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Summary

The Gutzwiller Approach to out-of-equilibrium correlated fermions

by Matteo Sandri

Correlated electron systems represent a wide class of materials which at equilibrium

display fascinating properties. Several recent experimental breakthroughs in the field of

femtosecond spectroscopy and cold atomic gases allow nowadays to investigate the real

time dynamics of these many-body quantum systems. Since strongly correlated systems

usually escape single particle approaches, the theoretical study of their dynamics con-

stitutes a formidable problem which necessitates the development of novel techniques.

In this Thesis we investigate the out-of-equilibrium physics of simple paradigmatic mod-

els that are believed to capture some essential physics of interacting fermions by means

of the time dependent extension of the Gutzwiller Variational Approach.

After an introductory Chapter on the recent results in this field, in Chapter 2 we present

the Gutzwiller Approach in-and-out of equilibrium.

In Chapter 3 we investigate the dynamics for the single band Hubbard model after a

linear ramp of the Coulomb interaction. We will show that a dynamical transition ap-

pears for any duration of the ramp; this dynamical point is adiabatically connected to

the zero temperature Metal-to-Insulator transition. We will then consider the role of

quantum fluctuations beyond mean field.

In Chapter 4 we consider the dynamics of an initial antiferromagnetic state under a

quench of the interaction in the single band fermionic Hubbard model. We will show that

non-thermal ordered states survive more than expected and that two different nonequi-

librium antiferromagnets can be distinguished. Finally in Chapter 5 we will consider a

two-band Hubbard model which we believe captures the main physics of the paradig-

matic compound vanadium sesquioxide, V2O3. After an investigation of the equilibrium

properties for this model, we will provide evidences that non-thermal metallic phases

can emerge upon an excitation of a Mott insulator.
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Chapter 1

Introduction

The behavior of a generic system when driven out-of-equilibrium represents one of the

fundamental questions in physics. In particular, the dynamics of quantum systems with

a large number of interacting particles is of primarily interest since, in principle, it is

necessary to interpret and predict experiments where matter is excited by an external

perturbation.

Electronic materials with partially filled d and f bands constitute a wide class of quan-

tum many-body systems which deserve particular attention. These compounds are usu-

ally characterized by the strong Coulomb interaction between electrons which, in many

cases, is responsible for very unusual physical properties and fascinating phase transi-

tions, such as high temperature superconductivity in cuprates and the Mott transition

in oxides. Intuition would suggest a likewise rich counterpart when these strongly cor-

related materials are excited out-of-equilibrium.

In the last decade several experimental breakthroughs in the field of femtosecond spec-

troscopy and cold atomic systems rendered this expectation a concrete scenario, provid-

ing access to the unitary out-of-equilibrium dynamics of quantum many-body systems.

This new characterization of materials, which was not accessible through common ex-

perimental probes due to the extremely short timescale of electrons in solids, introduces

nowadays a complementary point of view with respect to the usual equilibrium or near-

to-equilibrium one of the past. Equilibrium phase diagrams, in fact, are enriched with

a novel and “orthogonal” time axis dimension. Transitions between different thermody-

namic phases can be observed in real time or, even more fascinating, the emergence of

novel phases of matter with no equilibrium counterpart can be discovered and manipu-

lated.

The comprehension of quantum nonequilibrium physics therefore, apart from awakening

old theoretical problems which still wait for a solution, has become a today’s fundamen-

tal step forward that we should reach in order to govern matter for future technologies.

1



2 1. Introduction

This necessity calls for the development of novel theoretical techniques which, differ-

ently from the common near-to-equilibrium methods adopted in the past, can deal with

strongly correlated electrons far-from-equilibrium.

In the following paragraphs we will briefly recapitulate the main experimental and the-

oretical advances on this front which motivated the scope of the present Thesis.

1.1 Correlated systems out-of-equilibrium

The simplest experimental setup to investigate ultrafast dynamics in solids is by means

of a pump-probe experiment. In this setup a sample is excited by a first ultrafast pump

pulse while a second delayed pulse is used to probe the system after a given interval of

time ∆t. Refined solid state laser techniques allow nowadays to excite out-of-equilibrium

bulk materials and control the interval ∆t on timescales of the order of femtoseconds

[1–3], thus smaller than the typical relaxation time of the system. On these very short

timescales, the system can be considered isolated from the environment. Pumping-

and-probing repeatedly the sample with different delays, dynamical processes can then

be recorded in real time. This technique has been recently used to study the out-of-

equilibrium dynamics of Mott or Charge-Transfer insulators [1, 2, 4] and unconventional

superconductors [5, 6], just to mention some.

The relaxational dynamics in a solid is in general characterized by the interplay

of several excitations at different energy scales. Femtosecond spectroscopy, accessing

different timescales, opens the possibility to dynamically disentangle multiple degrees of

freedom, thus providing an orthogonal point of view in cases where several competing

mechanisms determine rich equilibrium phase diagrams [4, 7, 8].

An example is given by the electronic and phononic degrees of freedom, which are usually

characterized by two well separated energy scales. In this case, a two temperature model

can often be used. It assumes that electrons rapidly thermalize on timescales of the order

of femtoseconds to an effective temperature much higher than the temperature of the

lattice. This is due to electron-electron interactions. Subsequently, electron-phonon

interactions mediate a slower relaxation of the hot electron gas. This approximation

has recently been applied with success in [5] for example, where electronic contributions

could be disentangled from phononic ones in a high-Tc superconductor.

This picture however becomes useless whenever the true relaxation dynamics of

the electrons has to be resolved. Such circumstance is particularly relevant for photo-

excited materials in vicinity of a Mott transition [8]. An example is the photo-induced
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Insulator-to-Metal transition observed in 1T-TaS2, in which the breakdown of the elec-

tronic energy gap, attributed to a purely electronic process, is directly measured on a

timescale shorter than 100fs [2].

Moreover, the two temperature model becomes questionable when the relaxation time

of electrons is not much faster than the typical energy scale of phonons [9]. This might

be caused by strong correlation which, in some cases, prevents a thermal relaxation of

the electronic degrees of freedom up to very long times [10]. Such scenario is of extreme

interest for systems that are excited through an equilibrium phase transition in which

some kind of long-range order is formed or destroyed. Long-lived phases with no thermal

counterpart can indeed emerge in this circumstance, as predicted for example in [11],

where an antiferromagnetic ordered state survives well above the corresponding Néel

temperature.

The description of such situations inevitably requires theoretical methods that do not

rely on a quasi-equilibrium approximation.

Apart from solid state materials, which historically provided a “nature-given” class

of quantum many-body systems, a second one that has emerged in the last two decades

is represented by cold atomic gases. Since the first experimental realization in 1995 of

Bose-Einstein condensation, there has been an enormous progress in the engineerization

of these artificial macroscopic quantum many-body systems [12]. Three main aspects

have revealed to be crucial in the development of this field. First of all these systems are

almost perfectly isolated from the environment, which leads to the possibility to observe

truly quantum unitary evolution. Moreover, optical lattices and trapping potentials al-

low to artificially create almost arbitrary lattice structures and reduced dimensionalities.

Finally, the development of the Feshbach resonance technique allows to tune (even in

time) the interaction strength between the atoms.

Combining together these unprecedented degrees of tunability, cold atomic systems,

differently from solid state materials, provide a clean realization of simple model Hamil-

tonians which for some decades have been considered popular toy-models to capture low

energy physics of more complex systems.

The ability to change the Hamiltonian parameters together with the long observa-

tional times attainable1 has de facto opened the path towards the real time observation

of paradigmatic models that have been the subject of intensive theoretical studies since

the introduction of quantum mechanics. A milestone in this context is the seminal ex-

periment of Greiner et al. in which they succeeded in observing collapse and revival

oscillations of the matter wave interference pattern for a Bose-Einstein condensate after
1In cold atomic systems typical relaxation times can be of the order of milliseconds.
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a sudden change of the strength of the lattice depth in a Bose Hubbard model [13].

A second landmark experiment by Kinoshita et al. established that trapped Rb con-

densates thermalize rapidly when confined in three-dimensional geometries, while they

show a slow relaxation in quasi-one-dimensional traps [14]. The difference in the one-

dimensional case has been attributed to the vicinity of an integrable model, a one-

dimensional hard core bosons system, thus starting a (still open) debate on the role of

integrability in quantum dynamics.

Although the energy scales and the microscopic degrees of freedom in solid state

materials and cold atomic systems are very different, the physical mechanisms which

govern the time evolution of these many-body systems follow similar lines, thus repre-

senting a fascinating example of universality [15]. Not surprisingly, these experiments

inevitably boosted a fervid theoretical discussion regarding the dynamics of quantum

systems.

1.2 Theoretical implications

From a theoretical point of view, the main framework of quantum dynamics and quantum

statistical physics was formulated at the beginning of the last century. However, the

experimental progresses described in the previous paragraphs posed a serious challenge

both for a deeper comprehension of such thematic and for a practical implementation

of predictive methods necessary to describe the out-of-equilibrium behavior of quantum

matter.

Regarding these issues, a great effort so far has been concentrated on the old de-

bate on the dynamics of a closed quantum system [16]. In fact, although oversimplified,

a first theoretical framework to describe the out-of-equilibrium physics in cold atoms

and femtosecond spectroscopy experiments is to assume that the effect of the external

perturbation is to leave the system in an isolated initial highly excited state. A simple

theoretical rephrasing of this excitation scheme is the paradigm of a quantum quench2

[17]. In practice one considers a closed quantum system initially in the ground state

|Ψ〉0 of an Hamiltonian H(ui) that depends on a global parameter ui; at a certain time

t, this parameter is changed to a new one resulting in the final Hamiltonian H(uf ). In

this way one can parametrize an initial state that corresponds to an excited state of the

final Hamiltonian.

Having in mind the experimental situations aforementioned, important questions on the
2In the following the quantum quench has to be intended as a variation of a global (not local)

parameter of the Hamiltonian.
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dynamics of this excited state rise. Does the system relax towards thermal equilibrium or

non-thermal long-lived or stationary states? On which timescales does relaxation occur?

For classical systems with many degrees of freedom the concept of thermalization is

connected to the concept of ergodicity. In general one expects that the high complexity

of the Hamilton’s equations of motion leads to a chaotic dynamics of the orbits which

eventually covers uniformly all the available phase space and redistribute the injected

energy among the different degrees of freedom. In this case the long time average of an

observable coincides with its statistical average over the phase space so that the details

of the initial configuration are “washed away” at long times with the solely exception of

few integrals of motions, in primis the internal energy and the number of particles.

Many cases are also known in which ergodicity is broken, the easiest and extreme scenario

being represented by integrable models. In this circumstance the system is characterized

by a number of integrals of motion equal to the number of degrees of freedom, so that

the complete coverage of the phase space is prohibited.

A direct transposition of classical ergodicity and ergodicity breaking to the quantum

case is not an obvious task. This is clear if one realizes that thermalization cannot be

attributed solely to a property of the evolving state through its time dependent density

matrix operator ρ̂(t) = |Ψ(t)〉〈Ψ(t)|. An initial pure state remains pure during time

evolution, i.e. Tr[ρ̂2(t)] = 1, therefore there is no way for the initial density matrix to

relax into the Boltzmann-Gibbs thermal distribution3 characterized by Tr[ρ̂2
eq] < 1.

One may still define thermalization in a weaker sense requiring that the long time average

of common local observables relaxes to the Boltzmann-Gibbs prediction

lim
τ→∞

1
τ

∫ τ

0
dt〈Ψ(t)|Ô|Ψ(t)〉 = Tr[ρ̂eqÔ]

at an effective temperature such that the internal energy (constant in time) equals the

thermal one.

For non-integrable models the wisdom is that thermalization, in this sense, takes place,

even though the mechanism beyond it remains still unclear. A widely known scenario

which accounts for thermalization is the so called Eigenstate Thermalization Hypothesis,

which states that thermalization occurs eigenstate by eigenstate, in the sense that the

average value of certain observables on a single energy eigenstate is equal to the micro-

canonical one [18, 19]. If this is the case, provided the initial condition is sufficiently

narrow in energy, thermalization would occur.
3For finite size systems one should consider the microcanonical ensemble. In the limit of large system

sizes, the two ensembles are equivalent.
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Indeed there have been works supporting this expectation [10, 20–22] even though sev-

eral numerical evidences suggest the contrary, with a lack of thermalization at least for

the longest times reached in simulations [11, 23–25]. In this situation it is of particular

relevance the role played by strong interaction and spatial dishomogeneities which might

be responsible for trapping the dynamics in long-lived metastable states that show no

relaxation towards thermal equilibrium [23, 26, 27].

As in classical physics, thermalization is instead expected to fail for quantum in-

tegrable systems where many constants of motion constrain the dynamics. For these

systems an intuitive generalization of the Boltzmann-Gibbs distribution has been pro-

posed, the so called Generalized Gibbs Ensemble, which is constructed from a maximum

information entropy ensemble compatible with the constants of motion [28]. The GGE

has proven to reproduce correctly the long-time stationary values for simple observables

in several cases [28–31], however there is yet no conclusive proof regarding the validity of

this ansatz [32] and some results even indicate a failure of GGE for specific observables

and initial states [33–35].

The crossover from integrable to non-integrable systems arises further important ques-

tions. Recent analyses indicate that nearly-integrable systems display a two-stage re-

laxation towards equilibrium, characterized by a short time relaxation to a non-thermal

state known as prethermalization, followed by a much slower decay towards thermal

equilibrium [36–39]. The concept of prethermalization might however be more general

and connected to the presence of non-thermal fixed points which do not necessary re-

quire the existence of an integrable limit, [40, 41].

Overall, these studies highlight that, apart from the characterization of the long time

dynamics, the approach to the stationary state in many cases is not characterized by a

simple relaxation, but instead reveals relevant features, with the appearance of different

timescales that might be even separated by sharp singularities, i.e. dynamical transi-

tions. The characterization of these dynamical critical points, their nature and their

possible universal behavior represents a current important issue, as we shall see in the

rest of this Thesis.

1.3 Interacting fermions and the Gutzwiller Approach

A complete understanding of the problems introduced above is a challenging task, as

witnessed by the amount of questions that, almost one hundred years after the intro-

duction of quantum mechanics, are still unsolved. The main difficulty resides in the

fact that novel theoretical approaches have to be developed which can deal with both
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interaction and nonequilibrium dynamics for large systems. Most of the theoretical re-

sults aforementioned have been found by analyzing the dynamics of simple paradigmatic

one-dimensional or finite size models, also triggered by their realization in cold atomic

experiments. For these systems, exact solutions or effective analytical approximations

are in some cases available; otherwise, exact diagonalization methods and the time-

dependent Density Matrix Renormalization Group (DMRG) [42] represent a valid and

in principle exact numerical approach, although they are bounded to small system sizes

and finite simulation times.

Quantum quench in the fermionic Hubbard model

Calculations in more realistic multi-dimensional models, which are necessary in order

to describe real solid state materials, are much more difficult to tackle and indeed they

pose a formidable numerical problem even at equilibrium. This motivated historically

the introduction of simpler minimal models capable of reproducing the main physical

mechanisms of strong correlation in electronic systems. The paradigmatic example in

this case is the single band fermionic Hubbard model, which entails the competition

between the itinerant and atomic nature of electrons in a solid. This model is commonly

used to provide a simple interpretation of femtosecond experiments in correlated mate-

rials, see for example Ref. [2], but it has recently been realized also by means of cold

atomic systems [43].

The Hubbard model, although being already a simplification of real materials, is gen-

erally not solvable analytically. Several approximation and numerical schemes therefore

have been developed in the past in order to deal with strong correlation at equilibrium.

The recent interest in nonequilibrium problems has driven the extension of most of these

techniques to treat time dependent situations and, not surprisingly, the Hubbard model

has represented the test-bed system to address quantum dynamics in correlated fermions

[44].

The time evolution under the Hubbard Hamiltonian has been firstly studied by a per-

turbative approach, the flow equation method, in [45]. Later, similar results have been

found by Keldish diagrammatic expansion technique [37]. These works considered the

evolution of an initial non-interacting state subject to a sudden quench of the Coulomb

strength U . The picture that emerged is that, for small values of the interaction quench,

the short-to-intermediate times regime displays the build-up of a prethermal state char-

acterized by a non-thermal Fermi-liquid behavior of the momentum distribution, with

thermalization that was argued to occur only on much larger times [45]. The trapping

into non-thermal states was also observed in the limit of very large quenches, for which
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the final Hamiltonian approaches the opposite integrable atomic limit and shows col-

lapse and revival oscillations [10].

Apart from perturbative calculations, these results were confirmed by the time depen-

dent extension of Dynamical Mean Field Theory (DMFT). This method maps a lattice

model into a local impurity problem coupled to a self-consistent determined bath and,

becoming exact in the limit of infinite coordination number, represents the state of the

art technique to treat correlated fermions in dimensions higher than one4 [15].

Non-equilibrium DMFT reproduced the presence of two different prethermal regimes

which trap the dynamics in metastable states and delay thermalization. Moreover,

DMFT results highlighted that these two regimes are separated by a critical region

at which one-time observables, and also correlation functions, display a fast thermal-

ization [10]. This critical region was argued to identify a dynamical phase transition.

The presence of a dynamical critical point has been subsequently discovered within the

time-dependent Gutzwiller Approach (t-GA) [49] and recently sustained in one and two

dimensions by means of high order perturbative calculations [46, 50]. Similar dynamical

critical points have been found within mean field theories in various models [51–55].

The Gutzwiller Variational Approach

The single band fermionic Hubbard model already displays much of the paradigmatic

properties that drove the out-of-equilibrium discussions in the last years. In fact, many

concepts, such as the dynamical phase transition, originated from the dynamics of the

Hubbard model. Apart from the relaxation dynamics after a quench of the interaction,

in several recent works the dynamics for the Hubbard model coupled to an external

electromagnetic field has also been considered in order to achieve a more realistic de-

scription of experiments, [9, 56, 57].

Being the simplest scenario to describe correlated compounds, the results so far obtained

for the Hubbard Hamiltonian encourage both a deeper understanding of some issues that

remain still open (i.e. the nature of the dynamical transition) and the analysis of more

realistic extensions of the model which eventually are suitable to describe with greater

accuracy real correlated materials. Non-equilibrium DMFT has recently been extended

in several directions, such as to treat the coupling with an external electromagnetic field,

inhomogeneous systems, ordered phases, electron-phonon interactions (for a detailed re-

view see [15]). Although in many cases a perturbative solution of the impurity problem

renders the numerical computation affordable [58, 59], this method quickly becomes very

demanding.
4Only few works in dimensions greater than one and smaller than infinity are known [46–48], hence

leaving the regime between these two extremes far from being theoretically understood.
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On the contrary, less expensive methods played an important historical role in de-

scribing the equilibrium physics of correlated materials. Among them it is not exag-

gerated to say that the Gutzwiller Variational Approach [60, 61] has proven to be a

fundamental non perturbative tool for the understanding of strong correlation effects,

with the most famous example being probably represented by the Brinkmann-Rice sce-

nario for the Mott-transition [62].

At zero temperature, the Gutzwiller Variational Approach introduces a variational wave-

function which has to be optimized in order to minimize the ground state energy of the

system. An analytical approximation to compute average values on this wavefunction,

known as the Gutzwiller Approximation, greatly simplifies calculations and has shown

to become exact in the limit of infinite coordination number [63]. Thenceforth this

method has benefited from continuous improvements and nowadays represents a flexible

tool which can be integrated with Density Functional Theory (DFT) to give results even

in quantitative agreement with DMFT+DFT [64–66].

The agility of the Gutzwiller Approximation, combined with the important role played

at equilibrium, motivated its recent extension by Schiró and Fabrizio [49] to treat the

quantum dynamics of pure states. This technique has been applied with success to

investigate the dynamics for the aforementioned quench in the single band Hubbard

model, showing to be in agreement with the weak and strong interaction regimes found

by other methods. Moreover, the Gutzwiller dynamics predicts a dynamical transition

at an intermediate value of quench in very good agreement with the DMFT result [49].

These successes enlighten the intuition that t-GA may represent a fast and reliable nu-

merical method to disclose non trivial dynamical effects where other approaches become

prohibitive, thus generating interest in possible applications of the method to more elab-

orate models and further improvements beyond the Gutzwiller Approximation [67].

In this direction goes the work presented in the Thesis in which we shall present var-

ious extensions and applications of the Gutzwiller Approach to treat the time evolution

of correlated fermionic systems.

1.4 Plan of the Thesis

The work presented in this Thesis is structured in the following.

Chapter 2 is devoted to present the state of the art of Gutzwiller Approach. We

first introduce the Gutzwiller technique for ground states calculations in a general for-

malism which is suitable to treat generic multiband models. In many situations however,

a proper generalization of the method to finite temperatures is necessary, both for a more
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realistic description of the phase diagrams of correlated compounds and for a compari-

son between long time averages obtained from quantum dynamics and the corresponding

thermal ones. These reasons motivated our recent extension of the Gutzwiller Approach

to finite temperature that we present here.

Finally, we conclude this Chapter by presenting the time dependent extension of the

method as introduced by Schiró and Fabrizio [49] and further elaborated in [68].

This Chapter provides the necessary background to analyze different models.

We begin by considering two extensions of the paramagnetic quench in the fermionic

Hubbard model. In Chapter 3 we consider the out-of-equilibrium dynamics induced by

a linear ramp of the repulsive interaction U . We study the degree of adiabaticity for this

excitation protocol and we investigate the fate of the dynamical transition encountered

in the sudden quench case. Finally, we go beyond the Gutzwiller Approach by discussing

the role of quantum fluctuations on the mean-field dynamics.

At low temperature, the single band Hubbard model at half filling displays an anti-

ferromagnetic ordered phase [69]. This motivates the work presented in Chapter 4 in

which we investigate the dynamics of an antiferromagnetic state evolved after a sudden

change of the repulsion strength U . The energy injected into the system, in the thermal-

ization hypothesis, would allow to dynamically move across the Temperature vs U phase

diagram and eventually cross the equilibrium phase transition. We find that magnetic

order survives more than what is expected on the basis of thermalization arguments

and that two different types of out-of-equilibrium antiferromagnets are separated by a

dynamical critical point.

In the last Chapter of the Thesis we consider an application of the Gutzwiller Ap-

proach to multiband systems, which eventually allows for a more refined description of

physical materials. To this extent in Chapter 5 we introduce a two-orbital model that

we believe captures some essential features of V2O3. We first apply the finite tempera-

ture Gutzwiller approximation to this model and we indeed find that its phase diagram

bears many similarities to that of real vanadium sesquioxide. In the final part of the

Chapter we investigate the out-of-equilibrium dynamics for this model evidencing the

existence of metastable metallic phases which have no equilibrium counterpart.
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Chapter 2

The Gutzwiller Variational

Approach

2.1 The Gutzwiller Approach for ground state calculations

In 1963 Hubbard [70], Gutzwiller [60] and Kanamori [71] proposed independently a

model to treat strongly correlated s-electrons in transition metal materials. Thenceforth,

the Hubbard model represents a minimal description of electron conduction in metals

and can be considered one of the simplest Hamiltonians which displays a competition

between the kinetic energy of electrons and the Coulomb interaction. Its form is given

by

H = −t
∑

〈R,R′〉,σ

(
c†RσcR′σ +H.c.

)
+
U

2

∑
R

(nR − 1)2, (2.1)

where the operator cRσ annihilates a spin-σ electron at site R, t is the hopping strength

between nearest-neighbors, U is the interaction strength and nR =
∑

σ c
†
RσcRσ is the

onsite total density.

Despite its innocent looking the Hubbard model describes many landmark phenomena

for correlated materials such as the Mott Metal-to-Insulator transition. Apart from the

special case of one dimension, the Hamiltonian (2.1) cannot be solved exactly. This mo-

tivated a huge theoretical effort in the years with the development of Dynamical Mean

Field Theory being probably the main success [69].

A more intuitive and less demanding approximation to the ground state of (2.1) was

proposed by Martin Gutzwiller himself immediately after the introduction of the Hub-

bard model. The main idea beyond this method relies on the observation that the value

of double occupancies has to decrease as a function of U , i.e. strong correlation disfavors

doubly occupied states and freeze charge fluctuations. Thus, in order to implement this

13
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constraint without breaking any symmetry of the ground state, Gutzwiller introduced a

variational wavefunction starting from an uncorrelated metallic state |ψ〉 (e.g. a Slater

determinant) on which double occupancies are projected out depending on a variational

parameter g ∈ [0, 1]

|Ψ〉G =
∏
R

(
1− (1− g) nR↑nR↓

)
|ψ〉. (2.2)

The case g = 1 corresponds to the non-interacting uncorrelated state, while the case

g = 0 describes the full suppression of the states with two electrons on the same site.

Despite these opposite limits, even on this simplified ansatz it is in general not possible

to calculate exactly average values. For this reason Gutzwiller introduced an approx-

imation scheme, which goes under the name of Gutzwiller Approximation, that turns

out to be exact in the infinite coordination limit [63], as we shall show below.

Brinkmann and Rice showed that in this limit a Metal-to-Insulator transition is pre-

dicted for a finite value of Uc, characterized by the vanishing of double occupancies

and of the quasiparticle residue Z. Although the insulating solution within the GA is

trivial and misses any description of the incoherent Hubbard bands, the metallic solu-

tion can be interpreted in terms of a non-interacting renormalized Hamiltonian whose

excitations are usually denoted as Landau-Gutzwiller quasiparticles and give access to

the low energy coherent part of the spectrum. This description in terms of renormal-

ized quasiparticles provides a good representation of the Metal-to-Insulator transition

from the metallic side. This is completely missed in single particle methods such as the

Hartree-Fock approximation, which are therefore unable to predict a transition to an

insulating state without breaking translational symmetry.

Such result motivated the success of the Gutzwiller Approach and its further refor-

mulation and application to more complex multiband systems in the years. In this

Section we shall present the nowadays most popular form of the Gutzwiller approach

as proposed by Bünemann and coworkers and further developed by Fabrizio and Lanatà.

We shall consider a generic tight binding Hamiltonian

H =
∑
R,R′

∑
ab

(
tabRR′ c

†
RacR′b +H.c.

)
+
∑
R

HR, (2.3)

defined on a lattice with coordination number z, and hopping parameters tabRR′ such

that their contribution to the total energy is well behaved also in the limit z →∞. HR

includes on-site potential and interaction terms.

Starting from the original Gutzwiller ansatz (2.2) we introduce a generic variational

wavefunction

|Ψ〉 =
∏
R

PR |ψ〉 (2.4)
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where both the Slater determinant |ψ〉 and the local Gutzwiller projector PR must be

variationally optimized by requiring the minimization of the total energy

E =
〈Ψ| H |Ψ〉
〈Ψ|Ψ〉

. (2.5)

The computation of the total energy E is in general inaccessible analytically; however

Bünemann and collaborators realized that in the limit of infinite coordination number,

z →∞, average values on the Gutzwiller wavefunction can be computed exactly provided

that the following constraints are satisfied

〈ψ| P†RPR |ψ〉
!= 1 (2.6)

〈ψ| P†RPR CR |ψ〉
!= 〈ψ| CR |ψ〉 (2.7)

where CR is a any single particle operator c†RacRb
1. To show this one starts realizing

that, since Wick’s theorem can be applied to calculate average values on |ψ〉, it follows

that

〈ψ| P†RPR CR |ψ〉 =

=1︷ ︸︸ ︷
〈ψ| P†RPR|ψ〉〈ψ| CR |ψ〉

+ 〈ψ| P†RPR CR |ψ〉connected. (2.8)

From the constraints (2.6-2.7) we have that the sum of all Wick’s contractions of a

pair of single fermionic operator with P†RPR vanishes, 〈ψ| P†RPR CR |ψ〉connected = 0.

This is true also for the contractions of P†RPR with a pair of fermionic operators at

different sites. Moreover in the Appendix we show that in the limit of z → ∞ also

the contractions where more than two lines are extracted from the term P†RPR and

contracted with fermionic operators at a different site R′ disappear. This determines a

great simplification in the calculation of expectations values.

Indeed, given a local observable OR, its average value on the Gutzwiller wavefunction

becomes

〈ψ| P†ORP |ψ〉 =
∏

R′ 6=R

=1︷ ︸︸ ︷
〈ψ| P†R′PR′ |ψ〉 〈ψ| P†RORPR |ψ〉

+
((((

((((
(((

((((
(((

((((

〈ψ|
∏

R′ 6=R

(
P†R′PR′

)
P†RORPR |ψ〉connected

= 〈ψ| P†RORPR |ψ〉 (2.9)

with the connected term that vanishes because of the constraint (2.7) and the limit

z →∞. Hence the average value of OR can be computed considering only the effect of
1We shall not consider in the following the presence of a superconducting order parameter, so that

we can avoid terms of the form c†Rac
†
Rb.
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the local projector PR, a great simplification in the calculations.

Similarly, the average value of intersite hopping operators reads

〈ψ| P† c†RacR′b P |ψ〉 = 〈ψ| P†R c†Ra PR PR′ cR′b PR′ |ψ〉 (2.10)

and making use of the Wick’s theorem it can be written as

〈ψ| P† c†RacR′b P |ψ〉 =
∑
c,d

R∗Rac RR′bd 〈ψ| c†RccR′d |ψ〉 (2.11)

where the Gutzwiller renormalization factors Rab are defined through

〈ψ| P†R c†Ra PR cRb |ψ〉 =
∑
c

R∗Rac〈ψ| c
†
RccRb |ψ〉. (2.12)

The best variational estimation of the ground state amounts then to find the Slater

determinant |ψ〉 and the projector P which minimize the energy functional

E = min
|ψ〉,P

[
〈ψ| H∗ |ψ〉+ 〈ψ| P†RHRPR |ψ〉

]
(2.13)

subject to the Gutzwiller constraints. H∗ is the initial non-interacting part of the Hamil-

tonian with a renormalized hopping strength tabRR′ →
∑

cdR
∗
RcaRR′db t

cd
RR′ .

The mixed-basis representation

In order to perform a numerical minimization of (2.13) we have to introduce a proper

parametrization for the Gutzwiller projector. To this extent we follow the proposal of

Lanatà et al. and we introduce the natural basis operators d†Ra, dRa which have the

property to diagonalize the local non-interacting density matrix,

〈ψ| d†RadRb |ψ〉 = δab n
(0)
Ra. (2.14)

Quite generically, the operators d†Ra are related to the original basis c†Ra through a

unitary transformation. However, the importance of the mixed-basis formulation relies

on the fact that, as we shall show, all calculations can be carried without specifying this

unitary transformation. Moreover, since in this representation the local density matrix

is diagonal, (2.14), the Gutzwiller constraints are much simplified, thus reducing the

complication of the numerical optimization problem.
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Upon introducing a basis for the local Fock space

|R;n〉 =
∏
a

(
d†Ra

)na |0〉 (2.15)

and equivalently a set of local states in the original basis |R; Γ〉, we can parametrize the

local Gutzwiller projector in the mixed-basis representation as

PR =
∑
Γn

ΦR;Γn√
P

(0)
R;n

|R; Γ〉〈R;n|, (2.16)

where P
(0)
R;n is the uncorrelated occupation probability matrix, which is diagonal by

definition,

P
(0)
R;n = 〈ψ |R;n〉〈R;n| ψ〉 =

∏
a

(
n

(0)
Ra

)nRa
(
1− n(0)

Ra

)1−nRa . (2.17)

The Gutzwiller variational parameters ΦR;Γn constitute the elements of a matrix Φ̂R

and actually correspond to the rotationally invariant slave boson mean field introduced

by Lechermann et al. [72].

A very effective computation on the Gutzwiller wavefunction can be achieved by intro-

ducing a matrix representation also for the creation/annihilation operators and for a

given local observable OR [64](
d̂†Ra

)
n1n2

= 〈R;n1|d†Ra|R;n2〉(
ĉ†Ra

)
Γ1Γ2

= 〈R; Γ1|c†Ra|R; Γ2〉(
Ô†Ra

)
Γ1Γ2

= 〈R; Γ1|OR|R; Γ2〉. (2.18)

Within this reformulation one can easily verify that the Gutzwiller constraints (2.6-2.7)

can be rewritten as

〈ψ| P†RPR |ψ〉 = Tr(Φ̂†RΦ̂R)
!= 1 (2.19)

〈ψ| P†RPR d†RadRb |ψ〉 = Tr(Φ̂†RΦ̂R d̂†Rad̂Rb)
!= δab 〈ψ| d†RadRa |ψ〉. (2.20)

Seemingly, the average value of a local operator OR is equal

〈ψ| P†ORP |ψ〉 = Tr(Φ̂†RÔRΦ̂R) (2.21)
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and repeating the reasoning that conducted to eq. (2.11), the average value of the

intersite hopping operator becomes

〈ψ| P† c†RacR′b P |ψ〉 =
∑
c,d

R∗Rac RR′bd 〈ψ| d†RcdR′d |ψ〉, (2.22)

where the renormalization factors Rab are defined in this case

〈ψ| P†R c†Ra PR dRb |ψ〉 =
∑
c

R∗Rac〈ψ| d
†
RcdRb |ψ〉 = R∗Rab n

(0)
Rb. (2.23)

The last equality follows from the property of the natural basis (2.14). We can arrive to

a more compact form for the renormalization factor adopting the matrix representation.

Indeed eq. (2.23) is equal to (we use Einstein’s convention for index summations and

discard site index R)

〈ψ| P† c†a P db |ψ〉 = 〈ψ|
Φ̂†n1Γ1√
P

(0)
n1

|n1〉〈Γ1| ĉ†aΓ2Γ3
|Γ2〉〈Γ3|

Φ̂Γ4n2√
P

(0)
n2

|Γ4〉〈n2| d̂bn3n4 |n3〉〈n4| ψ〉

=

√√√√P
(0)
n1

P
(0)
n2

Φ̂†n1Γ1
ĉ†aΓ1Γ3

Φ̂Γ3n2 d̂bn2n1 . (2.24)

Since the matrix element d̂bn2n1 are different from zero only between Fock states |n1〉
and |n2〉 that differ from the application of the operator db, from eq. (2.17) we have that√√√√P

(0)
n1

P
(0)
n2

=

√√√√ n
(0)
b

(1− n(0)
b )

, (2.25)

hence also the renormalization factor acquires an effective form suitable for computation

R∗Rab =
1√

n
(0)
Rb (1− n(0)

Rb)
Tr( Φ̂†Rĉ

†
RaΦ̂Rd̂Rb ). (2.26)

From eq. (2.26) and (2.21) we see that all average values on the Gutzwiller wavefunction

can be conveniently computed as matrix multiplications. The matrix Φ̂ will constitute

a variational matrix of dimensions 22n, where n is the number of orbitals, but in general

it can be reduced by exploiting the symmetries of the problem. Instead, the matrix

elements of the creation/annihilation operators ĉa, d̂a can be computed and stored ones

for all, since they depend only on the definition of the relative basis states. One then

realizes that the unitary transformation which connects the original basis to the natural

one does not need to be known at any stage in the computation with a great simplifica-

tion in the method.
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Overall the best estimation of the ground state has to be computed by minimizing an

energy functional that depends on the Slater determinant |ψ〉 and the matrix Φ̂ subject

to the Gutzwiller constraints (2.19,2.20)

E = min
|ψ〉,Φ̂

[ ∑
R,R′

∑
ab

(
t∗abRR′〈ψ| d

†
RadR′b |ψ〉+H.c.

)
+ Tr( Φ̂†RHRΦ̂R )

]
(2.27)

where the hopping strength is renormalized accordingly to eq. (2.22) as

t∗abRR′ =
∑
cd

R∗RcaRR′db t
cd
RR′ . (2.28)

The minimization of this energy functional naturally leads to the identification of the

renormalized single particle Hamiltonian H∗

H∗ =
∑
R,R′

∑
ab

t∗abRR′d
†
RadR′b +H.c.−

∑
R

∑
ab

µRabd
†
RadRb (2.29)

where µab are Lagrange multipliers that enforce the constraint 〈ψ|d†RadRb|ψ〉 = δabn
(0)
a .

The Hamiltonian (2.29) has a rigorous meaning only for its ground state which

provides the best estimation of the Slater determinant, |ψ0〉, in the construction of the

Gutzwiller wavefunction. However, following the reasoning beyond Landau’s theory of

Fermi liquids, it is common to construct coherent excitations within the GA starting

from the Gutzwiller ground state, [73]. Indeed, we can consider the Gutzwiller projector

P as the operator which adiabatically constructs the Fermi liquid ground state from the

non-interacting one. Therefore, upon diagonalizing (2.29)

H∗ =
∑
k,α,σ

ε∗kασζ
†
kασζkασ (2.30)

so that |ψ0〉 is the corresponding Fermi sea, we can identify with 〈ψ0|ζ†kασζkασ|ψ0〉 the

quasiparticle occupation probability and with |ζkασ〉 = Pζ†kασ|ψ0〉 the quasiparticle ex-

cited state.

The renormalization factors are thence connected to the weight on the quasiparticle

excitation of the original fermionic operators,

〈ζkασ|c†RaP|ψ0〉 = 〈ψ0|ζkασP†c†RaP|ψ0〉 =
∑
b

R∗Rb 〈ψ0|ζkασd†Rb|ψ0〉 (2.31)

which in general gives access to the coherent part of the spectral function that can be

used to compare with ARPES experiments [74]. In the Appendix we show that for

the single band paramagnetic Hubbard model, the square of the renormalization factor

is indeed equal to the jump at the Fermi surface of the momentum distribution, thus
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identifying in the GA an approximate method to derive a Landau’s description of a

normal metal.

The Metal-to-Insulator transition is therefore correctly captured from the metallic side,

where the coherent part of the spectrum vanishes. However, from this analysis, it is

also clear that the Gutzwiller Approach cannot properly describe the insulating side of

the transition, since a description of the incoherent part of the spectrum is completely

missed.
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2.2 Extension at finite temperature

The formulation of the Gutzwiller approach presented in the previous Section repre-

sents a powerful and efficient method to deal with strongly correlated electrons in com-

plex multiband lattice models. In order to access quantitative agreement with real

compounds more recently several attempts have been made to combine efficiently and

self-consistently the Gutzwiller approach with ab initio methods such as the Density

Functional Theory (DFT)[64–66]. DFT+GA has shown to be a much less demanding

method than DFT+DMFT and in several cases has reproduced quantitatively well phys-

ical properties of real compounds.

So far, these attempts have been restricted to ground state properties with the main

success being the prediction of a Mott Metal-to-Insulator transition. However, a genuine

Mott insulator, where the insulating character is due exclusively to charge localization,

is a very useful concept but never realized in the ground state of known correlated mate-

rials. Indeed, no system can sustain at zero temperature the residual entropy that would

be associated with all other electronic degrees of freedom different from charge. As a

result, Mott localization is always accompanied at low temperature by other phenom-

ena that freeze those degrees of freedom, for instance magnetic ordering or structural

distortions, which effectively turn the Mott insulator into a conventional band insulator.

By this we mean the possibility of reproducing low-temperature static and often also

dynamic properties of a supposed Mott insulator by an independent-particle scheme,

no matter how sophisticated it is [75]. However, even though it provides satisfactory

results, an independent-particle scheme, like Hartree-Fock or DFT within LDA and its

extensions, has a drawback: it can describe only the simultaneous locking of charge and

other degrees of freedom, like spin or lattice, while in a Mott insulator the charge freezes

at a much higher energy scale than any other degree of freedom. A tool that can reveal

this hierarchy of energy scales typical of a Mott insulator is the temperature, which

unveils the profound difference between the excited states of a Mott insulator and those

of its “band-insulator” counterpart [76].

Apart from a more reliable characterization of equilibrium phase diagrams, finite

temperature calculations are essential if one intends to compare the long time dynamics

with the corresponding thermal state, which is crucial to establish if thermalization oc-

curs or if possible long-lived phases with no equilibrium counterpart emerge. To verify

the thermalization hypothesis one should compare the long time expectation value of

an observable O with the corresponding thermal value Tr[e−H/T∗O]/Z∗, where the effec-

tive temperature T∗ is such that the internal energy 〈Ψ(t)|H|Ψ(t)〉 (which is conserved

in the unitary evolution for a time independent Hamiltonian) equals the thermal one,



22 2. The Gutzwiller Variational Approach

Tr[e−H/T∗H]/Z∗.

It is therefore desirable to dispose of a method which allows to compute thermal values

in a Gutzwiller-like Approach.

These reasons motivated the work presented in this Section in which we introduce

an extension to finite temperature of the Gutzwiller Approach that we recently proposed

[77].

First of all we start by deriving a rigorous upper-bound estimate of the free-energy of

a many-body Hamiltonian within the class of Gutzwiller- and Jastrow-like variational

density matrices. Next, we specialize to the case of Gutzwiller-like density matrices

and introduce the Gutzwiller approximation at finite temperature extending the zero

temperature mixed-basis formulation so far adopted.

2.2.1 Variational estimation of the free energy

In this Section we shall repeatedly use some known trace inequalities, for which we

refer to Ref. [78]. Let us consider an interacting many-body system described by the

Hamiltonian H at finite temperature T > 0. It is known that the free-energy functional

F (X) = Tr
(
XH

)
+ T Tr

(
X lnX

)
, (2.32)

with the matrix X > 0 and such that TrX = 1, is minimized by the Boltzmann distri-

bution function

Xmin =
e−βH

Tr e−βH
, (2.33)

where β = 1/T . Therefore, any variational ansatz for the density matrix X provides an

upper bound of the actual free energy

F ≡ F
(
Xmin

)
≤ F (X), ∀X > 0 with TrX = 1. (2.34)

It is also known that, for any positive matrix Y , the entropy of the distribution X

satisfies the inequality [78]

S(X) = −Tr
(
X lnX

)
≥ −Tr

(
X lnY

)
−Tr

(
X ln

(
X Y −1

))
≡ Svar(X,Y ). (2.35)

It then follows that, for any positive Y and X such that TrX = 1,

F ≤ min
X,Y

{
Tr
(
XH

)
− T Svar(X,Y )

}
. (2.36)
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Eq. (2.36) provides a variational principle for the free energy in terms of the distribution

X and the matrix Y > 0. Let us assume the variational ansatz

X = P ρ∗ P†, (2.37)

where

ρ∗ =
e−βH∗

Tr e−βH∗
, (2.38)

is the Boltzmann distribution corresponding to a variational non-interacting Hamilto-

nian H∗, and P a many-body operator that we can parametrize as

P = U
√
Q, (2.39)

with unitary U and Q > 0. It follows that the entropy of the distribution X

S(X) = −Tr
(
X lnX

)
= −Tr

(
Q1/2 ρ∗Q1/2 ln

(
Q1/2 ρ∗Q1/2

))
, (2.40)

is independent of the unitary operator U . By means of Eq. (2.35), setting Y = Q, we

obtain

Svar(X,Y ) = −Tr
(
Q1/2 ρ∗Q1/2 lnQ

)
− Tr

(
Q1/2 ρ∗Q1/2 ln

(
Q1/2 ρ∗Q−1/2

))
= −Tr

(
ρ∗Q lnQ

)
− Tr

(
ρ∗Q ln

(
ρ∗
))
. (2.41)

In conclusion, given the ansatz Eqs. (2.37)-(2.39), one can obtain an upper estimate of

the actual free energy

F ≤ min
{

Tr
(
ρ∗ P†HP

)
+ T Tr

(
ρ∗ P†P lnP†P

)
+ T Tr

(
ρ∗ P†P ln ρ∗

)}
, (2.42)

minimizing with respect to a non-interacting Hamiltonian H∗ and a many-body operator

P. This minimization is feasible only for particular choices of P. For instance, if P = 1,

Eq. (2.42) reduces to the well-known Hartree-Fock variational estimate of the free energy.

Another possibility is that P is a two-body Jastrow factor, which can be handled by

the variational Monte Carlo statistical approach [79]. In the next, we shall consider

operators of the Gutzwiller type, P, which can be dealt with analytically in the limit of

infinite coordination lattices.

We conclude by noting that, since Eq. (2.42) is based on the lower bound estimate
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Svar(X,Y ) of the entropy of the distribution X, Eq. (2.41), there is no guarantee that

such estimate is positive at any temperature, as the true entropy should be. Therefore,

it is more appropriate to state that

S(X) ≥ Max
Y >0

{
Svar(X,Y ), 0

}
. (2.43)

We further mention that Eq. (2.35) is actually the p = 1 case of the more general

inequality [78]

S(X) = −Tr
(
X lnX

)
≥ −Tr

(
X lnY

)
−1
p

Tr
(
X ln

(
Xp Y −p

))
, (2.44)

which becomes an equivalence as p→ 0. We cannot exclude that exploiting Eq. (2.44)

one could get a better but still manageable estimate of the entropy, though we did not

succeed.

2.2.2 The Gutzwiller approximation at finite T

As for the zero temperature case we assume a generic tight binding Hamiltonian

H =
∑
R,R′

∑
ab

(
tabRR′ c

†
RacR′b +H.c.

)
+
∑
R

HR, (2.45)

with local interaction terms HR.

Given a variational density matrix of the form as in Eqs. (2.37) and (2.38), i.e.

ρG = P ρ∗ P†, (2.46)

we take the operator P to be of the Gutzwiller type

P =
∏
R

PR, (2.47)

for which we shall generalize the zero temperature Gutzwiller constraints as

Tr
(
ρ∗ P†RPR

)
= 1, (2.48)

Tr
(
ρ∗ P†RPR CR

)
= Tr

(
ρ∗ CR

)
, (2.49)

where CR is any single-particle operator at site R. The above conditions replace (2.6-

2.7) and allow to analytically compute averages over the distribution function ρG in

the limit of infinite coordination number, z → ∞. The proof follows exactly the same
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reasoning we explained for the zero temperature case. Specifically, when z → ∞, the

two conditions (2.48) and (2.49) imply that the distribution ρG has unit trace, and that

all the formulas presented in Sec. 2.1 hold with the only difference that, instead of

averaging over a variational Slater determinant, one has to average over the variational

non-interacting Boltzmann distribution ρ∗.

Once again it is more convenient to assume that ρ∗ identifies a local natural basis, with

creation operators d†Ra such that

Tr
(
ρ∗ d

†
RadRb

)
= δab n

0
Ra, (2.50)

where n0
Ra depends on the variational Hamiltonian H∗ and on the temperature. Using

the local Fock states basis introduced in (2.15) and generalizing the local probability

distribution as

Tr
(
ρ∗ | R;n〉〈R;n |

)
= P 0

R;n =
∏
α

(
n0

Rα

)nRα
(
1− n0

Rα

)1−nRα , (2.51)

the Gutzwiller projector can be parametrized exactly as in (2.16)

PR =
∑
Γn

ΦR;Γn√
P

(0)
R;n

|R; Γ〉〈R;n|. (2.52)

In the matrix representation (2.18) the Gutzwiller constraints, the average of local ob-

servables and the average of the hopping terms can be rewritten exactly as in the zero

temperature case. With this, we obtain that the expectation value of the Hamiltonian

on the variational Gutzwiller canonical distribution is equal to

Tr
(
ρGH

)
=
∑
R,R′

∑
ab

Tr
(
ρ∗
(
tab∗RR′ d

†
RadR′b +H.c.

))
+
∑
R

Tr
(

Φ̂†R ĤR Φ̂R

)
, (2.53)

where both tab∗RR′ and the renormalization factors have the same form as in the zero

temperature case (2.28,2.26). In other words, the average over ρG of the Hamiltonian

(2.45) is equal to the average over the uncorrelated distribution ρ∗ of a renormalized

hopping Hamiltonian plus the sum of local terms that depend only on the variational

matrices Φ̂R.

We next need to evaluate the entropy. We note that, in the z → ∞ limit, and for

any, even non-local, single-particle operator C

Tr
(
ρ∗ P†P C

)
= Tr

(
ρ∗ C

)
.
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Since it also holds that

Tr
(
ρ∗ P†P lnP†P

)
=

∑
R

Tr
(
ρ∗ P†RPR lnP†RPR

)
=

∑
R

Tr
[
Φ̂†RΦ̂R ln

( (
P 0

R

)−1 Φ̂†RΦ̂R

)]

it follows that Eq. (2.41) reads, in the z →∞ limit,

Svar

(
ρ∗, Φ̂†Φ̂

)
= S

(
ρ∗
)
−
∑
R

Tr
[
Φ̂†RΦ̂R ln

( (
P 0

R

)−1 Φ̂†RΦ̂R

)]
= S

(
ρ∗
)

+
∑
R

S
(

Φ̂†RΦ̂R

∣∣|P 0
R

)
, (2.54)

where S
(

Φ̂†RΦ̂R

∣∣|P 0
R

)
is the relative entropy between the distribution Φ̂†RΦ̂R and the

uncorrelated local distribution P 0
R. In conclusion, the free energy can be upper estimated

through

F ≤ min
{ ∑

R,R′

∑
ab

Tr
(
ρ∗
(
tab∗RR′ d

†
RadR′b +H.c.

))
+
∑
R

Tr
(

Φ̂†R ĤR Φ̂R

)
−T Max

(
Svar

(
ρ∗, Φ̂†Φ̂

)
, 0
)}

, (2.55)

hence one just needs to minimize the right-hand side supplemented by the constraints

Tr( Φ̂†RΦ̂R ) = 1 (2.56)

Tr( Φ̂†RΦ̂R d̂†Rad̂Ra ) = n
(0)
Ra (2.57)

A possible route is to regard n0
Ra in Eqs. (2.50) and (2.57) as independent mini-

mization parameters, and introduce two Lagrange multipliers terms

Tr
(
ρ∗ V

)
−
∑
R

∑
ab

µR ab

[
Tr
(

Φ̂†RΦ̂R d
†
RadRb

)
− δab n0

Ra

]
,

where the non-interacting potential V enforces Eq. (2.50), while µR ab enforce Eq. (2.57).

When Svar

(
ρ∗, Φ̂†Φ̂

)
> 0, minimization with respect to the uncorrelated distribution

ρ∗, see Eq. (2.38), leads to the identification

H∗ =
∑
R,R′

∑
ab

(
tab∗RR′ d

†
RadR′b +H.c.

)
+ V, (2.58)
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so that, once V is chosen so as to satisfy Eq. (2.50), Eq. (2.55) reads

F ≤ min

{
F∗
[
Φ̂, n0

]
+
∑
R

Tr
(

Φ†R ĤR ΦR

)
+ S

(
Φ†RΦR

∣∣|P 0
R

)
−
∑
R

∑
ab

µR ab

[
Tr
(

Φ̂†RΦ̂R d
†
RadRb

)
− δab n0

Ra

]}
≡ min

Φ̂,n0,µ

{
F
[
Φ̂, n0, µ

]}
, (2.59)

where F∗ is the free energy of non-interacting electrons described by the Hamiltonian

H∗ in (2.58) that depends on the variational matrices Φ̂R and on the parameters n0
Rα

through the constraint (2.50) and the Eqs. (2.28) and (2.26).

When instead Svar

(
ρ∗, Φ̂†Φ̂

)
≤ 0, the r.h.s. of Eq. (2.55) becomes the Gutzwiller

energy functional that we would minimize at T = 0, in which case the optimized ρ∗

is simply the projection onto the ground state of the Hamiltonian H∗ in Eq. (2.58).

In other words, the variational estimate of the free energy coincides with that of the

ground state energy whenever Svar

(
ρ∗, Φ̂†Φ̂

)
is negative, evidently a drawback of the

entropy bound that we use. In our experience, this problem may arise only at very low

temperature, where the entropy contribution to the free energy is nonetheless negligible

Minimization of F
[
Φ̂, n0, µ

]
therefore provides an upper bound to the actual free

energy in lattices with infinite coordination number z →∞. Seemingly to what it is done

at zero temperature, one can keep using the same free-energy functional also when the

coordination number is finite, which can be regarded as the finite temperature extension

of the Gutzwiller approximation [60, 61, 80]. We mention that, in the simple case of

a one-band Hubbard model, the free energy functional F
[
Φ̂, n0, µ

]
coincides with the

expression derived by different arguments in Ref. [81].
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2.3 The Time-Dependent Gutzwiller Approximation

In this Section we shall conclude this methodological Chapter by presenting the real

time extension of the Gutzwiller Approach originally introduced by Schiró and Fabrizio

in [49]. This Section therefore concludes the technical panoramic on the Gutzwiller

Approach.

We follow its formulation in the mixed-basis representation [68], since it allows a natural

generalization of the framework we introduced in the previous sections.

The quantum dynamics of pure state |Ψ(t)〉 under the effect of a time dependent

Hamiltonian is set by the Scrödinger equation

i∂t|Ψ(t)〉 = H(t) |Ψ(t)〉. (2.60)

We have seen that both ground state and finite temperature calculations rely on vari-

ational principles, respectively the minimization of energy and the minimization of the

free-energy. This provided a way to obtain a systematic optimization of the real ground

state and the canonical distribution in a given subspace of Gutzwiller-type wavefunc-

tions. Also the Scrödinger equation can be re-expressed by means of a stationarity

principle which allows an effective computation within the Gutzwiller Approach.

Indeed, upon introducing the Action functional

S[|Ψ〉] =
∫ tf

0
dτ 〈Ψ(τ)| i∂τ −H(τ) |Ψ(τ)〉 , (2.61)

the evolving wavefunction |Ψ(t)〉 which satisfies the Scrödinger equation is the one that

stationarizes S[|Ψ〉] [82],

δS[|Ψ〉]
δ|Ψ(t)〉

!= 0. (2.62)

By means of this variational reformulation it is then possible to search systematically

the best approximation for the evolving state in a subclass of time-dependent wavefunc-

tions.

For the same reasons that hold at equilibrium, the exact evaluation of the Action S over

a correlated wave function is still a highly non trivial task which, in general, cannot be

accomplished exactly. Rather one has to use approximation schemes or evaluate it nu-

merically, using for example a suitable time dependent extension of the variational Monte

Carlo algorithm as recently done in Ref. [26] for the bosonic Jastrow wave-function.

However it turns out that an exact calculation can be carried out generalizing the zero
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temperature Gutzwiller ansatz (2.4) to a time dependent Gutzwiller wavefunction

|Ψ(t)〉 = P(t) |ψ(t)〉 . (2.63)

|ψ(t)〉 is a time dependent Slater determinant and P(t) is a time dependent generalization

of the Gutzwiller projector that we shall properly parametrize in the following.

Imposing, as at equilibrium, that the Gutzwiller constraints are satisfied for any time t,

〈ψ(t)| P†R(t)PR(t) |ψ(t)〉 != 1 (2.64)

〈ψ(t)| P†R(t)PR(t) CR |ψ(t)〉 != 〈ψ(t)| CR |ψ(t)〉 , (2.65)

by the same reasons indicated previously, an analytical computation in the limit of

z →∞ can be performed exactly.

Given the form of the evolving wavefunction (2.63), the Action S(t) can indeed be

evaluated exactly and reads [68]

S[|Ψ〉] =
∫ tf

0
dτ
[
i〈ψ(τ)|∂τψ(τ)〉+ i

∑
R

〈ψ(τ)| P†R(τ)∂τ
(
PR(τ)

)
|ψ(τ)〉 − E(τ)

]
(2.66)

with E(t) = 〈ψ(t)| P†(t)H(t)P(t) |ψ(t)〉 being the total energy.

Eq. (2.66) can be properly evaluated upon parametrizing the Gutzwiller projector.

Following the same scheme we applied at equilibrium, we write the local projector PR(t)

as

PR(t) =
∑
Γn

ΦR;Γn(t)√
P

(0)
R;n(t)

|R; Γ〉〈R;n| (2.67)

where both the variational matrix Φ̂R(t) and the local uncorrelated probability P (0)
R;n(t) =

〈ψ(t) |R;n〉〈R;n| ψ(t)〉 are in this case time dependent and we assume the existence of

a natural basis identified by the operators d†Ra, dRa such that

〈ψ(t)| d†RadRb |ψ(t)〉 = δabn
(0)
Ra(t). (2.68)

In the matrix representation we obtain the following form for the Action

S[|Ψ〉] =
∫ tf

0
dτ

[
i〈ψ(τ)|∂τψ(τ)〉 − 〈ψ(τ)|H∗(τ)|ψ(τ)〉

+i
∑
R

Tr
(

Φ̂†R(τ)∂τ Φ̂R(τ)
)
−
∑
R

Tr
(

Φ̂†R(τ)ĤRΦ̂R(τ)
)]

(2.69)
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where the renormalized Hamiltonian H∗(t) has the same form as at equilibrium, with the

only difference that it acquires a time dependence through the renormalization factors

R∗Rab(t) =
1√

n
(0)
Rb(t) (1− n(0)

Rb(t))
Tr( Φ̂†R(t)ĉ†RaΦ̂R(t)d̂Rb ). (2.70)

Since the derivation of (2.66) and (2.69) follows the same philosophy as in the equilibrium

case, we report it in the Appendix.

The best approximation of the real evolving state within the subclass of Gutzwiller

wavefunction can be then calculated by requiring the stationarity of (2.69) with respect

to the Slater determinant |ψ(t)〉 and the Gutzwiller variational matrix Φ̂(t). Taking the

functional derivative of (2.70) with respect to |ψ(t)〉 and Φ̂†R(t) one obtains,

i∂t|ψ(t)〉 = H∗[Φ̂(t)] |ψ(t)〉

i∂tΦ̂R(t) = ĤR(t)Φ̂R(t) + 〈ψ(t)|∂H∗[Φ̂(t)]

∂Φ̂†R(t)
|ψ(t)〉. (2.71)

One can then recognize that, in analogy to the equilibrium case, the uncorrelated part of

the Gutzwiller wavefunction evolves accordingly to a renormalized single-particle Hamil-

tonian, which is self-consistently coupled through the renormalization coefficients (2.70)

to the dynamics of the variational matrix Φ̂(t). As at equilibrium, the dynamics of the

Slater determinant can be interpreted as the the dynamics for the Gutzwiller quasipar-

ticles, whilst the Gutzwiller parameters Φ̂(t), describing the local degrees of freedom

can be associated to the dynamics of atomic-like excitations. The two are coupled in a

mean-field like fashion.

Overall this constitutes a set of non-linear differential equation that has to be solved

numerically in most of the cases. A simple calculation shows that, for time-independent

Hamiltonians, energy is conserved.

Before concluding this Section we remark that the equations of motion (2.71) have to

be solved subject to the time dependent Gutzwiller constraints (2.64) and (2.65), which

in the matrix notation read

Tr
(
Φ̂R(t)Φ̂R(t)

)
= 1 (2.72)

Tr
(
Φ̂R(t)Φ̂R(t)d†RadRa

)
= 〈ψ(t)| d†RadRa |ψ(t)〉 = n

(0)
Ra(t). (2.73)

However in Ref. [68] it was shown that these constraints are automatically satisfied

during the dynamics, that is, once the variational matrix Φ̂ and the Slater determinant

are set at t = 0 in a way to satisfy the Gutzwiller constraints, then (2.72,2.73) are

automatically satisfied for any t > 0. This result drastically simplifies the solution of

the Gutzwiller dynamics, since a constrained minimization problem is needed only at
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the initial time and in most of the cases amounts to a groundstate calculation problem

for which the procedure presented in Sec. 2.1 can be applied.

In this Chapter we presented the recent extensions of the Gutzwiller Approach nec-

essary in order to attack the dynamics of strongly correlated systems. In particular the

dynamics of an initial pure state can be simulated through the time dependent GA and

its long time behavior can be compared to the corresponding thermal value by means of

the finite-T GA. However, it has to be stressed that t-GA, as we shall show in the rest

of the Thesis, remains essentially a mean-field approach, hence, although it improves

the time-dependent Hartree-Fock approximation simply because of the larger number of

variational parameters, it misses dissipative processes that in reality bring the system

to a stationary or thermal state. A comparison with thermal values is therefore mean-

ingless a priori if intended to verify thermalization hypothesis. In spite of that, the

Gutzwiller Approach seems to reproduce quite satisfactorily the main results obtained

by exact DMFT calculations, whenever a comparison is possible and even when time-

dependent Hartree-Fock fails completely, like in the case of quantum quenches within

the paramagnetic sector [49]. In particular t-GA captures well short time properties of

the dynamics, so that, in this case, a comparison with the corresponding thermal state

can lead to the identification of possible long-lived non-thermal phases. In this sense the

Gutzwiller Approch is very useful for a first analysis of complicated multiband models

where other methods become excessively demanding.

We conclude this Chapter remarking that all the above treatment is strictly varia-

tional only in the limit of infinite coordination number, where the exact averages on the

Gutzwiller variational wavefunction (or the thermal averages on the variational canoni-

cal distribution) coincide with those we have computed.

In finite coordination lattices the approach is not anymore variational. Nevertheless, it is

common to keep using the same expressions also in these more physical cases, which goes

under the name of Gutzwiller Approximation. Even though to our knowledge there are

so far no exact out-of-equilibrium results to compare with in finite coordination lattices,

recent high order perturbative calculations in one and two dimensions [46, 50] bring

results quite similar to those obtained in Ref. [49] through the Gutzwiller approach.

At equilibrium, instead, the Gutzwiller approximation seems to reproduce well exact

variational Monte Carlo calculations on the Gutzwiller wave functions [83], and, when

applied in combination with ab-initio density functional theory methods, also physical

properties of real materials [84].





Chapter 3

Linear Ramps of Interaction in

the Fermionic Hubbard Model

3.1 Introduction

In a typical cold atom experiment, microscopic parameters controlling the Hamiltonian

of a quantum many body system, for instance the lattice depth or the interparticle inter-

action, are changed in time between different values following some given protocol [85].

The dynamics during and after this time dependent transformation is recorded.

From a theoretical perspective, if the rate of change is much faster than any typical

time scale of the system, one can model such a process as a sudden change of parame-

ters, a sudden quench. Although this protocol is far from usual solid state experiments,

it generally provides a simple description for an initial excited state, thus allowing the

characterization of dynamical features which might be independent on the excitation

scheme. To this extent, beside the general issue of thermalization and its relation to

integrability [20, 86] and localization [26, 87], an intriguing question which has been

recently addressed in a number of works concerns the ways strongly correlated system

approach equilibrium, namely the short-to-intermediate time dynamics. Here non trivial

behaviors, featuring metastable prethermal states trapping the dynamics for long time

scales [45, 88, 89], are likely to emerge as a result of strong correlations. The intriguing

possibility of sharp crossovers among different relaxation regimes, or even genuine dy-

namical transitions, has been firstly argued in a DMFT investigation of the fermionic

Hubbard model [10] and then found in a number of mean field models, including the

Gutzwiller Approximation. We shall revise these results in the first Section of this Chap-

ter.

33
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A rather different situation may arise if the time dependent protocol is performed

in a finite time τ , the simplest example being a linear-in-time increase of some control

parameter, a so called ramp. Here the Hamiltonian of the system is explicitly time

dependent and one may wonder about new issues concerning, for example, the degree

of adiabaticity of the dynamics, namely to which extent an isolated system is able to

follow a (slow) time dependent change of its Hamiltonian parameters without being

excited [90]. Such a question has been around since the early days of quantum mechan-

ics [91], an example being the Landau Zener process [92–95] where a two level system is

driven through an avoided level crossing. In the context of quantum many body systems

with a continuum of energy levels, this very basic idea lays the ground for the Landau’s

phenomenological description of Normal Fermi Liquids [96]. More recently, the interest

in the adiabatic dynamics of quantum many body systems has grown stimulated by a

debate on quantum computation and mainly in connection with ramps across quantum

critical points. In the small excitation energy limit, namely for slow ramps, the pos-

sibility of a universal behavior has been discussed in a number of works [97, 98] as a

generalization to isolated quantum systems of the classical dynamical behavior.

It is worth noticing at this point that understanding the degree of adiabaticity of

a time dependent process in a quantum many body system is not only of theoretical

interest but also of practical relevance for cold atoms applications. Indeed, one has to

consider that real experiments are always performed at a finite rate which unavoidably

induces heating into the system. Hence the challenge one has to face in order to use cold

atoms to simulate specific low temperature quantum phases is to minimize those heating

effects. Recent works address this issue and look for the optimal ramping protocol

which produces the minimal heating [99, 100]. Other investigations on the slow quench

dynamics in trapped cold gases address the issue of equilibration of local and global

quantities [101, 102].

Finally, we note that while those questions mainly address the dynamics during the

ramp, there are interesting issues as well that concern the evolution of the system once

the ramp is over, namely for times t > τ . Here the system is again isolated, initialized

with the excitation energy acquired during the ramp, and it is let evolve with its unitary

dynamics. One can see that this set up is very similar to the quench case, with the ramp

process affecting the initial condition of the dynamics. As we discussed, an interesting

question in this case is to understand how the excitation energy due to the ramp affects

the relaxation toward equilibrium and the possible existence of non trivial dynamical

behaviors.
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In this Chapter we address some of these questions in the context of the fermionic

Hubbard model already introduced by using the time dependent Gutzwiller Approach.

We start with the preliminary Section 3.2 where we show how the t-GA is applied to

the single band Hubbard model and we recall the main results regarding the dynamical

phase transition for a sudden quench of the interaction [49, 103]. Next in Sec. 3.3 we

move to consider the case of linear ramps of the Hubbard interaction across the Mott

transition. We will first discuss the issue of adiabaticity of the dynamics. Then we will

show that a dynamical phase transition occurs also for finite values of the ramping time

τ and, for very large values of τ , this dynamical critical point is continuously mapped

into the zero temperature phase transition point.

Finally in Sec. 3.4 we shall discuss a slave spin formulation which allows to go beyond

the mean field nature of the Gutzwiller approximation for both regimes of slow and very

fast ramps.

3.2 Interaction quench in the single band Hubbard model

In this Section we give some details regarding the implementation of the t-GA intro-

duced so far to investigate the dynamics for the single band Hubbard model after a

sudden quench of the interaction strength. As already discussed, the out-of-equilibrium

dynamics of this model encodes many non trivial effects that enlighten theoretical de-

bates in the recent years, such as the presence of prethermal regimes and a dynamical

phase transition. Moreover, many concepts introduced in this Section will be used in

the rest of the Thesis.

We consider the time dependent Hubbard Hamiltonian

H = −t
∑

〈R,R′〉,σ

(
c†RσcR′σ +H.c.

)
+
U(t)

2

∑
R

(nR − 1)2, (3.1)

where the time dependence is set by U(t) = Ufθ(t), with θ(t) being the Heaviside

function. We shall restrict the dynamics to paramagnetic states and work at half-filling,

i.e. nRσ = 0.5. Upon introducing the local Fock states for the natural basis |0〉, | ↑〉, | ↓〉,
| ↑↓〉 (which corresponds in this case with the original one), the most general variational
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matrix Φ̂R compatible with the Gutzwiller constraints can be chosen as
ΦR;0 0 0 0

0 ΦR;↑ 0 0

0 0 ΦR;↓ 0

0 0 0 ΦR;↑↓

 . (3.2)

Spin symmetry and particle-hole symmetry reduce the number of variables since Φ0 =

Φ↑↓ and Φ↑ = Φ↓ ≡ Φ1. We do not consider translational invariance breaking, so that

the renormalization factor is site (and spin) independent and from (2.70) reads

R(t) = 2
(
Φ∗0(t)Φ1(t) + Φ∗1(t)Φ0(t)

)
. (3.3)

During the dynamics the Gutzwiller constraints are satisfied, which in this simple case

reduce to a normalization condition

2|Φ0(t)|2 + 2|Φ1(t)|2 = 1. (3.4)

We shall briefly consider the zero temperature ground state solution within the

Gutzwiller approximation. At equilibrium the variational parameters can be chosen to

be real so that we are left with only one degree of freedom which is usually chosen to be

the expectation value of the double occupation operator, D = |Φ2|2. The best estimation

of the ground state has then to be computed minimizing

min
D,|ψ〉

{
−R2(D) t

∑
〈R,R′〉,σ

(
〈ψ| c†RσcR′σ |ψ〉+H.c.

)
+ U

∑
R

D

}
(3.5)

where R2(D) ≡ Z = 8D(1−2D) represents the quasiparticle weight (see Appendix A.3).

The best Slater determinant for the renormalized non-interacting Hamiltonian is simply

a Fermi sea at half filling, |ψ〉FS . Upon defining the average hopping energy,

ε =
t

L

∑
〈R,R′〉,σ

(
FS〈ψ| c†RσcR′σ |ψ〉FS +H.c.

)
(3.6)

we obtain that the ground state energy is equal to (L being the number of sites)

E(D)
L

= −ε 8D(1− 2D) + UD. (3.7)

The minimum is given by {
D = 1

4

(
1− U

8ε

)
U < 8ε

D = 0 U ≥ 8ε
(3.8)
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with a corresponding quasiparticle renormalization factor{
Z = 1−

(
U
8ε

)2
U < 8ε

Z = 0 U ≥ 8ε
. (3.9)

We hence recover the Metal-to-Insulator transition in the Brinkmann-Rice scenario at

the critical value Uc = 8ε; within the Gutzwiller approximation this transitions is char-

acterized by the vanishing of double occupancies and the quasiparticle residue Z due to

a full suppression of charge fluctuations. The Gutzwiller Approach therefore describes

correctly the Mott transition in the metallic side, with a vanishing of the quasiparti-

cle weight and consequently of the coherent part of the spectrum. However, since the

method is unable to capture the incoherent one (i.e. the existence of the Hubbard

bands), it gives a wrong description on the insulating side.

We remark that all the above and following derivation (i.e. the average values on the

Gutzwiller wavefunction) is strictly exact in the limit of infinite coordination number 1.

We move next to consider the dynamics of an initial non-interacting ground state

subject to a quench of the interaction. The initial conditions for the dynamics are

simply given by D = 1/4 and |ψ(0)〉 = |ψ〉FS . First of all from (2.71) we easily recog-

nize that the Slater determinant |ψ(t)〉 has a trivial time evolution determined uniquely

by an overall phase factor, therefore the occupation probability in momentum space,

〈ψ(t)| c†kσckσ |ψ(t)〉, does not evolve in time. In this simple circumstance it is then

instructive to compute directly the Lagrangian (2.69) in terms of the Gutzwiller param-

eters that we can rewrite as Φa = ρae
−iφa . We obtain

L(t) = 2ρ2
0(t) ∂tφ0(t) + 2ρ2

1(t) ∂tφ1(t)−

E(t)︷ ︸︸ ︷
ε8ρ2

0(t)ρ2
1(t) cos2(φ0(t)− φ1(t)) + Uρ2

0(t)(3.10)

where E(t) is the total energy. This latter is conserved during the dynamics together

with the Gutzwiller constraint

2ρ2
0(t) + 2ρ2

1(t) = 1 . (3.11)

This allows to express ρ2
1(t) as a function of ρ2

0(t); moreover, since in the total energy

the angle variables appear only through the combination φ0(t)− φ1(t) ≡ φ(t), we arrive

at system of equations for φ and ρ2
0 ≡ D only,{

∂tφ(t) = 1
2
∂E
∂D = Uf

2 − 4ε(1− 4D(t)) cos2(φ)

∂tD(t) = −1
2
∂E
∂φ = 4εD(1− 2D) sin(2φ)

. (3.12)

1Indeed the Brinkmann-Rice transition does not exist in any finite dimension [104].
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The entire dynamics for the Hubbard model is mapped into that of two classical con-

jugate variables where E/2 plays the role of a classical Hamiltonian. Hence, being the

total energy a constant of motion

E(t) = −εZ(t) + UD(t) = Ei = −ε+
Uf
4

(3.13)

the dynamics can be recasted in an equation of motion for a single degree of freedom.

From (3.12) we chose the angle variable φ as the only coordinate since this choice will

become useful in the rest of the Thesis. The equation of motion for the phase reads

2∂tφ(t) = ±
√
U2
f − 16ε2 sin2(2φ(t)). (3.14)

Therefore the angle φ shows a characteristic pendulum-like dynamics, with finite ampli-

tude oscillations for Uf ≤ Udync = Uc/2 and full precessions around the unit circle for

greater values of the quench.

Exactly at Udync the value of the total energy coincides with that of a ground state Mott

insulator, E = 0. At this critical point the dynamics displays a relaxation towards a

stationary solution of (3.12) characterized by the vanishing of the double occupation

and consequently of the quasiparticle weight, see Fig. 3.1.

For values of the quench different from Udync the dynamics of D(t) and Z(t) displays

instead an undamped oscillatory behavior. The oscillation period increases approaching

Udync both from below and above the critical point and diverges logarithmically at Udync ,

τ ∼ 1/ log |udync − uf | [49] (we use the notation u = U/Uc). In the limit of very large

quenches the oscillating period approaches the atomic limit τ = 2π/Uf .

The Gutzwiller approach is a simple mean field approximation and, as evident from

the resulting equations of motion (3.12), it lacks enough dissipation channels to predict

thermalization or even stationarization. However, some useful insights can be recovered

considering long time average of an observable O

〈O〉t = lim
τ→∞

1
τ

∫ τ

0
dt O(t). (3.15)

In particular the long time average for the double occupation and the quasiparticle

residue has been computed in the limit of weak and large values of the quench [49].

For small values of the quench 〈D〉t(uf ) = (1 − uf )/4, which corresponds to the zero

temperature equilibrium value Deq(uf ). Therefore, no heating effect is expected at

leading order in U , and both the kinetic and potential energy thermalize. Instead, the

quasiparticle renormalization factor differs from the corresponding T = 0 equilibrium
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Figure 3.1: Dynamics of the quasiparticle weight Z(t) (upper panel) and of the double
occupation D(t) (lower panel) for different values of the final value of the interaction.
The dynamical transition point can be recognized for U/Uc = 0.5. We plot for compar-

ison the DMFT result of Ref. [10] in proximity of the transition.

one

〈Z〉t(uf ) = 2Zeq(uf )− 1. (3.16)

This result is in agreement with the dynamics being trapped in a metastable prethermal

regime, where momentum-integrated quantities (such as the double occupation) thermal-

ize, while k-dependent quantities show a much slower thermalization which is deferred to

later times. Since the Slater determinant does not evolve in time, extending the concepts

explained in Appendix A.3, the evolving state can be interpreted as a zero-temperature

correlated state with well defined quasiparticles and a jump in the momentum occupa-

tion distribution given by (3.16). Remarkably, these results are in agreement with the

prethermalization regime described by perturbative calculations [37, 45]. In particular,

in those works, the momentum occupation probability nk = 〈Ψ(t)| c†kσckσ |Ψ(t)〉 has

shown to stationarize to a non-equilibrium zero temperature distribution with enhanced

correlation given by (3.16).

The presence of a prethermal regime in the limit of weak quenches has later been ascribed

to the vicinity of the integrable non-interacting limit of the Hubbard Hamiltonian. This

allows to construct a Generalized Gibbs Ensemble in terms of approximate integrals of

motions which reproduces the long time averages of the prethermal state [38, 105].

The t-GA predicts correctly also the long time behavior in the limit of large quenches,

where 2π/U collapse and revival oscillations are present. The long time average of the
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double occupation is equal in this case to 〈D〉t(Uf ) = Di − ε
2Uf

, which agrees with the

perturbative result found in [10].

These two opposite regimes are separated in the intermediate region of the quench by

the critical point Udync , (Fig. 3.2), at which the time averages of the double occupation

and of the quasiparticle residue vanishes as

〈D〉t(uf ), 〈Z〉t(uf ) ∼ 1/ log (|udync − uf |). (3.17)
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Figure 3.2: Long time average of the double occupation D and the quasiparticle
weight Z as a function of the final values of Uf . At Udync both the values vanish

logarithmically.

The logarithmic singularity is suggestive of a dynamical transition occurring at Udync .

This is confirmed considering the behavior of the renormalization factor that from eq.

(3.3) reads R(t) = 4ρ0(t)ρ1(t) cos(φ). Due to the precession of the phase φ above Udync ,

it is immediate to recognize that the long time average of R can be associated to a

dynamical order parameter with a finite long time average below the transition point

and a vanishing one above,{
〈R〉t > 0 U < Udync

〈R〉t = 0 U ≥ Udync

. (3.18)

Udync therefore distinguishes two different dynamical phases and for this reason has been

advocated as a dynamical counterpart of the zero temperature Mott transition.
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This can be corroborated by introducing the two-times local retarded Green’s func-

tion (we discard spin index)

GR(t+ s, t) = −iθ(s)〈Ψ(0)|{cR(t+ s), c†R(t)}|Ψ(0)〉 (3.19)

and considering the spectral function A(ω, t) = −(1/π)=
∫
dseiωsGR(t+ s, t). Although

this spectral function does not have the same meaning as at equilibrium, it was shown

in Ref. [106] that it represents a useful quantity to distinguish the weak from the

strong coupling quench regime. In particular, for large values of U , the spectrum is

characterized by well defined Hubbard bands and a minimum at ω = 0, thus indicating

the buildup of a Mott insulator, or more properly of a bad metal.

We can try to estimate (3.19) within the Gutzwiller Approach. For this purpose we notice

from the equations of motions (2.71) that the coherent part of the dynamics is described

in terms of a non-interacting renormalized Hamiltonian H∗(t) obtained replacing the

original Fermi operator cRσ by its quasiparticle content that, after projection, reads

PR(t)cRPR(t)→ RR(t)cR . (3.20)

In the same spirit we can assume that the time-evolving operator cR(t) becomes

cR(t)→ RR(t)c∗R(t) (3.21)

where c∗R(t) is the time evolved operator through H∗(t), and the average in (3.19) is

computed on the initial Slater determinant |ψ(0)〉. Within this assumption, eq. (3.19),

in the homogeneous case, reads

GR(t+ s, t) = −iθ(s)R(t)R(t+ s)
∫
dερ(ε)e−i

R t+s
t dτR2(τ)ε (3.22)

where we have replaced the momentum summation with an integral over the density

of states. We can compute therefore the spectral function A(w, t) after a quench of

the interaction. Since t-GA cannot capture relaxation we consider the time average

Ā(ω, t) = 1/t
∫ t

0 A(ω, τ)dτ . Its behavior is shown in Fig. 3.3 for two different values of

the final interaction that lie respectively below and above the dynamical critical point

Udync .

As shown in the Figure, below the dynamical transition a well defined peak is centered

at ω = 0, thus indicating a coherent metallic nature of the state. Instead, for values

of the final quench above the dynamical transition, two well separated Hubbard bands

are recognizable, which lie approximately at ±U/2. This confirms the picture that the

dynamical transition separates two different dynamical regimes that can be interpreted

as the nonequilibrium counterpart of the Brinkmann-Rice transition.
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This will be even more clear in the rest of the Chapter, where we shall see that the

Gutzwiller dynamics can be mapped into that of an infinitely connected Ising model

in presence of a transverse field. In this case, the dynamical transition separates two

phases with different symmetry, [54].
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Figure 3.3: Time average of the spectral function Ā(w, t) as a function of the time
and the frequency, for U/Uc = 0.4 (upper panel) and U/Uc = 0.7 (lower panel). We
used a semicircular density of states ρ(ε) =

√
4− ε2/2π where the hopping sets the unit

energy.

The existence of a dynamical separation between two different regimes for the Hub-

bard model has been firstly discovered by means of non-equilibrium DMFT [10] which,

being exact in infinite dimensions, provides a correct and non-perturbative (although

limited in time) dynamics in this limit. Figure 3.4 summarizes the main picture obtained:

for small values of Uf , DMFT results confirmed a prethermal regime, with the jump in

the momentum occupation that displays a plateau in agreement with (3.16) and only at

later times shows a slow decrease towards zero (which would correspond to the thermal

value at finite temperature). In the limit of strong quenches instead, 2π/Uf oscillations

dominate the dynamics and preclude thermalization on the short times reachable by
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numerics.

Non-equilibrium DMFT firstly evidenced how these two different regimes are separated

by a narrow critical region around Uf ≈ 3.2 (not easily identifiable as a single value) at

which the jump at Fermi surface shows a fast vanishing (in very good agreement t-GA,

Fig. 3.1) and common observables, such as the double occupation or the momentum

occupation distribution, thermalize very fast.

However, the effective temperature of the corresponding thermal state turned out to be

much higher than the equilibrium end-point critical temperature for the Mott transition

in the Hubbard model (see sketch in Fig. 3.5). Such evidence suggested that the dynam-

ical critical region is a purely out-of-equilibrium effect not connected to an equilibrium

criticality, which motivated the authors of [10] to refer it as dynamical phase transi-

tion. Remarkably enough, the value for the dynamical critical region within DMFT,

Udync,DMFT ≈ 3.2 (for a semicircular density of states ρ(ε) =
√

4− ε2/2π), is in a good

quantitative agreement with that predicted by t-GA for the same density of states,

Udync,GA = 4ε ≈ 3.4.

Figure 3.4: Discontinuity of the momentum occupation probability at the Fermi
surface for different values of final interaction Uf . The dashed lines mark the prethermal

plateau of eq. (3.16). Taken from [10].

We see therefore that t-GA, although being a crude approximation, is able to de-

scribe with qualitative and also quantitative agreement the main aspects that character-

ize the dynamics of the Hubbard model after a quench in the interaction. In particular

it predicts the existence of a dynamical critical point which separates two well distinct

phases that can be reconduced to zero temperature Metal-to-Insulator transition. How-

ever, although t-GA helps clarifying the picture that emerged from DMFT, it raises

very important questions which remain still unsolved, the main one related to the na-

ture of the dynamical phase transition. Indeed, the existence of a dynamical transition
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analogous to that encountered within t-GA has been later observed in a series of differ-

ent mean field models [51, 53–55] 2 and in all these mean field analysis, the dynamical

transition is characterized by two distinct features:

• disappearance of the long time average of an order parameter, with a consequent

separation between two distinct nonequilibrium phases;

• absence of thermalization, due to the lack of relaxation mechanisms in the models

considered.

These evidences leave then open the debate on the nature of the transition for the

Hubbard model in the limit of infinite dimensions as found by DMFT. Is it a transi-

tion between two thermodynamic distinct phases (as t-GA would suggest) or is it just

a dynamical separation (or even a sharp crossover) between two different prethermal

regimes?

If one believes that thermalization occurs within the dynamical critical region, the sec-

ond scenario would seem the most probable. In fact, since the corresponding equilibrium

phase at which the dynamics thermalizes is far away from the equilibrium Metal-to-

Insulator transition line [10], (see sketch in Fig. 3.5), this would rule out the possibility

that the dynamical transition separates two distinct thermodynamic phases and would

rather point towards the interpretation in terms of a dynamical transition (or even a

sharp crossover limited to intermediate times) between two different prethermal regimes,

maybe due to the vicinity of a non-thermal fixed point (which in this case could be rep-

resented by the Gutzwiller dynamical critical point).

However, due to the numerical difficulty in exploring this dynamics within DMFT, non

conclusive answer has been given so far, thus leaving the connection between the two

phenomena and consequently the nature of the dynamical transition an open debate.

A relevant step forward that would help clarifying this issue requires a better under-

standing of the possible link between the dynamical transition and the equilibrium phase

transition. This could be investigated in two manners. The first would be considering

a quench from a finite initial value of the interaction Ui to larger values Uf < Uc. For

large enough Ui, the effective temperature should eventually cross the phase transition

line, provided thermalization occurs (at least it would occur if Ui is greater than the

corresponding value for the end-point of the Mott transition, as shown in Fig. 3.5).
2It is worth to remark that whenever an analytical solution of the equation of motion is not feasible,

it is in general not possible to identify the dynamical transition as a single point. In reference [55] indeed
the dynamical transition has rather been characterized as an extended region. This issue will be further
encountered in the rest of the Thesis.
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Within t-GA the dynamical phase transition occurs also in this case at a value [49]

Udync

Uc
=

1
2

(
1 +

Ui
Uf

)
which however is unrelated to the thermal one, since thermalization is missed in the

Gutzwiller dynamics. It would be interesting to see if a dynamical transition appears

within DMFT in this case and if it is related or not to the crossing of the equilibrium

transition line.

A second alternative, which we shall consider in rest of this Chapter, is to ramp the

interaction adiabatically from the non-interacting limit. We will see that within t-GA a

dynamical transition will appear for any value of the ramping time τ and will connected

to the zero temperature equilibrium critical point for τ →∞. This confirms that within

the GA the dynamical phase transition is the nonequilibrium counterpart of the zero

temperature Brinkmann-Rice transition.

Unfortunately, also in this case, DMFT results are not available due to the finite time

restrictions imposed by numerics, which leaves the puzzle still unsolved.
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Figure 3.5: Sketch diagram representing the dynamical transition as found by DMFT
(in units of the hopping, for a semicircular density of states, [10]). The red arrow rep-
resents the quench to Udync for which the corresponding effective temperature (red
diamond) lies far above the end-point of the Metal-to-Insulator transition (blue dia-
mond). The green arrow sketches the quench proposed in the main text. In this case,
for Uf big enough, provided thermalization occurs, the effective temperature should

cross the equilibrium phase transition line.
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A final important issue to address regards the fate of the dynamical phase transi-

tion beyond mean field approximation with particular emphasis on the role of quantum

fluctuations. This latter question has been recently tackled in Ref. [107] where leading

order corrections beyond mean field were considered in the investigation of quantum

N -component φ4 model and a dynamical transition was established characterized by

the vanishing of the order parameter.

We mention that recently the qualitative existence of two different dynamical regimes

resembling the results presented in this Section has been established also for the one- and

two-dimensional Hubbard model by means of high order perturbative schemes [46, 50],

thus enforcing the guess that a dynamical critical region might indeed be more general

than what expected on the basis of mean field calculations.

In the next sections we will report the attempts we made to address these problems

within t-GA.

3.3 Ramping the interaction in the Hubbard Model

In this Section we consider the dynamics of the fermionic Hubbard model (3.1) extending

the sudden quench introduced so far and considering a linear ramp of the interaction

U(t) between Ui and Uf = Ui + ∆U , namely we shall assume

U(t) = Ui + ∆U t/τ 0 < t < τ (3.23)

U(t) = Uf t ≥ τ.

We note that, experimentally, it turns to be easier to change in time the optical lattice

depth, which controls the hopping strength tRR′ , rather than the local interaction.

However, we can safely assume that the same effect can be modeled by tuning in time

the local interaction, since the physics will only depend on the ratio between U(t) and

the bandwidth. In the following, we shall only focus on the half filled case and, for

the sake of simplicity, consider a non interacting initial state (Ui = 0), even though the

extension to finite Ui is straightforward.

The problem of linear ramps in a strongly correlated fermionic system has been

addressed in a number of recent works. The crossover from adiabatic to sudden quench

regimes and in particular the scaling of the excitation energy with the ramp time τ has

been studied in the Falikov Kimball model by nonequilibrium DMFT [108]. For what

concerns the Hubbard model, (3.1) the problem has been tackled in the perturbative

small Uf regime and arbitrary ramp-time using Keldysh perturbation theory [37], and in
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the non-perturbative regime but short ramp times by nonequilibrium DMFT in combi-

nation with CTQMC [99]. Here we will make use of the mean field theory we presented

for the sudden quench case to address the problem of ramps and we will compare with

the results available whenever this is possible.

Since the time dependent interaction U(t) introduces a new time scale contrary to

the sudden quench case, namely the rate τ at which the ramp is performed, one can ask

oneself three separate questions: (i) what is the dynamics during the ramp, i.e. for times

t ≤ τ ; (ii) what is the state the system is left once the ramp is terminated (excitation

energy, degree of adiabaticity); and finally (iii) what is the nonequilibrium dynamics for

times larger than the ramp time, i.e. for t > τ .

3.3.1 Dynamics during the ramp and degree of adiabaticity

In Figure 3.6 we plot the dynamics of the quasiparticle weight Z(t) for different values

of the final quench uf = Uf/Uc in units of Uc, the critical value for the equilibrium Mott

transition that will be our unit of energy hereafter, at two different fixed ramp times,

τ = 100 (top panel) and τ = 20 (bottom panel). In the same figure we plot, for the

sake of comparison, the adiabatic dynamics obtained assuming the system stays in its

instantaneous ground state, namely that

Zad(t) = 1− u2(t) .

A quick look to this figure reveals that, as one could expect, the degree of adiabaticity

depends strongly on the duration of the ramp τ and on the final value of the interaction

uf . In order to be more quantitative on this issue it is useful to introduce a measure of

the adiabaticity of the process. A possible criterion amounts to calculate the excitation

energy which is left into the system once the ramp is completed. This quantity is defined

as

∆Eexc (τ, uf ) = E (τ, uf )− Egs(uf (τ)) , (3.24)

where E(t, u(t)) = 〈H(t)〉 is the time dependent expectation value of the Hamiltonian,

while Egs(uf ) is the ground state energy at the final value of the interaction uf . Based

on very general grounds one expects that if the system behaves adiabatically then the

excitation energy ∆Eexct should go to zero as the ramp duration diverges. Since one

expects the process to be more and more adiabatic as τ increases, the expectation for

∆Eexc is to show a monotonic decreasing behavior as a function of the ramp time τ .

In Figure 3.7 (top panels) we plot the excitation energy as a function of τ for

quenches from the non interacting case ui = 0 to different values of uf . We notice that
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Figure 3.6: Gutzwiller mean field dynamics at half-filling for quasiparticle weight Z(t)
for quantum quenches from ui = 0 to uf = 0.25, 0.75, 1.5, 3.0 (from top to bottom) for
a ramp time τ = 100 (top panel) and τ = 20 (bottom panel). For comparison we plot
the adiabatic dynamics Zad(t) (see dashed lines), obtained assuming the system stays

in its instantaneous variational ground state.

the excitation energy does indeed decreases toward zero with τ , although with some

small oscillations, thus confirming that the time dependent Gutzwiller approximation is

able to capture the crossover from the sudden quench to the adiabatic regime.

It is particularly interesting to study the regime of very long ramp times τ → ∞,

where one expects universal behavior to emerge as a function of the ramp speed. This

universality translates into power-laws and scaling relations for the relevant physical ob-

servables which have been recently attracting a lot of attention in the literature, starting

with the seminal work by Kibble and Zurek on classical phase transitions and its gen-

eralization to the quantum case [97, 109, 110]. More recently the issue of universality

in the Kibble-Zurek problem has attracted a renewed interest and first steps toward a

scaling theory have been performed [111, 112]. Here we focus on the scaling of the exci-

tation energy ∆Eexc which is very sensitive to the nature of the elementary excitations

in the systems [90]. This question, in the context of the correlated fermionic systems,

has been addressed in the Falikov-Kimball model using DMFT [108] and in the fermionic

Hubbard model, that is of interest here, mainly using pertubation theory [37, 108].

We perform such a scaling analysis (see bottom panel of figure 3.7) and find that

to a very good extent the behavior of ∆Eexc is consistent with a power law, possibly

with a pre-factor that depends on the interaction uf and displays in general an extra

oscillating behavior in τ

∆Eexc(τ) =
γ(τ, uf )
τα

(3.25)
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Figure 3.7: Excitation energy ∆E(τ) as a function of the ramp time for quenches
starting from the metallic phase (ui = 0) and ending into the metallic (left panel) or
insulating (right panel) phase. We see in the former case a fast transient to zero occurs,
with some residual oscillations which die out as τ increases. As opposite for quenches
which crosses the Mott transition the transient seems much more longer and sensitive
to the final value of uf , namely stronger quenches seems to require longer ramps to

achieve a fixed amount of excitation energy.

At small values of the final interaction uf we find ∆Eexc ∼ τ−2. We notice that,

in this small quench regime, oscillations are more pronounced (and result into the noisy

scaling of figure 3.7), nevertheless the power law scaling with α = 2 works very well for

the envelope of local maxima. This scaling appears to be consistent with perturbative

results [37, 108] and with linear response arguments [90]. We notice that for the Falikov-

Kimball model the DMFT analysis gives a different exponent, α = 1, for ramps ending

in the metallic phase, but this result has been understood as a consequence of the Non-

Fermi Liquid ground state of that model [108]. Within our time dependent Gutzwiller

approximation we find that the “Fermi Liquid scaling” works up to rather large values

of the interaction but appears to break down close to the Mott transition, uf = 1, where

the exponent crosses over to α ' 1.5. Finally, for ramps ending deep inside the Mott

phase, we find very small oscillation in the long time behavior of ∆Eexc and power law

scaling suggests an exponent α = 1. In order to get more insights into the behavior

of the excitation energy ∆Eexc for large τ it is useful to step back for a moment to

the Gutzwiller semi-classical dynamics given by equations (3.12). In the limit of very

slow ramps, τ →∞, one can analyze the deviations from adiabaticity using techniques

borrowed from classical mechanics. This is described in great detail in a recent work
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Figure 3.8: Excitation energy ∆E(τ) as a function of the ramp time for quenches
starting (ui = 0.0) and ending (uf = 0.75 top panel, uf = 0.99 bottom panel) in the
metallic phase. We compare the Gutzwiller results with the scaling Eq. (3.25-3.26)
obtained from the adiabatic classical dynamics (red curve). The agreement for uf < 1

is excellent but worsen upon approaching the critical point.

by Bapst and Semerjain that addresses the ramp dynamics in a fully connected p−spin

model with a transverse field [113]. For ramps ending in the metallic phase, uf < 1,

one can expand the classical Hamiltonian around its instantaneous minimum [114] (see

appendix B.1), D∗(t) = (1 − u(t))/4, up to a quadratic order with frequency ω(t) ∼√
1− u(t)2 and obtain for the excitation energy the result (3.25) with α = 2 and γ

γ(τ, uf ) =
u2
f

√
1− u2

f

4
sin2 ω(uf )τ +

+
1− u2

f

4

(
uf

1− u2
f

−
uf

(1− u2
f )1/4

cos ω(uf )τ

)2

(3.26)

with ω(uf ) = 1
4

(
arcsin(uf )/uf +

√
1− u2

f

)
. In figure 3.8 we compare this expression

with the numerics and find an excellent agreement, in particular we notice the frequency

of the oscillations is correctly captured by ω(uf ). We also notice that upon approaching

the critical point uf → 1 the agreement deteriorates. Indeed for ramps ending in the

insulating phase, i.e. uf > 1, the situation is more tricky as the frequency of oscillations

ω(t) vanishes during the ramp at t = t? = τ/uf and one cannot extend the above

analysis to the regime t? < t < τ . Still one can proceed by mapping the classical

dynamics onto a suitable limit of the Painlevé equation and using the well known results

on its asymptotic. This has been discussed in Refs [113, 115] for the fully connected
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Ising model in a transverse field, which is relevant for the Hubbard model within the

Gutzwiller approximation (as we shall see later), where a power law α = 1 has been found

for ramps across the critical point, in agreement with our numerical results. In light of

this analysis an interesting question, that we leave open for future investigations, is to

understand whether a different power law exponent may arise for ramps ending right

at the critical point (as our numerics would suggest) or if the quadratic scaling (3.26)

expected in the metallic phase eventually sets in on a sufficiently longer time scale.

We finally conclude this Section by briefly discussing whether the above findings

can be put into the framework of the Kibble-Zurek scaling theory [97, 109, 110]. For a

ramp from the ordered to the disordered phase across a critical point scaling arguments

would predict for the excitation energy a power-law decay [98, 116] ∆Eexc ∼ 1/τdν/zν+1.

Indeed, by using the mean field exponents ν = 1/2, z = 1 for the Ising critical point

and setting d to the upper-critical dimension d = 3 for a quantum Ising model we get

∆Eexc ∼ 1/τ , namely α = 1, which matches our results. While this observation may

suggest a positive answer to this question we notice that the validity of such a scaling

theory for fully connected models (or finite-connectivity models treated within mean-

field as it is the case here) is not obvious a priori (in particular the identification of

d with the upper critical dimension is generally dangerous when dealing with scaling)

and it has been not fully addressed in the literature to the best of our knowledge. For

this reason and since this is not the main focus of the present paper we refrain from

conclusive statements on this issue and leave this question for future investigations.

3.3.2 Dynamics after the ramp

We now turn our attention on the dynamics after the ramp is completed, namely for

t > τ . Here the system is isolated, i.e. the energy is conserved, and the evolution starts

from the state the system is left once the ramp is over. This set-up represents therefore

the natural generalization of the sudden quench case (which is indeed recovered in the

limit τ → 0): once the ramp is completed, the system has some excitation energy above

its ground state and one is interested in the relaxation dynamics for longer time scales.

Interestingly enough this issue has been only partially addressed in the literature,

which mostly focused on the dynamics during the ramp, but it looks particularly in-

triguing in light of the results obtained on the sudden quench case. As we explained in

Sec. 3.2, a dynamical transition characterized by a fast relaxation has been found, quite

generically, in mean field models for bosons and spins [51, 53] and in the fermionic case,

too, both at the variational level [49] and within DMFT [10].
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A natural question we would like to address here is therefore what is the effect of

the finite ramp duration on the mean field dynamical transition found in the sudden

quench case. A recent investigation using non equilibrium DMFT with the CTQMC

impurity solver [99] addressed this same issue for very small ramps and found signatures

of a sharp crossover in the dynamics, much similar to what found in the sudden quench

limit. While this result seems to suggest that a dynamical transition survives also for

small finite τ , it is difficult from numerical data, which are limited to short times, to

conclude what happens for a generic speed ramp, and eventually in the adiabatic limit

τ → ∞. Here we will address again this point using mean field theory and study the

fate of the dynamical transition after a ramp of arbitrary speed.

As we mentioned earlier, the classical dynamics (3.12) for t > τ admits an integral

of motion which is the total energy,

E(t) = uf D(t)− 1
8
Z(t) ≡ ER(uf , τ) , t > τ . (3.27)

Hence we can use it to reduce the problem to a one dimensional dynamics, much in the

same way we did for the quench case. A simple calculation gives the equation of motion

is term of the solely double occupation,

Ḋ =
√

Γ(D) , (3.28)

with the effective potential Γ(D) given by

Γ(D) = (uf D − ER)
(
ER − uf D + 2D (1/2−D)

)
. (3.29)

The energy ER(uf , τ) after the ramp depends on the initial (ui) and final (uf ) values

of the interaction and from the ramp time τ . In the general case, its value has to be

determined from the solution of the dynamics for t < τ , but it reduces in the sudden

quench limit (τ → 0) to the value

ER(uf , 0+) =
uf
4
− 1

8
,

while for an infinitely slow ramp τ → ∞ it approaches the ground state energy at the

final value of the interaction, namely

ER(uf , τ →∞) = −1
8

(1− uf )2 uf < 1 ,

and zero in the Mott insulator phase uf > 1.

In Figure 3.9 we plot the behavior of ER(uf , τ) at different values of τ . The effective
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0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
u

f

-0.2

-0.1

0

0.1

0.2

D

D
+

D
-

D
*
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notice the crossing of roots, occurring at ucf (τ) which signals the onset of a relaxation

dynamics.

potential has three roots which read D? = ER/uf and

D± =
1− uf ±

√
(uf − 1)2 + 8ER

4
(3.30)

We immediately see that, much as in the sudden quench case, for a given ramp time τ

at which the condition ER(uf , τ) = 0 is fulfilled, two of the above roots merge and the
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Figure 3.11: Gutzwiller mean field dynamics at half-filling for quasiparticle weight
Z(t) for a ramp of duration τ = 20 from ui = 0 to uf = 0.2, 0.4, 0.6, 0.8, 0.81, 0.82 (top
panel, from top to bottom) and from ui = 0 to uf = 1.0 (dashed) or 2.0 (full red line).

The critical value of the interaction quench ucf (τ = 20) ' 0.83.

dynamics shows an exponentially fast relaxation. The only non vanishing root reads

D− =
1− ucf (τ)

2
(3.31)

where ucf (τ) is the value of the final interaction at which ER(uf , τ) = 0 (see Figure

3.10). In Figure 3.11 we plot the dynamics of quasiparticle weight Z(t) after a ramp of

τ = 20 for different values of the final interaction. We still can distinguish two regimes

of slow and fast oscillations with some period T (uf , τ), which turns out to diverge at the

transition ucf (τ). Such a diverging time scale is associated to a change in the behavior

of the effective potential Γ(D), with two inversion points going degenerate at ucf (τ). As

a result, the divergence appears to be still logarithmic T ∼ log |uf − ucf (τ)|. For ramps

ending right at ucf (τ) the dynamics approaches exponentially fast the steady state value

Z = 0. The exact expression for Z(t) can be worked out in this case, but does not look

particularly illuminating . The scaling at long times reads

Z(t� τ) ∼ exp
(
− t/trel

)
(3.32)

with trel =
√

2ucf (τ). We therefore get an exponential scaling at long times, as for the

sudden quench case, with a time scale trel that accounts for the finite duration of the

ramp. It is interesting to discuss the dependence of the critical interaction strength ucf

from the ramp duration τ , which could shed some light on the origin of this putative

dynamical critical point, which is still under debate. In addition to that, as we noticed
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Figure 3.12: Mean field dynamical critical point ucf as a function of the ramp duration
τ . We see that for small τ we recover the sudden quench result ucf = 1/2 while for

longer ramps τ →∞ ucf approaches the equilibrium Mott critical point uf = 1.

earlier, this quantity (together with the lattice bandwidth) sets the time scale for the

relaxation trel, therefore by tuning properly τ one can arrange protocols where relaxation

is faster. This issue was addressed in Ref. [99], although only for short ramps τ ' 1,

where the authors also discussed the dependence of ucf (τ) upon the ramp protocol.

In Figure 3.12 we plot the behavior of ucf as a function of τ for a linear ramp

starting at ui = 0. We see that this quantity approaches, for τ → 0, the sudden quench

value ucf (0) = 1/2. From the behavior of ER(uf , τ) in Figure 3.9 we observe that in

the opposite limit of a very long ramp the system is closer and closer to the adiabatic

ground state. As a result, the condition ER(uf , τ) = 0 suggests that as τ increases the

mean field critical point ucf smoothly approaches the equilibrium zero temperature Mott

transition, namely ucf (τ → ∞) = 1. This is indeed the case, namely ucf interpolates

between the sudden quench value at small τ and the Mott critical point for long ramps.

We also note the presence of small oscillations in its τ dependence, which are likely an

artefact of the Gutzwiller mean field dynamics. DMFT data would be required in order

to check this point further.

The asymptotic behavior for long ramps, namely for small excitation energies, looks

also very intriguing and deserves further investigations. From one side one could have

expected this result since the larger is τ the less the system is excited at the time

the ramp stops. Hence it is reasonable to expect that some kind of criticality or sharp

crossover between weak and strong coupling should be visible close to the Mott quantum

critical point. On the other hand, one has also to bear in mind that the less the system
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is excited above its ground state at the time the ramp ends, the less sharp the signature

of the dynamical critical point will look. Indeed, as we are going to see and in agreement

of what observed by Keldysh perturbation theory, [37] the metastable prethermal states

which block the dynamics at small and large quenches become lower and lower in energy

as the ramp time increases.

The last issue we would like to discuss here is the dependence from the ramp time

τ of long time averages, that we define as

〈O〉t = lim
T→∞

1
T

∫ T

τ
dtO (t) . (3.33)

Since the motion for t > τ is periodic, although as we have seen the initial condition

at t = τ is not an inversion point of the dynamics, one can still express those long

time averages as an integral over a period of oscillation. This allows to obtain closed

expressions for the double occupation average 〈D〉t (uf , τ) and, through the conservation

of energy, for the quasiparticle weight 〈Z〉t(uf , τ). The critical behavior is then the

same of that obtained for the sudden quench case where both quantities vanish at the

dynamical critical point ucf (τ) with the logarithmic divergence,

〈D〉t(uf , τ) ∼ 1/ log |uf − ucf (τ)| . (3.34)

In other words, as for the period of oscillations T (uf , τ), the only effect of the finite ramp

duration is to shift the critical point to ucf (τ), without changing the critical behavior at

the transition.

In addition to the behavior close to ucf (τ), also the results at small and large values

of uf are interesting. Indeed, in the sudden quench case it was shown [103] that the long

time average of mean field dynamics exactly reproduces the metastable plateau blocking

the dynamics, which can be evaluated using perturbation theory. This is consistent

with the idea that mean field dynamics is able to capture the short-to-intermediate

dynamics, and the trapping occurring on those time scales, but not the final escape

toward equilibrium. In light of this results we want now to understand how these

metastable plateau move as the ramp time is changed from the sudden to the adiabatic

limit.

To this extent we compute the long time average of the quasiparticle weight, 〈Z〉t(uf , τ),

and define, following Ref. [37], the mismatch function µ(τ) as

µ(τ) =
1− 〈Z〉t(uf → 0, τ)

1− Zeq(uf → 0)
. (3.35)
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Figure 3.13: Mismatch µ(τ), as defined in the main text, as a function of the ramp
duration τ . We see the crossover from the sudden quench limit µ = 2 to the adiabatic

regime µ = 1.

In the sudden quench case this quantity approaches µ(0+) = 2, consistently with the

results obtained with other perturbative methods. In the opposite limit of a very long

ramp we expect the mismatch to approach µ(∞) = 1, namely the dynamics to be

adiabatic. We plot in figure (3.13) the behavior of the function µ(τ), which shows a

smooth crossover from the sudden to the adiabatic regime.

3.4 Quantum Fluctuations Beyond Mean Field

In this Section we discuss the role of quantum fluctuations on the mean field ramp

dynamics we have previously presented. To this extent, we reformulate the Hubbard

model in the framework of the Z2 slave spin theory. We give here only the main results

of this mapping and refer to Ref. [103, 117, 118]. As in other slave spin approaches [119,

120], we map the local physical Hilbert space of the Hubbard Model onto the Hilbert

space of an auxiliary spin model coupled to fermions and subject to a local constraint.

In the Z2 case the formulation is somehow minimal in the sense that auxiliary degrees

of freedom are a single Ising spin and a spinful fermion. The Hamiltonian of the original

Hubbard model, Eq. (3.1), when written in terms of the auxiliary degrees of freedom
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reads

HIsing = −t
∑

<R,R′>σ

σxR σ
x
R′ f

†
RσfR′σ +

U(t)
4

∑
R

(
1− σzR

)
, (3.36)

where fRσ, f
†
Rσ are auxiliary fermionic fields while σxR is an Ising spin variable. The

spin-fermion Hamiltonian (3.36) lives in an enlarged Hilbert space containing on each

site a spin-full fermion and an Ising variable. In order to project onto the physical

Hilbert space of the original Hubbard model one can introduce the following operator

in any quantum average,

Q =
∏
R

(
1− σzR ΩR

2

)
, (3.37)

where ΩR = eiπ nR and nR =
∑

σ f
†
Rσ fRσ. The above operator is actually a projector

of the enlarged Hilbert space onto the subspace where if n = 1 then σz = +1 while,

if n = 0, 2, then σz = −1. As a matter of fact, Q is just the constraint introduced in

Ref. [118] as a basis of the Z2 slave-spin representation of the Hubbard model. The

constraint holds in general between Hilbert spaces, hence between evolution operators

both in imaginary as well as in real time. This allows us to study the dynamics of the

original Hubbard model using the Ising spin-fermion Hamiltonian (3.36).

In Ref. [103] it was shown that (i) in infinite dimensions and at particle hole sym-

metry the constraint is ineffective and (ii) that when gauge fluctuations are neglected,

namely a product state between spins and fermions is assumed during the evolution,

and when the resulting transverse field Ising model is treated in mean field, the time

dependent Gutzwiller results follow. The advantage of this approach is that, once we

have formulated the problem in the Ising language, we can attempt to include quantum

fluctuations beyond mean field, even though this amounts to move away from infinite

coordination lattices where the neglect of the constraint is not anymore justified.

This strategy was pursued in Ref. [118] to study the zero temperature equilibrium

Mott transition and then in Ref. [103] to access the dynamics after a sudden quench.

Interestingly enough, this latter investigation revealed that quantum fluctuations become

dynamically unstable in a region of quenches around the mean field critical line. Such

a behavior may be suggestive of an instability toward an inhomogeneous state where

translational symmetry (which was implicitly assumed in the mean field dynamics) is

broken and may also suggest that the dynamical critical behavior found at the mean

field level gets strongly modified in finite dimensions.

Here we would like to apply this mean field plus fluctuation approach to the problem

of a finite ramp and revisit in particular the analysis we have done in Section 3.3 on

the scaling of excitation energy and the degree of adiabaticity of the process. We expect
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that for sufficiently slow ramps, when the system stays close to the instantaneous ground

state, no instability in the fluctuation spectrum should arise. This will allow to include

gaussian fluctuations in a controlled way and to address questions concerning the Mott

insulating state dynamics that otherwise are out of reach within the Gutzwiller mean

field theory. Conversely, upon increasing the speed of the ramp, the simple treatment

of fluctuations without feedback would again recover the unstable behavior found in the

sudden quench case. In order to go beyond this simple treatment, we develop here a

self consistent treatment of quantum fluctuations and discuss the results of the coupled

quantum-classical dynamics in the sudden quench limit.

3.4.1 Fluctuations above mean field for slow ramps

We start our discussion of fluctuations from the limit of very slow ramps. In this regime

when the dynamics is almost adiabatic, the fluctuations are expected to be well be-

haved, since in the limit of τ → ∞ we should recover the fluctuation spectrum in the

instantaneous ground state of the Ising model which is known to be well behaved [118].

To this extent, we start from the Hamiltonian (3.36) and decouple the slave spins from

the fermionic degrees of freedom, namely we assume a time dependent factorized wave

function

|Φ(t)〉 = |Φs(t)〉 |Φf (t)〉

each component |Φs(t)〉 and |Φf (t)〉 being translationally invariant. The electron wave-

function will evolve under the action of a time-dependent hopping, which is however still

translationally invariant. Hence, if |Φf (t = 0)〉 is eigenstate of the hopping at t < 0,

in particular its ground state state, it will stay unchanged under the time evolution.

Therefore we shall only focus on the evolution of the Ising component. Its effective

Hamiltonian Hs = 〈HIsing〉f at positive times and in units of Uc is

Hs = −
uf
4

∑
R

(
1− σzR

)
− 1

8

∑
<RR′>

σxR σ
x
R′ , (3.38)

We now follow the steps described in Ref. [103] and derive a time dependent spin wave

theory for the dynamics of this Ising model. We parametrize the dynamics generated

by Hs as a rotation of the spins, namely we choose a trial state in the spin sector of the

form

|Φs(t)〉 = U(t)|Φ0(t)〉

where the unitary operator U(t)

U(t) = ei
α
2

P
R σxR ei

β
2

P
R σyR
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defines a rotation of angles α, β which in general depend on time. By imposing the

Scrödinger equation we conclude the state |Φ0(t)〉 evolves with a transformed time de-

pendent effective Hamiltonian Hs? given by

Hs?(t) = −iU(t)† U̇(t) + U(t)†Hs U(t)

This effective Hamiltonian can be treated within a spin-wave approximation in which

the spin operators are expressed in terms of bosonic modes. We refer to [103] where

this derivation is shown in great detail. The dynamics for the angles α, β is obtained

by requiring that the effective Hamiltonian is quadratic in the bosonic operators. It

is convenient to express the dynamics in terms of a different set of classical degrees of

freedom, θ, φ which are related to the angles α, β by

cos θ = sinβ cosα (3.39)

sin θ cosφ = cosβ (3.40)

sin θ sinφ = sinβ sinα. (3.41)

The condition of vanishing linear terms gives [103] (for a different derivation see Ap-

pendix B)

θ̇ =
1
2

sin θ cosφ sinφ, (3.42)

φ̇ = −u(t)
2

+
1
2

cos θ cos2 φ . (3.43)

These equations of motion just set the mean field dynamics of the spin average values

upon the parametrization

〈σx〉 = sin θ cosφ

〈σy〉 = sin θ sinφ

〈σz〉 = cos θ. (3.44)

It is worth stressing that the above dynamics directly translates onto the Gutzwiller

mean field one (3.12) for the double occupancy D(t) and its conjugate phase φ(t) upon

posing D(t) = (1 − cos θ)/4 and R2 = sin2 θ cos2 φ = 〈σx〉. Therefore, in the ho-

mogeneous paramagnetic case, a quantum quench in the Hubbard model within the

Gutzwiller Approach corresponds to a quantum quench in the Ising model at mean field

level. This evidence enforces the interpretation that the dynamical transition is the

nonequilibrium equivalent of the Metal-to-Insulator one. In fact, at mean field level

the Ising Hamiltonian (3.38) displays an equilibrium quantum phase transition from a

ferromagnetic phase 〈σx〉 6= 0 to a paramagnetic one 〈σx〉 = 0 at uc = 1. This transition
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Figure 3.14: Evolution of fluctuation spectrum during a slow ramp (τ = 100). Con-
versely to the sudden quench case which showed an instability (ω2

q=0 < 0) we find that,
beside a small window at short times and for large quenches, fluctuations are generally

well behaved.

corresponds to the zero temperature Metal-to-Insulator transition encountered within

GA. Out-of-equilibrium, above the dynamical transition, the precession of the phase φ

is such that R(t) = 〈σx(t)〉 oscillates between positive and negative values with a cor-

responding vanishing average and a consequent restoring of the Z2 symmetry. In this

sense, the dynamical transition separates two distinct phases, and can be interpreted as

the non-equilibrium equivalent of the Metal-to-Insulator transition.

While at the mean field level this is just an equivalent formulation, the slave spin

framework allows to include quantum fluctuations which are lost in the Gutzwiller ap-

proximation. Indeed from the effective Hamiltonian Hs? we have also access to the dy-

namics of fluctuations around the mean field trajectory described in terms of a quadratic

time dependent bosonic Hamiltonian (see Ref. [103]). This reads

Hqf (t) =
∑
q

1
2m(t)

pq p−q +
1
2
m(t)ω2

q(t)xq x−q (3.45)

where the mass and the frequency read, respectively, as

m(t) =
2
(
1− sin2 θ cos2 φ

)
u(t) cos θ

(3.46)



62 3. Linear Ramps of Interaction in the Fermionic Hubbard Model

and

ω2
q(t) =

(
u(t) cos θ

2
(
1− sin2 θ cos2 φ

))2

− u(t)
4

cos θ γq (3.47)

where, in a hypercubic lattice in d-dimensions,

γq =
1
d

d∑
i=1

cos qi.

We start discussing the behavior of the excitation spectrum ωq(t) as a function of time

for different values of the final interaction uf and for a slow ramp τ = 100. In Fig-

ure 3.14 we plot in particular the value at q = 0, which was found to be the most

unstable mode in the sudden quench case. As we can see, except for very large quenches

uf � 1 and short times, the spectrum is well behaved. In addition, from the structure

of equations (3.47) and the result obtained for the mean field dynamics, we conclude

that for an infinitely slow ramp toward a final value of the interaction uf the out-of-

equilibrium dynamics will be close to the instantaneous ground-state manifold, including

the fluctuation contribution.

Obviously a finite ramp time induces an excitation in the system and it is particularly

interesting to see how the excitation energy ∆Eexc(τ) scales to zero for very large τ

and how the spin wave spectrum affects this decay. To this extent we compute the

total energy during the ramp E(t) = 〈Ψ(t) |H(t) |Ψ(t)〉 and get ∆Eexc(τ) through the

definition

∆Eexc(τ) = E(t = τ)− Egs(uf ) , (3.48)

where the groundstate energy at the final value of the interaction can be computed

within an equilibrium spinwave calculation and reads, for uf < 1

Egs(uf ) = −1
8

(1− uf )2 − 1
4V

∑
q

(
1−

√
1− u2

f γq

)
(3.49)

while in the Mott Insulating phase uf > 1

Egs(uf ) = −
uf
4V

∑
q

(
1−

√
1− γq/uf

)
. (3.50)

The total energy during the ramp is given by the kinetic and potential energy contribu-

tions

E(t) = K(t) + u(t)D(t), (3.51)
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Figure 3.15: Excitation Energy ∆E(τ) for ramps ending in the metallic phase (top
panel) or in the insulating phase (bottom panel). We compare the results of time
dependent Gutzwiller with those obtained by including quantum fluctuations at the
gaussian level. We notice a sizable effect of these in the metallic case, which turns to

be less pronounced for ramps ending in the insulating phase.

which can be easily expressed as a mean field term plus a correction due to quantum

fluctuation. In particular, we get for the double occupancy

D(t) =
1
4

[
1− cos θ

(
1
V

∑
q

(1− 〈Πq〉t)

)]
, (3.52)

while the kinetic energy reads

K(t) = − 1
8V

sin2 θ cos2 φ
∑
q

(1− 2 〈Πq〉t) + (3.53)

− 1
4V

(
1− sin2 θ cos2 φ

) ∑
q

γq 〈xq x−q〉t

where 〈Πq〉t measures the strength of quantum fluctuations and is defined by

〈Πq〉 = 〈xq x−q + pq p−q〉t − 1 .

It is useful at this point to write both the average energy E(t) and its ground state value

Egs(uf ) explicitly as a mean field part plus a correction due to quantum fluctuations.
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This allows us to disentangle the two contributions to the scaling of the excitation energy

∆Eexc(τ) = ∆Emfexc(τ) + ∆Eqfexc(τ) (3.54)

where the mean field term has been discussed in previous sections while the quantum-

fluctuations correction reads

∆Eqfexc(τ) =
1

4V

∑
q

(
uf cos θ + sin2 θ cos2 φ

)
〈Πq〉τ +

− 1
4V

∑
q

(
1− sin2 θ cos2 φ

)
γq 〈xq x−q〉τ

We stress that the above quantum averages are taken over the dynamics generated by the

time dependent Hamiltonian Hqf (t), which is solved numerically step by step together

with the mean field dynamics (3.42). To this extent we use a finite grid in momentum

space (with typical size Nmesh = 100) corresponding to a semielliptic density of states

ρ(ε) =
2
√

1− ε2

π
. (3.55)

This makes the evaluation of ∆Eqfexc a rather challenging numerical task, in particular for

long ramp times where finite size effects become relevant and larger sizes are required to

obtain converged results. In figure (3.15) we plot the behavior of the excitation energy

∆Eexc(τ) as a function of the ramp time τ starting from a non-interacting system and

for final values of the interaction corresponding respectively to a metallic (top panel) and

insulating (bottom panel) final state. The longest ramp time we were able to achieve,

τ ∼ 200, although still not enough to obtain a robust scaling, allows us to attempt a

discussion of the long time behavior of ∆Eexc in presence of quantum fluctuations. As

we see from figure (3.15) the numerics suggest that quantum fluctuations do in fact

affect the long-time behavior of the excitation energy, particularly in the metallic phase

and less strongly in the insulating phase.

In order to rationalize this behavior it is useful to resort to a more analytical ap-

proach. Indeed the Hamiltonian of quantum fluctuations Hqf (t) describes coupled har-

monic oscillators with time dependent parameters (mass m(t) and frequency ωq(t)). The

characteristic time scale for their variation is given by the mean field dynamics of the

variational parameters and from Section 3.3 we know we can describe this for long ramps

as an adiabatic evolution plus small oscillations. Hence, using Eqs (3.46-3.47) we can

write m(t) and ωq(t) for large τ as

m(t) = mgs(u(t/τ)) +
δmτ (t)
τ δ

(3.56)
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ωq(t) = ωgsq (u(t/τ)) +
δωqτ (t)
τ δ

, (3.57)

where δ is a mean-field exponent that in general depends on the whether the ramp ends

in the metallic or insulating phase, while δmτ (t), δωqτ (t) are pre-factors that can be

computed from the mean field dynamics in the adiabatic limit (see appendix B.1 for

further details). This argument suggests that we can obtain the dynamics of quantum

fluctuations as an expansion around the adiabatic limit [121]. In particular if we define

ηq(t) =
ṁ

m
+
ω̇q

ωq
(3.58)

we can obtain to leading order in ηq

〈xq x−q〉t =
1

2m(t)ωq(t)

(
1 +

∫ t

0
dt′ cos 2θq(t, t′) ηq(t′)

)
〈 pq p−q〉t =

m(t)ωq(t)
2

(
1−

∫ t

0
dt′ cos 2θq(t, t′) ηq(t′)

)
where

θq(t, t′) =
∫ t

t′
dt′′ ωq(t′′)

Using this result we can write the excitation energy due to quantum fluctuations ∆Eqfexc
as the sum of two contributions

∆Eqfexc(τ) = ∆E(1)
exc(τ) + ∆E(2)

exc(τ) (3.59)

that read

∆E(1)
exc(τ) = (3.60)

1
4V

∑
q

[
A(τ)

(
m(τ)ωq(τ)

2
+

1
2m(τ)ωq(τ)

− 1
)
− B(τ)γq

2m(τ)ωq(τ)

]
− Eqfgs (uf )

∆E(2)
exc(τ) = (3.61)

1
4V

∑
q

[
A(τ)

(
1

2m(τ)ωq(τ)
− m(τ)ωq(τ)

2

)
− B(τ)γq

2m(τ)ωq(τ)

] ∫ τ

0
dt′ cos 2θq(τ, t′)ηq(t′)

where the coefficientsA(τ), B(τ) read respectively asA(τ) = uf cos θ(τ)+sin2 θ(τ) cos2 φ(τ)

and B(τ) = 1 − sin2 θ(τ) cos2 φ(τ). The two terms in Eq. (3.59) have a clear interpre-

tation as the first accounts for excitations produced by a non adiabatic mean field

dynamics while assuming quantum fluctuations to follow adiabatically, while the second

accounts for deviations from adiabaticity due to quantum fluctuations, with a mean field

dynamics following its instantaneous ground state. Interestingly enough one can easily

check that this latter contribution vanishes to leading order, (i.e. when m(τ) = mgs(uf )

and ωq(τ) = ωgsq (uf )) namely it only contributes to sub-leading order. The dominant
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contribution comes therefore from ∆E(1)
exc(τ) and quite generically would give rise to

corrections of order 1/τ δ. While δ = 1 for ramps in the metallic phase and it is therefore

a rather big correction to the mean field power law δ = 2, the situation is milder for

ramps in the insulating side and this may explain the behavior in figure (3.15).

3.4.2 Sudden Quench Limit: a self consistent theory of fluctuations

In this Section we address the opposite limit of a sudden quench and formulate a self

consistent theory of quantum fluctuations which goes beyond the previous treatment and

that of Ref [103]. The crucial ingredient that we include here is the feedback of quantum

fluctuations on the mean field dynamics which is expected to be relevant especially close

to the mean field dynamical critical line where fluctuations would otherwise start to be-

come unstable. We give a detailed derivation of this new treatment of fluctuations in the

Appendix B.2. Here we briefly discuss the key features of this approach and the results

of the quench dynamics. In order to couple the mean field dynamics and the fluctua-

tions we took inspiration from the Bogoliubov theory of weakly interacting superfluids.

There, a condensate classical order parameter is identified with the quantum degrees of

freedom of modes at q = 0 while those modes with q 6= 0 represent the fluctuations out

of the condensate. Assuming the classical order parameter to be a macroscopic one can

simplify the commutation relations and get a closed set of equations of motion for the

classical as well as the quantum components. In the case of present interest there is of

course no real condensate as a discrete rather than continuous symmetry is broken in the

quantum Ising model. However, we can still consider the modes at q = 0, correspond-

ing to the global magnetization, to be classical and macroscopic with the consequent

simplification of the Heisenberg equations of motion for the modes at q = 0 and q 6= 0.

The resulting dynamics for the mean field part θ, φ will read (see Appendix)

θ̇ =
N

2
sin θ cosφ sinφ (3.62)

+
1

2NV 2

∑
q 6=0

γq (sin θ∆xy(q) + cos θ sinφ∆xz(q))

sin θφ̇ = −u
2

sin θ +
N

2
sin θ cos θ cos2 φ

+
1

2NV 2
cosφ

∑
q 6=0

γq∆xz(q)

Ṅ =
1

2V 2

∑
q 6=0

γq (− cos θ∆xy(q) + sin θ sinφ∆xz(q))
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where N(t) is the magnitude of the classical order parameter while ∆ab(q, t) is a (time

dependent) average for the modes with q 6= 0 and it is defined as

∆ab(q, t) ≡
1
2
〈σaqσb−q + σbqσ

a
−q〉t a, b = x, y, z (3.63)

The above dynamics differs from the conventional mean field Guztwiller dynamics in-

troduced previously in two main respects. First, there is an explicit coupling of the

modes at q 6= 0 with the classical dynamics of θ, φ. Second, the amplitude N of the

order parameter is no more frozen but rather is allowed to change with time. The above

dynamical system can be closed by writing the equation of motion for ∆ab(q, t). The

result takes the form (see Appendix B.2)

∂t ∆ab(q, t) =
∑
cd

Mabcd(q) ∆cd(q, t) (3.64)

where the coefficients Mabcd(q) depend in general from both θ, φ and N . As we show

in the Appendix, the above dynamics conserves the total energy of the system after the

quench, a crucial feature that was missing in the spin-wave treatment of fluctuations. We

now discuss the numerical solution of the above coupled dynamics for a quantum quench

from a non interacting initial state. As in the previous Section in order to solve numer-

ically the coupled dynamics we use a finite grid in momentum space corresponding to

the semielliptic density of states (3.55). We expect that in the region where fluctuations

are negligible, the time dependent spin wave approximation is recovered and the sys-

tem will display an oscillatory dynamics with multiple frequencies but no real damping.

As opposite, close to the critical region where fluctuations become important and spin

wave approximation breaks down, we expect the feedback of the modes at q 6= 0 on the

classical dynamics to be extremely relevant in setting the steady state. In Fig. 3.16-3.17

we plot the time dynamics of the double occupation, D(t), and that of the quasiparticle

weight, Z(t), for different values of uf . To enlight the effect of quantum fluctuations,

in the same figure we bound with two dashed lines the region where the mean field dy-

namics for D(t) and Z(t) would display simple oscillations. As expected, we note that

approaching the critical region the coupling of fluctuation with the classical sector tends

to drive the dynamics of local observables towards stationarity. In particular, one can

see that for quenches ranging in a window from uf ≈ 0.35 to uf ≈ 0.9, the dynamics of

D(t) and Z(t) is quickly damped, while for smaller and larger values of uf fluctuations

are less effective in driving the dynamics toward a steady state and some undamped

oscillations are still clearly visible.

Another interesting feature emerging from the solution of the coupled dynamics

concerns the fate of the mean field dynamical critical point upon including the feedback

of fluctuations. This issue was not fully addressed in Ref. [103], since the spin wave
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Figure 3.16: Time dynamics of the double occupation D(t) (top panel) and of the
quasiparticle weight Z(t) (bottom panel). The dashed black lines are guide to eyes and
bound the region where the mean field dynamics with no quantum fluctuations would
display coherent oscillations. In the last three panels oscillations are between 0 and 1.
The red curves are the dynamics obtained from the numerical solution of (B.26-B.27).

approach breaks down before the critical point due to the instability of quantum fluc-

tuations. The solution of the coupled classical-quantum dynamics reveals that a kind

of dynamical transition is still present even with quantum fluctuations. This is evident

if one looks at the dynamics of the phase φ, conjugate to the double occupation D(t).

Indeed, such a quantity still features a sharp pendulum-like dynamical instability at a

finite value of the interaction ucf which now gets modified by fluctuations and renormal-

ized toward a smaller value ucf,QF ' 0.35 to be compared with the mean field estimate



3.4 Quantum Fluctuations Beyond Mean Field 69

0 200 400
0

0.1

0.2

0.3

0.4

__ D

u
f 
 = 0.60

0 200 400
tU

c

0

0.5

1

1.5

__ Z

u
f 
 = 0.60

Figure 3.17: Short time dynamics with the feedback of quantum fluctuation for double
occupation and quasiparticle weight and comparison with the mean field dynamics. We
see that the coherent oscillations present at the mean field level are quickly damped

out as the contribution of quantum fluctuations is properly taken into account.

ucf,MF ' 0.5.

Finally it is interesting to discuss the behavior of the long time averages 〈D〉t, 〈Z〉t
as a function of uf . At the mean field level, those averages contain a clear signature of

the dynamical critical point as the special point at which both D(t) and Z(t) relaxes

toward zero.

In Fig. 3.18 and 3.19 we plot the behavior of these long time averages with respect

to uf and compare the respective time averages in the mean field dynamics and the

results of out-of-equilibrium DMFT [10]. The result of this comparison seems to be

consistent with the analysis of the transient dynamics and reveals the presence of three
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different regimes. For weak quenches, quantum fluctuations do not play a major role and

we recover almost exactly the mean field result. In this regime, time averages capture

those predicted by perturbation theory [10] for a pre-thermal state: 〈D〉t tends to the

zero-temperature equilibrium value and

〈Z〉t ≈ (2Zeq − 1).

For quenches that approach the dynamical critical point, which in mean field dynamics

corresponds to uf = 0.5, we already saw that the dynamics of D(t) and Z(t) is rapidly

driven towards a stationary state; Z̄ maintains almost a constant zero value in this

interaction window so that it shows a sharp variation with respect to the mean field

value. Also 〈D〉t corrects the mean field result which was equal to zero at the dynamical

critical point. Finally, for values of uf & 0.9, no fast relaxation occurs in the dynamics

and time averages recover the mean field results, at least for the double occupation.

The coherent part of the kinetic energy gets strongly suppressed with respect to the

mean field average, a result that can be understood as due to a transfer of weight to

the incoherent modes which are absent at the level of Gutzwiller. Overall, we could

say that, upon including the feedback of quantum fluctuations on top of the mean field

dynamics, we obtain a picture for the dynamics which is in substantial agreement with

DMFT results.
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Figure 3.18: Long-time average of D(t); one can see that in vicinity of the critical
region the inclusion of fluctuation corrects the mean field result. Instead, at weak and

large values of uf the dynamics resembles the mean field one.
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Figure 3.19: Long-time average of Z(t). With the inclusion of fluctuations the quasi-
particle weight rapidly approaches zero in a region around the dynamical critical point.

Such a behavior is only partially catched by mean field dynamics.

3.5 Conclusions

In this Chapter we have discussed the nonequilibrium dynamics of the fermionic Hubbard

model after a linear ramp of the interaction U across the Mott transition, starting from

the metallic side. Our results are based on a time dependent Gutzwiller variational

approach and on a theory of mean field plus fluctuations that we have developed in

the framework of the Z2 slave spin approach. After introducing the results for the

sudden quench dynamics previously found by Schiró and Fabrizio, we have discussed the

dynamics during the ramp and the issue of adiabaticity of the protocol by computing

the excitation energy and studying its scaling for long ramp times. In addition we have

discussed the dynamics after the ramp is completed, namely on time scales longer than

τ , and identified a dynamical transition at the mean field level which smoothly connects

with the one already discussed for the sudden quench case. The properties of this

transition as a function of the ramp time have been analyzed. Finally we have discussed

the role of fluctuations on top of the mean field dynamics for both regimes of slow and

very fast ramps. In the former case a gaussian theory of fluctuations is sufficient as the

spectrum of the fluctuating modes is always well defined. Using this gaussian theory we

have calculated the scaling of the excitation energy with τ and see how this is affected by

the presence of a non trivial spectrum. An interesting extension of this kind of approach

could be to look at the evolution of the spectral function in order to understand where

the excitation energy due to the ramp is mostly transferred. For what concerns short

ramps we have developed a self consistent treatment of quantum fluctuations that goes

beyond the simple gaussian theory. By means of this novel approach we have been able
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to individuate a dynamical transition which resembles the one described at mean field

level. In particular, an intermediate critical region of the quench can be identified, where

the role of fluctuations becomes determinant giving a finite and sizable damping and the

relaxation to a steady state. This result could be connected to the fast thermalization

observed within DMFT at the dynamical critical point.



Chapter 4

Nonequilibrium dynamics in the

Antiferromagnetic Hubbard

Model

4.1 Introduction

A fundamental issue to address in quantum dynamics for closed systems is the real time

dynamics across a phase transition in which symmetry is broken or restored. The ultra-

fast melting and creation of long range order in transition metal compounds has already

been investigated in many experiments [2, 6, 122]. In particular, pump-and-probe spec-

troscopy on magnetic compounds has attracted a lot of attention motivated by the huge

technological advances that could be achieved through an ultrafast control of magnetic

phases [123]. On the theoretical side, however, while an equilibrium phase transition is

a well established concept, there is yet no clear extension to the out-of-equilibrium case

[54]. The common viewpoint is that the initial excess energy ∆E turns into heat, hence

the system evolves into a thermal state at a higher effective temperature T∗, higher

the bigger ∆E. Should T∗ exceed the critical temperature for a order-to-disorder phase

transition, the system would dynamically disorder though initially ordered.

However this picture is far from being exhaustive. In the previous Chapter we have seen

for example that the dynamics after a quench of the interaction in the paramagnetic

single band Hubbard model displays a dynamical transition which seems to be unre-

lated from the finite temperature Metal-to-Insulator critical line [10, 54]. Furthermore,

even in situations where an order parameter can be easily identified, it is unclear how its

relaxation time behaves out-of-equilibrium and if it is connected to an equilibrium crit-

icality. This envisages the possibility that non-thermal long-lived phases could emerge

73
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[6], whose manipulation, inaccessible through adiabatic pathways, represents a new and

fascinating scenario.

The single-band repulsive Hubbard model that we addressed in the previous Chap-

ter provides a further ideal test-bed to discuss these issues. In fact, when the restriction

to paramagnetic states is not enforced, the Hubbard model displays at equilibrium a

Néel transition from a low temperature antiferromagnet (AFM) to a high temperature

paramagnet (PM)1. One immediately recognizes that, upon sudden changing the inter-

action strength, Ui → Uf , one could dynamically move around the phase diagram and

eventually cross the Néel transition (provided thermalization occurs). Recently the dy-

namics of a symmetry breaking state has been addressed by means of time-dependent

DMFT on a Bethe lattice [11, 41]. These works showed that both for Uf < Ui and

Uf > Ui, long-lived non-thermal ordered states exist even though their expected T∗ is

above the Néel temperature TN , thus indicating the presence of very stable phases of

matter which cannot be reached by conventional thermal pathways.

Moreover, it was found that for Uf < Ui, the melting of the AFM order is related to the

existence of a non-thermal critical point with an associated vanishing amplitude mode.

Both these features are consequence of pure non-equilibrium effects.

Here we address the same model dynamics by means of the time dependent Gutzwiller

variational approach introduced so far. This method, although being less accurate than

DMFT, is computationally far less expensive and has already proved its reliability in re-

producing the main results of DMFT in the out-of-equilibrium dynamics of paramagnetic

states, as shown in the previous Chapter. We find that also in the broken-symmetry dy-

namics, the time-dependent Gutzwiller technique correctly reproduces both the presence

of a critical point at which magnetism disappears as well as the existence of non-thermal

ordered states. Moreover, we find evidence of an additional critical point at Uf > Ui

between two non-equilibrium antiferromagnetic states that we interpret as the magnetic

analogue of a dynamical Mott transition.

This Chapter is organized as follows. In section 4.2 we briefly present how the

method works in the specific case of an antiferromagnet. In section 4.3 we move to discuss

the results of a quench from an initial magnetic state, ground state of the Hamiltonian

at repulsion Ui, evolved with the Hamiltonian at a different value Uf , both for Uf < Ui,

section 4.3.1, and Uf > Ui, section 4.3.2. Finally, section 4.4 is devoted to conclusions.

1We consider the Hubbard model at half filling for bipartite lattices in dimensions greater than two.
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4.2 Time dependent Gutzwiller for AFM states

In this section we briefly show how the time-dependent Gutzwiller technique introduced

in 2.3 has to be modified to treat the AFM dynamics within the single band Hubbard

model at half filling, with Hamiltonian

H = −
∑

〈R,R′〉,σ

(
c†RσcR′σ +H.c.

)
+
U(t)

2

∑
R

(nR − 1)2, (4.1)

where cRσ annihilates a spin-σ electron at site R, U(t) is the (time dependent) interac-

tion strength and nR =
∑

σ c
†
RσcRσ. The hopping parameter is set equal to one and is

our unit of energy.

We have seen that an approximation of the evolving state follows from evaluating the

stationary solution of the Action functional

L(t) =
∫ t

0
dτ 〈Ψ(τ)|i∂τ −H(τ)|Ψ(τ)〉. (4.2)

on a Gutzwiller ansatz for the evolving wavefunction

|Ψ(t)〉 =
∏
R

PR(t) |ψ(t)〉 (4.3)

where |ψ(t)〉 is a generic time-dependent variational Slater determinant. Upon intro-

ducing a basis for the local Fock space

|R, {n}〉 =
∏
α=↑,↓

(c†Rα)nα (4.4)

one can parametrize the Gutzwiller projector P(t) in terms of a set of time dependent

variational parameters ΦR {n}(t)

PR(t) =
∑
{n}

ΦR {n}(t)√
P

(0)
R {n}(t)

|R, {n}〉〈R, {n}| (4.5)

where

P
(0)
R {n}(t) = 〈ψ(t)|R, {n}〉〈R, {n}|ψ(t)〉. (4.6)

The stationarity of (4.2) amounts then solve a set of coupled differential equations that

determine the evolution of the uncorrelated wavefunction |ψ(t)〉 and the variational

parameters ΦR {n}(t):

i∂t|ψ(t)〉 = H∗[Φ̂(t)] |ψ(t)〉 (4.7)
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i∂tΦ̂R(t) = Û(t)Φ̂R(t) + 〈ψ(t)|∂H∗[Φ̂(t)]

∂Φ̂†R(t)
|ψ(t)〉. (4.8)

If we assume the magnetization directed along z, then we can choose Φ̂R to be a diagonal

matrix with diagonal elements ΦR {0}, for empty site, ΦR {↑} and ΦR {↓}, for singly

occupied site with a spin up or down electron, respectively, and finally ΦR {↑↓} for a

doubly occupied site.

The Slater determinant evolves according to the renormalized one-body Hamiltonian

H∗[Φ̂(t)] = −
∑

〈R,R′〉,σ

(
R∗Rσ(t)c†RσRR′σ(t)cR′σ +H.c.

)
(4.9)

which is self-consistently coupled to the evolution of the matrix Φ̂R(t) through the

renormalization factors

RRσ(t) =
1√

nRσ(t)(1− nRσ(t))
Tr(Φ̂†R(t)ĉRσΦ̂Rσ(t)ĉ†Rσ). (4.10)

In the presence of Néel AFM order we can separate the bipartite lattice into two

sublattices A and B such that Eq. (4.9) becomes

H∗(t) = −
∑

〈Ra,Rā〉,σ

(
R∗Raσ(t)RRa−σ(t)c†Raσ

cRāσ
+H.c.

)
(4.11)

where if a = A then ā = B and vice versa, and we make use of

RRaσ = RRā−σ, with a ∈ {A,B}. (4.12)

It is more convenient to work in Fourier space where Eq. (4.11) reads

H∗(t) =
∑
kσ

ε(k)
[
<
(
R∗RAσ

(t)RRA−σ(t)
)
c†kσckσ

−i=
(
R∗RAσ

(t)RRA−σ(t)
)
c†kσck+Qσ

]
(4.13)

with ε(k) = 1
N

∑
〈Ra,Rā〉 e

ik·(Ra−Rā) where N is the number of sites, and the vector Q

such that

eiQ·Ra =

{
1 if a ∈ A
−1 if a ∈ B

. (4.14)

The time evolution of the uncorrelated state |ψ(t)〉 can then be re-casted into that

of ∆σ
kk′(t) := 〈ψ(t)|c†kσck′σ|ψ(t)〉 whose equations of motion are

i∂t∆σ
kk = −iε(k)=

(
Zσ(t)

)(
∆σ

kk+Q + ∆σ
k+Qk

)
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i∂t∆σ
kk+Q = −2ε(k)<

(
Zσ(t)

)
∆σ

kk+Q (4.15)

+iε(k)=
(
Zσ(t)

)(
∆σ

kk −∆σ
k+Qk+Q

)
.

To simplify notations we introduced the quantity Zσ(t) = R∗RAσ
(t)RRA−σ(t). By con-

struction it follows that

nA(B)σ(t) =
1
N

∑
k

∆σ
kk(t)±∆σ

kk+Q(t). (4.16)

The evolution of the uncorrelated wavefunction is self-consistently coupled to equation

(4.8) that, because of (4.12), can be evaluated for a single sublattice and reads

i
∂Φ̂A

∂t
= Û Φ̂A(t) (4.17)

+
1
N

∑
k,σ

ε(k)
[
RA−σ

(
∆σ

kk(t)−∆σ
kk+Q(t)

)∂R∗Aσ
∂Φ̂†A

+ R∗A−σ
(
∆σ

kk(t) + ∆σ
kk+Q(t)

)∂RAσ
∂Φ̂†A

]
.

In conclusion Eqs. (4.15)-(4.17) together with Eqs. (4.10) and (4.16) define a set of

coupled non-linear differential equations which must be solved numerically.

In spite of the nonlinearity, the dynamics is still oversimplified and we do not expect to

reach thermalization in the long time limit, mainly because the evolution of the Slater

determinant still admits an infinite number of integrals of motion. In fact, the dynamics

of |ψ(t)〉 does not mix different (k,k + Q) subspaces. Within each subspace, the set

of equations (4.15) can be mapped onto the dynamics of a pseudospin-1
2 Hamiltonian.

Indeed, upon defining

∆σ
kk −∆σ

k+Qk+Q ≡ 〈σ1〉

∆σ
kk+Q + ∆σ

k+Qk ≡ 〈σ2〉

∆σ
kk+Q −∆σ

k+Qk ≡ −i〈σ3〉

(where in this case k is restricted to the Magnetic Brillouin Zone (MBZ)), the set of

equations (4.15) is equivalent to solving the dynamics of the pseudo-spin Hamiltonian

HSkσ(t) = ε(k)=
(
Zσ(t)

)
σ3 − ε(k)<

(
Zσ(t)

)
σ1 (4.18)

where σ1,2,3 are Pauli matrices. Indeed, as we mentioned, the length of the pseudo-spin

is a conserved quantity in each subspace.

It is generally believed that the average values of local operators along the unitary
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evolution of a wave function |Ψ〉, generically consisting of a superposition of a macro-

scopic number of eigenstates, will approach at long times the thermal averages on a

Boltzmann-Gibbs distribution at an effective temperature T∗ for which the internal en-

ergy coincides with the energy of the wave function |Ψ〉, conserved during the unitary

evolution, i.e.

Tr
(

e−H/T∗ H
)

Tr
(

e−H/T∗
) = 〈Ψ|H |Ψ〉.

Therefore it is worth comparing the results of the time-dependent Gutzwiller technique

with equilibrium results at finite temperature obtained by a similar technique. For that

purpose, we shall make use of the extension to finite temperature of the Gutzwiller

variational approach we recently proposed. In brief, as explained in 2.2, the thermal

values are computed minimizing the following variational estimate of the free energy,

F ≤ min
{ρ∗,Φ̂}

{ ∑
〈R,R′〉,σ

Tr
[
ρ∗

(
−RRσRR′σc

†
RσcR′σ +H.c.

)]
+
∑
R

Tr
(

Φ̂†R Û Φ̂R

)

−T Max
(
Svar

(
ρ∗, Φ̂†Φ̂

)
, 0
)}

, (4.19)

where ρ∗ = e−βH∗/(Tr e−βH∗) is the Boltzmann distribution corresponding to the vari-

ational Hamiltonian H∗, and the variational estimate of the entropy reads

Svar

(
ρ∗, Φ̂†Φ̂

)
= −Tr

(
ρ∗ log ρ∗

)
−
∑

R,{n}

|ΦRn|2 log
( |ΦRn|2

P
(0)
Rn

)
. (4.20)

In Fig. 4.1 we plot the finite temperature phase diagram for the model as found by

means of this finite temperature extension. The Néel temperature has been computed

by comparing the free energy of the AFM solution with the one of the PM solution. We

see that the low temperature AFM ordered phase compares qualitatively well with the

DMFT results [41]. We also show in the phase diagram the Metal-to-Insulator transition

that one finds if a paramagnetic solution is forced. In this case, for a fixed value of the

interaction U , the first order Metal-to-Insulator transition is identified by a fast falldown

of the renormalization factor R, as previously found in Ref. [81]. A similar computation

will be shown in detail for a two-band model in Chapter 5.

Overall, the important aspect that emerges here is that the Gutzwiller wavefunction

is able, unlike straight Hartree-Fock, to describe a finite temperature Mott insulating

phase devoid of magnetism.



4.3 Interaction quench 79

0 2 4 6 8 10
U

0

0.1

0.2

0.3

0.4

0.5

T

HF 
GA

AFM 

PM

Figure 4.1: Finite temperature phase diagram for the single band Hubbard model
as obtained by mean of the finite temperature Gutzwiller approach. The solid black
line separates the AFM solution from the PM phase. The dotted line indicates the
MIT transition when only paramagnetic states are considered. The red line is the Néel

temperature within the Hartree-Fock approximation.

4.3 Interaction quench

In this section we apply the time dependent Gutzwiller approach to study the dynamics

of (4.1) after a sudden quench of the interaction strength, U(t) = Ui + (Uf − Ui)θ(t),
where θ(t) is the Heaviside function. Although an instantaneous quench is distant from

the real practice in experiments, it is a well-controlled theoretical excitation protocol

and suffices well the scope of this work. We assume nearest neighbor hopping on an in-

finitely branched Bethe lattice, i.e. a semicircular density of states D(ε) =
√

4− ε2/(2π),

in which case the Gutzwiller approximation becomes exact. We remark that the mo-

mentum representation we previously adopted is not appropriate for a Bethe lattice but

can be easily extended in this case.

4.3.1 Uf < Ui quench

We start by analyzing the dynamics for quenches at Uf < Ui. We plot in Fig. 4.2

the time evolution of the AFM order parameter m = n↑ − n↓ for an interaction quench

starting from the optimized variational ground state at Ui = 4.0. We immediately rec-

ognize a pattern which is very similar to that obtained within DMFT and Hartree-Fock

dynamics [41]. The order parameter m(t) quickly decreases in time after the quench and
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starts oscillating; as Uf decreases below the critical value of UUf<Uic ≈ 1.7, the order

parameter vanishes.

On the same figure we also plot the thermal values mth calculated from the finite temper-

ature Gutzwiller approach [77] at an effective temperature T∗ such that the equilibrium

internal energy is equal to the average energy on the variational wavefunction, which is

conserved by the unitary evolution.

We note that m(t) oscillates around a value which is more and more distant from the

thermal one and stays finite even when T∗ exceeds the Néel temperature, suggesting

that the dynamics stays trapped in a non-thermal ordered state in accordance with

DMFT result [41]. From Fig. 4.2 two well separated frequencies are distinguishable in

the dynamics, which we extract by a discrete Fourier transform and plot in Fig. 4.5. A

high frequency ω1 sets the fast oscillation and decreases with Uf , although staying finite.

A lower frequency ω2 can instead be associated to the presence of magnetic order and

vanishes at the critical point as ∝ |Uf − U
Uf<Ui
c |; the existence of a linearly vanishing

mode was found also in Ref. [41].

This two-frequency dynamics reveals the mechanism beyond the disappearance of the

AFM order at UUf<Uic . This is more clearly shown in Fig. 4.3 where we plot the

values of the real and imaginary part of the renormalization factors. We observe that

approaching UUf<Uic the renormalization factors show main oscillations with frequency

ω2, on top of which there are much narrower oscillations controlled by ω1. In proximity

of UUf<Uic , ω1 � ω2 → 0, so that, within each (k,k + Q) subspace, the magnetic field

in the pseudo-spin Hamiltonian (4.18) can be effectively taken constant in time. Hence

the dynamics of (4.18) is equivalent to that of a spin in the presence of a k-dependent

constant magnetic field. The total staggered magnetization then vanishes due to the

de-phasing that occurs summing on the entire Brillouin zone, hence the nature of the

critical point is essentially that found within the Hartree-Fock approximation by Ref.

[41].

Finally, from Fig. 4.6 we see that the long time average of |Rσ|2 increases in the limit

of Uf → 0, indicating that the AFM insulator actually melts into a PM metal.

4.3.2 Uf > Ui quench

For quenches at Uf < Ui the Gutzwiller dynamics is not very different from the one

obtained through single-particle methods such as the Hartree-Fock approximation; the

magnetization shows an oscillatory behavior that turns eventually into a fast decay due

to dephasing. Differences instead arise when Uf > Ui. Here time-dependent Hartree-

Fock predicts incorrectly that the magnetic order parameter never vanishes, whatever
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Figure 4.2: Time evolution of the staggered magnetization m for quenches Ui = 4.0→
Uf = 3.8, 3.2, 2.6, 2.2, 2.0, 1.8, 1.6. The bold arrows indicate the corresponding thermal

values, mth, while the black dashed lines indicate the long time averages.
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Figure 4.3: Time evolution of <(RA↑) (black) and =(RA↑) (red) for quenches Ui =
4.0→ Uf = 3.2, 2.6, 2.0, 1.6 (clockwise order from top left).

Uf is. This drawback is directly related to the inadequacy of Hartree-Fock in reproduc-

ing a decaying Néel temperature at large values of U , feature that is instead captured

by the Gutzwiller approach, see Fig. 4.1. In the assumption that the unitary evolution

following the quantum quench brings the system in some thermal configuration at finite

temperature, the higher the greater |Uf − Ui|, we can not only rationalize why time-

dependent Hartree-Fock fails, but also anticipate, within the time-dependent Gutzwiller
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technique, a dynamical transition from an antiferromagnetic to a paramagnetic phase.

Indeed, in the limit of very large Uf > Ui, when the frequency ω1 ∼ Uf gets much

higher than the excitation energies of the Slater determinant, each (k,k + Q) pseudo-

spin evolves under an effectively slow magnetic field, hence the staggered magnetization

averages again to zero due to dephasing.

We find confirmation of this expectation in the time evolution of m(t), see Fig. 4.4, and

the main drive frequencies shown Fig. 4.5. In the limit of large Uf , a two frequency

oscillation pattern appears again, with a high frequency ω1 that grows as ∝ Uf and a

lower frequency associated with a vanishing mode which decays as ∝ |Uf −U
Uf>Ui
c | with

the critical value of UUf>Uic ≈ 21.0.

We note that also in this regime the long time average of the magnetization differs from

the corresponding thermal value. Indeed in Fig. 4.4 we see that for Uf = 12.0 the

effective temperature has already crossed the Néel temperature, while the long time

average of the magnetization stays greater than zero, indicating the persistence of a

non-equilibrium ordered state in accordance with the results of Ref. [11].
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Figure 4.4: Time evolution of the staggered magnetization m for quenches Ui = 4.0→
Uf = 12.0, 14.0, 16.0, 18.0, 20.0, 22.0. The green arrow indicates the thermal values mth

for Uf = 12.0 and shows that the effective temperature has already crossed the Néel
temperature. The black dashed lines indicate the values of the long time average.

For smaller values of Uf instead a less clear scenario appears. Indeed, in the range of

values 5.8 . Uf . 8.4 (vertical dashed lines of Fig. 4.5), although the main frequencies

ω1 and ω2 can be still recognized by continuity from the large and small Uf limits, the

Fourier power spectrum loses regularity and shows an increased number of broad peaks.

In this interval of Uf , the long time average of the magnetization increases while the
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Figure 4.5: Behavior of the main drive frequencies ω1 and ω2 as a function of Uf . The
two dashed red lines indicate the crossover region in which the Fourier power spectrum

presents broad peaks.
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Figure 4.6: Long time averages of the magnetization (black squares) and of |Rσ|2
(red circles) as a function of Uf . At U cf ≈ 8.2 the renormalization factor time average

decays to zero signaling the presence of the dynamical critical point.

renormalization factors diminish, see (Fig. 4.6), suggestive of the systems driven towards

a Mott localized regime.

We note that Eqs. (4.15) and (4.17) admit a stationary solution identified by Rσ = 0

and energy equal to zero, which describes a trivial Mott insulating state. We find that

when the conserved energy after the quench is vanishing, which happens at Udync ≈ 8.2

when Ui = 4.0, Eqs. (4.15) and (4.17) flow towards the above stationary solution, see

Fig. 4.6, a lot alike what found in the absence of magnetism, see Figure 3.2.



84 4. Nonequilibrium dynamics in the Antiferromagnetic Hubbard Model

We can shed some light on this dynamical behavior by adopting again the polar

representations of the Gutzwiller parameters of Chapter 3

Φ0 = Φ↑↓ = ρ0 eiφ0 , (4.21)

Φσ = ρσ eiφσ , (4.22)

with ρ0(σ) ≥ 0 that, because of normalization, satisfy 2ρ2
0 +ρ2

↑+ρ
2
↓ = 1. We consider first

of all the dynamics for values of the final interaction Uf < U
Uf<Ui
c and Uf > U

Uf>Ui
c ,

that is the interaction region in which a PM phase is recovered. In the long time limit,

since the magnetic order vanishes, it follows that ρ↑ = ρ↓ ≡ ρ1 and the renormalization

factor RA↑ (4.10) acquires the form

RA↑(t) = 2ρ0(t)ρ1(t) eiφD(t) cos(φ(t)) (4.23)

where φD = (φ↑−φ↓)/2 and φ = φ0− (φ↑−φ↓)/2 corresponds to the angle indicative of

the dynamical phase transition in the PM quench, (3.12). The renormalized Hamiltonian

which sets the dynamics of the Slater determinant (4.9) can be rewritten as

H∗[Φ̂(t)] = −
∑

〈R,R′〉,σ

(
e−2iφD(t) σeiQ·RR2 c†RσcR′σ +H.c.

)
(4.24)

where R = 2ρ0(t)ρ1(t) cos(φ(t)). We notice that we can absorb the phase by redefining

the Slater determinant up to a unitary matrix, |ψ(t)〉 → U |ψ̃(t)〉. Choosing the unitary

operator as

U = e−iφD(t)
P

R eiQ·R(nR↑−nR↓) , (4.25)

the dynamics of the Slater determinant is set by the Scrödinger equation

i∂t|ψ̃(t)〉 = U†H∗U |ψ̃(t)〉 − ∂tφD(t)
∑
R

eiQ·R(nR↑ − nR↓)|ψ̃(t)〉 . (4.26)

The second term in (4.26), in the long time limit where magnetic order vanishes, tends to

zero. The dynamics of the Slater determinant is then driven by the effective Hamiltonian

U†H∗U = −
∑

〈R,R′〉,σ

(
R2 c†RσcR′σ +H.c.

)
(4.27)

which has actually the same form of the one we encountered in the paramagnetic quench.

As for the dynamical phase transition in the paramagnetic quench we find that whenever

the final value of the total energy is greater than zero, the angle φ(t) precesses around

the unit circle while it displays finite oscillations below. Therefore, below the critical
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point Udync , which is determined by the condition E = 0, the antiferromagnet melts into

a “coherent” paramagnet, 〈R〉t > 0, while the contrary happens above Udync .

For intermediate values of UUf<Uic < Uf < U
Uf>Ui
c the magnetic order does not vanish,

so that a simple decoupling of the magnetic degrees of freedom from the charge ones

is not anymore feasible. However one can see that the out-of-equilibrium antiferromag-

netic states above and below Udync have a different nature and can be connected to

the respective coherent and incoherent PM phase. This can be seen by considering the

quantity

<
(

Φ↑Φ↓
Φ2

0

)
=

ρ↑ρ↓

ρ2
0

cos
(

2φ0 − φ↑ − φ↓
)

≡
ρ↑ρ↓

ρ2
0

cosφ (4.28)

which in the paramagnetic case is very sensitive to the dynamical phase transition.

Indeed, neglecting magnetism, which is the same as starting from Ui = 0, we have

seen in Sec. 3.2 that the Mott-localized phase can be identified by the dynamics of the

angle φ, which reproduces that of a classical pendulum. Below Udync , φ undergoes small

oscillations around zero, hence Eq. (4.28) is positive. On the contrary, above Udync , cosφ

starts precessing around the whole unit circle, and, in particular, is negative right in the

regions where the double-occupancy probability |Φ↑↓|2 = ρ2
0 is lower. It follows that,

for Uf > Udync , the quantity in Eq. (4.28) is on average negative. Exactly at Udync , ρ0

vanishes exponentially, so that the long time average of <
(

Φ↑Φ↓
Φ2

0

)
diverges and changes

sign right at Udync , see Fig. 4.7 left panel. In the right panel of the same figure we show

that the same singular behavior persists also when the system is quenched from an AFM

state. Even though in this case the angle φ is not bounded between [0 : 2π] below Udync ,

due to the dynamics of the AFM order parameter, yet the time average of (4.28) has a

well defined sign that changes crossing a singularity at Udync .

This is suggestive of a dynamical Mott localization at Udync ≈ 8.2, that has no

equilibrium counterpart and separates two different antiferromagnetic insulators. We

cannot exclude that this transition may be an artifact of the Gutzwiller technique,

although we are tempted to give it a physical meaning.

In order to clarify this point, we first introduce a more general definition of the

quasiparticle residue Zkσ through

Zkσ = |〈kσ,N + 1| c†kσ |0, N〉|
2, (4.29)

where |0, N〉 is the ground state with N electrons, assumed to have zero momentum and

spin, and |kσ,N+1〉 the lowest energy state with N+1 electrons, momentum k and spin

σ. Zkσ defined by Eq. (4.29) coincides with the jump of the momentum distribution
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Figure 4.7: Long time average of O = <
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)
in logarithmic units, i.e.

sgnŌ log(|Ō|), for different values of Uf . Both in the PM case (left panel) and in the
AFM one (right panel) the dynamical critical point is evidenced by a sharp singularity.

at the Fermi surface |k| = kF for a Landau-Fermi liquid (see A.3), but remains well

defined also for an insulator, where it can be used to establish whether well-defined

quasiparticles exist above the gap. Indeed, one can readily realize that Zkσ = 1 for a

non-interacting band-insulator. Therefore, one can in principle distinguish two different

insulators: a “coherent” insulator akin to a band insulator with 0 < Zkσ ≤ 1, and an

“incoherent” insulator, similar to an idealized Mott insulator, with Zkσ = 0 and no

well-defined quasiparticles above the gap.

We then observe that, at zero temperature, |Rσ|2 defined by Eq. (4.10) is just an

estimate, within the Gutzwiller approximation, of Zkσ above. Indeed, one can readily

prove that

〈kσ,N + 1| c†kσ |0, N〉
GW= 〈ψN | ckσ P c†kσ P |ψN 〉

= Rσ. (4.30)

Here we used the fact that the Gutzwiller wavefunction P |ψN 〉 (with |ψN 〉 the N -

particle Slater determinant that defines the variational wave function in Eq. (4.3)) is the

variational estimate of |0, N〉 and that, within corrections O(N−1), the best variational

estimate of the (N + 1)-electron lowest energy wave function with momentum k and

spin σ is just |kσ,N + 1〉 ' P c†kσ |ΨN 〉, with the same P as for N electrons. Eq. (4.30)

remains valid also in the time dependent case where the evolution of the ground state,

being a pure state, is approximated by Eq. (4.3).
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We thence arrive to the conclusion that our dynamical transition separates two

different non-equilibrium antiferromagnetic insulators in the above meaning. It is worth

mentioning that at equilibrium and zero temperature, all evidences indicate that Z of

Eq. (4.29) is everywhere finite in the antiferromagnetic insulating phase of the Hubbard

model at any value of U , as confirmed by DMFT [124] and by quantum Monte Carlo

simulations on the t-J model [125]. In other words, even at very large U where the Mott’s

physics dominates and local moments are already well formed, the antiferromagnet has

coherent quasiparticles above the gap. We actually believe that, as soon as long-range

magnetic order sets in below the Néel temperature, the quasiparticle residue Z becomes

finite at equilibrium. In fact, the onset of long-range order is accompanied at large U

by a hopping energy gain, through the spin-exchange t2/U , hence by a raise of lattice

coherence that we think has to be associated with an increase of Z. That is why we

think that the dynamical transition that we observe has no equilibrium counterpart in

the whole U versus temperature phase diagram.

We conclude mentioning that the main results presented above at fixed Ui = 4,

remain qualitatively the same also at different Ui. We indeed verified the presence of

the critical points at which the magnetization vanishes, UUf≶Uic , and the presence of the

dynamical critical point, Ui < Udync < U
Uf>Ui
c , for all values of Ui < 10.0.

4.4 Conclusions

In this Chapter we have shown that the time dependent Gutzwiller technique, in spite

of its simplicity, is able to reproduce the main features of a quench dynamics from an

antiferromagnetic state found by time-dependent DMFT, such as the existence of non-

thermal magnetically ordered states that disappears above dynamical critical points,

both suddenly decreasing or increasing the value of the Hubbard U . The demagnetiza-

tion mechanism is reconducting to dephasing rather than thermalization, since this latter

is non accessible within the Gutzwiller Approach. Furthermore, we have found evidence

of an additional dynamical transition that occurs at large U , which we interpret as a

dynamical Mott transition separating two different antiferromagnetic non-equilibrium

states. Since the quasiparticle residue Z in an antiferromagnet cannot be extracted by

any static property (unlike in a paramagnet where, at zero temperature, Z is the jump

of the momentum distribution at the Fermi surface), but requires calculating for in-

stance the full out-of-equilibrium self-energy, its dynamical behavior was not addressed

by DMFT in Ref. [11] and Ref. [41]. Although we cannot exclude that the vanish-

ing of Z that we observe could be an artifact of the Gutzwiller technique, nevertheless
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this result is intriguing, as it entails the existence in out-of-equilibrium of an incoherent

antiferromagnet, hence worth to be further investigated.



Chapter 5

Nonequilibrium dynamics of a

toy-model for V2O3

5.1 Introduction

Mott insulators potentially represent promising candidates that might enable scalability

below the size of conventional semiconductors solid state devices [126]. In fact, a Mott

insulator can typically revert to a metal, e.g. under pressure, suddenly releasing the

large amount of conduction electrons that were earlier Mott localized. Therefore one

may envisage that an external bias could eventually drive a Mott insulator into a metal

with a very large carrier concentration of the same order as the inverse of the unit cell

volume. Experimental attempts performed so far are indeed encouraging, see e.g. Refs.

[127] and [128].

On the contrary, theoretical calculations in the simplest model for a Mott insulator,

namely the single-band Hubbard model at half-filling, are not equally promising. For

instance, the simulated time evolution of a photo-excited Mott insulator, with holes in

the lower Hubbard band and electrons in the upper one, shows that the initial excess

energy has a similar effect as heating the system, although the relaxation towards the

steady state is slower the stronger the interaction. In other words, the Mott-Hubbard

side-bands persist and simply spectral weight is being transferred from the lower to the

upper, just as if temperature rises, even though small deviations from the expected ther-

mal behavior are observed [9, 129].

Moreover, theoretical simulations of the dielectric breakdown of a single-band Mott

insulator in the presence of a static electric field point towards a conventional Landau-

Zener tunneling between lower and upped Hubbard bands, just alike conventional band

insulators [56, 57, 130–132]. However these results are not in agreement with actual

89
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experiments [128], thus suggesting the possibility that the single band Hubbard model

might not be the appropriate choice to reproduce this effect.

A simple escape route, which we shall follow here, is to abandon the half-filled single-

band Hubbard model as the prototypical model to describe real Mott insulators.

The single band Hubbard Hamiltonian is indeed intended to provide a simplification

for multiband correlated materials with the main assumption that orbital degeneracy

is lifted by strong crystal fields, so that an effective single band theory can be used in

proximity of the Fermi surface.

However, in several cases an effective single band description might not be sufficient.

An example is given by transition metal oxides with partially filled d-bands, where the

crystal field splitting within the t2g orbitals arising from the distortion of the lattice

may be of the order of fractions of eV , thus excluding a single band description [133].

In this situation multiple degrees of freedom compete with the result that the interplay

between temperature, strong correlation and antiferromagnetic ordering gives rise to

very rich equilibrium phase diagrams. In particular the nature of the charge gap in a

Mott insulator might be different form the genuine Mott-Hubbard gap that refers to the

single band Hubbard model.

The natural question is therefore if and how this feature is going to affect the off-

equilibrium response to external perturbations that could drive those materials metallic.

It is therefore important to have at disposal theoretical tools able to deal with these sit-

uations. At equilibrium, one that is currently adopted is dynamical mean field theory

(DMFT) [69] in combination with local-density approximation (LDA) [134] or the GW

approximation [135]. These combined methods are extremely reliable for correlated ma-

terials, but they can become very cumbersome and numerically demanding, especially

if full consistency on the density is required.

Out-of-equilibrium, even though DMFT can be in general applied to multiband prob-

lems, its practical implementation has not yet been reached.

In this Chapter we shall approach a more realistic description of real materials

within the Gutzwiller Approach. To this extent we introduce here a two-orbital toy-

model which we believe captures many features of vanadium sesquioxide, V2O3. This

compound is characterized by a very rich equilibrium phase diagram and historically

has represented a paradigmatic material displaying a Metal-to-Insulator transition in

its essential form. Not surprisingly it represents nowadays a test-bed compound for

ultrafast manipulation [4, 128] .
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In the first part of the Chapter we make use of the extension to finite temperature for the

Gutzwiller Approach presented in Sec. 2.2 to investigate the equilibrium properties and

the phase diagram of this simple model. We first discuss its results at zero temperature,

where we shall point out the importance of a correlation-induced enhancement of the

crystal field splitting for the Metal-to-Insulator transition. Then we will consider the

finite temperature analysis, and we will show that the phase diagram we obtain indeed

resembles the one of V2O3 and compares qualitatively well with the exact one obtained

by DMFT.

In the second part of the Chapter we shall turn to the out-of-equilibrium properties of

this two-band model.

5.2 Equilibrium phase diagram of a toy-model for V2O3

The model we are going to analyze is inspired by the physics of V2O3. In this com-

pound, the V2+ ions have two valence electrons occupying the conduction bands that

originate mainly from the t2g atomic d-orbitals. At high temperatures, V2O3 is a param-

agnetic metal but, upon substituting V with Cr it can turn into a paramagnetic insulator

[136]. The transition is first order and ends into a second-order critical point. At low

temperature, V2O3 is instead an antiferromagnetic insulator, Fig. 5.1. The Néel tran-

sition occurs at TN ' 155 K and is accompanied by a martensitic transformation from

the high-temperature corundum structure to the low-temperature monoclinic one [137].

The magnetic ordering is not a simple G-type, as it could well be in a bipartite lattice,

but, in the honeycomb-lattice basal plane, two bonds are antiferromagnetic and one is

ferromagnetic [138].

There is wide consensus that the magnetic moment is formed by a spin S = 1[139]

but it is also contributed by angular momentum [140], signaling a non-negligible spin-

orbit coupling. Even though a reliable description of the antiferromagnetic transition

requires including electron-lattice and spin-orbit couplings, the main features of the

phase diagram can be likely explained ignoring those additional complications. The

trigonal field of the corundum structure splits the t2g orbitals into a lower eπg doublet

and a higher a1g singlet. It is therefore tempting to conclude that the low-temperature

insulator describes the two electrons in the eπg doublet that, because of Hund’s rules,

are coupled into a spin-triplet. This conclusion is probably not far from reality. Indeed,

although the bare value of the crystal field splitting is too small in comparison with

the bare conduction bandwidth [141], strong enough electronic correlations may reverse

the situation and stabilize the insulating phase [142]. This scenario has been actually
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Figure 5.1: Experimental phase diagram for the Metal-to-Insulator transition in V2O3

as a function of chemical doping and pressure, [137].

advocated to explain the phase diagram of V2O3 on the basis of a DMFT-LDA calcula-

tion in Ref. [143], and seems supported by some experimental evidences [144]. Indeed,

DMFT-LDA results have shown that the effective crystal field splitting ∆eff between eπg
and a1g orbitals is enhanced by correlations from its bare value ∆ ' 0.27 eV due to the

strength of the electron repulsion [143]. In addition, ∆eff has been found to increase upon

lowering temperature T , though only slightly [143] but, more importantly, it has been

observed that the magnetic susceptibility of the eπg increases substantially with lowering

T , while that of the a1g stays constants [143] or even diminishes [145], precursor signals

of a magnetic instability.

However, all calculations so far have not been pushed down to the Néel transition

temperature to really uncover the proposed mechanism of a gradual depopulation of

the a1g-derived band and concomitant magnetic polarization of the eπg -derived ones.

Here, we would like to address this issue by exploiting the finite temperature technique

described in section 2.2 on a simplified model that we believe captures the essential

physics. Instead of considering three t2g orbitals split into two plus one and occupied on

average by two electrons, we shall consider only two split orbitals occupied on average

by one electron (quarter filling). In this way we miss the important role of Coulomb
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exchange, which forces the two electrons on the eπg doublet to lock into a spin triplet state

and might bring about relevant incoherence effects [146], but the gross features of the

phase diagram, in particular the interplay between temperature, crystal field splitting,

correlations and magnetism, should be maintained.

Specifically, we shall study the two-band Hamiltonian on a square lattice

H =
2∑

a=1

∑
kσ

εk c
†
kaσckaσ +

∑
kσ

γk
(
c†k1σck2σ +H.c.

)
+

∑
R

[
−∆

(
nR1 − nR2

)
+
U

2
(
nR1 + nR2

)2]
, (5.1)

where a = 1, 2 labels the two orbitals, εk = −2t
(

cos kx + cos ky
)

is the standard nearest

neighbor tight-binding energy, U parametrizes the on-site repulsion and ∆ > 0 the

crystal field splitting. We include an inter-orbital hopping γk = −4t′ sin kx sin ky with

a symmetry such that the local single-particle density matrix remains diagonal in the

orbital indices 1 and 2, thus mimicking the a1g-eπg hybridization in the corundum phase

of V2O3 [143]. We shall further assume a density corresponding to one electron per site.

In spite of its simplicity, the model in Eq. (5.1) reproduces qualitatively the actual

behavior of V2O3. If ∆ ' t′ � t, which we shall consider hereafter, the model describes

a two-band metal for small U . However, for very large U , we do expect a Mott insulating

phase with the electrons localized mostly on the lowest orbital and antiferromagnetically

ordered. Therefore a strong repulsion U can turn the two band metal into a single-band

antiferromagnetic insulator, the two-band analogue of what is predicted in V2O3. The

question we would like to address here is the behavior at finite temperature.

We first observe that the enhancement of the effective crystal field ∆eff caused by

U , which eventually leads to antiferromagnetism once the highest band is emptied, can

be described also within Hartree-Fock. Indeed, if we neglect magnetism and assume the

variational mean-field ansatz

〈nR1〉 =
1
2

+ δn, 〈nR2〉 =
1
2
− δn,

then the Hartree-Fock energies of the orbitals are ε1 = −∆ + U (3 − 2δn)/2, and ε2 =

∆+U (3+2δn)/2, so that the effective crystal-field splitting is, within mean-field, ∆eff =

∆ + U δn > ∆. As U increases, ∆eff grows hence the highest band depopulates until it

becomes completely empty. Beyond this point, only the lowest band remains occupied,

specifically half-filled, which can lead to a Stoner-like antiferromagnetic instability, hence

to an insulating state. In other words, an independent particle picture, like Hartree-

Fock, is indeed able to explain the occurrence of an antiferromagnetic insulating state
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at low temperature. However, no matter how large U is, Hartree-Fock will predict this

insulating phase to turn metallic above the Néel temperature TN . On the contrary, we

expect that, for T > TN but U large enough, the phase should still be insulating, though

paramagnetic.

Finite-T Gutzwiller approximation at work

We can improve the Hartree-Fock description at finite temperature by the Gutzwiller

variational approach of section 2.2. By our choice, even though the inter-orbital hy-

bridization t′ is finite, hence the two orbital can mutually exchange electrons, still the

local density matrix is diagonal by symmetry. It follows that the natural basis, see Eq.

(2.50), coincides with the original one, a great simplification in the calculations. We

identify the local Fock basis as

# |{n}〉 # |{n}〉
1 |0, 0〉 9 | ↓, ↓〉
2 | ↑, 0〉 10 | ↑↓, 0〉
3 | ↓, 0〉 11 |0, ↑↓〉
4 |0, ↑〉 12 | ↑↓, ↑〉
5 |0, ↓〉 13 | ↑↓, ↓〉
6 | ↑, ↑〉 14 | ↑, ↑↓〉
7 | ↓, ↑〉 15 | ↓, ↑↓〉
8 | ↑, ↓〉 16 | ↑↓, ↑↓〉

Table 5.1: Local Fock basis for the two-band model

Since we will search for simple two-sublattice Néel order, we can set, for any site

R belonging to sublattice A, Φ̂R = Φ̂A ≡ Φ̂ and n0
Raσ = n0

Aaσ ≡ n0
aσ (see Eq. (2.50)),

such that
∑

aσ n
0
aσ = 1. The variational matrix Φ̂ is defined in the local Fock space and

is only invariant under spin-rotations around the magnetization axis, which we choose

as the z axis. It follows that, for any site R belonging to the other other sublattice B,

Φ̂R = Φ̂B = U † Φ̂U with U = exp
(
iπSy/2

)
and Sy the y-component of the total local

spin, while n0
Raσ = n0

Baσ ≡ n0
a−σ. Because of Eq. (2.57), we must impose the constraint

Tr
(
ρ∗c
†
RaσcRbσ′

)
= Tr

(
Φ̂†Φ̂ c†aσcbσ′

)
= δabδσσ′ n

0
aσ, (5.2)

for R ∈ A, while, for R ∈ B, Φ̂→ U † Φ̂U and n0
aσ → n0

a−σ.
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Since natural and original bases coincide, the renormalization factors of Eq. (2.26)

are diagonal and read, for R ∈ A,

R∗R aσ = R∗aσ =
1√

n0
aσ (1− n0

aσ)
Tr
(

Φ̂† c†aσ Φ̂ caσ

)
, (5.3)

while, for R ∈ B, R∗R aσ = R∗a−σ. We find that, at the optimized values of the variational

parameters, RR aσ are always real. Therefore, if we define Raσ ≡ Ra + σ Sa ∈ <e, then

the variational uncorrelated Hamiltonian H∗, see Eq. (2.38), is

H∗
[
Φ̂, n0

]
=

2∑
a=1

∑
kσ

εka c
†
kaσckaσ +

∑
kσ

γ′k
(
c†k1σck2σ +H.c.

)
+
∑
kσ

σ γ”k

(
c†k1σck+Q2σ +H.c.

)
+ µ

∑
akσ

nkaσ + µCF

∑
kσ

(
nk1σ − nk2σ

)
+

2∑
a=1

∑
kσ

σ ha
(
c†kaσck+Qaσ +H.c.

)
, (5.4)

where the Lagrange multipliers µ, µCF, h1 and h2 enforce the constraints (5.2), and

εak =
(
R2
a − S2

a

)
εk,

γ′k =
(
R1R2 + S1 S2

)
γk,

γ”k =
(
R1 S2 +R2 S1

)
γk.

It follows that, if

F∗
[
Φ̂, n0

]
= − T

N
ln Tr

(
e−βH∗

)
, (5.5)

where N in the number of sites, then we have to minimize

F
[
λ, Φ̂, n0

]
= F∗

[
Φ̂, n0

]
+
U

2
Tr
(

Φ̂†
(
n1 + n2

)2Φ̂
)
−∆Tr

(
Φ̂†
(
n1 − n2

)
Φ̂
)

−
∑
aσ

λaσ

[
Tr
(

Φ̂†Φ̂naσ

)
− n0

aσ

]
− T S

(
Φ̂†Φ̂||P 0

)
, (5.6)

with the constraint
∑

aσ n
0
aσ = 1.

To minimize the variational free-energy (5.6) we find more convenient to minimize

first with respect to all parameters except n0 [64], thus obtaining the functional

F [n0] = min
λ,Φ̂

F
[
λ, Φ̂, n0

]
. (5.7)

We calculate F [n0] in a two-steps cyclic process; first we fix Φ̂ and minimize F [λ, Φ̂, n0]

with respect to the Lagrange multipliers in Eq. (5.4). Then, at fixed matrix elements

〈c†RaσcR′bσ′〉ρ∗ , we minimize F [λ, Φ̂, n0] with respect to Φ̂ fulfilling the Gutzwiller con-

straints. This second non-linear constrained minimization is performed by the LANCELOT
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B routine of the GALAHAD library [147]. This two-steps cycle is repeated until con-

vergence. Finally a full minimization of F [n0] with respect to n0 is performed.

5.2.1 T = 0 phase diagram

The results that follow are obtained setting t = 1/8 and the inter-orbital hybridization

t′ = 0.3t. The t′ = 0 bandwidth W = 8t = 1 hence sets the unit of energy.

First we consider the T = 0 case of Eq. (5.6), which corresponds to the usual ground

state Gutzwiller variational approach. In Fig. 5.16 we plot the zero temperature phase

diagram in the paramagnetic sector as a function of U and ∆. Our results compare

well with the DMFT phase diagram of Refs. [142] and [133]. In the limit ∆ = 0 the

model undergoes a second order degenerate Metal-to-Insulator transition (MIT) at a

critical value U∆=0
c ' 2.27W characterized by the disappearance of the renormalization

factors R1,2. In the opposite non interacting case, U = 0, upon increasing ∆ the system

crosses a Lifshitz transition from a two-band to a one-band metal. This critical value

∆c = W/4 in the hybridized case is slightly diminished by hybridization which acts as

a small effective crystal field splitting. Moreover, we note that in this case the majority

(>) and minority (<) bands do not have a unique orbital character; therefore the band

polarization n> − n<, which saturates to 1 at the two-band → one-band transition, is

in general different from the orbital polarization n1 − n2.

At finite U the Gutzwiller ground state can be determined in terms of an effective

renormalized Hamiltonian. The effective bands are hence renormalized approximately

as R2
aW , which implies that a smaller crystal field spitting is required to induce the

two-band → one-band transition or, in other words, that the original bare crystal field

splitting is enhanced by correlation. This is confirmed from the phase diagram in Fig.

5.16 in which we see that a smaller value of ∆ is needed to drive the two-band→ one-band

transition. Above this transition, the ground state is a one-band metal which eventually

undergoes a second order MIT at a critical value Uc ' 1.68W . In Fig. 5.3 (right panel)

we show the details of these two subsequent transitions for a value of ∆ = 0.15W . For

U ≤ 0.64W , the two-band metal is stable but, increasing U , the minority band grad-

ually empties and both renormalization factors, R1 and R2, decrease. At U ' 0.64W

the minority band completely depopulates and the leftover half-filled majority band is

driven to the MIT at U ' 1.68W . Approaching the MIT, the renormalization factor R1

of the lowest-energy orbital vanishes, while R2 actually increases to one – the almost

empty orbital undresses from correlations. For smaller ∆, the two-band → one-band

transition becomes first order and approaches the one-band MIT point, ending in a

multicritical point at ∆ ' 0.028W . In Fig. 5.3 (left panel) we plot the behavior of
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R1, R2 and n> − n< for ∆ = 0.025W ; in this case the two renormalization factors are

approximately equal and decrease monotonically with U . At the transition, the major-

ity orbital occupation suddenly increases and the corresponding renormalization factor

vanishes. We mention that a Mott insulator with partial occupation of both orbitals

can not be stabilized within the Gutzwiller approximation, while more reliable DMFT

calculations show that such a phase does exist for very small ∆ [133]. We shall return

on the details of this zero temperature Mott transition in the Section dedicated to the

out-of-equilibrium dynamics.
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Figure 5.2: T = 0 phase diagram for model in Eq. (5.1). The solid line indicates the
MIT transition; the dashed/dotted line separates the two-band paramagnetic metal
(two-band PM metal) from the one-band PM metal. The vertical dashed red lines

indicate the values of ∆ which are used in Fig. 5.3.

If we allow for magnetism, the one-band phases, either metallic or Mott insulating,

turn immediately into an antiferromagnetic insulator, see Fig. 5.4. The transition from

the two-band paramagnetic metal to the one-band antiferromagnetic insulator (one-

band AFI) is first order and accompanied by a jump in the orbital polarization and in

the staggered magnetization, see inset of Fig. 5.4. This remains true apart for large

values of the crystal field splitting and small interactions. In this case the two-band

PM metal is first driven to a single band PM metal, and successively it undergoes a

transition to an AFI at a finite value of the interaction. This is due to the presence of

the small hybridization term which destroys the perfect nesting of the band dispersion.

We mention moreover that in this regime the transition from the metal to the AFM

insulator can take place through a narrow region in which an AFM metal sets in. Since

this is irrelevant for the aims of the present work we overlooked this aspect.
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Figure 5.3: n> − n< (blue diamonds), renormalization factors R1 (black squares)
and R2 (red circles) as a function of U for fixed ∆ = 0.025W (left panel) and ∆ =
0.3W (right panel). The vertical dashed lines indicate the two-band→ one-band metal

transition and the MIT.
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Figure 5.4: Zero temperature phase diagram allowing for magnetism. The black line
separates the metal from the one-band antiferromagnetic insulator. In the inset we plot
the orbital polarization n1 − n2 and the staggered magnetization for a fixed value of
∆ = 0.025W (red dashed line). The dashed line at small values of U and large values
of ∆, shows the transition line from a two-band to a single-band effective metal. This

feature would not be present in the unhybridized case.
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5.2.2 T 6= 0 phase diagram

We have seen that at zero temperature the ground state is either a one-band antifer-

romagnetic insulator or a two-band paramagnetic metal. Therefore, as we anticipated,

the T = 0 Gutzwiller variational results are not dissimilar from the predictions of the

Hartree-Fock approximation. Differences instead arise at finite temperature, where the

Gutzwiller variational approach, as we are going to show, can describe melting of the

Néel order without metallization, unlike Hartree-Fock.

We begin as before by restricting the analysis to the paramagnetic sector and con-

sider the case of ∆ = 0.025W . At zero temperature we found that the model is a

one-band PM insulator for values of U ≥ 1.7W , while a two-band PM metal below,

Fig. 5.2. At finite temperature, the entropic contribution may favor the paramagnetic

insulating solution, like in the single band Hubbard model [69], thus leading to a finite

T metal-insulator transition. This indeed occurs, as shown in Fig. 5.5 where we plot

the phase diagram as a function of U and T (upper panel) and the temperature de-

pendence of the majority orbital R1 and the orbital polarization (lower panels). In the

figure we observe that for values of U ≥ 1.7W , increasing the temperature the orbital

polarization decreases and the quasiparticle weight increase: the one-band PM insulator

continuously evolves towards a two-band PM insulator. Instead, for smaller values of

U , the system is initially a two-band metal and undergoes a first order transition to

an insulating state which is accompanied by an abrupt fall-down of the renormalization

factors and increase of orbital polarization. As in Ref. [81], we interpret the jump of the

renormalization factor as the boundary of the PM Metal-to-Insulator transition. Notice

that, differently from the T = 0 case, the orbital polarization does not saturate at the

transition. Finally, for values of U smaller than ∼ 1.19W , the quasiparticle weight and

the orbital polarization evolve smoothly to the high temperature limit, displaying a dip

that we interpret as the crossover regime. We estimate the end-point of the transition

at T ' 0.09W . We note, in the lower panel of Fig. 5.5 and for U = 1.1W , the tiny dis-

continuity of R1 and n1−n2 at T ≈ 0.01W , which is consequence of the aforementioned

artificial discontinuity in the slope of the free energy caused by our not rigorous lower

bound of the entropy.

When magnetism is allowed, at zero temperature and at large U the ground state

is antiferromagnetic. At finite temperature the system remains ordered up to the Néel

temperature. In Fig. 5.6 we plot for ∆ = 0.025W the phase diagram, indicating by a

dotted line the Metal-to-Insulator transition that we have found in the paramagnetic

sector. We note that this transition line crosses the Néel temperature, roughly at U '
1.28W , and extends above, unlike what happens in the single-band Hubbard model. For

U > 1.28W , the Gutzwiller variational approach is able to describe melting of the AFI
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Figure 5.5: Upper panel: phase diagram in the paramagnetic domain. The black line
separates the PM metal phase from the PM insulator. The red vertical lines indicate
the values of U plotted in the lower panel. Lower panel: Temperature dependence of
the quasiparticle weight for the majority orbital (left) and of the orbital polarization

(right) for different values of U .

into a two-band PM insulator, which we mentioned is not accessible by Hartree-Fock.

For smaller values of U , the magnetic insulator turns into a two-band PM metal that

eventually undergoes a Mott transition at higher temperatures. In Fig. 5.7 we show

more in detail the behavior of the physical quantities across the different transitions; in

the low temperature AFI (blue area on the left) the orbital and magnetic polarizations

are very weakly temperature dependent. Increasing T , the Néel order melts, the orbital



5.2 Equilibrium phase diagram of a toy-model for V2O3 101

polarization decreases (red areas on the right), and the model turns into a two-band

PM metal (left panel) or PM insulator (right panel) depending on the value of U . In

the former case, left panel of Fig. 5.7, the two-band metal is eventually driven to

the PM insulating state, transition that is signaled by the sudden vanishing of the

renormalization factors and the jump of the orbital polarization n1 − n2. In the right

panel, instead, the AFI melts directly in the PM insulator; the renormalization factor

vanish at the transition and then smoothly increases from zero on raising T .

We observe that the finite-temperature phase diagram of Fig. 5.6 is not dissimilar

to that of V2O3 as function of chemical/physical pressure, Fig. 5.1. Also the physical

mechanism that controls the phase diagram, i.e. the correlation enhanced crystal-field

splitting, is consistent with that proposed in Ref. [143] for V2O3, though in our case the

number of orbitals involved is two and not three. We also note the discontinuous increase

of the orbital polarization across the PM Metal-to-Insulator transition upon increasing

temperature, see left panel in Fig. 5.7, which is consistent with X-ray adsorption spectra

of V2O3 [139, 148], in which case the orbital polarization relates to the occupation of

the eπg orbitals with respect to the a1g one.
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Figure 5.6: Finite temperature phase diagram as a function of U and T, for a fixed
value of ∆ = 0.025W . The paramagnetic solution is continued also within the AFM
domain (dotted line). The vertical red dashed line indicates the temperature cut rep-

resented in Fig.5.7.
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Figure 5.7: The blue and red areas indicate respectively the AFI phase and the
paramagnetic phase as a function of temperature at fixed values of U = 1.22W (left) and
U = 1.8W (right). At low temperatures the orbital polarization (blue squares) and the
staggered magnetization (black squares) are practically equal to the zero temperature
values and display a discontinuous jump at the AFI-PM transition. In the paramagnetic
phase we show also the behavior of the renormalization factors whose jump indicates

the PM Metal-to-Insulator transition.

5.3 Comparison with DMFT

In this section, we compare the quality of the finite temperature Gutzwiller approx-

imation with exact DMFT results performed by Massimo Capone. In particular, we

shall consider a simplified version of the model in Eq. (5.1) with vanishing inter-orbital

hybridization, t′ = 0, and on a Bethe lattice with only nearest neighbor hopping, which

leads to a non-interacting semicircular density of states of bandwidth W . We choose

a Bethe lattice (a Cayley tree with coordination number z → ∞) because in this case

DMFT is exact and, as previously discussed, the Gutzwiller approximation does provide

a rigorous upper bound to the free energy, which therefore makes it possible to assess

its accuracy with respect to exact results. The phase diagrams obtained by DMFT and

by the Gutzwiller approximation in the U -T space for ∆ = 0.025W are shown in Fig.

5.8.

DMFT maps the lattice model onto an impurity model, which, in the present cal-

culation, is solved by means of exact diagonalization [149] in the finite-temperature

implementation proposed in Ref. [150], which is particularly accurate at the low tem-

peratures that we consider. Within the exact diagonalization approach, the bath is

approximated by a finite number, Nb, of energy levels. Here we take Nb = 10 and
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Figure 5.8: Top panel: finite T phase diagram within the Gutzwiller approximation
at ∆ = 0.025W , t′ = 0 and a semicircular DOS. Bottom panel: same as before but

within DMFT, which is exact.

Nb = 12 , i.e. 5 and 6 bath levels for each physical orbital. Only for Nb = 10 we

could include a number of states sufficient to obtained converged results. Therefore

data for Nb = 12 have only obtained for low temperatures, and used to prove that the

discretization error only leads to minor corrections to the phase diagram. We consider

both paramagnetic and antiferromagnetic solutions. As customary, we first determine

the Mott transition line in the paramagnetic sector by comparing the free energies of

the metallic and Mott insulating solutions. The transition is first-order at any finite

temperature and ends in a finite-temperature critical point at T . 0.05W . If we allow
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for long-range antiferromagnetic order, at T = 0 the system is metallic for U .W , and

it turns into a single-band antiferromagnet for larger values of the interaction. The Néel

temperature rapidly grows with U and reaches a maximum around U ' 1.2W , above

which it monotonically decreases. However, differently from the single-band case, the

first-order Mott line is not completely covered by the antiferromagnetic dome.

The DMFT phase diagram is thus very similar to that obtained by the finite-

temperature Gutzwiller approach, qualitatively and to some extent quantitatively; see

Fig. 5.8. As common with the Gutzwiller approximation, the T = 0 Mott transition

in the paramagnetic sector occurs at larger U/W ' 1.7 than the exact DMFT value

U/W ' 1.5. In addition, the Gutzwiller wavefunction seems to overestimate antifer-

romagnetism, which occupies a larger region in the phase diagram. However, quite

remarkably, the endpoints of the PM Mott transition do not differ much, U/W ' 1.175

and T/W ' 0.07 in the Gutzwiller calculation, while U/W ' 1.1 and T/W ' 0.05 in

DMFT. Concerning the relative performances of the Gutzwiller technique and of DMFT,

we compared the CPU time required to calculate by both methods the free energy at

given T and U on a machine with an Intel i7-3770 (3.40 GHz) quad-core processor. We

find that the finite-T Gutzwiller approximation takes around 2–3 minutes in the para-

magnetic sector and 10 minutes in the antiferromagnetic one, while DMFT using the

finite-T implementation of the exact diagonalization impurity solver typically requires a

time two orders of magnitude greater in both cases, which becomes even higher at high

temperature but reduces to 10–15 times more at low temperature.

Conclusions on the equilibrium analysis

In this first part we have introduced a two-band toy model that we believe qualita-

tively captures the main physics of vanadium sesquioxide, V2O3. To corroborate this

intuition we exploited the results of Sec. 2.2 on the extension of finite temperature

of the Gutzwiller approach and we applied this technique to calculate the equilibrium

phase diagram of this model. At zero temperature we find that a correlation-induced

enhancement of the crystal field splitting plays a relevant role in determining a Metal-to-

Insulator transition characterized by the depopulation of one band in accordance with

DMFT picture [143, 151].

At finite temperature, in spite of being extremely simplified with respect to a com-

plete description of V2O3, the model has a very similar phase diagram comprising a

low-temperature antiferromagnetic insulating dome and high-temperature paramagnetic

metal as well as Mott insulating phases separated by a first order line.

Finally we have tested the accuracy of our finite temperature Gutzwiller approximation
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comparing the phase diagram of the model on a Bethe lattice with the exact one obtained

by DMFT. The agreement is qualitatively very satisfying and partly also quantitatively.

We believe therefore that this simple variational technique is very promising to attach

correlated electron systems at finite temperature, and could be used whenever more

reliable tools, like DMFT, become numerically too demanding.
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5.4 Time dependent Gutzwiller for a two-band model

The previous part of this Chapter was devoted to the analysis of the equilibrium phase

diagram within the GA of a two-band model which can reproduce the gross features

of the actual phase diagram of V2O3. In order to proceed with the out-of-equilibrium

investigation of this model it might be helpful to recall the zero temperature picture we

obtained. This is sketched in the diagram of Figure 5.9. When the hopping is turned

on (leftmost side of Fig. 5.9) the orbitals broaden in two bands that generally are both

occupied, thus describing a quarter-filled two-band metal. Increasing the interaction,

correlation induces a renormalization of the hopping with a consequent enhancement

of the bare crystal field splitting, ∆. Eventually, as U is further increased, the upper

band is left completely depopulated leaving the lower band half filled, which in turn

can become Mott insulating, likely with the emergence of magnetism. The actual phase

diagrams at zero temperature are reported in the previous Chapter, Fig. 5.2 and 5.4.

Two aspects that characterize this model are worth to be highlighted in comparison

with the single band Hubbard model. First we notice that the Metal-to-Insulator tran-

sition in this case is not characterized by a genuine Mott-Hubbard gap that refers to the

same orbital (as for the single band Hubbard model) but rather by an inter-band gap

between an occupied Mott-localized band and a weakly correlated unoccupied one [133].

Moreover, for small values of the crystal field splitting, the metallic phase is predicted

to disappear by a first order transition. This implies that close to the Mott transition a

metastable paramagnetic metal phase is expected to exist even at zero temperature, an

occurrence which is particularly interesting since one can envisage the possibility to sta-

bilize this phase under nonequilibrium conditions, for instance by an external bias as in

the phenomenological model proposed in Ref. [128]. Such possibility is very fascinating

in view of recent pump-probe experiments on correlated materials where photoinduced

Insulator-to-Metal transitions can be achieved [2].

In the remaining part of this Chapter we will address this issue by means of the

time dependent Gutzwiller Approach. A complete analysis of the out-of-equilibrium

physics for the two-band model requires a massive work due to the large number of

competing degrees of freedom which can be changed. Therefore we will restrict on two

different excitation protocols which we believe are particularly significant to highlight

the differences between this two-band toy model and the single band Hubbard model so

far considered.

We will start by analyzing the simplified situation in which the crystal field splitting ∆

and the hybridization t′ are set to zero and the excitation protocol is simulated by a

sudden quench of the interaction U . This case simplifies to the dynamics of a two-band
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degenerate model that we will study in the paramagnetic sector. In this way we extend

the quench dynamics of the single band Hubbard model considered in Chapter 3. We

will show that the gross features encountered there remain valid also for this model and

in particular a separation between two different dynamical regimes appears as a function

of the interaction quench.

In the second part of the Chapter we will instead highlight the differences that emerge

when a redistribution of the orbital polarization is considered. By studying the evolution

of an initial metallic state obtained by a sudden quench of the orbital polarization n1−n2,

we will foresee the possible existence of a metastable metallic phase in the insulating

regime related to the occurrence of a first order Metal-to-Insulator transition. The

existence of such metastable phase has no equilibrium counterpart.

Ut

one-band
correlated metal

two-band
correlated metal one-band MI

Figure 5.9: Sketch diagram which represents the mechanism of the Metal-to-Insulator
transition for the two-band toy model as predicted by the GA.

t-GA equations of motion

The out-of-equilibrium dynamics of the two-band model is addressed here by means

of the t-GA formalism so far introduced. We report for convenience the toy-model

Hamiltonian introduced in (5.1),

H =
2∑

a=1

∑
kσ

εk c
†
akσcakσ +

∑
kσ

γk
(
c†1kσc2kσ +H.c.

)
+

∑
i

[
−∆

(
n1i − n2i

)
+
U

2
(
n1i + n2i

)2]
, (5.8)

where a = 1, 2 labels the two orbitals, εk = −2t
(

cos kx + cos ky
)

is the standard nearest

neighbor tight-binding energy, U parametrizes the on-site repulsion and ∆ > 0 the
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crystal field splitting. We have already noticed in the previous sections that the inter-

orbital hopping γk = −4t′ sin kx sin ky is such that the local single-particle density matrix

remains diagonal in the orbital indices 1 and 2. Hence, in this case, the natural basis

and the original one coincide.

Following the formalism presented in Chapter 2 we approximate the dynamics of an

initial quantum state by a time dependent Gutzwiller wavefunction

|Ψ(t)〉 =
∏
R

PR(t) |ψ(t)〉, (5.9)

and introduce a local basis for the Fock space in the natural basis (see Table 5.2)

|R, {n}〉 =
∏
α

(c†Rα)nα . (5.10)

The dynamics of the Slater determinant and the Gutzwiller parameters is set by

i∂t|ψ(t)〉 = H∗[Φ̂(t)] |ψ(t)〉 (5.11)

i∂tΦ̂R(t) =
(
Û(t) + ∆̂(t)

)
Φ̂R(t) + 〈ψ(t)|∂H∗[Φ̂(t)]

∂Φ̂R(t)
|ψ(t)〉. (5.12)

The renormalized Hamiltonian in presence of a Néel antiferromagnetic order is found by

separating the bipartite square lattice into two sublattices A and B (see 4.2). Using the

fact that

RRaσ = RRā−σ (a ∈ {A,B}) (5.13)

H∗ reads

H∗ =
∑
k,a,σ

εk

[
<(ZRAa)c

†
kaσckaσ − i=(ZRAa)c

†
kaσck+Qaσ

]
+

∑
k,σ

γk

[
ZSRAσ

c†k1σck2σ + ZARAσ
c†k1σck+Q2σ +H.c.

]
(5.14)

where the vector Q = (π, π). The following quantities are defined in order to simplify

notations:

ZRA
= R∗RAaσ

RRAa−σ

ZSRAσ
= (R∗RA1σRRA2σ +R∗RA1−σRRA2−σ)/2

ZARAσ
= (R∗RA1σRRA2σ −R∗RA1−σRRA2−σ)/2 . (5.15)
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5.5 Interaction quench in the degenerate case

Before considering the full dynamics of the model Hamiltonian (5.8) we begin our anal-

ysis in the simplified case in which both the inter-orbital hybridization, t′, and crystal

field splitting, ∆, are set to zero. At zero temperature, this model admits a two-band

degenerate Metal-to-Insulator transition at a finite value of the interaction Uc ≈ 26.4ε,

where ε is the hopping energy per site and per fermionic species. Within the GA, this

transition is identified as usual by the vanishing of the renormalization factors and a

corresponding vanishing of the occupation probabilities for the Fock states with occu-

pation different from one [152].

In the following we restrict to the time evolution of an initial non-interacting (U = 0)

state subject to a quench of the interaction, i.e. U(t) = Ufθ(t), where θ(t) is the Heav-

iside function. We shall return at end of this Section on the general case in which

U(t) = Ui + (Uf − Ui)θ(t). Although this case reproduces a simplified dynamics of

the full model Hamiltonian (5.8), this analysis is intended to confirm the presence of a

dynamical separation between two regimes similar to that encountered by Schiró and

Fabrizio in the single band Hubbard model [49].

The paramagnetic quench that we address here has recently been considered in Ref. [55]

for the same model but at half-filling ; it was shown that quenching the system at increas-

ing values of U , the dynamics displays a crossover between two different regimes that

resemble the weak and strong interacting regimes obtained in the single band model.

The authors in Ref. [55] interpreted such crossover behavior as an “extended” dynam-

ical Mott transition. Intriguing differences with respect to the single band one arose,

in particular the singular Mott dynamical point encountered in Ref. [49] turns into an

extended region characterized by the onset of a “chaotic-like” behavior in the physical

quantities.

We concentrate here on the quarter-filling case and we show that a similar behavior

is recovered also in this case.

First of all one can easily realize from eq. (5.14) that for t′ = 0 the occupation prob-

abilities 〈ψ(t)| c†kacka |ψ(t)〉 do not evolve in time, with the result that the dynamics

is restricted to the solely evolution of the Gutzwiller parameters ΦR{n}. The time evo-

lution is then obtained by solving the equations of motions (5.12) for the Gutzwiller

matrix Φ̂ whose elements we denote with Φn, where n = 0, ..., 4 indicates the electron

occupation (the Gutzwiller parameters with equal occupation number are degenerate,

for example Φ↑,↑ = Φ↑↓,0 = Φ2). The equations of motion for Φn(t) can be readily solved

numerically.
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As for the single band dynamics, the evolution within t-GA is characterized by un-

damped oscillations without relaxation. It is therefore more effective to concentrate on

the long time average of the main physical observables.

In Fig. 5.10 we plot the long time averages of |Raσ(t)|2 ≡ |R(t)|2 and of the occupation

probabilities |Φn(t)|2 as a function of Uf . One can notice that both the quasiparticle

weight and the double occupation probability reproduce qualitatively the behavior found

in the single band PM quench, Fig. 3.2. In particular three regimes can be distinguished:

for small values of the quench, 〈|R|2〉t and 〈|Φn6=1|2〉t decrease, while the single occupied

probability, 〈|Φ1|2〉t, shows an opposite trend. For values of 0.39 . Uf/Uc . 0.55 (verti-

cal red lines) the single-occupied probability shows a maximum indicating the tendency

of the system to approach the zero temperature Mott insulating state. Finally, at large

values of Uf , as expected, the occupation probabilities tend to their initial values, in

accordance with the fact that the occupation probabilities remain trapped at very large

values of the interaction due to energy constraints.

It is worth noticing that in the intermediate region the dynamics loses its regularity:

time averages require very long times to converge and lack a smooth evolution as a

function of Uf . The Fourier spectra of the time evolution display irregular and mostly

noisy features as one can recognize from Fig. 5.11 (upper panel) in which we plot the

Fourier power spectrum of |R|2(t) = Z(t) (i.e. <2Z(w) + =2Z(w)) as a function of the

final value of the quench. These results are reminiscent of those obtained at half-filling

in Ref. [55]; in fact one can identify a multiple-frequency level pattern in the limit of

small and large values of the quench which breaks up in the intermediate region. For

large values of the quench the dynamics is dominated by 1/U -period oscillations typical

of Mott insulating regime where the Hubbard term of the Hamiltonian is dominating.

Such crossover behavior has been interpreted as an extended dynamical Mott transition.

To shade more light on this point we start by noticing from Fig. 5.10 (right panel)

that the long time averages of the occupation probabilities for the Fock states with

greater occupation number, i.e. n = 3, 4, are almost two orders of magnitude smaller

than those for n ≤ 2. This suggests to consider a Gutzwiller dynamics where the

parameters Φn=3,4 are discarded. In this case the equations of motion for the Gutzwiller

dynamics read

i∂tΦ0 =
16√

3
εR∗Φ1 +

U

2
Φ0

i∂tΦ1 =
4√
3
εRΦ0 +

12√
3
εR∗Φ2

i∂tΦ2 =
8√
3
εRΦ1 +

U

2
Φ2 (5.16)
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Figure 5.10: Long time average of |R|2 (left panel) and of the occupation probabilities
|Φn|2 as a function of the quench interaction. The vertical red dashed lines represent

the region in which the dynamics shows an irregular behavior.

with

R =
4√
3

(
Φ∗0Φ1 + 3Φ∗1Φ2

)
. (5.17)

The time evolution conserves the total energy (L is the number of sites)

E/L = 4ε|R|2 +
U

2
(|Φ0|2 + 6|Φ2|2) (5.18)

together with the Gutzwiller constraints

|Φ0|2 + 4|Φ1|2 + 6|Φ2|2 = 1 ,

4|Φ1|2 + 12|Φ2|2 = 1. (5.19)

At equilibrium the renormalization factor R can always be chosen real and its van-

ishing signals the onset of the Mott insulator. Out-of-equilibrium, but in the half-filled

single band model, R(t) can still be chosen real and oscillates in time around a well

defined mean value, which allows to identify a dynamical Mott transition when such

a mean value vanishes, Sec. 3.2. In the present two-band model, R(t) is unavoidably

complex. Therefore, it is not as straightforward as in the single-band case to identify

through its temporal evolution a dynamical transition. Nevertheless, there are signals

that we believe can be associated to a dynamical transition. We observe that, as shown

for the single band Hubbard model both in the PM and AFM quench, Sec. 3.2 and
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Figure 5.11: Discrete Fourier power spectrum (in logarithmic arbitrary units) of
|R|2(t) as a function of Uf . In the upper panel the full dynamics is considered and the
extended dynamical transition is clearly recognizable. In the lower panel the dynamics
is restricted to the subspace n ≤ 2 and the Fourier transform is peaked on a single

frequency and its multiples; a dynamical transition occurs at Uf/Uc = 0.5.

4.3.2, upon rewriting the Gutzwiller parameters as

Φn(t) = ρneiφn(t), (5.20)

the Gutzwiller equations of motion can be recasted in set of “classical” Hamiltonian

equations where φn and ρn play the role of conjugate variables.

In the half-filled single band model, it is found that the time evolution of the phase

φ = (φ0 + φ2)/2− φ1 (5.21)

is associated to the dynamics of the double occupation and reflects in a very transparent
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way the dynamical metal-insulator transition. One can easily check that, also in the

present case, this is the only angular variable which enters the Lagrangian (2.66). By

means of (5.18) and (5.19) one can arrive to an equation of motion in terms of φ only,

∂tφ = ±
√
U2
f − f(cos(2φ)) (5.22)

with

f(cos(2φ)) = ε2
( 4√

3

)4[(
1− cos 2φ

)(5
√

6
2

+ 6 cos 2φ
)]
. (5.23)

Hence φ displays a dynamical transition at Udync = 4|ε|(5 + 2
√

6)/3 = Uc/2 and can be

considered a dynamical order parameter which displays small oscillations around zero

below the critical point, while it precesses around the unit circle above. At the dynamical

critical value the total energy after the quench is equal to zero and the dynamics flows

to the stationary Mott insulator point characterized by the vanishing of the occupation

probabilities Φn6=1 and the renormalization factor, as one can see from Fig. 5.12.
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Figure 5.12: Long time average of |R|2 (left panel) and |Φn|2 as a function of Uf for
the dynamics restricted to the subspace n ≤ 2. A dynamical phase transition occurs at

Uf = Uc/2.

The nature of this transition is clearly reminiscent of the one found by Schiró and

Fabrizio that we presented in Sec. 3.2. However a clear difference seems to arise. We

have seen in Chapter 3 that for the single band Hubbard model the dynamical transi-

tion is characterized by the vanishing of the long time average of the renormalization

factor, 〈R〉t = 0, thus allowing to interpret it as the nonequilibrium counterpart of the
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equilibrium Brinkmann-Rice transition. This could be seen even more clearly when the

Hubbard model is reformulated in terms of a Z2 slave spin theory. In this case, at

equilibrium, the Mott insulating state corresponds to the unbroken symmetry state of

the Ising model, i.e. 〈σx〉 = 0. As a consequence, the dynamical transition at which Z2

symmetry is dynamically restored, can be interpreted as a dynamical counterpart of the

Metal-to-Insulator transition.

A natural question then arises: what symmetry is restored in the case under consider-

ation? Or in other words, is this dynamical transition a counterpart of the equilibrium

Metal-to-Insulator transition?

To answer this point we start by noticing from the constraints (5.19) that when

the Fock states with electron occupation n ≥ 3 are discarded, particle-hole symmetry

is recovered, in the sense that the occupation probability of the states with n = 0 and

n = 2 are equal, i.e. |Φ0|2 = 6|Φ2|2. This suggests to construct a Gutzwiller projector

similar to the one introduced for the single band case, that is retaining only two degrees

of freedoms that refer to the single occupied state and the Fock states with n = 0, 2.

This projector reads

PR = Φ(1)
L1R√
P

(0)
1

+
Φ(2)√

2

( L0R√
P

(0)
0

+
L2R√
P

(0)
2

)
(5.24)

where

LnR =
∑
n

δ(n−
∑
aσ

nRaσ)|R, {n}〉〈R, {n}| (5.25)

and P
(0)
n = 〈ψ|LnR|ψ〉. The normalization condition implies that |Φ(1)|2 + |Φ(2)|2 = 1.

One can verify that this is the most general projector which satisfies automatically the

Gutzwiller constraints [68]; hence it is straightforward to calculate the expectation value

of the Hamiltonian on the Gutzwiller wavefunction |Ψ〉 =
∏

R PR|ψ〉 without requiring

any additional constraint, obtaining

〈Ψ|H|Ψ〉/L = 4ε|R|2 +
U

2
|Φ(1)|2 (5.26)

with

R =
2√
6

Φ∗(1)Φ(2) + Φ∗(2)Φ(1). (5.27)

The advantage of the following reformulation is that one can interpret the parameters

Φ(1) and Φ(2) as the components of a 1/2-pseudospin |Φ〉. Eq. (5.26) turns out to be
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equal to the mean field average value on |Φ〉 of the anisotropic Heisenberg Hamiltonian

HS = 4ε
∑
〈R,R′〉

(
α2σxRσ

x
R′ + β2σyRσ

y
R′
)

+
∑
R

U

4
(1− σzR) (5.28)

with α, β = 1/2 ± 1/
√

6. As for the single band model, we arrive at an effective spin

representation for the two-band degenerate model (where n = 3, 4 occupation states

are discarded), in the sense that the Gutzwiller approximation is recovered in the mean

field approximation ofHS 1. Within this approximationHS admits an equilibrium phase

transition from a broken symmetry ferromagnetic state (i.e. 〈σx〉 6= 0) to a paramag-

netic one at the critical value Uc = 32|ε|α2. This transition corresponds to the two-band

degenerate zero temperature MIT. If we then consider the mean field time evolution of

|Φ(t)〉 upon a sudden quench of U , this model Hamiltonian displays a dynamical tran-

sition at Udync = Uc/2 analogous to that encountered in the spin representation of the

single band Hubbard model. For values of the quench above Udync the dynamical order

parameter 〈σx〉(t) = 2ρ(1)ρ(2) cos(φ(2) − φ(1)) oscillates between positive and negative

values due to the precession of φ(2) − φ(1) and symmetry is dynamically restored.

This dynamical critical point can be clearly seen considering the following parametriza-

tion for the semiclassical dynamics of (5.28)

〈σx(t)〉 = cos(θ) cos(φ) (5.29)

〈σy(t)〉 = cos(θ) sin(φ) (5.30)

〈σz(t)〉 = sin(θ) . (5.31)

In Fig. 5.13 we plot the trajectories in phase space of θ and φ at different values of

the total energy, for Uf/Uc = 0.4 and 0.6. One recognizes that the isoline E = 0 cor-

responds to a separatrix which drives the initial state into the stationary solution with

〈σx(t)〉 = 〈σy(t)〉 = 0. When the initial conditions θ = 0, φ = 0 are such that the total

energy is less than zero, for example the case Uf/Uc = 0.4, the angle φ is bounded, while

it precesses around the unit circle restoring the symmetry in the opposite case.

One can check that the angle φ corresponds to the one we introduced in (5.21). This

confirms that the precession of φ can be related to the dynamical vanishing of the order

parameter, hence indicating a dynamical counterpart of the transition from a metal to

a Mott insulating state.

When the terms Φn≥3 are not discarded and the full dynamics is considered we

cannot determine anymore analytically a transition point. However, in Fig. 5.14 we
1We remark the for the single band Hubbard model at half filling the mapping to the Z2 slave spin

model is exact.
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Figure 5.13: Phase space trajectories for the mean field dynamics of (5.28) at values
of Uf/Uc = 0.4, 0.6 that lie below and above the dynamical critical point.

compare the long time average of cosφ both in the restricted dynamics (left panel)

and in the full one. As explained, for the restricted Hamiltonian cosφ averages to zero

above Udync ; in the full dynamics an analogous behavior remains valid, with the long

time average of cosφ that stays finite for small values of the quench and vanishes in the

opposite limit. In the crossover region a non regular behavior is found again with the

long time averages that show an apparent incoherent pattern.

This confirms the existence of two different dynamical regimes which we interpret as a

dynamical counterpart of the Metal-to-Insulator transition.
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Figure 5.14: Long time average of cosφ as a function of Uf for the restricted subspace
(left panel) and unrestricted (right panel). The red dashed line indicates the dynamical
transition point in the first case and the extended transition region in the second one.
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We end this Section by considering what happens when the model is quenched from

the ground state of an initial interacting Hamiltonian, that is U(t) = Ui + (Uf −Ui)θ(t)
with Ui > 0. In this case, as Ui increases towards the equilibrium Mott transition point

Uc, the Fock states with higher occupation number n = 3, 4 are systematically reduced

[152]. Hence, the description in terms of the spin Hamiltonian (5.28) is increasingly

well justified. In the limit Ui → Uc, the extended dynamical transition becomes a truly

dynamical critical point. As in the single band case [103], we can calculate the value of

this dynamical critical point as a function of Ui by requiring that the initial conditions

for the dynamics lie on the separatrix at E = 0. This condition gives

Udync

Uc
=

1
2

(
1 +

Ui
Uf

)
(5.32)

which agrees with the result found in [103] for the single band Hubbard model.
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Figure 5.15: Nonequilibrium phase diagram for the sudden quench in the degenerate
two-band Hubbard model when Fock state with occupation n = 3, 4 are discarded. The
gray region represents initial insulating solutions which are stationary with respect to

the Gutzwiller equations of motion.
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5.6 Emergence of a non-thermal metallic state

In the previous Section we have seen that the two-band degenerate Hubbard model at

quarter filling, when driven out-of-equilibrium by quenching the interaction strength,

displays essentially an extended dynamical Mott transition as found in the half filling

case of Ref. [55] and bears many similarities with the dynamical phase transition for

the half filled single band Hubbard model.

To this extent, an important aspect that one can recognize from the nonequilibrium

phase diagram of Fig. 5.15 is that whenever a metallic state (Ui < Uc) is quenched in

the equilibrium insulating phase (Uf > Uc), see blue arrow in Fig. 5.16, the correspond-

ing dynamical phase is the one the we recognized as a dynamical Mott insulator. This

excitation protocol aimed to investigate an idealized scenario in which a Mott insula-

tor is excited by an external pulse: we describe the initial excited state as the ground

state solution of the metallic Hamiltonian (Ui < Uc), thus mimicking the formation of

doublons-holons pairs induced by photoexcitation, and we let it evolve under the effect

of the strongly correlated insulating one (Uf > Uc).

Even though t-GA does not describe thermalization, the fact that the dynamical regime

corresponds to the Mott insulating one is not surprising in a thermodynamic sense, since

an excited state in the Mott insulating phase is expected to thermalize in a Mott insu-

lator (or more properly a bad metal). In a way this suggest that the out-of-equilibrium

physics of a two-band degenerate model displays no significant changes with respect to

the single band Hubbard model.

The situation may instead change when we consider an excitation within the insu-

lating phase in presence of a small crystal field splitting. The guiding idea is very simple.

We have seen that at equilibrium correlation induces an enhancement of the bare crystal

field splitting, with the consequent possibility to drive a two-band metal into a one-band

Mott insulator, Fig. 5.16. We can imagine that a sudden reduction of the orbital polar-

ization mi = n1 − n2, induced for instance by an intense light pulse, could diminish the

effective crystal field splitting to such an extent as to push temporarily the system in a

stability region of the two-band metal by a collapse of the inter-band gap. The system

could then remain trapped in a metallic phase, which is indeed not unlikely, as we are

going to show.

We shall consider separately the case in which we force the system into the paramagnetic

sector and the more realist one in which magnetic ordering is allowed.
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5.6.1 Dynamics in the paramagnetic sector

First of all we recall that the ground state solution within the GA is determined by

minimizing the energy functional (5.6). In the paramagnetic sector, this optimization

can be performed in a two step process: first we minimize (5.6) with respect to the

Slater determinant and the Gutzwiller parameters matrix Φ̂ for a fixed value of the

orbital polarization n1 − n2 = mi, obtaining the energy functional E[mi]. Then, the

resulting ground state is given by the global minimum of E[mi].

Since the energy can be written as

E[mi] = Ekin[mi] + Ehub[mi]−∆ mi (5.33)

where Ekin is the kinetic contribution and Ehub the Hubbard one, one can just calculate

E[mi] for different values of U and mi at ∆ = 0 and then subtract the contribution

∆ mi. We find that, for a given value of the orbital polarization mi, a Metal-to-Insulator

transition appears at a critical value of the interaction, Uc[mi]. We plot this value as a

function of mi in the right panel of Fig. 5.16. From this Figure one can evince that,

in a region of strong correlation, a metallic or an insulating solution can be favored

depending on the value of the crystal field splitting.

One notices that, since the kinetic contribution Ekin and the Hubbard one Ehub

vanish in the insulating phase, from (5.33) it follows that a partially polarized insulator

is never the ground state.

In other words, the Gutzwiller Approach does not predict the existence of a zero tem-

perature partially polarized insulating phase. In turn, the two-band metal → one-band

insulator transition is of first order. We describe this occurrence in Fig. 5.17 where we

plot the energy functional E[mi] and the renormalization factors R1,2 as a function of

mi for different values of ∆ and at a fixed value of U = 1.875W . For mi > mc
i ≈ 0.9 the

state is a Mott insulator as one can clearly see from the behavior of the renormalization

factors. We observe that there is a whole range of crystal field values where two minima

coexist. The global minimum meq, can occur in the partially polarized metal, for values

of 2∆/W = 0.0, 0.0125, or in the fully polarized insulator, for greater values of ∆. The

first order transition that we previously mentioned just corresponds to the crossing of

the energies of these two minima.

It is important to notice that for values of ∆ that correspond to the insulating phase,

a metastable metallic minimum at m∗ can still be present, as one can see for 2∆/W =

0.025. We can therefore envisage that by suddenly reducing the orbital polarization, the

system could indeed be trapped in the metastable metallic solution, as sketched in Fig.

5.17. This result is very suggestive since it predicts the possibility to excite a stationary



120 5. Nonequilibrium dynamics of a toy-model for V2O3

metallic state in the insulating region of the phase diagram.
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insulator is driven out-of-equilibrium by a quench of the interaction or by a quench of
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To investigate this occurrence the first issue is how to initialize the state after the

fast light pulse has transferred electrons from the lowest orbital to the highest one. We

make here an adiabatic assumption that such initial state is the lowest energy one at fixed

orbital polarization mi < meq and we fix the values of U = 1.875W and 2∆ = 0.025W

constant in time (red bullet in Fig. 5.16). This assumption realizes just the process

depicted in Fig. 5.17, where the system is instantaneously endowed with a value mi of

the orbital polarization that is not the one that minimizes the total energy.

In the entire region of values mi > mc
i ≈ 0.9, the system is a zero temperature Mott

insulator, hence the initial state is trivially stationary with respect to the Gutzwiller

equations of motion due to the vanishing of the renormalization factors. This is a well

known drawback of the Gutzwiller Approach, which cannot describe the dynamics of an

initial Mott insulating state.

For smaller values of mi instead, the initial out-of-equilibrium state is metallic (i.e., has

finite renormalization weight) and evolves under eq. (5.11-5.12).

In Fig. 5.18 we show the time evolution of the orbital polarization, m(t), and of

the quasiparticle residue of the orbital 1, |R1|2, for different values of mi’s. We readily

recognize that two regimes in the dynamics are well distinct. For small values of mi,

i.e. far from the equilibrium values meq = 1, both the orbital polarization and |R1|2

show damped coherent oscillations caused by the dephasing that occurs because of the

summation on k subspace; the frequency oscillation of this amplitude mode is related

to the dephasing time, while on top of this there are much faster oscillations (whose

frequency scales as the bandwidth) which can hardly be distinguished. For 0.3 < mi <

0.4 there exists an initial state which is stationary with respect to the dynamics. This

corresponds to the metastable minimum in Fig. 5.17, m∗, which, being a local minimum

of the energy functional, is stationary with respect to the Gutzwiller equations of motion.

Although the dynamics of the orbital polarization cannot be described as a classical

variable where the energy functional E[mi] plays the role of the classic potential, we see

that the tendency of the m(t) is to move according the shape of the E[mi]. In particular

it tends to increase from the initial value for mi < m∗ while the opposite happens for

m > m∗.

This foresees that as mi is increased (less energy is pumped in the system) and passes

the top of the barrier which separates the insulating absolute minimum and the metallic

relative one, the scenario should change. In this case, in fact, no relaxation is evident

(see for example mi = 0.8) and an undamped oscillating mode persists. Finally, when

mi is further increased the dynamics changes abruptly: |R1|2 approaches zero and the

faster oscillations decouple from the slower becoming well visible.

The drastic change in the dynamics is reminiscent of the extended Mott dynamical

transition encountered in the interaction quench of Sec. 5.5 and in Ref. [55]. To gain
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values of mi. In the left panel the order of the curves from the bottom is mi =

0.2, 0.3, ..., 0.8, 0.82, while on the right panel the same order is from the top.

further insight in Fig. 5.19 (left panel) we plot the long time averages of m and |R1|2

as a function of mi.

For small values of mi, 〈m〉t and 〈|R1|2〉t evolve smoothly and display no significant

deviations from their initial values. This evidences the fact that the time evolution

preserves essentially the nature of the initial non-equilibrium state. Approaching the

critical region instead, the renormalization weight shows a non analyticity in its long

time average which is typical of the dynamical Mott transitions so far studied in liter-

ature. As for the extended dynamical transition encountered in the previous Section,

it is not possible to establish if a dynamical transition occurs at a single point or in a

small extended region.

We can try to enforce this picture by adopting again the usual polar representation of

the Gutzwiller parameters Φ{n} = ρne
iφn . Since we start from the one-band insulator,

where the lowest orbital 1 is Mott localized, and we try to induce a nonequilibrium

transition into the two-band metal, it is natural to focus on the same phase variable we

encountered before pertaining just the orbital 1. In other words we shall concentrate on

the dynamical evolution of the phase

2φ̃ = φ0 + φ{↑↓,0} −
∑
σ

φ{σ,0} . (5.34)

In Sec. 5.5 we showed that when the two bands are degenerate (hence the Gutzwiller
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parameters can be indexed uniquely by the occupation number), we identified in φ =

(φ0 + φ2)/2 − φ1 a dynamical variable connected to the order parameter for the ex-

tended Mott transition. We shall therefore monitor the time evolution of cos(φ̃) with

the belief that, if its time-average vanishes, the system is still in the Mott insulating

regime. On the contrary, if the time-average of cos(φ̃) is finite and, at the meantime,

the time-average of the orbital polarization is smaller than one, we shall conclude that

the system has dynamically moved into the two-band metal regime.

In Fig. 5.19 we observe that the time average is essentially vanishing for large mi’s

but, below mi ≈ 0.82, abruptly jumps to a finite value close to one. We take this as

signature of a dynamical phase transition from the Mott insulator to the two-band metal.
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Figure 5.19: Left panel: long time averages for m (red squares) and |R1|2 as a function
of mi. The gray points represent the respective initial (t = 0) values. Right panel top:
long time average of cos φ̃ as a function of mi. Bottom: finite temperature phase dia-
gram for (5.8) at fixed value of ∆ = 0.025W as obtained by means of finite temperature

GA. The red triangles show the effective temperature T∗ for mi = 0.1, ..., 0.8.

We note that such a metallic regime is not compatible with the hypothesis that the

energy supplied to the system simply heats it. Indeed, if, following the thermalization

hypothesis, we transform this excess energy into a temperature determined by imposing

that the total energy, conserved in the unitary evolution, coincides with the internal

energy at that temperature, we obtain the points shown in Fig. 5.19, all of which are

inside the Mott insulating phase. In other words, the metal regime that seems to be

stabilized in the dynamical evolution is incompatible with thermalization. Therefore

the evidences seem to confirm the expectations that, when the Mott transition is of first
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order it is possible to stabilize a metastable metal by properly driving off-equilibrium a

Mott insulator.
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5.6.2 Dynamics in the AFM sector

In this Section we repeat a similar analysis as before by considering the dynamics for

the two-band model without enforcing spin symmetry. We have already recalled that

at zero temperature and for large values of the interaction a first order transition from

a two-band paramagnetic metal to a single band antiferromagnetic insulator occurs, as

one can see in the T = 0 phase diagram reported in the left panel of Fig. 5.20. As for

the PM case, in the right panel of the same Figure we show the behavior of the energy

functional E[mi] as a function of the orbital polarization, for a value of the interaction

U = 1.125W . We see that a PM minimum and an AFI one coexist, with their respective

energies that cross as a function of the crystal field. We remark that in this case the

insulating solution is not fully polarized, meq 6= 1, since the AFM insulator within the

GA has finite renormalization factor with a consequent non vanishing of the hybridiza-

tion term.

We are interested in studying the dynamics upon a sudden quench of the orbital

polarization having in mind the effect of a possible external excitation that can trig-

ger a redistribution of the electron population from the lower orbital to the upper one

(see sketch in Fig. 5.20). We do expect that also in this case a stable paramagnetic

metallic phase can emerge which eventually might not have a thermal counterpart. This

possibility, to our knowledge, has not been investigated so far. Indeed, DMFT results

on the dynamics of the AFM single band Hubbard model have shown the existence of

non-thermal ordered states above the corresponding Néel temperature [11, 41], as we

discussed in Chapter 4. Very recently, also time-dependent Slave Boson Mean Field

Theory calculations considered the demagnetization of an initial AFM state for interac-

tion quenches at lower values of U [153]. In this case the demagnetization mechanism is

similar to what we found in the single band case, Chapter 4.

In the following we generalize the orbital polarization quench we introduced in the

previous Section to study the evolution of an initial T = 0 AFM state at the fixed values

of 2∆ = 0.05W and U = 1.125W, 1.375W, 1.625W (red bullets on Fig. 5.20). If we

denote with neqAaσ the equilibrium occupation for the sublattice A, orbital a and spin

σ, we construct an initial nonequilibrium state by minimizing the Gutzwiller energy

functional imposing that (in the next we discard the label A)

ni1σ = α neq1σ

ni2σ = neq2σ + (1− α) neq1σ . (5.35)
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Figure 5.20: Left panel: T = 0 phase diagram when spin symmetry is not enforced.
The red dots indicate the values of ∆ and U considered for the dynamics. Right
panel: Energy functional at fixed value of the orbital polarization, for different values
of ∆ at U = 1.125W . Lower panel: Energy functional at fixed value of the orbital
polarization and of the total magnetization for a value of 2∆ = 0.05W . The black
dotted line represents the quench in the orbital polarization, while the grey line sketches

an approximate classical dynamics.

The state constructed in this way provides an initial excited configuration in which

electrons from the lower orbital have been moved to the upper one. The case α = 1

obviously corresponds to the equilibrium solution, while α = 0.5 corresponds approxi-

mately to equally populated bands (it would be so in the unhybridized case where the

AFM insulator is fully polarized).
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An important difference with respect to the quench we applied in the previous Sec-

tion is that, in this case, the initial total staggered magnetization remains equal to

the equilibrium one, i.e. the external bias does not change the total magnetization,

σi =
∑

a n
i
a↑ − nia↓ =

∑
a n

eq
a↑ − n

eq
a↓. Therefore, the initial magnetization does not corre-

spond to the optimized one at the given value of the initial orbital polarization mi. This

is evident from the lower panel of Fig. 5.20 where we plot the energy functional where

both the orbital polarization and the total magnetization are left as free parameters.

From the Figure one can imagine that, as in the PM case, the dynamics of m(t) and

σ(t) is approximately driven towards a minimum of the energy surface. This can be ra-

tionalized noticing that the equilibrium energy surface is obtained upon a minimization

on the Gutzwiller parameters Φ for a fixed value of mi and σi. Therefore, since the total

energy is conserved during the dynamics, the initial change of Φ(t) results in an increase

of the energy which has to be compensated by a change of m(t) and σ(t) towards a

lower value in the energy surface. Of course this argument is qualitative, since i) the

energy surface is self-consistently coupled to the dynamics of the Gutzwiller parameters

and hence not constant in time ii) the evolving Slater determinant does not correspond

in general to the ground state of the renormalized Hamiltonian at fixed values of m(t)

and σ(t).

However, if one believes that this reasoning can capture at least the main behavior of the

dynamics, one can expect that, as the initial orbital polarization is lowered (for smaller

values of α), the dynamics will be driven towards a final state with vanishing magnetic

order and finite orbital polarization, a two band paramagnet.

We find that this occurrence is met by plotting in Fig. 5.21 the dynamics for the

population imbalance m(t) and the total staggered magnetization σ(t) as a function of

time, for different values of α and for a fixed value of U = 1.125W . We first notice that,

as in the PM case, two energy scales are well separated, with a high energy oscillating

pattern on top of a much slower amplitude mode. Moreover, a further energy scale is as-

sociated to the presence of magnetic order and becomes evident in the dynamics of σ(t).

Upon decreasing the value of α, i.e. moving away from the equilibrium point, σ(t) shows

indeed a coherent oscillating mode with increasing period, that finally diverges around

α = 0.8 with a fast decay of the magnetization. This mechanism is actually the same

encountered in the interaction quench of the single band Hubbard model in Chapter 4

and of Ref. [153], where the vanishing of the order parameter can be reconduced once

again to dephasing. We extrapolate the oscillating period of the coherent mode associ-

ated to the presence of AFM order by taking the distance of the first maximum. From

the bottom panel of Fig. 5.21 we see that the inverse of this period vanishes linearly

at the transition to the PM phase. This agrees with the results we found in Chapter 4.
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Above this transition point, σ(t) displays very small oscillations around zero while the

population imbalance m(t) resembles the dynamics encountered in the PM case of the

previous Section.

Overall, the picture that emerges is that the initial AFM state melts into a PM metal

(this is confirmed also by the dynamics of the renormalization factors Raσ which remain

finite and that we avoid to report for this case).
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Figure 5.21: Upper panels: Time evolution of the staggered magnetization σ(t) (left
panel) and of the orbital polarization m(t) (right panel) for different values of α at a
fixed value of U = 1.125W . Lower panel: Inverse of the period oscillation for the AFM

coherent mode as a function of the quench parameter α.

The vanishing of the magnetic order rises a second important aspect regarding the

nature of the final PM state. Indeed, from the finite temperature diagram that we re-

produce for convenience in Fig. 5.22, one would expect that at large enough values of

U , the AFM state melts into a PM insulator. It is therefore natural to investigate if the

nonequilibrium dynamics is able to capture this aspect.
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We have already pointed out that, even though t-GA is not able to describe thermal-

ization, it might be useful to compare the results of the long time dynamics with the

corresponding thermal state at an effective temperature such that the initial internal

energy equates the thermal one. However, since in this case the equilibrium phase tran-

sition is of first order, the two solutions whose free energies cross at the transition lead

to a discontinuity in the equilibrium internal energy. This implies the existence of a

window of initial energies for which we cannot find a corresponding thermal counter-

part. In principle this problem might be solved by following the metastable solutions

through the first order transition. This requires to track the local minima in the space

of the Gutzwiller variational parameters and of the uncorrelated densities for the Slater

determinant. However, since t-GA does not provide thermalization and these arguments

are somehow qualitative, we leave this aspect to future work and just consider that if

a dynamic PM metallic phase emerges in the correspondent equilibrium insulating one,

this could be indicative of a phase that has no equilibrium counterpart.
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Figure 5.22: Equilibrium phase diagram as obtained by means of finite temperature
GA for 2∆ = 0.05W . The red arrows show the values of U considered for the dynamics.

To verify this guess we consider the time evolution at larger values of the interac-

tion U = 1.375W and U = 1.625W , which are respectively evidenced by the red vertical

arrows of Fig. 5.22, where the final PM state would correspond to a two-band PM insu-

lator. In Fig. 5.23 we display all the quantities which are of interest in this problem for

the two different values of the Coulomb interaction. We recognize that for U = 1.375W

we recover a dynamics which is similar to that encountered at the smaller value of U ,
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with the magnetic order that vanishes for a sufficiently low value of α and a correspond-

ing finite value of the orbital polarization and of the renormalization factors. This is

compatible with the emergence of a PM metallic phase with no thermal counterpart.

To substantiate this finding we consider what happens increasing further the value of

the interaction. A different scenario is encountered. Upon exciting the system, the dy-

namics displays an irregular behavior typical of the extended Mott transition previously

described. This is once again well captured by the behavior of the renormalization fac-

tors, which approach zero, as one can see from Fig. 5.23. For α > 0.7 the AFM order

averages to zero in the long time limit, even though the dynamics of the Slater determi-

nant is strongly suppressed by the decrease of the renormalization factors. This scenario

suggests a dynamical transition to an insulating out-of-equilibrium PM state, a picture

that is enforced by considering the evolution of the angle φ̃ introduced in (5.34). Indeed,

as on can see from the bottom panel of Fig. 5.23, the angle φ̃ oscillates around zero in the

metallic regime, while it precesses around the unit circle above the dynamical transition.
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Figure 5.23: Left panels refer to the dynamics at U/W = 1.375 while right panels
at U/W = 1.625. The plots respectively represent, as a function of time, a) orbital
polarization; b) total magnetization; c) renormalization factor of the most occupied

orbital; d) angle φ̃, for different values of α = 0.9 (black), 0.8 (red), 0.7 (green).



132 5. Nonequilibrium dynamics of a toy-model for V2O3

5.7 Conclusions

In this Chapter we studied by means of the Gutzwiller Approach a two-band model that

we believe captures the main physical mechanisms of the Metal-to-Insulator transition

in vanadium sesquioxide.

At equilibrium we confirmed that the phase diagram of the model resembles the actual

one of V2O3. In particular we pointed out the importance of a correlation-induced

enhancement of the crystal field splitting which is responsible for a Metal-to-Insulator

transition different from the one encountered in the single-band Hubbard model. In

particular, at zero temperature, this transition is of first order and separates a two-

band paramagnetic metal from a single-band Mott insulator (either paramagnetic or

antiferromagnetic if spin symmetry is not forced). The presence of metastable metallic

minima in the energy functional envisaged the possibility that, upon properly exciting

an initial zero temperature Mott insulator, a metallic phase can be stabilized which does

not correspond simply to a finite temperature Mott insulator.

We provided evidence for this occurrence by considering two paradigmatic excitation

protocols. We first considered the case in which the two-band degenerate model (∆ = 0)

is driven out-of-equilibrium by a sudden quench of the interaction strength (U). We

found that the gross features encountered in the single band Hubbard model remain

valid, with an “extended dynamical transition” that separates a metal from an insulator.

This situation is therefore not very different from the picture that emerges in the single

band case where the dynamics in the insulating regime of the phase diagram is dominated

by the atomic excitations.

Differently, if we assume that, at a finite value of the crystal field ∆, an external bias

is such to excite the fully polarized Mott insulator moving electrons from the lower to

the upper band, we found that such an initial metallic state is stable with respect to

the Gutzwiller dynamics and has no equilibrium counterpart. This metallic phase is

compatible with an out-of-equilibrium state where the interband Mott energy gap has

collapsed. Such scenario is completely different from the ones considered so far for the

single band Hubbard model, for which an excited Mott insulator could be essentially

described in terms of photo-excited carriers from the lower to the upper Hubbard band.

Some considerations on the method are in order in these concluding remarks. The

time dependent GA, even though is able to couple the dynamics of atomic degrees

of freedom with the evolution of the Gutzwiller quasiparticles, poorly accounts for all

dissipative processes and cannot provide relaxation towards thermal equilibrium. In

particular, the quasiparticle Hamiltonian H∗(t) does not couple subspaces at different

values of the momentum k, hence it is ineffective in describing equilibration of the elec-

trons between the two bands that should take place on longer times. This probably leads
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to an incorrect increased stability of the metastable metallic phase thus leaving open the

issue on its life-time. A possible way to go beyond the Gutzwiller Approximation would

be to quantize the degrees of freedom represented by the variational parameters ΦR{n}

and to treat quantum mechanically the coupling to the low energy quasiparticles.

Another open question regards the extension of the quench we considered here to ini-

tial states at finite temperature. This would necessitate a generalization of the time-

dependent GA to treat initial mixed states, which has not yet been achieved.

Overall, apart from the improvements we proposed above, t-GA has nevertheless

provided good qualitative agreement with more sophisticated methods both in describing

different relaxation regimes for the single band Hubbard model (Chapter 3) and the

presence of non-thermal AFM states (Chapter 4). Therefore we believe that the results

presented in this Chapter are important since they provide at least a qualitative evidence

of non trivial out-of-equilibrium phenomena emerging in multi-band models.





Conclusions

In this Thesis we analyzed the out-of-equilibrium dynamics of some prototypical model

Hamiltonians which are believed to describe the main physical aspects attributable to

strong Coulomb correlation in electronic systems.

We adopted the time dependent extension of the Gutzwiller Variational Approach (t-GA)

as recently introduced by Schiró and Fabrizio. This method describes the dynamics in

terms of a non-interacting renormalized Hamiltonian which is self-consistently coupled,

in a mean field fashion, to the evolution of the local degrees of freedom. t-GA, therefore,

is not an exact method, with the main drawback being the lack of enough dissipation

channels to predict stationarization and eventually thermalization. Nevertheless it is a

non perturbative approach, hence it can interpolate well between the itinerant and Mott

localized regime, an important property if one intends to address dynamical phenomena

for systems that display an equilibrium Mott Metal-to-Insulator transition. It has indeed

shown to be a cheap and intelligible technique which can reproduce some main results

obtained with more sophisticated methods, such as DMFT. In particular, from the

analysis of the single band Hubbard model subject to a sudden quench of the interaction,

t-GA provides a qualitative and in some cases also quantitative description for i) long

lived non thermal states and ii) dynamical critical points.

This result motivated our interest in extending the method to more complex situations

and models to approach a closer description of real compounds.

In Chapter 2 we introduced the method and in particular we presented a finite

temperature extension of the Gutzwiller Approach that we recently developed. This

turned out to be necessary if out-of-equilibrium dynamics is intended to be compared

with equilibrium average values in order to assess the possible existence of non-thermal

phases.

Chapter 3 has been mainly devoted to extending the analysis for the interaction quench

in the single Hubbard model. This was essentially motivated by the interest in under-

standing with greater detail the dynamical phase transition encountered in the sudden

quench case. To this extent we considered a linear ramp of the interaction U and we

showed that a dynamical phase transition exists at any final value of ramp time which
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smoothly evolves into the equilibrium Mott Metal-to-Insulator transition in the adia-

batic limit. This confirms that within t-GA the dynamical phase transition corresponds

to the out-of-equilibrium counterpart of the Brinkmann Rice transition, thus leaving

open the puzzle on its interpretation within DMFT. Moreover, we considered the role of

spatial fluctuations beyond mean field and we showed that a dynamical critical region

remains.

In Chapter 4 we focused on the dynamics of an initial AFM state for the single band

Hubbard model. This quench protocol, in the thermalization hypothesis, would allow

to explore the UvsT phase diagram and eventually cross the equilibrium phase transi-

tion from the AFM to the PM. In this case we showed that, in agreement with DMFT,

non-thermal ordered states survive more than expected, thus confirming the ability of

t-GA to capture this aspect. We also found evidence for the existence of two different

types of nonequilibrium antiferromagnets separated by a dynamical transition that can

be interpreted as the magnetic analogue of the Mott dynamical transition. This dynam-

ical point has no equilibrium counterpart, hence it represents an intriguing direction for

future studies.

Finally, in the last Chapter we approached a more realistic modeling of the paradig-

matic correlated material vanadium sesquioxide, V2O3. To this extent we introduced

a two-band model for which we showed that the equilibrium phase diagram captures

many aspects of the actual one for the compound. Moreover, the equilibrium analysis

highlighted the importance of a correlation-induced enhancement of the crystal field

splitting in driving the Metal-to-Insulator transition. Specifically, being this transition

of first order, metallic metastable minima are present in a whole region of the zero

temperature insulating phase. Upon properly exciting the insulating phase, we showed

that a coherent two-band metallic state survives in the dynamics, an occurrence which

has no thermal counterpart. Differently from the single band cases considered in the

other chapters, where a comparison with DMFT was possible, these results represent a

first intriguing evidence that multi-band models can display nonequilibrium behaviors

significantly different from the paradigmatic single band Hubbard model so far adopted.

In this Thesis we focused on simplified model situations and excitation protocols

which we believe are important for a first understanding of non trivial behavior that

might emerge in the novel field of out-of-equilibrium correlated systems.

Further improvements, maintaining the time dependent Gutzwiller Approach as it is, can

be reached in several ways. A possible route would be to move from infinitely extended

systems (which is the case we considered in this Thesis) to finite layered structures. This

has already been considered in some recent works for the single band Hubbard model

[67]. It would be interesting to extend these analyses to the two-band model proposed
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in the last Chapter of the Thesis.

Starting always from Ref. [67], a second major contribution would be to couple the

dynamics of the electrons in the two-band model to phononic degrees of freedom. In this

way the transfer of energy from the excited electrons to the lattice could be investigated,

a process that might be particularly sensitive in proximity of a dynamical transition.

A final important step would be reached by coupling t-GA equations of motion with

an external electromagnetic field. This would allow a more accurate description of

the pump-and-probe excitation protocol which does not rely on the sudden quench

approximation that we adopted in this work.

The present formulation of the method should be considered a valid representation

to describe short-to-intermediate times phenomena. The characterization of long time

relaxation regimes, where eventually thermalization may occur, necessitates an extension

of the t-GA. An important progress on this front, as mentioned in the last Chapter,

would be obtained by quantizing the Gutzwiller variational parameters Φ and coupling

them quantum mechanically to the low energy degrees of freedom of the renormalized

Hamiltonian H∗. We moved in this direction in Chapter 3, where the local degrees of

freedom could be mapped into a slave spin Hamiltonian. For a general Hamiltonian

however, this represents an open issue which hopefully will be addressed in the future.
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ho avuto il piacere di poter collaborare. A loro va la mia gratitudine per tutta la fisica

che mi hanno insegnato e per tutti i preziosi consigli che mi hanno dato nelle scelte che

ho affrontato.

Non penso che un semplice grazie basti per Adriano Amaricci che non mi ha mai negato

un minuto del suo tempo. Grazie Adriano!!

Ringrazio anche Giacomo Mazza che penso sia una delle poche persone con cui ho potuto

condividere gioie e dolori del Gutzwiller, e Gianluca Giovannetti e Daniel Grieger per i

molti pareri che mi hanno dato.

Un ringraziamento particolare va a tutti gli amici che hanno reso indimenticabili

questi anni a Trieste. Ringrazio Nicola e Guglielmo con i quali ho condiviso ben piú di
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Appendix A

Some useful proofs for the

Gutzwiller Approach

A.1 Vanishing of the contraction terms with n ≥ 4 fermionic

lines

In the following we shall show that the term

〈ψ|
∏

R′ 6=R

(
P†R′PR′

)
OR |ψ〉connected (A.1)

where more than four fermionic lines connect P†R′PR′ with OR disappear in the limit

of infinite coordination number z. This can be easily seen if R and R′ are nearest

neighbors. In fact, Metzner and Vollhardt [154] realized that in the limit of infinite

coordination the hopping strength between nearest neighbors has to scale as t′ ∝ t/
√
z.

Being z the number of nearest neighbors, this scaling property implies that the average

value of the hopping operator vanishes in the limit of z →∞ as

〈ψ| c†RcR′ |ψ〉 ∝
1√
z
. (A.2)

Therefore, multiplying four contractions terms and summing over all the possible nearest

neighbors, one obtains that the term (A.1) vanishes as ∝ 1/z. Obviously contracting

more than four fermionic lines vanishes even faster in the infinite coordination limit.

This argument can be extended also for further neighbors sites, for which one finds that

the connected term vanishes as 1/zl where l is the Manhattan distance between the sites.
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A.2 Derivation of the Lagrangian for the t-GA

In this section we report the derivation of (2.66) and (2.69) following Ref. [68]. We need

to evaluate

S[|Ψ〉] =
∫ t

0
dτ

L(τ)︷ ︸︸ ︷
〈Ψ(τ)| i∂τ −H(τ) |Ψ(τ)〉 (A.3)

where |Ψ(t)〉 = P(t) |ψ(t)〉 is a time-dependent Gutzwiller wavefunction. The La-

grangian L(t) can be split in three terms that we can evaluate separately,

L(t) =

(1)︷ ︸︸ ︷
i〈ψ(t)| P†(t)P(t) ∂t|ψ(t)〉+

(2)︷ ︸︸ ︷
i〈ψ(t)| P†(t)∂tP(t) |ψ(t)〉

−

(3)︷ ︸︸ ︷
〈ψ(t)| P†(t)HP(t) |ψ(t)〉 (A.4)

The term (1) can be evaluated noticing that since |ψ(t)〉 is a Slater determinant, its

evolution is in general set by a Scrödinger equation

i∂t|ψ(t)〉 =
(∑

R

VR(t) +
∑

R6=R′

VRR′(t)
)
|ψ(t)〉 (A.5)

where VR is a general single particle local operator and VRR′ is an intersites hopping

operator.

Due to the Gutzwiller constraints (2.64) and (2.65)

〈ψ(t)| P†(t)P(t) VR(t)|ψ(t)〉 =
∏

R′ 6=R

=1︷ ︸︸ ︷
〈ψ(t)| P†R′(t)PR′(t) |ψ(t)〉〈ψ(t)| P†R(t)PR(t)VR(t) |ψ(t)〉

+〈ψ(t)|

((((
((((

(((
((((

(((
((((

((∏
R′ 6=R

P†R′(t)PR′(t)P†R(t)PR(t)VR(t) |ψ(t)〉connected

= 〈ψ(t)| VR(t)|ψ(t)〉. (A.6)

〈ψ(t)| P†(t)P(t) VRR′(t)|ψ(t)〉 =
∏

R′′ 6=R,R′

〈ψ(t)| P†R′′(t)PR′′(t) |ψ(t)〉 ×

× 〈ψ(t)| P†R(t)PR(t)P†R′(t)PR′(t)VRR′(t) |ψ(t)〉

+(((((connected

= 〈ψ(t)| P†R(t)PR(t) |ψ(t)〉〈ψ(t)| P†R′(t)PR′(t) |ψ(t)〉〈ψ(t)| VRR′(t) |ψ(t)〉

+(((((connected

= 〈ψ(t)| VRR′(t) |ψ(t)〉 (A.7)
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so that

i〈ψ(t)| P†(t)P(t) ∂t|ψ(t)〉 = i〈ψ(t)| ∂t|ψ(t)〉. (A.8)

Let us consider now the term (2). Also in this case the Gutzwiller constraints allow a

simplification in the calculation,

〈ψ(t)| P†(t)∂tP(t) |ψ(t)〉 =
∑
R

〈ψ(t)|
∏

R′ 6=R

P†R′(t)PR′(t) P†R(t)∂tPR(t) |ψ(t)〉

=
∑
R

〈ψ(t)| P†R(t)∂tPR(t) |ψ(t)〉+ (((((connected (A.9)

Combining together (A.8) and (A.9) we obtain eq. (2.66) of the main text. We need

next to evaluate terms (2) and (3) in the matrix formulation using the parametrization

for the local projector

PR(t) =
∑
Γn

ΦR;Γn(t)√
P

(0)
R;n(t)

|R; Γ〉〈R;n|. (A.10)

From (A.10) we have that (A.9)

〈ψ(t)| P†R(t)∂tPR(t) |ψ(t)〉 =
∑
Γn

Φ†R;nΓ∂tΦR;Γn −
1
2���

��
���

���
��∑

Γn

Φ†R;nΓΦR;Γn

∂tP
(0)
R;n(t)

P
(0)
Rn(t)

= Tr
(
Φ̂†R∂tΦ̂R

)
(A.11)

The vanishing of the second term in (A.11) can be proved by the following argument.

Due to the Gutzwiller constraint (2.64)

∂t〈ψ(t)| P†R(t)PR(t) |ψ(t)〉 GC= 0 (A.12)

which implies that

0 = 〈ψ(t)| ∂t
(
P†RPR

)
|ψ(t)〉+

♦︷ ︸︸ ︷
∂t〈ψ(t)| P†RPR |ψ(t)〉+ 〈ψ(t)| P†RPR ∂t|ψ(t)〉 (A.13)

where ♦ can be proved to vanish repeating a reasoning similar to the one we used to

reach (A.8). We are left therefore with

0 = 〈ψ(t)| ∂t
(
P†RPR

)
|ψ(t)〉 =(((((

((((∂tTr
(
Φ̂†R(t)Φ̂R(t)

)
+
∑
Γn

Φ†R;nΓΦR;ΓnP
(0)
R;n(t)∂t

 1

P
(0)
R;n(t)


which proves the vanishing term in (A.11).
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Finally the term (3) in (A.4) can be easily computed by repeating the same argu-

ment we used for the equilibrium case. In fact, upon introducing the time-dependent

renormalization factors Rab(t) defined through

〈ψ(t)| P†R(t) c†Ra PR(t) dRb |ψ(t)〉 =
∑
c

R∗Rac〈ψ(t)| d†RcdRb |ψ(t)〉

= R∗Rab(t) n
(0)
Rb(t) (A.14)

one finds that

〈ψ(t)| P†(t)HP(t) |ψ(t)〉 =
∑
R,R′

∑
cd

(
R∗RacRR′bd〈ψ(t)| d†RcdR′d |ψ(t)〉+H.c.

)
+
∑
R

Tr
(
Φ̂†R(t)ĤRΦ̂R(t)

)
(A.15)

Terms (A.8), (A.11) and (A.15) sum up to give the final form of the Lagrangian in the

main text (2.69).

A.3 Quasiparticle weight and discontinuity at the Fermi

surface

In this Section we show that the Gutzwiller quasiparticle weight in the single band

paramagnetic Hubbard model corresponds to the jump in the occupation probability

nk = 〈Ψ|c†kck|Ψ〉 at the Fermi surface. We start from the equilibrium renormalized

Hamiltonian which, as shown in Sec. 3.2, reads

− Z(D) t
∑

〈R,R′〉,σ

c†RσcR′σ +H.c. (A.16)

where Z(D) = |R|2 = 8D(1 − 2D) has been identified with the quasiparticle weight.

In this case simple case, the Slater determinant which corresponds to the ground state

of (A.16) is simply the Fermi sea at half filling, |ψ0〉. Following the discussion of Sec.

2.1 the corresponding momentum distribution for the Gutzwiller quasiparticles is simply

given by

n
(0)
k = 〈ψ0|ζ†kζk|ψ0〉 = θ(kF − |k|). (A.17)

The occupation distribution of the original fermionic operators can be easily computed

remembering the definition of the quasiparticle renormalization factor (2.23) and reads

〈Ψ|c†kσckσ|Ψ〉 = 〈ψ0|P† c†kσckσ P|ψ0〉
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=
1
N

∑
R6=R′

Zeik·(R−R′)〈ψ|c†RσcR′σ|ψ〉+
1
N

∑
R

〈ψ|c†RσcRσ|ψ〉

= Zθ(kF − |k|) +
(1− Z)

2
. (A.18)

Therefore the occupation distribution displays a jump at the Fermi surface (kF ) equal

to Z, in agreement with Landau’s theory for a normal metal. We notice that from

the definition of the renormalization factor for a time dependent Gutzwiller wavefunc-

tion (A.14), the above derivation remains valid and Z(t) represents the jump at Fermi

surface of the evolving momentum distribution 〈Ψ(t)|c†kσckσ|Ψ(t)〉. In this sense the

quasiparticle weight can be compared with the non equilibrium DMFT results of Ref.

[10].





Appendix B

Quantum Fluctuations plus

feedback

B.1 Classical Adiabatic Dynamics and Slow Quantum Fluc-

tuations for long ramps

Here we discuss the classical dynamics of the Gutzwiller variational parameters in the

limit of slow ramps and the small quantum fluctuations around it. We start from the

equations of motions

Ḋ =
ε

2
∂Z

∂φ
(B.1)

φ̇ =
U(t)

2
− ε

2
∂Z

∂D
(B.2)

where ε = Uc
8 is the kinetic energy of the Fermi Sea in units of the critical repulsion Uc for

the zero temperature equilibrium Mott transition, while Z[D,φ] = 8D (1− 2D) cos2 φ

is the time dependent quasiparticle weight at half-filling. The above dynamics derives

from a classical Hamiltonian which reads

E[D,φ] =
U(t)

2
D − ε

2
Z[D,φ] (B.3)

When U(t) ≡ Uf/Uc = uf ≤ 1 the equilibrium solution

Dgs =
1− uf

4
φgs = 0 (B.4)

is a stationary point of the Hamiltonian. For slow variations of U(t), that is for τ →∞,

we can assume to leading order the trajectory D,φ to follow the instantaneous minimum
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Dgs(u(t/τ)), 0 plus small oscillations that we want to compute. To this extent we expand

E around Dgs, φgs up to the quadratic order (the first non vanishing). The result takes

the form

E = Egs +
1

2m(s)
φ2 +

1
2
m(s)ω2(s) (D −Dgs(s))2 (B.5)

where we have introduced s = t/τ as well as the slowly varying mass and frequency

which read

m(s) =
8

1− (uf s)2
ω(s) =

1
2

√
1− (ufs)2 (B.6)

We notice that for uf < 1 the frequency is always positive definite, while for ramps

that cross the critical points it exists a time t? = τ/uf < τ at which the harmonic

approximation breaks down. Let’s consider the case uf < 1. Then using results from

classical adiabatic dynamics we can write to leading order

Dτ (s) = Dgs(s)−
1
τ
D
′
gs(0)

√
m(0)

m(s)ω(s)ω(0)
sin (τΩ(s)) (B.7)

and

φτ (s) =
m(s)D

′
gs(s)

τ
−
D
′
gs(0)
τ

√
m(s)m(0)ω(s)

ω(0)
cos (τΩ(s)) (B.8)

where we have defined Ω(s) =
∫ s

0 ds′ ω(s′)

Ω(s) =
1

4uf

(
ufs

√
1− (ufs)2 + arcsin(ufs)

)
(B.9)

After simple algebra we get for

Dτ (s) = Dgs(s) +
uf
2τ
(
1− (ufs)2

)1/4 sin Ω(s)τ (B.10)

as well as

φτ (s) =
1
τ

(
−

2uf
1− (ufs)2

+
2uf

(1− (ufs)2)1/4
cos Ω(s)τ

)
(B.11)

The excitation energy ∆E(τ) = E(t = τ)− Egs(uf ) can be easily evaluated in terms of

Dτ (s = 1) and φτ (s = 1) and the result gives the scaling ∆Eexc ∼ 1/τ2 quoted in the

main text.

Let’s now consider the effect of harmonic quantum fluctuations (QF) around the

Gutzwiller dynamics in the regime of slow ramps [121]. The Hamiltonian of QF describe

a set of harmonic oscillators with time dependent mass m(t) and frequency ωq(t). In

the limit of slow ramps, using the results just obtained for the mean field variational
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parameters and the definition of m(t), ωq(t) in terms of θ, φ, we can write

m(t) = mgs(u(t/τ)) +
δmτ (t)
τ δ

(B.12)

ωq(t) = ωgsq (u(t/τ)) +
δωqτ (t)
τ δ

. (B.13)

In order to discuss the dynamics of quantum fluctuations in the limit of slow ramps, we

will for simplicity drop the index q since, at the gaussian level we are considering here

each mode evolves independently. Hence, considering just a single mode we have

H(t) =
p2

2m(t)
+

1
2
m(t)ω2(t)x2 (B.14)

Let’s define the (explicitly time-dependent) annihilation/creation operators as

a =

√
m(t)ω(t)

2
x− i

√
1

2m(t)ω(t)
p (B.15)

a† =

√
m(t)ω(t)

2
x+ i

√
1

2m(t)ω(t)
p (B.16)

which satisfy the coupled equations

ȧ = −iω a+
1
2
η(t) a† (B.17)

ȧ† = iω a† +
1
2
η(t) a† (B.18)

with η = ∂t (log mω). While a formal solution of this equations can be written in terms

of time-ordered exponential we can perturbative expand the equation in power of η, the

leading order term reading

a(t) = e−i
R t
0 ω(t′)dt′ a(0)

+ e−i
R t
0 ω(t′)dt′

∫ t

0
dt′ e2i

R t′
0 dt′′ω(t′′) η(t′) a†(0) (B.19)

Using this result and the definitions (B.15) we can easily obtain the expression for

coordinate and momentum operators, x(t), p(t) in term of their initial values. Then,

assuming the initial state to be in the ground state of H(t = 0) we can obtain the

results quoted in the main text for 〈x2〉t, 〈 p2〉t.
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B.2 Quantum Fluctuations plus feedback

In this Appendix we present a treatment of quantum fluctuations above the mean field

dynamics that goes beyond the spin wave (gaussian) approximation of Ref. [103] and

that leads to the the dynamical equations (B.26-B.27) we used in the main text.

As shown in [103] and recalled in the main text, in the approximation that the

evolving state is a product of fermions and spins wavefunctions, the Hamiltonian (3.36),

upon introducing the Fourier transform of the Ising spins

σaq =
∑
R

e−iq·RσaR

reads (in units of Uc)

HI =
u

4
σz0 −

1
8V

σx0σ
x
0 −

1
8V

∑
q 6=0

γqσ
x
qσ

x
−q. (B.20)

V is the number of sites and γq =
∑

a e
iqa, with a a vector which connects two nearest

neighbor sites. The spin operators in momentum space satisfy the commutation relations

[σaq, σ
b
−q′ ] = 2iεabcσcq−q′ . (B.21)

In the same spirit of the spin-wave approximation we assume that the evolved state has

a condensate component, which means that 〈σa0〉 ∼ V while, for any q 6= 0, 〈σaq〉 = 0

because of translational symmetry and 〈σaqσb−q〉 ∼ V . If the dynamics is able to drive

the system towards equilibrium, we expect a damping of the q = 0 sector.

Within such an approach and at the leading order in V , the only non-vanishing commu-

tation relations are [
σa0 , σ

b
0

]
= 2iεabcσc0[

σaq, σ
b
−q

]
= 2iεabcσc0[

σaq, σ
b
0

]
= 2iεabcσcq.

We evaluate then the equations of motions

i∂tσ
a
q =

[
σaq,HI

]
using the above approximate commutators. We find

i∂tσ
x
0 = i

u

2
σy0 (B.22)
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i∂tσ
y
0 = −iu

2
σx0 +

i

4V
(σz0σ

x
0 + h.c.)

+
i

4V

∑
q 6=0

γq
(
σzqσ

x
−q + σxqσ

z
−q

)
i∂tσ

z
0 = − i

4V
(σx0σ

y
0 + h.c.)

− i

4V

∑
q 6=0

γq
(
σxqσ

y
−q + σyqσ

x
−q

)
for the q = 0 components, while for the q 6= 0 ones

i∂tσ
x
q = i

u

2
σyq (B.23)

i∂tσ
y
q = −iu

2
σxq +

i

2V
σzqσ

x
0 +

i

2V
γqσ

x
qσ

z
0

i∂tσ
z
q = − i

2V
σyqσ

x
0 −

i

2V
γqσ

x
qσ

y
0 .

We let then evolve the condensate component as a mean field, i.e. we assume for the

q = 0 spins the classical values

σx0 = V N sin θ cosφ (B.24)

σy0 = V N sin θ sinφ

σz0 = V N cos θ

while for the q 6= 0 we introduce the following quantity

∆ab(q, t) ≡
1
2
〈σaqσb−q + σbqσ

a
−q〉. (B.25)

From eq. (B.22) and (B.23) the dynamics of these quantities is easily derived and

amounts to a set of non-linear coupled differential equations; the condensate dynamics

satisfies

θ̇ =
N

2
sin θ cosφ sinφ (B.26)

+
1

2NV 2

∑
q 6=0

γq (sin θ∆xy(q) + cos θ sinφ∆xz(q))

sin θφ̇ = −u
2

sin θ +
N

2
sin θ cos θ cos2 φ

+
1

2NV 2
cosφ

∑
q 6=0

γq∆xz(q)

Ṅ =
1

2V 2

∑
q 6=0

γq (− cos θ∆xy(q) + sin θ sinφ∆xz(q))
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while the q 6= 0 terms

∆̇xx(q) = u∆xy(q) (B.27)

∆̇xy(q) =
1
2

(−u+Nγq cos θ) ∆xx(q)

+
N

2
sin θ cosφ∆xz(q) +

u

2
∆yy(q)

∆̇xz(q) = −N
2
γq sin θ sinφ∆xx(q)

−N
2

sin θ cosφ∆xy(q) +
u

2
∆yz(q)

∆̇yy(q) = (−u+Nγq cos θ) ∆xy(q) +N sin θ cosφ∆yz(q)

∆̇yz(q) = −N
2
γq sin θ sinφ∆xy(q)

+
1
2

(−u+Nγq cos θ) ∆xz(q)

−N
2

sin θ cosφ∆yy(q) +
N

2
sin θ cosφ∆zz(q)

∆̇zz(q) = −Nγq sin θ sinφ∆xz(q)−N sin θ cosφ∆yz(q)

By inspection of (B.26) one recognizes that if the feedback of the q 6= 0 terms is neglected,

the condensate dynamics is the same we obtained in the Gutzwiller approximation. In

that approach indeed, N remained fixed during the dynamics (N(t) = 1), so that no

damping was present for the condensate sector with a consequent impossibility of energy

conservation. With respect to the results of Ref. [103], this new approach has the main

advantage to conserve the mean value of energy during the dynamics,

∂t〈H〉 = 0

as one can easily verify from eq (B.26-B.27).

In this work we considered quenches from the non-interacting system (ui = 0); the

initial conditions are then readily found from the solution of an Ising model in absence

of transverse field and read:
N(0) = 1

θ(0) = π/2

φ(0) = 0


∆yy(q, 0) = V

∆zz(q, 0) = V

∆ab(q, 0) = 0

(B.28)
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[23] Corinna Kollath, Andreas M. Läuchli, and Ehud Altman. Quench dynamics and

nonequilibrium phase diagram of the bose-hubbard model. Phys. Rev. Lett., 98:

180601, Apr 2007.

[24] S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu. Strongly correlated

fermions after a quantum quench. Phys. Rev. Lett., 98:210405, May 2007.
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J.-P. Itié, F. Baudelet, P. Wzietek, P. Metcalf, and M. Marsi. Inequivalent routes

across the mott transition in V2O3 explored by x-ray absorption. Phys. Rev. Lett.,

104:047401, Jan 2010.



BIBLIOGRAPHY 165

[149] Michel Caffarel and Werner Krauth. Exact diagonalization approach to correlated

fermions in infinite dimensions: Mott transition and superconductivity. Phys. Rev.

Lett., 72:1545–1548, Mar 1994.

[150] Massimo Capone, Luca de’ Medici, and Antoine Georges. Solving the dynamical

mean-field theory at very low temperatures using the lanczos exact diagonalization.

Phys. Rev. B, 76:245116, Dec 2007.

[151] P. Hansmann, A. Toschi, G. Sangiovanni, T. Saha-Dasgupta, S. Lupi, M. Marsi,

and K. Held. Mott–hubbard transition in v2o3 revisited. 250(7):1251–1264. ISSN

1521-3951.

[152] Claudio Attaccalite and Michele Fabrizio. Properties of gutzwiller wave functions

for multiband models. Phys. Rev. B, 68:155117, Oct 2003.

[153] Malte Behrmann and Frank Lechermann. Spin oscillations triggered by strongly

correlated $t {2g}$ electrons at the timescale of electron-electron interactions.

[154] Walter Metzner and Dieter Vollhardt. Correlated lattice fermions in d=∞ dimen-

sions. Phys. Rev. Lett., 62:324–327, Jan 1989.


	Contents
	Summary
	1 Introduction
	1.1 Correlated systems out-of-equilibrium
	1.2 Theoretical implications
	1.3 Interacting fermions and the Gutzwiller Approach
	1.4 Plan of the Thesis

	2 The Gutzwiller Variational Approach
	2.1 The Gutzwiller Approach for ground state calculations
	2.2 Extension at finite temperature
	2.2.1 Variational estimation of the free energy
	2.2.2 The Gutzwiller approximation at finite T

	2.3 The Time-Dependent Gutzwiller Approximation

	3 Linear Ramps of Interaction in the Fermionic Hubbard Model
	3.1 Introduction
	3.2 Interaction quench in the single band Hubbard model
	3.3 Ramping the interaction in the Hubbard Model
	3.3.1 Dynamics during the ramp and degree of adiabaticity
	3.3.2 Dynamics after the ramp

	3.4 Quantum Fluctuations Beyond Mean Field
	3.4.1 Fluctuations above mean field for slow ramps
	3.4.2 Sudden Quench Limit: a self consistent theory of fluctuations

	3.5 Conclusions

	4 Nonequilibrium dynamics in the Antiferromagnetic Hubbard Model
	4.1 Introduction
	4.2 Time dependent Gutzwiller for AFM states
	4.3 Interaction quench
	4.3.1 Uf < Ui quench
	4.3.2 Uf > Ui quench

	4.4 Conclusions

	5 Nonequilibrium dynamics of a toy-model for V2O3
	5.1 Introduction
	5.2 Equilibrium phase diagram of a toy-model for V2O3
	5.2.1 T=0 phase diagram
	5.2.2 T=0 phase diagram

	5.3 Comparison with DMFT
	5.4 Time dependent Gutzwiller for a two-band model
	5.5 Interaction quench in the degenerate case
	5.6 Emergence of a non-thermal metallic state
	5.6.1 Dynamics in the paramagnetic sector
	5.6.2 Dynamics in the AFM sector

	5.7 Conclusions

	Conclusions
	A Some useful proofs for the Gutzwiller Approach
	A.1 Vanishing of the contraction terms with n4 fermionic lines
	A.2 Derivation of the Lagrangian for the t-GA
	A.3 Quasiparticle weight and discontinuity at the Fermi surface

	B Quantum Fluctuations plus feedback
	B.1 Classical Adiabatic Dynamics and Slow Quantum Fluctuations for long ramps
	B.2 Quantum Fluctuations plus feedback

	Bibliography

