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Chapter 1

Introduction and overview

1.1 Experimental motivation and main questions

The main experimental motivation for the present Thesis is the large amount
of recent experimental works on cold atoms [1]. In these systems it is possi-
ble to trap many atoms and keep them well isolated from the environment
for a long time. Experimentalists can tailor the dimensionality of the sys-
tem and control the external fields acting on it [2], and the interactions
among its constituents [3] in the desired way. The dynamics is unitary and
coherent, and collective phenomena like superfluid-Mott insulator quantum
phase transition [4] or BCS-BEC crossover [5] can be observed. Moreover,
it is possible to control the external perturbations driving the system: the
quantum coherent dynamics of many-body systems becomes a subject of
experimental observation [6, 7, 8], and is no longer a purely academic issue.

A question which has attracted the interest of many experimentalists
and theoreticians is what happens to an isolated quantum system when
it is prepared in a non-equilibrium state with respect to the Hamiltonian
governing the evolution (see Ref. [9] for a review). This is the so-called
sudden quantum quench: the system is prepared in the ground state of an
Hamiltonian Ĥ0 and the Hamiltonian is suddenly changed, at t = 0, to
Ĥ. One of the crucial points of investigation is whether the observables
of the system eventually reach a stationary condition, and what are the
properties of the stationary regime. In the experiments performed so far,
various results have been obtained: in particular, quantum beats persist for
long times in a one-dimensional quasi-integrable Tonks-Girardeau gas [6],
while there is equilibration to a thermal regime when two one-dimensional
Bose condensates are put in contact [10].

In recent years, important experimental [11, 12, 13, 14, 15, 16] and the-
oretical [17, 18, 19, 20, 21, 22, 23, 24] works concerning the periodic driving
of these systems have appeared. Small amplitude time-periodic fields have
been, traditionally, an important instrument to probe equilibrium prop-
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erties of systems, but more recently researchers have started considering
the effect of larger amplitude periodic drivings on systems which remain
quantum coherent for long times [25]. Our main question is if, in isolated
periodically driven cold atom systems, observables reach a periodic steady
condition analogue to the steady state reached after a quantum quench. To
explore relaxation to a periodic regime in the case of periodic driving, it
is important to know concepts and results coming from the large amount
of theoretical work performed to understand equilibration after a quantum
quench. Indeed, we will see that the two phenomena are strictly related and
are expected to happen in similar systems. We therefore start by briefly
reviewing the theoretical literature concerning quantum quenches and the
ensuing equilibration of observables.

1.2 Equilibration in the quantum quench case

The most discussed points in the literature are i) the conditions under which
the observables of a quenched isolated quantum system can equilibrate and
ii) the properties that make the system show a thermal behaviour in the
equilibrium regime [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].
Independently of the thermal properties, if observables attain an equilib-
rium condition, their expectation value in the asymptotic regime is always
described by the diagonal ensemble [26]. Expanding the state of the sys-
tem in terms of the eigenstates |Φn〉 of the Hamiltonian, we can write
|ψ(t)〉 =

∑
nCne−iEnt |Φn〉, where En are the eigen-energies of the system

and Cn = 〈Φn |ψ(0)〉 the overlaps of the initial state with the eigenstates.
Because of destructive interference, the expectation value 〈ψ(t)| Ô |ψ(t)〉 of
an observable Ô usually relaxes to the diagonal ensemble average 〈O〉diag =∑

n |Cn|2 〈Φn| Ô |Φn〉. As stated in Ref. [26] “If the system relaxes at all, it
must be to this value”. It is important to stress that the state of the system
does not relax, only local observables and the reduced density matrix of lo-
calized subsystems [39] do. The asymptotic value shows different properties
in different cases: it is interesting to understand when the averages of the
observables predicted by the diagonal ensemble are thermal or not.

In many cases the asymptotic regime is not thermal [34, 33, 35, 29, 27,
32, 9] and is described by the so-called Generalized Gibbs Ensemble (GGE).
This is the ensemble maximizing the entropy whenever there are conserved
quantities in the dynamics [40]. The quantum dynamics conserves all the
projectors on the eigenstates of the Hamiltonian |Φn〉 〈Φn|, which are expo-
nential in the size of the system, and all the powers of the Hamiltonian Ĥk,
which are infinite; the remarkable thing is that the averages of the observ-
ables are obtained by enforcing the conservation of a much smaller number
of operators. Nevertheless, not all the observables relax after a quench, so
this ensemble does not give a complete description of the system [9]. This
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can be clearly seen, for instance, in the case of free-fermion-like Hamiltoni-
ans in presence of disorder: the persisting fluctuations of the single-particle
correlators make the GGE unable to describe the time-averages of the many-
particle observables [41].

The GGE has been demonstrated to hold for “integrable” systems; here
the word integrable means a system with well-defined quasi-particles retain-
ing their identity upon scattering [9, 42]; the observables whose conservation
is enforced by GGE are the occupation numbers of the quasi-particle states.
Quantum integrability is a very debated and not completely clear ques-
tion [43]: integrable are considered also those systems which are solvable by
means of Bethe Ansatz; also for them GGE seems to hold [39]. Integrable
models are very special but, thanks to the renormalization group (RG) the-
ory [44], they are very important in describing the low-energy behaviour of
real systems. These models are, on the contrary, not fully justified when dis-
cussing real systems which undergo a non-equilibrium driving and heat up
towards high energies; nevertheless discussing them is important because
integrable Hamiltonians are closely connected to what is realized in cold
atom experiments [1]. One would be tempted to say that we have changed
paradigm: we do not try to make theories which describe Nature, but ad-
just the Nature so that it is described by our theories. Actually this is not
completely true: it is possible to experimentally add non-integrable terms
to integrable Hamiltonians to see, in the quantum case, at which point there
is a crossover from GGE to thermalization; in this way, we can understand
the foundations of quantum statistical mechanics.

In the classical Hamiltonian case the situation is quite clear: a system
with N degrees of freedom is integrable if it has N constants of motion
in involution (i.e., with vanishing Poisson brackets) [45, 46]. Adding an
integrability breaking term to the Hamiltonian, KAM theorem [47, 48, 49,
45, 46, 50] states (poorly speaking) that a part of the phase space around
resonant orbits becomes chaotic; if the perturbation is strong enough, all
the phase space becomes chaotic. In the latter case, the system is ergodic:
any trajectory fills uniformly the phase space, and time averages coincide
with phase space averages. More precisely, time averages coincide with
thermal averages on the microcanonical ensemble [51], with a temperature
fixed by the conservation of energy. One instance of that is the Fermi-Pasta-
Ulam problem [52]: a chain of harmonic oscillators with a tunable non-linear
coupling term. This term breaks integrability and needs to exceed a certain
threshold in order to have ergodicity and see all the phase space chaotic
[53, 54].

In the quantum case there is no general theorem to guide us. Many
works [30, 31, 55, 29, 28, 56], by means of t-DMRG and exact diagonal-
ization, discuss the quench on systems with non-integrable terms and see
thermalization or not according to the strength of the integrability-breaking
term. These results refer to few dozens of particles and no one knows what
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happens in the thermodynamic limit; indeed, the absence of thermalization
could be even an effect of finite-size quantum fluctuations [57]. Neverthe-
less, whenever a quantum system shows thermalization, this is due to the
properties of the eigenstates of the Hamiltonian: the expectation value of
any physical observable on any eigenstate equals the microcanonical ther-
mal average and depends smoothly on the energy of the eigenstate. This is
the so-called Eigenstate Thermalization Hypothesis [58, 59] which has been
numerically verified in some cases [26] and we will discuss in some detail in
Chapter 5 in connection with the thermalization of the driven Lipkin model.

To conclude, we mention Ref. [60] where it is shown that relaxation
(independently of the thermal or non-thermal – GGE – nature of the equi-
librium condition) can happen only when the Hamiltonian after the quench
has a continuous energy spectrum; this point will be very important in what
follows. We will see that convergence to a periodic steady state in a driven
system is very similar to the relaxation after a quench; the only difference
is the substitution of the eigenstates/eigen-energies of the final Hamiltonian
with the Floquet states/quasi-energies.

1.3 Overview of the results

Besides the studies about quantum quenches, there is a community of people
who studies what happens when a quantum phase transition (QPT) [61]
is crossed by varying a parameter of the Hamiltonian linearly in time (see
Refs. [62, 9] for a review). The question is how the universality properties of
the static QPT reflect in those of the dynamical case, in the limit of a van-
ishing crossing rate. Indeed, since the spectral gap closes at the QPT, there
is never perfect adiabaticity, and there is always a non-vanishing density of
excitations, which happens to show a universal scaling with the rate.

Recently, the question has been posed concerning a similar issue when the
system evolves coherently under a periodic sequence of these QPT-crossings,
especially when the adiabatic limit is approached. With this question in
mind, we started studying the dynamics of a uniform quantum Ising chain
model periodically driven by changing the transverse field across the quan-
tum critical point. 1 What struck us was that all the considered local
observables approached asymptotically a steady periodic regime, analogue
to the stationary limit reached in quench problems. We understood that this
regime is described by a diagonal Floquet ensemble, analogue to the diagonal
ensemble we have discussed in the quantum quench case. Floquet states,
which we discuss in Chapt. 2, are a basis of solutions of the Schrödinger

1Before us, the question has been discussed by means of the Landau-Zener approxi-
mation [21]. Technically, we have preferred to evaluate numerically the exact evolution
over a single driving period (which is possible due to integrability of the model and the
Bogoliubov-de Gennes equations) and then propagate it, by applying the Floquet the-
ory [63, 64, 65].
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equation, periodic “up to a phase” e−i µαt |Φα(t)〉, in terms of which the
state can be expanded: |ψ(t)〉 =

∑
αRαe−i µαt |Φα(t)〉; destructive interfer-

ence can make the expectation values of the observables converge to the
Floquet-diagonal ensemble average 〈O〉diag(t) =

∑
α |Rα|2 〈Φα(t)| Ô |Φα(t)〉.

The situation is very similar to the sudden quench: in both cases we have
an isolated system and convergence towards a steady regime follows from
destructive interference among the typical frequencies of the system. In the
quantum quench case they are the eigen-energies of the Hamiltonian, in the
periodically driven one they are the Floquet quasi-energies; in both cases
continuity of the spectrum is essential [66, 60]. Concerning the Ising model,
we verify that observables converge towards a periodic steady regime also
when we break translational invariance (making the quasi-particle modes
time-dependent) in a way that most of the Floquet spectrum is still a contin-
uum. Although we verify explicitly the convergence to the Floquet diagonal
ensemble for the Ising model (integrable and reducible to quasi-particles),
this is expected to be a very general result: the only requirement is the
continuity of the bulk of the Floquet spectrum (which is possible in the
thermodynamic limit, in absence of disorder). Moreover, only observables
coupled with an extensive amount of Floquet states in the continuum attain
this asymptotic regime. We will show that these are very general conditions
which are met, for instance, in all systems showing relaxation after a sudden
quench; we have seen in the previous section that there is plenty of examples
in literature [9]. Also in this case only continuity of the final Hamiltonian
spectrum is important [60], and this property is inherited by the Floquet
spectrum if the system is driven. We argue that integrability breaking does
not affect the convergence to a periodic steady regime in itself, but modifies
the asymptotic value attained, exactly as it happens in the sudden quench
case. Indeed, because of integrability, in the Ising model the stationary value
reached by observables does not show a thermal value.We cannot introduce
an effective temperature T valid for all the observables and the stationary
value attained has a strong dependence on the details of the external driving.
In the case we address, this dependence reflects the universal behaviour of
the quantum phase transition around which we perturb: at low frequencies
the number of excitations scales with the frequency as it does with the rate
in the case of linear crossing protocol. These results have been published in
Ref. [66] and are discussed in Chapts. 2 and 3 of the present Thesis.

The question about integrability and thermal properties of the asymp-
totic regime deserves special attention. If there is thermalization after a
quantum quench, it happens at a temperature fixed by the conserved en-
ergy of the system. In the driven case, instead, there is no energy con-
servation and, in ergodic systems, the energy increases until the T = ∞
value. In the classical case thermalization happens as a consequence of the
ergodic dynamics; in the quantum case instead the eigenstates have thermal
properties so that the diagonal ensemble coincides with the thermal one.
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The dynamics has only the auxiliary role of destroying coherence through
dephasing and making explicit the thermal properties of the diagonal en-
semble. This is the Eigenstate Thermalization Hypothesis (ETH) which has
been conjectured [58, 59, 67, 68] and verified in many systems thermalizing
after a quantum quench [26, 55, 31, 9, 69, 30, 56]. About periodic driving,
a recent paper has shown the case of an ergodic driven quantum spin chain
heating up until T = ∞ [70] and another one has verified that its eigenstates
obey ETH [71].

In the present Thesis we consider the case of thermalization in the driven
Lipkin model. This is the fully-connected version of the Ising model and in
it we can see very clearly the connection among classical chaos and ETH.
Indeed, in the limit N → ∞ (N is the number of spins) it is described by
a classical Hamiltonian with a single degree of freedom. In the quantum
quench case, this Hamiltonian is time-independent and the dynamics is reg-
ular; when there is driving it can show chaos and even ergodicity. We will
see how, correspondingly to an ergodic classical dynamics, quasi-energies
and Floquet states obey ETH and induce thermalization to T = ∞. This
problem is discussed in Chapt. 5 of the present Thesis.

Once we have understood the existence of a stationary periodic regime,
it is interesting to study the properties of the system in this condition
using the same tools employed to discuss the asymptotic regime attained
after a quench. Apart from the distinction between regular and ergodic,
it is interesting to understand the existence of long-range-order [72] and
entanglement [73, 74], aiming at the application to quantum information
problems [75, 76, 77]. There are many objects which can be considered:
entanglement entropy [73, 74], correlators [78, 36, 37], statistics of the ob-
servables [79]. We will focus on the last one. Because of quantum fluctua-
tions, measuring an observable gives a different result in each realization of
a process; the possibility to have a statistics of these measurements, to com-
pare with theoretical predictions, is nowadays an experimental reality [80].
Among the many interesting quantities, we will consider the work performed
on a system. Although, strictly speaking, it is not an observable [81], its
statistics can give a lot of information on the system. Indeed, quench and
driving are irreversible thermodynamical transformations whose study is in-
teresting from the point of view of theory and applications. The remarkable
Jarzynski equality [82, 81, 83] links the average over this distribution of
a function of the non-equilibrium work to the variation in free-energy of
the corresponding quasi-static transformation. Moreover, the work statis-
tics shows, for small values of the work, universal properties independent of
the details of the system and the driving protocol [84, 85, 86, 87, 88, 89].
Power-laws in the work distribution have been observed when there is a
quantum phase transition, this distribution becomes indeed a tool to detect
such a phenomenon [84, 86, 87, 88, 89]. In the case of the driven uniform
quantum Ising model in transverse field, we will show how this distribution
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becomes periodic for long times in the thermodynamic limit. In this limit,
it becomes also a δ function; nevertheless for L finite but large, there is a
finite probability density out of the δ, it approximately attains the periodic
regime before finite-size revivals arise. We will show that the work proba-
bility distribution becomes “universal” at small W , i.e. dependent only on
the initial and final values attained by the driving field. Moreover, we will
see a peculiar behaviour in correspondence of the quantum phase transition.
We discuss these questions in Chapt. 3; a partial account of these results
has been published in Ref. [90] where we consider only the stroboscopic
dynamical fidelity which is the probability of performing a vanishing work.

The question of energy absorption is very interesting also if we consider
its behaviour in the linear response limit. Linear Response Theory (LRT)
predicts a steady energy absorption, which is impossible if the energy-per-
site spectrum is bounded. In the quantum Ising chain in transverse field, we
are able to compare the results of LRT with the exact evolution. When the
driving couples to an extensive portion of the chain, LRT holds for a finite
time, independent of L and increasing if we consider a smaller perturbation
amplitude; after this time, energy absorption saturates. This reflects in the
response of the observable coupled to the driving field: the term which is
out-of-phase with respect to the driving, predicted by LRT and responsible
for energy absorption, vanishes after a transient. Nevertheless, LRT works
for long times in predicting the part of the response (the one in phase with
the driving) which has no relation with energy absorption: here LRT and
Floquet-diagonal ensemble predictions do agree. The situation is different
when the driving is localized and couples to few sites whose number is con-
stant when L increases. In this case LRT is obeyed for a time scaling as
∼ L which becomes infinite in the thermodynamic limit. There are no prob-
lems connected with energy absorption: the energy increment per site is
infinitesimal with respect to the total energy. In both cases, the persisting
out-of-phase term is a consequence of a degeneracy in the Floquet spectrum:
terms oscillating with approximately the same phase do not cancel by de-
structive interference. In the case of extensive driving, the degeneracy arises
when the driving amplitude goes to 0; when the driving is localized the de-
generacy appears also when L → ∞. These results have been published in
Ref. [91].

We conclude this overview with a list of the works where part of the
results of this Thesis have been published

� A. Russomanno, A. Silva, and G. E. Santoro. Periodic steady regime
and interference in a periodically driven quantum system. Phys. Rev.
Lett, 109:257201, 2012.

� A. Russomanno, A. Silva, and G. E. Santoro. Linear response as a
singular limit for a periodically driven closed quantum system. J.
Stat. Mech., page P09012, 2013.
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� S. Sharma, A. Russomanno, G. E. Santoro, and A. Dutta. Loschmidt
echo and dynamical fidelity in periodically driven quantum systems.
EPL, 106:67003, 2014.
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Chapter 2

Steady state of observables in
quenched and driven systems

In this Chapter we will discuss the general formalism to describe systems
undergoing a periodic driving and the conditions under which the observ-
ables converge to an asymptotic periodic regime. In particular, we show
that there is a very strict analogy with the case of quantum quench. In the
last case, the observables can attain an asymptotic steady state represented
by the diagonal ensemble introduced in the previous Chapter; this happens
whenever the eigen-energies and the eigenstates of the Hamiltonian leading
the evolution obey some special conditions, which we review in Sec. 2.1. In
Sec. 2.3 we will see that something very similar happens for periodically
driven systems, provided we substitute eigen-energies and eigenstates with
their analogue for the periodically driven systems: Floquet quasi-energies
and Floquet states. The stationary diagonal ensemble is replaced by the
time-periodic Floquet-diagonal ensemble; observables relax to it under con-
ditions very similar to those valid for the quantum quench. Floquet theory
is a cornerstone of this Thesis; we review it in Sec. 2.2. We conclude this
Chapter with Sec. 2.4, where we discuss how general is our result concerning
the convergence to the Floquet-diagonal ensemble.

2.1 Results for the case of a quantum quench

In the foregoing Chapter we have provided a brief review of the large amount
of experimental and theoretical results concerning the relaxation of observ-
ables after a quantum quench. In particular, we have underlined how, if
the observables relax to some limit, this limit has to be represented by the
diagonal ensemble. Here we discuss in more detail this relaxation and the
conditions that the Hamiltonian governing the evolution has to satisfy to
make it possible. We will apply our arguments to a bounded many body
system with N “particles” which is the kind of system considered in exper-
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iments on quenches.
In a quantum quench problem, one considers the coherent evolution un-

der a Hamiltonian Ĥ of a state |ψ0〉 which is a non-equilibrium state with
respect to Ĥ, hence it differs from every energy eigenstate 1. Denoting by En

the eigen-energies of Ĥ and by |Φn〉 the corresponding eigenstates, the state
of the system at time t can be written in the form |ψ(t)〉 =

∑
nCne−iEnt |Φn〉,

where Cn ≡ 〈Φn |ψ0〉 are the overlaps of the initial state with the eigen-
states. Considering a generic observable Ô, we can write its expectation
value 〈O〉t ≡ 〈ψ(t)| Ô |ψ(t)〉 at time t as

〈Ô〉t =
∑

n

|Cn|2Onn︸ ︷︷ ︸
Odiag

+
∑
n6=m

C∗
nCmOnmei(En−Em)t

︸ ︷︷ ︸
Ooff−diag(t)

, (2.1)

where we have defined the matrix elements Onm ≡ 〈Φn| Ô |Φm〉. The term
labeled Odiag is the time-independent part of the expectation, while the
off-diagonal component Ooff−diag(t) collects all the fluctuations around it, if
there are no degeneracies. If this is the case, and we average 〈Ô〉t over an
infinite time, the fluctuating off-diagonal component vanishes and only the
diagonal time-independent term will persist:

〈Ô〉t ≡ lim
tf→∞

1
tf

∫ tf

0
dt 〈Ô〉t = Odiag . (2.2)

Odiag can be seen as the expectation value of Ô over a density matrix ρ̂diag,

i.e., Odiag = Tr
[
Ô ρ̂diag

]
, defined as the “diagonal ensemble”:

ρ̂diag =
∑

n

|Cn|2 |Φn〉 〈Φn| . (2.3)

It is immediate to see that, if the observables converge to a stationary limit,
this is represented by the average on the diagonal ensemble. In Chapter 5 we
will discuss what are the properties of the eigenstates so that such diagonal
ensemble average equals the microcanonical average providing thermaliza-
tion of the observables.

We can ask what are the properties of the Hamiltonian Ĥ such that the
fluctuating part Ooff−diag(t) vanishes asymptotically, and the observables
actually tend to a stationary limit. Our argument is based on the properties
of the eigen-energies of Ĥ and leads to the conclusion that in the relaxation
process, up to very pathological cases, only the properties of Ĥ matter [60].
Indeed, one can introduce a kind of weighted joint density of states

fO(ω) = π
∑
n6=m

C∗
nCmOnm δ(ω − (Em − En)) (2.4)

1All the following arguments are very easy to generalize to the case where the initial
condition is not a pure state |ψ0〉 but a density matrix ρ̂0. We will give an explicit instance
of this in the case of periodic driving, discussed in Sec. 2.3.
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in such a way that the fluctuating part can be written as the Fourier trans-
form of fO(ω):

Ooff−diag(t) =
1
π

∫ ∞

−∞
dωfO(ω)e−iωt . (2.5)

We clearly see that, for the long-time behaviour of Ooff−diag(t), the spectral
properties of the Hamiltonian are crucial. Indeed, if Ĥ has a discrete spec-
trum, then fO(ω) is a discrete sum of Dirac’s deltas, a very singular object
which gives rise to persisting time fluctuations once Fourier transformed.
We would observe this behaviour if Ĥ is a disordered Hamiltonian which,
even in the thermodynamic limit, can show localization and a pure point
spectrum. Only if the spectrum is a continuum, the Dirac’s deltas can merge
to give a regular function. Whenever this happens, the Fourier transform
of fO(ω) (the fluctuating part) tends to 0 for infinite time. Mathematically,
this is the essence of the Riemann-Lebesgue lemma [92] (a Lebesgue inte-
grable |fO(ω)| is regular enough for its application); physically, it results
from the destructive interference among infinitely many, close frequencies.
Even if the spectrum of Ĥ has a discrete component, we can see relaxation
to the diagonal ensemble for those observables with non-vanishing matrix
elements mainly between eigenstates in the continuum. Since we deal with
bounded systems, a continuous spectrum can be found if the system is “not
disordered” and the thermodynamic limit is performed. It is remarkable
that, for the convergence to stationariety, only the continuity properties of
the spectrum matter. Indeed, convergence occurs even if the initial state |ψ0〉
is the ground state of a different disordered Hamiltonian Ĥ0 [60]. It is true
that, if we choose an observable Ô which couples to a finite number of eigen-
states, or a state |ψ0〉 which is a superposition of just few eigenstates, we see
persisting time fluctuations; but these are pathological cases. In particular,
because of the time-energy uncertainty relation [93], to prepare the system
in an eigenstate, we have to apply a perturbation to it for a time longer than
the inverse gap with nearby levels, the so-called Heisenberg time. This time
is exponentially large in the number N of particles, because in many-body
systems the gap between nearby levels is proportional to [94, 58, 95] e−S(E)

— where S(E) is the entropy at energy E — and is therefore exponentially
small. These considerations could not apply to the ground state [94] and
its immediate neighborhood, but this is not a problem because, even if we
can prepare the system in its ground state, it is impossible to make a dis-
crete superposition of it and few other many-body eigenstates. Indeed, the
issue comes from these superpositions, not from the single eigenstates. The
same argument shows that it is very difficult to measure an observable cou-
pling only to few eigenstates: we need to make the system interact with a
measuring apparatus for a time which is exponentially large in N .

We stress that the previous discussion applies only in the thermodynamic
limit. Practically, we can do simulations only for finite N ; even if the system
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we consider has a continuous spectrum for N → ∞, it will show discrete
eigenvalues for any finite N , and we will therefore observe finite-size revivals.
Moreover, if we take |ψ0〉 to be a disordered state, it is not immediate to
see relaxation of observables by inspection [60]. An object which, evaluated
for N finite, gives information on the relaxation in the thermodynamic limit
are the quadratic infinite-time-fluctuations 2 of the expectation value:

(δOtime)2 =
(
〈Ô〉t − 〈Ô〉t

)2
(2.6)

Under the hypothesis of non-degenerate spectrum, they are easily evaluated
as [95, 60]

(δOtime)2 =
∑
n6=m

|Onm|2|Cn|2|Cm|2 . (2.7)

The physical meaning of (δOtime)2 is rather clear: If it is small, this means
that the system stays close to its average for most of the time, and relax-
ation to the diagonal ensemble is attained. In numerical applications, one
evaluates this quantity for N finite and looks for a scaling with N , mark-
ing the vanishing of fluctuations in the thermodynamic limit. In the case
of semiclassical chaotic systems [67], or, more generally, in quantum sys-
tems whose observables relax to a thermal value [96], due to the Eigenstate
Thermalization Hypothesis, this object can be shown to vanish in the ther-
modynamic limit. We will discuss better this point in Chapt. 5. We now
move to generalizing this discussion to periodically driven systems; to that
purpose we need to introduce the reader to the Floquet theory which we
will have many opportunities to apply in the rest of this Thesis.

2.2 Floquet theory

To discuss the dynamics under time-periodic Hamiltonians, the Floquet
theory is of utmost importance. A wide literature on the topic exists
(see for instance [64, 97, 66, 98, 99]). For a time periodic Hamiltonian
Ĥ (t) = Ĥ (t+ τ), with τ = 2π/ω0, in analogy with Bloch theorem in the
standard band theory of crystalline solids [100] 3, it is possible to construct

2Like the time average in Eq. (2.2), the finite-time fluctuations approach this value if
one averages on a time longer than the Heisenberg time. As we have pointed out, this
is exponentially large in N , so this quantity would seem to have no physical meaning.
Nevertheless this is an useful quantity: whenever 〈Ô〉t relaxes this object is vanishingly
small in the thermodynamic limit [95].

3One finds the Bloch states by diagonalizing simultaneously the Hamiltonian and the
discrete translation operator which in crystalline space-periodic solids commute. One
can do the same in time-periodic Hamiltonians provided that one extends the ordinary
Hilbert space considering time as a coordinate. In this extended space, the discrete time-
translation operator commutes with the extended Floquet Hamiltonian [99].
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a complete set of solutions of the Schrödinger equation (the Floquet states)
which are periodic in time “up to a phase factor”

|Ψα (t)〉 = e−i µαt |Φα (t)〉 . (2.8)

The states |Φα(t)〉, the so-called Floquet modes, are periodic, |Φα(t+ τ)〉 =
|Φα(t)〉 while the real quantities µα are called Floquet quasi-energies. No-
tice that the Floquet modes and quasi-energies are not univocally defined.
Indeed, if we multiply the Floquet modes by a phase factor e−inω0t, they
are still periodic; in doing that we need to shift the quasi-energies by nω0.
Therefore the quasi-energies are defined up to translations of an integer num-
ber of ω0, an ambiguity analogous to the one affecting the quasi-momentum
of Bloch states in crystalline solids [100]. One can define Brillouin zones
also in the Floquet case, and we will always work in the first Brillouin zone,
i.e., we translate all the quasi-energies by an integer number of ω0 so that
they fall in the interval [−ω0/2, ω0/2].

There are many useful methods to evaluate the Floquet modes, which
are based on some of their properties. One possibility [64] is to extend the
Hilbert space by considering time as a coordinate living in the interval [0, τ ];
the extended Hilbert space is the tensor product of the original one and the
Hilbert space generated by the basis functions {e−inω0t}. In this extended
space, we can introduce an effective static Hamiltonian: its eigen-energies
are the quasi-energies in the different Brillouin zones and the eigenstates
give the Fourier coefficients of the periodic Floquet modes. In practice, this
method is difficult to implement because it forces us to work with infinite
matrices, whose eigenvalues are unbounded from below. In the practice of
the present work, we have found more useful to exploit the fact that Floquet
modes are eigenstates of the time evolution operator over one period, with
eigenvalues given by the quasi-energy phase factors. Indeed, Floquet states
obey the Schrödinger equation, and they satisfy the condition

Û(t+ τ, t) |Ψα (t)〉 = |Ψα (t+ τ)〉

where Û(t + τ, t) is the time-evolution operator over one period, starting
from time t. Using Eq. (2.8) and the periodicity of the Floquet modes, we
find the eigenvalue equation

Û(t+ τ, t) |Φα (t)〉 = e−iµατ |Φα (t)〉 .

Actually, in our numerical implementation, we diagonalize Û(τ, 0) 4 to find
the |Φα(0)〉, and then evolve these states up to the desired time.

4Because computer routines usually diagonalize Hermitian operators, we do not diag-
onalize Û(τ, 0) directly, but rather consider an Hermitian operator associated to it

Â = −i
“
1− Û(τ, 0)

”“
1 + Û(τ, 0)

”−1

;

if we denote by aα its eigenvalues, the Floquet quasi-energies will be µα = ω0
π

atan(aα), a
number falling inside the first Brillouin zone.
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From the Floquet operator Û(τ, 0), we can introduce the so-called Flo-
quet Hamiltonian ĤF such that

Û(τ, 0) = e−iĤF τ . (2.9)

The Floquet states at time 0, |Φα(0)〉, and quasi-energies can be seen as the
eigenstates and eigen-energies of this Hermitian operator.

Remarkably, thanks to Floquet theory, the knowledge of the time evolu-
tion operator Û(t, 0) for times 0 ≤ t < τ allows us to reconstruct the state
of the system at all times, whatever is the initial state. To see how this
is possible, we exploit the fact that the Floquet states are solutions of the
Schrödinger equation. Therefore, the time evolution operator from 0 to t
can be written in terms of the Floquet modes and quasi-energies as:

Û(t, 0) =
∑
α

e−i µαt |Φα(t)〉 〈Φα(0)| . (2.10)

In particular, thanks to the periodicity of the Floquet modes, we find:

Û(τ, 0) =
∑
α

e−i µατ |Φα(0)〉 〈Φα(0)| .

If t = nτ + δt with 0 < δt < τ , we use n times the resolution of identity
1 =

∑
α |Φα(0)〉 〈Φα(0)| in Eq. (2.10) and we exploit that, for periodicity,

|Φα(t)〉 = |Φα(δt)〉; we end up with the remarkable result that:

Û(t, 0) = Û(δt, 0) [Û(τ, 0)]n . (2.11)

If t = nτ , this formula reduces to Û(nτ, 0) = [Û(τ, 0)]n, showing that, for a
stroboscopic dynamics probing the system at times tn = nτ , it is enough to
know one single operator, the Floquet operator Û(τ, 0). 5

We conclude this section showing how the state of the system at all times
can be explicitly written in terms of Floquet modes and quasi-energies. If
we assume that the system starts in the density matrix ρ̂0, we can expand
the density matrix at time t in the Floquet basis. Exploiting the fact that
the Floquet states are solutions of the Schrödinger equation we see that
〈Ψα(t)| ρ̂(t) |Ψβ(t)〉 = 〈Φα(0)| ρ̂0 |Φβ(0)〉. Defining ραβ ≡ 〈Φα(0)| ρ̂0 |Φβ(0)〉
we can write

ρ̂(t) =
∑
αβ

e−i(µα−µβ)tραβ |Φα(t)〉 〈Φβ(t)| . (2.12)

5Eq. (2.11) is very useful in numerical work: we can just restrict to integrate the
Schrödinger equation over the first period, and we will find the dynamics at all times for
free. We need to do that as many times as the dimension of the Hilbert space: taking as
initial condition each of the components of a basis, we obtain the time evolution operator
Û(t, 0) at the times t we desire, within the first period. Obviously in numerical work we
restrict times to a mesh; if we are interested in the stroboscopic dynamics, we can evaluate
just Û(τ, 0).
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We will have the opportunity to exploit this formula in the next section, to
show when we expect relaxation to the Floquet diagonal ensemble of the
observables.

2.3 Convergence to the periodic Floquet diagonal
ensemble

In this section we discuss, in the case of periodically driven closed quantum
systems, a phenomenon strictly analogous to the relaxation in the diagonal
ensemble observed after a quantum quench which we discuss in Sec. 2.1. We
will see that, under appropriate conditions on the Floquet spectrum, most
observables attain a stationary condition in which they are periodic with
the same period of the driving; we define this condition “periodic steady
regime”. In this stationary limit the observables are given by the average
over a periodic Floquet diagonal ensemble which is strictly analogous to the
static diagonal ensemble of the quenched case. To see how this works, we
consider a closed quantum system starting at time 0 in the density matrix ρ̂0,
and evolving coherently under a time-periodic Hamiltonian Ĥ(t) = Ĥ(t+τ).
We discuss the dynamics of an observable Ô(t), which can be either time-
independent or τ -periodic. By means of Eq. (2.12) we can write its quantum
expectation value at time t in a form strictly reminiscent of Eq. (2.1)

〈Ô〉t ≡ Tr[ρ̂(t)Ô(t)]

=
∑
α

ρααOαα(t)︸ ︷︷ ︸
〈O〉diag

t

+
∑
α 6=β

e−i(µα−µβ)tραβOβα(t)︸ ︷︷ ︸
〈O〉off−diag

t

, (2.13)

where τ -periodic matrix elements Oβα(t) ≡ 〈Φβ(t)| Ô(t) |Φα(t)〉 appear. We
can see that, in absence of degeneracies in the Floquet spectrum, the di-
agonal part 〈O〉diag

t collects all the τ -periodic terms of the response of the
observable, while 〈O〉off−diag

t gives the fluctuations around this periodic be-
haviour. Indeed, we can define what we will call the Floquet diagonal en-
semble density matrix ρ̂diag(t),

ρ̂diag(t) =
∑
α

ραα |Φα(t)〉 〈Φα(t)| , (2.14)

such that the periodic part of the average can be expressed as

〈O〉diag
t = Tr

[
Ôρ̂diag(t)

]
. (2.15)

This formula resembles that for the diagonal ensemble in the quantum
quench case (Eq. (2.3)): the difference is that this is not a static object,
but depends periodically on time with the same period of the driving. As
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we have done for the relaxation to the diagonal ensemble in Sec. 2.1, we
can discuss the conditions under which the fluctuations 〈O〉off−diag

t vanish
for large times and the observables tend to the Floquet diagonal ensemble
value.

To study the behaviour of off-diagonal fluctuations, we again introduce a
time-dependent weighted joint density of states, similar to that in Eq. (2.4),
defined as

FO,t(ω) ≡ π
∑
α 6=β

ραβ Oβα(t) δ
(
ω − µα + µβ

)
. (2.16)

We can see that this object is τ -periodic in time. This definition allows us
to write the fluctuating term as

〈O〉off−diag
t =

∫ +∞

−∞

dω
π

FO,t(ω) e−iωt . (2.17)

It is easy to show that 〈O〉off−diag
t vanishes after a transient if, whatever is

the value of t, FO,t(ω) is a regular function 6 of ω. To that purpose, choosing
any 0 ≤ t0 < τ , we exploit the τ -periodicity in t of FO,t(ω), and consider

〈O〉off−diag
t0+nτ =

∫ +∞

−∞

dω
π

FO,t0(ω) e−iω(t0+nτ) .

This expression vanishes for n→∞ due to the Riemann-Lebesgue lemma [92];
the argument is exactly the same as that following Eq. (2.5).

As in the quantum quench case, if the Floquet spectrum is discrete then
FO,t(ω) is singular: a discrete sum of Dirac’s deltas giving rise to persisting
fluctuations. Hence, to have vanishing fluctuations, it is necessary that the
Floquet spectrum is a continuum; in bounded many-body systems, this can
happen only in the thermodynamic limit. If there is a discrete component
in the spectrum, we can have also convergence to the Floquet diagonal en-
semble, provided we take an initial state |ψ0〉 having overlap mainly with
Floquet states in the continuum. This is true also if we take observables
coupled to Floquet states in different components of the spectrum, but the
number of relevant Floquet levels in the continuum has to be extensive with
respect to the discrete ones. We can have a pure point spectrum in the
thermodynamic limit (and persisting fluctuations) also in the thermody-
namic limit when the Hamiltonian is disordered. Noteworthy is the case in
which, in a static disordered Hamiltonian, the discrete and the continuous
parts of the spectrum are both extensive and are separated by a mobility
edge [101, 102]. A periodic external perturbation can couple levels in the
two regions of the spectrum by means of multi-photon resonances. The
resulting Floquet states, which are superpositions of eigenstates in the con-
tinuum and discrete part of the spectrum, will show a continuous Floquet

6It is enough that |FO t(ω)| is Lebesgue-integrable.
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spectrum. This phenomenon has been predicted for hydrogen atoms under
an ac electric field [103]; we are not aware of genuinely many-body cases in
which it occurs.

As for the case of a quantum quench, the relaxation to the Floquet diag-
onal ensemble depends almost exclusively on the properties of the Floquet
spectrum of the Hamiltonian which drives the evolution. If the spectrum
is continuous, we can have persisting fluctuations only in very pathological
cases: whenever the initial state is a discrete superposition of few Floquet
states or the observable considered couples only to few of them. As in the
quantum quench, these superpositions are practically impossible to realize
and the observables are practically impossible to measure. Indeed, Floquet
states are obtained from eigenstates through an adiabatic switching on of
the periodic driving [104]. Even if one assumes to have succeeded in prepar-
ing a discrete superposition of few many-body states, it is impossible to
switch on adiabatically the external perturbation. Indeed, if the system is
non-integrable, the Floquet quasi-energies are exponentially close and the
switching-on time has to be exponential large in the system size. Here, as in
the quantum quench case, integrable models [9, 96] could be the exception.
7

For the bounded quantum many body systems we consider, a continuous
Floquet spectrum and exact convergence to the Floquet diagonal ensemble
can exist only in the thermodynamic limit. Practically, however, we can nu-
merically integrate the Schrödinger equation only for systems with finite N .
To see if, in the limit N →∞, the observables tend to the periodic regime,
we can consider the scaling with N of the stroboscopic time-fluctuations.
Here, the definitions are very similar to those of Eqs. (2.2), (2.7), except
that we consider discrete times. (Indeed, we are probing the convergence of
the observables to a steady periodic regime where the observables appear as
constants if they are probed stroboscopically.) To define the stroboscopic
fluctuations, we need first to define the stroboscopic average of an observable

〈O〉kτ = lim
n→∞

1
n

n−1∑
k=0

〈Ô〉kτ =
∑
α

ραα(0)Oαα(0) . (2.18)

In absence of degeneracies in the Floquet spectrum, the stroboscopic time-
fluctuations are 8

(δOstrobo)2 =
(
〈O〉kτ − 〈O〉kτ

)2
=
∑
α 6=β

|ραβ |2 |Oαβ(0)|2 . (2.19)

7Thanks to the extensive number of conserved local operators [96], there are selec-
tion rules dividing the Hamiltonian in not interacting blocks, in each of the blocks the
separation between levels can be not exponentially small in the size of the system.

8As in the quantum quench case, in generic non-integrable systems, the finite-time
stroboscopic average and fluctuations approach the infinite-time values for times expo-
nentially large in N ; nevertheless if an observable relaxes, then its expectation stays, for
most of the time, near the Floquet diagonal value [95].
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When there is relaxation to the Floquet diagonal ensemble in the thermo-
dynamic limit, this object scales to zero as N is increased, and we can check
this numerically.

2.4 Discussion on the generality of the conver-
gence to the Floquet-diagonal ensemble

The relation among continuity of the spectrum and convergence of the ob-
servables we have discussed above is very powerful. Indeed, if a quenched
system has a continuous spectrum, the same happens to the Floquet spec-
trum of the same system if the perturbation is no more sudden but is pe-
riodic. Therefore, from the foregoing discussion, we expect convergence to
the Floquet diagonal ensemble in all the systems which relax to the diag-
onal ensemble after a quench. In literature there is plenty of examples,
integrable or not, enjoying this property [39, 26, 27, 28, 29, 30, 31, 60,
41, 32, 33, 34, 35, 36, 37, 105, 106, 107, 38, 39], so relaxation to the Flo-
quet diagonal ensemble seems to be a pretty general phenomenon. Indeed,
as far as we know, this convergence to the Floquet diagonal ensemble has
been observed numerically in literature at least in one case. In Fig. 1 of
Ref. [20] we observe that the energy becomes periodic after a transient in a
one-dimensional Hubbard model undergoing uniform driving. This model is
special being Bethe-Ansatz integrable, but — as we have observed before —
our effect seems to be as general as the relaxation to the diagonal ensemble.

In this Thesis we will show numerically the convergence to the Floquet
diagonal ensemble in two cases of integrable models: the quantum Ising
chain in transverse field (Chapt. 3) and the Lipkin model (Chapt. 5). The
first one will be an opportunity to discuss the limits of applicability of the
Floquet diagonal ensemble in predicting the spectrum of quantum fluctua-
tions of the work performed on the system. We will see in some detail how
the convergence is independent of the translational invariance and factoriz-
ability of the model by means of a quantum Ising model with a localized
inhomogeneity, which will give us the opportunity to reply to some criticism
addressed to our result [108, 109]. Using the quantum Ising chain, we will
show also (Chapt. 4) how, in the limit of small driving, linear response the-
ory (LRT) fails to correctly predict the relaxation to the diagonal ensemble,
because of some gaps in the Floquet spectrum which close only in the limit
of vanishing amplitude.

While the Ising model shows always a perfectly regular dynamics, the
Lipkin model, instead, under appropriate conditions on the driving can show
an ergodic behaviour. In this case the system heats up until the observables
converge to their T = ∞ value. Indeed, because of quantum chaos, the
Eigenstate Thermalization Hypothesis is valid and the averages over the
Floquet ensemble equal the T = ∞-thermal ones. Moreover, in the ergodic
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case, the Floquet spectrum is that of a random matrix which we know to be
a continuum in the thermodynamic limit, in agreement with the convergence
to the Floquet-diagonal ensemble. As for the thermalization after a quantum
quench [67, 95, 110], these results, shown in this specific example, are likely
true whenever a periodically driven quantum system is ergodic.
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Chapter 3

Ising model with
time-periodic driving

3.1 Introduction: the translationally invariant case

Having discussed the general theory of relaxation to the Floquet diagonal
ensemble, we are ready to show it in a specific example. We consider, for
that purpose, the Quantum Ising chain in a transverse field, which has been
the subject of many studies concerning the equilibration after a quantum
quench [36, 37, 111]. The model is a linear chain of 1/2-spins interacting by
means of the Hamiltonian

Ĥ(t) = −1
2

L∑
j=1

[
Jj σ̂

z
j σ̂

z
j+1 + hj(t)σ̂x

j

]
. (3.1)

Here the σ̂x,z
j are Pauli matrices at site j, L is the chain length, and we

impose periodic boundary conditions (PBC). The couplings Jj act longitu-
dinally along the z spin direction, while the external field hj(t) acts transver-
sally. This Hamiltonian can always be mapped onto a quadratic Fermionic
Hamiltonian, via a Jordan-Wigner transformation [112] (see Appendix B).
The quadratic Fermionic problem to which we map the model can be easily
diagonalized, and even its quantum dynamics can be easily computed nu-
merically, since the Heisenberg’s equations for the Fermionic operators are
linear.

This applies whatever the Jj and the hj are. We will consider a non-
translationally invariant example in Sec. 3.3. Now, for the sake of a clearer
exposition, we focus on the case of a uniform chain with Jj ≡ J = 1 and
hj ≡ h. In this case, the system shows a quantum phase transition (QPT)
at |hc| = 1 [61]: if |h| < 1 the longitudinal coupling wins and the system is
ferromagnetic; for |h| > 1 the transverse coupling dominates and the system
is a quantum paramagnet. Applying the Jordan-Wigner transformation and
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a Fourier transform (which is possible due to translational invariance) the
Hamiltonian becomes a sum of decoupled two-level systems

Ĥ(t) =
ABC∑
k>0

Ĥk(t) =
ABC∑
k>0

(
ĉ†k ĉ−k

) Ek(t) −i∆k

i∆k −Ek(t)


 ĉk

ĉ†−k

 ,

(3.2)
where Ek(t) = h(t) − cos k, ∆k = sin k and ĉk are Fermionic operators in
Fourier space. The superscript on the sum symbol means that we consider
states with an even number of fermions. This implies anti-periodic boundary
conditions (ABC) on the real-space fermions ĉj [112] (see Appendix B) and
makes the sum over k restricted to positive k of the form k = (2n+ 1)π/L
with n = 0, . . . , L/2 − 1. Because of the conservation of fermion parity
and momentum, each Ĥk(t) acts on a 2-dim Hilbert space generated by
{ĉ†k ĉ

†
−k |0〉 , |0〉}; we can represent the operator Ĥk in this basis, which we

define the standard basis, by a 2× 2 matrix

Hk(t) = Ek(t)σz + ∆kσ
y , (3.3)

with instantaneous eigenvalues

±εk(t) = ±
√
E 2

k (t) + ∆2
k . (3.4)

At the critical point h = 1, the eigenvalues are ±εk = ±2 sin(k/2); so, if
we drive the system taking for instance h(t) = 1 + A cos (ω0t), the driving
frequency ω0 will be resonant to the proper excitations of the system when-
ever −4 < ω0 < 4. This will be important in what follows, where we will see
that Floquet quasi-degeneracies emerge from multi-photon resonances. In
Chapt. 4 we will see how the gap at the quasi-degeneracies alters the energy
absorption behaviour at resonant driving frequency in the linear response
regime.

The eigenstates of the instantaneous Hamiltonian can be expanded in
the standard basis and acquire a BCS-like form. For instance, the ground
state at time t is given by

∣∣Ψt
GS

〉
=

ABC∏
k>0

∣∣ψt
k GS

〉
=

ABC∏
k>0

(
ut

k 0 + vt
k 0ĉ

†
k ĉ
†
−k

)
|0〉 . (3.5)

Here vt
k 0 = i sin(θt

k/2) and ut
k 0 = cos(θt

k/2), with θt
k given by tan θt

k =
(sin k)/(h(t) − cos k). These coefficients result from the diagonalization of
the Hamiltonian in Eq. (3.2). Indeed, by means of a unitary rotation of
angle θt

k around σx, one can define new Fermionic operators γ̂k(t) in terms
of the old ones ĉk (

γ̂k(t)
γ̂†−k(t)

)
= eiσxθt

k/2

(
ĉk
ĉ†−k

)
(3.6)
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such that the k-component of the Hamiltonian Eq. (3.2) acquires a diago-
nal form Ĥk(t) = εk(t)

(
γ̂†k(t)γ̂k(t)− γ̂k(t)γ̂

†
k(t)

)
, with the εk(t) defined in

Eq. (3.4). The ground state Eq. (3.5) is the vacuum for these new Fermionic
operators: γ̂k(t)

∣∣Ψt
GS

〉
= 0 ∀ k. If we initialize the system in the ground

state and study its dynamics under a uniform driving we see that, because
of the factorization in 2 × 2 spaces, also the solution of the Schrödinger
equation acquires a factorized BCS-like form

|Ψ(t)〉 =
ABC∏
k>0

|ψk(t)〉 =
ABC∏
k>0

(
uk(t) + vk(t)ĉ

†
k ĉ
†
−k

)
|0〉 , (3.7)

where uk(t), vk(t) obey the Bogoliubov-de Gennes equations (Schrödinger
equation in the {ĉ†k ĉ

†
−k |0〉 , |0〉} basis)

i~
d

dt

(
vk(t)
uk(t)

)
=
(
Ek(t) −i∆k

i∆k −Ek(t)

)(
vk(t)
uk(t)

)
. (3.8)

Initializing the system in the ground state at t = 0 we impose, as initial
conditions, vk(t = 0) = vt=0

k 0 and uk(t = 0) = ut=0
k 0 . We will focus on local

observables (possibly τ -periodic) whose expectation value can be written in
a k-space factorized form

b(t) =
1
L

∑
k>0

〈ψk(t)| B̂k |ψk(t)〉 . (3.9)

This obviously happens when the operator itself can be factorized: examples
are the energy-per-site ê(t) = Ĥ(t)/L and the transverse magnetization-per-
site m̂ = 1

L

∑
j σ̂

x
j = 2

L

∑
k>0(ĉ−k ĉ

†
−k − ĉ

†
k ĉk). Even if less straightforwardly,

also the single particle Green’s functions 〈ĉ†i ĉj〉 and 〈ĉi ĉj〉 can be written in

this factorized form (ĉj are the real space Fermionic operators defined in Ap-
pendix B). The single particle Green’s functions are very important objects
because, thanks to the Gaussian nature of states Eqs. (3.5) and (3.7) and
to Wick’s theorem [113], all the correlators and the many-particle operators
can be written in terms of them [112, 114].

3.2 Convergence to the periodic regime in the
translationally-invariant case

As introduced in the previous section, let us consider the case of a uniform
periodic driving of a uniform Quantum Ising chain in transverse field 1. In
each k-subspace we solve numerically the Bogoliubov-de Gennes equations

1The results presented in this Section have been published in Ref. [66].
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Figure 3.1: Single-mode Floquet quasi-energies vs k for a driving around
the critical point with A = 1 and frequency ω0 = 0.4 (red solid line). We
plot for comparison the unperturbed single-mode eigen-energies, folded and
replicated in the different Brillouin zones.

Eq. (3.8) and apply the methods described in Chapter 2 to evaluate the
Floquet quasi-energies µ+

k = −µ−k = µk (they are opposite because of the
vanishing trace of the Hamiltonian Ĥk) and the associated Floquet modes∣∣φ±k (t)

〉
. In terms of these objects, the k-component of the state at time t

can be written as

|ψk(t)〉 = r+k e−iµk t
∣∣φ+

k (t)
〉

+ r−k eiµk t
∣∣φ−k (t)

〉
, (3.10)

where the overlap factors are defined as r±k =
〈
φ±k (0)

∣∣ ψk(0)〉. We periodi-
cally drive the system across its quantum critical point

h(t) = 1 +A cos(ω0t+ ϕ0) . (3.11)

We do so to fix ideas and because we would like to explore the dynam-
ics around a quantum phase transition; different periodic time-dependences
would give similar results in terms of continuity of the Floquet spectrum
and convergence to the periodic steady regime. The results which follow are
obtained for a driving amplitude A = 1 and ϕ0 = 0. In the thermodynamic
limit the Floquet spectrum is a continuum: an instance of that can be seen
in Fig. 3.1. We note the periodical repetition of the Floquet-spectrum in the
different Brillouin zones and the presence of quasi-degeneracies in the form
of avoided crossings. For comparison, we plot the spectrum of the unper-
turbed Hamiltonian folded and replicated in the different Brillouin zones.
We see how the multi-photon resonances (crossings of replicas of the single-
mode spectrum in different Brillouin zones) become quasi-degeneracies of
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Figure 3.2: Convergence of the energy-per-site to its periodic regime when
A = 1 and the driving frequency is ω0 = 2. We see how the asymptotic
periodic value of the energy is well below its T = ∞ value 〈e〉T=∞ = 0.

the Floquet spectrum: the driving leads to the opening of small gaps. The
continuity of the Floquet spectrum leads to the asymptotic decay of fluc-
tuations of the observables of type Eq. (3.9) around the periodic steady
regime. The behaviour of different observables is pretty much the same;
from now on we will focus our numerical analyses mainly on the energy-per-
site ê(t) = Ĥ(t)/L. We can see in Fig. 3.2 an instance of convergence to
the periodic steady regime. The fluctuations decay polynomially in time, as
t−3/2 when ω0 < 4 and t−1/2 otherwise. As we discussed before, ω0 = 4 is
a special frequency: it marks the border of the resonances in case of driv-
ing of infinitesimal amplitude; in the finite amplitude case when ω0 ≤ 4
the first Floquet quasi-resonance appears. The general argument on con-
vergence to the periodic regime (explained in Section 2.3) in this case ac-
quires a quite transparent form. Indeed, using the expansion Eq. (3.10) in
Eq. (3.9) and going into the thermodynamic limit L → ∞ which implies
1
L

∑ABC
k>0 → 1

2π

∫ π
0 dk, we find (in analogy with Eq. (2.13))

b(t) = bdiag(t) + boff−diag(t) (3.12)

where we have defined

bdiag(t) ≡
∑
α=±

∫ π

0

dk
2π
|rα

k |
2 〈φα

k (t)| B̂k |φα
k (t)〉 (3.13)

boff−diag(t) ≡
∫ π

0

dk
π
<
[
r−k

∗
r+k
〈
φ−k (t)

∣∣ B̂k

∣∣φ+
k (t)

〉
e−2iµkt

]
. (3.14)

The first term is τ -periodic; the second one gives rise to fluctuations which
vanish for t → ∞. This is easy to see: up to a change of variables (made
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possible by the smoothness of the µk), this term is already in the form of
Eq. (2.16) to which Riemann-Lebesgue lemma applies. The mapping of the
problem to an assembly of two-level systems allows an interesting physical
interpretation of the decay of the fluctuating part in the present case: it is a
dephasing among spins with different characteristic frequencies akin to the
inhomogeneous broadening in NMR [115].

We can see this decay of fluctuations from another perspective; we can
evaluate – for finite L – the stroboscopic fluctuations of b(t) as in Eq. (2.19).
We find, up to terms of order 1/L2

(δbstrobo)2 =
1
L

∫ π

0

dk
2π

∣∣∣r−k ∗
r+k
〈
φ−k (0)

∣∣ Ĥk(0)
∣∣φ+

k (0)
〉∣∣∣2 +O

(
1
L2

)
. (3.15)

So, if the integral is finite and independent of L, stroboscopic fluctuations
vanish in the thermodynamic limit L → ∞. The integral stays finite even
if we take as initial state a state of the BCS form (3.5) with uk and vk

initialized in a random fashion: thanks to the continuity of the Floquet
spectrum, the Riemann-Lebesgue lemma still applies to Eq. (3.14). So, as
discussed before, for the sake of convergence to the periodic regime, only the
regularity of the evolution Hamiltonian (embodied in the Floquet spectrum)
is important [60].

Once established that observables become periodic after a transient, it is
interesting to look in more detail at the properties of their periodic steady
regime. We focus on the excitation energy per site defined as

eex(t) = e(t)− eGS(t) , (3.16)

where eGS(t) is the instantaneous ground state energy at time t. After an
integer number of periods (whenever t = t2n = 2n/ω0), the eex(t) so defined
has the physical meaning of the work done on the system by the external
driving. Moreover, for A = 1, when t = t2n+1 = (2n + 1)π/ω0 we have
h(t) = 0, and it is easy to see that the excitation energy eex(t) equals the
density of defects (kinks) νd of the classical Ising chain

νd(ω0, n) = 〈Ψ(t2n+1)|
L∑

j=1

[
1− σ̂z

j σ̂
z
j+1

]
|Ψ(t2n+1)〉 /(2L) = eex(t2n+1) .

(3.17)
Studying this quantity allows us to understand the relationship among inte-
grability and energy absorption, and see how the adiabatic limit is reached
for ω0 → 0. If the system was exactly adiabatic [116], the excitation energy
would vanish. This cannot happen, for any finite frequency: we are sweep-
ing the field around the critical point, where the gap in the instantaneous
spectrum closes up. The interpretation of the excitation energy as defect
density is important. For a single sweep at rate v, the Kibble-Zurek mech-
anism [117] gives rise to a scaling of the defect density with v1/2. We can
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Figure 3.3: The density of defects for a driving field h(t) = 1 + cos (ω0t) at
the end of half-periods, i.e., at times t = t2n+1 = (2n + 1)π/ω0 when the
transverse field vanishes; n = 0 is the result of a single LZ crossing. (b) The
asymptotic total work (per spin) done on the system w = limn→∞ e(t2n) −
e(0), where t2n = 2nπ/ω0, versus the frequency ω0 of the transverse field.

interpret the process in each two dimensional k-subspace as a single Landau-
Zener (LZ) [118] event; however slow is the crossing, there are always modes
of low k undergoing tunneling from the ground to the excited state of the
corresponding 2 × 2 problem. In the case of a periodic driving, there is a
sequence of LZ crossings and the system keeps coherence among one and
the next. The interference among different modes gives rise to a periodic
steady value of the absorbed work; it is nevertheless interesting to discuss
the effect of interference among subsequent LZ events and how it manifests
in the properties of the stationary energy.

Our conclusions can be summarized in Fig. 3.3. In the upper panel we
plot the density of defects, at t = t2n+1, for different n. We see that, after
the first sweep (n = 0), the number of defects scales like ω

1/2
0 for small

ω0 and settles to a plateau for large ω0: The small ω0 scaling is just the
Kibble-Zurek one [117] and the large ω0 plateau gives precisely the density
of defects one obtains if the system remains frozen in the initial state. As n
increases, we see the appearance of interference effects until, for n = ∞, we
settle to the asymptotic value. First of all we notice that, even after infinite
sweepings, there is an overall scaling as

√
ω0 at moderate frequencies of the

asymptotic periodic value; upon that overall behaviour, we observe some
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features. We see: i) a plateau for large ω0, ii) some peaks at intermediate
frequencies ω0 = 4/p (for some p integer) and iii), in the small frequency
region, some small spikes at the values ω0 obeying J0(2/ω0) = 0 (J0 is the
zeroth-order Bessel function [119]). The feature i) comes from the fact that
the Floquet states, for high frequency, are — up to corrections O(1/ω2

0) —
constantly equal to the eigenstates of the unperturbed Hamiltonian.

About features ii) and iii), we can discuss them better if we probe stro-
boscopically the excitation energy at times equal to an integer number of
periods (t2n = 2πn/ω0) and consider its asymptotic value, which we plot
versus ω0 in the lower panel of Fig. 3.3. At the times considered, the Hamil-
tonian equals its initial value Ĥ(t2n) = Ĥ(0), the excitation energy ac-
quires the physical value of stroboscopic work-per-spin wn = e(t2n) − e0
performed on the system; we define its asymptotic value for n→∞ as w∞.
Here, feature ii) can be seen in the form of marked peaks at the frequencies
ω0 = 4/p, feature iii) as dips in the absorbed energy for those ω0 such that
J0(2/ω0) = 0.

To understand the peaks at ω0 = 4/p, we can see that w∞ is an integral
in k involving only terms diagonal in the Floquet basis (like Eq. (3.13)); the
integrand (which we define wk) shows marked spikes in correspondence to
those values of k where there are anti-crossings in the Floquet quasi-energies
(see the left panel of Fig. 3.4). If we increase the frequency across ω0 = 4/p
(for some p), the value of k where there is one of the anti-crossings (and
the corresponding maximum) goes beyond the upper integration limit at π,
hence there is a sudden decrease of the integral. We can see an instance of
this for p = 5 in the right panel of Fig. 3.4. Concerning feature iii), we see
sudden drops of the asymptotic absorbed energy w∞ at the frequencies satis-
fying J0(2/ω0) = 0 (lower panel of Fig. 3.3), because there the small-k modes
undergo coherent destruction of tunneling (CDT) [120] from the ground to
the excited state. This can be easily seen by applying to the single k-mode
Hamiltonian matrix Eq. (3.3) a time-dependent unitary rotation around σx,
and then first order perturbation theory (for details, see Appendix A). This
approximation is valid only for the small k non-adiabatic modes: there are
large dips because CDT affects precisely these modes which would be the
only ones giving a non-vanishing contribution to the absorbed energy at low
frequency.

Nevertheless, the most interesting thing we can notice in Fig. 3.3 is that
the asymptotic absorbed energy depends on ω0, and is definitely smaller
than the value 1, corresponding to the maximum entropy (and then to a
thermal state with T = ∞). Moreover, it is easy to verify that, starting
from another initial state, the asymptotic energy would be different.

These features are a consequence of integrability: consistently with the
results for sudden quenches in integrable systems [9, 42, 39, 121], the asymp-
totic periodic condition of the local observables can be described in terms
of a GGE ensemble. To this aim, we define L time-periodic Fermionic op-
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erators γ̂P k(t) by applying a unitary transformation to the operators ĉk(
γ̂P k(t)
γ̂†P −k(t)

)
=
(

ξk(t) ηk(t)
−η∗k(t) ξ∗k(t)

)(
ĉk
ĉ†−k

)
(3.18)

where we have defined the periodic coefficients ξk(t) = 〈0
∣∣φ−k (t)

〉
and ηk(t) =

〈0| ĉ−k ĉk
∣∣φ−k (t)

〉
as the components of one of the Floquet modes in the

standard basis. (The Floquet mode
∣∣φ−k (t)

〉
is the vacuum of γ̂P k(t) –

γ̂P k(t)
∣∣φ−k (t)

〉
= 0 and

∣∣φ+
k (t)

〉
= γ̂†P k(t)

∣∣φ−k (t)
〉
.) It is easy to show that,

once the convergence to the periodic regime has been attained, the expec-
tation values of any object of the type Eq. (3.9) which has relaxed is given
by

bdiag(t) =
∫

dk
2π

Tr
[
B̂k(t)ρ̂G k(t)

]
, (3.19)

where the density matrix ρ̂G k is given by:

ρ̂G k(t) =
1

1 + λ2
k

e−λkγ̂†P k(t)γ̂P k(t) . (3.20)

The density matrix ρ̂G(t) =
∏

k ρ̂G k(t) is the generalization to the present
time-periodic case of the so-called Generalized Gibbs Ensemble [9, 27]. Fol-
lowing Ref. [40], we can show that this is the ensemble which maximizes the
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entropy under the constraint of constant occupations 2 〈γ̂†P k(t)γ̂P k(t)〉t ≡
|r+k |

2 . The Lagrange multipliers λk enforce these constraints; their value
depends on the initial conditions as λk = log

(
|r−k |

2/|r+k |
2
)
. So we can see

how strict is the analogy between the GGE form of the diagonal ensem-
ble attained by the quantum Ising model in the case of quantum quench
[36, 37, 9] and that of the Floquet diagonal ensemble in the case of periodic
driving.

The GGE form is a consequence of the integrability of the model: the
asymptotic condition of the local observables is determined by as many
parameters as the number of spins. We will see in Chapt. 5 an example of an
ergodic system where the Floquet states obey the Eigenstate Thermalization
Hypothesis [59, 58] with T = ∞. In that case, the system will heat up
until infinite temperature and any memory of the initial state is lost: the
random properties of the Floquet states make the averages on the Floquet
diagonal ensemble independent of the initial state considered. In this way
the asymptotic condition is fixed a priori without previous knowledge of any
parameter.

It is important to stress that the GGE ensemble does not give a com-
plete description of the asymptotic condition. We will show in Sec. 3.4
that the work statistics of the system tends to an asymptotically periodic
regime which is not described by the GGE ensemble Eq. 3.19. This is a
point which can be verified experimentally thanks to the recent develop-
ment of techniques [10, 80] which allow to probe the quantum probability
distribution of observables. Before moving to this very interesting point, we
discuss the robustness of the convergence to the diagonal Floquet ensem-
ble towards breaking translational invariance by means of the application of
inhomogeneous fields.

3.3 Breaking of translational invariance

The case we have discussed above is very special: not only it is translation-
ally invariant and integrable, but also reducible to an assembly of indepen-
dent 2-level systems. This was just an example of a far more general class
of systems undergoing relaxation to the Floquet diagonal ensemble. Relax-
ation depends only on spectral properties: in Sec. 2.4 we have argued that,
if a system relaxes after a quantum quench because of a continuous energy
spectrum, then, most likely it will attain the asymptotic periodic regime un-
der a corresponding periodic driving, due to a continuous Floquet spectrum.
Therefore, our results seem to be quite general: there are many examples
in literature of relaxation to the diagonal ensemble, both in integrable and

2It is easy to see that 〈γ̂†P k(t)γ̂P k(t)〉t is a constant; it is enough to write each k-

component of the state in the form Eq. (3.10) and then use the properties γ̂P k(t)
˛̨
φ−k (t)

¸
=

0 and
˛̨
φ+

k (t)
¸

= γ̂†P k(t)
˛̨
φ−k (t)

¸
.
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non-integrable systems. In this section we show, for the quantum Ising chain
in transverse field, that translational invariance and related factorizability
in decoupled 2 × 2 problems are not crucial for the relaxation to the Flo-
quet diagonal ensemble: as usual, the important point is the “bulk” of the
Floquet spectrum being a continuum. In doing so, we will have the oppor-
tunity of replying to some criticism and deceptive citations addressed to our
work [108, 109]. The claim of these authors, indeed, is that convergence to
the Floquet diagonal ensemble follows from decoupling, and even applying a
time-dependent change of basis to the system we would destroy it. We will
show that it is not so by considering a Quantum Ising chain in a transverse
field without translational invariance: this is a quadratic Fermionic model
but its dynamics under a driving cannot be reduced to an assembly of de-
coupled 2-level systems. In the next Subsection we will discuss briefly the
dynamics of this model to set the notation, help the reader to understand
our numerical analysis and the reason why there is no decoupling. Then,
in Subsection 3.3.2 we will move to discuss how the Floquet theory applies
to this system, giving an explicit form of the single and many-particle Flo-
quet states and quasi-energies. Finally, in Subsection 3.3.3, we will show
numerically, for a specific example, how the relation among relaxation to
the periodic Floquet-diagonal ensemble and continuity of the single-particle
Floquet spectrum works in the non-uniform Ising chain.

3.3.1 The dynamics of the non-uniform Quantum Ising Model

In this subsection we make a summary on the diagonalization and the dy-
namics of the system when there is no translational invariance; the interested
reader can find details of the calculations in Refs. [122, 123] or in Appendix
B. The main point is that the Hamiltonian Eq. (3.1) (through the Jordan-
Wigner transformation Eq. (B.1)) can be reduced to a quadratic fermion
form expressed in terms of fermionic operators ĉj localized on sites j (see
Eq. (B.2)). If ĉ is a vector collecting these L operators we can write

Ĥ(t) =
(

ĉ† ĉ
)

H(t)
(

ĉ
ĉ†

)
(3.21)

where H(t) is a 2L × 2L Hermitian matrix. We show in Appendix B that
both the many-body instantaneous ground state of the system |GS〉t and the
solution of the Schrödinger equation i~∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 with |Ψ(0)〉 =
|GS〉0 are Gaussian states of the form

|Φ〉 =
√
|det[U]| e

1
2
(ĉ†)T·Z·(ĉ†)|0〉 where Z ≡ −(U†)−1 ·V† ; (3.22)

where U and V are L × L matrices which, like Japanese robots, join to
compose a 2L× 2L unitary matrix

U =
(

U V∗

V U∗

)
.
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If we take |Φ〉 = |GS〉t, the ground state at time t, we need to choose the
matrix U = Ut as the one which diagonalizes the matrix H(t)

U†
t ·H(t) · Ut = ED(t) , (3.23)

with ED(t) = diag (εµ(t),−εµ(t)). The L positive eigenvalues εµ(t) give the
energies of the elementary excitations above the ground state at time t.
Instead, if we take |Φ〉 = |Ψ(t)〉, a solution of the Schrödinger equation, the
matrix U = U(t) we have to consider must obey the Bogoliubov-de Gennes
(BdG) equations:

i~
d

dt
U(t) = 2H(t) · U(t) . (3.24)

If we take as initial state the ground state, the initial conditions are given by
U(0) = U0 where U0 diagonalizes H(0). The BdG equations are a system of
2L× 2L Schrödinger-like first order linear differential equations; by solving
it we know everything about the 2L-dimensional many-body state of the
system. In this way, for instance, we obtain the quantum expectation values
of all many-body observables. Indeed, the state of the system is Gaussian at
all times, therefore Wick’s theorem [113] applies and each expectation value
can be written as a sum of products of the single-particle Green functions
Gi j(t) = 〈ĉ†i ĉj〉t and Fi j(t) = 〈ĉi ĉj〉t. In terms of the components U(t) and
V(t) of the matrix U(t) they can be written as

Gi j(t) =
[
V(t) ·V†(t)

]
i j

Fi j(t) =
[
U(t) ·V†(t)

]
i j
. (3.25)

Therefore, thanks to the Gaussian form of the state, both the statics and
the dynamics of the system are reduced to the statics and the dynamics of
pairs of elementary excitations, given respectively by Eqs. (3.23) and (3.24).
This is a great advantage: although the Hilbert space is 2L dimensional, the
dynamics is given by the solution of a system of 2L×2L first order differential
equations which can be easily implemented numerically. By exploiting the
block form of the matrix U(t) we can further restrict to a system of 2L× L
equations. Nevertheless, we cannot map the problem to independent 2 × 2
blocks as in the translationally invariant case. Indeed, although the state of
the system can be written in a factorized BCS form like in Eq. (3.7), the basis
in which this can be done is time-dependent and in general different from the
time-dependent basis in which the Hamiltonian is block-diagonal (we show
this in some detail in Appendix B). Physically, in the non-uniform generic
case, the subspaces corresponding to elementary excitations change in time;
the dynamics mixes pairs of different excitations and creates superpositions
of them; in this way, any 2 × 2 factorization is destroyed. In the uniform
case, on the contrary, those subspaces are constant — being imposed by the
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k-space structure — and the dynamics can at most create superpositions
of the vacuum and a pair of excitations with some k, but the different
k remain independent. The strong constraint of translational symmetry
forbids mixing of excitations with different values of k.

3.3.2 Single and many particle Floquet dynamics

Consider a uniform value of the longitudinal couplings Jj = J = 1, but a
site dependent time-periodic field hj(t) = hj(t+τ) (τ = 2π/ω0): the Hamil-
tonian Eq. (3.1) is τ -periodic and so is the 2L× 2L matrix H(t) appearing
in its fermionized version Eq. (3.21) (see also Eq. (B.2)). This matrix is the
effective Hamiltonian driving the evolution in the Bogoliubov-de Gennes
equations Eq. (3.24). Indeed their structure is that of 2L copies (one for
each column) with different initial data of the same Schrödinger-type equa-
tion in a 2L-dimensional Hilbert space with the periodic Hamiltonian H(t).
We can apply to this equation the Floquet theory discussed in Chapter 2.
Indeed, we introduce the time evolution operator U1(t, 0) associated to this
unitary evolution; it is the solution of the Bogoliubov-de Gennes equations
Eq. (3.24) when we take as initial condition the 2L×2L identity matrix 12L.
It is a very useful object, if we choose generic initial conditions U0, we can
exploit it to construct the solution to Eq. (3.24) as

U(t) = U1(t, 0)U0 .

Moreover, thanks to Eq. (2.11), the knowledge of U1(t, 0) on the first period
of the driving allows to reconstruct it at all subsequent times and we have
all the information on the dynamics.

In particular, by diagonalizing U1(τ, 0), we can find explicitly a basis of
2L Floquet solutions of the Bogoliubov-de Gennes equations. These solu-
tions are 2L-tall time-dependent column vectors; L of them are

wFα(t) = e−iµαt/~
(

uPα(t)
vPα(t)

)
for α = 1 · · ·L , (3.26)

with {
uPα(t+ τ) = uPα(t)
vPα(t+ τ) = vPα(t)

. (3.27)

To find the remaining L, we exploit the particle-hole symmetry embodied
in the block form of H(t) (see Eq. (B.4)): if wFα(t) is a solution, so is
w̃Fα(t) = eiµαt/~ ( v∗Pα(t) u∗Pα(t)

)T . These objects can be interpreted
as single-particle Floquet states, similarly to those in Eq. (3.10). We can
collect all these single-particle quasi-energies µα into a diagonal matrix µ =
diag (µα), and the various τ -periodic column vectors into L × L matrices
UP (t) and VP (t), obtaining a very pleasant-looking solution of the BdG
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equations Eq. (3.24)

UF (t) =
(

UF (t) V∗
F (t)

VF (t) U∗
F (t)

)
=
(

UP (t) · e−iµt/~ V∗
P (t) · eiµt/~

VP (t) · e−iµt/~ U∗
P (t) · eiµt/~

)
.

(3.28)
This is an important object: in terms of it we can construct the Many-Body
Floquet states of the Hamiltonian Eq. (3.21). They are Gaussian states of
the form Eq. (3.22), as far as we know, we are the first to find their form.
The state with vanishing Floquet quasi-energy is

|Ψ0(t)〉F =
√
|det[UF (t)]| e

1
2
(ĉ†)T ·ZF (t)·(ĉ†)|0〉 where

ZF (t) ≡ −(U†
F (t))−1 ·V†

F (t) ; (3.29)

indeed it is not difficult to show that this state is periodic by using the very
definition Eq. (3.28). To make the other Floquet states, one constructs L
Fermionic Bogoliubov operators γ̂F α(t) (we can find a similar formula in
Eq (B.7)) (

γ̂F (t)
γ̂†F (t)

)
= U†

F (t) ·
(

ĉ
ĉ†

)
. (3.30)

These operators enjoy the Floquet property γ̂Fα(t+ τ) = eiµατ γ̂Fα(t) for all
times. All the 2L different many-body Floquet states can be obtained by
applying an appropriate number of different γ̂†Fα(t) operators to the state
|Ψ0(t)〉F

|Ψα(t)〉F =
n∏

j=1

γ̂†Fαj
(t)|Ψ0(t)〉F where n ≤ L and αj 6= αi for j 6= i .

To find the corresponding periodic Floquet modes one defines some periodic
operators γ̂†Pα(t) such that γ̂†Fα(t) = e−iµαtγ̂†Pα(t)(

γ̂P (t)
γ̂†P (t)

)
=
(

UP (t) V∗
P (t)

VP (t) U∗
P (t)

)
·
(

ĉ
ĉ†

)
; (3.31)

similarly to the Floquet states, the Floquet modes are

|Φα(t)〉P =
n∏

j=1

γ̂†Pαj
(t)|Ψ0(t)〉F where n ≤ L and αj 6= αi for j 6= i .

(3.32)
We can easily see that the many body Floquet quasi-energies are sums of
the single particle quasi-energies µα. Marking them with an over-line as in
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Sec. 2.2 we have3

µα =
n∑

j=1

µαj where n ≤ L and αj 6= αi for j 6= i .

The matrix in Eq. (3.28), moreover, allows us to write explicitly a generic
solution of the Bogoliubov-de Gennes equations in terms of single particle
Floquet modes and quasienergies

U(t) = UF (t) · R (3.33)

where we have defined R ≡ U†
F (0)U(0) with the block decomposition R =(

R S∗

S R∗

)
. This implies

U1(t, 0) = UF (t)U†
F (0) ;

exploiting the unitarity of UF (t) we can verify explicitly that U1(nτ, 0) =
[U1(τ, 0)]n.

3.3.3 Broken translational invariance and relaxation to the
Floquet-diagonal ensemble

Thanks to the analysis we have just done, we can write, for any operator
quadratic in the Fermionic operators ĉj , the Floquet-diagonal component
and the off-diagonal part (see Eq. (2.13)) in terms of the single-particle Flo-
quet modes and quasienergies. This applies to observables, like the energy
or the tranverse magnetization, and to other objects like the single-particle
Green functions Eq. (3.25). In the latter case the Floquet-diagonal compo-
nent is explicitly

G diag
i j (t) = R∗α iVP ν α(t)V ∗

P ν α(t)Rα j + S∗α iUP ν α(t)U∗
P ν α(t)Sα j

F diag
i j (t) = R∗α iUP ν α(t)V ∗

P ν α(t)Rα j + S∗α iVP ν α(t)U∗
P ν α(t)Sα j

(3.34)

and the off-diagonal component is a much more involved formula we report
in Appendix B. Although the Green functions are expectations of non-
Hermitian operators, they are very important. The state of the system is
indeed Gaussian and we can apply the Wick’s theorem [113] to any observ-
able Ô which is many-particle in the Fermionic operators 4; in this way its
expectation value can be written as the sum of products of single-particle

3All these considerations, of course, apply also to the translationally invariant case;
here the Floquet Fermionic operators are γ̂F k(t) = eiµktγ̂P k(t), where γ̂P k(t) are defined
in Eq. (3.18).

4One important example are the spin correlators [112] 〈σ̂z
i σ̂

z
j 〉t.
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Green functions. Indeed, it depends in a definite way on the various Green
functions

〈Ô〉t = FO
(
{Gi j(t), Fi j(t)}i,j=1,...,L

)
. (3.35)

If all the Green functions relax to the single-particle Floquet diagonal en-
semble, then the expectations of all the many-particle observables Ô relax to
an asymptotically periodic condition which, by means of Eq. (3.34), depends
on the relaxed Green’s functions as

〈Ô〉t
t→∞−→ FO

({
G diag

i j (t), F diag
i j (t)

}
i,j=1,...,L

)
.

By necessity, this asymptotic limit has to coincide with the many body
Floquet diagonal ensemble average 5

〈O〉diag
t =

∑
α

| 0〈GS |Φα(0)〉 |2 P 〈Φα(t)| Ô |Φα(t)〉P ,

where the many-body Floquet modes are given by Eq. (3.32). This discus-
sion shows us that, for the relaxation of the observables in this integrable
model, only the continuity of the single particle Floquet spectrum matters.
Moreover, observables relax to the diagonal Floquet ensemble in the thermo-
dynamic limit if this happens for the Green functions. Therefore, to explore
relaxation, we can restrict to inquire if the time-fluctuations for finite L
δ|Gi j |strobo and δ|Fi j |strobo (see Eq. (2.19)) scale to zero for increasing L.
Matter of fact, the formulae are extremely awful, therefore we limit ourselves
to show to the reader, for different values of L, the time dependence of an
operator whose expectation is strictly related to the Green function Gj j(t),
the transverse magnetization on the site j. It is defined as m̂j = σ̂x

j and,
after the Jordan-Wigner transformation, it acquires the form

m̂j = 2ĉ†j ĉj − 1 . (3.36)

We break translational invariance by means of a Gaussian inhomogeneity in
the driving field localized on the centre of the chain

hj(t) = 1 + hG e−(j−jc)
2/2l2 +A cos(ω0t) .

Thanks to periodic boundary conditions in the spins, this mimics confine-
ment in experiments. The length l on which the inhomogeneity is localized
remains finite in the thermodynamic limit. The inhomogeneity gives rise to
some discrete levels in the single-particle Floquet spectrum whose number
remains finite in the thermodynamic limit; on the contrary, the number of
the levels in the continuum (corresponding to extended Floquet states) scales

5In principle, one could directly show that the two formulae agree using the explicit
expression Eq. (3.32), but it is not an easy computation.

37



with the size L of the system; we can see this in the left panel of Fig. 3.5.
The discrete levels correspond to single-particle Floquet modes localized in-
side the inhomogeneity, while those in the continuum correspond to modes
extended to the whole chain. This property allows us to find single-particle
operators and Green functions (for instance, of the form Eq. (3.36)) cou-
pling mainly to modes in one part of the spectrum or in the other; this gives
rise to markedly different behaviours of the fluctuations around the Floquet
diagonal ensemble (see discussion in Sec. 2.3). Thanks to Eq. (3.35), we will
later generalize our discussion to many-particle objects.

Whenever an operator couples mainly to the continuous part of the
single-particle Floquet spectrum, its expectation relaxes to the Floquet di-
agonal ensemble in the thermodynamic limit; indeed the fluctuating terms
coming from the finite number of discrete single-particle Floquet levels give
a vanishing contribution. This happens, for instance, for all the m̂j cen-
tred on sites j outside the inhomogeneity in L/2 (|j − L/2| � l, here the
discrete single-particle modes localized in the inhomogeneity have a vanish-
ingly small amplitude). We can see one instance of that in Fig. 3.6, where we
plot the stroboscopic magnetization mj(nτ) on the site j = 3L/4. We can
see that the fluctuations around the Floquet-diagonal value tend to vanish
when L increases, the observable converges to the asymptotic value before a
finite-size revival sets up at a time ∼ L; for L→∞ we would see a perfect
convergence lasting for an infinite time. We could see the same behaviour
for all the single-particle operators and Green functions involving only ĉj
and ĉi outside the inhomogeneity (still |j − L/2| � l, |i− L/2| � l).

Operators localized inside the inhomogeneity, instead, couple mainly to
Floquet states in the discrete part of the spectrum (as we have noticed, these
states are not extended but localized in the inhomogeneity). The Riemann-
Lebesgue lemma does not apply and we can see fluctuations persisting in the
thermodynamic limit. We show an instance of that in the lower right panel
of Fig. 3.5, where we consider the stroboscopic value of the magnetization
in the central site of the system mL/2(nτ). It never relaxes to a stationary
value, however large we take L. This result of course is valid for all single
particle operators and Green functions involving only ĉi and ĉj inside the
inhomogeneity.

This discussion and Eq. (3.35) imply that generic many-particle observ-
ables Ô relax to the Floquet-diagonal ensemble if we are in the thermody-
namic limit and we consider operators involving mainly ĉj centred on sites
outside the inhomogeneity. All the extensive observables fall in this class
and only a minority of operators, involving mainly ĉj centred on the central
site, do not become periodic after a transient. An instance of convergence
of an extensive (single-particle) operator is given in the upper-right panel
of Fig. 3.5, where we plot the stroboscopic value of the average transverse
magnetization m̂ = 1

L

∑L
j=1 σ̂

x
j for different lengths. Indeed, one can see by
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Figure 3.5: (Left panel) The single-particle Floquet spectrum for an Ising
chain with a Gaussian inhomogeneity with l = 20, hG = 2.8, ω0 = 10, A = 1
and different values of L. Notice a finite, L-independent number of discrete
quasi-energies. (Upper right panel) The average transverse magnetization
m(t) probed at t = nτ , showing fluctuations that decrease for increasing
L. (Lower right panel) The transverse magnetization at the centre of the
inhomogeneity, mjc(t = nτ), whose fluctuations persist for all L.

inspection that fluctuations around the asymptotic limit get smaller when
the chain is made longer.

3.4 Work distribution and dynamical fidelity

Many recent works have considered the work probability distribution in clas-
sical and quantum systems [81, 84, 86, 87, 88, 89, 83]. Applying many times
the same non-equilibrium perturbation to a system, we can see that the per-
formed work changes in any realization of the protocol because of quantum
or thermal fluctuations. Very well known are the works (see Ref. [83] for a
review) stemming from the seminal paper by Jarzynski [82] which show how
the properties of the work statistics in a generic non-equilibrium protocol are
related to the change of free-energy in the corresponding quasi-equilibrium
thermodynamical process. The most important result in this class are the
Jarzynski-Crooks relations [83]. They have been demonstrated originally for
classical systems where only thermal fluctuations matter [82, 124]; then they
have been extended to unitarily evolving quantum systems [125, 81, 126]
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Figure 3.6: The stroboscopic value of the magnetization centred in a site far
from the inhomogeneity m3L/4(t = nτ). We can see that the fluctuations
around the Floquet diagonal value decrease for larger L; indeed the observ-
able always tends to converge to this value, before a finite size revival sets
up at a time which is longer as L is larger.
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where work fluctuations arise from quantum fluctuations in the energy pro-
vided to the system. Recently, many works have appeared concerning the
work statistics in many body quantum systems where the properties of the
work probability distribution are related to the presence of quantum phase
transitions [86, 87, 88, 89]. Moreover, for small W , the work distribution
P (W ) seems to assume a power-law behaviour independent of the precise
details of the system and the protocol [84, 86, 87, 88, 89]. This probabil-
ity distribution is an object of experimental interest, thanks to the tech-
niques which allow to detect the statistics of quantum fluctuations of ob-
servables [10, 80]. Here we consider the properties of the work distribution
for a periodically-driven quantum Ising chain in transverse field. We assume
to start in the ground state of the initial Hamiltonian. We measure the work
performed on the system after it has evolved for a time t; the probability
distribution of the work fluctuations is [81, 126, 83]

Pt(W ) =
∑
m

δ(W − (Et
m − EGS(0))) |

〈
Ψt

m |Ψ(t)〉 |2 . (3.37)

Here, EGS(0) is the energy of the initial ground state, Et
m are the eigen-

energies of the final Hamiltonian and
∣∣Ψt

m

〉
the corresponding eigenstates.

We apply a periodic driving and probe the system stroboscopically at inter-
vals of an integer number of periods; in this way eigenstates and eigenvalues
of the initial and final Hamiltonian coincide and the minimum work that
can be performed is W = 0. We start our discussion just considering the
weight of the δ function in W = 0 for the cyclic protocol; this object is called
dynamical fidelity6. It is the squared overlap of the state of the system at
the stroboscopic time t = nτ with the initial state (coinciding in our case
with the initial ground state)

F(t) = |〈Ψ0|Ψ(t)〉|2 =
∣∣∣〈Ψ0

GS|Û(t, 0)|Ψ0
GS〉
∣∣∣2 . (3.38)

This object is also important in itself. Its asymptotic behaviour in time
gives us information about the localization properties of a generic initial
state |Ψ0〉 in the Hilbert space [127]: if it is localized the squared overlap
with its value |Ψ(t)〉 at time t will remain finite, instead it will vanish. In case
of sudden quench (periodic driving) the two distinct behaviours are strictly
related to the properties of the energy (Floquet) spectrum: pure point in
the first case, continuous in the second [128]. Moreover, quantities strictly
related to the fidelity are used to detect quantum phase transitions [129,
130] and quantum entanglement [131] and are useful measures in quantum
information science [132].

We specialize our discussion to the case of the uniformly driven quantum
Ising chain discussed in detail in Secs. 3.1 and 3.2. The Hamiltonian is the

6We have published the results we are going to present on the dynamical fidelity in the
periodically driven quantum Ising chain in Ref. [90].
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translationally-invariant version of Eq. (3.1) and we choose to drive the
system around the quantum critical point with a field given by Eq. (3.11)
(fixing A = 1, ϕ0 = 0). We expect the fidelity Eq. (3.38) to vanish in the
thermodynamic limit. Indeed, we can see that the modulus square product
of the states Eqs. (3.5) and (3.7) is given by

F(nτ) =
ABC∏
k>0

Fk(nτ) where Fk(nτ) =
∣∣∣u0

k 0
∗
uk(nτ) + v0

k 0
∗
vk(nτ)

∣∣∣2 .
(3.39)

Unless the unlikely occurrence that the initial ground state coincides with
a many-body Floquet state (and all the u0

k 0, v
0
k 0 are components in the

standard basis of single-particle Floquet states
∣∣φ+

k (0)
〉
,
∣∣φ−k (0)

〉
), we find

Fk(nτ) < 1. So the fidelity is the product of L/2 less-than-one factors and
in the thermodynamic limit (L → ∞), it vanishes exponentially with L.
Nevertheless, for finite L, although exponentially small in L, this object
is a finite quantity of experimental interest. We are going to show that,
before finite-size revivals set up, it tends towards a steady regime where its
value does not change from a cycle of the driving to the next. By means
of Eqs. (3.7) and (3.5) and using the Floquet expansion Eq. (3.10), we can
find the fidelity after n complete cycles of the driving field

F(nτ) = e
P

k>0 log |bk(nτ)|2 , (3.40)

where bk(nτ) = |r+k |
2e−iµknτ + |r−k |

2eiµknτ . If L is large, we can approximate
the sum over k into an integral, easily establishing that F(nτ) ∼ e−Lgn ; the
quantity

gn(ω0) = −
∫ π

0

dk

2π
log |bk(nτ)|2 . (3.41)

is non-negative and well defined for L→∞. Defining qk ≡ 2|r+k |
2|r−k |

2/(|r+k |
4+

|r−k |
4) ∈ [0, 1] we can recast this formula as

gn(ω0) = −
∫ π

0

dk

2π
log

1 + qk cos(2µknτ)
1 + qk

. (3.42)

Whenever the frequency does not match any unperturbed resonance of the
system (ω0 > 4 in the present case), then qk < 1 for all k. Therefore,
we can expand the argument of the logarithm and then apply the Riemann-
Lebesgue lemma to all the oscillating terms. Defining gd(ω0) ≡

∫ π
0

dk
2π log(1+
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qk) we find

g∞(ω0) ≡ lim
n→∞

gn(ω0) = gd(ω0) +
∞∑

p=1

(2p− 1)!!
2p(2p)!!

∫ π

0

dk

2π
q2p
k

= gd(ω0) +
∫ π

0

dk

2π
log

2

1 +
√

1− q2k

=
∫ π

0

dk

2π
log

2(1 + qk)

1 +
√

1− q2k

. (3.43)

We can see in Fig. 3.7 that our formula works well also when ω0 < 4 (for
a precise mathematical justification of this fact, see Appendix C): here we
plot the asymptotic g∞ vs ω0 comparing it with its finite n counterparts
for many values of n. (As done in Sec. 3.2, we obtain Floquet states and
time evolution by means of the numerical solution of Bogoliubov-de Gennes
equations Eq. (3.8) and the methods explained in Chapt. 2.) In Fig. 3.7 we
can clearly see that the stroboscopic fidelity tends to a steady value after a
transient; this fact is rigorously true only in the limit L→∞.

We can see in g∞(ω0) features similar to those we have noticed in the
periodic-steady-regime asymptotic stroboscopic work w∞ (lower panel of
Fig. 3.3) 7: dips at the zeros of J0(2/ω0), peaks at ω0 = 4/p and an high
frequency plateau. At the zeros of J0(2/ω0) the rate g∞(ω0) shows minima
as a consequence of Coherent Destruction of Tunneling [120] but is never-
theless non-vanishing. We can see that the rate of exponential decay with
L, g∞(ω0), is never vanishing. Therefore, whatever we take the frequency
ω0, the fidelity converges to a value F∞ = 0 in the thermodynamic limit;
matter of fact in this limit it is always F(nτ) = 0 but at n = 0. By means
of Eq. (3.39), we can notice that the only other possibility in the thermody-
namic limit could be F∞ = 1 (corresponding to a vanishing g∞(ω0)) which
would mean that the state comes back to its initial value. We can see indeed
that this never happens: this fact implies that the ground state never coin-
cides with a many-body Floquet state. We can see, therefore, a convergence
to a periodic steady regime for the observables but not for the state. The
Floquet diagonal ensemble density matrix Eq. (2.14) is indeed only a conve-
nient way to express the expectations of the observables in the asymptotic
regime.

In this context, convergence to a steady regime of the stroboscopic fi-
delity may seem not interesting: From one side the fidelity is exponentially
small in L (F(nτ) ∼ e−Lgn) and always vanishing (but at the initial time)
in the thermodynamic limit, from the other, only in this limit convergence

7This quantity is 1/L × the first moment of the asymptotic work probability distribu-
tion (see Eq. (3.51)), while g∞ is related to the value in W = 0 of the same distribution,
so (with hindsight bias) we are not surprised to see this similarity.
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Figure 3.7: gn = −[logF(nτ)]/L, minus the logarithm of the fidelity per-
site, as a function of the frequency ω0 of the driving field h(t) = 1+cos (ω0t)
for n = 1, 2, 12, 100. The value of g∞, Eq. (3.43), is also shown. Notice how,
for any n finite, gn(ω0) → 0 for ω0 →∞ (for n = 100 such a rise towards 0
is visible right before ω0 ∼ 100).

happens rigorously. Nevertheless, the steady-regime fidelity is an object
of experimental interest in chains with a finite L. Indeed, as we can see
in Fig. 3.7, the fluctuations at large but finite n around the steady value
are very small, even for low frequencies where the finite-size revival has al-
ready set up (data refer to L = 1000 and the finite size revival sets up at
n ∼ Lω0/(2π). The only point is to keep coherence for many periods, but
this is not an issue in cold atom experiments [1].

Moreover, we have to notice an important point: the GGE ensemble
Eq. (3.19) miserably fails in predicting the asymptotic stroboscopic value of
the fidelity. As we show in Ref. [90] (where we define the GGE ensemble as
“decohered density matrix”) it predicts for the asymptotic value of gn(ω0)

gGGE(ω0) = gd(ω0) =
∫ π

0

dk

2π
log (1 + qk) ,

which (as we can see in Eq. (3.43)) is systematically larger than the exact
asymptotic value Eq. (3.43). Therefore we see that the GGE misses impor-
tant quantum correlations which are still existing in the system but cannot
be seen in the local observables because of dephasing: the dynamical fidelity
makes transparent this hidden phase information.
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3.4.1 The work distribution and its characteristic function

Actually, we are able to discuss not only the properties of the peak at W =
0, but the whole work-distribution function of our system. To do that,
we introduce the characteristic function [126, 81] of the distribution as its
Fourier transform

Gt(u) =
∫ +∞

−∞
dW eiuWPt(W ) . (3.44)

This gives us all the information on the distribution, because all its moments
µn(t) =

∫ +∞
−∞ dWWnPt(W ) can be obtained as

µn(t) = (−i)n ∂n
uGt(u)|u=0 .

If we substitute in Eq. (3.44) the expression for the work probability distri-
bution 8 given by Eq. (3.37), we find [86] after few manipulations

Gt(u) = 〈Ψ(t)| e−iu eH(t) |Ψ(t)〉 ; (3.45)

here we shift the zero of the energy by defining the operator H̃(t) ≡ Ĥ(t)−
EGS(0). In what follows we will use, instead of the Fourier transform, the
Laplace transform defined as Gt(−is) with s ≥ 0. Substituting in the inte-
gral Eq. (3.44) we see that this object is real and converges because P (W )
is vanishing below the threshold E0(t) − EGS(0). We move to consider the
cumulant generating function defined as

Gt(s) = logGt(−is) .

From it we can find all the cumulants of the distribution Pt(W ) [86] as
Kn(t) = (−1)n ∂n

s Gt(s)|s=0. If we consider explicitly the case of the quantum
Ising model and substitute in Eq. (3.45) the expressions Eq. (3.7) for the
state and Eq. (3.2) for the Hamiltonian we find, for large L

Gt(s)
L

=
∫ ∞

−∞

dk
2π

log
[
〈ψk(t)| e−s(Ĥk(t)+εk(0)) |ψk(t)〉

]
(3.46)

where −εk(0) is the ground state energy for the mode k at time 0 (Eq. (3.4)).
As we have seen, for each mode k the Hilbert space is bidimensional, so we
can expand the k-component of the Hamiltonian Ĥk(0) in the basis of its
instantaneous eigenstates

Ĥk(t) = εk(t)
∣∣ψt

k ex

〉 〈
ψt

k ex

∣∣− εk(t)
∣∣ψt

k GS

〉 〈
ψt

k GS

∣∣
where the eigenvalues±εk(t) are given by Eq. (3.4),

∣∣ψt
k GS

〉
is the k-component

of the ground state Eq. (3.5) and the excited state is obtained by creating two
8we are taking as initial state of the evolution the initial ground state, but also more

general cases can be considered [126, 81].
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elementary excitations on top of this:
∣∣ψt

k ex

〉
= γ̂†k(t)γ̂

†
−k(t)

∣∣ψt
k GS

〉
where

the operators γ̂k(t) are defined in Eq. (3.6). In this way it is easy to see
that [86]

Gt(s)
L

=
∫ ∞

−∞

dk
2π

log
[
|ak(t)|2e−s(εk(t)+εk(0)) + |bk(t)|2e−s(−εk(t)+εk(0))

]
(3.47)

where we have defined the overlaps ak(t) =
〈
ψt

k ex |ψk(t)〉 and bk(t) =〈
ψt

k GS |ψk(t)〉. As in the foregoing section, we specialize to the stroboscopic
case where these amplitudes can be expressed quite easily in terms of Flo-
quet states and quasi-energies. Indeed, if the system starts in the ground
state, we have bk(nτ) = |r+k |

2e−iµknτ + |r−k |
2eiµknτ . Exploiting the normal-

ization condition of the state |ψk(t)〉 expressed in the basis of the eigenstates
(|ak(t)|2 + |bk(t)|2 = 1), we easily find

|bk(nτ)|2 = |r+k |
4 + |r−k |

4 + 2|r+k |
2|r−k |

2 cos (2µknτ)
|ak(nτ)|2 = 2|r+k |

2|r−k |
2 sin (2µknτ) . (3.48)

Substituting in Eq. (3.47) and using the definition qk ≡ 2|r+k |
2|r−k |

2/(|r+k |
4 +

|r−k |
4) we find

Gnτ (s)
L

=
∫ π

0

dk
2π

log
[
1− 2

qk
1 + qk

(
1− e−2sεk(0)

)
sin2 (µknτ)

]
. (3.49)

Quite interestingly, we can check that lims→∞
Gnτ (s)

L = −gnτ where gnτ is
minus the logarithm of the fidelity per site given in Eq. (3.41). This is a gen-
eral result related to the fact that, in the stroboscopic case, lims→∞Gt(−is)
is just the dynamical fidelity. Whenever s <∞, we can apply an argument 9

(reported in Appendix C) strictly analogous to the one leading to Eq. (3.43)
and find that this object converges for large n to a steady state value

G∞(s)
L

≡ lim
n→∞

Gnτ (s)
L

= 2
∫ π

0

dk
2π

log

[
1 +

√
1− ξk(s)
2

]
(3.50)

where ξk(s) ≡ 4
∣∣r+k ∣∣2 ∣∣r−k ∣∣2 (1− e−2sεk(0)

)
. In Fig. 3.8, we can see two

examples of convergence under the driving, here we plot Gnτ (s)
L versus s

for different values of n, seeing that it approaches G∞(s)
L when n is in-

creased. The form of the driving is that reported in Eq. (3.11) (fixing
A = 1, ϕ0 = 0) and we consider two different frequencies: ω0 = 2 in the

9For s→∞, Gnτ (s)
L

reduces to the −gnτ which we have discussed in the former Subsec-
tion. As stated there, in this case we can apply the expansion Eq. (3.43) only if qk < 1 ∀ k,
condition true whenever ω0 > 4. If ω0 < 4, we have to perform the expansion reported
in Appendix C for s finite and then take the limit s→∞, in this way we give a rigorous
justification of Eq. (3.43) also in this range of frequencies.
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Figure 3.8: Plot versus s of Gnτ (s)
L for different n and G∞(s)

L ; the driving
is that in Eq. (3.11) and we consider two different values of the frequency,
ω0 = 2 (left panel) and ω0 = 0.3623 (right panel). Numerical data are for
L = 1000.

left panel and ω0 = 0.3623 in the right one. The latter value is approxi-
mately such that J0(2/ω0) = 0: here we can see that Gnτ (s)

L takes, for large
s, a very small value, consistently with the results shown in Fig. 3.7 for
gnτ = − lims→∞

Gnτ (s)
L . We can evaluate the cumulants of the asymptotic

work distribution. They can be obtained as

Kn = (−1)n ∂
n

∂sn
logG∞(s)|s=0 .

The first cumulant (which has the physical meaning of asymptotic strobo-
scopic quantum average of the performed work) is given by

K1 = 〈W 〉∞ = L

∫ π

0

dk
2π

(
4
∣∣r+k ∣∣2 ∣∣r−k ∣∣2Ek(0)

)
. (3.51)

We are happy, because this is just the result we would obtain by evaluating∫ π
0

dk
2π

[
〈ψk(nτ)| Ĥk(0) |ψk(nτ)〉 − EGS k(0)

]
which we have done in Sec. 3.2

and represented in Fig. 3.3.
The second cumulant has the physical meaning of variance of the work

distribution and is given by

K2 = σ2
∞ = L

∫ π

0

dk
2π

[
4
∣∣r+k ∣∣2 ∣∣r−k ∣∣ (1 + 3

∣∣r+k ∣∣2 ∣∣r−k ∣∣)E2
k(0)

]
. (3.52)

We can notice that the distribution of the work in the thermodynamic limit
tends to become a δ [86] because

σ∞
〈W 〉∞

∼ 1√
L
.

Nevertheless, fluctuations around it are visible for L finite and, as we are
going to see, they remarkably show for small W a behaviour independent of
the periodic driving protocol.
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3.4.2 Universal edge singularity at small W in the synchro-
nized probability distribution

Inspiring ourselves to the beautiful paper Ref. [86], we seek for understanding
the behaviour of the asymptotic work probability distribution at small values
of the work, especially in connection with aspects independent of the specific
protocol (this independence is improperly referred to as “universal”). The
behaviour of P∞(W ) at small W is written in the behaviour of G∞(−is)
at large s. We can obtain an approximate analytical formula valid for s �
1/ |hi − 1| (see Appendix C for the derivation)

G∞(s)
L

' −g∞ +
a√
s
e−2s|hi−1| . (3.53)

Here g∞ is minus the asymptotic logarithmic fidelity (see Eq. (3.43)), hi is
the initial value of the field and

a ≡ 1
2

 1√
1− 4

∣∣r+0 ∣∣2 ∣∣r−0 ∣∣2 − 1

√ |hi − 1|
4πhi

.

Using the relation G∞(s) = eLG∞(s), this formula implies

G∞(−is) ' e−Lg∞

(
1 +

La√
s
e−2s|hi−1|

)
In appendix C, applying the Laplace transform, we obtain from this equation
an interesting approximation for the probability distribution at small W

P∞(W ) ' e−Lg∞

(
δ(W ) +

aLθ (W − 2 |hi − 1|)
√
π (W − 2 |hi − 1|)1/2

)
; (3.54)

Eq. (3.54) embodies a very strong statement, predicting an edge singularity
in the asymptotic work distribution function at a precise value of W which
is totally independent of the details of the periodic protocol (and even of the
frequency) but depends only on the initial value hi of the field 10. The details
of the protocol enter into the strength of the singularity (the coefficient a)
by means of the factors

∣∣r+0 ∣∣2 and
∣∣r−0 ∣∣2. We can notice that those pertain to

the mode at k = 0 and also the threshold 2 |hi − 1| is the energy which has
to be provided to the system to generate an excitation in the mode at k = 0.
So, the low energy behaviour of the work distribution function is dominated
by the mode of lowest energy [86]; with hindsight bias we recognize we could
have guessed that until the first moment.

10In Ref. [86] the authors find – for the Ising chain under a generic, non-necessarily
periodic protocol – that Pt(W ) at small W (for a finite time t) depends only on the initial
and the final value of the driving field. In our case, the initial and the final value coincide.
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The only condition for the validity of these approximate formulae is a
driving field not starting with the critical point value (hi 6= 1): if not so, the
approximations leading to it fail as we show in Appendix C.

We can check numerically the validity of the foregoing approximations.
We fix A = 1 in Eq. (3.11), considering a driving field of the form

h(t) = 1 + cos(ω0t+ ϕ0). (3.55)

In the left panel of Fig. 3.9 we show G∞(s)
L +g∞ for different values of ϕ0 and

ω0 = 2.0; for each ϕ0 there is a different value of hi = 1 + cos(ϕ0) and here
we choose the parameters so that hi 6= 1 for all the curves. We can see that,
for s large enough, the agreement with the approximate formula Eq. (3.53)
is perfect. If we take ϕ0 = −π/2 , we have hi = 1 and Eq. (3.53) is no
more valid. We can see in some examples in the right panel of Fig. 3.9 that
G∞(s)

L + g∞ has not an exponential, but a polynomial decay of the form 1/s.
We notice that if we take |hi − 1| small but non-vanishing (ϕ0 = −0.498π),
the polynomial decay lasts for a long range of s before we can see some
deviation. It seems indeed that this 1/s decay when hi = 1 is quite general:
we have observed it when the system undergoes the driving in Eq. (3.55)
with ϕ0 = −π/2 for many different frequency choices (some are shown in
the figure) and we have checked it also for other forms of driving, like h(t) =
cos(ω0t). If G∞(s)

L ' −g∞+A/s for large s, then G∞(−is) ' e−g∞(1+A/s)
and, at small W , we have the approximation for the probability distribution

P (W ) ' e−Lg∞(δ(W ) +Aθ(W ))

where θ is the Heaviside function. We notice that in Ref. [86] the authors
find a very similar formula for Pt(W ) (when the time t is finite) in an Ising
chain undergoing a generic, non-necessarily periodic, driving which ends at
the critical point. In our case we consider the asymptotic behaviour and,
thanks to time periodicity, whenever hi = 1 the driving not only ends but
also starts at the critical point.

3.5 Conclusion

In conclusion, in this Chapter we have shown an example of the relaxation
to the Floquet diagonal ensemble by means of the quantum Ising chain in
transverse field, with or without translational symmetry. Because of inte-
grability, only the continuity of single-particle Floquet spectrum matters
to attain relaxation of the local observables and their asymptotic value de-
pends only on the properties of single-particle Floquet modes, Because of
integrability, this asymptotic value depends strongly on the parameters of
the driving and can be described by means of a GGE ensemble. This fact
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Figure 3.9: (Left panel) G∞(s)
L + g∞ versus s when the driving is (3.55)

(ω0 = 2) and ϕ0 such that hi 6= 1 (continuous lines) compared with Eq. (3.53)
(broken lines), there is a perfect agreement when s is large. Data are for
L = 1000. (Right panel) The same for hi = 1 (ϕ0 = −π/2) and different
frequencies, we can see a polynomial decay like 1/s; when hi is slightly
different from 1 (ϕ0 = −0.498π) this decay is still valid for a large range of
s. Data are for L = 4000.

is true only for local observables, we have shown how the state of the sys-
tem does not become periodic after a transient and how the work statistics
attains an asymptotically periodic condition not described by the GGE.

In the next chapter we move to consider the picture of relaxation to the
Floquet diagonal ensemble in the Linear Response Limit, and the quantum
Ising chain in transverse field will be still the system on which we will do
our numerical analyses.
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Chapter 4

Periodic steady regime and
linear response theory

Linear Response Theory (LRT) is a tool of the utmost importance in con-
densed matter physics [133, 134]. It allows to express the response of a
system to a small perturbation in terms of its static unperturbed proper-
ties. It is therefore invaluable when a system is experimentally investigated
by means of small-amplitude probes.

Our focus in this Chapter will be on the linear response of many-body
quantum systems. Adding a small perturbation to the static Hamiltonian
of a system, and solving the evolution equations up to first-order in the
perturbation, we can give a first-order approximation to the response of any
observable. Everything can be expressed in terms of response functions, i.e.,
time-retarded correlators of the operator whose response we want to study,
and the operator which couples to the perturbation [134].

An essential aspect of the theory is the assumption of a quantum coherent
evolution. Van Kampen has argued that this is a very strong hypothesis,
valid on time-scales many orders of magnitude smaller than those on which
the theory is successfully applied [135]. Notwithstanding this crucial issue,
the theory is valid; in Van Kampen’s opinion this is due to the assumption
of a thermal initial state which mimics the random correlations induced by
the interaction with the environment.

Experimental progress has made the issue of phase coherence in the evo-
lution very important: experiments on cold atoms in optical lattices allow us
to observe the coherent dynamics of an artificial many-body quantum system
up to times of ∼ 1 ms. It is not difficult to engineer small-amplitude pertur-
bations to compare the exact evolution with the linearized one. Moreover,
the question is very interesting because, under the hypothesis of coherent
evolution, LRT predicts in some regimes a relaxation of the observables to
a periodic steady condition which is different from the one corresponding to
the Floquet diagonal ensemble (Eq. (2.14)).

51



Indeed let us consider, in general, an ordered quantum many-body sys-
tem in the thermodynamic limit L→∞, and a small periodic perturbation
v(t)Â applied to the Hamiltonian. Let us assume that the perturbation
is resonant with one of the internal frequencies of the system; we assume
that the system is such that the unperturbed spectrum and the Floquet
spectrum are both continuous. LRT predicts that the system absorbs a
constant amount of energy in each cycle of the driving; this contrasts with
the expected relaxation of the energy to the periodic value given by the
Floquet diagonal ensemble, which must be finite if the energy-per-site spec-
trum is bounded (as indeed happens in lattice-spin or Fermionic systems,
see Fig. (3.2)). This leads to different predictions of 〈Â〉t, the response of
the observable coupling to the external field. Both theories predict a peri-
odic steady regime, after a transient, but LRT predicts an additional term,
out-of-phase with the driving and responsible for a steady energy absorption.

We will use the general Floquet and LRT theories to discuss this ques-
tion, and we will substantiate our results by means of a “numerical experi-
ment”. We will consider the uniform quantum Ising chain in transverse field
discussed in Chapt. 3, and we will apply to it a time-periodic perturbation
with small amplitude. We will compare the exact dynamics, obtained nu-
merically (see Chapt. 3), with the results of LRT. We will show that the
solution to the previous contradiction is rather different when, in the ther-
modynamic limit, we consider an extensive or a localized driving. For a
driving coupled to an extensive operator, we show that the steady energy
absorption and out-of-phase response predicted by LRT hold for a finite
time, after which the energy saturates; this time goes to infinity in the LRT
limit of vanishing amplitude v0 of the perturbation. In such a limit, the
Floquet spectrum develops a degeneracy which gives rise to periodic terms
in the Floquet off-diagonal response (see Eq. (2.13)), leading in turn to the
appearance of the out-of-phase term in the response. Because of this de-
generacy, the off-diagonal density of states FA,t(ω) (see Eq. (2.16)) develops
a singularity which makes the application of the Riemann-Lebesgue lemma
tricky. Quite interestingly, for reasonably small amplitudes, the in-phase
term of the response is well predicted by LRT up to infinite time.

For a driving coupled to a local operator, i.e., such that the limit of
large L is performed while keeping the perturbation localized to few sites,
LRT correctly predicts the response for a time scaling with the length of
the chain L. In the thermodynamic limit, therefore, LRT is valid for an
infinite time. From the point of view of the mathematics, small gaps in
the Floquet spectrum close up in the thermodynamic limit, giving rise to
periodic terms in the Floquet off-diagonal component of the response. From
the physical point of view, the excitations generated in each period by the
localized driving are a finite number and they have an infinite space where
they can propagate: the quantum many body system acts as a thermal
bath for itself [134] and the energy-per-site absorbed is always infinitesimal.
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Therefore, the energy of the system changes only by an infinitesimal amount,
and this is consistent with the prediction of energy relaxation.

We can see how the validity of LRT is strictly connected with the energy-
per-site absorbed being infinitesimal: in a coherent dynamics framework this
is only possible for a system in the thermodynamic limit with localized driv-
ing. If the driving is extensive, the energy-per-site absorbed is not infinites-
imal, and LRT agrees with the exact dynamics only for a finite time. The
steady energy absorption predicted by LRT can last forever only if there are
dissipation channels towards an environment [134].

In the following sections we will summarize LRT for the case of a sud-
denly switched-on periodic driving, we will do some observations on the
energy absorption and then we will present our results. We will conclude
the Chapter by discussing possible experimental verifications and arguing
about the generality of our conclusions.

4.1 Linear response theory

Here, we summarize the relevant LRT results, specializing soon to the case of
a suddenly switched-on periodic driving. Indeed, our aim is to compare the
LRT results with those provided by the Floquet theory, which does not apply
if the usual adiabatic switching-on of the perturbation is used. We start by
considering a quantum system subject to a small generic time-dependent
perturbation, with Hamiltonian:

Ĥ(t) = Ĥ0 + v(t)Â , (4.1)

where Â is some Hermitian operator and v(t) a (weak) perturbing field. We
assume to perturb the system around the thermal equilibrium condition,
with (possibly vanishing) temperature T = 1/(kBβ):

ρ̂eq =
∑

n

e−βE
(0)
n

Z

∣∣∣Φ(0)
n

〉〈
Φ(0)

n

∣∣∣ . (4.2)

Here
∣∣∣Φ(0)

n

〉
are the eigenstates of Ĥ0, E

(0)
n the corresponding eigen-energies,

and Z =
∑

n e−βE
(0)
n the partition sum. If we assume a quantum unitary

evolution induced by the Hamiltonian Ĥ(t), we can use LRT to approxi-
mate, at first-order in v(t), the expectation value of any observable 〈B̂〉t.
Restricting to the case B̂ = Â we find [134]

〈Â〉t = 〈Â〉eq +
∫ +∞

−∞
dt′ χ(t− t′) v(t′) , (4.3)
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where 〈Â〉eq = Tr[ρ̂eq Â] is the equilibrium value, and the retarded suscepti-
bility is defined as

χ(t) ≡ − i
~
θ(t)〈

[
Â(t), Â

]
〉eq = − i

~
θ(t)

∑
n,m

(ρm − ρn) |Amn|2 e−iωnmt , (4.4)

with ρn = e−βE
(0)
n /Z, Amn =

〈
Φ(0)

m

∣∣∣ Â ∣∣∣Φ(0)
n

〉
, and ~ωnm = E

(0)
n − E

(0)
m . All

the relevant information on the susceptibility is contained in its spectral
function

χ′′(ω) = −π
~
∑
n,m

(ρm − ρn) |Amn|2 δ(ω − ωnm) . (4.5)

This manifestly odd function (χ′′(−ω) = −χ′′(ω)) is the imaginary part of
the Fourier transform of the susceptibility; thanks to causality [134], the
whole Fourier transform χ(ω) can be reconstructed, and then χ(t) obtained.
Indeed, considering the Fourier transform χ(z) for z = ω + iη in the limit
η → 0+, we find

χ(z) =
∫ +∞

−∞
dt χ(t) eizt =

∫ +∞

−∞

dω
π

χ′′(ω)
ω − z

. (4.6)

We will always consider (unless otherwise stated) an extended ordered sys-
tem in the thermodynamic limit, in this way the spectrum is a continuum
and (as in Eq. (2.16)) the discrete Dirac’s deltas in Eq. (4.5) merge together,
making χ′′(ω) a regular function of ω.

We restrict here to the case of a perfectly periodic perturbation of fre-
quency ω0, for definiteness v0 sin (ω0t). As already mentioned, textbook
approaches usually consider an adiabatic switching-on of the perturbation
from t = −∞ to t = 0, writing v(t) = v0 sin(ω0t)

[
eηtθ(−t) + θ(t)

]
with

η small and positive, which is sent to η → 0+ at the end of the calcu-
lation. Since we are interested in comparing LRT results with a Floquet
analysis and associated numerical results, we are forced, on the contrary, to
assume a sudden switching-on of the periodic perturbation at t = 0, tak-
ing v(t) = vper(t) = v0θ(t) sin (ω0t). We define δ〈Â〉per

t = 〈Â〉per
t − 〈Â〉eq

the (possibly non periodic) response to the periodic perturbation; using
Eqs. (4.3)-(4.6) it is not difficult to find

δ〈Â〉per
t = v0

∫ +∞

−∞

dω
2πi

χ′′(ω)
(

eiω0t − e−iωt

ω + ω0
− e−iω0t − e−iωt

ω − ω0

)
. (4.7)

We notice that, notwithstanding the singular denominators at ω = ±ω0 and
the absence of ±iη regularizing terms, the integrand is regular, since it is
finite in the limit ω → ±ω0. We need to pay attention only if we split the
terms with e±iω0 from those with e−iωt in the sum of two integrals: because
of the singularities of the denominators in ±ω0 we would need to use the
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Cauchy principal value prescription in both integrals. Exploiting the fact
that χ′′(ω) is odd, we can readily find

δ〈Â〉per
t = v0χ

′(ω0) sin (ω0t)− 2v0ω0−
∫ +∞

0

dω
π

χ′′(ω)
ω2 − ω2

0

sin (ωt) . (4.8)

Here χ′(ω0) is obtained as the real part of the Fourier-transformed suscepti-
bility Eq. (4.6) for z = ω0+iη, the so-called Kramers-Krönig transform [134]

χ′(ω0) ≡ −
∫ +∞

−∞

dω
π

χ′′(ω)
ω − ω0

. (4.9)

If the term multiplying sin(ωt) in Eq. (4.8) were a regular function of ω, we
could proceed as we have done in general for the out-of-diagonal Floquet
term (Eq. (2.17)). We could apply the Riemann-Lebesgue lemma and show
that the integral in ω vanishes after a transient; only the periodic term
proportional to χ′(ω0), and in-phase with the driving, would be left. In
the case of resonant perturbation (χ′′(ω0) 6= 0) this is impossible, because
the integrand is singular in ±ω0 (we will see how this singularity emerges
from a degeneracy in the Floquet spectrum). Nevertheless, we can isolate
this singularity in a term proportional to χ′′(ω0). Simple calculations (see
appendix D.1) show that this term equals −v0χ′′(ω0) cos(ω0t), and is out-
of-phase with the driving. Having taken out this singular term, the integral
in ω involves a regular function

F trans(ω0, t) = −v0
∫ ∞

−∞

dω
π

[χ′′(ω)− χ′′(ω0)]
ω − ω0

sin (ωt) . (4.10)

This is a transient term vanishing for long times, due to the Riemann-
Lebesgue lemma. In conclusion, the response of the system in LRT has the
form

δ〈Â〉per
t = v0[χ′(ω0) sin (ω0t)− χ′′(ω0) cos (ω0t)] + F trans(ω0, t) . (4.11)

As already anticipated, we see in this expression that LRT predicts a result
qualitatively similar to relaxation in the periodic Floquet diagonal ensem-
ble: the response becomes periodic for long times. There is a term in-phase
with the driving, proportional to χ′(ω0), and a term out-of-phase with it,
proportional to χ′′(ω0). The last out-of-phase term is associated with en-
ergy absorption, as we will discuss in the next section. We will also see
that, because of general energy considerations, it has to be vanishing in the
Floquet diagonal ensemble prediction. We will verify this explicitly for the
quantum Ising chain in Sec. 4.3, connecting this fact with the properties
of the Floquet spectrum when the external frequency is resonant with the
unperturbed Hamiltonian.
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4.2 Energy absorption and periodic steady state

In this section we describe the energy absorption of a system which is period-
ically driven by an external field, Ĥ(t) = Ĥ0 +v(t)Â. We distinguish among
two energy functions, the exclusive energy E0(t) = Tr[ρ̂(t)Ĥ0], which is the
energy expectation of the unperturbed system on the state ρ̂(t) evolving with
the perturbation, and the inclusive energy, which is the expectation value
on ρ̂(t) of the total Hamiltonian Ĥ(t) including the perturbing term. The
von Neumann’s equation for the unitary dynamics i~ ˙̂ρ(t) = [Ĥ(t), ρ̂(t)] and
the cyclicity of the trace give us an expression for the power instantaneously
absorbed by the system

d

dt
E(t) = Tr

[
ρ̂(t)

d

dt
Ĥ(t)

]
= v̇(t)〈Â〉t (4.12)

which is very similar to the Hellmann-Feynman formula. Exploiting that
E0(t) = E(t)− v(t)〈Â〉t we readily find

d

dt
E0(t) = −v(t) d

dt
〈Â〉t . (4.13)

From now on we specialize to a simple time-periodic case taking, as before,
v(t) = v0 sin(ωt). We are interested in the energy absorption over each cycle
of the driving. Accordingly, we consider the time interval corresponding to
the n-th cycle [(n− 1)τ, nτ ]. Defining the energy changes over this interval
as ∆E(n) = E(nτ)−E((n− 1)τ) and ∆E0(n) = E0(nτ)−E0((n− 1)τ), we
can use the previous relationships to find

∆E(n) = ∆E0(n) = v0ω0

∫ nτ

(n−1)τ
dt cos (ω0t)〈Â〉t . (4.14)

From this formula, we see that a net absorption of energy over a cycle
depends on the presence of a term in the response 〈Â〉t which is out-of-
phase with the driving. To show this, we define

[
〈Â〉t

]
n

as the restriction of

〈Â〉t to the time interval [(n− 1)τ, nτ ]; hence, we can expand it in a Fourier
series[

〈Â〉t
]
n

= Ã0(n) +
+∞∑
m=1

[
Ã(c)

m (n) cos(mω0t) + Ã(s)
m (n) sin(mω0t)

]
. (4.15)

The Fourier coefficients Ã(c,s)
m depend on the period index n because 〈Â〉t is

not strictly periodic. From the point of view of the Floquet theory, there
are off-diagonal terms in the Floquet expansion (the term 〈Â〉off−diag

t in
Eq. (2.13)) which give rise to fluctuations around the asymptotic periodic
regime for the first periods; the same happens within LRT, because of the
transient term in Eq. (4.10). For long times, these fluctuations vanish,
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thanks to the continuity of the Floquet spectrum, and the Fourier coeffi-
cients tend to become constant for n → ∞. Substituting this formula in
Eq. (4.14) we see that the only term in this Fourier series responsible for
energy absorption is Ã(c)

1 (n) cos(ω0t). This is the well known term out-of-
phase with the driving, and the rate of energy absorption depends only on
its Fourier coefficient Ã(c)

1 (n)

Wn =
∆E(n)
τ

=
1
2
v0ω0Ã

(c)
1 (n) . (4.16)

Looking at Eq. (4.11), we see that LRT predicts Ã(c)
1 (n) n→∞−→ −v0χ′′(ω0);

this implies that, after a few cycles of the driving, we should see a steady
rate of energy absorption given by [134]

WLRT
n→∞ = −1

2
ω0v

2
0χ

′′(ω0) > 0 . (4.17)

As appropriate, this object is positive, since χ′′(ω0 > 0) < 0.
A steady energy absorption in the unitary dynamics of an isolated sys-

tem is not always possible. We can see a saturation of energy absorption
even in periodically driven few particle systems without an upper bound in
the energy spectrum, whenever there is dynamical localization, like in meso-
scopic disordered conducting rings in a time-dependent magnetic field [136]
and quantum kicked rotors [137, 138]. In the many-body case, we do not
have the discrete spectrum necessary for dynamical localization; neverthe-
less we can see saturation of the energy absorption whenever the driving
is extensive and the energy-per-site spectrum is bounded. Indeed, in many
closed systems on a lattice, say a Fermionic Hubbard-like model, the trans-
verse field quantum Ising model, or any spin model in any dimension, one
can show by simple arguments that the spectrum of the Hamiltonian should
be bounded in a region [eLN, eUN ]. (Here eL and eU are appropriate finite
lower and upper bounds on the energy-per-site spectrum, and N is the num-
ber of sites.) Perturbing such a system with an extensive operator Â must
necessarily lead to a saturation of energy. In this case, the rate of energy
absorption scales with N (like the operator Â and the coefficient Ã(c)

1 (n)
– see Eq. (4.16)); if the rate is constant, it would lead, in a finite number
of periods, to a violation of the bounds of the spectrum. In other words,
we must always have |E(t) − E(0)|/N < |eU − eL|. We therefore expect
that, when the driving is extensive, LRT is valid only for a finite number of
periods. The previous argument does not apply when the driving couples
to a localized perturbation: the rate of energy absorption is, in that case,
of order 1/N with respect to the energy bound, hence infinitesimal in the
thermodynamic limit N →∞.

The saturation of energy absorption under an extensive driving is re-
flected in the behaviour of the expectation value 〈Â〉t of the operator cou-
pled to the field. If the observables relax to the Floquet diagonal ensemble,
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〈Â〉t → 〈Â〉diag
t (see Sec. 2.3), the asymptotic periodic condition implies that

all the Fourier coefficients of Eq. (4.15) need to converge to a constant for
n→∞. The only way in which this is consistent with an asymptotic satu-
ration of energy absorption is (see Eq. (4.16)) that Ã(c)

1 (n) → 0. This gives
rise to a response asymptotically in-phase with the driving

〈Â〉t −→ 〈Â〉diag
t = Ã0 + Ã

(s)
1 sin(ω0t) + (higher harmonics) , (4.18)

consistent with an energy E(t) relaxing to the Floquet diagonal ensemble.
We see, therefore, that energy considerations suggest that the out-of-phase
term predicted by LRT (see Eq. (4.11)) should be vanishing. In the next
section, we will see all these results explicitly verified for the quantum Ising
chain in transverse field.

Before going into details, we illustrate an instance of what we have just
discussed in Fig. 4.1. Here we show the exclusive energy-per-site ((E0(t)−
E(0))/L) obtained numerically for a uniform periodically driven quantum
Ising chain (see Eq. (4.1)), compared with the LRT result of steady energy
absorption. The field is modulated around the critical point hc = 1, as
h(t) = hc + ∆h sin(ω0t) with a small ∆h, and the driving frequency ω0 =
0.5 is inside the resonance spectrum [−4, 4] of the Ising chain, discussed
in Sec. 3.1. Everything is rescaled by 1/(∆h)2 to make the comparison
possible; we see that, consistently with our discussion, after a few periods
the exact results deviate from the LRT prediction, and the energy saturates
to a condition where it shows oscillations at different time scales. As a
second example of the saturation of energy absorption, and deviation from
LRT, we mention the results shown in Fig. 1 of Ref. [20], where this effect is
apparently observed for a periodically modulated uniform Hubbard model,
studied by means of t-DMRG [139, 140]. We will discuss later the possible
experimental verification of these effects.

To conclude this section, we mention that when there is no convergence
to a steady periodic regime but the spectrum is limited (like in disordered
systems), saturation of energy absorption can manifest itself with a fluctu-
ating absorbed energy and a Ã

(c)
1 (n) which fluctuates around a vanishing

average.

4.3 Results for the quantum Ising chain in trans-
verse field

The Ising Hamiltonian in Eq. (3.1), and the way to solve its dynamics,
have been discussed in detail in Chap. 3; here we analyze what happens
in the case of a small-amplitude periodic driving, comparing our numerical
findings with the analytical results of LRT. The unperturbed Hamiltonian
Ĥ0 in Eq. (4.1) will be a uniform Ising chain of length L at the critical point
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Figure 4.1: Plot of the absorbed energy-per-site, vs t/τ , for ω0 = 0.5, for
a transverse field Ising chain which is perturbed, around the critical point,
with a uniform transverse field modulation (∆h) sin (ω0t). Details are ex-
plained in Sec. 4.3. The red solid line is the LRT result, compared to the
exact results for ∆h = 10−2 (purple dotted line) and ∆h = 10−3 (blue
dashed line). All the results are rescaled by 1/(∆h)2 so as to make the
comparison meaningful. The limit ∆h→ 0 is evidently singular.
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(hc = 1). We will take as perturbation

v(t)Â = −∆h
2
θ(t) sin(ω0t)

l∑
j=1

σ̂x
j .

By choosing different values of l we can make the driving localized to few
sites, when l is finite for L → ∞, or extensive, i.e., coupled to a sub-chain
of length l with limL→∞ l/L = constant, or even uniform, when l = L. We
will start considering the uniform l = L case.

4.3.1 Uniform driving

In the uniform extensive case, the operator coupled to the driving is the
transverse magnetization Â = M̂L =

∑L
j=1 σ̂

x
j ; we are going to measure the

corresponding intensive observable, the transverse magnetization per site:
m̂ = 1

L

∑L
j=1 σ̂

x
j . Due to the translational invariance, the expectation value

of this observable can be decomposed in Floquet diagonal and off-diagonal
parts, see Eqs. (3.12)-(3.14) where we have to take

B̂k = M̂k = 2(ĉ−k ĉ
†
−k − ĉ†k ĉk) . (4.19)

Eq. (3.14) gives the transient off-diagonal term; it lasts longer the smaller
we take ∆h: in the limit ∆h → 0, it lasts forever and gives rise to a term
out-of-phase with the driving, as we are going to see.

We consider a perturbation around the critical field hc = 1 assuming that
the system is initially in its ground state. LRT provides us an approximation,
linear in ∆h, for the deviation of m(t) from the ground state equilibrium
value meq which, in the thermodynamic limit, is meq = 2/π. Using the
notations of Sec. 4.1, here we have v0 = −∆h/2 and Â = M̂L = Lm̂. We
consider the response of the intensive operator m̂ to the extensive one M̂L,
in such a way that we have meaningful results in the thermodynamic limit.
The response function is given by

χ(t) ≡ − i
~
θ(t)

〈
Ψ0

GS

∣∣ [m̂(t), M̂L

] ∣∣Ψ0
GS

〉
. (4.20)

The ground state at time t = 0 is the one in Eq. (3.5) with h(0) = 1.
As shown in appendix D.2, the spectral function χ′′(ω0) is given, in the
thermodynamic limit L→∞, by

χ′′(ω0) = −sign(ω0) θ(4− |ω0|)
√

1−
(ω0

4

)2
. (4.21)

We notice that the manifestly odd χ′′(ω0) is non-vanishing only for |ω0| < 4,
which means that the driving frequency needs to fall inside the spectrum
of the natural resonance frequencies of the system (see Sec. 3.1) in order
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to have dissipation. The corresponding χ′(ω0) is calculated using Eq. (4.9).
The functions χ′(ω0) and χ′′(ω0) will be shown in Fig. 4.3. Summarizing,
the LRT prediction for the transverse magnetization density is:

mper
LRT(t) = meq −

∆h
2
[
χ′(ω0) sin (ω0t)− χ′′(ω0) cos (ω0t)

]
+ F trans(ω0, t) ,

(4.22)
where the transient part F trans(ω0, t) is given by Eq. (4.10) with v0 =
−(∆h)/2.

We can see in Fig. 4.2 a comparison of the exact response, obtained
by numerical integration of the Bogoliubov-de Gennes equations Eq. (3.8),
with the LRT results. We plot there m(t)−meq versus time in both cases,
considering a resonant frequency ω0 = 0.5 (upper panel) and an off-resonant
one ω0 = 5 (lower panel), both for ∆h = 10−2. While in the off-resonant case
the agreement is perfect at all times, in the resonant one there is a good
agreement (even in the transient) only for the first periods; later on, the
exact evolution and the LRT approximation settle to two different periodic
steady regimes. The most striking feature is that they are out-of-phase
with respect to each other: the LRT result in Eq. (4.22) contains the out-
of-phase cosine term which is absent in the exact response. In the central
panel we see how, in the latter case, the Fourier cosine component on the n-
th period (see Eq. (4.15)) m̃(c)

1 (n) tends to vanish, with oscillations, as n→
∞. Consistently, the extensive energy absorption rate −(∆h/4)ω0Lm̃

(c)
1 (n)

vanishes, in agreement with the results of Sec. 4.2. In the same panel,
we see how the sine component m̃(s)

1 (n) is well predicted by LRT at all
periods and, for n → ∞, tends to −∆h

2 χ
′(ω0). Remarkably, LRT describes

accurately the in-phase component of the response up to infinite time; this
can be seen also in the upper panel of the figure. LRT does not give an
exact prediction of the average m̃0 around which the response oscillates: it
differs from meq by terms linear in ∆h. To summarize, the Floquet theory
predicts an asymptotic response of the form

m(t) t→∞−→ mdiag(t) = m̃0 + m̃
(s)
1 sin(ω0t) + (· · · ) , (4.23)

where m̃(s)
1 = −∆h

2 χ
′(ω0)+o(∆h), m̃0 = meq+O(∆h) and the terms marked

by · · · are of higher order in ∆h. The remarkable absence of the cosine term
is consistent with the saturation of energy absorption. We have verified this
picture for all frequencies, and the results are summarized in Fig. 4.3. The
quick deviation of the absorbed energy from the steadily increasing LRT
prediction is shown in Fig. 4.1, which we have described before. Here we
only comment on the red arrows shown, which mark the time t∗ at which
the exact absorbed energy per site (E0(t) − E(0))/∆h deviates from the
LRT prediction by an amount ∆h2. This time grows larger as ∆h becomes
smaller, and can be quite interesting from the experimental point of view.
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Figure 4.2: Plot of the exact transverse magnetization per spin m(t)−meq

(red solid line) versus t for a small driving field amplitude ∆h = 10−2,
compared to the LRT prediction (blue dotted line). The upper panels refer
to ω0 = 0.5, where χ′′(ω0) 6= 0; the lower ones to ω0 = 5, where χ′′(ω0) =
0. The upper right panel illustrates the disagreement between the exact
m(t) and LRT: the exact m(t) lacks any asymptotically out-of-phase term
proportional to χ′′(ω0) and is slightly shifted downwards. The exact value is,
on the contrary, well reproduced, apart a small downwards shift, by the in-
phase LRT term (proportional to χ′(ω0)) (light blue dashed line). The two
central panels represent the Fourier coefficients m̃(c,s)

1 (n) of the cos (ω0t) and
sin (ω0t) components of m(t) in the time-window [(n− 1)τ, nτ ] for ω0 = 0.5.
While the latter tends, as expected, to its LRT counterpart for n→∞, the
former tends to 0.
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In Fig. 4.4 we plot the dependence on ω0 of the number of periods ω0t
∗/(2π)

at which LRT fails.
To conclude this section we describe how Eq. (4.22) emerges from the Flo-

quet picture, Eqs. (3.12)-(3.14), in the limit of vanishing ∆h. The diagonal
Floquet component gives rise to the term in-phase with the driving, while
the out-of-phase term stems from the off-diagonal component. Whenever
∆h is finite, the Floquet off-diagonal term (Eq. (3.14)) decays asymptoti-
cally, because the integrand is perfectly regular; for ∆h → 0, however, it
develops a singularity giving rise to the cosine term in Eq. (4.8). Therefore
a finite ∆h has a kind of regularizing effect. For a better comparison with
Eq. (3.14), we specialize the integral in Eq. (4.8) to the case of the Ising
model; we change the integration variable to k and obtain

mo.o.p.
LRT (t) = 2ω0∆h −

∫ π

0

dk
π

cos2(k/2)
ω2

0 − (2ε0k)
2

sin(2ε0kt) , (4.24)

where o.o.p. stands for out-of-phase. This formula is the ∆h → 0 limit of
Eq. (3.14); indeed, in this limit the Floquet modes and quasi-energies tend,
respectively, to the unperturbed eigenvectors and eigen-energies folded in
the appropriate Brillouin zone (see Chapt. 2). This limit is not always
regular, indeed we can see in the upper panel of Fig. 4.5 that the quasi-
energies are very close to the unperturbed energies everywhere but at those
values of k corresponding to a resonance in the unperturbed spectrum (ε0k =
−ε0k +ω0): while the unperturbed energies coincide up to a translation of ω0,
the quasi-energies at any finite value of ∆h show an avoided crossing. When
∆h→ 0, this gap closes and a degeneracy in the Floquet spectrum appears:
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µ+
k = ε0k and µ−k = −ε0k coincide up to a translation of ω0. The limit is

singular because, when it is attained, there is a change in the topology of
the bands. Because of this degeneracy, periodic terms in the off-diagonal
Floquet component Eq. (3.14) appear and they give rise to the cosine out-
of-phase component. From the point of view of the Floquet joint density of
states (see Eq. (2.16)), we can see that this function develops a singularity
in the limit of ∆h → 0; in this way the persisting cosine term emerges. To
explicitly show how all this works in our case, by taking due care of the
folding in the first Brillouin zone, we can write the fluctuating part of m(t)
(Eq. (3.14)) as

moff−diag(t) ≈
∫ π

0

dk
π

[
gk(t) cos(2ε0kt) + fk(t) sin(2ε0kt)

]
, (4.25)

where the two τ -periodic quantities gk(t) and fk(t) originate from appro-
priate combinations of the real and imaginary parts of the matrix element
Fk(t) = r+k

∗
r−k
〈
φ+

k (t)
∣∣ m̂k

∣∣φ−k (t)
〉

appearing in Eq. (3.14). Both gk(t) and
fk(t) are regular functions with, at most, a discontinuity across the reso-
nance, while the corresponding LRT integrand fLRT

k = 2ω0∆h cos2(k/2)/[ω2
0−

(2ε0k)
2] is highly singular and requires a principal value prescription. The

lower part of Fig. 4.5 shows the behaviour of fk(t = τ) compared to its LRT
counterpart: quite evidently, there is a finite discontinuity in fk(τ) which
develops, for ∆h→ 0, into the singular denominator (ω0−2ε0k)

−1 appearing
in LRT.

4.3.2 Perturbation acting on a sub-chain of length l < L

We consider now the case of a non-uniform perturbation acting on a sub-
chain of length l, Â = M̂l =

∑l
j=1 σ̂

x
j . From now on we will define m̂j ≡ σ̂x

j .
Thanks to the linearity, the response function

χl(t) = −i~−1θ(t)
〈
Ψ0

GS

∣∣ [M̂l(t), M̂l

] ∣∣Ψ0
GS

〉
is completely determined by the response of the j′-th site to a perturbation
localized on the j-th one χj′j(t) ≡ −i~−1θ(t)〈

[
m̂j′(t), m̂j

]
〉GS0 ; the calcu-

lation of this object is given in appendix D.3. From the other side, the
exact dynamics can be found using the Bogoliubov-de Gennes equations
Eq. (3.24), and the corresponding Floquet analysis detailed in Subsec. 3.3.2.
Let us consider the cosine and sine ω0-Fourier components of 〈Â〉t = 〈M̂L〉t
(see Eq. (4.15)), Ã(c,s)

1 (n). We plot them in Fig. 4.6: on the left panel we
show the results for an extensive driving l = L/2, on the right panel the
results for localized driving (l = 1); in both cases we compare the exact
results with LRT.

We see that there are always finite-size revivals at a time ∼ (L−l). Phys-
ically, at this time, the excitations generated by the driving and propagating
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at the maximum velocity v = 1 reach the boundaries of the chain and the
system discovers to be finite 1. Before this revival (which moves to infinite
time in the thermodynamic limit), we see a different behaviour for the two
cases. While, in both cases, the sine component Ã(s)

1 (n) is well described by
LRT up to the revival time, this does not happen for the cosine component.
The latter agrees with the LRT prediction until the revival sets up only
in the case of localized perturbation; when the perturbation is extensive,
we can see marked deviations after a few periods. If we extrapolate to the
thermodynamic limit, we find fluctuations around 0 which likely vanish for
long times. When the perturbation is extensive, this implies the asymptotic
vanishing of the absorption rate −(∆h/4)ω0Ã

(c)
1 (n), in agreement with the

discussion in Sec. 4.2. When the perturbation is localized, on the contrary,
the energy absorption lasts forever (up to usual finite-size revival time, in
the finite L case). There is no contradiction with the boundedness of the
spectrum, since the energy-per-site absorbed per cycle is order 1/L, hence
becomes infinitesimal in the thermodynamic limit.

We can understand the difference among the two cases by means of an
interesting physical picture. When the perturbation is localized, and we are
in the thermodynamic limit, the driving generates a finite amount of exci-
tations per cycle which have an infinite space where to propagate: so, the
excitation energy-per-site is always infinitesimal and LRT is valid. When
the perturbation is instead extensive, the space where to accommodate the
excitations scales still with L, but an equally extensive number of them is
generated in each cycle. In this way, we see that the energy bound is soon
saturated and the phenomenology does not change if we take the thermo-
dynamic limit L→∞.

To conclude, we can give an interpretation in terms of the Floquet anal-
ysis of Sec. 2.3 of the persisting off-diagonal cosine term appearing when the
perturbation is localized. This term comes from the Floquet off-diagonal
component of the response (see Eq. (2.13)); it persists for a long time because
there are quasi-degenerate pairs of single-particle 2 Floquet quasi-energies µα

associated to the Bogoliubov-de Gennes equations (see Subsec. 3.3.2). The
intra-pair gap is two orders of magnitude smaller than the inter-pair gap and
both the gaps close in the thermodynamic limit as 1/L; the small intra-pair
gaps make the Floquet off-diagonal terms (see Eq. (2.13)) between quasi-
degenerate states essentially periodic (deviations from periodicity cannot be

1Indeed, we assume periodic boundary conditions in the spins, so it would be more
correct to say that at time L− l the excitations propagating towards the two sides reach
each other.

2Here we only consider the dynamics of a single-particle quadratic operator, but – as
we have seen in Sec. 3.3.3 – also for many-body operators only the properties of single-
particle Floquet objects matter, thanks to Wick’s theorem. There is relaxation if the
single-particle Floquet spectrum is a continuum and the asymptotic periodic regime is
fully determined by the single-particle Floquet modes.
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ω0 = 1 and ∆h = 10−2.
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seen before the finite-size revival sets up), they give an additional contribu-
tion to the Floquet diagonal ensemble accounting for the out-of-phase term
in the response 3.

4.4 Discussion and conclusion

In conclusion, in this chapter we have discussed the relaxation to the diago-
nal Floquet ensemble in a quantum many-body system in the limit of small
amplitude driving. In this limit, we have found a strict relation between
the validity of LRT at long times from one side, and energy absorption and
boundedness of the spectrum from the other. Indeed, LRT does not de-
scribe correctly the relaxation to the Floquet diagonal ensemble of some
observables when the energy-per-site spectrum is bounded and the system
undergoes a resonant perturbation with small but finite amplitude. For in-
stance, LRT predicts a steady increase of the energy which is not consistent
with a bounded energy-per-site spectrum and the related finiteness of the
asymptotic Floquet-diagonal value of the energy. Another strictly related
example is the operator coupled to the driving field: here LRT predicts a
term in the response out-of-phase with the driving, giving rise to steady
energy absorption. This contradicts energy relaxation, so this term has to
vanish after a transient, consistently with a bounded energy spectrum.

We have checked these predictions numerically for the driven quantum
Ising chain and observed a different behaviour for an extensive and a local-
ized driving. In the first case, the energy absorbed per period is extensive
and the LRT prediction of steady energy absorption lasts a finite number
of periods. This reflects in the behaviour of the observable coupled to the
driving: its asymptotic Floquet-diagonal value corresponds only to a part of
the LRT prediction, the out-of-phase term responsible for energy absorption
is absent. The latter term persists only in the limit of vanishing amplitude
of the driving (and vanishing energy absorption): it does not come from the
Floquet diagonal ensemble but from off-diagonal terms which, in this limit,
become periodic due to the appearance of degeneracies in the quasi-energy
spectrum. Remarkably, if the perturbation is non-resonant, and there is
no net energy absorption per cycle, the LRT prediction coincides with the
relaxation to the diagonal ensemble.

When the perturbation is localized, LRT is valid up to a time extensive
in the length L of the system; here the energy absorbed per cycle is non-
extensive, and unable to saturate the extensive energy bound. Moreover,
there are gaps in the Floquet spectrum closing up in the thermodynamic
limit: they give rise to essentially periodic Floquet off-diagonal terms which
make the system relax to the LRT prediction before the finite-size revival

3As a matter of fact, the Floquet diagonal ensemble does not give either the exact
in-phase LRT response.
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sets up. Physically, in the case of extensive perturbation, the driving gives
rise (in a non-extensive number of cycles) to a finite number of excitations
per site: the system moves away from its ground state and linearity is lost.
When the perturbation is localized, instead, the driving generates a finite
amount of excitations per cycle which are free to propagate in an infinite
chain, in this way the excitation energy per site stays infinitesimal and the
system is kept in the LRT regime.4

Since we have explicitly verified our conclusions about energy saturation
and LRT only in the case of an integrable model, it is important to discuss
their possible generality. We observe that the relaxation of the energy ab-
sorbed to a finite (although extensive) value relies only on the continuity of
the Floquet spectrum and on the boundedness of the energy-per-site spec-
trum. Therefore, we expect that our argument is valid for any Fermionic
or spin model on a lattice, even if it is not integrable. We see that an
upper bound on the energy spectrum is a purely quantum phenomenon
valid for electrons in periodic lattices (if coupling to other bands can be
neglected) and for models which are low-energy approximations to true sys-
tems. Remarkably, they can be realized experimentally in the framework of
cold atoms. For instance, cold atom gases at low density in one dimension
behave as hard core bosons and their Hamiltonian can be fermionized by
means of a Jordan-Wigner transformation, the result is a Fermionic Hamil-
tonian with a bounded spectrum very similar to the one we have discussed
so far [1]. Another important example is the experimental realization of
one-dimensional strongly interacting driven Fermi gases [141]. With an ap-
propriate optical lattice these systems can give a realization of the Hubbard
model Hamiltonian [142, 143]. It is moreover very important to consider ex-
perimentally the case of fermions with a continuum spectrum where effects
of energy localization have indeed been observed [136].

The importance of a bounded spectrum for the hindered energy absorp-
tion can be exemplified by the case of a driven chain of harmonic oscillators,
a system without any upper limit in the energy per site. We couple the cen-
tral site of this system to a time-periodic electric field E(t) = E0 cos(ω0t)

Ĥ(t) =
L∑

j=1

[
1

2M
P̂ 2

j +
K

2

(
X̂j − X̂j−1

)2
]
−
√
LE(t)X̂0 .

The system is integrable and the frequencies of the single modes are ωk =√
K/M | sin(k/2)|, with k ∈ −[π, π] continuous in the thermodynamic limit.

The dynamics is easily solved by means of the Fourier transform of coordi-
nates and momenta and the integration of their linear Heisenberg equations
of motion. It results that the system is always in the linear response regime

4The only situation we can devise where a localized driving can coexist with a fast
saturation of the energy on the sites near the perturbation is the case of a disordered
Hamiltonian with localized excitations.
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and, in the thermodynamic limit, whenever the perturbation is resonant
with one of the unperturbed frequencies ωk, there is a steady energy in-
crease. This is valid even if the amplitude of E(t) is extensive with L, consis-
tently with the energy-per-site being unbounded from above. This integrable
model is always in the linear response limit, and always in the correspon-
dence limit: the expectations of its observables equal to the corresponding
classical quantities. One could ask about the effect of non-integrabilities
and nonlinearities: in principle it could be possible that they give rise to
a saturation of energy even without a bounded energy spectrum. We are
able to consider the effect of non-integrabilites only in the classical limit: we
have inquired the dynamics of the classical version of the oscillator model
adding to it a cubic coupling term similar to the one considered by Fermi
Pasta and Ulam [53, 52] Vn.i. = β

3
√

L

∑L
j=1 (Xj −Xj−1)

3. What we see is a
faster than linear increase of energy: non-linearity causes a faster energy ab-
sorption confirming that the saturation effect we observe depends strongly
on a bounded energy spectrum. It would be nevertheless interesting to in-
quire the behaviour of energy absorption in driven classical models with an
upper bound in the energy spectrum5, like the mean field Bose-Hubbard
Hamiltonian [144], also in connection with the transition from regularity to
chaos.

Another possible example of unhindered energy increase in models with-
out bounds in energy is the driven integrable chain of bosons discussed in
Ref [145] in connection with the Luttinger liquid approximation to a sys-
tem of interacting bosons. The quantum dynamics of this Bosonic driven
model can be solved by methods not very different from the ones useful for
the Fermionic case we are considering; the resulting equations show para-
metric instability analogous to the Mathieu oscillator [146], even for very
small amplitudes of the driving. At those instabilities the energy seems to
increase exponentially: this is a marked deviation from LRT but evidently
not a saturation.

About the possibility of observing experimentally the energy saturation
we predict, we have already mentioned some models (hard core bosons and
Hubbard model) with a bounded energy spectrum, which can be realized in
cold atomic experiments. Experimentalists, by using laser fields, are able
to engineer artificial periodic potentials (optical lattices) [147] where they
can confine up to N ∼ 104 atoms [13, 11] which obey a coherent unitary
dynamics for a time, dependent on N , of t ∼ 102 s/N [13, 11, 147] 6. In

5These models are mean field versions of quantum models (the mean-field counterpart
for the Lipkin model is given in Eq. (5.16)), there is indeed no contradiction with our
former statement about the bounded spectrum being a purely quantum phenomenon.

6In these atomic systems the only channel towards decoherence is spontaneous emission.
Thanks to the detuning between the laser field and the relevant atomic internal resonance,
the emission rate of incoherent photons is Γeff ∼ 10−2 s−1 [147]; the estimate of the
coherence time t is found imposing that the emission probability is 1 (NΓefft ∼ 1). The
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this way the experimentalists are able to observe in laboratory the long-
time coherent dynamics of driven solid-state Hamiltonian like the Fermi or
Bose Hubbard. These Hamiltonians are low-energy approximations obtained
considering only the lowest energy band of the periodic system, nevertheless
the gap with the next band can be engineered to be much higher than
all the couplings of the effective Hamiltonian [143]: at least in the Fermi
case the low energy Hamiltonian works reasonably also for the driven case,
provided the frequency is of the order of the couplings (like in our numerical
examples). To give an idea of the order of magnitude of the coherence times
in the Hubbard-model experiments, the dynamics of N ∼ 103 atoms can
be kept coherent for a time ∼ 100 ms which, choosing appropriately the
inter-well coupling J , can be made ∼ 300 × 1/J [143]. In conclusion, the
requirement of thermodynamic limit necessary for a continuous spectrum is
fulfilled; moreover the dynamics is coherent for a time long enough to observe
relaxation to the Floquet diagonal ensemble. From the experimental point of
view, the most promising system is the (Fermionic) Hubbard model, indeed
energy saturation has been observed for it in numerical studies based on
t-DMRG [20].

atoms evolving under coherent dynamics get soon entangled, therefore a measure process
over one of them (by means of the spontaneous emission) is enough to break the coherence
of all the system.
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Chapter 5

Thermalization and the
Lipkin model

So far we have explicitly discussed the driven dynamics of the Ising chain: an
integrable system which shows no trace of thermal behaviour in the asymp-
totic periodic regime. The situation is similar to quantum quenches in inte-
grable systems: the observables relax to Floquet-diagonal-ensemble averages
which depend on the initial state and show no thermal properties. Indeed,
a lot of research has been devoted to understanding the properties that a
quantum system has to possess so that its observables relax to thermal equi-
librium after a sudden quench. We will review the most important concepts
in Sec. 5.1

The topic of the present chapter is how thermalization can emerge upon
periodic driving of a fully connected Ising ferromagnet, known as Lipkin
model. This model is rather simple to treat: its dynamics can be reduced to
that of a single large spin Ŝ, with S = N/2, where N is the number of spins.
When N is large, the dynamics is well approximated by that of a quantum
problem with a single degree of freedom and an effective Planck constant
1/N , which therefore becomes classical in the limit N →∞. Without driv-
ing, the classical dynamics is perfectly regular, due to energy conservation.
Upon adding a periodic driving, the properties of the system change consid-
erably: depending on the parameters of the driving, we can observe, in the
classical limit, a regular dynamics, a partly chaotic phase space or even full
ergodicity and mixing. We will find a strict quantum-classical correspon-
dence: when the classical phase space is ergodic, the quantum system shows
quantum chaos and heats up to T = ∞, whatever is the initial state. We
will show in Sec. 5.5 that this is a consequence of the Floquet states obey-
ing what is known as Eigenstate Thermalization Hypothesis (ETH) with
T = ∞. Moreover, we will see how thermalization is associated to the Flo-
quet states being extended in the basis of the unperturbed eigenstates of the
Hamiltonian, while they are localized when the dynamics is regular and no
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thermalization occurs. The periodically kicked version of our model (the
so-called “kicked top”) has been widely studied in literature in connection
to quantum chaos problems [148, 149, 150], but never – as far as we know –
from the point of view of the relation among classical ergodicity, quantum
thermalization and delocalization of Floquet states.

To set the stage for our discussion, introducing the concepts and tools
we will use in our analysis, let us start discussing thermalization and ETH
[58, 59].

5.1 Eigenstate Thermalization Hypothesis

The relaxation of a quantum system towards thermal equilibrium is a fun-
damental question of statistical mechanics, but the interest in this issue has
grown impressively in the last years thanks to the possibility of observing
this phenomenon experimentally with cold atoms in optical lattices.

Let us begin our discussion with a classical physics framework, where
many results are well understood. Classically, thermalization happens in
non-linear chaotic systems whenever they are ergodic and mixing [151].
We restrict ourselves, for clarity, to autonomous systems where energy is
conserved. In this case, ergodicity means that all the trajectories spread
uniformly on the available energy shell, which implies that time averages
coincide with averages on the microcanonical ensemble. Indeed, if X(t) is a
generic trajectory and O(X) an observable, we find

O(X(t)) ≡ lim
T→∞

1
T

∫ T

0
O(X(t))dt =

∫
E dXO(X)∫

E dX
≡ OMC(E) , (5.1)

where E is the microcanonical energy shell, the portion of phase space with
energy in the interval I∆E(E) = [E −∆E/2, E + ∆E/2], where ∆E is a non-
extensive quantity. We can rephrase the equality of the two averages above,
by saying that the 1-dimensional trajectory X(t) fills the 2N−1-dimensional
energy shell (in a weak sense). We stress that this is true independently of
the observable O considered, which we might rephrase (in a mathematically
sloppy way) by writing:

δ [X(t)−X] =
χE(X)∫
E dX

, (5.2)

where χE(X) denotes the characteristic function on the microcanonical en-
ergy shell. Another essential condition for thermalization is mixing: it means
that nearby trajectories separate exponentially in time [152]. This implies
that, if the initial conditions are not specified exactly and a coarse grain-
ing on the phase space is imposed, the observables tend to their thermal
equilibrium value without the necessity of time averages.
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To state the conditions under which ergodicity and mixing occur, we
start considering a perfectly integrable Hamiltonian, where there are as
many integrals of motion in involution 1 as degrees of freedom: The pres-
ence of these constraints confines the trajectories on regular invariant tori
in phase space [46]; these manifolds have dimensionality smaller than the
energy shell, so trajectories are not ergodic 2. Adding to the Hamiltonian a
small-amplitude non-integrable perturbation, only those trajectories start-
ing in a neighborhood of the tori with commensurate frequencies (KAM
theorem [47, 48, 49, 45, 46, 50]) become chaotic (this portion of phase space
is indeed mixing, because nearby trajectories separate with an exponential
rate), but the system as a whole is not ergodic. Indeed the chaotic trajec-
tories are confined to stay in those parts of phase space lying among the
still-conserved tori [45, 46]; they explore only a portion of the phase-space
volume in the energy shell. Only if the amplitude of the perturbation over-
comes a certain threshold, all the phase space becomes chaotic, trajectories
explore uniformly the energy shell and the system is ergodic.

Understanding how these results emerge from quantum mechanics has
attracted the interest of the researchers since the earliest times [153, 154].
Qualitatively, we can say that quantum mechanics provides a natural coarse
graining of phase space, due to the uncertainty principle. Any initial wave
function has a finite width in position and momentum; because of mixing it
gets spread all over the energy shell and the asymptotic expectation value
of the observables coincides with the average on the microcanonical ensem-
ble [59]. To make these considerations more precise, in analogy with the
analysis of classical trajectories in phase space sketched above, one can try
to study the dynamics of states in the Hilbert space. We can try to see if
there is a quantum equivalent of Eq. (5.2), i.e., if the time-averaged density
matrix of the system equals the thermal equilibrium density matrix. One
soon realizes that this cannot be so: whatever the properties of the classi-
cal Hamiltonian, the Schrödinger equation is linear and does not share the
properties of ergodicity and mixing which lead to thermalization in classical
physics. Indeed, if we expand the instantaneous state of the system in the
energy eigenstate basis as |ψ(t)〉 =

∑
nCne−iEnt |Φn〉, we easily realize that

the time average of the density matrix is given by the diagonal ensemble
1Two functions of momenta and coordinates are in involution if their Poisson

bracket [45, 46] vanishes. The condition of the integrals of motion being in involution
with each other is essential for the invariant surfaces being regular tori [45, 46]. Indeed, in
an N -degree-of-freedom autonomous Hamiltonian system there are always 2N constants of
motion [53], if they are not in involution they can be pathologically multivalued, allowing
the trajectories to wander freely over the energy shell.

2If there are N degrees of freedom, the energy shell has dimension 2N − 1 while the
invariant tori are N -dimensional manifolds.
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(see Chapt. 1)

|ψ(t)〉 〈ψ(t)| = ρ̂diag ≡
∑

n

|Cn|2 |Φn〉 〈Φn| . (5.3)

There is no trace of ergodicity in the Hilbert space: this time average de-
pends strongly on the initial conditions of the system, embedded in the
coefficients Cn, and it is in general very different from the density matrix
corresponding to the microcanonical ensemble, which might be written as

ρ̂MC(E) =
1
NE

En∈ I∆E(E)∑
n

|Φn〉 〈Φn| . (5.4)

We clearly see that the microcanonical density matrix corresponds to having
constant |Cn|2 = 1/NE over the whole energy shell, NE =

∑
En∈I∆E

being
the number of states in that shell. We seem to have reached a paradox: if the
observables relax to some steady-state value, the latter has to be given by the
average over the diagonal ensemble in Eq. (5.3); if there is thermalization,
such a steady-state value must coincide with the microcanonical average
〈O〉MC(E) = Tr

[
Ô ρ̂MC(E)

]
associated to the density matrix in Eq. (5.4).

To solve this apparent paradox, and understand the mechanism behind
thermalization, one has to look at the properties of the observables and their
expectation values. Indeed, the Heisenberg equations governing the observ-
ables dynamics resemble more closely the non-linear classical Hamiltonian
equations from which chaos and thermalization arise [68]. What has been
found is that, in many cases, thermalization of the observables occurs at the
level of their expectation values on each single eigenstate: given an energy
eigenstate |Φn〉 with energy En, the expectation value of an observable Ô
on it equals the microcanonical average on the corresponding energy shell:

Onn ≡ 〈Φn| Ô |Φn〉 = 〈O〉MC(En) . (5.5)

This assumption is called Eigenstate Thermalization Hypothesis (ETH) and
implies that, by taking an initial state with overlaps Cn restricted to a narrow
energy shell [E −∆E/2, E + ∆E/2], i.e., such that

∑
En∈I∆E

|Cn|2 = 1, the
time average of the observable equals its microcanonical average:

〈O〉t = 〈ψ(t)| Ô |ψ(t)〉 =
En∈ I∆E(E)∑

n

|Cn|2 Onn ' 〈O〉MC(E) . (5.6)

This is the quantum equivalent of the classical expression Eq. (5.1). More-
over, as we have sketched before, because of quantum fluctuations and mix-
ing, we expect that the 〈ψ(t)| Ô |ψ(t)〉 will stay most of the time close to
the thermal average, with small fluctuations which vanish in the thermo-
dynamic limit. The heuristic reason for this vanishing of time-fluctuations
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is that the wave function gets spread, by mixing, all over the energy shell.
Time fluctuations 3 of the expectation around the thermal average originate
from the off-diagonal terms Omn which we show in Eq. (2.7) and reproduce
here for reader’s convenience

(δOtime)2 =
[
〈Ô〉2t − 〈O〉t

2
]

=
∑
n6=m

|Cn|2|Onm|2|Cm|2 .

If we assume that the off-diagonal matrix elements Onm fluctuate little with
m and n around their typical value Otyp

mn, we can use the ETH assumption
to show that they are small. This can be easily done by considering, for
each eigenstate |Φn〉, the expectation value on this state of the quantum
fluctuation operator (Ô −Onn)2. Such expectation, because of ETH, has to
be equal to its microcanonical value; it can be argued to be of order 1 if Ô
is a local operator [96] or, at most, order N if Ô is an extensive operator
sum of local objects. At worst we find

N ∼ 〈Φn| (Ô − Onn)2 |Φn〉 =
∑
n6=m

|Omn|2 ' eS(E)|Otyp
mn|2 (5.7)

where S(E) = logNE is the entropy on the energy shell, which is linear
in the number of degrees of freedom N . Therefore, substituting |Otyp

mn|2 to
|Omn|2 we can give an estimate of the infinite time fluctuations as δOtime ∼√
Ne−S(E)/2. In many-body systems, since the entropy is extensive, this

quantity is usually exponentially small in the number of degrees of free-
dom N ; therefore, ETH implies the relaxation of the expectations of the
observables to the thermal average.

What we have still to verify is that fluctuations around this average
coincide with thermal fluctuations: the general statistical mechanics argu-
ments predict thermal fluctuations scaling like N−1/2 with respect to the
thermal average [94]. The exponentially small time-fluctuations are indeed
not enough, we need to consider also the contribution of quantum fluctua-
tions 〈[Ô − 〈Ô〉t]2〉t which, analytically in the general semiclassical chaotic
case [67] and by means of numerical experiments on an ergodic hard-core
bosons model [26], have been shown to behave in the right way.

3Time fluctuations should not be confused with the actual quantum fluctuations which,
for each t, give an uncertainty

δO2
t = 〈[Ô − 〈Ô〉t]2〉t .

With the usual assumption of non-degeneracy, one can estimate the time-average of such
quantum fluctuations to be given by the diagonal average:

δO2
t '

X
n

|Cn|2
"
[Onn − 〈Ô〉t]2 +

6=nX
m

|Omn|2
#
.
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Classical thermalization depends on ergodicity and mixing of the dynam-
ics; in the same way, the validity of ETH is strictly connected to the system
showing “quantum chaos”. In this regime, the Hamiltonian shows the spec-
tral properties of a random matrix, and its eigenstates also show a random
behaviour [155, 156, 149, 59, 157]; the physical observables behave, in the
basis of the eigenstates, like pseudo-random matrices [68]. To understand
better how the random properties of the eigenstates give rise to thermaliza-
tion, we focus on the seminal papers on the topic of ETH [58, 59]. Here,
the authors consider an integrable Hamiltonian to which an integrability-
breaking term strong enough for ergodicity is added. In Ref. [58] this term is
a banded random matrix, in Ref. [59] the author considers a gas of free par-
ticles to which a strong repulsive core is added. In both cases the perturbed
Hamiltonian shows quantum chaos; as a consequence, the new eigenstates
are random superpositions of a large number of the old ones taken on the
appropriate energy shell: Because of this mixing, each eigenstate “is equiva-
lent” to the microcanonical ensemble of the unperturbed Hamiltonian. Only
in many-body systems [58] these random superpositions can involve a huge
amount of states and the equivalence with the microcanonical ensemble is
possible. We can see this, for instance, in the argument leading to the small
time-fluctuations around the microcanonical average. The eigenstates being
random superpositions of many objects, each off-diagonal term Omn behaves
like the sum of a huge number of random variables; the law of large numbers
implies small fluctuations inm and n and the possibility to replace it with its
typical value. A clear example of the random superposition of many states
we are discussing is given in Ref. [59]. Here the Berry conjecture is valid:
the high-energy eigenstates are random superpositions of products of plane
waves with the same energy but different directions of the total momentum.
The new eigenstates are indeed delocalized in the basis of the unperturbed
ones (the products of plane waves) and show a diffusive behaviour in phase
space. Also in Ref. [58] an analogous delocalization phenomenon can be
seen.

Delocalization of eigenstates is an important point which appears fre-
quently in recent works where ETH is shown numerically to happen in quan-
tum many-body systems undergoing a sudden quench [31, 55, 30, 56, 158].
Like the classical case we have discussed before, one adds to the Hamilto-
nian an integrability-breaking perturbation and looks if the system thermal-
izes after a quench. Also in this case, one tries to understand if there is a
threshold in the amplitude of the perturbation beyond which thermalization
occurs. It is very interesting to study how the onset of thermalization is re-
lated to the properties of delocalization of the eigenstates in the basis of the
unperturbed ones [31, 30] or another basis of simple states [55, 158]. There
is a large numerical evidence that, whenever the thermalization threshold
is overcome, the eigenstates move from localized to extended. For instance,
in Ref. [55] the onset of thermalization in an interacting fermionic chain
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corresponds to the energy-eigenstates becoming extended in the basis of
the momentum eigenstates; in Ref. [30], the same happens for a spin chain
in the basis of the quasi-particle eigenstates. This effect is reminiscent of
a many-body localization transition [159, 30, 160]. Noteworthy, no external
disorder is needed for many-body localization to occur: the intrinsic random
properties of a quantum chaotic Hamiltonian are enough.

The ETH we have described has been shown to be the mechanism behind
quantum thermalization in many situations, by means of analytical [58, 59,
67, 95, 110] and numerical [26, 55, 30, 69, 161, 31, 158, 162] tools; these
works refer to non-equilibrium states evolving under static Hamiltonians, in
the next section we will see what happens when the Hamiltonian is instead
time-periodic.

5.2 Periodic driving: ETH at T = ∞.

All the discussion concerning ETH can be generalized to the case of a pe-
riodic driving. In this case, we no longer have the constraint of energy
conservation; from a classical perspective, if the system is ergodic and mix-
ing and the phase space is bounded, we expect that the trajectories explore
uniformly all this space: nothing forces them to be confined to some energy
shell. The equivalent in this case of the microcanonical ensemble is therefore
a distribution uniform in the phase space, corresponding to the condition of
infinite temperature and maximum entropy. As in the autonomous case, ob-
servables evaluated over single classical trajectories do not converge to their
infinite temperature values, which are recovered only after a time-average,
similarly to Eq. (5.1). To see relaxation, therefore, we need to assume a
coarse graining in the initial conditions. In the quantum case, as already
discussed, such a coarse graining is naturally provided by the quantum fluc-
tuations, so here we indeed expect relaxation to the infinite-temperature
values.

Such expectations are consistent with the numerical results of Ref. [70].
By means of exact diagonalization, the authors apply a periodic driving to
a system (a disordered spin chain) whose unperturbed eigenstates show a
transition, in the basis of the local-spin-operators eigenstates, from localized
to ergodic i.e. obeying ETH [158]. The driving field couples only to the
central site of the system, and provides a stepwise-constant periodic driving:
the system evolves alternatively under the unperturbed Hamiltonian and the
perturbation. 4 When the system which undergoes the driving is inside the
localized phase, the energy absorption saturates well below the T = ∞
value, and the Floquet states are localized in the basis of the unperturbed
eigenstates. On the contrary, when the authors apply the periodic driving to

4This is equivalent to considering a perturbation of the “kicking” type: a periodic
sequence of delta peaks.
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the system in the ergodic phase, they observe that it heats up to T = ∞, and
connect this fact with the Floquet states being extended in the basis of the
unperturbed eigenstates. Indeed, in Ref. [71], it has been shown explicitly
that, in the latter case, the Floquet states obey ETH at T = ∞. At variance
with the quantum quench, here there is no energy conservation, and one sees
that each Floquet state is a random superposition of all the eigenstates of the
unperturbed Hamiltonian, not restricted to an energy shell; the expectation
value of an observable on any Floquet state (or, equivalently, Floquet mode)
corresponds to the infinite temperature value:

〈Ψα(t)| Ô |Ψα(t)〉 = 〈Φα(t)| Ô |Φα(t)〉 = 〈O〉T=∞ ≡ 1
N

Tr
[
Ô
]
, (5.8)

whereN is the dimension of the Hilbert space 5. This T = ∞ ETH condition
for the Floquet expectation values implies immediately, with an argument
similar to that of Eq. (5.6), that the time averages of the observables coincide
with their T = ∞ value. To show this, simply expand the state of the system
in the many-body Floquet basis |ψ(t)〉 =

∑
αRαe−i µαt |Φα(t)〉; if there are

no degeneracies (this is often case in quantum chaotic problems) Eq. (5.8)
immediately implies

〈ψ(t)| Ô |ψ(t)〉 = 〈O〉T=∞ =
1
N

Tr
[
Ô
]
. (5.9)

We can see here that, because of ETH, the stroboscopic and the instanta-
neous time averages give the same result. That is so because, at any time
t, the expectations of the observables over the Floquet-diagonal ensemble
Eq. (2.14) are equal to the infinite temperature values. Moreover, using an
argument similar to the one following Eq. (5.7), we can see that ETH implies
small Floquet off-diagonal elements and then small time fluctuations δOtime

of the observables which are indeed vanishing in the thermodynamic limit.
In the following, we will illustrate these ideas with the explicit example

of the Lipkin model undergoing a periodic driving.

5.3 The Lipkin model: Introduction

We devote this Chapter to studying the periodically driven Lipkin model [163],
which is the fully-connected version of the quantum Ising model in trans-
verse field discussed in Chap. 3. In the limit in which the number of spins N
tends to infinity, the Lipkin model coincides with the mean field version of
the Ising model, and correctly predicts some noteworthy aspects of its equi-
librium physics, like the second-order ferromagnet-to-paramagnet quantum
phase transition occurring as a function of the transverse field. The co-
herent quantum dynamics of the Lipkin model under a periodic driving is

5The infinite temperature density matrix, whatever is the Hamiltonian, is always given
by 1/N times the identity.

80



nevertheless very different from that of the one-dimensional quantum Ising
chain: in Chap. 3 we have seen, indeed, that, due to integrability, the sys-
tem reaches always a steady periodic regime very different from any thermal
behaviour. On the contrary, we will see that, in some range of parameters,
the periodically-driven Lipkin model obeys ETH and then thermalizes to
infinite temperature; this corresponds to a chaotic classical dynamics for
N → ∞. The discussion about the dynamics given in this section follows
the presentations of Refs. [164, 165, 166]. We write the Hamiltonian of the
model with N sites in the form

Ĥ(t) = −2J
N

N∑
i,j

Ŝz
i Ŝ

z
j − 2Γ(t)

N∑
i

Ŝx
i . (5.10)

where Ŝi are 1/2-spins taken in their dimensionless form Ŝi → Ŝi/~. In the
present Chapter, we set ~ = 1. We define the total spin operator Ŝ =

∑
i Ŝi;

in terms of its components the Hamiltonian can be written as

Ĥ(t) = −2J
N
Ŝ2

z − 2Γ(t)Ŝx . (5.11)

If we define Hj the two-dimensional Hilbert space associated to a 1/2-spin
Ŝj , the total Hilbert space is the tensor product of these spaces H =

⊗
j Hj .

Thanks to the theory of composition of angular momenta [167], we can
decompose this Hilbert space into the direct sum of Hilbert spaces H(S),
the operator Ŝ2 restricted to each of them is a multiple of the identity with
eigenvalue S(S + 1). Given an integer or half odd S ∈ [0, N/2], there are

gN (S) =
(

N
N
2 + S

)
−
(

N
N
2 + S + 1

)
(5.12)

different subspaces H(S) with this eigenvalue (see Ref. [165] and, for a proof
based on the induction principle of this formula, appendix E.1). Because
the Hamiltonian commutes at all times with the operator Ŝ2, it is block
diagonal in the subspaces H(S) [167]. Fixing a time t, the Hamiltonian
can be diagonalized in each subspace giving 2S + 1 eigenvalues, the discus-
sion above implies that each of these eigenvalues is gN (S) times degenerate.
Because of the decomposition in independent blocks not mixed by the dy-
namics, we can study the evolution of the system restricting to one of these
subspaces H(S). Considering here the eigenstates |S, M〉 of the operator
Ŝz (−S ≤ M ≤ S), we expand in this basis the state |ψ(t)〉 of the system
restricted to this subspace

|ψ(t)〉 =
S∑

M=−S

ψM (t)|S, M〉 .
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Substituting this expansion in the Schrödinger equation i∂t|ψ(t)〉 = Ĥ(t)|ψ(t)〉
and projecting on 〈S, M |, we find that the amplitudes ψM (t) obey the equa-
tion

i
∂

∂t
ψM = −2J

N
M2ψM − Γ(t)

∑
α=±1

√
S(S + 1)−M(M + α) ψM+α . (5.13)

This equation, easy to implement numerically, reduces in the limit N →∞
to a single-particle dynamics. To see this point, we introduce the variable
m = 2M/N , we define k such that S = N

2 (1− 2k) and rewrite Eq. (5.13) as

i

(
1
N

)
∂

∂t
ψm(t) = −J

2
m2ψm(t)

− Γ(t)
2

∑
α=±1

√
(1− 2k)2 −m2 +

2
N

(1− αm) ψm+ 2
N

α(t) .

We then treat perturbatively the square root, forgetting terms order 1/N

and higher, and setting
√

(1− 2k)2 −m2 + 2
N (1− αm) →

√
(1− 2k)2 −m2.

Both m and k become continuous variables for N → ∞, with k ∈ [0, 1/2]
and m ∈ [−(1− 2k), (1− 2k)]. On the contrary, we treat the wave-function
non-perturbatively, by introducing the translation operator in m, ea∂m , such
that ea∂mψm(t) = ψm+a(t), obtaining:

i

(
1
N

)
∂

∂t
ψm(t) = −J

2
m2ψm(t) (5.14)

− Γ(t)
√

(1− 2k)2 −m2 cos
(
−i 2
N
∂m

)
ψm(t) .

As anticipated, this is the Schrödinger equation of a single particle in one-
dimension, with an effective Planck’s constant ~eff = 1

N : the limit N → ∞
coincides with the semiclassical limit. In Eq. (5.14) m plays the role of
a coordinate Q̂, while the operator − i

N ∂m plays the role of a momentum
P̂ : we can see this by evaluating the commutator

[
m, − i

N ∂m

]
= i~eff . In

the limit of large N and small ~eff we can apply the semiclassical WKB
approximation [164, 168] and explore the dynamics of wave-packets. We
can choose a minimum uncertainty wave-packet, with uncertainties in both
P and Q scaling like 1/

√
N . One can show [164] that, in the limit of large

N , the expectation values of P and Q on the wave-packet (which in this
limit become classical values) obey the Hamilton’s equations{

Q̇(t) = ∂PH(Q,P, t)
Ṗ (t) = −∂QH(Q,P, t)

(5.15)

with an Hamiltonian given by the classical version of Eq. (5.14)

H(Q,P, t) = −J
2
Q2 − Γ(t)

√
(1− 2k)2 −Q2 cos (2P ) , (5.16)
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and the restriction Q ∈ [−(1− 2k), (1− 2k)]. These formulae allow us to
discuss the equilibrium properties of the model at fixed Γ in the limit of
large N . In this limit, the eigenstates are given by the WKB theory, in
particular the ground state is a minimum uncertainty wave packet centred in
a minimum of the classical Hamiltonian. 6 For fixed Γ, we see, evaluating the
minimum of Eq. (5.15), that the system shows a second order quantum phase
transition (QPT) at Γ/J = 1, with order parameter Q = limN→∞

2
N 〈Ŝz〉GS.

Indeed, when Γ/J > 1 the minimum is in (Q = 0, P = 0) and the system is
in the paramagnetic phase. Instead, when Γ/J < 1 there are two degenerate
minima with P = 0 but non-vanishing Q

Q± = ±

√
(1− 2k)2 −

(
Γ
J

)2

, (5.17)

corresponding to a broken-symmetry ferromagnetic phase. As usual in pres-
ence of symmetry breaking, although the classical Hamiltonian in Eq. (5.15)
is symmetric under the inversion of Q — a symmetry that mirrors the Z2-
invariance of the quantum Hamiltonian in Eq. (5.10) e−iπ bSxĤeiπ bSx = Ĥ —
the ground state is not symmetric: there are rather two degenerate ground
states transformed into each other by the symmetry. 7 The N →∞ ground
state value of the energy is

EGS =

{
−Γ
√

1− 2k2 for Γ/J < 1
−Γ2

2J −
J
2 (1− 2k2) for Γ/J > 1

.

As we see, the absolute minimum of the energy occurs for k = 0, i.e. in the
non-degenerate subspace with maximum spin S = N/2. From now on we
will restrict to such a maximum spin subspace. The classical dynamics of
the observables is obtained for N → ∞ by solving numerically the Hamil-
ton’s equations Eq. (5.15). When Γ is fixed, due to energy conservation,
the Hamilton’s equations Eq. (5.15) are integrable: the solutions are closed
periodic orbits, which in (Q,P ) phase space coincide with the curves of fixed
energies H(Q,P ) = E. In Fig. 5.1 we give two examples of phase portraits

6To see this [164], we can expand Eq. (5.14) up to second order in 1/N and then expand
the resulting equation inm around a minimum of the classical Hamiltonian (we can do that
because we are interested in low-energy behaviour). What we obtain is the Schrödinger
equation of an harmonic oscillator; the ground state is a wave-packet centred in the chosen

minimum with coordinate and momentum uncertainties scaling like ∼
√

~eff =
q

1
N

.
7As usual, for any finite N the double-degeneracy of the ground state is lifted, since the

wave-packets centred in the two minima Q± have an exponentially small overlap ∼ e−N .
The ground state is the symmetric combination of the two wave-packets, and is separated
by an exponentially small gap from the first excited state, which is the anti-symmetric
combination of the two. In the limit of N → ∞ there is no more overlap among the
wave-packets, which become degenerate eigenstates localized in each minimum: they are

not eigenstates of eiπ bSx , but this operator maps each one into the other.
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Figure 5.1: (Left panel) Example of phase portrait in the paramagnetic
phase (Γ/J = 3) for the Hamiltonian Eq. (5.15). (Right panel) Phase por-
trait in the ferromagnetic phase (Γ/J = 0.25).

for a paramagnetic (Γ/J = 3) and a ferromagnetic (Γ/J = 0.25) case. In
both cases the phase space is bounded in the Q-coordinate (Q ∈ [−1, 1]) and
cyclic in the P coordinate (P+π coincides with P ). In the paramagnetic case
we recognize orbits around the minimum (Q = 0, P = 0) and the maximum
(Q = 0, P = π/2). In the ferromagnetic one there are orbits around the
two symmetric minima in (Q = Q±, P = 0) which are separated from orbits
around the maximum at (Q = 0, P = π/2) by a separatrix curve: phase
points on this trajectory reach the saddle point of the Hamiltonian (Q = 0,
P = 0) in an infinite time. For numerical implementations, when Γ(t) de-
pends on time, it is better to transform Eq. 5.15 into the equations for the
three reduced components of the spin mα = 〈Ŝα〉t/S with α = x, y, z. Using
the relations mz = Q, mx =

√
1−Q2 cos(2P ) and my = −

√
1−Q2 sin(2P )

we find 
ṁx(t) = +2J my(t) mz(t)
ṁy(t) = −2J mx(t) mz(t) + 2Γ(t) mz(t)
ṁz(t) = −2Γ(t) my(t)

. (5.18)

We see that these equations conserve the modulus squared (m ·m = 1) of
the vector m = (mx,my,mz), and this fact mirrors the commutation of the
quantum Hamiltonian with Ŝ2. Moreover, we notice that these equations
are obtained from the Heisenberg equations of motion for the reduced spin
operators m̂α = 2Ŝα/N by evaluating their expectation values and neglect-
ing quantum correlations. This is possible in the limit of large N , because
the commutator among these operators tends to vanish

[m̂α, m̂β] = i
2
N
εαβγm̂γ , (5.19)

where εαβγ is the completely antisymmetric tensor. 8

8We mention that the classical equations Eq. (5.15) can be obtained also using spin-
coherent states [169]: by their use the amplitude 〈Ψf | Û(t, 0) |Ψi〉 (where Û(t, 0) =

84



Before moving to the analysis of the dynamics in the periodically driven
case, we mention that there are many studies on fully-connected driven spin
systems, both for the case of a sudden quench of the transverse field [164]
and for a slow annealing of the transverse field [171]. In the sudden quench
case, the system is taken in the ground state at Γi, and the transverse field is
suddenly changed from Γi to Γf ; interestingly, a dynamical phase transition
if found [164] to occur at Γf = Γc = (Γi + 1)/2. Indeed, at Γc the phase
point associated to the initial ground state energy (which is conserved) lays
right on the separatrix of the final Hamiltonian: for Γf > Γc it orbits around
the maximum with a vanishing time-averaged Q, while for Γf < Γc it orbits
around one of the two ferromagnetic minima at (Q±, P = 0) and the time-
averaged order parameter is non-vanishing. In the case of a slow annealing,
the interest focuses on the deviations from adiabaticity, in the context of
studies on Quantum Annealing [172, 173, 174], alias Adiabatic Quantum
Computation [77].

To conclude this section, we observe that the Hamiltonian in Eq. (5.11)
reduces to the so-called kicked top model [148] when Γ(t) is a time-periodic
sequence of delta peaks. Although some of the results we have obtained
show similarities with those of the kicked top — the standard “quantum
chaos” connections between the regularity of classical dynamics and the
characteristics of the Floquet spectral spacing distributions — our point
of view will be rather different from that of Ref. [148], because we will
take a many-body perspective specifically addressing questions related to
the steady state of observables expectations, and the corresponding thermal
properties.
←−
> exp

“
−i
R t

0
bH(t′)dt′

”
is the time-evolution operator) can be written as a Feynman path

integral [170]; we obtain the classical equations performing a saddle point integration,
legitimate in the limit of large N . For a spin S, coherent states are wave-packets of mini-
mum uncertainty (∼

p
1/S) in the spin components centred around a certain value of the

classical canonical variables P and Q. Introducing the polar coordinates φ = −2P and
θ = arccosQ, they are obtained by applying to the eigenstate |S, −S〉 of bSz a rotation of
angle θ around the axis n̂ =

`
sinφ − cosφ 0

´
. The amplitudes of the coherent state

|θ, φ〉 in the basis of the eigenstates of the operator bSz are

〈S,M |θ, φ〉 =

vuut 2S

S +M

!»
sin

θ

2

–S−M »
cos

θ

2

–S+M

ei(S−M)φ .

We find convenient also to express this formula directly in terms of the values of the
canonical coordinates Q and P where the state is centred

〈S,M |Q,P 〉 =

vuut 2S

S +M

!»
1

2

p
1−Q2

–S »r
1−Q
1 +Q

–M

e−2i(S−M)P . (5.20)

Equations Eq. (5.15) can be obtained also taking a coherent state |θ(t), φ(t)〉 as variational

Ansatz and minimizing the resulting action S =
R t

0
〈θ(t′), φ(t′)| i∂t′− bH(t′) |θ(t′), φ(t′)〉dt′.

85



5.4 Classical and quantum chaos under periodic
driving.

We consider the Lipkin model in Eq. (5.11) undergoing a periodic modula-
tion of the transverse field

Γ(t) = Γ0 +A sin (ω0t+ ϕ0) . (5.21)

From now on we will assume J = 1. As we have seen, we can restrict our-
selves to the subspace H(S) with S = N/2, which is N +1-dimensional; the
Schrödinger’s equation consists of a system of N +1 linear differential equa-
tions (Eq. (5.13) with k = 0), which can be easily integrated numerically on
a computer; this is a great simplification, considering that the total Hilbert
space is 2N -dimensional. Thanks to the Floquet theory (see Chap. 2), if we
solve the dynamics for the first period of the driving, we can find the evolu-
tion at all times. In particular, by diagonalizing the evolution operator over
a period Û(τ, 0), we can find the N +1 Floquet quasi-energies µα, 9 and the
corresponding Floquet modes |Φα(t)〉. Moreover, from Û(τ, 0) we have easy
access to the subsequent stroboscopic dynamics, since Û(nτ, 0) = [Û(τ, 0)]n.
In all the remaining discussion, we take the quasi-energies inside the first
Brillouin zone µα ∈ [−ω0/2, ω0/2].

We can compare the results of the classical dynamics for N → ∞ with
those of a quantum dynamics for N finite but large. The latter comes from
the solution of linear differential equations, while the former results from
the non-linear Hamilton’s Eqs. (5.15). Without driving, as we have seen,
these equations are integrable and give rise to a perfectly regular dynamics;
in presence of a periodic driving, on the contrary, energy is no longer con-
served, and there can be chaos [45]. In the following, we plan to investigate
the relationship among classical chaos and the properties of the many-body
quantum dynamics given by the Schrödinger equation. For systems with
few degrees of freedom, this issue has been widely discussed, giving rise to
a plethora of signatures of chaos in the quantum domain [156, 149]. For
many-body systems, like the one we are studying, it is more difficult to
discuss directly the correspondence with the classical case, but one can use
the tools developed in the context of systems with few degrees of freedom
to understand if there is integrability or chaos [175, 176, 177]. Here we are
rather lucky, because our many-body system, when the number of degrees
of freedom is large, can be mapped onto a system with a single degree of
freedom: there is a strict analogy to the large-spin kicked top model [148],
with the difference that the periodic driving we apply here is smooth.

In Fig. 5.2 we consider different regimes of the dynamics, comparing two
qualitative measures of chaos. In the left panels we show some Poincaré

9We omit the bar over the µα because there is no ambiguity here with single-particle
quasi-energies
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sections of the classical dynamics, while in the right panels we can see the
normalized Floquet level spacing distributions for the corresponding quan-
tum cases. The Poincaré section [45] is a plot, in the phase plane (Q,P ),
of the solution (Q(t), P (t)) of Eq. (5.15) taken at stroboscopic times t = nτ
(τ = 2π/ω0) using different initial conditions. We see in the upper-left panel
that driving the system within the paramagnetic phase keeps the dynamics
mostly regular; on the contrary (centre and lower-left panel) driving the sys-
tem inside the ferromagnetic phase gives rise to wide regions of chaotic phase
space, even if the driving amplitude is small. The reason is that, when the
ferromagnetic Hamiltonian is static, there is a separatrix which is very sensi-
tive to the smallest integrability breaking [45]. If we increase the amplitude
of the driving, we move from a partly chaotic phase space (central-left panel)
to a fully ergodic dynamics where all the phase space shows chaos (lower-
left panel). On the right panels, we show the corresponding Floquet level
spacing distributions for N = 800. They are the probability distributions of
the variables sα = ρ(µα) · (µα+1−µα), where ρ(ω) = 〈

∑N
α=1 δ(ω−µα)〉∆µ is

the mean Floquet density of states 10 (see Ref. [156] for a discussion in the
autonomous case). We know that the level spacing distribution P (s) of the
eigenvalues of a random matrix Hamiltonian (in the limit of large matrix)
assumes a universal form depending only on the symmetry properties of the
Hamiltonian under time-reversal [178]. Many works [155, 148] have shown
that, when the classical dynamics is ergodic, the levels (eigen-energies in the
autonomous case, Floquet quasi-energies in the driven one) corresponding
to states in the same symmetry-class (if the Hamiltonian has some sym-
metry) show a spacing statistics similar to that of a random matrix with
appropriate time-reversal symmetry. In our case, the Floquet levels fall in
two symmetry classes, according with the corresponding Floquet state being
an eigenstate of eigenvalue +1 or −1 of the operator eiπ bSx under which the
Hamiltonian is symmetric [148]. We evaluate the spacing distribution for
each class and then average the distributions. When the dynamics is regular
(upper-right panel) we see that P (s) is well described by a Poisson distribu-
tion PP (s) = e−s, a result in agreement with the predictions of Ref. [179];
the agreement becomes better for larger N . On the contrary, in the er-
godic case (lower-right panel), up to fluctuations vanishing for N → ∞,
P (s) is well described by an “orthogonal” β = 1 Wigner-Dyson distribution
PWD(s) = π

2 s exp
(
−π

4 s
2
)

[149, 178]. This distribution describes the level
spacings of both a Gaussian Orthogonal Ensemble (GOE) random matrix
Hamiltonian, and a Circular Orthogonal Ensemble (COE) random Floquet
operator, even under time-reversal. This result is interesting in connection

10This is the Floquet density of states ρ(ω) =
PN

α=1 δ(ω − µα) smoothed in ω by a
coarse graining over a scale ∆µ, such that ω0/N < ∆µ � ω0. This is a mesoscopic
scale, much smaller than the width of the Floquet Brillouin zone but nevertheless larger
that the average distance between Floquet levels; in this way all traces of singular deltas
corresponding to individual levels and level clustering are obliterated.
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Figure 5.2: On the left we plot the Poincaré sections and on the right the
corresponding Floquet level spacing statistics P (s) for different parameters
of the driving in Eq. (5.21). In all the plots we choose ω0 = 2, ϕ0 = 0. In
the upper panel the driving is restricted to the paramagnetic phase (Γ0 = 3,
A = 0.5), the classical dynamics is regular and the P (s) is Poissonian. In the
lower panel the driving is restricted to the ferromagnetic case (Γ0 = 0.25,
A = 0.45), the classical dynamics is ergodic and the P (s) is Wigner-Dyson.
In the middle panel (Γ0 = 0.25, A = 0.05), the phase space is mixed, regular
and chaotic, and the P (s) is intermediate among the two mentioned above.

88



with the convergence towards a periodic steady regime: if the Floquet levels
behave like the eigenvalues of a random matrix, they become a continuum in
the limit N →∞. In the partially chaotic case, the distribution is interme-
diate among the two introduced before, and is well fitted by the predictions
of Ref. [180]. These results on the relationship between regularity properties
of classical dynamics and level spacing statistics are very similar to those
found for the closely related kicked top model [148].

We will see in the next section how the random properties of the quasi-
energies reflect in the behaviour of the Floquet states. Indeed, the quasi-
energies µα and the Floquet states |Ψα(0)〉 are, respectively, the eigenvalues
and eigenstates of the Hermitian matrix ĤF defined by Û(τ, 0) ≡ e−iτĤF .
The Wigner-Dyson distribution of the Floquet level spacings tells us that
ĤF is a full random matrix whose eigenstates are superpositions of all the
eigenstates of the Hamiltonian Ĥ(0). The expectation of an observable
over each Floquet-state, therefore, is equivalent to a uniform average of
the corresponding expectations over the energy eigenstates: This equals the
T = ∞ value, as we will see better in the next section.

5.5 Asymptotic regime, thermalization and delo-
calization in energy space

In this section we discuss how the quantum chaos shown by the Floquet
quasi-energies P (s) reflects in the evolution of the observables and the prop-
erties of the Floquet states. We start by comparing the numerical results
for the quantum dynamics of two paradigmatic cases: 1) driving inside
the paramagnetic phase, whose classical limit is regular (upper panel of
Fig. 5.2) and 2) driving inside the ferromagnetic phase, whose classical
limit is ergodic (lower panel of Fig. 5.2). We are in principle interested
in the thermodynamic limit N → ∞: indeed, only for N → ∞ the conver-
gence of the observables to a steady periodic regime is possible. Of course
this limit is unattainable numerically: we will consider finite-size systems
and we will discuss how the fluctuations scaling with N . To compare dif-
ferent values of N , we consider intensive observables, like the energy per
site e(t) = 〈ψ(t)| Ĥ(t) |ψ(t)〉 /N and the longitudinal magnetization per site
mz(t) = 2 〈ψ(t)| Ŝz |ψ(t)〉 /N , which is the order parameter of the static
quantum phase transition. To understand the convergence to a steady
regime and the thermal behaviour of these observables, we consider their
infinite stroboscopic-time averages and fluctuations. More explicitly, follow-
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ing Eqs. (2.18) and (2.19), we have

e(kτ) = lim
n→∞

1
n

n∑
k=1

e(kτ) =
∑
α

|Rα|2eαα(0) (5.22)

(δestrobo)2 = e2(kτ)−
(
e(kτ)

)2
=
∑
α 6=β

|Rα|2eαβ(0)|Rβ|2 , (5.23)

where we define eαβ(0) = 〈Φα(0)| Ĥ(0) |Φβ(0)〉 /N . (Similar equations can
be written formz(t).) Here we substitute ραβ(0) withR∗αRβ, because we take
a pure initial state |ψ0〉 with overlaps Rα = 〈Φα(0) |ψ0〉. We still have the
freedom to choose the initial state |ψ0〉. To make meaningful comparisons
between different values ofN , we have to choose an initial state changing in a
definite way with N . For instance, we can choose coherent states Eq. (5.20)
centred in a fixed point in phase space or, in the ferromagnetic case, the
symmetry-broken ground state; in both cases we have a wave-packet with
a fixed centre and width scaling like 1/

√
N . An alternative possibility is to

choose one eigenstate of the operator m̂z = 2Ŝz/N , i.e. taking |ψ0〉 = |m〉 =∣∣S = N
2 , M = N

2 m
〉
, which also changes in a definite way with N .

In the upper panel of Fig. 5.3 we plot some instances of the stroboscopic
energy-per-site evolution e(nτ) for the ergodic (left panel) and regular (right
panel) case, together with the corresponding stroboscopic time fluctuations
δestrobo (in the inset). In both cases, e(nτ) fluctuates around e(kτ) (with
very small fluctuations, essentially invisible in the chosen scale, in the regu-
lar case) but there is an important difference: in the latter case this average
depends strongly on the initial state considered, while in the former it is
almost independent of the initial state 11 and coincides with the infinite-
temperature value of the operator Ĥ(0)/N , of course restricted to the sub-
space of maximum spin S = N/2 which we are considering. Moreover, the
stroboscopic time fluctuations δestrobo tend to vanish in the thermodynamic
limit: the scaling with N−1/2 is very clear for the ergodic case; in the reg-
ular case the scaling is less clear but the fluctuations are much smaller. In
Fig. 5.3 we consider, for the classically ergodic case (left panel), two differ-
ent initial states: the symmetry-broken ferromagnetic ground state of the
initial Hamiltonian and an eigenstate |m〉 of 2Ŝz/N . In all cases, whatever
initial state we take (coherent states, eigenstates of other components of the
spin), we can see always the energy fluctuating around the T = ∞ value and
(if the initial state changes with N in a definite way) the stroboscopic-time
fluctuations scale as N−1/2. An instance of this remarkable independence
of e(nτ) from the initial state can be seen in the lower panel of Fig. 5.3,
where we show e(kτ) versus m when we take as initial state |m〉; we can see
the strong dependence on m in the regular case and the small fluctuations

11There are small differences of order 1/N which tend to vanish in the thermodynamic
limit.

90



-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  50  100  150  200

e(
nτ

)

n

ψ0=GS
ψ0=m=-0.5

e(T=∞)

 0.005

 0.01

 400  600  800  1000

δe

N

GS

m=-0.5

N-1/2

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  50  100  150  200

e(
nτ

)

n

 0.0001

 0.001

 400  600  800  1000

δe

N

COH

m=-0.5

m=-0.25

N-1/2

-0.176

-0.174

-0.172

-0.17

-0.168

-0.166

-0.164

-1 -0.5  0  0.5  1

er
go

di
c

m

N=400
N=800

eN=400(T=∞)
eN=800(T=∞)

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-1 -0.5  0  0.5  1

- e m

m

regular, N=800
ergodic, N=800

Figure 5.3: On the upper left panel we see the stroboscopic evolution of
energy in the ergodic case for two different initial states, the symmetry-
broken ground state and an eigenstate |m〉 of 2Ŝz/N , in both cases the energy
converges towards its T = ∞ value and fluctuations δestrobo (inset) decay like
N−1/2. On the upper right panel we show e(nτ) for the classically regular
case; the initial states are two different eigenstates of 2Ŝz/N and a coherent
state centred in P = −0.7485 and Q = 0.3236; here the stroboscopic average
e(kτ) attained asymptotically depends on the initial state and fluctuations
are much smaller but still decaying with N . On the lower panel we see e(kτ)
versus m taking as initial state an eigenstate |m〉 of 2Ŝz/N , in the regular
and ergodic case. We observe strong dependence on m in the regular case
and the small fluctuations around the T = ∞ value in the ergodic case.
Parameters are the same as in Fig. 5.2.
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around the T = ∞ value (getting smaller for larger N) in the ergodic case.
Entirely similar results can be found for the other intensive quantities, like
mz(nτ).

5.5.1 Thermalization and ETH in the ergodic case

Rather than considering particular initial states |ψ0〉, we can show in full
generality that, in the classically ergodic case, all the possible initial states
give rise to thermalization at T = ∞ because the Floquet states obey the
ETH at infinite temperature. We illustrate this on the left panel of Fig. 5.4
where we consider the energy per site and show its expectation value on
the Floquet modes eαα ≡ 1

N 〈Φα(0)| Ĥ(0) |Φα(0)〉 versus the quasi-energy
µα. We can see that, in the ergodic case, eαα is indeed independent of
the Floquet mode (up to small fluctuations of order N−1/2) and equal to
the T = ∞ expectation value: the Floquet modes obey Eq. (5.8). Indeed
we can see that thermalization happens by means of convergence to the
Floquet diagonal ensemble which, thanks to Eq. (5.9), coincides with the
thermal expectation value at T = ∞, whatever is the initial state consid-
ered. In the regular case the situation is much different: eαα (also shown in
Fig. 5.4) fluctuate strongly between a Floquet mode and the other and we
never see thermalization. In the right panel of the same figure we can see
how the fluctuations in α of those expectations δ(eαα) =

√
〈e2αα〉 − 〈eαα〉2

(with 〈enαα〉 = 1
N+1

∑N+1
α=1 e

n
αα) stay almost constant in the regular case; in

the ergodic one instead they are much smaller and decay as N−1/2: as we
expected, in this case thermalization is more exact when we increase the
number of sites 12.

Moreover, to show that time-fluctuations are small for all possible initial
states and understand convergence to stationariety in both the regular and
the ergodic case, we need to consider the value of the off-diagonal matrix
elements in the Floquet basis: |eαβ | = 1

N

∣∣∣〈Φα(0)| Ĥ(0) |Φβ(0)〉
∣∣∣. We plot

〈|eαβ |〉 – the average in α and β of |eαβ | – versusN in the left panel of Fig. 5.5;
the corresponding fluctuation δ|eαβ | is shown in the right panel. In the
ergodic case the situation is quite clear: 〈|eαβ |〉 is some order of magnitude
smaller than the (almost) constantly equal to e(T = ∞) value of the diagonal
elements eαα, and scales like N−1/2; the same scaling is shown by δ|eαβ |.
This implies that the stroboscopic time fluctuations around the T = ∞ value
of the energy scale like N−1/2, whatever is the initial state, as we can observe
in the upper left panel of Fig. 5.3. So, for the Lipkin model, time fluctuations
show the same scaling as those of the microcanonical ensemble: Here, time
fluctuations and quantum fluctuations are of the same order of magnitude

12We note incidentally that the average over the Floquet modes of the expectation
〈eαα〉 = 1

N+1

P
α eαα gives right the infinite temperature value of the energy; indeed it is

just the trace of the operator ˆH(0)/N .
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Figure 5.4: In the left panel we show eαα (the expectation value of the
unperturbed energy per site over the Floquet mode |Φα(0)〉) versus µα, in
both the ergodic and the regular case, for N = 800. We see that in the
ergodic case it is almost constantly equal to the T = ∞ value, in agreement
with ETH at T = ∞. On the contrary, eαα fluctuates wildly in the regular
case. Fluctuations in the ergodic case tend to vanish for large N as N−1/2

as shown in the right panel; here we can see also that fluctuations persist
for large N in the regular case.

and both contribute to the thermal fluctuations. In the regular case both
the average and the fluctuations are smaller than in the regular one: 〈|eα β|〉
scales faster, like N−1 and δ(|eα β |) scales still as N−1/2. This implies that
stroboscopic time fluctuations are much smaller in absolute value than in
the ergodic case, in agreement with the upper right panel of Fig. 5.3, also in
this case it seems that fluctuations are suppressed for large N . Nevertheless,
since the Floquet diagonal elements eαα fluctuate wildly with α, the value
e(kτ) to which e(nτ) relaxes depends strongly on the initial conditions.

5.5.2 ETH and delocalization in energy space

As we have just discussed, thermalization depends strongly on the prop-
erties of the Floquet states and the averages of the observables on them.
In this Section, we will explore how the relation among thermalization and
delocalization of the Floquet states (see Sec. 5.1) manifests in our model.
Because each Floquet state is equivalent, in the ergodic case, to the infinite
temperature average (see Sec. 5.2), we can expect that each of them is a su-
perposition of all the unperturbed eigenstates with random phases. In this
way ETH is valid: the expectation value of an observable over each Floquet
state equals its normalized trace Eq. (5.8) because interference among the
random phases makes the contribution of the off-diagonal elements small.
Indeed, this is just the behaviour of an eigenstate of a random matrix, in
agreement with the random matrix behaviour of the Floquet spectrum in
the ergodic case (see Fig. 5.2).
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Figure 5.5: (Left panel) Average of the off-diagonal Floquet matrix elements
of the energy versus N in the ergodic and regular case, they are compared
with the T = ∞ value of the same quantity. (Right panel) fluctuations of
the same matrix elements versus N .

We can give a quantitative measure of the delocalization of a state in
some basis by means of the inverse participation ratio (IPR) [30, 149, 181].
Considering a basis B ≡ {|n〉}n=1,...,N of an Hilbert space of dimension N ,
we can take a state |ψ〉 in this space and expand it as |ψ〉 =

∑
n ψn |n〉 (where

ψn = 〈n| ψ〉). The IPR of the state with respect the basis B is defined as 13

IB(ψ) =
N∑

n=1

|ψn|4 .

The inverse IPR (participation ratio) physically expresses the number of el-
ements of the basis B having a significant overlap with the state |ψ〉. Indeed,
if we consider a state |φ〉 which is a normalized superposition with uniform
square amplitudes of Neff elements of the basis

|φ〉 =
1√
Neff

Neff∑
j=1

e−iϕj |nj〉 ,

the IPR is just IB(φ) = 1/Neff . In case of a generic state |ψ〉, its inverse
gives a measure of the number of states in the basis giving a significant
contribution to |ψ〉. Therefore, a maximally delocalized state will have
IB(ψ) = 1/N , while each of the states of the basis will have IB(ψ) = 1,
with all the intermediate situations. We see indeed that it is a very useful
measure of delocalization, widely employed in the literature on Anderson
localization [181], and particularly relevant when the relation among ther-
malization and delocalization is discussed [55, 30, 31, 70].

13We can see the IPR as the average value of the square amplitude |ψn|2 over the
probability distribution induced by the |ψn|2.
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Here we consider the basis E = {|En(0)〉}n=1,...,N+1 of the eigenstates of
the Hamiltonian Ĥ(0) in the spin sector S = N/2; we discuss the localization
properties of the Floquet states |Ψα(0)〉 in this basis. For each of them the
interesting IPR is

IE(α) =
N+1∑
n=1

| 〈En(0)| Ψα(0)〉 |4 .

In the left panel of Fig. 5.6 we plot this object averaged over α

〈IE〉α =
1

N + 1

N+1∑
α=1

IE(α)

versus N for both the regular and the ergodic case. We can see that in
the regular case it is approximately constant and equal to ∼ 1, while in the
ergodic one it scales as N−1. Therefore, as we expected, in the ergodic case
the Floquet states are delocalized in the basis of the eigenstates, while they
are localized in the regular one 14. Moreover, as we can see in the right panel
of Fig. 5.6, this fact is true for all the Floquet states: fluctuations in IE(α) are
small. We notice how the Floquet states being extended on the whole basis
of the unperturbed eigenstates is strictly related to thermalization to T = ∞
and to the Floquet level spacing statistics P (s) being GOE/COE, that of a
full (not banded) random matrix. Remarkably, we can see by inspection the
localization properties of the Floquet states in the basis E ; we show this in
Fig. 5.7, where we plot the square amplitudes | 〈En(0) |Ψα(0)〉 |2 versus en
for a Floquet state |Ψα(0)〉 in the ergodic case (left panel) and the ergodic
one (right panel). We can see how the former is extended and the latter is
localized, consistently with the evidences coming from the IPR. (The plot
refers to a single Floquet state, but the behaviour shown is typical for all
Floquet states.) This plot reminds us of the left panel of Fig. 2 in Ref. [70].

One interesting issue has to do with how the convergence to the steady
state periodic regime in the quantum case is related to the persistent fluctu-
ations in the classical limit N →∞. The contrast is very striking, especially
for the ergodic case: here the clear and simple quantum thermalization coex-
ists with the irregular fluctuations shown by the classical ergodic and mixing
system. Indeed, as we have pointed out, this happens always in the quan-
tum behaviour of a classical ergodic and mixing system [59]: it can be seen
as an instance of the quantum fluctuations providing the coarse graining

14In the ergodic case, the unperturbed Hamiltonian is a ferromagnetic one and all the
eigenstates with energy below the broken-symmetry edge [165] (e∗ = −Γ0) are in doublets
which are degenerate up to an exponentially small gap of order ∼ e−N . In performing
these computations we have chosen in each doublet the exact eigenstates, the even and

the odd one under the transformation eiπ bSx which is a symmetry of the Hamiltonian.
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necessary for convergence to the thermal regime. To understand better this
point we will discuss it in some detail for our case. If N is finite, taking as
initial state |ψ0〉 a minimum uncertainty wave-packet centred somewhere,
the observables coincide with their classical limit for a time logarithmic in
N , after which we can see thermalization. Indeed, a minimum uncertainty
wave-packet comprises points in the phase space inside a circle of radius√

~eff ∼ 1/
√
N . Since the classical dynamics is ergodic, the Lyapunov expo-

nent [152, 164] λ is positive whatever are the initial conditions and trajec-
tories starting from points in the considered circle separate from each other
exponentially in time as eλt. In a short time, the width of the packet is
as large as the whole phase space and the resulting expectation of the ob-
servables is very different from the classical counterpart; the time at which
this happens is the so-called Ehrenfest time [182, 183, 164] t∗ ∼ 1

2λ lnN .
Using coherent state wave-packets (Eq. (5.20)), we can see numerically that
quantum expectations diverge from the corresponding classical values after
ω0t

∗/2π ∼ 10 periods of the driving, for N = 1000; if we take N = 1023

(which might be physically considered as “the thermodynamic limit”) our
argument gives that the divergence happens after ∼ 80 periods. The mathe-
matical limit N →∞ is indeed very singular: it corresponds actually to the
limit ~ → 0 in semiclassical quantum mechanics [156] When the dynamics is
regular, instead, classical and quantum dynamics diverge after a polynomial
time ∼ Nα, this agrees with a less clear scaling of the fluctuations with N
in this case.

As a last point, we discuss the behaviour of the order parameter mz(t)
shown in Fig. 5.8. When the dynamics is ergodic, it vanishes after a transient
reaching its T = ∞ value consistently with ETH. This happens although
the driving is restricted to the ferromagnetic phase. If we take as |ψ0〉
the symmetry-broken ferromagnetic ground state |GS〉, and increase the
amplitude of the driving, we see a crossover from a finite to a vanishing value
of the stroboscopic average mz(kτ) 15. This is similar to the dynamical-
phase-transition findings of Ref. [164] and we can give a classical phase
space interpretation of this phenomenon. When the driving amplitude A is
small, the initial ground state is such that the system stays within a region
of regular dynamics and mz(kτ) differs from 0. By increasing the driving
amplitude A, the initial ground state (and the subsequent evolution) fall in
a chaotic region and mz(kτ) vanishes.

15This crossover seems to behave like a transition: the order parameter vanishes after
A overcomes a certain threshold Ac. Nevertheless, the very jagged dependence on A just
before Ac makes very difficult to understand if it is really a transition and what is the
order. Further studies and larger values of N are in order.
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5.5.3 Mixed chaotic-regular cases and crossover from regu-
larity to ergodicity.

Up to now we have discussed in detail only two extreme cases, those of
completely regular and totally ergodic classical phase space. It is interest-
ing to consider intermediate situations, especially to understand how, in the
quantum regime, we move from ergodicity to regularity when we change
the parameters of the driving. The most important question is if this pro-
cess becomes a transition in the thermodynamic limit or is still a smooth
crossover. Classically, when the number of degrees of freedom is finite, KAM
theorem [46, 45] predicts a smooth increase of the portion of phase space
which is chaotic, when the amplitude of the non-integrable term is increased.
Above the the so-called KAM threshold, all the phase space becomes ergodic.
In the thermodynamic limit, in some cases the threshold remains at a finite
value [144, 54] of the non-integrability parameter, in others it moves to a
vanishing value [184, 185]. In the quantum case, numerical studies have
considered only systems with a small number of particles [31, 161, 30, 28],
therefore the situation in the thermodynamic limit is not clear. Moreover, it
appears that there can be delocalization without thermalization [31], so the
demonstration of the existence of a many body localization transition [160]
in some models does not settle the question.

We are going to show that, in our model, we move from regularity to er-
godicity with a smooth crossover, which does not become a sharp transition
in the thermodynamic limit. This is a manifestation of the quantum-classical
correspondence: KAM theorem applies to the classical limit (which has few
degrees of freedom): classically the system does not move immediately to
ergodicity, but in a range of parameters it shows mixed phase space. We
provide an instance of that by means of the case shown in the center left
panel of Fig. 5.2; we start our discussion considering the quantum behaviour
of the system in this specific case 16.

In the upper left panel of Fig. 5.9 we plot some instances of the stro-
boscopic evolution of the energy e(nτ), for different initial states |ψ0〉. We
consider coherent states (Eq. (5.20)) centred in the chaotic region (COH1
and COH2), a coherent state centred in the regular region (COH3) and an
eigenstate |m〉 of m̂z = 2Ŝz/N . We can see that, as in the regular case, the
asymptotic value depends strongly on the initial state. This is not true for
an important class of states: we obtain the same asymptotic value of the
observables for all initial states |ψ0〉 which are coherent states centred in the
chaotic region (like cases COH1 and COH2 in Fig. 5.9) 17. This is consistent
with the qualitative picture of the initial wave-packet being spread by the

16The quantum behaviour of a strictly related model (the kicked top) when the classical
phase space is mixed has been considered in Ref. [150], but from a different point of view.

17There are small differences from a state to another which tend nevertheless to vanish
for large N .
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Figure 5.9: Quantum behaviour of a mixed classical-chaotic case (central
panel of Fig. 5.2). (Upper left panel) Some instances of evolution of the en-
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states in the chaotic region of the phase space (COH1 centred in P = 0.52
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panel) Time-average em(kτ) for initial state |m〉 versus m, we see the strong
dependence on m. (Lower left panel) IPR IE(α) versus µα for the mixed
case we are considering, the regular and the ergodic one. (Lower right panel)
Expectation of the energy over a Floquet mode eαα versus µα. All the data
are for N = 800.
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mixing dynamics all-over the chaotic region; nevertheless, this asymptotic
regime is not thermal. Indeed, we have verified that, although it is possible
to define an effective temperature for the asymptotic average of the energy
e(kτ), this is impossible for the corresponding average mx(kτ) of another
observable, the local transverse magnetization (m̂x = 2Ŝx/N). Outside this
class of privileged wave-packets, there is a strong dependence of the asymp-
totic energy on the initial state; we show an instance of this in the right
upper panel of Fig 5.9, where we plot e(kτ) versus m, the quantum number
of the initial state |ψ0〉 = |m〉, eigenstate of m̂z = 2Ŝz/N . Also this class
of initial states gives rise to a non-thermal asymptotic regime; e(kτ) and
mx(kτ) are described by different finite effective temperatures. This is con-
sistent with the expectation that, there being no energy conservation, the
only possible thermal regime is the one at T = ∞. In the limit of large N ,
also in the mixing case, observables do converge to the asymptotic average
for different initial states: we have verified that the average 〈|eα β|〉 of the
Floquet off-diagonal elements scales to 0 with N and the time fluctuations
δestrobo decrease 18 for larger N . The same is valid also for the other ob-
servables: interestingly the scaling exponent of 〈|eα β |〉 (∼ −0.83) is between
−1 (valid for the regular case) and −1/2 (valid for the ergodic one). In the
lower left panel we plot the IPR IE(α) versus µα, comparing it with the
regular and the ergodic cases considered also in Fig. 5.6. We can see that
the mixed case shows much larger fluctuations in µα, moreover the values
of the IPR are intermediate between the regular and the ergodic ones. Here
Floquet states are less extended than in the ergodic case: some are more
localized, other more delocalized, with marked differences from one state to
the next. The absence of maximal delocalization is related to the Floquet
states not obeying ETH, consistently with the absence of thermalization
we have discussed above. Finally, the lower right panel of Fig. 5.9 shows
the diagonal matrix elements eαα over a Floquet mode |Φα(0)〉 versus µα:
they are far from being constant, as in the ergodic case, and show marked
fluctuations from a Floquet mode to another. The situation is not different
in spirit from the regular case, but in the latter case fluctuations are even
larger.

We can find the features we have seen in this classically mixed ergodic-
regular case also in the crossover between full regularity and ergodicity. We
could plot something like a phase diagram in the space whose coordinates are
the parameters of the driving A, ω0 and Γ0. There are regions of classically
regular, ergodic and mixed dynamics and the properties of the quantum
counterpart change correspondingly. For sake of a clearer explanation, we
choose to fix the frequency of the driving to ω0 = 2.0 and its amplitude to
A = 0.45; we take a classically ergodic case (Γ0 = 0.25) and a classically

18At least for the values of N we have considered, fluctuations do not decrease with a
clear scaling for all the considered initial states.
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regular one (Γ0 = 3.0) and see what happens at the intermediate values of
Γ0. In this way we select a segment in the phase diagram; but what happens
along this line is representative of what we would see choosing any other
path connecting regularity to ergodicity. The first thing we notice in the
upper left panel of Fig. 5.10 is that the average IPR 〈IE〉α increases when
we change Γ0 and move from the ergodic to the regular case; this marks
a crossover from two extreme condition: delocalization of all the Floquet
states and localization of all of them. We can see that the curve is less
steep at the extrema of the interval of variation: here 〈IE〉α has an almost
constant value because the system is near to being completely ergodic or
localized. In the upper right panel of Fig. 5.10 we plot the fluctuations of
the IPR

δ(IE)α =
√
〈[IE(α)− 〈IE〉α]2〉α .

We see that, in the completely ergodic and regular cases, they are small:
here the Floquet states are uniformly extended or localized. In the interme-
diate situations the fluctuations are huge: as in the special case considered
above, Floquet states are partially delocalized with marked difference among
one and another. We can see the relation existing between this delocaliza-
tion crossover and the validity of the ETH in the lower panel of Fig. 5.10.
Here we plot the fluctuations in α δ(eαα) of the Floquet-diagonal matrix
elements of the energy-per-site. We see how the fluctuations are small when
the Floquet states are maximally delocalized; when Γ0 increases, classical
ergodicity stops, 〈IE〉α starts to increase and also diagonal energy fluctu-
ations δ(eαα) do the same: the Floquet states are no more all equivalent
to the T = ∞ density matrix. We see that the curve has a uniform slope:
energy expectations are more susceptible to the breaking of ergodicity than
the IPRs.

This gradual crossover from ergodicity to regularity persists if we con-
sider larger values of N , and does not become a transition: it mirrors the
corresponding crossover in the behaviour of the system in the classical limit
attained when N →∞. From the classical point of view, decreasing Γ0 from
the value where all the phase space is regular, the surface of the chaotic por-
tion of phase space increases gradually (thanks to the KAM theorem) until
all the phase space is ergodic. From a quantitative point of view, this could
be seen by plotting a finite-time numerical estimate of the maximal Lya-
punov exponent [144, 152] which vanishes in the regular phase and increases
gradually when we move towards the ergodic one in a way similar to what
is shown in the lower panel of Fig. 5.10.

5.6 Conclusions

In conclusion, we have shown that, by applying a periodic driving to the
Lipkin model, we obtain thermalization of the observables to T = ∞, pro-
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vided that the driving parameters are such that the classical dynamics is
ergodic. This is a noteworthy result for a fully-connected model which,
without a driving (like other models with long-range interactions [186]) is
far from being ergodic, as we have discussed in Sec. 5.3. Moreover, when-
ever there is thermalization, its mechanism is given by the Floquet states of
the system obeying Eigenstate Thermalization Hypothesis at T = ∞. This
phenomenon is associated with the underlying classical dynamics being er-
godic and mixing and the Floquet levels and states showing signatures of
quantum chaos. In particular, the Floquet states are extended in the basis
of the unperturbed eigenstates of the Hamiltonian. The link between ther-
malization and delocalization is very strict: whenever the Floquet states
are localized, the system does not thermalize and the observables tend to
an asymptotic periodic condition which strongly depends, however, on the
initial state. The same conclusions are valid if we consider other forms of
driving, like the periodically kicked field along Ŝx used in Ref. [150].

Remarkably, our conclusions can be verified experimentally. Although
seemingly quite artificial, the driven Lipkin model can be shown to be equiv-
alent to a driven two-mode Bose-Hubbard model [150] which can be realized
experimentally via modulation of the inter-well barrier height in a double-
well BEC realization [187].
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Chapter 6

Conclusions and perspectives

In conclusion, in this Thesis we have discussed the dynamics of many body
systems under a periodic driving. We have found a strict analogy between
this case and that of a quantum quench where the observables can relax
to the diagonal ensemble. In the periodically driven case, observables can
relax to the Floquet diagonal ensemble attaining asymptotically a steady
periodic regime with the same period of the driving; this happens whenever
the Floquet spectrum enjoys certain continuity properties. These properties
are similar to those of the spectrum of the final Hamiltonian leading to
relaxation after a quantum quench. Indeed, we have argued that relaxation
to the Floquet diagonal ensemble can happen in all those systems showing
relaxation after a quantum quench, for which there are many examples in
literature. Our phenomenon seems, therefore, to be pretty general.

We have seen explicitly relaxation to the Floquet-diagonal ensemble for
an integrable system, the quantum Ising chain in a periodically-driven trans-
verse field. We have discussed the dependence of the asymptotic value of
the energy in connection with the periodic crossing of the critical value of
the field. We have shown that, for all the local observables, the Floquet-
diagonal ensemble is equivalent to a GGE ensemble; this is connected with
the integrability of the model. Discussing the full probability distribution of
the work, we have seen that its asymptotic value is different from the pre-
diction of the GGE ensemble, which therefore misses important quantum
correlations.

Then we have moved to compare the results of the Floquet-diagonal
ensemble with those of Linear Response Theory (LRT) for a driving with
small but finite amplitude. We have argued that, whenever the energy-
per-site spectrum is bounded and the driving frequency is resonant, this
approximation fails in predicting the long-time behaviour of the absorbed
energy and of the term in the response connected to the energy absorption.
The quantum Ising chain has given us the opportunity to compare the exact
evolution with the analytical predictions of LRT. We have discussed both
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the cases of extensive and localized driving, in the former case the LRT-
predicted steady energy absorption stops after a time independent of L,
in the latter this time is linear in L. Remarkably, when the driving is
extensive, LRT works for the long-time behaviour of the term in the response
not connected to the energy absorption. We have connected the different
behaviours for extensive and localized driving with the dynamics of the
absorbed excitations. Moreover, we have found that terms in LRT not
described by the Floquet-diagonal ensemble come from Floquet off-diagonal
terms which become periodic in the LRT limit thanks to gaps closing in the
Floquet spectrum.

Another example of relaxation to the Floquet-diagonal ensemble has
been provided by the Lipkin model undergoing a periodic driving; here we
have noted the strict relation between classical ergodicity, quantum chaos
of Floquet levels and states, and the Eigenstate Thermalization Hypothesis
(ETH). In the ergodic case, the Floquet states obey ETH leading to ob-
servables attaining asymptotically the T = ∞ value, whatever is the initial
state. This is intimately connected to the Floquet states being chaotic and
delocalized in the basis of the unperturbed eigenstates of the Hamiltonian.
Indeed, averages over the Floquet-diagonal ensemble are equal to thermal
averages at T = ∞, therefore the Floquet-diagonal averages equal those at
T = ∞. When the classical dynamics is regular, instead, Floquet states are
localized in the basis of the original eigenstates and the observables relax
to a Floquet-diagonal value depending on the initial state. Remarkably, in
both cases the off-diagonal elements of the observables in the Floquet basis
are small and fluctuations around the Floquet-diagonal value tend to vanish
for large number of sites.

Concerning perspectives of future work, there are two points we would
like to mention.

One is the behaviour of the entanglement entropy of a driven system.
In the case of a quantum quench of one-dimensional systems, relaxation to
the diagonal ensemble has been shown to be strictly related to the propaga-
tion of the generated excitations [105]; this makes the system entangled and
leads to an increase of the so-called entanglement entropy [73, 188], which is
an important entanglement measure [131]. We would like to see if a similar
picture is valid for the entanglement entropy in case of driven systems, espe-
cially in connection with the Ising chain problem [73] and driving around the
quantum critical point. For the fully-connected Lipkin model, the picture
of propagating excitations fails; nevertheless it would be very interesting to
compare the behaviour of the entanglement entropy of this model [189] in
the two cases of classically ergodic and regular dynamics.

A second question concerns the dynamics of driven models with integrability-
breaking terms. Considering, for instance, the driven Ising chain, we can
see that, in many physical realizations, this model is only meaningful to de-
scribe the low-energy dynamics of the system. Driving the system provides
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energy to it and non-integrable terms become relevant, so it is interesting to
consider their effect on the properties of the asymptotically periodic regime.
Pretending to do that in an exact way would allow us to consider only very
small systems, very far from the thermodynamic limit, as we can see in
many examples in the literature [26, 55, 30, 69, 161, 31, 70]; the situation
is a bit better if t-DMRG is employed [28, 19, 20, 38]. A possibility is to use
approximate methods, like a time-dependent mean field treatment, working
with Jordan-Wigner fermions. In this way we would be able to consider
larger systems, although in an approximate way; as usual our focus would
be on the threshold of ergodicity, its relation with delocalization and if the
crossover to regular behaviour turns into a sharp transition in the thermo-
dynamic limit. An alternative possibility would be to discuss the dynamics
of the driven Hubbard model by means of a Gutzwiller Ansatz [190].

f
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Appendix A

Coherent destruction of
tunneling

We consider the dynamics of small-k non-adiabatic modes, which should
be excited even at low frequencies unless effects of Coherent destruction of
tunneling [120, 194, 97] intervene. To see how this happens, we consider
strongly non-adiabatic modes k � ω0: using that ∆k = sin k ≈ k and
cos k ' 1 − k2/2, we can approximate the Hamiltonian in Eq. (3.2) to 2nd

order in k

Hk�1 (t) '

(
k2

2 + cos (ω0t) −ik
ik −k2

2 − cos (ω0t)

)
. (A.1)

Now we change reference frame, via the transformation

|ψk (t)〉 = V (t)
∣∣∣ψ̃k (t)

〉
with V (t) = e−i sin(ω0t)σz/ω0 . (A.2)

In the new reference frame the evolution is given by the Schrödinger equation
with the Hamiltonian

H̃k�1 (t) ' σz k
2

2
+ kσy exp

(
2i

sin (ω0t)
ω0

σz

)
. (A.3)

To first order in perturbation theory (using as perturbation the Hamiltonian
in Eq. (A.3)) we obtain that the evolution operator over a period is

Ũk�1 (τ, 0) ' 1− i

∫ τ

0
H̃k�1 (t) dt

= 1− i


k2

2
−ikJ0

(
2
ω0

)

ikJ0

(
2
ω0

)
−k

2

2

 τ.

(A.4)
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The application of first order perturbation theory is justified because we

have assumed k � ω0. We can see that, whenever J0

(
2
ω0

)
, the out-of-

diagonal terms vanish and exciting the mode considered becomes impossible
to first order in k. This phenomenon is the so-called Coherent destruction
of tunneling, diagonalizing Eq. (A.4), we can see how this fact reflects in
the structure of the Floquet states and gives rise to the dips in energy
absorption seen in Fig. 3.3-b. More details about this question can be found
in the Supplementary material of Ref. [66].
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Appendix B

Details on the dynamics of
the Quantum Ising chain

We consider the case of a generic non-uniform Hamiltonian. After the
Jordan-Wigner transformation

σ̂x
j = 1− 2c†jcj

σ̂z
j = τj

(
c†j + cj

)
σ̂y

j = iτj

(
c†j − cj

)
, (B.1)

the Hamiltonian Eq. (3.1) of the system acquires a quadratic fermion form.
If we consider anti-periodic boundary conditions like in Section 3.1 we have

Ĥ(t) = −
L−1∑
j=1

[
Jj(ĉ

†
j ĉj+1 + H .c.) + (ĉ†j ĉ

†
j+1 + H .c.)

]
+

L∑
j=1

hj(t)(2ĉ
†
j ĉj − 1)

+ J
[
(ĉ†Lĉ1 + H .c.) + (ĉ†Lĉ

†
1 + H .c.)

]
. (B.2)

If we define an appropriate 2L × 2L matrix H(t), a Nambu column vector
of Fermionic operators

Ψ̂ =



ĉ1
...
ĉL
ĉ†1
...
ĉ†L


=
(

ĉ
ĉ†

)
(B.3)

and the row-vector Ψ̂† which is its Hermitian conjugate, we can give to the
Hamiltonian a shape like that of Eq. (3.2)

Ĥ(t) = Ψ̂† ·H(t) · Ψ̂ =
(

ĉ† ĉ
)( A(t) B

−B −A(t)

)(
ĉ
ĉ†

)
. (B.4)
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Here, the block structure of H(t) is a consequence of particle-hole symmetry,
the blocks A(t) and B are L × L are real matrices; their elements are all
vanishing but those given by Aj,j = hj

Aj,j+1 = Aj+1,j = −
J+

j

2
= −Jj

2

 Bj,j = 0

Bj,j+1 = −Bj+1,j = −
J−j
2

= −Jj

2

.(B.5)

Anti-periodic boundary conditions give us the supplementary conditions

AL,1 = A1,L =
JL

2
,

BL,1 = −B1,L =
JL

2
. (B.6)

At every instant of time, we can reduce the Hamiltonian in a quadratic
diagonal Fermion form by applying a unitary transformation on the Nambu
spinors

Φ̂t = U†
tΨ̂ =

(
U†

t V†
t

VT
t UT

t

)(
ĉ
ĉ†

)
. (B.7)

Ut diagonalizes the matrix H(t) which, thanks to the particle-hole symmetry
of the Hamiltonian, is divided in L × L blocks related to each other (see
Eq. (B.4)). This property reflects in the block form of the operator U†

t . We
can write the diagonalization relation explicitly:

Ĥ(t) = Ψ̂† ·H(t) · Ψ̂ = Φ̂†
t · U

†
t ·H · Ut · Φ̂t = Φ̂†

t · ED(t) · Φ̂t .

Here ED(t) = diag (εµ(t),−εµ(t)) is a 2L×2L diagonal matrix. If, in analogy
with Eq. (B.3), we define L Fermionic operators γt µ such that

Φ̂t =

(
γ̂t

γ̂†t

)
(B.8)

we can write the Hamiltonian as

Ĥ =
L∑

µ=1

εµ(t)
(
γ̂†t µγ̂t µ − γ̂t µγ̂

†
t µ

)
.

We can see how the Hamiltonian has been mapped to a problem of free
fermions: εµ(t) are the corresponding single-particle excitation energies at
time t. The ground state at time t is defined as the state which is annihilated
by all the operators γt µ associated to the single-particle excitations

γ̂t µ|GS〉t = 0 ∀µ . (B.9)
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Making the Ansatz that the many-body ground state has a Gaussian form
and enforcing the condition above, it is not difficult to see [122] that it is
exactly a Gaussian state given by

|GS〉t = Nt e
1
2
(ĉ†)T ·Zt·(ĉ†) |0〉 where

|Nt| ≡
√
|det[Ut]| and Zt ≡ −(U†

t)
−1 ·V†

t (B.10)

(Ut and Vt are L × L matrices introduced in Eq. (B.7)). By means of a
unitary transformation, we can reduce the matrix Zt in standard canonical
form: we can find some complex coefficients λt p and some time-dependent
Fermionic operators d̂t p, d̂t p such that the many-body state acquires mani-
festly a BCS form

|GS〉t = Nt

L/2∏
p=1

(
1 + λt pd̂

†
t pd̂

†
t p

)
|0〉 . (B.11)

We can see that it resembles the translationally-invariant ground state Eq. (3.5).
We would like to stress that the basis {|0〉, d̂†t pd̂

†
t p|0〉}p=1,...,L/2 in which the

state is factorized is time dependent. Moreover, in general, the Hamiltonian
is block-diagonal in a different time-dependent basis. For that, as we will see
soon, the dynamics cannot be reduced to uncoupled 2 × 2 subspaces. The
uniform case is very special: because of translational invariance the state
and the Hamiltonian are block-diagonal in the same fixed basis.

About the dynamics, we can find it by writing the Heisenberg evolution
equations for the operators ĉi H(t) in Heisenberg representation. In analogy
with Eqs. (B.7) and using the γ̂0 defined in Eq. (B.8), we define the unitary
2L× 2L matrix U (t) so that(

ĉH(t)
ĉ†H(t)

)
= U (t)Φ̂0 =

(
U(t) V∗(t)
V(t) U∗(t)

)(
γ̂0

γ̂†0

)
. (B.12)

We can see that U (t) reduces to its static counterpart Eq. (B.7) at t = 0:
as we will see more explicitly this is equivalent to enforcing the ground
state as the initial condition of the dynamics. The Heisenberg equations of
motion for ĉi H(t) plus Eq. (B.12) give us a system of 2L×2L (Bogoliubov-de
Gennes) first order differential equations Eq. (3.24). Thanks to the block
structure of U (t) (see Eq. B.12) we can see that it is enough to solve a
system of 2L× L equations

i~
d

dt

(
U(t)
V(t)

)
= 2H(t) ·

(
U(t)
V(t)

)
; (B.13)

where, according to the Ansatz Eq. (B.12), the initial conditions are U(t =
0) = U0 and V(t = 0) = V0 where U0 and V0 diagonalize the Hamiltonian
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at initial time (see Eq. (B.7)). The many-body state of the system at time
t has a Gaussian form very similar to the ground state Eq. (B.11)

|Ψ(t)〉 =
√
|det[U(t)]| e

1
2
(ĉ†)T·Z(t)·(ĉ†)|0〉 where Z(t) ≡ −(U†(t))−1·V†(t) ;

(B.14)
from Eq. (B.12) we can see that the t = 0 initial condition is given right by
the ground state. Moreover, by means of Eq. (B.13) it is possible (although
lengthy) to show explicitly that this state obeys Schrödinger Equation with
Hamiltonian (B.2).

We can evaluate at all times the quantum expectation value of every
many-body operator. Because the state is always Gaussian, the Wick’s
theorem applies and any expectation value can be reduced to the evaluation
of the single-particle Green functions Gi j(t) = 〈ĉ†i ĉj〉t and Fi j(t) = 〈ĉi ĉj〉t.
Using the Heisenberg representation, Eq. (B.12) and the property Eq. (B.9)
of the initial ground state we find

Gi j(t) =
[
V(t) ·V†(t)

]
i j

Fi j(t) =
[
U(t) ·V†(t)

]
i j
. (B.15)

For instance, the expectation value of the energy Eq. (B.4) is

E(t) = Tr
[
V†(t) ·A(t) ·V(t)−U†(t) ·A(t) ·U(t) + 2U†(t) ·B ·V(t)

]
.

(B.16)
In conclusion, although the Hilbert space of this problem has dimension 2L,
we can reduce the dynamics to L Schrödinger-like equations in a fictitious
2L-dimensional Hilbert space (Eq. (B.13)). We can easily implement them
numerically and use them to evaluate all the expectation values of the ob-
servables thanks to Eq. (B.15). As discussed in Subsec. 3.3.1, these evolution
equations cannot be further reduced in the form of independent 2×2 blocks.

To conclude, we give to the reader the form of the Floquet off-diagonal
part of the Green functions we have introduced in Subsec. 3.3.3

F off−diag
i j (t) =

∑
α 6=β ν

[
R∗α iUP ν α(t)V ∗

P ν β(t)Rβ j + S∗β iVP ν β(t)U∗
P ν α(t)Sα j

]
ei(µα−µβ)t/~

+
[
R† · eiµt/~ ·U†

P(t) ·V∗
P(t) · eiµt/~ · S + S† · e−iµt/~ ·VT

P(t) ·V∗
P(t) · e−iµt/~ ·R

]
i j

;

G off−diag
i j (t) =

∑
α 6=β ν

[
R∗α iVP ν α(t)V ∗

P ν β(t)Rβ j + S∗β iUP ν β(t)U∗
P ν α(t)Sα j

]
ei(µα−µβ)t/~

+
[
S† · e−iµt/~ ·UT

P(t) ·VP(t) · e−iµt/~ ·R + R† · eiµt/~ ·V†
P(t) ·U∗

P(t) · eiµt/~ · S
]
i j
.

(B.17)
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Appendix C

Asymptotic behaviour and
small W “universality” of the
work statistics in a
periodically driven Ising
chain.

C.1 Asymptotic periodic regime of the stroboscopic
cumulant generating function.

In this appendix we show how the stroboscopic cumulant generating function
tends towards the stationary value given in Eq. (3.50). Our first step is to
expand the logarithm in Eq. (C.3) when the argument is near 1. To that
purpose, we need to show that the second addend inside the logarithm is
< 1. We know that sin2(nµkτ) ≤ 1 and (1 − e−2sEk(0)) ≤ 1; moreover we
notice that

2
qk

1 + qk
= 2

∣∣r+k ∣∣2 ∣∣r+k ∣∣2 = 2x2
(
1− x2

)
(C.1)

Where we have defined x ≡
∣∣r+k ∣∣. Maximizing over x we can easily see that

2
qk

1 + qk
≤ 1 .

In conclusion, we see that the second term is ≤ 1; therefore the ensuing
expansion holds for all k only if s < ∞, otherwise it holds for all k only
when there is no Floquet quasi-resonance. Nevertheless, we see in Fig. 3.7
that the formula Eq. (3.43) for the asymptotic dynamical fidelity is valid
also outside this regime, so we are confident that the same thing is here.
Defining

ξk = ξk(s) ≡ 2
qk

1 + qk

(
1− e−2sEk(0)

)
, (C.2)

116



we can recast Eq. (C.3) as

Gnτ (s)
L

= −
∞∑

m=1

∫ π

0

dk
2π

ξm
k

m
sin2m (µknτ) , (C.3)

where we have exchanged the integral and the summation thanks to the
dominated convergence theorem. At this point we have to expand the sine
term in the form

sin2m (µknτ) =
(−1)m

4m

2m∑
j=0

(
2m
j

)
(−1)je2i(m−j)µknτ (C.4)

and perform the integral in k in each of the terms of the summation in m.
The summation in j, for each m, has a finite number of terms, so there is no
problem in exchanging the integral and this sum. The terms where j 6= m
contain rapid oscillating factors and vanish in the limit n → ∞ thanks to
the Riemann-Lebesgue lemma and the regularity of the factors ξm

k ; hence,
in this limit, we can write

lim
n→∞

Gnτ (s)
L

= −
∫ π

0

dk
2π

∞∑
m=1

1
4m

(
2m
m

)
ξm
k

m
. (C.5)

Thanks to Ref. [119], we can write this expansion in a closed form; defining
f(ξ) ≡

∑∞
m=1

1
4m

(
2m
m

) ξm

m we have

d
dξ
f(ξ) =

1
ξ

(
2
√
ξ

d
dξ

arcsin
(√

ξ
)
− 1
)
, (C.6)

which can be integrated to give

f(ξ) =
∫ ξ

0

1
ξ′

[
1√

1− ξ′
− 1
]

dξ′ =
∫ arcsin

√
ξ

0
tan

(η
2

)
dη

= −2
[
log
(
cos η′

) ] 1
2

arcsin
√

ξ

0
= − log

[
1
2

(
1 +

√
1− ξ

)]
. (C.7)

Here we have performed the substitutions ξ = sin2(η) and η′ = η/2. In
conclusion, we have

G∞(s)
L

≡ lim
n→∞

Gnτ (s)
L

=
∫ π

0

dk
2π

log

[
1 +

√
1− ξk(s)
2

]
(C.8)

where ξk(s) is given in Eq. (C.2).
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C.2 Universal edge singularity in the asymptotic
distribution function

To prove Eq. (3.54), we start from the expansion of the cumulant generating
function Eq. (C.3) expanding ξk(s)m with the Newton binomial

ξk(s)m =
[
2

qk
1 + qk

]m m∑
l=0

(
m

l

)
(−1)le−2lsEk(0) .

Thanks to the finiteness of one sum and the dominated convergence theorem
we obtain

Gnτ (s)
L

= −
∞∑

m=1

m∑
l=0

1
m

(
m

l

)
(−1)l

∫ π

0

dk
2π

[
2

qk
1 + qk

]m

e−2 lsEk(0) sin2m (µknτ) .

(C.9)
If s is large (s � 1/|hi − 1|) and l 6= 0, we can use the saddle point ap-
proximation in the integrals in k. To do that, we exploit the fact that the
energy Ek(0) has a stationary point (actually a minimum) for k = 0 when
the initial state is not at the critical point. Indeed, when the initial field is
different from the critical value (hi 6= 1), we can expand the energy around
k = 0 up to second order in k

Ek(0) = |hi − 1|+ hi

2 |hi − 1|
k2 . (C.10)

If s is large enough such that sEk(0) � 1, we can restrict this expansion
to second order and the integrals are easy to perform because they are
Gaussian. There is nevertheless an important caveat concerning the factors
sin2m (µknτ) in the asymptotic limit nτ →∞ on which we are focusing now.
Once more, because of the Riemann-Lebesgue lemma, the oscillating terms
in their expansion Eq. (C.4) vanish and only the term with j = m survives.
We have, therefore∫ π

0

dk
2π

[
2

qk
1 + qk

]m

e−2 lsEk(0) sin2m (µknτ)

'
[
2

q0
1 + q0

]m

e−2 ls|hi−1|
∫ ∞

0

dk
2π

e−hi lsk2/(2|hi−1|) sin2m (µknτ)

n→∞−→ 1
2

[
2

q0
1 + q0

]m 1
4m

(
2m
m

)√
|hi − 1|
2πhi ls

e−2 ls|hi−1| . (C.11)

At this point we have to substitute this equation in the formula of the
cumulant generating function Eq. (C.9). To that purpose, we need first to
isolate the terms with l = 0; those terms in the limit n→∞ can be summed
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up with a method strictly analogous to the one sketched in the foregoing
section and give rise to

−
∞∑

m=1

1
m

∫ π

0

dk
2π

[
2

qk
1 + qk

]m

sin2m (µknτ)
n→∞−→ G∞(s→∞)

L

=
∫ π

0

dk
2π

log
[
1
2

(
1 +

√
1− 2

qk
1 + qk

)]
(C.12)

which is the asymptotic cumulant generating function in the limit of s→∞.
Always in the limit n→∞, the other terms are given by

−1
2

∞∑
m=1

m∑
l=1

1
m

(
m

l

)
(−1)l

[
q0

2(1 + q0)

]m(2m
m

)√
|hi − 1|
2πhils

e−2 ls|hi−1| .

When s is large, we can only keep the contributions with l = 1; the ones with
larger l are exponentially small with respect to these; exploiting Ref. [119]
to write the summation over m in closed form, we have therefore

1
2

∞∑
m=1

[
2q0

1 + q0

]m 1
4m

(
2m
m

)√
|hi − 1|
2πhis

e−2s|hi−1|

=
1
2

 1√
1− 4

∣∣r+0 ∣∣2 ∣∣r−0 ∣∣2 − 1

√ |hi − 1|
2πhis

e−2s|hi−1| . (C.13)

In conclusion, by defining

a ≡ 1
2

 1√
1− 4

∣∣r+0 ∣∣2 ∣∣r−0 ∣∣2 − 1

√ |hi − 1|
2πhi

we can write the cumulant generating function in the limit of large s in the
form

G∞(s)
L

' G∞(s→∞)
L

+
a√
s
e−2s|hi−1| . (C.14)

Looking at the formulae (3.41) and (C.3), we can see that G∞(s→∞)
L = −g∞.

Exploiting the fact that s is large, moreover, we can give an approximate
formula for the asymptotic moment generating function G∞(−is) = eG∞(s)

G∞(−is) ' e−Lg∞

(
1 +

La√
s
e−2s|hi−1|

)
. (C.15)

This object (see Eq. (3.44)) is the Laplace transform of the work distribution
function

G∞(−is) =
∫ ∞

0
P∞(W )e−sW dW .
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Exploiting this formula, it is not difficult to show (using the properties of the
Gamma function) that the distribution function associated to Eq. (C.15) is

P∞(W ) ' e−Lg∞

(
δ(W ) +

Laθ (W − 2 |hi − 1|)
√
π (W − 2 |hi − 1|)1/2

)
. (C.16)

So our theory predicts an edge singularity in the asymptotic work distribu-
tion function at a precise value of W which is totally independent on the
details of the periodic protocol (and even of the frequency). They only enter
into the factor a through the factors

∣∣r+0 ∣∣2 and
∣∣r−0 ∣∣2. The only condition

for the validity of this approximate formula is that the driving field does not
start with the critical point value: there the quadratic expansion (C.10) fails
and the stationary phase approximation we have used cannot be applied.
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Appendix D

Results and derivations
concerning Chapter 4

D.1 Appearance of the out-of-phase term in the
linear response as a singularity

In this appendix we examine the singularities of the LRT susceptibility in
the light of the standard textbook approach, which includes an adiabatic
switching-on factor for t ∈ (−∞, 0]. Consider a periodic perturbing field
which is turned on at −∞ as:

v(t) = vswitch(t) + vper(t) = v0 sin(ω0t)
[
eηtθ(−t) + θ(t)

]
, (D.1)

where η → 0 at the end of the calculation, and define δ〈A〉t ≡ 〈A〉t − 〈A〉eq.
Since we will consider only the linear terms in v, we can calculate the two
terms separately and add the results. The switching-on part vswitch(t) =
v0θ(−t)eηt sin (ω0t) leads, for t ≥ 0 and η → 0, to:

δ〈A〉switch
t = v0−

∫ +∞

−∞

dω
2πi

(
χ′′(ω)
ω + ω0

− χ′′(ω)
ω − ω0

)
e−iωt − v0χ

′′(ω0) cos (ω0t) ,

(D.2)
where we made use of the standard approach for dealing with poles in terms
of Cauchy principal-value integrals and Dirac’s deltas:

lim
η→0

∫ +∞

−∞
dω

f(ω)
ω − ω0 + iη

= −
∫ +∞

−∞
dω

f(ω)
ω − ω0

− iπf(ω0) .

It is clear that the first integral will have to cancel, for large t, the second
term, because, physically, δ〈A〉switch

t represents the relaxation towards equi-
librium after the field was turned on in (−∞, 0]. Before proceeding with the
(simple) mathematical justification of this statement, let us comment that
the Cauchy principal value integral appearing in Eq. (D.2) is exactly the
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same, with an opposite sign, as that appearing in the expression for δ〈A〉per
t

derived in Section 4.1, since

−
∫ +∞

−∞

dω
2πi

(
χ′′(ω)
ω + ω0

− χ′′(ω)
ω − ω0

)
e−iωt = 2ω0−

∫ +∞

0

dω
π

χ′′(ω)
ω2 − ω2

0

sin (ωt) .

(D.3)
Therefore, if we sum the two terms we obtain the total response to v(t) as:

δ〈A〉t = v0
[
χ′(ω0) sin (ω0t)− χ′′(ω0) cos (ω0t)

]
, (D.4)

as indeed expected.
We now show that:

v0−
∫ +∞

−∞

dω
2πi

(
χ′′(ω)
ω + ω0

− χ′′(ω)
ω − ω0

)
e−iωt = v0χ

′′(ω0) cos (ω0t) + F relax(ω0, t) ,

(D.5)
where F relax(ω0, t) is a function which relaxes to 0 for t→∞. First, we see
from Eq. (4.5) that χ′′(ω) is non-vanishing only when ω matches a resonance
frequency of the system. We assume we are dealing with a system whose
resonance spectrum is a smooth continuum, in which case χ′′(ω) is a regular
function. The function χ′′(ω) is odd in ω, so if ω0 falls inside the resonance
spectrum χ′′(−ω0) = −χ′′(ω0) 6= 0; if it falls outside χ′′(±ω0) = 0. In both
cases we can formally split the first term in the integrand (the second term
can be treated in the same way)

χ′′(ω)
ω + ω0

e−iωt =
χ′′(ω)− χ′′(−ω0)

ω + ω0
e−iωt +

χ′′(−ω0)
ω + ω0

e−iωt . (D.6)

The first term is always regular, even for ω → −ω0, and it leads to an
integral that vanishes for large t (Riemann-Lebesgue lemma). Whenever
χ′′(±ω0) 6= 0, the second term is singular in −ω0 and contributes to the
integral with the piece

χ′′(−ω0)−
∫ +∞

−∞

dω
2πi

e−iωt

ω + ω0
. (D.7)

Because of the singularity, this integral does not vanish in the long-time
limit, as we are going to show evaluating it with the usual complex plane
techniques. Assuming t > 0, we can close the integration contour, both at
infinity and around the singularity, in the lower half complex semi-plane,
as shown in Figure D.1. Using standard techniques, one concludes that the
principal-value integral we need is given by (minus) the contribution around
the singularity (−iπeiω0t/(2πi)), hence:

χ′′(−ω0)−
∫ +∞

−∞

dω
2πi

e−iωt

ω + ω0
= −χ

′′ (−ω0)
2

eiω0t . (D.8)
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Figure D.1: The integration contour used to evaluate the principal value
integral in Eq. (D.7).

By repeating this argument for the term with the pole at ω0 and exploiting
the fact that χ′′(ω) is odd in ω, one finally arrives at Eq. (D.5), where F relax

is explicitly given by:

F relax(ω0, t) = v0

∫ ∞

−∞

dω
π

[χ′′(ω)− χ′′(ω0)]
ω − ω0

sin (ωt) . (D.9)

Notice, finally, that F relax(ω0, t) = −F trans(ω0, t), where F trans(ω0, t) is the
transient term appearing in Eqs. (4.11)-(4.10), and δ〈A〉switch

t = F relax(ω0, t).

D.2 Response for a uniform driving

In this appendix we evaluate the zero-temperature transverse magnetisation
density for a Ising chain within linear response theory. The response function
we need to calculate is (with ~ = 1):

χ(t) = −iθ(t) 〈ΨGS|
[
m̂(t), M̂

]
|ΨGS〉 = −iθ(t) 1

L

ABC∑
k>0

〈
ψk

0

∣∣∣ [m̂k(t), m̂k]
∣∣∣ψk

0

〉
,

(D.10)
where m̂k(t) = 2

(
ĉ−k(t)ĉ

†
−k(t)− ĉ†k(t)ĉk(t)

)
is a Heisenberg’s operator evolv-

ing with Ĥ0, (Eq. 3.2 with h = 1), m̂k = m̂k(0), and we have exploited the
fact that the different k-subspaces are perfectly decoupled. The ground
state |ΨGS〉 of Ĥ0 is given by Eq. (3.5) in which u0

k = cos(θk/2) and v0
k =

i sin(θk/2) with tan θk = (sin k)/(1 − cos k). To find m̂k(t) we need ĉk(t),
which obeys a Heisenberg’s equation of motion with Hamiltonian Ĥ0 and
initial value ĉk(0) = ĉk. It is simple to derive that ĉk(t) = pk(t)ĉk + qk(t)ĉ

†
−k

with pk(t) = cos(ε0kt) − i cos(θk) sin(ε0kt), qk(t) = − sin(θk) sin(ε0kt), and
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ε0k = 2 sin(k/2). With these ingredients it is a matter of simple algebra
to derive the following expression for χ(t):

χ(t) = −θ(t) 8
L

ABC∑
k>0

cos2
(
k

2

)
sin(2ε0kt) , (D.11)

which in turn immediately gives, by Fourier transforming:

χ(z) = − 4
L

ABC∑
k>0

cos2
(
k

2

)[
1

2ε0k − z
+

1
2ε0k + z

]
. (D.12)

The spectral function χ′′(ω) can be directly extracted from this expression:

χ′′(ω > 0) = −4π
L

ABC∑
k>0

cos2
(
k

2

)
δ
(
ω − 2ε0k

) L→∞−→ −θ(4− ω)

√
1−

(ω
4

)2
,

(D.13)
where we have taken the thermodynamic limit ( 1

L

∑ABC
k>0 →

∫ π
0

dk
2π ) which

transforms the discrete sum of Dirac’s delta functions into a smooth function.

D.3 Response for a driving restricted to l < L

In this section we discuss the local susceptibility χj0. The local magneti-
sation operators are defined as m̂j ≡ σx

j , and the response function we are
interested in can be written as

χj0(t) ≡ −
i

~
θ(t) 〈ΨGS| [m̂j(t), m̂0] |ΨGS〉 . (D.14)

As mentioned in Subsection 4.3.2, the crucial information is contained in
χ′′j0(ω) which reads:

χ′′j0(ω) = −π
~
∑
n6=0

[(mj)∗n0(m0)n0 δ (ω − ωn0)− (mj)n0(m0)∗n0 δ (ω − ω0n)] ,

(D.15)
where the sum extends over the eigenstates (0 labels the ground state); the
matrix elements (mj)mn and the frequencies ωmn are defined as in Eq. (4.4).
As χ′′j0(ω) is odd in ω, we need to consider only ω ≥ 0. Using the Jordan-
Wigner transformation we can write

(mj)n0 = 〈n| m̂j |ΨGS〉 = − 2
L

∑
k, k′

〈n| ĉ†k ĉk′ |ΨGS〉 ei(k′−k)j (D.16)

where the Fermionic operators ĉk are defined in appendix B. The operators
γ̂k diagonalizing the quadratic Hamiltonian Eq. (3.2) at time 0 can be ob-
tained from the ĉk with a Bogoliubov transformation ĉk = u0

kγ̂k + v0
kγ̂

†
−k,
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ĉ†−k = −v0
k
∗
γ̂k + u0

kγ̂
†
−k. If we substitute in Eq. D.16 we see that the only

non-vanishing matrix element is among the ground state and excited states
whose form is γ̂†ek′ γ̂†ek |ΨGS〉. Applying Wick’s theorem we can write

(mj)n0 = − 2
L

∑
k, k′

〈n| ĉ†k ĉk′ |ΨGS〉 ei(k′−k)j = − 2
L

(
−u0ek′v0ek + u0ekv0ek′

)
e−i(ek+ek′)j ,

(D.17)
where we have exploited that v0

−k = −v0
k and u0

−k = u0
k. Substituting

this expression in Eq. (D.15), and using that for the relevant excited states
ωn0 = εek + εek′ we can write

χ′′j0(ω ≥ 0) = −π
~

4
L2

∑
ek>ek′

∣∣∣u0ekv0ek′ − u0ek′v0ek
∣∣∣2 e−i(ek+ek′)jδ(ω − ε0ek − ε0ek′) , (D.18)

where the condition k̃ > k̃′ has been enforced to avoid double counting of the
excited states |n〉. The object inside the sum is symmetric upon exchange of
k̃ and k̃′. Using this, restricting the sum to the positive k̃ and k̃′ and going
to the thermodynamic limit we get:

χ′′j0(ω ≥ 0) = − 4
π~

∫ π

0
dk
∫ π

0
dk′
{∣∣u0

kv
0
k′
∣∣2 cos (kj) cos (k′j)

−u0
k′v

0
ku

0
kv

0
k′ sin (kj) sin (k′j)

}
δ(ω − ε0k − ε0k′) .

Using the expressions for u0
k and v0

k in Section 3.1 and changing variable to
ε = 2 sin(k/2), we can rewrite this as:

χ′′j0(ω ≥ 0) = − 1
π~

∫ min(ω,2)

max(0,ω−2)
dε
[√

(2− ε)(2 + ε− ω)
(2 + ε)(2 + ω − ε)

cos(kεj) cos(kω−εj)

+ sin(kεj) sin(kω−εj)
]
, (D.19)

where we have defined the function kε ≡ 2 arcsin(ε/2).
The linear response function needed in the text is obtained from χj0 via

the expression:

χl(t) = − i
~
θ(t) 〈ΨGS|

[
M̂l(t), M̂l

]
|ΨGS〉 = l

l−1∑
j=−l+1

χj0(t) . (D.20)

Observe that cancellations in the sum over j, due to the highly oscillating
contributions χj0(t), make χl proportional to l rather than to l2.

125



Appendix E

Results and derivations
concerning Chapter 5

E.1 Demonstration of the formula Eq. (5.12)

We claim that, when there are N interacting spins, the subspaces with total
spin S ≤ N/2 are in number

gN (S) =

(
N

N

2
+ S

)
−

(
N

N

2
+ S + 1

)
. (E.1)

This formula can be proved by iteration. To that purpose we need to demon-
strate a recursion formula

gN+1

(
S + 1

2

)
= gN (S + 1) + gN (S) if 1 < S < N/2

gN+1

(
N+1

2

)
= gN

(
N
2

)
= 1

gN+1 (0) = gN

(
1
2

) (E.2)

Indeed, when there are N spins with total spin N/2, we can decompose the
Hilbert space as a direct sum

N

2
⊕
[(

N

2
− 1
)
⊗ · · · ⊕

(
N

2
− 1
)]

︸ ︷︷ ︸
g(N

2
−1) times

⊕
[(

N

2
− 2
)
⊗ · · · ⊕

(
N

2
− 2
)]

︸ ︷︷ ︸
g(N

2
−2) times

⊕ · · ·⊕
[
1
2
⊕ · · · ⊕ 1

2

]
︸ ︷︷ ︸

g(1/2) times

.

(E.3)
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If we add one more spin, we have to perform the tensor product of this space
with a subspace of spin 1/2; we find

1
2
⊗

· · · (S + 1⊕ · · · ⊕ S + 1)︸ ︷︷ ︸
gN (S+1) times

⊕ (S ⊕ · · · ⊕ S)︸ ︷︷ ︸
gN (S) times

⊕ · · ·

 (E.4)

= · · · ⊕
((

S +
3
2

)
⊕ · · · ⊕

(
S +

3
2

))
︸ ︷︷ ︸

gN (S+1) times

⊕
((

S +
1
2

)
⊕ · · · ⊕

(
S +

1
2

))
︸ ︷︷ ︸

gN (S+1)+gN (S) times

⊕
((

S − 1
2

)
⊕ · · · ⊕

(
S − 1

2

))
︸ ︷︷ ︸

gN (S) times

⊕ · · · .

Therefore, gN (S) subspaces of spin S+ 1/2 arise from the subspaces of spin
S, other gN (S+1) arise from those of spin S+1 and the first line of Eq. (E.2)
follows; the other two lines are deduced in the same way.

It is not difficult to check that the formula Eq. (E.1) obeys the recursion
relation (E.2) 1 ; so if we are able to show that Eq. (E.1) holds for N = 1
we conclude our demonstration by induction. That is quite easy: when
N = 1, the only allowed value of the spin is 1/2 and it is easy to see that
g1(1/2) = 1.

1Substituting Eq. (E.1) in Eq. (E.2), we can see that both members are given by the
expression

2
(S + 1)(N + 1)!`

N
2
− S

´
!
`

N
2

+ S + 2
´
!
.
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[190] Marco Schiró and Michele Fabrizio. Time-dependent mean field theory
for quench dynamics in correlated electron systems. Phys. Rev. Lett.,
105:076401, 2010.

141



[191] John Donne. Donne’s Devotions. Cambridge University Press, 1923.

[192] Lucio Russo. The Forgotten Revolution: How Science Was Born in
300 BC and Why It Had to Be Reborn. Berlin, Springer, 2004.

[193] Galileo Galilei. Dialogues Concerning Two New Sciences. Dover, 1954
(original italian edition, Elzevir 1638).

[194] Yosuke Kayanuma. Role of phase coherence in the transition dynamics
of a periodically driven two-level system. Phys. Rev. A, 50:843, 1994.

142


