.

Note that the elements of P (x′|y′) and P (z|y) are either 0 or 1 according to whether,

for example, y is consistent or inconsistent with z:

P (z = +|y = (+,+)) = 1

P (z = +|y = (+,−)) = 0

...

et cetera. Finally, the marginal probabilities P (z) and P (x′) are given by

P (z) ≡
∑
x′

P (x′, z), P (x′) ≡
∑
z

P (x′, z).

The numerical computation of the mutual information can now be implemented and the

optimal rates for systems of various complexity can be found numerically. In the para-

graphs below we present useful computational details for implementing this calculation.

We have implemented the optimization procedure in MATLAB and we made the source

code available via the following public access repository: http://infodyn.sourceforge.net.

For certain models we can also make analytical progress by exploiting spectral represen-

tations of the joint distribution, as shown in Chapter 1.

A.1.1 Numerical computation of the joint distribution

For numerical computation in MATLAB, it is useful to rewrite Eq. A.6 in terms of

matrix operations. To that end, we define (note that X and Z are 0 − 1 matrices –
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whose elements are 0 or 1, as per Eq. A.7)

Xx′,y′ ≡ P (x′|y′) (A.7)

Gy′,y0 ≡ P (y′|y0) =
[
e−tL

]
y′,y0

(A.8)

Py0,y ≡ P0(y0)δy0,y (A.9)

Zy,z ≡ P (z|y). (A.10)

This allows us to write Eq. A.6 compactly as

P (x′, z) =
∑
y′

Xx,y′
∑
y0

Gy′,y0
∑
y

Py0,yZy,z (A.11)

= [XGPZ]x′,z (A.12)

that is how the equation is implemented in MATLAB.

A.1.2 Analytical calculation of the joint distribution

For analytic calculations, it is useful to expand P (y′|y) in Eq. A.6 in terms of its spectral

representation (Eq. A.2):

P (x′, z) =
∑
α

∑
y′,y

P (x′|y′)P (z|y)e−λαtvα(y′)uα(y)P0(y)

=
∑
α

e−λαt

∑
y′

P (x′|y′)vα(y′)

(∑
y

P (z|y)uα(y)P0(y)

)

=

∑
y′

P (x′|y′)P∞(y′)

(∑
y

P (z|y)P0(y)

)
+

+
∑
α>1

e−λαt

∑
y′

P (x′|y′)vα(y′)

(∑
y

P (z|y)uα(y)P0(y)

)

≡ P∞(x′)P0(z) +
∑
α>0

e−λαtṽx
′
α ũ

z
α (A.13)
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where

P∞(x′) ≡
∑
y′

P (x′|y′)P∞(y′) (A.14)

P0(z) ≡
∑
y

P (z|y)P0(y) (A.15)

ṽx
′
α ≡

∑
y′

v(y′)αP (x′|y′) (A.16)

ũzα ≡
∑
y

uα(y)P0(y)P (z|y). (A.17)

Writing P (x′, z) in this form makes it clear that, if the eigenvalues are distinct and thus

P (y′|y) is diagonalizable, then P (x′, z) factorizes as t→∞ and thus I[xt, z0]→ 0. Also

clear is that P (x′, z)−P∞(x′)P0(z) is expressible as a sum of time-decaying exponentials.

Since P (x′|y′) and P (z|y) are 0− 1 matrices, in many cases ṽα and ũα can be calculated

explicitly, as shown below.

A.2 Optimization procedure

We optimize over the parameters of each model in order to maximize I(τ) = I[xt=τ/λ, z0],

where τ is a dimensionless quantity that results from the rescaling procedure:

t→ t · λ ≡ τ,

where λ is the inverse of the system’s largest relaxation rate (the smallest nonzero

eigenvalue of the rate matrix L). The steps of the “rescale and optimize” procedure are:

while τmin < τ < τmax:

1. optimize I(τ ; θ) over parameters θ or parameters θ and initial distribution P0(y)

2. save I∗, θ∗, P ∗0

3. increment τ

end loop over τ

where

calculate I(τ ; θ):

1. calculate L(θ)
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2. calculate λ(L)

3. calculate P (x, z) = X exp(−τL/λ)PZ, as in Eq. A.12

4. calculate I[P (x, z)]

return I[P (x, z)] to optimization algorithm
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Figure A.1: An explicit construction of the optimal information curves
presented in Chapter 1, here shown for model A . The maximum value I∗(τ)
for each τ (red ∗) is obtained by optimizing the rates u and r at each τ . The
optimal rates can be different for each τ . The blue continuous curves show the
whole range of I(τ): each of them intersects a point (τI∗ , I∗(τ)) and is
computed by using the corresponding optimal set of rates.

The results are obtained as hull plots, as presented in Fig. A.1 for model A .





Appendix B

The energetic cost of information

transmission

B.1 Simplest model

B.1.1 Limit τ � 1

Here we detail the solutions of the equations presented in the small τ limit of the simplest

model in section 2.3.2. In the small dissipation limit we assume

γ∗ ' a0

τ
+ b0 + c0τ (B.1)

and find the coefficients of the expansion by solving dµ
dγ |γ∗ = 0 (with µ given by Eq. 2.39)

order by order in τ . The coefficient a0 = 0.96... is given by the solution of the transcen-

dental equation ea0 = 4
3(a0 + 1), while b0 and c0 are given respectively by

b0 = 1 +
−5− 2a0

6a2
0

= −0.25... and

c0 =
−75− 65a0 + 128a2

0 + 28a3
0

72a5
0

= 0.1...

Using Eq. B.1 for γ∗ gives

µ∗ '
√
σ̂(1 +A0τ +B0τ

2), (B.2)
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with

A0 =
−4e−a0 + 3

2a0
− 1 = −0.24... and

B0 = e−a0
−5−7a0+a20+6a30

3a40
+

10+4a0−a20−12a30+4a40
8a40

= 0.01...

Similarly, in the large dissipation limit we take

γ∗ ' a∞
τ

+ b∞ + c∞τ (B.3)

and following the same procedure as above with µ given by Eq. 2.43 we find a∞ = 1.68...

as the solution of the transcendental equation ea∞ = 2(a∞ + 1), while b∞ and c∞ are

given by

b∞ = 1 +
−2− a∞
a2
∞

= −0.31... and

c∞ =
−12− 12a∞ + 7a2

∞ + 3a3
∞

2a5
∞

= 0.07...

The effective magnetization is

µ∗ ' 1 +A∞τ +B∞τ
2, (B.4)

with

A∞ =
−2e−a∞ + 1

a∞
− 1 = −0.63... and

B∞ = 1
2 + (e−a∞ (−4−6a∞+2a2∞)+2+a∞−a3∞)

a4∞
= 0.23...

B.2 Adding feedback

B.2.1 Computing µ

In order to compute the effective magnetization µ in the presence of feedback, we recall

Eq. 2.25, which is valid in general and which relates the joint probability distribution

P (xt, z0) with µ. We then express P (xt, z0) as in Eq.2.13 in the main text:

P (xt, z0) =
∑

zt,x0=±1

P (xt, zt, t|x0, z0, 0)P (x0, z0), (B.5)

where P (x0, z0) is the initial distribution of the system, corresponding to the station-

ary state P∞ ≡ v1(x0, z0), while the conditional probability P (xt, zt, t|x0, z0, 0) can be
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written as

P (xt, zt, t|x0, z0, 0) =
4∑
i=1

e−λituTi (x0, z0)vi(xt, zt). (B.6)

vi denotes the i-th right eigenvector and uTi – the i-th left eigenvector and we make the

dependence on x and z explicit as we are going to exploit it in the subsequent algebraic

manipulations.

We recall the definitions of A and ρ

A = 1 + s+ y + α (B.7)

ρ =
√

(1 + s+ y + α)2 − 8(sy + α), (B.8)

and introduce the additional quantities

q =
1 + y − s− α

A
, (B.9)

m =
s+ α

2A
. (B.10)

We rewrite the right eigenvectors of Equations (2.68,2.69,2.70,2.71) as

v1(x, z) =
1 + qxz

4
(B.11)

v2(x, z) = mxz (B.12)

v3(x, z) = − 1+y−3k+α+ρ
8ρ

x− 1+y+s−3α+ρ
8ρ

z (B.13)

v4(x, z) = 1+y−3k+α−ρ
8ρ

x+ 1+y+s−3α−ρ
8ρ

z (B.14)

and define

h =
1 + y

s+ α
, (B.15)

a =
1

2
(1 + s− 3y + α− ρ), (B.16)

b =
1

2
(−3 + s+ y + α− ρ), (B.17)

c = 1− s+ y − α+ ρ, (B.18)

e =
1

2
(1 + s− 3y + α+ ρ), (B.19)

f =
1

2
(−3 + s+ y + α+ ρ), (B.20)

g = 1− s+ y − α− ρ. (B.21)
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Having done that, the left eigenvectors of Equations (2.72,2.73,2.74,2.75) now read

uT1 (x, z) = 1, (B.22)

uT2 (x, z) =
1− h

2
+

1 + h

2
xz, (B.23)

uT3 (x, z) =
ax+ bz

c
(B.24)

uT4 (x, z) =
ex+ fz

g
. (B.25)

Now, by plugging Eq. B.6 into Eq. B.5, we are able to write P (xt, z0) as

P (xt, z0) =

4∑
i=1

e−λitAi(z0)Bi(xt), (B.26)

where

Ai(z0) =
∑
x0±1

uTi (x0, z0)v1(x0, z0), (B.27)

Bi(xt) =
∑
zt±1

vi(xt, zt). (B.28)

Computing the terms Ai and Bi (with i = 1, . . . , 4) we obtain:

A1(z0) = 1/2, (B.29)

A2(z0) =
1

4

(
1− h+ (1 + h)qz2

0

)
, (B.30)

A3(z0) =
(b+ aq)z0

2c
, (B.31)

A4(z0) =
(f + eq)z0

2g
, (B.32)

and

B1(xt) = 1/2, (B.33)

B2(xt) = 0, (B.34)

B3(xt) = −xt(1− 3s+ y + α+ ρ)

4ρ
, (B.35)

B4(xt) =
xt(1− 3s+ y + α− ρ)

4ρ
. (B.36)
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Plugging in all the above expressions into Eq. B.26 we compute the effective magneti-

zation µ, which is

µ = exp

(
− A

2λ
τ

){
q cosh

( ρ
2λ
τ
)
−[

s2 − (1 + y)2 − 4α+ α2 + 2s(2y + α)
]

Aρ
sinh

( ρ
2λ
τ
)}

.

(B.37)

B.2.2 Numerical results: optimal rates

In this Appendix we show the optimal rates {s∗, y∗, α∗} resulting from numerical op-

timization in the model with feedback of Chapter 2. As discussed in the main text,

optimization is performed as two separates branches: one where we fix y ≥ α, and the

other one where we set y ≤ α. Results from both branches are shown in Figs. B.1 and

B.2.
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Figure B.1: Optimal rates {s∗, y∗, α∗} as functions of rescaled dissipation σ̂.
Values for τ = 0, τ = 0.07 and τ = 0.34 are shown at the top, center and
bottom, respectively. Results from the simulation branch with y ≥ α and with
y ≤ α are displayed on the left and on the right, respectively. These rates are
used to compute the optimal mutual information I∗ of Fig.2.10a.
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In Fig. B.1, we show the optimal rates as functions of rescaled dissipation σ̂, for different

values of delay τ . Such rates are used to calculate the optimal mutual information shown

in Fig. 2.10a in the main text.
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Figure B.2: Optimal rates {s∗, y∗, α∗} as functions of delay τ . Values for
σ̂ = 0, σ̂ = 0.23 bits and σ̂ = 5.77 bits are shown at the top, center and
bottom, respectively. Results from the simulation branch with y ≥ α and with
y ≤ α are displayed on the left and on the right, respectively. These rates are
used to compute the optimal mutual information I∗ of Fig.2.10b.

In Fig. B.2 we show the dependency of the optimal rates τ , for different values of σ̂.

These corresponds to the maximal mutual information I∗ shown in Fig. 2.10b in the

main text.



Appendix C

Robust optimization: MaxiMin

strategies

In this Appendix we derive the asymptotic behavior of u∗ as τ → 0 given in Eq. 3.13. In

general, the condition ∂µ(−1,u;τ)
∂u |u∗ = 0 in Eq. 3.11 results in a transcendental equation

for the auxiliary variable a = τ 1−2u
2u :

ea
∗

= 1 + a∗ +
2a∗2

τ
, (C.1)

which needs to be solved numerically. However, in the limit τ � 1 we can solve Eq. C.1

analytically.

When τ → 0, in order for the left hand side (l.h.s.) of Eq. C.1 to match the leading

order term 1/τ of the right hand side (r.h.s.) of Eq. C.1 , a∗ must be of the form

a∗ = − log τ + b. (C.2)

Hence Eq. C.1 becomes

eb

τ
= 1 + b− log τ +

1

τ
2(b− log τ)2. (C.3)

Multiplying both sides by τ gives

eb = (1 + b− log τ)τ + 2b2 − 4b log τ + 2(log τ)2. (C.4)

The leading order term of the r.h.s. for τ → 0 is 2(log τ)2, thus the above equation

becomes

eb ' 2(log τ)2, τ → 0,

97
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which implies that b has the form

b = log(2(log τ)2) + c. (C.5)

Plugging b into Equation C.4 we obtain

(2(log τ)2)ec ' 2(log τ)2 − 4(log(2(log τ)2) + c) log τ +

+ 2(log(2(log τ)2) + c)2 + . . . . (C.6)

and dividing by 2(log τ)2, we have

ec = 1− 2
log(2(log τ)2) + c

log τ
+ · · · ' e−2

log(2(log τ)2)
log τ ,

which finally implies that

c = −2
log(2(log τ)2)

log τ
. (C.7)

To sum up, when τ � 1 one can write a∗ as

a∗ ' − log τ + log(2(log τ)2)− 2 log(2(log τ)2)
log τ

= log
(

2(log τ)2

τ

)
− 2 log(2(log τ)2)

log τ (C.8)

When τ → 0, a∗ diverges as

a∗ ' log

(
2(log τ)2

τ

)
− 2

log(2(log τ)2)

log τ
, τ � 1 (C.9)

and u∗ goes to zero with τ in a strongly sublinear way:

u∗ ' τ

2(− log τ + log(2(log τ)2)− 2 log(2(log τ)2)
log τ )

, τ � 1. (C.10)
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