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Abstract 
Transmissible spongiform encephalopathies (TSEs) or prion diseases are caused 

by a post-translational conversion of the normal cellular form of the prion protein 

(PrPC) into the pathological and infectious isoform denoted as prion or PrPSc. PrPC 

has been shown as a high-affinity copper-binding protein, and to a lesser extent 

binding to other divalent cations through the octarepeat region (OR) and the non-

OR copper binding sites located in the disordered N-terminal domain. Studies on 

the role of copper in promoting prion conversion and infectivity yielded 

controversial results. In this work, we explored the role of histidine residues which 

are crucial for copper coordination in prion conversion using a combination of cell 

culture and cell-free approaches. The first evidence was derived from chronically 

prion-infected neuronal murine cells (ScN2a) transiently expressed in murine PrPC 

carrying artificial mutations at histidines located both at the OR and non-OR 

regions. We found that the lack of each histidine in the OR has neither effect on 

prion replication nor protein maturation and trafficking. Intriguingly, mutagenesis 

of histidine 95 (H95Y) does enhance prion conversion leading to de novo 

infectious material formation and cause aberrant accumulation during protein 

trafficking. Thus, we hypothesize that H95 could function as molecular switch for 

prion conversion, and copper bound to this residue may function in protein 

conformation stabilization. We also propose a cellular model for prion formation 

in cells expressing the H95Y mutant. Interestingly, our data may establish a 

platform for rationally designed experiments aimed at elucidating whether the 

H95Y mutation may cause de novo prion diseases in transgenic mice. 
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I. INTRODUCTION 

1. Prion diseases 

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a 

group of rare invariably fatal neurodegenerative diseases affecting human and other 

mammals (Prusiner, 1984). TSEs etiologically manifest as genetic, sporadic and 

infectious forms. They include Creutzfeldt-Jakob disease (CJD), inherited 

Gerstmann-Sträussler-Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI), and 

kuru in humans; bovine spongiform encephalopathy (BSE) of cattle, scrapie of sheep, 

chronic wasting disease (CWD) of deer and elk.  

Prion disorders are caused by the conformational conversion of the 

physiological cellular form of the prion protein (PrPC) to the pathological form 

denoted as scrapie or PrPSc. The neuropathological hallmarks of prion diseases are 

astrogliosis, spongiosis and neuronal death, with a generally quite long incubation 

time and diverse clinical symptoms. Once the symptoms appear, the disease 

progresses rapidly with motor dysfunction, cognitive impairment, and cerebral ataxia. 

Neither standard clinical tests for diagnostics nor effective treatments are available so 

far for prion diseases (Figure 1). 

 
Figure 1. Diagnostic procedures for sporadic Creutzfeldt–Jakob disease. Methods relying 
on PrPSc detection include brain and olfactory mucosa biopsies. Currently, examination of 
blood and urine does not provide diagnostic help. Adapted from (Zanusso and Monaco, 
2005). 

 

  



2 
 

2. The prion protein 

2.1. PrPC and its biosynthesis 

The prion protein (PrP) is conserved among species. It is normally expressed 

in all tissues and more prominently in the central nervous system. The physiological 

cellular form PrPC is largely localized on the outer leaflet of the plasma membrane via 

a GPI anchor, with two short beta-strands (β1 and β2) and three alpha-helices (α1, α2 

and α3) in structure (Surewicz and Apostol, 2011). This normal form of PrP is α-

helical, monomeric, soluble in non-denaturing detergents and protease (PK)-sensitive.  

The mammalian Prnp gene encodes a protein of approximately 250 amino 

acids that contains several distinct domains, including an N-terminal signal peptide 

that directs the protein to the endoplasmic reticulum (ER), a series of five proline- 

and glycine-rich octapeptide repeat (OR) region, a central hydrophobic segment, and 

a C-terminal hydrophobic region that is a signal for addition of a 

glycosylphosphatidylinositol (GPI) anchor (Surewicz and Apostol, 2011) (Figure 2). 

Like other membrane proteins, PrPC is synthesized in the ER and transits through the 

Golgi apparatus to the cell surface. After several post-translational modifications, the 

mature prion protein has 210 amino acids with molecular weight around 26-37 kDa 

depending on its glycosylation state. 

 
 

Figure 2. Schematic representation of Prnp gene and PrPC structure. The unstructured N-
terminal portion includes a signal peptide (residues 1–22), precedes a polybasic region 



3 
 

(residues 23–27, green) and five histidine-containing octapeptide repeats (residues 51–90, 
cyan). The central part of the molecule includes a positively charged region (residues 95–
111, dark gray) followed by a highly conserved hydrophobic domain (residues 111–130). The 
C-terminal domain encompasses two short β-strands (β1 and β2; residues 127–129 and 166–
168, yellow) and three α-helices (α1, α2 and α3; residues 143–152, 171–191 and 199–221, 
red). A C-terminal peptide (residues 231–254, black) is removed during biosynthesis, 
followed by attachment of a glycosylphosphatidylinositol (GPI) moiety. PrPC also contains 
two N-linked oligosaccharide chains (at Asn180 and Asn196) and a disulfide bond (between 
residues 178 and 231) (hereafter in mouse numbering).  

 

During its normal biosynthesis, PrPC undergoes post-translational 

modifications, including cleavage of the N-terminal signal peptide, addition of N-

linked oligosaccharide chains at two sites, formation of a single disulfide bond, and 

attachment of a GPI anchor (Haraguchi et al., 1989; Stahl et al., 1987; Turk et al., 

1988). The GPI anchor, which is added after the cleavage of the C-terminal 

hydrophobic segment, tethers the mature PrPC to the cell surface (Figure 3). The 

mature PrPC is found mostly in the cholesterol- and sphingolipid-rich membrane 

domains, also known as lipid rafts, which are detergent-resistant membrane domains 

with many important cellular receptors and other GPI-anchored proteins (Abid et al., 

2010).  

 
 

Figure 3. Steps in the biosynthesis of PrPC. mRNA is translocated from the nucleus and 
translated by ER-associated ribosomes into the precursor protein (1). During its biosynthesis, 
PrPC is subject to several post-translational modifications, including the N- and C- terminal 
signal peptide cleavage, the addition of N-linked oligosaccharide chains, which are high-
mannose type (2), the formation of disulfide bond and the GPI addition (3) in the ER. At the 
Golgi apparatus, the processes include further modification of oligosaccharide to produce 
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complex sugar type chains (4-5). Mature PrPC is then trafficked to the cell surface and 
attached to the outer leaflet via a GPI anchor (6-7). Adapted from (Abid et al., 2010). 

 

2.2. PrPC trafficking and other isoforms of PrP 

PrPC undergoes cyclic rounds of endocytosis (Shyng et al., 1993) with a 

transit time of around 60 min (Harris, 1999). The process occurs between the surface 

and the endocytic compartment and it can follow either clathrin-dependent pathways, 

or be mediated by “caveolae-like” domains (Shyng et al., 1993). From the cell 

surface, PrPC can be endocyted to internal endosomal compartments, delivered from 

early to late endosomes, and routed to lysosomes for degradation or recycled to the 

cell surface for ensuing cycles (Figure 4). Beyond the normal pathway, alternative 

forms of PrPC have been found in both cell cultures and in vivo. Recent studies 

suggest that PrP can acquire transmembrane topologies (CtmPrP and NtmPrP) or 

cytosolic form (cyPrP) (Hegde et al., 1998, 1999). PrP topologies and functions 

remain nevertheless obscure. 

 
 

Figure 4. Membrane trafficking in the cell. PrP is internalized via the raft-mediated route. 
The released clathrin-coated vesicles (CCVs) can undergo fusion with either other CCVs or 
with existing early endosomes to produce early endosomes. These are sorting endosomes 
from which proteins could be routed either for degradation via late endosomes and lysosomes 
or for recycling via recycling endosomes. PrP travels from the plasma membrane to the Golgi 
apparatus through early endosomes. Adapted from (Rajendran et al., 2012). 
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The transmembrane topologies occur when, along the biosynthetic pathway, 

PrPC is not fully translocated into the ER lumen and its hydrophobic domain (residues 

105-140) is inserted within the lipid bilayer of the ER compartments (Figure 5). The 

N-trans transmembrane (NtmPrP) has the N-terminus of the protein directed toward the 

ER lumen with the C-terminus accessible to proteases in the cytosol. Alternatively, in 

the C-trans transmembrane (CtmPrP) the C-terminus is in the ER lumen with the N-

terminus accessible to proteases in the cytosol. These species are generated in small 

amounts (below 10% of the total) as part of the normal biosynthesis of wild-type 

(WT) PrP in the ER. Their function still remains unclear, but they may play an 

important role in disease pathogenesis since the expression of CtmPrP in transgenic 

mice leads to pathological features similar to those of some inherited forms of prion 

diseases (Hegde et al., 1998). Like many proteins that traffic through the ER, a 

substantial fraction of PrP normally misfolds, is retrogradely transported to the 

cytosol, rapidly degraded by proteasomes and undetectable. However, when 

proteasome activity is compromised, PrP accumulates intracellularly to form cyPrP 

(Ma and Lindquist, 2001; Taraboulos et al., 1995), but it is not clear whether the 

cytosolic form is just a WT-PrP occasionally retained in the cytosol, or it serves any 

physiological function, or it is maybe associated with neuronal pathogenesis. There 

are multiple potential routes for cyPrP generation. It is conceivable that the access of 

PrP to the cytoplasm is the neurodegenerative trigger in at least some naturally 

occurring prion diseases.  
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Figure 5. Biosynthesis and localization of other prion protein isoforms. Most PrPC 
molecules are attached to the outer leaflet of the plasma membrane. However, PrP may 
acquire transmembrane topologies (CtmPrP and NtmPrP) or cytosolic (cyPrP) form. The N-trans 
transmembrane (NtmPrP) has the N-terminus of the protein directed toward the ER lumen with 
the C-terminus in the cytosol, while the C-trans transmembrane (CtmPrP) has the C-terminus 
in the ER lumen with the N-terminus in the cytosol. The cytosolic form of PrP (cyPrP) may 
arise from proteasome malfunction so the protein cannot reach the cell surface and then 
accumulate in the cytosol. Adapted from (Hegde et al., 1998; Ma and Lindquist, 2001). 

 

2.3. Putative physiological roles of PrPC 

PrPC is most abundantly expressed on neural cells including neurons and glia 

(Brown et al., 1990; Kretzschmar et al., 1986), as well as in hematopoietic cells 

(Burthem et al., 2001; Ford et al., 2002). Despite being highly conserved among 

mammals, the PrPC function has not found a unifying definition yet (Aguzzi et al., 

2008). Comparison of WT mice with PrP-knockout (KO) mice or derived cell lines 

has led to hypothesize PrPC functions in cell adhesion, enzymatic activity, signal 

transduction, copper metabolism, and programmed cell death. In the nervous system, 

PrPC is proposed to protect against ischemic trauma, apoptotic agents and reactive 

oxygen species (Chiarini et al., 2002; McLennan et al., 2004). Moreover, PrPC has 

been implicated in neuronal transmission (Collinge et al., 1994), neurite outgrowth 

(Chen et al., 2003), synaptic plasticity (Prestori et al., 2008), circadian rhythm (Tobler 

et al., 1996), maintenance of peripheral myelin (Bremer et al., 2010) as well as motor 
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behavior and memory (Nazor et al., 2007; Rial et al., 2009). PrPC performs important 

functions also outside the CNS, particularly in the immune system (Isaacs et al., 

2006). PrPC is promptly upregulated in activated T lymphocytes and is redistributed 

in lipid rafts, together with signaling molecules (Ballerini et al., 2006; Mattei et al., 

2004). Not only involved in adaptive immune responses, PrPC controls hematopoietic 

cell differentiation including the self-renewal of bone marrow progenitors (Zhang et 

al., 2006), thymic differentiation (Jouvin-Marche et al., 2006), and the repression of 

phagocytic activity in macrophages (de Almeida et al., 2005). 

Studies on PrP-KO mice showed that they display no major developmental or 

anatomical abnormalities and have a normal lifespan (Büeler et al., 1994). 

Nevertheless, some of these animals exhibit subtle phenotypic abnormalities at the 

behavioral and cellular levels (Steele et al., 2007). A consistent finding in all mice 

devoid of PrPC is their resistance to scrapie and their inability to propagate infectivity. 

The differences in phenotypic abnormalities observed in these KO mice may arise 

from the way in which disruption of PrP gene was achieved (Moore et al., 1999; 

Rossi et al., 2001).  

 

2.4. The pathological form of the prion protein (PrPSc)  

The pathological isoform of PrP, known as PrP scrapie (denoted as PrPSc), has 

distinct characteristics from the physiological form PrPC. Although sharing the same 

sequences, the two isoforms of the prion protein bear several biophysical differences. 

PrPSc shows a high content of β-sheets, tends to aggregate to form amyloid plaques 

and cause toxicity, is insoluble in non-denaturing detergents and partially resists to 

PK digestion. The PK-resistance is often used to distinguish the pathological isoform 

from the physiological form (Table 1). All available evidence indicates that 

conversion of PrPC into PrPSc is conformational rather than covalent, due to their 

similar primary amino acid sequence and probably the same post-translational 

additions (Prusiner et al., 1998; Stahl et al., 1993). PrPSc accumulates in scrapie-

infected brains while PrP mRNA levels remain unchanged (Oesch et al., 1985). The 

conformational change involves a substantial increase in the amount of β-structured 

motifs of the protein, with possibly a small decrease in the amount of α-helices 
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(Gasset et al., 1993; Pan et al., 1993; Safar et al., 1993). Although a tertiary structure 

of PrPSc has not been well established yet, this isoform is suggested to undergo 

primarily changes in the unstructured N-terminal half of the protein, including folding 

of a portion of the N-terminal tail from residues 90 to 121 (and possibly part of the 

first α-helix) into β-turn (Peretz et al., 1997). Solving the actual structure of PrPSc is 

clearly a key challenge in the prion field. It would be very useful to elucidate how this 

structure is derived from the α-helical PrPC conformation and to explain the existence 

of several “prion strains” related to different TSEs. 

 

Properties PrPC PrPSc 

Isoform 

Protease resistance 

Location 

Solubility 

PK-sensitivity 

α-helices 

β-sheets 

Glycoforms 

 

Infectivity 

Turnover 

Monomers 

No 

Plasma membrane 

Soluble 

Sensitive 

45% 

3% 

Mixture of un-, mono-, and 

diglycosylated forms 

No 

Hours 

Multimeric aggregates 

Stable core (residues 90-231) 

Intra- or extracellular 

Insoluble 

Partially resistant 

30% 

45% 

Mixture of un-, mono-, and 

diglycosylated forms 

Yes  

Days 

 

Table 1. Biochemical and biophysical characteristics of PrPC and PrPSc 

 

The prion neuropathology includes neuronal loss, formation of vacuoles 

in the gray matter, astrogliosis and amyloid deposits in the brain, leading to 

neurodegeneration. Although prions are widely thought to exert a destructive effect 

predominantly within the CNS, the exact cause of their neurotoxicity remains unclear. 

Yet it is established that PrPC is required for prion replication, as mice devoid of PrPC 

are resistant to prion infection. Moreover, dimeric PrPC was found to efficiently bind 

to PrPSc (Meier et al., 2003), suggesting that prion conversion somehow depends on 
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PrPC. Although protein misfolding and aggregation are undoubtedly associated with 

neurodegeneration and diseases, the mechanism by which misfolded aggregates 

produce neuronal death is unknown. Direct PrPSc toxicity might be mediated by 

membrane disturbances, which could have effects on neuronal homeostasis, 

intercellular contacts, synaptogenesis, synapse functions and axonal transport. 

Indirect effects may arise from perturbations of glial functions. The accumulation of 

PrPSc aggregates may corrupt PrPC functions upon conversion to PrPSc. In addition, 

ER stress and oxidative stress are involved in the mechanism for neurodegeneration 

in prion diseases, or the combination of multiple mechanisms might contribute to the 

pathology. 

 

3. The “protein-only” hypothesis and the mechanism for prion conversion 

The first origin for transmissible spongiform encephalopathies (TSEs) was 

accidentally discovered in 1937, when a population of Scottish sheep was inoculated 

against a common virus with a formalin extract of brain tissue derived from an animal 

with scrapie. In 1966, transmission of kuru in humans was demonstrated among 

members of the cannibalistic tribes of New Guinea. Initially, the causing agent was 

thought to be a slow virus, because of the long incubation time from the first exposure 

to the pathogen to the symptoms onset. However, further studies indicated that this 

agent was significantly different from viruses or other conventional organisms. In 

1967, Alper and his colleagues demonstrated that the causing agent was not destroyed 

by normal treatments that destroy nucleic acid, such as ionizing radiation or 

ultraviolet (Alper, 1993; Alper et al., 1967), and the infectious material was too small 

to be a virus or another type of microorganism (Alper et al., 1966). The “protein-

only” hypothesis, first elaborated by Griffith in 1967 to explain Alper’s findings, 

proposed a protein could act as the infectious agent that causes scrapie (Griffith, 

1967). But little research was done to test this hypothesis until 1982, when Prusiner 

and coworkers pioneered an impressive set of discoveries for the prion hypothesis, 

and coined the term PRION to refer to this proteinaceous infectious agent (Prusiner, 

1982) (Figure 6). 
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Figure 6. A timeline representation of the milestones in the prion hypothesis. Adapted 
from (Abid et al., 2010). 
 

3.1. Models for prion replication 

Many decades since its first discovery, the mechanism of conversion from 

physiological PrPC to pathological PrPSc still remains enigmatic. Although the 

formation of PrPSc is accompanied by neurodegeneration in prion disease, PrPSc is not 

intrinsically neurotoxic. It needs the presence of PrPC in host cells for the pathology 

to occur. Two models have been proposed to explain the mechanism by which the 

pathological isoform PrPSc could induce the normal cellular form PrPC to acquire a 

misfolded conformation (Figure 7).  

The “refolding” or template assistance model proposes the interaction 

between exogenously introduced PrPSc and endogenous PrPC, which is induced to 

transform itself into further PrPSc. A high energy barrier exists that prevents the 

spontaneous conversion of PrPC into PrPSc, thus, the interaction may occur with the 

presence of “protein X”, an unknown chaperone–like protein that facilitates this 

process (Telling et al., 1995).  

The “seeding” or nucleation-polymerization model postulates that PrPC and 

PrPSc are in a reversible thermodynamic equilibrium. In physiological state, the 
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equilibrium could be shifted toward the PrPC conformation, such that only a minute 

amount of PrPSc would co-exist with PrPC. The pathological conformation is 

stabilized only if several monomeric PrPSc are organized into highly ordered seeds, 

and PrPSc could be further recruited and eventually aggregated to form amyloid 

assemblies. The fragmentation of amyloid aggregates increases the number of 

replication units, which can recruit further PrPSc and thus results in an apparent 

replication agent (Glatzel and Aguzzi, 2001). 

 
 

Figure 7. Models for prion replication (A) The “template assistance model” proposes the 
interaction between exogenous PrPSc and endogenous PrPC whereas in (B) the “nucleation-
polymerization model” postulates the imbalance of PrPC–PrPSc equilibrium that causes the 
aggregation of PrPSc. Adapted from (Aguzzi and Calella, 2009). 

 

3.2. Factors involved in prion conversion 

Some evidence supports the existence of a conversion factor in the prion 

replication process (Figure 8). This evidence was derived from studies in which 

transgenic mice expressing both human and mouse PrPC were challenged with human 

prions. Interestingly, while mice expressing only human PrPC (HuPrPC) developed the 

disease after human PrPSc inoculation, mice co-expressing both proteins resisted prion 

replication (Telling et al., 1994). This suggested that mouse PrPC (MoPrPC) was able 
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to inhibit the conversion when co-expressed with HuPrPC by binding to an additional 

factor. Further studies showed the presence of a factor, termed protein X, able to bind 

to the C-terminal end of PrPC (Kaneko et al., 1997a). The list of PrPC-binding 

molecules continues to grow, and it is important to determine whether these 

molecules also interact with PrPSc, and characterize the effects of these interactions 

on PrPSc formation. As crucial co-factors, the laminin receptor or its precursor have 

been shown to play an important role in PrPSc formation in mouse hypothalamic GT1 

cells infected with the Chandler scrapie strain. Although it is unclear how 

glycosaminoglycans (GAGs) affect PrPSc biogenesis, it is supposed that GAGs might 

bind to both PrPC and PrPSc and induce the conversion (Krammer et al., 2009; Lee et 

al., 2007). Also there is evidence for nucleic acids such as RNA to be involved in 

prion replication. The first evidence that RNA might play a role in PrPres formation 

was the finding that pancreatic RNase inhibits PrPres amplification in a dose-

dependent manner (Deleault et al., 2003). In vitro PrPres amplification was also 

abolished by purified RNaseA and RNaseT1. PrP molecules are known to traffic to 

various cell compartments where RNA is normally localized, such as the cytoplasm 

and nucleus, or even a fraction of PrP molecules exist in a transmembrane form with 

a cytoplasmic domain (Hegde et al., 1998) that allows the interaction to occur. 

Moreover, RNA molecules might enter the extracellular space as a result of cell death 

or active transport. Investigating whether RNA participates in PrPSc formation in 

living cells and animals, as it appears to do in vitro, will be an important avenue for 

research in the future (Supattapone, 2004). Metal ions, especially copper ions, have 

been implicated to have roles in prion replication, but it is unclear whether these ions 

inhibit or promote the procedures with intriguing results (Bocharova et al., 2005; 

Lehmann, 2002; Quaglio et al., 2001; Sigurdsson et al., 2003; Thompson et al., 2001). 
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Figure 8. Factors involved in prion conversion. Pathogenic mutations, modifications, co-
factors could impact the conformational conversion of PrPC into PrPSc, which is crucial in 
prion pathology. Adapted from (Zhou and Xiao, 2013). 
 

3.3. Putative sites for prion conversion 

Many putative sites of PrPSc synthesis have been proposed by analyzing the 

patterns of distribution for PrPC and PrPSc in infected cells. The cellular pathways 

involved in the formation of PrPSc are summarized in Figure 9. PrPSc is produced from 

the host PrPC as a result of a conformational change involving increased β-sheet 

structure in the polypeptide chain. The interaction between exogenous PrPSc and 

endogenous PrPC may take place in detergent-resistant rafts on the plasma membrane 

and/or in endosomal organelles. Once generated, PrPSc is metabolically stable and 

becomes localized partly but not exclusively in intracellular organelles, perhaps 

endosomes and lysosomes, which may be the sites where the N-terminus of the 

protein is proteolytically cleaved (Caughey et al., 1989, 1991a). Taken together, the 

results obtained for prion conversion sites greatly vary depending on the cellular 

models used. Prion conversion possibly occurs via multiple pathways. 
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Figure 9. Model of biogenesis and accumulation of PrPres in scrapie-infected cells. In the 
infectious manifestation of prion diseases, extracellular PrPSc in the form of a prion particle 
interacts with PrPC on the cell surface, possibly in detergent-resistant rafts, catalyzing its 
conversion to PrPSc. Conversion may also occur after uptake of the proteins into an 
endosomal compartment. Once PrPres is made, it can accumulate on the cell surface, in 
intracellular vesicles and aggresomes, or in extracellular deposits. Adapted from (Caughey et 
al., 2009). 
 

3.4. Transmission of protein misfoding 

The prion-like conversion phenomenon could contribute to transmit the 

pathological misfolded conformation between proteins, within cells and tissues and 

among individuals. Thus, transmission by infectious proteins can be regarded at 

different stages (Moreno-Gonzalez and Soto, 2011) (Figure 10). 

At the molecular level, misfolded proteins can propagate and induce the 

conformational changes in the native proteins, as the seeding-nucleation model 

proposes, modifying normal protein functions and inducing cellular stress and 

damage. 

From one cell to another, misfolded aggregates come into contact with the 

native protein in the neighboring cells via several cellular pathways. Misfolded 

proteins can accumulate intra- or extracellularly. Intracellular aggregates are usually 

encapsulated in so-called aggresomes that could help in the recruitment of protein 

aggregates, which are then targeted to elimination by macro-autophagy and 

degradation into lysosomes. Both autophagosomal and lysosomal vesicles can spread 
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aggregates within the cell and act as a reservoir for misfolded proteins. Moreover, 

lysosomal proteolysis could provide more fragmentation of large aggregates leading 

to the seed amplification. Cell-to-cell transmission of intracellular aggregates requires 

their release to the extracellular space. Exosomes are assembled in cytoplasmic 

organelles, known as multivesicular bodies, and secreted via exocytosis. Released 

exosomes can then fuse with other cells and exchange to deliver their content, 

contributing to spread protein misfolding.  

Another potential spreading mechanism of misfolded aggregates is via 

tunneling nanotubes. Tunneling nanotubes are thin membranous bridges between 

cells for intercellular long distance communication to transfer organelles, vesicles, 

plasma membrane and cytoplasmic molecules (Rustom, 2009). Tunneling nanotubes 

have been implicated in propagation of endogenous PrP between dendritic cells and 

uninfected neurons (Gousset and Zurzolo, 2009; Gousset et al., 2009). Since PrPC is a 

membrane protein, cell-to-cell spreading may occur by direct contact between the 

misfolded proteins in one cell with the natively folded protein in the neighboring 

cells. 

Individual-to-individual transmission can occur through vertical or 

horizontal routes. Horizontal transmission may involve exposure through 

contaminated surgical tools, organ transplant, human hormone treatment or blood 

transfusion. All these routes have been demonstrated in the transmission of prion 

diseases in humans (Brown et al., 2000). It is well established that BSE can be 

transmitted to humans, inducing the fatal variant CJD (Scott et al., 1999). Prion 

diseases could be acquired through exposure to or intake of contaminated tissues or 

fluids and consumption of infected food derived from afflicted animals. Another route 

for host-to-host transmission is the vertical infection from parents to their offspring. 
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Figure 10. Transmission of protein misfolding between molecules, cells and individuals. 
Prion-like transmission of protein misfolding may operate at various levels, including 
molecule-to-molecule, cell-to-cell and host-to-host. Propagation of the pathological 
conformational changes and downstream effects to cells, tissues and the entire individual 
appears to be a universal property of misfolded protein aggregates. Adapted from (Moreno-
Gonzalez and Soto, 2011). 
 

4. Metal ions and neurodegenerative diseases 

Transition metal ions like iron, copper, zinc, manganese etc. are essential for 

life, but they are also involved in several neurodegenerative mechanisms such as 

protein aggregation, free radical generation and oxidative stress. Almost all living 

organisms require transition metals for essential metabolic processes to function 

properly. In the nervous system, iron is required to support the brain’s high 

respiratory rate as well as for myelination, gene expression and neurotransmitter 

synthesis; copper is also required for mitochondria respiration, neurotransmitter 

biosynthesis and as a cofactor for antioxidant enzymes. 

Although metal ions are important for life, they can induce free radicals that 

cause neurotoxicity in several neurodegenerative conditions. Neurodegenerative 

diseases affect the nervous system and share common features such as selective 

neuronal death, protein aggregation, oxidative stress, mitochondria dysfunction, 

transition metal accumulation and inflammation. These elements have been proposed 

to contribute to neurodegenerative disorders based on the observations that patients 

with neurodegenerative diseases have alterations of metal levels in their nervous 

systems. Some studies show that metals such as iron and copper play an important 
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role in protein aggregation and therefore are likely to link the two pathological 

processes of protein aggregation and oxidative stress (Gaeta and Hider, 2005). 

The prion-metal relation was first reported in the early 1970s when the copper 

chelator cuprizone was found to induce spongiform changes in the brain of treated 

mice, which are similar to those induced by scrapie (Pattison and Jebbett, 1973). 

Later on, several studies on the concentrations of metals in mice affected by prion 

disease demonstrated the alterations of copper, manganese and iron levels in brain, 

liver and blood (Brown, 2001; Lehmann, 2002; Thompson et al., 2001). Recent 

reports suggest that imbalance of brain metal homeostasis is a significant cause of 

PrPSc-associated neurotoxicity (Singh et al., 2010). Indeed, oxidative stress events in 

the brain (lipid peroxidation, decrease in neuronal nitric oxide synthase activity) are 

detectable in prion disease in both infected animals and cultures (Guentchev et al., 

2000; Lehmann, 2002). Proposed hypotheses include a functional role for PrPC in 

metal metabolism, and loss of this function due to protein misfolding and as the cause 

of brain metal imbalance. PrPC-metal interaction may induce oxidative damage and 

also promote the conversion of PrPC to a PrPSc-like form, but only limited information 

is available on PrP-metal interaction and its implications on prion disease 

pathogenesis (Bush, 2000; Davies et al., 2008; Singh et al., 2010). Studies on the 

interaction of PrPC with metals have been based both on in vitro and in vivo models. 

In vitro studies have been more revealing due to the simplicity and accuracy of the 

readout, whereas in animal models, metal metabolism is complex and the interaction 

of individual proteins with metals is often missed due to low affinity or their transient 

nature (Singh et al., 2010). In vitro studies using refolding full-length recombinant 

PrP or its fragments, have led to many important findings regarding PrP-metal 

interaction. PrP can bind to several divalent cations but the protein highly selectively 

binds to copper at the conserved octapeptide repeat (OR) region with high affinity. It 

is crucial to study the interaction of PrPC with metals to understand the physiological 

and pathological implications of this interaction in prion pathogenesis. 
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4.1. Copper (Cu) 

Copper is an essential trace element, which is required as a catalyst for 

multiple enzymatic reactions. Since it can exist in multiple redox states, an imbalance 

in copper homeostasis can lead to several detrimental effects. Free Cu rarely exists in 

organisms; it is always found to be bound to proteins and in highly regulated uptake, 

sequestration and excretion. When this highly regulated state is disturbed, it can cause 

CNS disorders, such as Wilson’s disease, Menkes disease, Alzheimer’s disease and 

prion diseases (Hung et al., 2010; Scheiber et al.; Zatta et al., 2009). The link between 

Cu and TSEs arises from studies showing administrations of cuprizone to mice 

caused a spongiform degeneration of the brain similar to scrapie (Pattison and 

Jebbett, 1973; Sigurdsson et al., 2003). Indeed, the ORs of PrPC can bind Cu within 

the physiological concentration range (Brown et al., 1997a; Kramer et al., 2001), 

suggesting that PrPC may play a role in Cu metabolism in the normal brain. Since Cu 

ions have been proved to stimulate the endocytosis of PrPC (Pauly and Harris, 1998), 

it could serve as a recycling receptor for uptake of Cu ions from the extracellular 

milieu. Recently, the demonstration that there is free Cu in synaptic clefts, also where 

PrPC has been found at high concentration, emphasized a further role for PrPC in Cu 

homeostasis and redox signaling at synapse (Herms et al., 1999; Hung et al., 2010). 

Cu binds to PrP at four ORs in the unstructured N-terminal half of the protein and the 

non-OR or “fifth site” region preceding the highly conserved PrP hydrophobic core 

has been identified to involve histidine (His) 95 and 110. The affinity of PrPC for 

copper is higher compared to zinc, since even a large excess of zinc cannot displace 

copper from the OR (Jackson and Collinge, 2001; Walter et al., 2007). 

4.2 . Zinc (Zn) 

Zinc can also bind to the OR region and His 95 of PrP, though with a lower 

affinity than Cu. The interaction of Zn2+ with PrP has an important implication, 

because about 5-15% of the total Zn2+ content of the brain is present at the pre-

synaptic vesicles level (Weiss et al., 2000) and the release of Zn2+ into the synaptic 

cleft, together with the localization of PrP near neuronal synapses, proposed the link 

between PrP-Zn at synapses. PrP can be a candidate in maintaining Zn2+ homeostasis 

by serving as a Zn2+ transporter. Indeed, in cell models, at physiological levels, Zn 
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can alter the distribution of PrPC-bound Cu and stimulates the protein endocytosis 

(Watt and Hooper, 2003). These observations indicate that the interaction of PrPC 

with Zn may be more significant given the relative abundance of this metal in the 

brain (Qin et al., 2002; Walter et al., 2007; Watt and Hooper, 2003). Jobling et al. 

showed that both Cu2+ and Zn2+ can enhance in vitro aggregation of PrP derived 

peptide 106–126 and chelation of the metals prevents the aggregation (Jobling et al., 

2001). While studies conducted on peptides showed an enhancing effect of this ion on 

protein aggregation, experiments on full-length protein demonstrated that Zn2+ can 

prevent conversion to fibril amyloid forms, although this effect was more pronounced 

in the case of Cu2+ (Wadsworth et al., 1999). However, the role of zinc on prion 

formation remains obscure. 

4.3 . Iron (Fe) 

Iron is probably one of the most important metals required for survival. The 

transportation of Fe in and out of the cells must be tightly regulated in physiological 

systems since Fe exists in two oxidation states (non-toxic ferric Fe3+ and highly toxic 

ferrous Fe2+) and, therefore, its free form can generate oxidative stress (Kaplan, 2002; 

Thompson et al., 2001). The interaction of PrPC with Fe indicates a functional role for 

PrPC in cellular iron uptake and transport (Basu et al., 2007; Singh et al., 2009). PrPC 

influences the cellular Fe pool within a tightly regulated mechanism of Fe uptake, 

transport, and utilization (Singh et al., 2009). PrPC has been demonstrated to influence 

Fe metabolism in cells expressing normal and mutant PrP forms and in PrP-KO mice 

model (Petersen et al., 1996; Singh et al., 2009). PrPC does not mediate the efflux of 

excess Fe from cells, confirming its role as an Fe uptake protein (Singh et al., 2009). 

But it is unclear whether PrPC mediates Fe uptake using a novel pathway or by 

interacting with the conventional pathway of Fe uptake and transport. PrPC has been 

hypothesized to influence Fe uptake by interacting with the transferrin or transferrin 

receptor pathway (Waheed et al., 2002), or function as a ferric reductase to facilitate 

the transport of ferric iron from endosomes to cytosolic ferritin (Singh et al., 2009). 

Deletion of PrPC in PrP-KO mice induces Fe deficiency by decreasing the transport 

efficiency from the intestinal lumen to the blood stream, and the uptake from the 

blood by parenchymal cells and cells of the hematopoietic lineage. Re-expression of 
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PrPC corrects the Fe deficiency in these mice, confirming the functional role for PrP 

in Fe uptake (Singh et al., 2009). An important question that remains unanswered is 

the binding site and the affinity of PrPC for Fe. In vitro experiments using 

recombinant PrP and its fragments indicate that the OR region of PrPC is not essential 

for Fe binding, and the Fe and Cu binding regions of PrPC do not overlap (Singh et 

al., 2010).  

4.4 . Manganese (Mn) 

Manganese is also an essential trace element crucial for survival whose 

imbalance can cause detrimental disorders of the CNS (Dobson et al., 2004). Mn can 

bind to PrPC probably at the C-terminal region between residues 91-230 or 

overlapping with the copper binding site at His 95 (Brazier et al., 2008; Treiber et al., 

2007). Cu and Mn bind to different histidine residues within the fifth site in the full-

length protein. When studying the truncated mutant PrP (90-231) this preference is 

probably lost, as occupancy of the fifth site by one metal excludes binding of the 

other at this site. This implies a change in coordination of both metals within the fifth 

site in the truncated protein. The affinity of PrP for Cu is much higher than for Mn 

(Jackson and Collinge, 2001), but Mn could occupy Cu binding sites and compete 

equivalently for these sites (Brown et al., 2000). Mn bound to PrP becomes oxidized 

and is able to displace Cu that already bound to the protein. Studies have shown that 

mice infected with PrPSc have increased Mn and decreased Cu content, suggesting 

that in prion infection, altered metal content could be the initial sign of infection, or it 

could be due to the infection itself (Thackray et al., 2002). Recombinant PrP, when 

refolded in the presence of Mn, can transform to a PK-resistant but not pathogenic 

form (Brown et al., 2000). Protein with Mn bound is able to initiate seeded 

polymerization of metal-free prion protein (Lekishvili et al., 2004). Initially, Mn 

binding does not result in an altered conformation, but over time, the protein is more 

susceptible to oxidative damage that possibly changes the structure of the protein 

(Tsenkova et al., 2004).  

  



21 
 

Taken together, the interactions of PrPC with different divalent metal ions 

share some of features: 

(1) Binding sites in the OR and/or non-OR regions site at His 95/ His110 

(2) Linkage between PrPC expression, function and metal ions 

(3) Conformational effects 

(4) Related to PrPSc formation 

The effects of metal ions on prion protein are summarized in Table 2. The 

prion protein may serve as a buffer against metal imbalances that neuronal cells 

encounter during stress conditions. However, since PrP must bind to metal ions 

within certain physiological concentrations, once metal concentration gets over the 

threshold level, PrP adopts an altered conformation reminiscent of the protease-

resistant PrPSc form. Limited studies make it difficult to explain the underlying 

molecular and cellular mechanisms of these abnormalities. Further studies are 

necessary to fully understand this phenomenon. 

 

 

Copper 

 Superoxide dismutase-like activity 

 Stimulates endocytosis; increases protein turnover 

 Converts into PK resistant forms distinct from scrapie 

 Delays onset of disease 

 Inhibits conversion into amyloid fibrils 

 Regulates expression and metabolism 

Zinc  Induces rapid turnover of PrP 

 Critical for PrP(106–126) aggregation and neurotoxicity 

Iron  Formation of PrPres with PMCA 

Manganese  Amplifies aggregation of PrP; pro-aggregatory effect 

 Formation of PrPres with PMCA 

 Increases resistance to proteinase K digestion 

 

Table 2. Summary of metal effects in prion protein. Adapted from (Choi et al., 2006). 
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5. Copper and prion diseases 

A link between copper and prion diseases was first proposed in 1973, when 

Pattison and Jebbett noticed that cuprizone caused a similarity in the histopathology 

of scrapie-infected mice. 

5.1. Copper binding in PrPC 

It is well established that PrPC binds to Cu ions both in vitro and in vivo 

(Brown et al., 1997b; Hornshaw et al., 1995; Viles et al., 1999; Whittal et al., 2000). 

Our understanding of the number, location, structure, affinity and cooperativity of the 

Cu binding sites in PrP continues to expand in the literature. Although the proposed 

binding affinities differ, most would agree that Cu binds specifically to the OR region 

in the flexible N-terminus of PrP (Aronoff-Spencer et al., 2000; Hornshaw et al., 

1995); however, other sites in the C-terminus of PrP have also been intriguingly 

identified as potential Cu binding regions. 

 Octapeptide repeat (OR) domain 

Hornshaw et al. first suggested that PrPC binds Cu2+ (Hornshaw et al., 1995). 

The area of the protein first implicated in this activity is the so-called OR region 

composed of multiple tandem copies of the eight-residue sequence PHGGGWGQ. 

The OR domain is in the unstructured flexible N-terminal portion of the protein but it 

can acquire some rigid structures after metal binding. This region spans 

approximately from residues 60 to 90, with variations arising from different species 

and the number of ORs. PrP sequences from most species carry four or five copies of 

this segment. The histidine-glycine-rich sequence is similar to other histidine-rich 

sequences in other cupro-proteins (Hornshaw et al., 1995). Interestingly, across 

species, the OR domain is among the most highly conserved regions of the PrP 

sequence (Wopfner et al., 1999), indicating a correlative role between Cu and PrP 

(Figure 11). 

The OR domain takes up approximately six Cu ions, each with a dissociation 

constant varying from the micromolar to nanomolar range at pH 7.4. Each OR can 

bind up to one equivalent of Cu2+ under saturating conditions, and the complete OR 

region can bind 3-6 Cu2+ with an apparent binding affinity for Cu2+ in the micromolar 

range (Whittal et al., 2000). This domain is highly selective for Cu2 (Hornshaw et al., 
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1995; Stöckel et al., 1998a; Whittal et al., 2000). The binding of metals to the OR 

region is quite pH-dependent, with only two Cu ions found at pH 6.0 (Miura et al., 

2005; Whittal et al., 2000). It has been shown that at pH 5.5, the full-length PrP is 

capable of binding two Cu2+ ions with coordination from multiple histidine imidazole 

groups. The binding mode at pH 5.5 is similar to that occurring at neutral pH at low 

Cu2+ occupancy, even though at maximum Cu2+ coordination is very different (Wells 

et al., 2006). 

 

Figure 11. Matrix of the number of variations in mammals as compared to the human 
PrP for amino acid residues 23-231 (68 mammalian species have been included). Upper 
columns delineate amino acid substitutions; lower columns represent insertions and deletions; 
triangles indicate octarepeat insertions (depicted to scale for number of species, but not for 
the exact localization). Adapted from (Wopfner et al., 1999). 
 

The imidazole ring of histidine residue, present in the PHGGGWGQ repeat, is 

an avid metal ion binder and is certain to participate in Cu2+ coordination. Modeling 

studies identified a conformation in which the second and third Gly following the His 

participated in the coordination sphere (Figure 12). The minimal sequence HGGGW 

bound a single Cu2+ and captured all the electron paramagnetic resonance (EPR) 

spectral features of the full four-repeat domain with four bound Cu ions. The number 

of Cu ions is taken up in a 1:1 fashion. These findings demonstrated that HGGGW 

constitutes the fundamental copper-binding unit in the OR domain (Aronoff-Spencer 

et al., 2000). 
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Figure 12. Chemical details of the Cu2+-octarepeat interaction (top panel), determined 
from electron paramagnetic resonance (EPR) constraints, and the X-ray crystal structure 
(bottom panel) of the Cu2+-HGGGW complex. Adapted from (Millhauser, 2004). 
 

Copper binding affinity, as reflected by the dissociation constant Kd, has been 

demonstrated in the low micromolar to nanomolar range with controversial data 

(Krammer et al., 2009; Whittal et al., 2000). At low-Cu2+ occupancy, which favors 

multiple His coordination (component 3 spectrum), a single Cu2+ coordinates through 

multiple His side chains with a Kd of 0.12 nM. At high copper occupancy, the 

component 1 spectrum dominates and reflects the interaction with a single His and 

de-protonated amide side chains with a Kd in the range 7.0 μM to 12.0 μM. 

Component 2 is an intermediate state in which each Cu2+ is coordinated by two His 

residues, thus forming large intervening loops. Potentiometric titrations identify 

distinct de-protonated binding states depending on the ratio of Cu to OR (Valensin et 

al., 2004). PrPC binds Cu with several unique coordination modes (Figure 13) 

(Chattopadhyay et al., 2005). It is certainly possible that each mode exhibits distinct 

characteristics with regard to prion conversion. 
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Figure 13. Distinct octarepeat Cu2+ binding modes with three, two, or one coordinated 
His residues, respectively. Low Cu2+ occupancy favors component 3; high occupancy favors 
component 1. Adapted from (Chattopadhyay et al., 2005). 
 

 The non-OR or fifth copper-binding site 

Treatment of PrPSc with protease-K (PK) removes approximately from residue 

90 but without loss of infectivity, suggesting that the OR domain does not play a role 

in TSEs. Recent studies show that addition of Cu to PrPC converts the protein to a 

partially PK-resistant state, and this conversion requires only a single Cu binding site 

(Quaglio et al., 2001). Studies by Qin (Qin et al., 2002) and Millhauser (Millhauser, 

2004) demonstrate that another Cu binding beyond the PK cleavage site takes place at 

His 95, which is outside the OR region (Figure 14).  

 
Figure 14. Protease-resistance fragment formation. PK treatment cleaves the protein at 
residue 90 and the PK-resistant fragment (residues 90-231) remains, including the non-OR 
copper binding site, proposing a further function of copper in prion propagation. 
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Using recombinant full-length PrP, a non-OR site has been identified 

involving H95 and/or H110 (Burns et al., 2003) which precede the hydrophobic 

segment of the protein and are also in a glycine-rich environment. The fifth site could 

successfully compete with the OR region for Cu. The location of this particular site 

has been controversial, with Jones et al. (Jones et al., 2005) arguing that Cu2+ 

coordinates at H110 with higher affinity than at H95, depending on the peptides and 

methods used for analysis. Several lines of evidence suggest that this site may possess 

higher affinity for Cu2+ than the OR sites within a nanomolar range (Burns et al., 

2003) (Figure 15). The location of the non-OR region beyond the PK cleavage site 

suggests that Cu may be found in the PrPSc particle, perhaps with a stabilizing role. 

 
Figure 15. The model of full-length PrP, with all copper sites occupied. Each Cu in the 
OR domain interacts with the HGGGW residues as shown in Figure 14. EPR studies on 
recombinant full-length protein identified an additional non-OR binding site involving H95. 
Adapted from (Millhauser, 2004). 
 

 Copper binding in the C-terminal domain PrP(126-231) 

Several studies suggest other Cu binding sites within the folded C-terminal 

domain of PrP (Figure 16). Experiments using a series of His/Ser mutants of the C-

terminal histidines attempted to identify which specific histidine is involved in 

protein conformational changes. Only the EPR spectrum of the H187S mutant had an 

altered signal, but this result is not certain yet, since the presence of aggregation in 

the investigated sample could interfere with accurate analysis (Cereghetti et al., 

2003). 
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Figure 16. Model representing copper binding sites in the human prion protein. The 
model on the left shows the N-terminal region at full copper occupancy, as well as the 
locations of histidines in the globular C-terminal domain. The model on the far right shows 
the octarepeat region binding in component 3 (low copper occupancy, high affinity, multi-
histidine mode). Adapted from (Walter et al., 2009). 
 

5.2. Role of copper in functions and pathogenesis of the prion protein 

 Role of copper in prion protein function 

PrPC endocytosis transports Cu from the extracellular space to the cell interior 

(Burns et al., 2002; Pauly and Harris, 1998; Rachidi et al., 2003; Waggoner et al., 

2000; Whittal et al., 2000). PrPC may act as a Cu transporter (Urso et al., 2010, 2012) 

or perhaps as a Cu chelator, preventing Cu from participating in redox reactions that 

generate reactive oxygen species (ROS) which are toxic to cells, especially neuronal 

cells (Miura et al., 2005). PrPC is also implicated in Cu buffering (Millhauser, 2004), 

sensing (Vassallo and Herms, 2003), signal transduction (Mouillet-Richard et al., 

2000), anti-apoptosis (Roucou et al., 2004) and neuron development (Kanaani et al., 

2005). Furthermore, Hornshaw et al. (Hornshaw et al., 1995) noted that the Cu 

binding to PrPC leads to a conformational change of the protein structure, whose 

functions are still argued. 

(a) Endocytosis 

Cu can stimulate the endocytosis of PrPC into the endosome and portions of 

the Golgi (Brown and Harris, 2003). Elimination of the OR results in less efficient 

rates of PrP endocytosis (Pauly and Harris, 1998). Recombinant PrP, in which the 

histidine residues in the repeat segments are removed, is poorly endocytosed when 

exposed to Cu. This suggests that it is the binding of metal that induces the 
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endocytosis rather than another protein that indirectly controls endocytosis (Brown et 

al., 1999; Jackson et al., 2001). Insertions of extra OR from four to nine more ORs, 

such as those found in familial CJD (Goldfarb et al., 1991), abolished the endocytosis 

activity of the protein. The authors concluded that the ORs, not any other Cu-binding 

site, are critical for Cu-induced endocytosis of PrPC. The ORs do not bind Cu ions 

independently but rather cooperatively; additional copies of the repeat region inhibit 

the Cu-binding endocytosis of PrPC and may inhibit its other functions or interactions 

(Perera and Hooper, 2001a). PrP endocytosis transports Cu from the extracellular 

space to the cell interior (Burns et al., 2002; Pauly and Harris, 1998; Whittal et al., 

2000). There may be a pH-dependent process for PrPC to detect Cu in the 

extracellular matrix or to release Cu in the endosome (Burns et al., 2002; Miura et al., 

1999). Such a mechanism would explain the results of studies demonstrating that 

PrPC protects cells from copper toxicity. In addition, the capability of Cu2+ to bind at 

pH 5.5 indicates that Cu2+ binding could be maintained during the cycling of PrP 

through acidic endosomal compartments (Shyng et al., 1993), which have been 

postulated to be the site of PrPSc formation (Mayer et al., 1992). It was noted that the 

increased PrP expression in the presence of Cu seems to be involved in the capability 

of Cu to induce the endocytosis of the prion protein or delay its degradation. 

(b) Antioxidant activity 

Several studies suggest that PrPC can protect cells from deleterious redox 

activity of free Cu (Brown and Besinger, 1998; Rachidi et al., 2003). The level of 

Cu/Zn dismutase activity is thought to reflect Cu status in different tissues. PrP-KO 

mice exhibit significant increases in lipid and protein oxidation, as well as reduction 

of superoxide dismutase and catalase function when compared to WT-mice (Klamt et 

al., 2001). Restriction of Cu in the diet of animals leads to a decrease of Cu/Zn SOD 

activity, but addition of CuCl2 restores enzyme reactivity (Harris, 1992). These 

findings raise the possibility that PrPC is involved in the supply or regulation of Cu2+ 

in the brain. Moreover, PrPC might also act as a “sink” for free Cu to reduce the 

generation of lethal ROS catalyzed by Cu ions. So far, the attempts at identifying 

SOD activity have been inconsistent. Studies with PrP-KO mice show decreased SOD 

activity, but do not mention increased susceptibility to oxidative stress (Brown and 
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Besinger, 1998; Brown et al., 1997b). Several lines of investigation have firmly 

established that PrPC helps maintain the integrity of neurons. Transgenic mice lacking 

PrP, as they age, present widespread tissue damage, mainly through protein and lipid 

oxidation (Klamt et al., 2001). This suggests that PrPC functions as a Cu buffer that 

helps maintain neuron integrity in the Cu-rich environment of the CNS, and somehow 

indicate that PrPC increases antioxidant levels directly or indirectly. In contrast, other 

groups have shown that PrP does not exhibit SOD-like activity in vivo or in vitro 

(Hutter et al., 2003; Jones et al., 2005). However, with chemical and structural 

considerations, PrP localization at synapses may be part of a protective mechanism in 

which Cu sequestration induces deleterious redox activity during synaptic 

depolarization. 

(c) Copper uptake 

Brains from PrP-KO mice show significantly low levels of Cu as compared to 

those from WT mice (Brown et al., 1997b, 1998). Likewise, PrPSc-infected mice also 

have significantly lower levels of Cu compared to brains of WT mice (Thackray et 

al., 2002; Wong et al., 2001). This evidence suggests a role of the prion protein as a 

possible Cu transporter in the CNS. PrPC is concentrated at presynaptic membranes 

(Herms et al., 1999), where neurotransmitter release drives communication between 

neurons. Interestingly, the presynaptic membrane is also a region of high Cu 

localization and flux (Hartter and Barnea, 1988; Hopt et al., 2003; Kardos et al., 

1989). Cu moves from the cell interior to the synaptic space through both exocytosis 

and neuronal depolarization, thus, its efflux may be an obligatory event associated 

with vesicle fusion, leading to neurotransmitter release (Vassallo and Herms, 2003).  

As mentioned above, PrP-Cu coordination, depending on different Cu 

concentrations, exhibits a distinct binding mode. The transition among binding modes 

may serve as a switch that facilitates specific cellular processes. For example, Cu 

concentrations in excess of 100 μM stimulate PrP endocytosis (Pauly and Harris, 

1998); the transition from component 3 to component 1 coordination may be the 

trigger for this process. Takeuchi and colleagues (Miura et al., 2005) suggested that, 

once in the endosome, component 3 coordination facilitates reduction to Cu+ as part 

of Cu transport to the intracellular space. 
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(d) Anti-apoptosis 

Programmed cell death, termed apoptosis, is an essential process for 

regulating the number of cells in a living system. Several studies show that PrPC has 

an anti-apoptotic property (Drisaldi et al., 2004; Kim et al., 2004; Roucou et al., 2004; 

Solforosi et al., 2004). For example, PrPC protects against the cellular death brought 

on by the expression of the Doppel protein (a homolog of C-terminal PrP) (Drisaldi et 

al., 2004) or by serum deprivation (Kim et al., 2004). Mutagenesis experiments show 

that the OR domain is a required element for protection against Doppel-protein 

toxicity (Drisaldi et al., 2004). Thus, Cu toxicity may occur through two mechanisms, 

including its inherent redox activity and a lowering of the apoptosis threshold. In turn, 

PrP's anti-apoptotic function may arise from its ability to sense Cu at the extracellular 

membrane surface or to regulate the transmembrane movement of Cu. 

 Role of copper in the pathogenesis of prion diseases 

Cu has been shown to convert PrP into PK-resistant and detergent-insoluble 

forms under certain in vitro conditions (Quaglio et al., 2001). Although some of these 

biochemical changes are commonly associated with initial stages of PrPSc formation, 

additional studies have shown that Cu-induced biochemical changes were distinct and 

reversible. Interestingly, Cu can also modulate the PK-res of PrPSc molecules (Nishina 

et al., 2004). A study showed that PrPSc formed in the absence of Cu was 20 times 

more susceptible to PK digestion, whereas addition of Cu reinstated the normal PK-

resistance. Furthermore, protein misfolding cyclic amplification (PMCA) experiments 

showed that PrPres with Cu could propagate and form more PrPres from PrPC (Kim et 

al., 2005). Additional support for the role of Cu in the pathogenesis of prion diseases 

is that chelating Cu delays the onset of the disease (Sigurdsson et al., 2003). 

Constrastly, Cu was reported to inhibit formation of fibrils from recombinant PrP 

(Bocharova et al., 2005). In addition, previous studies have shown that copper 

chelation (using cuprizone) resulted in spongiform-like degeneration in mouse brains 

(Blakemore, 1972; Kimberlin and Millson, 1976). Of note, homeostatic balance of Cu 

in the CNS is crucial for its functioning, and the pathogenesis of prion disease. 

However, it is not well establsihed how PrP- Cu interplays in PrPC functions and in 

the conversion of PrPC to PrPSc. 
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The OR segment is unstructured without Cu (Viles et al., 1999), but PrPC can 

adopt a new conformation when bound to Cu, which is restricted to the N-terminal 

region (Wong et al., 2000). This shows that Cu-binding to PrPC causes a physical 

change in the protein that is related to its functionality (Brown and Harris, 2003). 

There are several differing views about conformational changes in PrPC when it binds 

to Cu. One study found that the binding of Cu2+ to the OR propagates an α-helical 

structure (Miura et al., 1996) based on the fact that correct incorporation of Cu into 

recombinant PrPC stabilizes the protein and makes it more soluble (Daniels and 

Brown, 2002). Another study showed that PrPC bound with Cu tends to shift from an 

α-helical secondary structure to a β-sheet aggregate (Stöckel et al., 1998b). This shift 

arises from the fact that each Cu2+-HGGGW segment on the OR is separated by a 

Gly-Gln-Pro link, in which the Gly and Pro molecules are associated with β-turns 

(Aronoff-Spencer et al., 2000), and the conformational change that occurs when Cu2+ 

binds to the repeat segment is expected to be a β-turn (Bonomo et al., 2000). It is 

evident that Cu contributes to the conformation of PrPC, but Viles et al. (Viles et al., 

1999) found it was only in turns and structured loops, as opposed to α-helices or β-

sheets, as other studies mentioned. These authors supposed that the competitive 

results arose from different buffer and OR segments used for Cu binding. 

In addition to proposed conformational changes and stabilization in the 

protein secondary and tertiary structures (Gustiananda et al., 2002), Cu-binding can 

also cause the protein to acquire other PrPSc-like properties. Incubation of 

recombinant PrP with Cu2+ generated a PK-resistant PrP that formed aggregates. This 

transformation to the recombinant PrP fragment needed no acidic pH, denaturants or 

reduction agents (Qin et al., 2000). Other studies show that in the presence of Cu, 

PrPSc brain denatured abnormally and regained PK-resistance (McKenzie et al., 

1998). PrP106-126 aggregation and fibril formation was restored in the presence of 

Cu2+, indicating that Cu binding to PrP106-126 may cause the peptide to interact with 

PrPC (Jobling et al., 2001). Notably, studies using PrPC extracted from transgenic 

mice and recombinant PrP show that Cu causes these proteins to adopt a PK-resistant 

and detergent-insoluble form, similar to, but structurally different from PrPSc.  
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Human prion diseases may arise not only as a consequence of transmission, 

but also of mutations in the Prnp gene. In addition to about 20 different point 

mutations, there are also deletions or insertions of a stretch of octarepeats in the 

amino-proximal region of PrP, suggesting that this region might be important for the 

spontaneous conversion of the prion protein. A question is raised whether the OR 

region of PrP is essential for sustaining prion replication and scrapie. 

(a) Octapeptide repeat deletion 

PrP-KO mice develop and behave normally (Büeler et al., 1992) but are 

resistant to prion disease. Introduction of the Prnp gene into such mice restores 

susceptibility to scrapie (Fischer et al., 1996), thus demonstrating the essential role of 

PrPC in developing prion diseasesb. Studies on cell models showed that mutant PrP 

lacking all five ORs or with only one OR was still efficiently converted into PrPSc in 

scrapie-infected neuroblastoma cells despite the lack of the copper binding motif 

(Hiraga et al., 2009; Rogers et al., 1993). Indeed, Fischer et al. (Fischer et al., 1996) 

showed that in PrP-KO mice overexpression of truncated PrP with a deletion of 

codons 32–80, which retains only one of the five ORs, still sustained replication of 

the infectious agent and development of disease. They also showed that PrP with a 

deletion of codons 32–93 and thus devoid of all five ORs, also efficiently restores 

susceptibility to scrapie in PrP-KO mice. All animals succumbed to scrapie-like 

disease, showing that the truncated PrP was competent in this regard. However, 

incubation times to first symptoms and to terminal stage of disease were longer than 

for WT controls (Flechsig et al., 2000). While in WT mice accumulation of prions 

and PrPSc is followed within weeks by clinical symptoms and death (Büeler et al., 

1994), the prion titers in the brains and spleens of mice expressing PrP devoid of all 

five ORs (PrPΔ32–93) were lower at all stages of the disease. Interestingly, while PrP 

devoid of the ORs sustains scrapie-like disease in response to scrapie, no typical 

histo-pathological changes were detected in the brain but neuronal loss and 

astrogliosis were noticed in the cervical spinal cord (Flechsig et al., 2000). In 2008, 

Sakudo et al. (Sakudo et al., 2008) evaluated the PrPSc level in HpL3-4, a Prnp gene-

deficient cell line expressing various deletion mutants of PrPC after prion infection, to 

identify whether specific regions of PrPC for the production of PrPSc exist. They 
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suggested that removal of the OR abolished the ability to produce PrPSc, while the 

full-length PrPC leads to the production of PrPSc at an early stage (Sakudo et al., 

2008). 

(b) Octapeptide repeat insertion 

Insertions of one to nine extra ORs, resulting in the expansion of the N-

terminal domain, cause CJD and GSS in human. Interestingly, there is a correlation 

between the number of inserted ORs and progression and onset age of the disease 

(Campbell et al., 1996). With one to four extra ORs, the average onset age is 64 

years, whereas five to nine extra ORs result in an average onset age of 38 years. OR 

expansions alter the properties of PrP and its interactions with cellular components. 

When expressed in various cell lines, PrP with additional repeats displays detergent-

insolubility, resistance to PK digestion similar to PrPSc (Lehmann and Harris, 1996), 

altered cell surface expression (Priola and Chesebro, 1998), and hindered export to 

the cell surface (Ivanova et al., 2001). Similar effects can be observed in transgenic 

mice with OR expansion (Chiesa et al., 1998, 2000). Moreover, recombinant protein 

containing insert mutations forms amyloid fibrils faster than WT (Moore et al., 1999).  

The WT-PrP with four repeats responds to increasing copper concentrations 

by transitioning from component 3 to component 1 coordination. However, for eight 

repeat segments (four inserts beyond WT) and beyond, this transition is significantly 

inhibited (Figure 17). Eight total repeats allow for two equivalents of component 3 

coordination and exhibit an approximate 10-fold increase in Cu2+ binding affinity. 

This affinity shift contributes to the decrease in component 1 coordination for OR 

domains with four or more inserts beyond WT (Stevens et al., 2009). 

 
Figure 17. Three-dimensional model of the prion protein with eight total repeats (four 
inserts) coordinated to two equivalents of Cu2+ in the component 3 mode. (N-terminal 
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residues 23–59 are not shown.) Results presented here demonstrate that this structure is 
persistent and, in contrast to wild-type PrP, resists transitioning to component 1 coordination. 
Adapted from (Stevens et al., 2009). 

 

Taken together, these findings demonstrate a very strong relationship between 

changes in copper binding properties and early-onset prion disease. Although the OR 

domain is not part of the protease resistant scrapie particles, it nevertheless modulates 

disease progression. The role of the OR in prion disease is enigmatic. It is postulated 

that the OR, which binds Cu through histidine residues, is not essential for sustaining 

prion replication and disease but does affect the level of prion accumulation and 

pathogenesis in the brain and regulate the ability to produce PrPSc at an early stage. 

However, it remains unclear whether these activities of PrPC are the result of Cu-

binding, and which residues of the OR are relevant to PrPSc production. Several 

aspects of Cu binding likely help explain these divergent results. The non-OR 

involving His95 is in the region of PrP that typically remains after proteolytic 

cleavage, liberating amyloidogenic, C-terminal PrPSc. Thus, Cu may modulate PrPSc 

formation even in the absence of the ORs, as shown by Cox et al. (Cox et al., 2006). 

Despite the contradictory arguments regarding the actual role of Cu in prion diseases, 

there is evidently strong agreement that Cu has a crucial function in prion protein 

aggregation, and the PrP-Cu relationship is still the focus of ongoing research.  

 

II. AIM OF THE STUDY 

My study aims to elucidate the potential role of copper binding sites in 

prion replication and propagation through the following steps: 

 Generate a library of histidine/tyrosine substitutions in murine PrP coding 

sequence in eukaryotic expressing vector 

 Analyze the biochemical properties and the distribution of murine PrP mutants in 

cell model 

 Investigate the kinetics of mutant protein (His95Tyr) by using fibrillization assay 
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III. MATERIALS AND METHODS 

3.1. Plasmid constructions 

The open reading frame (ORF) encoding for the pre-pro MoPrP from residue 

1 to 254 was amplified by PCR from genomic murine DNA and cloned by restriction 

free methods (van den Ent and Löwe, 2006) in pcDNA3.1(-) (Invitrogen). The 3F4-

epitope tag (residues 108-111, LKHV) as well as the single point mutations (H60Y, 

H68Y, H76Y, H84Y and H95Y) were inserted into the pcDNA3.1::MoPrP(1-254) 

using the Quick Change site-directed mutagenesis kit (Stratagene). Histidine residues 

in the OR and non-OR regions were also named H1 to H5. The introduction of 3F4-

epitope tag into MoPrP constructs made it possible to distinguish mutant PrP and 

endogenous PrP using the monoclonal antibody 3F4 (Kaneko et al., 1997b; Kascsak 

et al., 1987). 

 

 
 

Figure 18. Schematic secondary structure representation of mature full-length MoPrP. 
(A) The unstructured N-terminal portion includes the octapeptide repeat domain (OR, 
highlighted in blue, residues 59-90) and the non-OR copper binding sites. The C-terminal 
domain (residues 128-230) encompasses two short β-strands and three α-helices with a 
disulfide bond (S-S), two N-linked glycosylation sites, and a GPI moiety anchor.  
(B) Comparison of amino acid sequence (residues 59 to 125) including the OR and non-OR 
regions of mouse (Mo), Syrian hamster (SHa) and human (Hu) PrPs. The 3F4-epitope 
specific for SHa and Hu PrPs is highlighted in red.  
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Primer FORWARD PRIMER REVERSE PRIMER  

H60Y CAGCCCTACGGTGGTGGCTGGGG

ACAA 

TTGTCCCCAGCCACCACCGTAGG

GCTG 

H68Y GGGGACAACCCTATGGGGGCAGC

TGG 

CCAGCTGCCCCCATAGGGTTGTC

CCC 

H76Y AGCTGGGGACAACCTTATGGTGG

TAGTTGGG 

CCCAACTACCACCATAAGGTTGT

CCCCAGCT 

H84Y TGGGGTCAGCCCTATGGCGGTGG

ATGG 

CCATCCACCGCCATAGGGCTGAC

CCCA 

H95Y CAAGGAGGGGGTACCTATAATCA

GTGGAACAAGC 

GCTTGTTCCACTGATTATAGGTAC

CCCCTCCTTG 

 

Table 3. Pairs of primers used for His/Tyr mutations. 

 

3.2. Cell culture and transfection 

Mouse neuroblastoma (N2a) cells, and scrpaie neuroblastoma (ScN2a) cells 

chronically infected with RML prion were cultivated in Opti-MEM medium (Gibco) 

supplemented with 10% FBS and penicillin-streptomycin (100 IU/mL penicillin and 

100 mg/mL streptomycin). All cell lines were grown in a humidified incubator at 

37°C with 5% CO2. 

Cells were transfected with X-treme gene DNA transfection reagent (Roche 

Biochemicals) according to the manufacturer directions. The amounts of cells, DNA 

and transfection reagents were chosen by preliminary experiments to ensure a modest 

level of transfection in most experiments, and analyzed 72 h later. 

3.3. Protein extraction  

Cells were washed once with cold phosphate-buffered saline (PBS), harvested 

in cold cell lysis buffer (10 mM TrisHCl pH 8.0, 150 mM NaCl, 0.5% Nonidet P-40 

substitute, 0.5% sodium deoxycholate), centrifuged at 2,000 rpm at RT for 5 min, 

quantified by BCA protein assay kit (Pierce) and stored at -20oC until use. 
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Table 4. Histidine/tyrosine MoPrP with 3F4-tag constructs in pcDNA 3.1(-) 

 

3.4. PrPSc detection by immunoblot 

For protease-K (PK) digestion assay, 500 μg of protein was treated with 20 

μg/mL PK (Roche, ratio protein: PK = 50:1, w/w) for 1 h at 37°C. Digestion was 

stopped by adding phenylmethyl-sulphonyl fluoride (PMSF) to a final concentration 

of 2 mM. Then, samples were ultracentrifuged at 55,000 rpm (Optima TL, Beckman) 

for 1 h at 4°C and resuspended in loading buffer. Samples were loaded onto a 10% 

SDS-PAGE and transferred on nitrocellulose membranes. Membranes were blocked 

with 5% (w/v) non-fat milk protein in TBS-T (0.05% Tween) for 2 h at RT, incubated 

with anti-PrP antibodies D18 mAb (1:1,000, InPro Biotechnology) or 3F4 (1:10,000, 

Covance) in blocking buffer for 2 h at RT or O/N at 4°C, prior to 1-hour incubation in 

the secondary HRP-conjugated antibodies (1:5,000, Pierce). The signals were 
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visualized using enhanced chemiluminescence (GE Healthcare) and acquired on the 

UVI software (UVITEC, Cambridge). 

3.5. Endo-H and PNGase-F digestion 

Fifty µg of total protein was denatured in 1× glycoprotein denaturing buffer 

(0.5% SDS, 1% β-mercaptoethanol; New England Biolabs) at 100°C for 10 min prior 

to incubation with Endo-H and PNGase-F (250,000 units/ml; New England Biolabs) 

in 1% Nonidet 40 and 1× G5 or G7 reaction buffer (New England Biolabs) at 37°C 

for 16 h. The reaction was terminated by adding an equal amount of 2×loading buffer 

and boiling to 100 °C for 2 min. 

3.6. Stability to protease treatment 

N2a cells were transiently transfected with the constructs and harvested as 

previously described. In order to evaluate the stability of the H95Y mutant to PK 

treatment according to concentration and incubation time, 250 μg of protein was 

treated with different concentrations of PK (from 1 to 15 μg/mL of PK) for 30 min at 

25°C, or incubated with 2 μg/mL PK for different times (10-20-30-60 min) at 25°C. 

The reaction was stopped and precipitated as previously described. 

3.7. Immunofluorescence imaging 

Common protocol for the detection of PrP and organelles 

Cells were grown on poly-L-lysine coated coverslips for 24 h before fixation 

with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) for 20 min at 

RT. Subsequently, cells were washed with PBS prior blocking in 10% FBS, 0.3% 

Triton X-100 diluted in PBS for 1 h at RT. After blocking, cells were incubated at 

4°C O/N with primary antibody in dilution buffer (1% FBS in PBS with 0.3% Triton 

X-100). The next day, coverslips were washed 2 times in PBS and given an additional 

washing in high-salt PBS for 2 min to decrease the unspecific binding of the 

antibody. After one more washing with PBS, cells were incubated for 1 h at RT in the 

dark with secondary antibody conjugated with AlexaFluor (1:500; Invitrogen) in 

dilution buffer. Cells were further washed before mounting on Vectashield with DAPI 

(VECTOR Laboratories). Images were acquired with a DMIR2 confocal microscope 

equipped with Leica Confocal Software (Leica). Primary antibodies used to detect 

PrP are D18 mAb for endogenous MoPrPs, and 3F4 mAb for transfected MoPrPs. All 
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organelle markers were purchased from Abcam, as were the ER marker (anti-

Calnexin), the early endosome marker (anti-EEA1), the recycling endosome (anti-

Transferrin receptor Tfn), the late endosome marker (anti-Mannose-6 phosphate 

receptor M6PR) and the lysosome marker (anti-LAMP2). Secondary antibodies were 

goat anti-human, goat anti-mouse, goat anti-rabbit, donkey anti-rat conjugated with 

AlexaFluor-488 or -594, in accordance with manufacturer’s guidelines. 

Surface staining 

Cells were placed on ice for 15 min then stained with Opti-MEM containing 

anti-PrP 3F4 mAb (1:1000) for 20 min. After the fixation, cells were washed with 

PBS for 3 times to remove residual fixative. Finally, cells were incubated with 

fluorescence-conjugated secondary antibody without permeabilization. 

Endocytosis imaging 

Cells were surface-labeled on ice with anti-PrP 3F4 mAb in Opti-MEM, and 

returned to 37°C for 1 h to induce PrP internalization. Later, cells were washed twice 

with PBS, treated with 0.5% trypsin on ice for 90 sec to remove surface proteins, and 

fixed for 20 min at RT in 4% PFA. Cells were permeabilized with 0.2% Triton X-100 

for 5 min at RT, blocked for 1 h in 2% FBS in PBS, and stained with AlexaFluor-488 

anti-mouse antibody for 1 h. Finally, coverslips were washed with PBS for 3-4 times 

and mounted on glass (Westergard et al., 2011).  

Thioflavin-S (ThS) staining 

For ThS staining to detect aggregates, transfected cells were fixed with 4% 

PFA/4% sucrose/1% Triton X-100 in PBS. Subsequently, fixed cells were incubated 

with 0.025% ThS (Sigma) for 8 min and washed three times with 80% ethanol, once 

with double-distilled water and once with PBS, 5 min for each wash, before the 

antibody incubations (Ostrerova-Golts et al., 2000; Volpicelli-Daley et al., 2011). 

Assay for the detection of PrPSc  

Fixed transfected cells were incubated with PK (20µg/ml) for 15 min at 37ºC. 

Digestion was stopped with 2 mM PMSF for 15 min at RT. The cells were then 

denatured with 6 M GdnHCl for 10 min (Veith et al., 2009a). After some washes, 

cells were blocked in 10% FBS, 0.1% Triton X-100 diluted in PBS for 2 h at RT, 

incubated with antibodies as previously described. 
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3.8. Protein expression and purification 

The plasmid pET-11d (Novagen) encoding for the full-length MoPrP 

(residues 23-230) was kindly provided by Dr. J.R. Requena (University of Santiago 

de Compostela, Santiago de Compostela, Spain). The H95Y mutation was inserted 

into the pET-11a::MoPrP using the Quick Change site-directed mutagenesis kit 

(Stratagene). An overnight culture of E. coli BL21 (DE3) (Novagen) freshly 

transformed with the plasmid was added at 37°C to 2 L of LB. Cells were grown in a 

2 L fermenter system (Sartorius), harvested after 24 h and lysed by homogenizer 

(Panda plus, GEA Niro Soavi). Inclusion bodies were washed and solubilized 

according to (Ilc et al., 2010). MoPrP was purified using its octapeptide repeat 

sequence as natural affinity tag for nickel or copper. MoPrP was loaded onto a 5-mL 

HisTrap column (GE Healthcare) equilibrated in binding buffer (2 M GdnHCl, 500 

mM NaCl, 20 mM Tris, pH 8) and eluted with 500 mM imidazole. Subsequently, the 

protein was purified by size exclusion chromatography (HiLoad 26/600 SUPERDEX 

200 PG column, GE) and eluted in buffer 25 mM Tris, 6 M GdnHCl, 5 mM EDTA, 

pH 8. The purified protein was buffer exchanged against acetate buffer (25 mM 

NaOAc, 6 M GdnHCl, pH 5) or Tris buffer (25 mM Tris-HCl, 6 M GdnHCl, pH 7). 

3.9. Preparation of scrapie cell lysate seed by sodium phosphotungstic 

acid  

One mg of ScN2a cell lysate in 500 μl was used to precipitate prions (Ai Tran 

et al., 2010). Samples were incubated with 500 μl of PBS/4% sarkosyl/protease 

inhibitor and sodium phosphotungstic acid (PTA, Sigma) at final concentration of 

0.5%, with constant shaking (350 rpm) for 1 h at 37°C. After the incubation, samples 

were centrifuged at 13,200 rpm for 30 min at RT. Then, we washed the pellet with 

500 μl of PBS/2% Sarkosyl/protease inhibitor and centrifuged it again at 13,200 rpm 

for 30 min at RT. The pellet was resuspended in 150 μl of water and stored at −80°C 

until use. The PTA pellet was denatured in 2 M GdnHCl for 2 h at RT. Ten μl of 

denatured PTA pellet and 90 μl of PBS/BSA were added to each well of a 96-well 

ELISA plate coated with anti-PrP 3F4 antibody. The plate was incubated O/N at 4°C, 

washed three times with TBS-T, and 100 μl of the antibody-enzyme conjugate HRP 

was added per well. After 1 h incubation at RT, the plate was washed seven times 
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with TBS-T and developed with 100 μl of ABTS (KPLM). Absorbance was measured 

at 405 nm to determine soluble PrP in each well relative to the recombinant PrP 

ladder. Each assay was performed in duplication of 4 wells. 

3.10. Monitoring the kinetics of in vitro amyloid formation 

Lyophilized recMoPrP WT and recMoPrP H95Y were dissolved in 6 M 

GdnHCl with a protein concentration of 5mg/ml and stored at −80°C until use. A 

final protein concentration of 100 μg/ml was incubated in PBS buffer (pH 7) or in 

acetate buffer (pH 5), GdnHCl, and 10 μM ThT in a reaction volume of 200 μl per 

well in 96-well plates (BD Falcon 353945; BD Biosciences). One 3-mm glass bead 

(Fisher Scientific) was added to each well to increase agitation. 

For amyloid seeding experiments, resuspended PTA pellets were quantified 

by Western blot, diluted in water and re-confirm by Westeren blot and ELISA to 

ensure the same amount of PrPSc seeds in all reactions. PrPSc seed was added to each 

well for a final volume of 200 μl. Samples were normally run with four replicates. 

The 96-well plates were covered with sealing tape (235307; Fisher Scientific) and 

incubated at 37°C with continuous shaking on a plate reader (SpectraMax M5 

fluorescence plate readers; Molecular Devices). The kinetics of fibril formation was 

monitored by bottom reading of ThT fluorescence intensity every 5 min by using 

444-nm excitation and 485-nm emission filters. 

3.11. De novo prion formation in N2a cells 

N2a cells were transiently transfected with either 3F4-tagged WT or H95Y 

MoPrP and regularly passaged every 7 days up to passage (P) 8. Subsequently, the 

protein extracts were analyzed by PK digestion to monitor the presence of PK-

resistant PrPSc levels through passages. Additionally, the de novo prion formation was 

assessed by cells seeding experiments. PTA-extracted PrPSc from transfected N2a 

cells were inoculated into N2a cells and regularly passaged every 7 days up to P8. 

The PrPSc detection was assessed by PK digestion as previously described. 

3.12. Cell viability 

Cells were seeded in a 96-well tissue culture plate one day before transfection 

and then transiently transfected with MoPrP constructs. Seventy-two hours after the 

transfection, the medium was removed and the cells were incubated with 200 μL of 
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MTT (Sigma) working solution (5 mg/mL of MTT in sterile PBS) for 4 h at 37°C. 

Cell viability was assessed by the conversion of MTT (yellow) to a formazan product 

(purple). The solution was removed and formazan products were dissolved by adding 

200 μL of DMSO to each well. The optical density was read at 570 nm and the 

background subtracted at 690 nm using a VersaMax plate reader (Molecular Device). 

Each assay was performed in duplication of 4 wells. 

Statistical analysis 

Two-sample t tests were used for statistical analysis of the data. Differences 

were considered significant when p<0.05. Data were analyzed using Origin 8.6 

software. 
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IV. RESULTS 

4.1. The non-OR H95Y mutant promotes prion conversion 

To investigate the effect of His residues on prion replication, ScN2a cells 

were transiently transfected with 3F4-tagged wild-type (WT3F4) and MoPrPC 

constructs where the His located inside the OR and non-OR were substituted by Tyr 

(hereafter designated as H60Y, H68Y, H76Y, H84Y and H95Y mutations). The 

introduction of the 3F4-epitope tag into these constructs does not affect cell viability 

(Figure S1) but allows the discrimination between transfected MoPrPs and 

endogenous MoPrPC (Kaneko et al., 1997b; Kascsak et al., 1987; Taraboulos et al., 

1990) (Figure S2 A and S2 B). The effect of the H110Y mutant was not considered in 

this study as it is located inside the 3F4-epitope, thus precluding the detection by the 

anti-PrP 3F4 mAb. His to Tyr substitutions in MoPrPC constructs did not affect the 

total PrP expression levels (Figure 19 A). Conversely, the PK-digestion profiles 

showed remarkably different PrPSc levels among the mutants. While WT3F4 and 

H60Y, H68Y, H76Y, H84Y displayed similar PK-resistant PrPSc levels, the non-OR 

H95Y3F4 mutant yielded in a significantly higher PrPSc signal, providing the first 

evidence of this mutation role in affecting prion replication (Figure 19 B and 19 C, 

**p=0.003). The higher PrPSc level of H95Y-expressing ScN2a cells was re-

confirmed by ELISA analysis (Figure 19 D, ***p = 5*10-5). 
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Figure 19. The non-OR H95Y mutation promotes prion conversion. (A) Fifty μg of 
undigested lysates from ScN2a cells expressing 3F4-tagged WT and mutated PrPs was 
applied to each lane. β-actin was used as internal control. (B) Five hundred μg of cell lysates 
was digested with PK (20 μg/mL) at 37°C for 1 h. PrPs were detected by anti-PrP 3F4 mAb. 
(C) Quantitative analysis of PrP expression (PrPC) and PrPSc PK-resistance levels (PrPSc) in 
transfected constructs. (D) ELISA signal densities analysis of PrPSc levels (n = 4, **p< 0.005, 
***p<0.0005). 
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4.2. H95Y-derived PrPSc accelerates prion polymerization in the amyloid 

seeding assay (ASA) 

Prion diseases are caused by misfolded proteins. Alternatively folded proteins 

can adopt a β-sheet rich conformation that facilitates polymerization into amyloid 

fibers. After observing that the H95Y3F4 mutant significantly affects PrPSc level in 

transiently expressing ScN2a cells, we reasoned whether chemically purified PrPSc 

from these cells may promote the amyloid formation of WT recombinant full-length 

MoPrP without 3F4-tag (WT_recMoPrP). In these experiments, we compared the 

kinetics of WT_recMoPrP fibrillizations seeded by either PrPSc extracted from ScN2a 

cells expressing 3F4-tagged WT MoPrP (WT3F4_PrPSc seed) or PrPSc purified from 

ScN2a cells expressing the 3F4-tagged H95Y mutant (H95Y3F4_PrPSc seed). PrPSc 

seeds purified using phosphotungstate (PTA) precipitation (Colby et al., 2007) were 

added into the reactions containing WT_recMoPrP as substrate, 2M GdnHCl, at two 

different pH values (neutral and acidic pH) under continuous shaking for 72 h. Using 

chaotropic agent Gdn at this concentration has been demonstrated to facilitate 

aggregation efficiency (Polano et al., 2009). In vitro, the kinetics of amyloid 

formation usually exhibits an initial lag phase, in which no detectable amyloid forms, 

whereas monomers nucleate to form fibrils. Monomeric molecules adopt partially 

denatured conformations which assemble into multimeric species. The kinetic profiles 

of amyloid fibril formation was obtained by measuring changes in Thioflavin-T 

(ThT) fluorescence intensity. This dye is a highly sensitive indicator and is used as a 

marker for newly generated amyloid structural motives (Rogers, 1965). Sigmoidal 

kinetic profiles typical for amyloid formation were obtained for both WT and 

H95Y_PrPSc seeds at two pH values (Figure 20). Differently from the WT3F4_PrPSc 

seed, we found that adding the H95Y3F4_PrPSc seed significantly accelerated the 

fibrillization reactions. At pH 7, the lag phase of the reaction seeded by 

H95Y3F4_PrPSc was shorter (25.8 ± 4.7 hrs) than that seeded by WT3F4_PrPSc (37.5 ± 

5 hrs) (Figure 20 A and 20 B). The same effect was obtained at pH 5: H95Y3F4_PrPSc 

reduced the lag phase to 20.4 ± 3.8 hrs, whereas in the presence of WT3F4_PrPSc the 

fibrillization reaction started later (29 ± 2.5 hrs) (Figure 20 C and 20 D). Interestingly, 

at acidic pH the lag phase was shortened by 20% compared to neutral pH for both 
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fibrillization reactions seeded by H95Y3F4_PrPSc and WT3F4_PrPSc. This observation 

is in aggreement with previous cell biological studies indicating that acidic condition 

as likely environment facilitating conformational conversion (Borchelt et al., 1992; 

Cruite et al., 2011; Taraboulos et al., 1990). We also noted that reactions performed 

with H95Y3F4_PrPSc seed always exhibited higher ThT signals (Figure 20 A and 20 C). 

 
 
Figure 20. H95Y-derived PrPSc accelerates prion polymerization in the amyloid seeding 
assay (ASA). H95Y3F4_PrPSc significantly reduced the lag phases at both pH conditions and 
exhibited higher ThT signals, as compared to WT3F4_PrPSc (Student’s t test, *p≤ 0.05, n=4)). 
ASA of WT_recMoPrP seeded by 3F4-tagged WT PrPSc (WT3F4_PrPSc) and H95Y PrPSc 
(H95Y3F4_PrPSc) at pH 7 (A) and at pH 5 (C). Mean values of the lag phases (in hours) for 
ASA are shown at the two pH values (B and D) (*p<0.05, n=4) 
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4.3. The H95Y mutant displayed PK-resistance when expressed in N2a 

cells 

The enhanced resistance to protease digestion is a primary feature to 

discriminate between PrPC and PrPSc (Caughey et al., 1990; McKinley et al., 1983). 

Since the transient expression of the H95Y3F4 mutant in ScN2a resulted in higher PK-

resistant PrPSc signal, we reasoned whether the same result would be observed also in 

non-infected N2a cells expressing the same mutant construct. N2a cells were 

transiently transfected with WT3F4 or the H95Y3F4 mutant, and treated under different 

PK conditions. Interestingly, at low PK concentration (2 µg/mL) an immunoreactive 

PrP signal was visible in the cell lysate of N2a expressing H95Y3F4 mutant, whereas 

in the cell expressing WT3F4 PrPC, no signals were detectable at either 2 or 5 µg/mL 

of PK treatments (Figure 21 A).  

To gain detailed insights into the PK-resistant profile of the H95Y3F4 mutant, 

we further assessed its stability according to a wide range of PK concentrations and 

time-dependent PK reactions. The digestion was performed at 25°C instead of 37°C 

in order to better monitor PK-resistance levels. Cell lysates of N2a transient 

expressing WT3F4 and the H95Y3F4 mutant were treated with increasing 

concentrations of PK for 30 min (Figure 21 B); or incubated with the same 

concentration of PK (protein:PK 250:1, w/w) for different time periods (Figure 21 C). 

According to PK concentration, at the concentration of 2 and 15 of PK, there was no 

difference between WT3F4 and H95Y3F4 (p.> 0.05). However, we found that H95Y3F4 

is significantly resistant to PK digestion than WT3F4 at PK concentration of 3 and 10 

µg/mL (p < 0.05) (Figure 21 B). We next analyzed the stability of H95Y3F4 compared 

to WT3F4 over time. Interestingly, PK-resistance of H95Y3F4 were significantly higher 

than WT3F4 at all time points (Figure 21 C). When compared the mean PK-resistance 

values over PK concentration and over time, these experiments consistently 

confirmed the higher PK-resistant H95Y3F4 mutant under investigated conditions.  
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Figure 21. The H95Y mutant displayed PK-resistance when expressed in N2a cells.  
N2a cells were transiently expressed WT3F4 and H95Y3F4 mutant. (A) Cell lysates were 
treated with 2 or 5 µg/mL of PK at 37oC for 30 min. Two exposures of the same blot are 
shown (Faint: 30 sec exposure; dark: 6 min exposure). PrPs were detected by anti-PrP 3F4 
mAb. β-actin was used as internal control. (B) Lysates were digested with different 
concentrations of PK at 25oC for 30 min; or (C) treated with 2 µg/mL of PK at 25oC for 
different time periods. Percentages of protease-resistance levels were quantified by 
calculating the ratio of PK-resistance signal densities at each condition. Comparison of the 
mean PK-resistance values over PK concentration and over time was performed (n = 
3, *p< 0.05).  
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4.4. The OR and non-OR mutations share similar glycosylation patterns 

and proteolytic features as wild-type PrPC 

To further elucidate whether the PK-resistance of the H95Y3F4 mutant may be 

due to altered cellular maturation processes, we analyzed the glycosylation patterns of 

all 3F4-tagged MoPrPC constructs employed in our study. Western blot analysis 

showed that all mutation MoPrPs display the same glycosylation patterns as the WT 

PrPC, migrating with three bands corresponding to the diglycosylated, 

monoglycosylated and unglycosylated PrPC forms (Figure 22 A). 

PrPC is synthesized in the endoplasmic reticulum (ER). During its post-

translational modifications, the protein undergoes the cleavage of N- and C-terminal 

signal peptides, the addition of N-linked oligosaccharide chains, disulfide bond 

formation and the attachment of a GPI moiety. All the processes occur through ER 

and Golgi apparatus, and result in the mature PrPC embedded at the outer leaflet of 

the membrane via a GPI anchor. To better biochemically characterize mutant PrPs, 

we performed the deglycosylation assays using Endo-H and PNGase-F enzymes. 

Endo-H can only remove high-mannose oligosaccharides, whereas PNGase-F 

removes all types of asparagine-linked oligosaccharides. Endo-H enzyme is used for 

evaluating the correct protein glycosylation pattern occurring in the Golgi 

compartments (Maley et al., 1989). Thus, Endo-H sensitivity is considered a sign of 

protein immaturity, as proteins acquire Endo-H resistance upon transport to the Golgi 

apparatus. Immunoblotting of 3F4-tagged WT and mutant MoPrP constructs treated 

with Endo-H showed no difference between the WT and mutated PrP glycoforms 

(Figure 22 B). Also the treatments with the PNGase-F displayed clear unglycosylated 

PrP bands having the same molecular weight of WT3F4 full-length MoPrPC, and an 

additional faint band of about 20 kDa —corresponding to the major C-terminal 

fragment of PrPC— denoted as C2 (Liang and Kong, 2012) was also visible (Figure 

22 C). Taken together, these data suggest that these mutant proteins were successfully 

processed through ER and Golgi compartments during their maturation. 
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Figure 22. The OR and non-OR mutations share the same glycosylation patterns and 
proteolytic features as the WT MoPrPC. N2a cells were transiently transfected with 3F4-
tagged WT and mutant MoPrP constructs. (A) Fifty μg of cell lysates was applied to each 
lane. (B) Lysates were either digested with Endo-H or (C) PNGase-F. Mutant proteins were 
detected with anti-PrP 3F4 mAb. The positions of diglycosylated, monoglycosylated and 
unglycosylated forms (denoted as di, mono and un) of PrPC and the C-terminal fragment (C2) 
are on the right of each blot. 
 

4.5. Intracellular accumulation of the H95Y mutant 

The OR and non-OR His mutants were expressed in N2a cells and selectively 

visualized by immunofluoresence with the 3F4 mAb. The 3F4-tagged WT and 

mutated PrPs were found predominantly on the cell surface, with some intracellular 

punctated deposits. The distribution of WT and mutant PrPs found in this study is 

similar to previous reports (McKinley et al., 1991; Negro et al., 2001) (Figure 23 and 

24). However, a closer analysis on N2a cells expressing the H95Y3F4 mutant 
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displayed robustly punctated immunoreactive signals consistent with intracellular PrP 

accumulation (Figure 23, H95Y panels).  

 
 
Figure 23. H95Y PrP is accumulated in the perinuclear region of N2a cells. PrPs in N2a 
cells expressing 3F4-tagged MoPrP constructs were detected by anti-PrP 3F4 mAb. Insets 
show magnifications of some cells in the merge images. Blue fluorescence for nucleus; 
green fluorescence for PrP. Scale bars: 24 µm. 
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Figure 24. Mutant PrPs are predominantly expressed on cell surface as wild-type PrPC. 
PrPs on cell surface were detected by anti-PrP 3F4 mAb without permeabilization. Insets 
represent magnifications of some cells in the merge images. Blue fluorescence for nucleus; 
green fluorescence for PrP. Scale bars: 24 µm. 
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One of the numerous characteristics of PrPSc is its accumulation inside the 

cells (Harris, 1999; Taraboulos et al., 1990). Here, we reasoned whether the 

intracellular H95Y3F4 accumulation is a sign of prions or not. Prion diseases are 

caused by misfolding proteins that can accumulate to form amyloids characterized by 

β-sheet structure. This structure can be recognized by some specific dyes, such as 

Congo Red and thiazole dyes (Thioflavin-S and Thioflavin-T). We double-stained 

cells with Thioflavin-S (ThS) and anti-PrP antibodies to obtain more information 

about the H95Y3F4 conformation. N2a and ScN2a cells were used as negative and 

positive controls, respectively, to ascertain that ThS signals were due to aggregates, 

not artifacts. Data demonstrated that only scrapie cells with PrPSc existence showed 

ThS-positive signals. In H95Y3F4 transfected N2a cells, only few of the perinuclear 

inclusions were strongly stained with ThS, while other regions of H95Y3F4 expressing 

cells were ThS-negative (Figure 25). This finding supports the idea that H95Y3F4 

aggregates may possess prion-like features. In order to confirm this hypothesis, we 

performed PrPSc detection assay by immunofluorescence imaging (Veith et al., 2009). 

As shown in Figure 26, the PrPC signal of N2a cells disappeared while abundant PrPSc 

signal could be found mostly intracellularly and less at the plasma membrane after 

PK treatment. The same phenomenon can be seen in N2a cells expressing the 

H95Y3F4 mutant, but not as frequently as in scrapie cells. These results are consistent 

with those of our Western blot analysis (Figure 19 and 21). It could be hypothesized 

that a subpopulation of H95Y3F4 mutant can acquire a β-sheet enriched conformation. 
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Figure 25. ThS-positive H95Y MoPrP aggregates detected in N2a cells. N2a cells were 
transiently transfected with WT3F4 or with the H95Y3F4 mutant and stained with anti-PrP 
antibody and thioflavin-S (ThS) for β-structured aggregates detection. Untransfected N2a and 
ScN2a (N2a-mock and ScN2a-mock) were used as controls. Blue fluorescence for nucleus; 
red fluorescence for PrP; green fluorescence for aggregate. Scale bar: 12 µm. 
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Figure 26. PrPSc detection in N2a cells expressing the H95Y mutant by 
immunofluorescence imaging. N2a transiently expressed WT3F4 and H95Y3F4 mutant were 
treated with PK to remove PrPC signals and guanidine to expose the PrPSc epitope. Blue 
fluorescence indicates nucleus; red fluorescence indicates PrP. Untransfected N2a and ScN2a 
(N2a-mock and ScN2a-mock) were used as controls. Scale bars: 12 µm. 
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4.6. Protein trafficking is not impaired in N2a cells expressing mutants 

PrPC is trafficked through the secretory pathway to the cell surface, and 

sequentially recycled through the endosomal system. More than 90% of surface PrPC 

is internalized within 2 min and returned to the plasma membrane within 6 min 

(Sunyach et al., 2003). The copper binding depending on the histidine residues, 

particularly in the OR, has been previously implicated in several properties of PrPC, 

one of which is the endocytic trafficking (Lee et al., 2001; Pauly and Harris, 1998; 

Perera and Hooper, 2001a). This endocytic recycling pathway has been involved in 

certain steps of PrPC-PrPSc conversion. Moreover, the existence of this pathway also 

suggests that PrPC might serve as a receptor to uptake extracellular ligands, and 

copper ion is an attractive partner. Here we investigated whether lacking of copper 

binding via His in the OR or non-OR may have an effect on the endocytosis, and 

whether the accumulation of the H95Y3F4 mutant is correlated with this pathway or 

not. For this purpose, we specifically immunolabelled the transfected proteins that 

were localized only intracellulary, after removing the extracellular PrPC by trypsin 

treatment (Westergard et al., 2011). We observed that all mutant PrPs exhibited 

punctated intracellular fluorescence signals corresponding to endosomal 

compartments to which antibody-labeled PrP had been delivered, and as shown, 

H95Y3F4 was efficiently endocyted as WT3F4 (Figure 27). We concluded that His 

mutations do not impair PrPC internalization from cell surface, and the accumulation 

of H95Y3F4 could not be attributable to endocytosis. It is needed to be more evidently 

confirmed by other experiments. However, it could be in agreement with a previous 

study showing that cells expressing the OR region ablation in the PrP construct failed 

to result in endocytosis (Perera and Hooper, 2001b) despite the copper binding to 

other sites out of ORs (Whittal et al., 2000). Nevertheless, the number of OR efficient 

for copper-mediated internalization is intriguing. It was reported that even if one OR 

unit is lacking, the protein is still sufficient for the endocytosis (Pauly and Harris, 

1998). Conversely, Perera and Hooper, based on the investigation of the construct 

containing two mutated histidines (H68 and H76), have concluded that disruption of 

one or more ORs drastically compromises the endocytosis of PrP (Perera and Hooper, 

2001b). Our data add evidence that one histidine substitution could not impair the 



 

57 
 

endocytosis, since identical effects were obtained for all four H60/68/76/84 

mutations.  

 
 

Figure 27. Substitution of a single histidine residue in the OR and non-OR regions does 
not impair PrP endocytosis. N2a cells were transiently transfected with 3F4-tagged MoPrP 
constructs. Only intracellular transfected PrPs were immunolabeled after removing 
extracellular PrPC by trypsin. PrPs were detected by the 3F4 mAb. Insets show 
magnifications of cells in the merge images. Scale bars: 24 µm. 



 

58 
 

4.7. The H95Y mutant accumulates in early and recycling endosomes  

Conversion of PrPC to PrPSc is the key event in prion pathogenesis. To date 

there is no direct evidence for the involvement of any specific intracellular 

compartments in this event, as several compartments have been proposed as possible 

location depending on different systems (Arnold et al., 1995; Barmada and Harris, 

2005; Caughey et al., 1991b; Godsave et al., 2008; McKinley et al., 1991; Pimpinelli 

et al., 2005). It is important to characterize the putative intracellular localization 

where PrPC to PrPSc conversion occurs. On the basis of our results, we further 

identified the primary intracellular compartments where H95Y accumulation may 

occur. For this purpose, we selectively analyzed the localization patterns of 3F4-

tagged WT and the H95Y mutant with some organelle markers. 

We demonstrated here that most WT3F4 PrPC is found on cell surface, while 

there is a small portion in the endosomes and lysosomes. These results are consistent 

with those obtained from previous works analyzing the distribution of WT PrPC in 

different cell lines (Lainé et al., 2001; Mironov et al., 2003). Some punctated deposits 

found in WT expressing cells were colocalized with lysosome marker LAMP2 while 

the majority of 3F4-positive signals were on plasma membrane (Figure 28 A). The 

same general patterns of intracellular labeling were seen in cells expressing the 

H95Y3F4 mutant. Double labeling analysis using Calnexin (an ER marker) indicates a 

correct trafficking through the ER; and taken together with biochemical analysis 

(Figure 22 B and 22 C), the H95Y mutant is not blocked in this compartment. A 

significant population of intracellular H95Y3F4 mutant showed co-localization with 

EEA1 (an early endosome marker) and Tfn (a recycling endosome marker) 

suggesting a H95Y3F4 MoPrP accumulation in early and recycling endosomes. 

Additionally, a smaller fraction of H95Y3F4 mutant was found in the late endosomes 

and lysosomes (Figure 28 B). H95Y3F4-PrP distribution in early and recycling 

endosomes is somehow identical to PrPSc in scrapie-infected cells (Figure S7). Similar 

findings were observed in previous reports (Marijanovic et al., 2009; Uchiyama et al., 

2013). 

Acidic pH has been suggested as a critical condition for changes in PrP 

conformation (Hornemann and Glockshuber, 1998) and a change in the balance of 
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distinct mechanisms of internalization may facilitate conversion of PrPC to PrPSc, by 

diverting the protein to distinct intracellular compartments. Furthermore, mutations in 

PrPC related to prion diseases have been demonstrated to alter protein subcellular 

trafficking (Ivanova et al., 2001; Negro et al., 2001). Our data support the idea that 

early and recycling endosomes could be the principal intracellular sites where 

PrPCPrPSc conversion may occur. Previous studies have shown that the transition of 

PrP from its native state to soluble oligomers is a pH-dependent process (Gerber et 

al., 2008). Acidic conditions appear to favor the existence of soluble PrP oligomers 

(Baskakov et al., 2002). Potentially, the mutation might provoke alterations in the cell 

sorting and protein processing, inducing a suitable surrounding environment for PrPSc 

formation. 
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Figure 28. The H95Y3F4 MoPrP mutant displays intracellular accumulation in early 
and recycling endosomes. PrP localization in N2a cells expressing the WT3F4 MoPrP (A) 
or the H95Y3F4 MoPrP (B). Nuclei are labeled with DAPI (blue), PrPs are detected by 3F4 
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antibody (green), while organelle markers, as Calnexin (ER marker), EEA1 (early 
endosomes marker), Tfn (recycling endosomes marker), M6PR (late endosomes marker) and 
LAMP2 (lysosomes marker), are labeled in red. Insets in (B) show a magnification of the 
merged panels (white boxed areas). Scale bars: 12 µm. 
 

4.8. The H95Y mutant can induce de novo prion formation in N2a cells 

Often referred to as the prion agent (Prusiner et al., 1998), PrPSc derives its 

infectious nature from its unique ability to induce additional PrPC molecules to 

acquire its own β-sheet rich PrPSc conformation. However, the mechanistic details of 

the conversion process are not completely clear. In sporadic prion disorders, the 

conversion of PrPC to PrPSc is believed to occur as a spontaneous event. The newly 

formed PrPSc can favor the conversion of PrPC into additional PrPSc and cause the 

accumulation of pathological isoforms, as prions. On the basis of these results, we 

reasoned whether the H95Y3F4 mutant expressed in N2a cells may behave as an 

infectious prion. To test this hypothesis, N2a cells were transiently transfected with 

WT3F4 or H95Y3F4 mutant and regularly passaged, up to passage (P) 8 (Figure 29 A). 

Using D18 mAb, which allows for the detection of both transfected and endogenous 

MoPrPs, we found the immunoreactive PK-resistant PrP bands starting at P4, 

remaining unchanged till P7, and slightly increasing at P8.  

Alternatively, we isolated the H95Y3F4 “seed” from transiently transfected 

N2a cells by PTA precipitation, subjected this seed to uninfected N2a and 

sequentially passaged up to P8 (Figure 29 B). Interestingly, we observed an increment 

in PrPSc PK-resistance levels through passages when compared to WT expressing 

cells at P8, thus indicating that the H95Y seed acted as a real infectious agent 

inducing de novo conformational conversion of PrPC to PrPSc and propagating itself 

over passages. To explain these observations, we proposed that isolated H95Y seeds 

were more than sufficient to induce endogenous PrPC to change its native structure to 

misfolded PrPs. These misfolded PrPs could continue the process and amplify PrPSc 

population. Conversely, in N2a cells transiently expressed H95Y and sequentially 

passaged, the existing misfolded H95Y was possibly trapped inside the cells and thus 

less efficient in exhibiting its infectivity; this resulted in unchanged PrPSc PK-

resistance levels over passages. 
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Figure 29. The H95Y mutant induces de novo prion formation. (A) N2a cells were 
transiently transfected with WT3F4 and H95Y3F4 MoPrP and regularly passaged every 7 days 
up to passage (P) 8. (B) PTA-extracted PrPSc from N2a cells transfected with either WT3F4 
MoPrP or H95Y3F4 MoPrP were subjected to N2a cells and regularly passaged every 7 days 
up to P8. The PrPSc detection was assessed by PK digestion over subsequent passages. PrPC 
and PrPSc expressions were detected by D18 antibody. β-actin was used as internal loading 
control. 
 

We further analyzed the kinetics of recMoPrP H95Y compared to recMoPrP 

WT in fibrillization reaction. In this assay, we used the recombinant proteins without 

3F4-tag. Moreover, in order to directly evaluate the effect of H95Y mutation in the 

spontaneous conversion process, we initiated the reaction without preformed PrPSc. 

We obtained typical sigmoidal kinetics for amyloid formation for both 

recMoPrP_WT and recMoPrP_H95Y. At neutral condition and low concentration of 

1 M Gdn denaturant, we could not detect any clear difference in lag phase (Figure 30 

A). However, recMoPrP_H95Y showed considerably reduced lag phases as compared 

to recMoPrP_WT at higher concentrations of Gdn. In this experimental setup, we 

observed the same effect as amyloid seeding assay in the presence of preformed 

H95Y3F4_PrPSc seed. The fibrillization of recMoPrP_H95Y started more quickly at 

both pH 5 and 7, indicating that this mutation significantly promotes the β-structured 

formation (Figure 30 B). We also noticed that the variability between replicates in the 

reaction of recMoPrP H95Y was always lower than that of recMoPrP_ WT. 
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Figure 30. recMoPrP H95Y mutant dramatically promotes polymerization processes. 
recMoPrP_WT (recWT) and recMoPrP_H95Y (recH95Y) were adding into fibrillization 
reactions at different concentrations of Gdn (A) or at two pH conditions in 2 M Gdn (B). 
Comparison of mean lag phase values was performed. (n = 4, n.s: non-significant, ** p< 
0.005, ***p<0.001). 
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V. DISCUSSION 

The central molecular event in prion diseases is the conversion of the normal 

cellular form, PrPC, into the disease-specific isoform, PrPSc. Despite numerous 

investigations on PrP, the physiological functions of PrPC as well as its conversion 

mechanism leading to the conformational change remain elusive. Several lines of 

evidence have suggested that PrPC specifically binds to copper, an essential trace 

metal. Regardless of contradictory results on the actual role of copper in prion 

diseases, there is evidently strong agreement that copper binding has a pivotal impact 

on protein aggregation. Previous studies have been based mostly on spectroscopic 

analysis of protein native structure and copper binding mode. Although these methods 

are powerful approaches to study PrP conformation and binding affinities, they still 

fail to completely investigate the protein in its physiological environment. By 

combining cell culture and cell-free approaches, we first explore that the lack of each 

histidine in the OR has neither effect on prion replication nor protein maturation and 

trafficking. Conversely, we found a critical implication of histidine 95 in prion 

conversion. To explain these results, we hypothesize a compensatory effect between 

the four identical OR units. A single OR is a sufficient primary unit for copper 

binding and to sustain the replication (Cruite et al., 2011; Flechsig et al., 2000). Thus, 

ablation of one OR unit or substitution of the histidine residue in each unit may not 

significantly alter protein conformation and copper coordination. Another possibility 

is that the non-OR copper-binding site at H95, not the OR region, is much more 

crucial for prion propagation and infectivity. This finding supports previous studies 

on a higher affinity for copper coordination at the non-OR region, particularly the 

H95 (Jones et al., 2004; Millhauser, 2007; Qin et al., 2000; Quaglio et al., 2001). 

Moreover, H95 is in the region of PrP that typically remains after proteolytic 

cleavage, thus, copper may modulate PrPSc formation even in the absence of the ORs, 

as shown by Cox et al. (Cox et al., 2006). We showed that the H95Y3F4 MoPrP 

follows normal maturation and internalization processes. The mutant can transit to the 

ER, successfully exit the Golgi apparatus and finally attach to the outer leaflet of the 

plasma membrane. From the cell surface, the mutant can be endocyted to internal 

endosomal compartments and routed to lysosomes and proteasomes for degradation. 
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Along its trafficking, a substantial fraction of H95Y3F4 may misfold and acquire 

PrPSc-like characteristics. This subpopulation can act as a template to recruit and 

convert normal PrPC into PrPSc (Figure 31). 

On the basis of our findings, we propose that the H95Y mutant acts as a 

pathogenic mutation located in the N-terminal domain causing spontaneous 

conversion to prion. This is in line with structural data on full-length and truncated 

recombinant PrP, which define the N-terminal half of the protein as flexibly 

disordered or random coil (Viles et al., 1999); the region containing H95 does not 

adopt a regular secondary structure (Berti et al., 2007; Emwas et al., 2013). Indeed, 

this unstructured portion of PrP undergoes rearrangements in PrPSc (Peretz et al., 

1997). Instead of causing a significant change in folded structure like other 

pathogenic mutations in the globular domain, H95Y may alter the interaction between 

distinct portions in protein structure, whose changes are required for oligomerization 

into fibrillar species. The importance of residue 95 has not been thoroughly studied 

yet. We propose that copper binding at this site may impact the interaction between 

different regions of the protein, possibly to accelerate the copper-binding to the 

octapeptide domain with the hydrophobic domain or the C-terminal globular domain. 

This finding supports a previous study showing that the interaction of copper to a 

peptide including the non-OR and the hydrophobic regions (residues 91-115) induces 

aggregation of β-sheet enriched structures (Jobling et al., 2001). A recently published 

study proposes that N-terminal mutations may alter backbone flexibility and intra-

molecular contacts in the OR and non-OR regions, thus affecting copper coordination 

as well as the binding with other physiological interacting partners (Cong et al., 

2013). 

Copper seems to play an important role for PrPC stability and conversion to 

prion (Bocharova et al., 2005; Bonomo et al., 2000; Brown, 2001; Brown and Harris, 

2003; Brown and Sassoon, 2002; Brown et al., 1998; Chattopadhyay et al., 2005; Cox 

et al., 2006; Cui et al., 2003; Garnett and Viles, 2003). Experiments on the connection 

between copper and PrPSc formation have yielded contradictory results. Since PrPC 

binds Cu with several unique coordination modes (Chattopadhyay et al., 2005; 

Millhauser, 2004), it is certainly possible that each mode exhibits distinct 
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characteristics with regard to prion conversion. The interaction with Cu ions could 

stabilize PrP conformation but it remains to be seen in what way the binding of Cu to 

the N-terminal repeats and the concomitant adoption of structure influences the 

structural transitions that potentially take place in H95 and/or H110.  

Recent studies have shown that the copper binding site has the same structure 

for both Cu (II) and Cu (I) in the WT HuPrP, whereas the coordination site changes 

drastically from the oxidized to the reduced form of the copper ion in the Q212P 

mutant, which is related to human GSS (Ilc et al., 2010). Mutation at H95 may 

change the copper coordination between the OR-H95 and/ or H110, therefore 

facilitate prion conversion. How Cu2+ and other metal ions influence the flexibility of 

the N-terminal part and, subsequently, the interaction between PrPSc and PrPC in vivo 

and in vitro have not yet been well understood. Whether the N-terminal region of PrP 

stabilizes the C-terminal domain of the molecule or modulates the binding of PrPC to 

an auxiliary molecule that participates in PrPSc formation remains to be established 

(Wadsworth et al., 1999). 

From our cell analysis, we found that mutation at H95 induces alterations in 

PrP biochemical features and trafficking. These findings raise the question whether 

the changes in copper binding may influence on the protein distribution in 

compartments that facilitate protein misfolding to form some intermediate states of 

structural organization before finally ending up as aggregates. Acidic pH has been 

suggested to be ideal for conformational changes (Hornemann and Glockshuber, 

1998). Thus, a change in the balance of distinct mechanisms of internalization may 

facilitate conversion of PrPC to PrPSc, by diverting the protein to distinct intracellular 

compartments. Identifying the organelles involved in PrPC trafficking is of clear 

interest, as pH and other factors that may facilitate conversion can change in the 

endocytic pathway. Recent studies have shown the participation of early endosomes 

and retrograde trafficking to the Golgi and ER in PrPres conversion (Béranger et al., 

2002; Yamasaki et al., 2012).  

In some cell models, a small percentage of PrPC normally misfolds, is 

retrogradely transported to the cytosol, also rapidly degraded by the 

lysosomal/proteasomal system and becomes undetectable (Ma and Lindquist, 2001; 
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Yedidia et al., 2001). However, when proteasome activity is compromised, PrP 

accumulates intracellularly to form cytosolic PrP (Ma and Lindquist, 2001; 

Taraboulos et al., 1995). It is not well established whether the accumulation of protein 

in the disease is the cause or the consequence of cellular protective system 

dysfunction. We observed a population of H95Y acquiring high PK-resistance and 

accumulating in acidic endosomal compartments, whose environments evolved to 

promote protein unfolding at low pH prior to degradation by acid-activated proteases. 

Consequently, this population could escape from or even inhibit the cellular quality 

control mechanisms (Ashok and Hegde, 2009; Zanusso et al., 1999). Or, the 

increment of misfolded species may lead to saturation of the trafficking pathway to 

lysosomes and compromise the proper function of this compartment. Several different 

pathogenic mutations impair PrP trafficking and cause a portion to accumulate in 

intracellular compartments (Drisaldi et al., 2003; Ivanova et al., 2001; Massignan et 

al., 2010; Negro et al., 2001; Petersen et al., 1996). Our data proposed that the effects 

of H95Y on PrP structure and cellular distribution are related, and endosomal 

accumulation may be a consequence of PrP misfolding and aggregation. Although a 

small number of prions could be cleared by multiple different protein degradation 

pathways, accumulation above a certain threshold would inhibit the self-defense 

mechanism. Pathogenic mutants do not exert a uniform effect on the stability of PrP. 

Thus, it was not possible to apply a common mechanism based solely on the 

alteration of protein intrinsic structure or the impairment of cellular quality control 

system. 

Studying the artificial mutant H95Y provides an invaluable model not only for 

investigating molecular mechanisms, but also the structural events of PrPC→PrPSc 

conversion in vitro of pathogenic mutations in the N-terminal of PrP. Our results add 

evidence to explain the existence of this highly evolutionary conserved region in the 

Prnp gene. The substitution of H95 with tyrosine has a dramatic effect in promoting 

the generation of novel cell-to-cell infectious prion particles. Thus, H95 in the non-

OR region may act as molecular switch for prion conversion. We therefore argue that 

copper, or other metal ions, bound to H95 may stabilize this segment preventing 

possible misfolding events that occur in the region from residue 95 to 125.  
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The data presented in this work may also provide a platform for rationally 

designed experiments aimed at elucidating whether the H95Y mutation may cause de 

novo prion diseases when expressed in Tg mice. Interestingly, the non-OR region has 

recently been found as the principal site for amyloid-β peptide (Aβ) oligomers 

binding and modulating Aβ neurotoxicity (Lauren et al., 2009). Aβ is a pathological 

hallmark of Alzheimer’s disease (AD), the prevalent form of dementia in aging 

population (Hardy and Selkoe, 2002). It has been found that oligomeric Aβ does bind 

specifically to PrP, not to the PrP paralogs Doppel or Shadoo. Although PrPC is 

supposed to mediate the impairment of synapticity induced by Aβ oligomers, it is 

interesting to elucidate how this binding contributes to AD and prion pathogenesis. It 
is possible that through PrP-Aβ interaction coupled with the mediation of 

copperhomeostasis, these molecules effect protein conformational changes and 

accumulation in the CNS, leading to neurological disorders. It would be interesting to 

investigate the interaction between the H95Y mutant and Aβ oligomers in Tg mice 

model to possibly define a relation among copper, PrPC function and oligomeric Aβ 

in neurodegenerative disorders. 

In addition, building a library of histidine substitutions in MoPrP constructs 

allowed us to investigate the role of copper coordination at each OR unit as well as 

the non-OR site, and provided useful information about their role in prion replication. 

Understanding the molecular mechanism of PrP conformational conversion and 

misfolding is essential for the biomedical research and treatment of prion diseases. 
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Figure 31. Proposed model for prion conversion in cells expressing H95Y MoPrP. The 
WT and H95Y MoPrP are synthesized in the ER, undergo post-translational modifications in 
Golgi apparatus, and result in the mature PrPC embedded in the plasma membrane via a GPI 
anchor. From the cell surface, the proteins can be internalized to early and recycling 
endosomes. In these compartments, the H95Y MoPrP accumulates and may undergo 
conformational conversion into prion. Aberrant H95Y mutant aggregates could be delivered 
and accumulated into late endosomes, lysosomes and proteasomes. The presence of protease-
resistant H95Y mutant aggregates may impair the cellular quality control mechanisms leading 
to the secretion of H95Y PrPSc via exosomes. H95Y PrPSc may template the prion conversion 
of both endogenous WT and mutant MoPrP on the cell surface. 
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Supplementary information 

A. Mutant proteins are not toxic to cell cultures 

To evaluate the toxicity of the inserted mutants, ScN2a and N2a cells were 

incubated in a 96-well tissue culture plate and transfected with 3F4-tagged MoPrP 

constructs as per manufacturer’s instructions. Seventy-two hours after the 

transfection, the medium was removed and the MTT assay performed as described. 

The growth rate was calculated by dividing the absorbance value of the last 

day with the value measured on the transfection day and compared to the 

untransfected (Mock) sample. Each assay was performed in duplication of 4 wells 

and analyzed from at least three separate experiments. Expressions of 3F4-tagged WT 

and mutant MoPrP constructs and the cell transfection procedures had no detectable 

effect on the N2a and ScN2a cell viability (Figure S1 and S2), indicating that 

expression of mutant PrP per se was not cytotoxic.  

 

 
Figure S1. The histidine substitutions in the OR and non-OR regions are not toxic for 
cell culture. Quantitative analysis of the cell viability percentage in transfected constructs (n 
= 4, p>0.05). 

 

To ascertain that the protein expression levels were comparable in all 

experiments, we quantified the signal densities by both Western blotting and 

immunofluorescence analysis. It was shown that either the protein expression levels 

of all MoPrP constructs employed in our study or the transfection efficiency were 

relevant to those for WT-PrP (Figure S2 and S3).  
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Figure S2. Protein expression levels of 3F4-tagged MoPrPs were equivalent in all 
experiments. Western blot of MoPrP glycosylation pattern was detected by 3F4 antibody in 
N2a (A) and ScN2a (B) cells transfected with the 3F4-tagged constructs. β-actin was used as 
internal control. Quantitative analysis of actin-normalized PrP expression levels in both N2a 
and ScN2a cells (n = 4, p>0.05) (C). 
 

 
 

Figure S3. Relevant transfection efficiency between mutated MoPrP constructs. 
Quantitative analysis of GFP-normalized PrP expression levels in N2a cells (n = 4, p>0.05). 
  



 

72 
 

B. The 3F4–epitope tag has no influence on prion replication 

As mentioned, the 3F4-epitope tag is a powerful tool to distinguish between 

introduced and endogenous MoPrPs. To confirm that this tag has no effect on protein 

expression, and especially on prion replication, we transiently transfected ScN2a cells 

with a blank vector, or with a vector containing Prnp with and without 3F4-tag 

encoding gene, and treated with PK to evaluate PrPSc PK-resistance levels. Western 

blotting with anti-PrP D18 antibody showed relevant PK-resistance among cells 

expressing WT with and without 3F4-tag (Figure S4).  

 

 
Figure S4. Characterization of 3F4-epitope tag on PK-resistance. Western blot of ScN2a 
cells transiently expressing MoPrP constructs with or without 3F4-tag compared to 
untransfected cells (mock). PrPC and PrPSc were detected by anti-PrP D18 antibody. β-actin 
was used as internal control. 

 

C. The presence of Histidine-95 is critical for prion replication 

To understand whether the high protease-resistance of H95Y was due 

exclusively to the absence of the fifth histidine residue, and not to the introduction of 

any specific amino acid, we generated series of PrP molecules containing different 

amino acid substitutions at residue 95, two molecules from the group of small 

molecules (alanine and glycine), two of the aromatic molecule group (phenylalanine 

and tyrosine), and one negatively-charged molecule. 

 



 

73 
 

 
 

Figure S5. Histidne-95/amino acid substitutions MoPrP mutants in pcDNA3.1(-) and 
general physicochemical properties of these amino acids. Alanine (Ala, A), Glycine (Gly, 
G), Glutamic acid (Glu, E), Phenylalanine (Phe, F), Tyrosine (Tyr, Y).  

 

We confirmed that the lack of the histidine at residue 95, not the substitution 

of tyrosine, makes the protein prone to prion propagation. Interestingly, cells 

expressing Ala and Gly substitutions, which belong to the group of small and neutral 

molecules, showed less resistance than H95Y, whereas Tyr and Phe that share similar 

aromatic structure and relevant molecular mass as His, clearly showed PK-resistance. 

Interestingly, we found that the introduction of a negatively charged molecule at 

residue 95 significantly reduced PrPSc level. We proposed that H95E may interact 

with Cu2+ in some different manner from H95, and exhibit a dominant negative effect 

on prion conversion. It would be interesting to analyze H95E in detail to understand 

the underlying mechanism. From these data, it is clear that histidine at position 95 

plays a critical role in prion conversion and replication. Depending on the 

characteristics of the introduced molecule, in particular the polarity, it may enhance 
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or inhibit the conversion process, possibly via copper coordination mode. However, 

H95Y-expressing cells yielded the best protein expression level among amino acid 

substitutions, so H95Y proved to be the best candidate for our studies (Figure S6). 

 
Figure S6. Evaluation of other amino acid substitutions at Histidine 95. (A) Western blot 
of ScN2a cells transiently expressing MoPrP constructs in which H95 was substituted by 
different amino acids. PrPC and PrPSc were detected by anti-PrP 3F4. (B) Quantitative 
analysis of PrP expression (PrPC) and PrPSc PK-resistance levels (PrPSc) in transfected cells, 
calculated from (A) (n = 3, *p<0.05, **p<0.05, ***p<0.005). 
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D. The localization of PrPSc in ScN2a cells 

The localization of PrPSc is not well established because of the lack of specific 

antibodies and the need for protein denaturation by guanidine-hydrochloride 

(GdnHCl) to expose PrPSc epitopes (Taraboulos et al., 1990; Veith et al., 2009). 

Moreover, depending on the cell lines used for investigation, the distribution of the 

proteins may vary. But it is certain that the majority of PrPSc molecules is 

intracellular, and seems to be accumulated in endosomal compartments (Godsave et 

al., 2008; Marijanovic et al., 2009; McKinley et al., 1991; Taraboulos et al., 1990; 

Veith et al., 2009). To confirm PrPSc distribution in ScN2a cells, we briefly analyzed 

the localization patterns of PrPSc in some organelle markers (Figure S7). In order to 

visualize PrPSc, ScN2a cells were treated with GdnHCl and PK before incubation 

with the anti-PrP antibody. We found that PrPSc was predominantly intracellular. 

Most intracellular proteins are localized throughout the endocytic compartments, 

particularly in the early endosome, recycling endosome and lysosome. These data 

agree with previous studies (Marijanovic et al., 2009; McKinley et al., 1991; 

Uchiyama et al., 2013).  
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Figure S7. Subcellular localization PrPSc in ScN2a cells. Nuclei are labeled with DAPI 
(blue), PrPs are detected by D18 antibody (green), whereas organelle markers, as Calnexin 
(ER marker), EEA1 (early endosomes marker), Tfn (recycling endosomes marker), M6PR 
(late endosomes marker) and LAMP2 (lysosomes marker) are labeled in red. Insets show a 
magnification of the merged panels (white boxed areas). Scale bars: 12 µm. 
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