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Chapter 1
Introduction

The thermal conductivity coefficient, referred as λ in this thesis, describes the propriety of ma-

terials to conduct heat. It provides, through the celebrated Fourier law J = −λ∇T, a constant

of proportionality between the energy current J and the local temperature gradient. Its value

varies a lot among different materials: Copper for example presents a thermal conductivity

of 385 W
mK , fused Silica of 1.46 W

mK and water of 0.60 W
mK , always at ambient conditions. The

high difference between thermal conductivity of water and of Copper is due to the different

physical processes active in these two systems. Copper is a metal and therefore heat transfer

is mainly due to conduction electrons: if present, this contribution is the prevalent one. In

liquid water the lattice contribution to thermal conductivity is the only one present and this

explains the high difference between the thermal conductivity of metals and insulators.

The value of this transport coefficient can change dramatically the dynamics of physical sys-

tems. For example, experimental results suggest that thermal conductivity of silicates in the

earth mantel decreases after the melting therefore impeding heat transport and promoting

further melting, with an exponential growth. For technological applications, there is a general

interest in engineering materials with a low thermal conductivity. Thermal barriers coatings,

fundamental in aero-engine components, are such an example since they must sustain the

high temperature gradient present in the system without giving origin to high energy cur-

rents and rapid thermalizations. Thermoelectric generators require the development of low

thermal conducting materials as well, in order to maximize their efficiency. More recently an

interest on the precise control of heat transport at nano and mesoscopic scales, where quan-

tum effects are expected to play a crucial role, has grown. An example is the development

of phase change memory, a type of non-volatile random access memory. In these devices,

1



1. Introduction

according to the phase of the cell, changed through an heating element, a bit of 1 or of 0 is

memorized. These are only a few examples of the important role played by thermal conduc-

tivity in modern applications.

The main goal of modern electronic structure theory is to describe physical properties of ma-

terials, given their chemical composition, in order to analyze interesting physical phenomena

and aid technological development. Ab initio simulations, based on density functional the-

ory (DFT), have demonstrated a very good predictive power for several properties of inter-

est. Equilibrium structural properties , phonon energies, dielectric functions and absorption

spectra can be predicted with an ever increasing accuracy, thanks to the development of new

exchange correlation functionals. With the advent of the Car-Parrinello scheme, DFT-based

ab initio molecular dynamics calculations could be performed in an efficient way as well,

therefore making it possible to access inherently dynamical property, like particle diffusion in

liquid systems. Thermal conductivity is one such dynamical properties which however still

lacks a proper ab initio scheme for its computation. In this thesis we develop a new technique

for computing the value of this coefficient in insulating systems, considering the lattice con-

tribution to thermal conductivity.

The validity of the Boltzmann transport equation, commonly used for lattice thermal conduc-

tivity computations, is restricted to solids below their melting temperature, where disorder

and anaharmonicities can be treated in a perturbative way. Other approaches are at the mo-

ment restricted to classical systems where accurate inter-atomic potentials are at disposal.

There is therefore the need for a methodology able to compute thermal conductivity in liq-

uid and highly disordered systems, in an ab initio framework. The approach developed in

this thesis is of general validity and is based on the application of the Green Kubo formula,

which gives a connection between transport coefficients and spontaneous fluctuations at equi-

librium. Till now it was surprisingly thought that such a method was inherently ill defined

in an ab initio framework, because it is not possible to uniquely define an energy density in

quantum systems. We will show that this indeterminacy does not affect the value given by

Green Kubo formula, thus leading to a well defined scheme.

The thesis is organized as follows. In the second chapter we will review the existing methods

used for thermal conductivity calculations, thus showing the need for new approaches. In

the third chapter we will present the Green Kubo formalism and show that it is suitable for

considering quantum effects in thermal conductivity calculations. In the fourth chapter we

will apply the Green Kubo formula and develop a well defined methodology for a quantum

thermal conductivity computation in a plane wave, pseudo-potential scheme. Finally, in the
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fifth chapter, we will provide a first benchmark of the new approach and an interesting ap-

plication. As a benchmark, we will compute thermal conductivity of Argon DFT, which is

known to be described well by classical pair potentials, both with the methodology devel-

oped and with a classical formulation, arriving always at comparable results. We will then

compute thermal conductivity of heavy water at ambient conditions. An ab initio approach

to this problem is of interest because, in such an important liquid, classical potentials are well

known to overestimate by 30 % the value of thermal conductivity.
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Chapter 2
Computational methods

As discussed in the introduction, thermal conductivity of dielectric materials is mainly due to

atomic contributions. The kinetic theory of lattice vibrations was the first one developed for

explaining experimental measurements, providing a celebrated connection with the specific

heat at constant volume. Later Green-Kubo relations were found, linking thermal conductiv-

ity and equilibrium spontaneous fluctuations of the heat flux. Both theories provide computa-

tional methods routinely applied to derive thermal conductivity coefficients from numerical

simulations, reviewed in this chapter. The first section is devoted to kinetic theory, put on a

computational framework by the phonon Boltzmann equation. In the second section we dis-

cuss non-equilibrium methods, a direct application of Fourier law. Then in the third section

the Green-Kubo method is discussed and in the fourth we report an interesting methodol-

ogy which combines equilibrium and non-equilibrium methods, referred as the "synthetic"

method. A final discussion points out the main advantages and drawbacks of each technique:

it arises the need of a new methodology, able to compute quantum contributions to the ther-

mal conductivity of liquids and disordered systems.

2.1 The Phonon Boltzmann Equation

An appealing physical picture, providing a qualitative description of thermal transport in

solids, is given by kinetic theory, as embodied in the phonon Boltzmann equation (PBE) [1].

The PBE applies to periodic solids far from the melting point, where anharmonic and disorder

effects, while essential for providing a finite value of thermal conductivity, can be treated in

a perturbation way. Phonons are treated as semi-classical quasi-particles, characterized by

well defined values of position r, momentum k, and energy εk. The uncertainty principle,
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2. Computational methods

|∆x||∆k| ≥ 1, is disregarded in a coarse grained picture using phonon wave-packets with a

well defined group velocity vk. We consider here for simplicity the single band case and the

semi-classical equations of motion read:

ṙ = vk =
1
h̄

∂εk

∂k
, (2.1)

h̄k̇ = Fext, (2.2)

where εk is the phonon dispersion relation and Fext accounts for external fields and finite

lifetimes due to scattering events. A central object of the theory is the distribution function

f (k, r) which measures the number of carriers with momentum k at position r. The flux of

energy, essential for computing thermal conductivity as discussed in the introduction, is given

by the equation:

J(r) =
∫

dk f (k, r)εkvk, (2.3)

thus identifying the phonon quasi-particles as "energy-carriers". No such simple single parti-

cle description, to our knowledge, has yet been found for liquids. From this point of view, the

theories of transport in liquids and solids are qualitatively different.

The PBE is an evolution equation for the phonon distribution function f (k, r). The power

of this technique resides in the simple semi-classical form of the evolution equation. When

macroscopic external fields are absent it can be written:

ḟ (k, r) = ḟ (k, r)
∣∣
diff + ḟ (k, r)

∣∣
scatt =

= −vk
∂ f (k, r)

∂r
+ ḟ (k, r)

∣∣
scatt = 0, (2.4)

where stationarity has been imposed by equating to zero the total time derivative. The diffu-

sive contribution, ḟ (k, r)
∣∣
diff, describes motion in space in a collisionless regime, due to the

phonon group velocity. The second contribution, ḟ (k, r)
∣∣
scatt, takes into account scattering

events with other phonons, able to change the phonon momentum. All dynamical effects are

included in the scattering coefficients where quantum effects can be incorporated via Fermi

golden rule [2].

In the limit of small thermal gradients the non-equilibrium distribution is close to the equi-

librium Bose Einstein distribution evaluated at the local temperature: f (k, r) ∼ f0(εk, T(r)),

where f0(ε, T) =
(

exp
[

ε
kBT

]
− 1
)−1

. The simplest approximation to the scattering terms is

the so called the relaxation time approximation, which reads:

ḟ (k, r)
∣∣
scatt = −

f (k, r)− f0(εk, T(r))
τk

. (2.5)
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2.1. The Phonon Boltzmann Equation

Figure 2.1: Thermal conductivity of mono-layer graphene computed by the Boltzmann trans-

port equation, divided into its mode contributions, along the Γ−M direction, from ref [6]

The computation of τk can be performed using either semi-empirical [3] models, or from first

principles using density functional (perturbation) theory [2, 4]. The relaxation time is cer-

tainly longer than the mean collision time, since it is well known that not all collisions can

contribute to thermal current degradation [5]. We need to observe that the relaxation time ap-

proximation, although simplifying the task of solving the PBE, can be formally derived from

the general PBE only under the assumption of elastic scattering events [1] and is therefore

not of general validity. Within this approximation the PBE is easily solved and the resulting

thermal current has the expression:

Ji = ∑
j

λi,j∂jT(r), (2.6)

λi,j = ∑
k

vk,ivk,jτkck, (2.7)

where ck is proportional to the contribution of mode k to the constant volume heat capacity

and is given by:

ck =
e

εk
kBT

(e
εk

kBT − 1)2

ε2
k

kBT2 . (2.8)

Equation (2.6) permits to separate the contribution to the thermal conductivity into individual

phonon modes, as illustrated in fig. 2.1.

Expression (2.6) can be easily computed at a DFT level. Phonon frequencies are nowa-

days routinely computed in a DFT approach by using either DFPT techniques [7] or under

the frozen phonon approximation [8]. Both methods also permit to compute the third order

terms in the energy expansion, from which one can extract phonon self energies and lifetimes

[9], in perturbation theory. An interesting alternative technique to compute phonon lifetimes

7



2. Computational methods

Figure 2.2: Lattice thermal conductivity of Silicon (squares) and Germanium (circles) com-

puted using the Boltzmann transport equation, from ref [2]. The lines are experimental values.

non perturbatively has been devised by Koker [10], who suggests to derive phonon lifetimes

from the frequency spectrum of the atomic velocity autocorrelation function. The theory of

the PBE has been developed much further, both from the computational point of view, for

example avoiding the relaxation time approximation [2, 3], and from a fundamental one (see

[1] for a discussion).

Assuming that the relaxation times and the modulus of the group velocities do not depend on

the phonon momentum, equation (2.6) simplifies to the classical formula [5]:

λ =
1
3

Cvvl. (2.9)

An expression for l, based on dimensional analisys, has been proposed:

l ∼ a0

αγT
, (2.10)

where a0 is the lattice parameter, γ is the Gruneisen parameter, α the expansion coefficient

and T the temperature. This formula makes it explicit that anharmonic effects, embodied

in α and γ, are essential for describing heat transport. The agreement of equation 2.10 with

experiment is only qualitative, thus confirming the need of a more qualitative approach to the

PBE, for example through equation 2.6. In figure 2.2, we instead report a thermal conductivity

computation of Silicon and Germanium, displaying an excellent agreement with experiment.
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2.2. Non-equilibrium molecular dynamics

2.2 Non-equilibrium molecular dynamics

In non-equilibrium molecular dynamics (NEMD) the computation of transport coefficients is

tackled directly by simulating a system subject to an external perturbation and by computing

the associated conjugate flux. Thermal conductivity is then obtained from Fourier law, in the

limit of small thermal gradients. Different techniques can be used to realize the desired steady

state: as an example we discuss here the Müller-Plathe [11] method, which is routinely used

and shows the typical features of this class of computational methods.

The presence of thermal inhomogeneities requires the division of the system into a number of

subsystems that have to be chosen large enough so as to achieve local thermodynamic equi-

librium. This is essential in order to define a local temperature and a temperature gradient.

The Müller-Plathe method starts by subdividing an orthorhombic simulation cell into slabs

perpendicular to the z− axes. During the simulation different temperatures will be evaluated

for each slab and a unidimensional temperature gradient is defined by finite differences. A

local instantaneous temperature is then defined within each slab through the formula:

Ts =
1

3NskB
∑

n∈s−slab

1
2

mv2
n, (2.11)

where every atom is supposed to have the same mass m and Ns is the number of particles

inside the sth slab. Two slabs are chosen as the "hot" and the "cold" slab and connected to two

thermal reservoirs kept at different temperatures (the analog of the "heater" and the "coolant"

in the experimental axial-heat flow method [12]). In order to enforce periodic boundary con-

ditions a "ring" geometry is used, such as depicted in fig. 2.3.

The peculiarity of the Müller-Plathe method is the way in which the reservoirs are mod-

eled. Instead of fixing two external temperatures, an energy flux is driven by suitably chang-

ing the velocities of the atoms in the cold slab and the ones in the hot slab. This is achieved by

identifying, with a fixed frequency, the hottest atom in the cold slab, the coolest atom in the

hot slab, and by swapping their velocities, scaled by the square root of the ratio of the atomic

masses to enforce momentum conservation 1. This procedure will effectively produce a flux of

energy across the system provided the hottest atom in the cold slab is hotter than the coolest

atom in the cold slab. This is always the case if the temperature gradient is small enough, and

the value of the energy flux thus obtained will depend on the swapping frequency (different

recipes for creating thermal fluxes in the same geometry have been later proposed [13, 14]).

1This favors the reaching of a steady state, since only a subspace of the micro-canonical ensemble is spanned

during the dynamics.
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Figure 2.3: (left) Example of a slab division of the simulation cell in a Müller-Plathe NEMD

computation. Temperature rises going from the n = 0 slab to the n = 5 slab and then decrease

in a continuous way from n = 5 to n = 9, coming back to the same value at slab n = 0. (right)

Setup correspondent to the slab division. The geometry of the system permits heat flow from

the heater to the cooler along two different (symmetrical) paths.

The energy flux is the ratio of the total kinetic energy transported through the system by the

kinetic energy swaps during the simulation time T, and the product between T and the cross-

sectional area of the simulation cell. The resulting expression for thermal conductivity, to be

computed under steady conditions, is given by Fourier law:

λ = −
∑trans f

m
2 (v

2
h − v2

c)

2TA〈 ∂T
∂z 〉

, (2.12)

where vh and vc are the velocities before being exchanged of the particle in the hot slab and

in the cold slab respectively. m is the mass of the particles (we stick here to a mono-atomic

fluids), A the cross sectional area of the simulation cell perpendicular to z, 〈 ∂T
∂z 〉 the observed

temperature gradient (it is a fluctuating quantity). The transfers considered in the sum are

those observed in a simulation of length T. The factor of two is due to the ring geometry

chosen.

The rationale behind the Müller-Plathe algorithm is that the heat flux is a quantity character-

ized by big fluctuations, whereas temperature, being a quantity calculated as an average over

many particle, does not fluctuate so wildly. Therefore it is preferable to impose a flux on the

system and measuring a temperature rather than imposing a temperature gradient and mea-

suring the resulting flux. A typical temperature profile measured in a NEMD Müller-Plathe

computation is reported in figure 2.4.
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2.3. Equilibrium molecular dynamics

Figure 2.4: Typical temperature profile in a NEMD simulation, from ref. [15]

2.3 Equilibrium molecular dynamics

In equilibrium molecular dynamics (EMD) transport coefficients are evaluated by exploiting

the fluctuation dissipation theorem that establishes a relation between non-equilibrium coef-

ficients and spontaneous fluctuations occurring at equilibrium. This theorem is embodied in

the so called "Green-Kubo" formulas that will be derived in chapter 3. The same task is per-

formed by the well known formula CV = 〈(∆E)2〉eq for the specific heat. Such a connection

is important because it shows that a complete knowledge of the non-equilibrium distribution

function is not essential for the computation of transport coefficients and, from a computa-

tional point of view, it permits to simulate equilibrium systems, a much easier task than sim-

ulating the non-equilibrium response to macroscopic perturbations, as in NEMD methods.

Green-Kubo relations applied to molecular dynamics calculations have the general form:

K = α
∫ +∞

0
〈A0(t)A0(0)〉eqdt, (2.13)

where K is the transport coefficient of interest (in our case, thermal conductivity), A0 an ob-

servable and α a constant. Precise expressions of A0 and α depend on the coefficient con-

sidered. The derivation of Green-Kubo formulas can be quite different, depending on the

macroscopic quantity of interest. In the case of thermal transport, derived explicitly in chap-

ter 3, the Green-Kubo formula establishes a relation between the thermal conductivity and the

spontaneous fluctuations of the heat flux:

11



2. Computational methods

λ =
1

3VkBT2

∫ +∞

0
〈J(t) · J(0)〉eqdt, (2.14)

where J(t) is called the heat flux. The precise expression of J(t), depending on ion positions

and velocities at time t will be given in next chapter, in the particular case of a two-body po-

tential. In figure 2.5 we see a typical result of a Green-Kubo computation. The autocorrelation

function of the heat flux, in the reference called S instead of J, has to be explicitly computed

till its decay and approximated as a sample mean, as in formula 5.1 of chapter 5 . For large t

only few estimates are available, therefore eventually the plot of the integral as a function of

the upper time of integration, shown in the inset, is dominated by statistical errors. Enough

statistics has to be acquired in order to observe a statistically significant plateau.

The time decay of the autocorrelation function varies considerably from system to system. In

liquids it can be of the order of one picosecond, while in solids it can be as large as hundreds

of picoseconds [16, 17, 18, 19, 20]. The shape can qualitatively vary as well. As an example,

in figure 2.6 we compare the heat-flux autocorrelation function for two classical models, flex-

ible and rigid, of water at ambient conditions. The high frequency oscillations in the flexible

water model are due to fast intra-molecular modes that are disregarded in the rigid model.

Yet the thermal conductivities resulting from the simulations are rather similar. Ref. [18] re-

ports, in units of W/(mK), values of 0.776, 0.806, 0.797, 0.816 for different rigid models and of

0.854, 0.851, 0.793 for flexible models, always at ambient conditions. The experimental value

reported is 0.6096W/(mK).

2.4 Synthetic methods

Synthetic methods were developed as an alternative way to compute the equilibrium time

correlation functions appearing in Green-Kubo relations, avoiding their explicit evaluation

as an equilibrium average, which usually converges slowly. They perform this task by re-

alizing particular nonequilibrium settings, associated with mechanical perturbations ad hoc

designed, differently from standard NEMD methods. The EMD and NEMD methods de-

scribed in previous sections are generally preferred in applications because they are much

easier to implement. In figure 2.7 the heat current autocorrelation function computed by syn-

thetic methods and by EMD for the same Lennard Jones fluid are shown to agree.

Synthetic methods exploit a formal similarity between the Green-Kubo expressions for bounda-

12



2.4. Synthetic methods

Figure 2.5: Heat current autocorrelation function and its integral (inset) for Stillinger-Weber

silicon using EMD, from ref. [21]

Figure 2.6: Heat current autocorrelation function for classical and rigid water computed by

EMD, from ref. [18]

13



2. Computational methods

ry-driven transport phenomena (like thermal conductivity) and the ones associated with the

linear response to mechanical disturbances, described by perturbative terms in the Hamilto-

nian of the system (like electrical conductivity). In both cases an expression presenting the

time integral of an equilibrium autocorrelation function of a certain flux is derived, as in eq.

2.13. On the other hand, boundary-driven transport phenomena are more difficult to simulate,

since there is always the need to model a thermal reservoir or a wall, external to the system of

interest and breaking the homogeneity of the system. An additive term in the Hamiltonian,

acting homogeneously on every particle of the system, does not suffer from this problem. In

synthetic methods a boundary-driven transport phenomenon is simulated by an additional

term in the equations of motion [22, 23]:

q̇i =
∂H0

∂pi
+ F(t)Ci (2.15)

ṗi = −
∂H0

∂qi
+ F(t)Di, (2.16)

where F(t) is a scalar (non dependent on the configuration) giving the time dependence of

the perturbation and Ci and Di are coefficients to be fixed. H0 is the original Hamiltonian in

the absence of the perturbation. Non-Hermitian linear response theory permits to compute

the response to the perturbation of a generic observable A. The dissipative heat flux is the

observable appearing in the final relation:

〈A(t)〉 = 〈A(0)〉+
∫ t

0
χJdiss

A (t− t′)F(t′)dt′ (2.17)

χJdiss
A (t) = β〈A(t)Jdiss(0)〉eq (2.18)

and is linked to the choice of the Ci and Di:

Jdiss =
N

∑
i=1

[
−Di ·

pi

m
+ Ci · Fi

]
, (2.19)

where observables evolve always with the free propagator. Choosing Ci and Di carefully Jdiss

can be forced to be equal to the J given by Green-Kubo theory for the Lennard Jones system.

The mechanical perturbation can be therefore merely used to probe the system in order to

compute, through linear response, the selected auto-correlation function and does not have

any physical meaning. This explains the adjective "synthetic" attached to these methods.

The standard choice for F is F(t) = Fθ(t). This permits to obtain directly the time integral,

14



2.5. Expanding the scope of molecular simulations

Figure 2.7: Comparison between the heat current autocorrelation function computed with

synthetic methods and and by EMD for a Lennard Jones system, from ref. [24]

applying (2.18) with A = J:

limt→∞〈J(t)〉 = 〈J(0)〉 − βF
∫ +∞

0
〈J(t′)J(0)〉eqdt′. (2.20)

The drawback of this choice is that in general the limit on the left does not exist, because for

long times the external perturbation heats the system. This is a second order effect and in this

condition linear response theory does not apply. For every finite F, no matter how small, there

is a time t such that 〈A(t)〉 is not given anymore by linear response theory. One way to get out

of this situation is applying a thermostat that is able to maintain the system in a steady linear

regime. One has to check that the transport coefficient obtained is the same independently of

the presence of a thermostat. Theoretical results in this sense are given in [23]. Other choices

for F are possible in order to compute the whole autocorrelation function, not just its time

integral [24].

2.5 Expanding the scope of molecular simulations

The methods described so far have their own, often complementary, advantages and draw-

backs. The application of the PBE requires a rather cumbersome workflow since phonon

frequencies, velocities and lifetimes need to computed. It becomes even more complicated

when the full solution of the PBE, avoiding the relaxation time approximation, is needed.

This approach can be implemented in an ab-initio framework based on DFT, and accounts for
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2. Computational methods

quantum effects that may be important at low temperatures but its application is limited to

crystals well below the melting point, where phonon dispersions are defined and anharmonic

effects small enough to be treated perturbatively. Actually when the solid is highly harmonic

this is the method to be chosen. In fact NEMD and EMD methods, even if they do not suffer

of such restrictions, are more effective when anharmonic effects lead to short lifetimes. Nev-

ertheless, when dealing with liquids and disordered systems, EMD and NEMD methods are

actually the only ones at disposal. NEMD methods, under the Müller-Plathe methodology,

have been implemented in an ab-initio framework as well, but scattering of phonons from

the thermal reservoirs lead to slow size convergence. To circumvent this problem, an addi-

tional modeling is required, in order to fit the results to infinite volume. An other intrinsic

source of slow convergence is due to the fact that local thermodynamic equilibrium must be

reached in different regions of the simulation cell. Furthermore, the inhomogeneity of the

system is associated to high thermal gradients and undesired density variations [25]. EMD

methods, based on the Green-Kubo approach do not suffer from these problems and in fact

show a much weaker size dependence. They have been implemented, for the moment, only

for classical potentials and their validity is therefore limited by the ability of these potentials

to simulate the system of interest. An ab initio approach would therefore be desirable. It is

actually believed that fundamental problems do not permit application of EMD to quantum

systems. We cite from reference [26]:

The widely use Green-Kubo relation does not serve for our purposes, because in first-principles cal-

culations it is impossible to uniquely decompose the total energy into individual contributions from

each atom.

This is not right. We will see in chapter 3 that a microscopic definition of the energy cur-

rent can be provided in a Born-Oppenheimer, adiabatic, framework. The non-uniqueness of

the energy decomposition is a problem affecting also classical systems, but does not change

the result given by the Green-Kubo formula. This problem is discussed in the third chapter of

this thesis.
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Chapter 3

Green-Kubo formalism

Green-Kubo formulas relate dissipative transport coefficients to spontaneous, equilibrium

fluctuations of the flux responsible for the transport process [27, 28, 29, 30]. The proof of

these relations depends on the process considered. Two main families of perturbations can

be identified: mechanical and thermal. Mechanical perturbations can be described by an ad-

ditive term in the Hamiltonian of the system, such as e.g. an external electric field. Thermal

disturbances, such as thermal gradients, cannot be described by any mechanical perturba-

tion and belong to the second family. In both cases the main ingredient required for making

a connection between equilibrium and non equilibrium properties is linear response theory

(LRT). In the first section of this chapter we will introduce the needed statistical mechani-

cal background and show how LRT can be directly used to treat mechanical perturbations.

The second section is devoted instead to the extension of LRT needed for describing thermal

transport coefficients and in the third section the celebrated Green-Kubo formula for thermal

conductivity is derived via Navier-Stokes equations. Then the Green-Kubo formula is an-

alyzed: in the fourth section its behavior under combination of different thermal transport

processes is shown, whereas the next one is devoted to the problem of the energy density

indeterminacy, which only apparently prevents application of the Green-Kubo formula in a

quantum adiabatic framework. Finally, a different viewpoint on this problem is proposed as

an application of Mori’s memory function formalism.
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3. Green-Kubo formalism

3.1 Classical linear response theory

3.1.1 Notation and basic concepts

To fix notations and conventions we summarize here the main ingredients necessary to give

a statistical mechanical description of classical systems. The microscopic state of the system

is referred to as a phase space point, parametrized by a couple of generalized coordinates

(q, p). In a system of N particles q can be taken as the three dimensional positions coordinates

q = (r1, ..., rN) and p their conjugate momenta p = (m1v1, .., mNvN). The Hamiltonian of the

system is a real scalar function of the generalized coordinates H(q, p), which entails all infor-

mation about the microscopic dynamics of the system. The time evolution of a microscopic

state is described by a system of first order differential equations, the Hamilton equations:

q̇ =
∂H(q, p)

∂t
, (3.1)

ṗ = −∂H(q, p)
∂t

. (3.2)

On the other hand, a statistical ensemble is described by a distribution function f (q, p, t),

positive and normalized to unity, that gives the probability for the system to be found at a

given space point (q, p). In equilibrium systems, described by the canonical ensemble, the

distribution function is the Boltzmann distribution f0(q, p) ∼ exp(−βH(q, p)), where β = 1
kBT

as usual.

Observables are functions of the phase space coordinates A(q, p) (complex values are also

allowed), and their expectation value is defined as:

〈A〉 f ≡
∫

dpdq f (q, p)A(q, p). (3.3)

The distribution function for all purposes can be mathematically considered as a measure in

phase space. The Cauchy-Schwarz inequality can therefore be applied to prove that, for two

generic observables A and B and any distribution function f :

〈|A(q, p)B(q, p)|〉2f ≤ 〈|A(q, p)2|〉 f 〈|B(q, p)|2〉 f . (3.4)

When f does not coincide with the equilibrium distribution it may evolve with time, accord-

ing to the Liouville equation:

∂ f (q, p, t)
∂t

= −iL̂ f (q, p, t), (3.5)
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3.1. Classical linear response theory

where the Liouville operator L̂, also called the Liouvillean, is defined in terms of the well

known Poisson bracket: :

L̂◦ = i{H, ◦}pb, (3.6)

{A(q, p), B(q, p)}pb ≡
∂A(q, p)

∂q
∂B(q, p)

∂q
− ∂B(q, p)

∂p
∂A(q, p)

∂q
. (3.7)

It is simple to verify that L̂ f0 = 0, so that the Boltzmann distribution is stationary with re-

spect to time evolution and the Liouville equation preserves the normalization of the distri-

bution function. The operator Û(t) is defined as the propagator for the distribution function:

Û(t) f (q, p, 0) = f (q, p, t). In the case of a time-independent Hamiltonian and Liouvillean:

Û(t) = e−iL̂t. (3.8)

We will use time dependent observable only propagating with time independent Liouvilleans,

therefore this equation will always be valid in our calculations. We observe that the Liouville

operator is Hermitian with respect to either one of the following two scalar products in the

vector space of the observables:

(A, B) =
∫

dqdpA∗(q, p)B(q, p), (3.9)

(A, B) =
∫

dqdp f 0(q, p)A∗(q, p)B(q, p). (3.10)

Therefore the operator U is unitary with respect to both of these scalar products and U†(t) =

U−1(t).

The explicit reference to the time dependent distribution function is reminiscent of the Schrö-

dinger picture in quantum mechanics, since the distribution function evolves, while observ-

ables are kept fixed. In analogy to quantum mechanics, one can switch to a classical Heisen-

berg picture, where distribution functions are kept fixed and observables evolve in time, defin-

ing a time dependent observable A(q, p, t): 1

〈A〉 f (t) = ( f (t), A) = (Û(t) f (0), A) = (3.11)

= ( f (0), Û†(t)A) ≡ ( f (0), A(t)) = 〈A(t)〉 f (0), (3.12)

where the first of the scalar products (3.10) has been considered. A(t), defined as U†(t)A,

satisfies the differential problem:

Ȧ(t) = iL̂A(t),

A(t = 0) = A. (3.13)

1For the sake of simplicity, as it is usual in the literature, depending on the number of arguments A() can

indicate the time dependent observable or the static one
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3. Green-Kubo formalism

The time dependent observable A(q, p, t) can be explicitly obtained from A(q, p) by replacing

q with q(t) and p with p(t), where q(t) and p(t) are the solutions to the Hamilton equations

with initial conditions q(0) = q, p(0) = p:

Û+(t)A(q, p) = e−t{H,◦}pb A(q, p) = et d
dt A(q, p) = A(q(t), p(t)), (3.14)

where identities (3.7), (3.8) and the standard relation between Poisson Brackets [31] and time

derivatives have been used.

3.1.2 Linear response to mechanical perturbations

We consider a system described by the unperturbed Hamiltonian H0 and subject to a mechan-

ical perturbation H′:

H = H0 + H′(t), (3.15)

H′(t) = −λ(t)V, (3.16)

where V = V(q, p) is an observable and the function λ(t), phase space independent, fixes

the time dependent strength of the perturbation. We suppose that at t = −∞ the system is in

thermal equilibrium with respect to the Hamiltonian H0 and that 〈V〉eq = 0. In all calculations

we write 〈〉eq instead of 〈〉 f0 , where f0 ∼ exp(−βH0(q, p)).

The perturbation results in a perturbed Liouvillean operator acting on the distribution func-

tion:

L̂ f = L̂0 f + L̂′ f , where (3.17)

L̂′ f = −iλ{V, f }pb. (3.18)

In the limit of weak fields we can suppose that the distribution function will be close to the

equilibrium f0(q, p), so that:

f (q, p, t) = f0(q, p) + f ′(q, p, t) + O(λ2). (3.19)

Plugging this equation into (3.7) and disregarding higher order terms we get the linearized

Liouville equation:

∂ f ′

∂t
= −iL̂0 f ′ − λ{V, f0}pb. (3.20)
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3.1. Classical linear response theory

This is a first order differential equation, with boundary condition f (q, p, t = −∞) = f0(q, p)

and therefore admits an explicit integral solution:

f ′ = −
∫ t

−∞
Û0(t− s){V, f 0}pb λ(s)ds (3.21)

= −β f 0
∫ t

−∞
Û0(t− s)V̇(s)λ(s)ds, (3.22)

where the propagator Û0 is the unperturbed Liouvillean propagator, which also defines the

Heisenberg picture for time dependent observables. In the last step we used the identity:

{V, f 0}pb = βV̇ f 0, (3.23)

which can be verified by plugging in the explicit form of the equilibrium distribution.

Fix now an observable A of our system. If the system is in equilibrium the value 〈A(t)〉eq

does not depend on t and, without loss of generality, we suppose 〈A(t)〉eq = 0 for every t.

The time-dependent response of the observable A to the perturbation H′ is obtained in the

Schrödinger picture by multiplying eq. (3.22) by A(q, p) and integrating over phase space.

The canonical distribution that has arisen in equation (3.22) is fundamental in the calculation:

〈A(t)〉 = −β
∫ t

−∞
λ(s)ds

∫
dq dp f 0(q, p)A(q, p)Û0(t− s)V̇(q, p, s), (3.24)

where the time dependence of the operators is determined by the unperturbed Hamiltonian

H0. The latter can be rewritten in the standard form:

〈A(t)〉 =
∫ t

−∞
ΦAV(t− s)λ(s)ds,

ΦAV(t) = β
∂

∂t
〈A(t)V(0)〉eq, (3.25)

The expectation value on the right-hand side of eq. 3.25 is the time correlation function of the

observables A and V, often indicated with the symbol CAV(t):

CAV(t) ≡ 〈A(t)V(0)〉eq (3.26)

and we just proved that the time derivative of CAV(t) is, apart from factors, ΦAV(t).

Equation (3.25) is the main result of LRT: it manages to express linear (non-equilibrium) re-

sponse in terms of a correlation function depending entirely on equilibrium quantities.

An alternative expression for ΦAV(t), usually referred to as the fluctuation-dissipation the-

orem and closer to the one obtained by quantum linear response theory [32], can be found
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3. Green-Kubo formalism

when f0 is the canonical distribution function. Expanding again the Poisson bracket 2:

ΦAV(t) = −β〈A(t){H, V}pb〉eq

= −β
∫

dqdp f 0A(t)
(

∂H
∂q

∂V
∂p
− ∂H

∂p
∂V
∂q

)

=
∫

dqdpA(t)
(

∂ f 0

∂q
∂V
∂p
− ∂ f0

∂p
∂V
∂q

)

= −
∫

dqdp f 0
(

∂

∂q

(
A

∂V
∂p

)
− ∂

∂p

(
A

∂V
∂q

))
= 〈{A(t), V(0)}pb〉eq, (3.27)

where we used partial integration to move the derivative from f0 to A and commutation of

partial derivatives to simplify the resulting expression. Comparing equations (3.25) and (3.27)

we deduce:

β
∂

∂t
CAV(t) = 〈{A(t), V(0)}pb〉eq. (3.28)

Green-Kubo relations for mechanical perturbations follow as a direct application of the for-

mulas developed. As an example we compute the response of the electric current due to a

weak macroscopic uniform electric field, i.e. the electric conductivity. We consider a a clas-

sical, isotropic system of N interacting particles with charge zi. The perturbation H′ and the

resulting electric current JE are:

H′ = −
(

N

∑
i=1

zieri

)
· E(t), (3.29)

JE =
N

∑
i=1

zievi, (3.30)

where as before ri and vi are the particle’s positions and velocities, whereas E(t) is the strength

of the external electric field. Formula (3.25) gives (the components of the electric field E(t)

play the role of variable λ):

ΦJE(t) =
β

3
〈JE(t) · JE(0)〉eq. (3.31)

The zero frequency component describes the response σ to static electric fields:

σ =
β

3V

∫ +∞

−∞
〈JE(t) · JE(0)〉eqdt. (3.32)

2The algebra of time correlation functions permits to switch time derivatives, so that 〈Ȧ(t)B(0)〉 =

−〈A(t)Ḃ(0)〉
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It is immediate to see that if all the particles are equally charged, zi = z, than conservation of

momentum imposes σ = 0.

3.2 Green-Kubo relations for thermal disturbances

We now describe how Green-Kubo relations can be obtained for thermal disturbances. We

will follow a simple example, deriving explicitly a Green-Kubo relation associated to a partic-

ular diffusion process, leaving application to thermal conductivity for the next sections. The

discussion will closely follow ref. [33, 34, 35]. Useful discussions can also be found in ref.

[36, 37].

3.2.1 Phenomenological descriptions

We begin with a brief discussion of how phenomenological descriptions arise from micro-

scopic theories. These descriptions are based on the concept of local thermal equilibrium

(LTE), which makes it possible to define space-dependent thermodynamic variables varying

on length scales that are long with respect to the typical inter-atomic distances and that fluctu-

ate, in the absence of external perturbations, around the global, position-independent value,

on time scales that are long with respect to the typical molecular relaxation times. These vari-

ables are usually called hydrodynamic variables and phenomenological differential equations

give a dynamical description of their time evolution. The dynamics of the other "fast" vari-

ables is treated instead on a statistical mechanical base, thanks to the hypothesis of LTE.

The main example of hydrodynamic variables consists in locally conserved quantities, which

satisfy an evolution equation of the type:

ḟ (r, t) = −∇ · J f (r, t). (3.33)

A locally conserved quantity plays a special role because the decaying time of its long wave-

length components diverges when very small wavelengths are considered, that is in the macro-

scopic limit. In fact the correlation function 〈 f (q, t) f (−q, 0)〉 when q = 0 is exactly constant

and not subject to any decay: as a consequence, τ(q) → ∞ when q → 0. Non conserved

observables relax to equilibrium much faster, on molecular time scales: there is therefore a

dynamical decoupling of the conserved variables from all the others, which permits to con-

sider the hydrodynamic variables as describing LTE. This decoupling is practically performed

and the phenomenological equations form a closed system if we are able to write, in the
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macroscopic limit, all currents entering the conservation equations as a function of the hy-

drodynamic variables. The coefficients entering these relations are exactly what remains in

the evolution equations after the decoupling procedure and constitutive relations, a conse-

quence of LTE, can play a role.

This general framework will be now be clarified through the definition of a simple "thermal"

transport coefficient. We consider a system of 2N interacting particles and assign a certain

"charge" zi = +1 to half of the particles and zi = −1 to the remaining. This defines a micro-

scopic conserved density:

ρ(r) = ∑
i

δ(r− ri)zi (3.34)

and a current, in reciprocal space:

J(q) = ∑
i

e−iqrvizi,

ρ̇(q) = −iq · J(q). (3.35)

In the macroscopic limit, the relaxation of the density ρ becomes very slow, because of the

conservation equation it respects. Thanks to the way in which we defined ρ, not relating it

to any property of the system, we can suppose that its dynamics is decoupled from all the

other conserved quantities. A hydrodynamic theory describes the evolution equations for the

small wavelength, small frequency components of ρ(r): from now on we will therefore switch

to coarse grained quantities. Microscopic and coarse grained variables coincide, in reciprocal

space, for small q.

The next step consists in understanding which can be the relation between the (macroscopic)

current J and the conserved density. This point can be tricky to understand and it constitutes

the main difficulty when building phenomenological descriptions of many body systems. In

this simple case we expect that the current will be proportional to the unbalance between

particles with charge zi = +1 and charge zi = −1. Therefore in the linear regime we expect

the following expression to hold:

〈J(r)〉 = −D〈∇ρ(r)〉. (3.36)

Equation (3.36) is the phenomenological equation defining the diffusion coefficient D. We can

combine this equation and the conservation property to obtain:

〈ρ(q, z)〉 = 〈ρ(q, t = 0)〉
iz− Dq2 . (3.37)

This equation describes the time evolution of the slow variable ρ in terms of the transport

coefficient. It is interesting to note that, to describe the time evolution of the slow variable,
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details of the complicated many body interactions have been hidden behind a single scalar

coefficient. The same evolution can be described by LRT, as explained in the next section. We

will then use these results to derive a recipe to compute D, i.e. a Green-Kubo relation.

3.2.2 Slow processes described by linear response theory

In this section A will be a generic slow observable of the system, defining a hydrodynamic

variable in the sense of the previous paragraph. We suppose that at a certain time t0 it presents

a non equilibrium value 〈A(t0)〉 6= 0. For t > t0 the system will continue its free evolution.

Linear response theory is able to describe the evolution of the slow variable and the descrip-

tion will be used to obtain Green-Kubo relations for the second family of transport coefficients

described in the introduction.

One starts by creating, starting from a global equilibrium condition and using formally in

equation (3.16) the same observable A as a perturbing field, the initial non equilibrium state.

The choice of λ is made:

λ(t) = λ0eεt for t〈0,

λ(t) = 0 for t > 0, (3.38)

where ε is a small infinitesimal parameter put to switch on smoothly the perturbation. At

t = 0 a non-equilibrium state is realized. During the process, since A is a slow variable, the

system will always respect LTE and remain in the linear regime. Using then equation (3.25)

we obtain:

〈A(t)〉 =
∫ t

−∞
ΦAA(t− s)λ(s)ds. (3.39)

Plugging t = 0 and using the explicit time dependence of the perturbation:

〈A(t = 0)〉 = χAAλ0. (3.40)

This permits to identify χAA, whose definition has been given in appendix A, eq. A.11, with

a static susceptibility. Now we turn to relaxation. Since the external field is zero when t > 0 ,

deriving both terms of equation (3.39):

〈Ȧ(t)〉 = λ0ΦAA(t) t > 0. (3.41)

It is easy to Fourier-Laplace transform this identity and using the static result (3.40) we obtain:

〈A(z)〉 = 1
iz

(
1− χAA(z)χ−1

AA

)
〈A(t = 0)〉, (3.42)
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where χAA(z) is the dynamical susceptibility of appendix A. This equation gives the time

evolution for t > 0 of the slow variable in terms of the response function which standard LRT

is able to write as an equilibrium autocorrelation function, as shown in equations 3.25 and

A.4. We can also rewrite, using relation A.13:

〈A(z)〉 = β
[
CAA(z)χ−1

AA

]
〈A(t = 0)〉, (3.43)

where C is defined as before:

CAA(t) = 〈A(t)A(0)〉eq. (3.44)

What we actually found is a connection between the slow time evolution of macroscopic,

non equilibrium values of 〈A〉, with equilibrium fluctuations of the same variable. Onsager

in his celebrated works used such a connection as an hypothesis [38, 39]. Of course, as a

consequence of 3.43, the decay time of CAA(t) will be of the same order of the typical time

scale on which the non-equilibrium, slow variable, varies and therefore much longer than the

typical molecular relaxation times.

3.2.3 Equating the descriptions

The descriptions of the previous two sections are equivalent in the linear regime and in the

macroscopic limit. We rewrite (3.43) applied to our case:

〈ρ(q, z)〉 = β
[
Cρρ(q, z)χ−1

ρρ (q)
]
〈ρ(q, t = 0)〉. (3.45)

By comparing the latter and 3.37 we find for small q:

Cρρ(q, z) =
β−1χρρ

iz− Dq2 , (3.46)

where we defined the static correlation:

lim
q→0

χρρ(q) = χρρ. (3.47)

Finally, using equation (A.15) we get a Green-Kubo relation for this coefficient:

D = lim
ω→0

lim
q→0

1
χρρ

ω

q2 χ′′ρρ(q, ω). (3.48)

With the help of the equation (A.10) and of the main linear response theory result (3.25) this

equation can be written in a way ready to be implemented in a computer program:

D =
β

6Vχρρ

∫ +∞

0
〈J0(t) · J0(0)〉eqdt (3.49)

J0 =
N

∑
i=1

zivi. (3.50)
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, which is a Green-Kubo relation for the macroscopic transport coefficient D.

We summarize the practical procedure followed for defining the diffusion coefficient D and

obtaining the Green-Kubo relation for the second family of transport coefficients:

1. Conserved, slow variables, were identified;

2. An expression for the currents in terms of the hydrodynamic variables, that is, a phe-

nomenological description, must be found by some argument (in general symmetry

properties of the system under consideration). Use must be made of constitutive re-

lations, which describe LTE;

3. The evolution equations, now a closed system, are solved and relaxation is described in

terms of phenomenological coefficients;

4. A comparison with the description of relaxation provided by LRT permits to identify

transport coefficients with correlation functions of equilibrium fluctuations, thus lead-

ing to the Green-Kubo relations;

The entire procedure is also a test of validity of the phenomenological equations. For example

if application of (3.50) in computer simulations does not lead to converged results, this means

that the description was not correct.

3.3 Relaxation of simple fluids: the Navier-Stokes equations

We now apply the outlined procedure in order to obtain the Green-Kubo expression for ther-

mal conductivity in one component, atomic or molecular isotropic fluids 3. Navier-Stokes

equations describe time evolution in these systems and are valid at time and at length scales

over which LTE can be realized. Therefore in this section all variables are subject to a coarse

graining procedure. We will consider only small departures from a global equilibrium state

and distinguish the fluctuating parameters from the number of arguments: an expression like

T(r) for example will refer to the local fluctuating temperature, whereas T to the equilibrium

,position independent, one.

We report here (see [23] for a derivation) the Navier-Stokes equations, which are a conse-

quence of particle number, momentum and energy conservation. Denoting with n(r),g(r)

3two component fluids require different treatments because of the presence of more conserved variables [40].
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and ε(r) the respective densities:



∂〈n(r, t)〉
∂t

= − ∂

∂ra
Qa(r, t)

∂〈ga(r, t)〉
∂t

= − ∂

∂rb
Pa,b(r, t)

∂〈ε(r, t)〉
∂t

= − ∂

∂ra
Ja(r, t)

, (3.51)

where m is the mass of an atom/molecule and a suitable current has been defined for every

conserved quantity.

The currents appearing in equations 3.51 can actually be written as a function of the hydrody-

namics variables, at the cost of introducing additional transport coefficients and constitutive

relations. First of all we must define the streaming velocity v(r):

va(r, t) ≡ 〈ga(r, t)〉
m〈n(r, t)〉 . (3.52)

In terms of the streaming velocity the currents read [23]:



Qa = 〈ga(r, t)〉

Pa,b(r, t) = p(r, t)δa,b − 2η

(
∂avb(r, t) + ∂bva(r, t)

2
− 1

3
∂ava(r, t)

)
− ζ∂ava(r, t)δa,b

Ja(r, t) = (ε + p)va(r, t)− λ∂aT(r, t)

, (3.53)

where η and ζ are the shear and bulk viscosity respectively and p(r, t) the local pressure. We

observe that, taken as independent variables, energy and number density describe completely

the local equlibrium state. This means that temperature, pressure and all thermodynamic

variables can be taken as a function of these two fluctuating variables and that the system of

differential equations is closed.

Plugging the expression of the currents (3.53) into (3.51) the evolution equations are made
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explicit as: 

∂t〈δn(r, t)〉 = − 1
mn

∂a〈δga(r, t)〉

∂t〈δga(r, t)〉 = −∂aδp(r, t) +
ζ + η

3
mn

∂a∂b〈δgb(r, t)〉

+
η

mn
∂b∂b〈δga(r, t)〉

∂t〈δε(r, t)〉 = −(ε + p)
1

mn
∂a〈δga(r, t)〉+ λ∂b∂bδT(r)

, (3.54)

where Einstein summation convention has been used. Every fluctuating variable has been

replaced in (3.54) with its fluctuation with respect to the mean value, denoted here with a δ.

This is possible because the system at equilibrium is uniform. The main difficulty in solving

these equations is that δp(r, t) and δT(r, t) must be rewritten in terms of a complete indepen-

dent set of hydrodynamic variables. After some manipulations, described in appendix B , one

is able to recover an expression formally equal to the one obtained by linear response theory.

We define the new variables:

A1(k, t) = δn(k, t)

A2(k, t) = δgl(k, t)

A3(k, t) = δq(k, t) = δε(k, t)− ε + p
n

δn(k, t)

and the matrix, depending only on the modulus of k:

M(k) =


z − k

m 0

−kmc2 z + ik2Dl − βV
ncv

k

ik2λ
βV T
n2cv

0 z + i k2λ
cv

 , (3.55)

where cv is the specific heat per particle at constant volume, βV the isothermal compressibility

and c2 the adiabatic speed of sound. The final result gets the form:

Mij(k)〈Aj(k, z)〉 = 〈Ai(k, t = 0)〉, (3.56)

where Mij(k) is called the hydrodynamic matrix [41].

3.3.1 Green-Kubo formula for thermal conductivity

Equation (3.43) can be generalized to the case of several space-dependent variables Ai(r) in

the matrix form:

〈Ai(k, z)〉 = β
[
C(k, z)χ−1(k)

]
ij
〈Aj(k, t = 0)〉 (3.57)
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with the correlation matrix:

Cij(k, t) =
1
V
〈Ai(k, t)Aj(−k, 0)〉. (3.58)

By comparison with (3.56) we obtain:

C(k, z) = iM(k)−1C(k, t = 0), (3.59)

which is already a "Green-Kubo" relation, since it involves the matrix M, containing transport

coefficients, and the equilibrium correlation function matrix C.

To extract information about thermal conductivity the focus here goes to the element Cqq(k, z)

in equation (3.59). We need for this purpose to perform an expansion for small k and the

matrix product on the right member. The needed values of the matrix C(k = 0, t = 0) can

be computed using thermodynamic fluctuation theory and the results needed are derived in

appendix C:

Cqn(t = 0) = β−1T
(

∂n
∂T

)
p

(3.60)

Cqg(t = 0) = 0 (3.61)

Cqq(t = 0) = β−1ncpT, (3.62)

where cp is the specific heat per particle, at constant pressure.

To perform the matrix inversion in equation 3.59 the eigenvalues of M(k) up to second order

in k, derived in appendix B, are needed:

z0 = −ik2DT

z1 = ck− ik2Γ z2 = −ck− ik2Γ,

where: DT = λ
ncp

is the thermal diffusivity and Γ the sound diffusion attenuation coefficient.

From the explicit expression for the inverse of the matrix M it is evident that, for fixed k and

as a function of z, Cqq(k, z) will have three poles, one for each eigenvalue. Up to regular terms,

for finite k, one can extract the singular behavior considering pole contributions:

Cqq(k, z) ∼
3

∑
i=1

Ai(k)
z− zi(k)

(3.63)

Ai(k) = lim
z→zi

Cqq(k, z)(z− zi). (3.64)

From figure 3.1, we see that in the limit k → 0 only a singularity in z = 0 can arise, where

the poles merge. After performing the calculation and summing the residues, in the small k
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Figure 3.1: Pole structure of Cqq(k, z) for finite k. The arrows indicate where poles merge as

z→ 0.

limit one out of the three poles develops a singularity near z = 0, with a resulting asymptotic

behavior:

Cqq(k, z) ∼
iβ−1ncp

z + ik2DT
, (3.65)

up to regular terms regular in z for small k.

Using equation (A.15) we obtain:

χ′′qq(k, ω) = Tncp
k2ωDT

ω2 + (k2DT)2 , (3.66)

and inserting the definition of the thermal diffusivity DT:

λ =
1
T

lim
ω→0

lim
k→0

ω

k2 χ′′q,q(k, ω). (3.67)

This is finally one form of the Green-Kubo formula for thermal conductivity, which can be

rewritten, using the fluctuation dissipation theorem:

λ =
1

2kBT2 lim
ω→0

lim
k→0

ω2

k2 C̃q,q(k, ω) =
1

2kBT2 lim
ω→0

lim
k→0

C̃q̇,q̇(k, ω)

k2 . (3.68)

These equations can be further simplified. It will be shown in section 3.4 that, under the

following hypothesis:

lim
ω→0

lim
k→0

C̃ṅ,ṅ(k, ω)

k2 = 0, (3.69)

we can conclude:

lim
ω→0

lim
k→0

C̃q̇+αṅ,q̇+αṅ(k, ω)

k2 = lim
ω→0

lim
k→0

C̃q̇,q̇(k, ω)

k2 (3.70)
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for every α. Choosing α = ε+p
n the standard Green-Kubo result is obtained:

λ =
1

2kBT2 lim
ω→0

lim
k→0

C̃ε̇,ε̇(k, ω)

k2 . (3.71)

Property (3.69) holds because:

ω2 lim
k→0

C̃ṅ,ṅ(k, ω)

k2 = ω2 lim
k→0

C̃gl ,gl (k, ω) = (3.72)

= lim
k→0

C̃ġl ,ġl (k, ω) = lim
k→0

k2C̃Pzz,Pzz(k, ω) = 0, (3.73)

where we have chosen in the last step to make the limit in the zeta direction.

3.3.2 The heat flux

The heat flux, already introduced in section 2.3, is fundamental for application of the Green-

Kubo formalism [42]. For the derivation, we first of all rewrite (3.71) in a more explicit way:

λ =
∫ +∞

0
dt lim

q→0

〈ε̇(q, t)ε̇(−q, 0)〉
Vq2 (3.74)

From now on we will consider kBT2 = 1 in order to simplify notations. We will nevertheless

leave explicitly the volume dependence in order to emphasize the thermodynamic limit: this

means that the computation of physical quantities requires a limit over big cells.

The limit for small q is never explicitly numerically performed. The derivative of the energy

density can be replaced by the energy current, defined by the conservation relation:

ε̇(r, t) = −∇ · j(r, t) (3.75)

Exploiting the latter relation, in reciprocal space, and isotropy, equation 3.74 becomes:

λ =
∫ +∞

0
dt lim

q→0

〈ε̇(q, t)ε̇(−q, 0)〉
Vq2 =

∫ +∞

0
dt lim

q→0

qiqj

Vq2 〈ji(q, t)jj(−q, 0)〉 =

=
1

3V

∫ +∞

0
dt〈J(t)J(0)〉, (3.76)

, where Einstein summation convention over Cartesian coordinates has been considered and

the heat flux J(t) is defined as:

J(t) ≡
∫

dr j(r, t). (3.77)

When a heat flux J(t) is computed from an energy density ε(r, t), we say that J(t) and ε(r, t)

are associated. We note that this expression is equal, apart from surface contributions, to:

J(t) =
∫

dr ε̇(r, t)r (3.78)
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This can be readily verified multiplying by r the conservation equation 3.75 and integrating

by parts. As a result of the integration by parts, the integrand of this expression is not well

defined under periodic boundary conditions. Nevertheless this is the expression taken as

a starting point for deriving a heat flux and for applying Green-Kubo formula to thermal

conductivity calculations. The scheme proceeds like this:

1. The total energy E of the system under consideration is identified;

2. From the total energy E one derives an energy density ε(r, t);

3. The energy density ε(r, t) is inserted into equation (3.78);

4. Using integration by parts, or neglecting surface terms, one recovers an expression well

defined under periodic boundary conditions and therefore ready to be implemented on

a computer program;

We will follow exactly this scheme in the next chapter when defining an ab-initio heat flux

in Born-Oppenheimer systems. The second step of the procedure is quite arbitrary and this

indeterminacy problem is pictorially described in figure 3.2. It is exactly the problem that

prevented, till now, application of the Green-Kubo formalism in a quantum, DFT, framework,

as it was pointed out in the last section of chapter 2. It will be thoroughly discussed, to confirm

the correctness of the methodology, in section 3.5. The last step of the procedure is harmless as

well, because surface contributions do not affect the value of the Green-Kubo relation: they do

not possess the right volume scaling to survive the thermodynamic limit implicit in equation

(3.76).
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3.4 Combination of thermal transport processes

We defined in the previous paragraph the heat flux as the zero q component of the energy

current density. We indicate with λ(J) the thermal conductivity coefficient associated with a

heat flux J and ask ourselves how the thermal conductivity coefficient associated to the sum

of two different heat fluxes J1 and J2 is related to the individual values λ(J1) and λ(J2). We

will show that:

λ(J1 + J2) = λ(J1) + λ(J2) + ∆12

|∆12| ≤ 2
√

λ(J1)λ(J2). (3.79)

As a consequence we have that, if λ(J2) is zero, than ∆12 is zero and λ(J1 + J2) = λ(J1). Told

another way, we can add to the heat flux J1 another heat flux J2, without changing the thermal

conductivity coefficient, provided that the conductivity associated to the added heat flux is

zero. This property will be a useful tool in the next sections.

To prove (3.79) we first divide equation (3.76) into different contributions, using the parity

under time reversal of the correlation function:

λ(J1 + J2) =
1

6V

∫ +∞

−∞
dt〈(J1 + J2)(t) · (J1 + J2)(0)〉 = (3.80)

=
1

6V

∫ +∞

−∞
dt〈J1(t) · J1(0)〉+

1
6V

∫ +∞

−∞
dt〈J2(t) · J2(0)〉+ (3.81)

+
1

3V

∫ +∞

−∞
dt〈J1(t) · J2(0)〉 (3.82)

and this defines:

∆12 =
1

3V

∫ +∞

−∞
dt〈J1(t) · J2(0)〉 (3.83)

It remains to prove the bound on ∆12. This is a consequence of a generalized Einstein relation

[43], usually applied in the case of particle diffusion. Defining:

Qi(t) =
∫ t

0
Ji(t′)dt′ i = 1, 2 (3.84)

one gets the identity (we observe that Qi(0) = 0) :

〈Q1(t) ·Q2(t)〉 =

= t
∫ t

0
dt′
(
〈J1(t′) · J2(0)〉+ 〈J2(t′) · J1(0)〉

) (
1− t′

t

)
(3.85)

and the relations:

λ(Ji) = lim
t→∞

〈|Qi(t)|2〉
6Vt

, i = 1, 2. (3.86)
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We can apply these results. Thanks to the Cauchy-Scharwz inequality we have:

|〈Q1(t)Q2(t)〉| ≤
√
〈Q1(t)2〉〈Q2(t)2〉. (3.87)

Therefore:

lim
t→∞

|〈Q1(t) ·Q2(t)〉|
6t

≤ lim
t→∞

√
〈Q1(t)2〉

6t
〈Q2(t)2〉

6t
=

=
√

λ(J1)λ(J2). (3.88)

Now dividing equation (3.85) by 6t and making the limit:

|∆12|
2

=
1

6V
|
∫ +∞

−∞
dt′〈J1(t′) · J2(0)〉| ≤

√
λ(J1)λ(J2), (3.89)

which is the desired bound on ∆12.

Finally, we observe that equations (3.79) imply:√
λ(J1 + J2) ≤

√
λ(J1) +

√
λ(J2). (3.90)

This last expression generalizes easily to a finite sum of heat fluxes:√
n

∑
i=1

λ(Ji) ≤
n

∑
i=1

√
λ(Ji). (3.91)

3.5 The microscopic energy density indeterminacy

The problem of the energy density indeterminacy has been introduced in section 3.3.2. It

reflects the fact that a microscopic energy density is inherently ill defined. Actually thermo-

dynamics provides us with a well defined thermodynamic local energy density εth(r, t) as the

energy per unit volume (a well defined thermodynamic property) of subsystems surrounding

point r:

εth(r, t) =
E(V)

V
(3.92)

and there must be a range such that the right member is not dependent on the particular

volume chosen.

Every definition of a microscopic energy density ε(r, t) is good as long as it defines, through

the relation:

ε(r, t) =

∫
V ε(r, t)dr

V
(3.93)

the same thermodynamic energy density, that is the microscopic ε(r, t) must respect ε(r, t) =

εth(r, t). Eventually, the only condition that we can require for a reasonable energy density
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is that its integral coincides with the well defined total energy apart from surface contribu-

tions. Nevertheless two macroscopically equivalent but microscopically inequivalent energy

densities ε1(r, t) and ε2(r, t) lead to the same thermal conductivity, when plugged into the

Green-Kubo formula, as we are going to verify. We can focus on the associated heat fluxes

J1(t) and J2(t) and what we want to prove in the next sections can be rewritten in the formal-

ism introduced as λ(J1) = λ(J2).

As a consequence of the linear relation between heat flux and energy density the heat flux

J12(t) ≡ J1(t) − J2(t) is associated to the energy difference ε12(r, t) ≡ ε1(r, t) − ε2(r, t) and

for our purposes, it is sufficient to prove that λ(J12) = 0 thanks to the previous section. To

understand better the nature of J12(t) we study a definite example.

3.5.1 Classical two-body potentials

Argon is well described by classical molecular dynamics using a two-body, isotropic, interac-

tion potential. We will use this model in order to understand in which way the energy density

indeterminacy can affect the heat flux definition.

To fix notations, we consider N point particles, of mass m, positions ri, velocities vi and a total

energy:

E = ∑
i

mv2
i

2
+

1
2 ∑

i,j 6=i
f (|ri − rj|), (3.94)

where the interaction potential f (x) is considered to be short range. To lighten notations, we

do not explicitly write in this section the time dependence of atomic quantities, like particle

positions and velocities. As a first step we need to define, starting from the total energy

expression, an energy density ε(r, t). The natural choice consists in defining for an atom with

index i an atomic energy εi, coming up with an energy density of the type:

ε(r, t) = ∑
i

δ(r− ri)εi. (3.95)

Applying equation (3.78) to this particular case we then find:

J(t) =
∂

∂t

∫
ε(r, t)rdr =

d
dt ∑

i
εiri. (3.96)

The atomic energies εi must respect ∑i εi = E and the standard choice consists in dividing

into two the interaction energy f (|ri − rj|) between the two atoms with indexes i and j and

assigning one half of the interaction to εi and the other half to εj. The total atomic energy
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Figure 3.3: Here we pictorially represent the interaction energy between two atoms as a

square. To every atom is assigned a color and the amount of interaction energy assigned

to the atomic energy of each atom is proportional to the area of the square colored in the same

way. Figure A reflects the isotropic choice, whereas figure B the asymmetric one, described in

the text by a matrix µ.

becomes:

εi =
1
2

mv2
i +

1
2 ∑

j 6=i
f (|ri − rj|). (3.97)

A more general situation can be considered, in which the interaction energy is not divided

in the same way between to fixed atoms i and j but favoring one atom over the other. This

situation can be realized defining a matrix µij. When dividing the interaction energy between

two atoms i and j we will assign µij
2 f (|ri − rj|) to εi and µji

2 f (|ri − rj|) to εj. The matrix needs

to satisfy the relation µij + µji = 2 and the atomic energy now takes the form:

ε
γ
i =

1
2

mv2
i +

1
2 ∑

j 6=i
f (|ri − rj|)(1 + γi,j), (3.98)

where, instead of µ, we defined the matrix γ = 1 + µ. This matrix is easier for the purpose of

the calculation and turns out to be an antisymmetric matrix. Indeed a partitioning of the total

energy has been performed and one can easily verify that the relation ∑i ε
γ
i = E is satisfied.

We recover the standard decomposition if γ = 0.

The two decompositions differ only locally because short range interactions are considered.

Nevertheless, they do not lead to the same heat flux. In fact, performing the time derivative
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in equation (3.96) we obtain:

J(t) = ∑
i

εivi + ∑
i
[(vi · Fi)ri +

1
2 ∑

j 6=i
µi,j

d
dt

f (|ri − rj|)ri] (3.99)

and the last term can be rewritten:

d
dt

f (|ri − rj|) = −Fi,j(vi − vj). (3.100)

Using the relation Fi = ∑j 6=i Fi,j and the identity:

− 1
2 ∑

i,j 6=i
[λi,jFi,j · (vi − vj)ri] = −

1
2 ∑

i,j 6=i
[(Fi,j · vi)(λi,jri + λj,irj)] (3.101)

one obtains the expression:

J(t) = ∑
i

εivi + ∑
i,j 6=i

[
(vi · Fi,j)

(
ri −

λi,jri + λj,irj

2

)]
. (3.102)

This can be rewritten, in order to emphasize how much this result is different from the isotropic

one:

J(t) = J0(t) + Jγ(t) (3.103)

J0(t) = ∑
i

1
2

mv2
i +

1
2 ∑

i,j 6=i
f (|ri − rj|)vi + ∑

i,j 6=i

[
(vi · Fi,j)

(ri − rj)

2

]
(3.104)

Jγ(t) =
1
2 ∑

i,j 6=i
f (|ri − rj|)γi,jvi + ∑

i,j 6=i

[
γj,i(vi · Fi,j)

(ri − rj)

2

]
. (3.105)

The first expression J0 is exactly the one routinely used in Argon simulations, whereas the

current Jγ is an additional current intuitively describing a flow of energy due merely to our

asymmetric choice of partitioning the interaction energy. Having a closer look at Jγ(t), using

the antisymmetric property of the matrix γ, one can recognize that the additional current is a

total derivative:

Jγ(t) = Ṗ(t),

P(t) =
1
4

(
∑

i,j 6=i
f (|ri − rj|)γi,j(ri − rj)

)
. (3.106)

The vector P(t) has this properties:

1. it is well defined under periodic boundary conditions;

2. it is an extensive quantity and therefore P(t)
V is bounded;
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These are two ways to look at the same property, which deserve some discussion. We say that

an observable is well defined under periodic boundary conditions when there is a continuous,

global definition, of this observable on the entire phase space given by the simulation cell, to

which we apply periodic boundary conditions. This property does not hold for example for

the "coordinate" variable x: when reaching the border of the simulation cell, this variable

must change discontinuously. This is why, when computing the diffusion of a particle, even

in periodic boundary conditions, one can associate arbitrary displacements (even bigger than

the simulation cell). The vector P, on the other side, being well defined on the entire phase

space is in a way "geometrically limited" and cannot assume arbitrary values: it is limited by

a constant. The fact that the vector P is extensive implies that this constant scales linearly

with the volume and therefore P
V is bounded by the same constant for any dimension of the

simulation cell.

As a consequence we have that λ(Jγ) = 0, as we are going to check in two different ways. In

the first method we use that P is well defined under periodic boundary conditions in order to

take out derivatives from the ensemble mean:

λ(Jγ) =
1

2V

∫ +∞

−∞
dt〈Ṗ(t)Ṗ(0)〉 = 1

2V

∫ +∞

−∞
dt

∂

∂t
〈P(t)Ṗ(0)〉 = (3.107)

=
1

2V
〈P(t)Ṗ(0)〉

∣∣+∞
−∞ =

1
2V
〈P〉〈Ṗ〉 − 1

2V
〈P〉〈Ṗ〉 = 0. (3.108)

At the same conclusion we arrive applying Einstein identity:∫ t

0

1
V
〈Ṗ(t)Ṗ(0)〉

(
1− t′

t

)
=

1
t
〈(P(t)− P(0))2〉

V
. (3.109)

Taking the limit as t→ ∞, one sees that, since 〈(P(t)−P(0))2〉
V is bounded, the integral is zero. We

get also the right volume scaling since the correlation function 〈AB〉 built from the product of

two extensive quantities A and B is extensive as well.

3.5.2 General picture

We have studied for the moment a particular situation. In this section we want to clarify that

the features found reflect indeed a general framework and that the Green-Kubo formula is not

subject to the energy density indeterminacy problem. It is therefore suitable for applications

in a quantum DFT framework.

In the previous section we have shown, by furnishing a direct example, that considering two

microscopically inequivalent energy densities ε1(r, t) and ε2(r, t):

• the associated heat fluxes J1(t) and J2(t) can be different;
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• the correlation functions 〈J1(t)J1(0)〉 and 〈J2(t)J2(0)〉 can differ as well;

What permitted to verify the equality of the thermal conductivities associated to the different

heat fluxes was the fact that they differed by a total derivative vector P, extensive, and limited

by a constant scaling linearly with the volume. This is not a coincidence but it is a general

property. We know that the two microscopically equivalent energy densities differ only by

surface terms. This implies that there must exists a vector p(r, t) such that:

ε12(r, t) ≡ ε2(r, t)− ε1(r, t) = −∇ · p(r, t), (3.110)

which can be considered as a relation defining the vector p(r, t). Indeed, by Gauss theorem,

only surface terms affect the integral of ε2(r, t)− ε1(r, t) inside a volume V, making the energy

per unit volume well defined: ∫
V

ε12(r, t) = −
∮

p(r, t) · dS. (3.111)

From the latter we conclude that the vector p(r, t) must fluctuate remaining limited during the

dynamics, in order to describe, after application of Gauss theorem, a real surface contribution.

Deriving with respect to time equation 3.110 we recognize that ṗ(r, t) is the current density

associated to the energy difference ε12(r, t):

ε̇12(r, t) = −∇ · ṗ(r, t) = −∇ · j12(r, t). (3.112)

Relation (3.110) is much similar to the local energy conservation equation, but is has a com-

pletely different physical meaning. The total energy difference ∆E12 passing across a surface

σ in the time interval from 0 to t is:

∆E12 = −
∮

σ

(∫ t

0
j12(r, t′)dt′

)
· dS (3.113)

= −
∮

σ
(p(r, t)− p(r, 0)) · dS. (3.114)

Therefore the flux of energy is limited by the maximum fluctuations of the vector p, forcing

j12(r, t) to change rapidly direction: energy goes back and forth and there is no net flux. The

Green-Kubo formula is aware of this fact. When we insert the energy density ε12 into equation

(3.78) we find:

J(t) = Ṗ(t) (3.115)

P(t) =
∫

V
p(r, t)dr (3.116)

and as a consequence these processes cannot lead to thermal conduction, following exactly

the same calculations of the previous paragraph. This is what we needed to confirm that the

Green-Kubo formula is not subject to the microscopic energy density indeterminacy problem.
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3.5. The microscopic energy density indeterminacy

3.5.3 A different viewpoint: Mori’s memory function formalism

We now propose a different proof of the independence of the thermal conductivity coefficient

given by Green-Kubo formula upon the microscopic choice of the energy density, using the

memory function formalism. This proof is less transparent then the one we have previously

presented because it deals only with reciprocal space quantities and relies upon a more so-

phisticated theory [40] but it leads to the same conclusions. Our analysis will be inspired by

the study of the magnetization autocorrelation function as described in [34], to which we refer

for details and notations of this section.

We consider in this section ε = ε12, the energy density difference between two macroscop-

ically equivalent energy densities. It is sufficient to prove that this energy density does not

lead to thermal conductivity phenomena (section 3.4).

According to the memory function formalism the equation of motion for the energy autocor-

relation function can be written:

Cεε(k, z) =
i

z + i σ(k,z)
〈ε(k)|ε(kk)〉

〈ε(k)|ε(k)〉, (3.117)

where the brackets, as it is common in Mori’s memory function formalism, stand for the sec-

ond scalar product introduced with formulas 3.10. The self energy sigma σ(k, z) is so defined:

σ(k, z) = 〈ε̇(k)|Q i
z−QLQ

Q|ε̇(k)〉 (3.118)

Q = 1− P is a projector in the Hilbert space of observables. It is built from the elementary

projectors P(k):

P(k) =
|ε(k)〉〈ε(k)|
〈ε(k)|ε(k)〉 (3.119)

in this way:

P =
V

(2π)3

∫
dkP(k) (3.120)

(these are the exact analogous of the projectors considered in the study of magnetization in

[34]). Till now no hypothesis has been done, apart from isotropy. Two ingredients must be still

considered. The first one is energy conservation, which has a consequence on the analytical

behavior of the self energy:

σ(k, z) = kik jdij(k, z)

dij(k, z) = 〈ji(k)|Q
i

z−QLQ
Q|jj(k)〉 (3.121)

41



3. Green-Kubo formalism

Using isotropy as well σ(k, z) = k2

3 Tr (d(k, z)). Now, since the current j is not a conserved

quantity, a discussion exactly analogous to the one for the autocorrelation function of the

magnetization [34] permits to conclude that d is regular as k→ 0 and as z→ 0.

The second ingredient is applying condition (3.110). We find in an isotropic system like the

one we are considering now:

〈ε(k)|ε(k)〉 = k2

3
〈p(k)|p(k)〉 (3.122)

with 〈p(k)|p(k)〉 regular in k = 0.

Substituting these two ingredients one obtains:

Cεε(k, z) ∼ ik2P
z + i D

P
(3.123)

where it was defined:

D = lim
z→0

1
3

Tr (d(k, z)) (3.124)

P = lim
k→0

1
3
〈p(k)|p(k)〉 (3.125)

Now applying equation (A.15):

χ′′εε(k, ω) =
k2ωD

ω2 + D2

P2

(3.126)

and taking the limit:

lim
ω→0

lim
k→0

ω

k2 χ′′εε(k, ω) = lim
ω→0

lim
k→0

ω

k2
k2ωD(

ω2 + D2

P2

) = 0 (3.127)

That is what we wanted to prove.
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Chapter 4
Heat transport in Density-Functional

theory

The Green-Kubo formalism developed in the previous chapter can be applied to the computa-

tion of lattice thermal conductivity under the Born-Oppenheimer approximation [44]. Accord-

ing to this approximation, ions are considered as classical particles subject to a complicated

many body potential E(R):

E(R) = min
φ
〈φ|HBO(R)|φ〉 (4.1)

HBO(R) = − h̄2

2m ∑
i

∂

∂2ri
+

e2

2 ∑
i 6=j

1
|ri − rj|

+
e2

2 ∑
I 6=J

1
|RI −RJ |

−∑
i,I

Zie2

|rI −Ri|
, (4.2)

where RI are ions positions, ri electronic coordinates and e is the electron charge. The min-

imum is computed over all normalized electronic wavefunctions . Electrons are therefore

forced to follow ion motion adiabatically, remaining always in their ground state, at zero tem-

perature. This approximation applies well in the case of insulators, in which we are interested,

where a finite gap separates the valence band from excited states.

Density functional theory (DFT), introduced by Hohenbergy and Kohn [45] and solved under

the Kohn-Sham scheme [46], provides an efficient way to compute the Born Oppenheimer

energy surface E(R), once an approximation for the exchange correlation functional, able to

describe the physics of the system, is provided. In the first section of this chapter we derive

in detail, from the explicit expression of the DFT total energy in terms of Kohn-Sham orbitals,

a DFT energy density and an ab-initio adiabatic energy current, well defined under periodic

boundary conditions (PBC). It is the exact analog, for energy transport phenomena, of the adi-

abatic particle current derived by D.J. Thouless [47]. In the second section the implementation

43



4. Heat transport in Density-Functional theory

methods needed for computer simulations are discussed.

4.1 Derivation

We outlined in section 3.3.2 of the previous chapter the procedure that needs to be followed

in order to derive an explicit expression for an adiabatic heat flux current. We start with the

standard DFT expression of the total energy in terms of the Kohn-Sham eigenfunctions and

density [48]:

EDFT =
1
2 ∑

I
MIV2

I +
1
2 ∑

I 6=J

e2ZI ZJ

|RI − RJ |

+ ∑
n

εn −
1
2

∫ n(r)n(r′)
|r− r′| drdr′ +

∫
(εXC[n](r)− µXC[n](r)) n(r)dr, (4.3)

,where: ∫
εXC[n](r)n(r)dr .

= EXC[n], (4.4)

µXC(r)
.
=

δEXC

δn(r)

= εXC(r) +
∫

δεXC(r′)
δn(r)

n(r′)dr′. (4.5)

The expression of the functional εXC[n](r) depends on the actual form of the exchange corre-

lation potential used. We derive formulas for the local density approximation (LDA) and the

generalized gradient approximation (GGA).

The total energy can be readily written as the integral of a DFT energy density [49]:

EDFT =
∫

eDFT(r)dr, (4.6)

eDFT(r) = eel(r) + en(r), (4.7)

where:

eel(r) = ∑
n

φ∗n(r)
(

ĤKSφn(r)
)
− 1

2
n(r)vH(r) + (εXC(r)− µXC(r)) n(r),

en(r) = ∑
I

δ(r− RI)

(
1
2

MIV2
I + wI

)
,

wI =
1
2 ∑

J,J 6=I

e2ZI ZJ

|RI − RJ |
. (4.8)

To perform the computation we replaced εn with 〈φn|HKS|φn〉, where HKS is the self consistent

Kohn-Sham Hamiltonian.
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4.1. Derivation

As discussed in chapter 2, the energy density eDFT(r) is not uniquely defined. Nevertheless

the final result, when used in combination with the Green-Kubo formula, does not depend on

the particular density chosen as long as it defines through its spatial integral a good thermo-

dynamic energy density.

In order to apply the Green-Kubo formula, as discussed in section 3.3.2, we need to obtain

explicit formulas for the zero wavelength component of the energy current. The remaining

calculations are entirely devoted to this task.

Before proceeding we make two important comments:

1. We observe that equations (4.8) do not contain information about the fact that the en-

ergy density is a conserved quantity or, in other words, that it satisfies a local continuity

equation. This is a dynamical information, as is concerned about time derivatives of the

degrees of freedom of the system. Eventually, these derivatives are ruled by Hamilton

equations and this is why we expect them to play a fundamental role;

2. We proceed by plugging formally the time derivative of the energy density into the

fundamental equation derived in section 3.3.2. which we report here for reference:

J(t) =
∫

Ω
ė(r, t)rdr (4.9)

,where Ω is the volume of the system. It coincides in our calculations with the volume

of the supercell and therefore we will refer to it with symbol Ω rather than with the

more common V. In order to simplify formulas, we will not write any longer the time

dependence of the densities and of the currents, as we did in equation 4.9. This explicit

equation for the zero wavevector component of the energy current is not well defined

in PBC, essentially for the same reason that polarization is not a well defined quantity

[50]. Therefore surface, cell dependent, terms need to be taken out during the calcula-

tion. Actually, surface contributions,even when not cell dependent, give no contribution

to the heat current thanks to the thermodynamic limit entering the Green-Kubo relation

and can be freely taken out during the computation.

Again local energy conservation plays a role in formula (4.9). It is only because of the

conservation equation that we will be able to obtain an heat current scaling like the vol-

ume Ω and not like Ω
4
3 as a naive analysis of equation (4.9) would suggest.

45
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ėn ėel

ė0 ė 'Hė ' XC

ėks

̇eKS ėH ėXC

J nJ0 J KS

J H J XC

̇e ' XC

̇e 'H

Figure 4.1: Evolution of the flow of the calculation

While feeding the evolution equations into the description we will as a first step explicit the

time derivative of the energy density and divide it into several contributions. As a second

step, we will combine these contributions and associate to them distinct energy currents. The

flow of the computation can be followed through figure 4.1, where the decomposition is made

explicit. The final heat flux will be built from the sum of five partial currents.

We begin performing the time derivative of the electronic energy density eel(r) and define

explicitly the first terms present in figure 4.1:

ėel(r) = ėKS(r) + ėH(r) + ėXC(r), (4.10)

where ėH and ėXC are the time derivatives of the last two terms in the first of equations (4.8):

ėH(r) = −
1
2
(
n(r)v̇H(r) + ṅ(r)vH(r)

)
(4.11)

ėXC(r) = (εXC(r)− µXC(r)) ṅ(r) + (ε̇XC(r)− µ̇XC(r)) n(r). (4.12)
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4.1. Derivation

ėKS the derivative of the first,

ėKS(r) =
d
dt ∑

n

(
φ∗n(r)ĤKSφn(r) + φ∗n(r)ĤKSφn(r)

)
= ∑

n

(
φ̇∗n(r)ĤKSφn(r) + φ∗n(r)ĤKSφ̇n(r)

)
+ ∑

n

(
φ∗n(r)

˙̂HKSφn(r)
)

= ˙̄eKS(r) + ė0(r) + ė′H(r) + ė′XC(r). (4.13)

The first term in the above equation is defined as:

˙̄eKS(r) = ∑
n

(
φ̇∗n(r)ĤKSφn(r) + φ∗n(r)ĤKSφ̇n(r)

)
, (4.14)

whereas the last three come from the time derivative of the KS Hamiltonian in eq. (4.13):

ė0(r) = ∑
n

φ∗n(r)
( ˙̂v0φn(r)

)
(4.15)

ė′H(r) = v̇H(r)n(r) (4.16)

ė′XC(r) = µ̇XC(r)n(r). (4.17)

4.1.1 Hartree current JH

Adding ė′H and ėH the first current, called hear Hartree current, is readily obtained:

ėH(r) = ėH(r) + ė′H(r) =

=
1
2
(
n(r)v̇H(r)− ṅ(r)vH(r)

)
= − 1

8πe2

(
52vH v̇H(r)−52v̇HvH(r)

)
= (4.18)

= − 1
8πe2∇ · (∇vH(r)v̇H(r)−∇v̇H(r)vH(r)) = (4.19)

= − 1
8πe2∇ · jh(r) (4.20)

Where an intermediate current jh(r) has been defined:

jh(r) = ∇vH(r)v̇H(r)−∇v̇H(r)vH(r) (4.21)

From here we can get the value of the Hartree current:

JH =
∫

Ω
ėH(r)radr = − 1

8πe2

∫
Ω

∂b jh,bradr = (4.22)

=
1

8πe2

∫
Ω

jhdr (4.23)
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4. Heat transport in Density-Functional theory

and therefore we end up with the final expression:

JH =
1

8πe2

∫
Ω
5vH(r)v̇H(r)−5v̇H(r)vH(r)dr = (4.24)

=
1

4πe2

∫
Ω
5vH(r)v̇H(r)dr (4.25)

4.1.2 Exchange-correlation current JXC

As for the XC terms, we define:

˙̄eXC(r) = ėXC(r) + ė′XC(r)

= (εXC(r)− µXC(r)) ṅ(r) + ε̇XC(r)n(r). (4.26)

By inserting the relations:

εXC(r)− µXC(r) = −
∫

δεXC(r′)
δn(r)

n(r′)dr′, (4.27)

(see eq. 4.5) and

ε̇XC(r) =
∫

δεXC(r)
δn(r′)

ṅ(r′)dr′ (4.28)

into eq. (4.26), we obtain:

˙̄eXC(r) = n(r)
∫

δεXC(r)
δn(r′)

ṅ(r′)dr′ − ṅ(r)
∫

δεXC(r′)
δn(r)

n(r′)dr′. (4.29)

In the LDA, one has δεLDA(r)
δn(r′) = ε′LDA

(
n(r)

)
δ(r− r′), where ε′LDA(n) =

dεLDA(n)
dn . In this case one

has

˙̄eLDA(r) ≡ 0. (4.30)

JLDA
XC = 0 (4.31)

We can perform a similar calculation also for the PBE exchange correlation functional. In order

to compute the first moment of ˙̄eXC(r) in the GGA case, let us start from eq. (4.29) and write

its first moment in a form that is manifestly boundary-insensitive:

J̄XC =
∫

˙̄eXC(r)rdr

=
∫

r
[

n(r)
δεXC(r)
δn(r′)

ṅ(r′)dr′ − ṅ(r)
∫

δεXC(r′)
δn(r)

n(r′)
]

drdr′ (4.32)

=
∫
(r− r′)n(r)ṅ(r′)

δεXC(r)
δn(r′)

drdr′. (4.33)
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4.1. Derivation

In the GGA one has:

εGGA[n](r) = εGGA
(
n(r),∇n(r)

)
δεGGA(r)

δn(r′)
= ε′GGA(r)δ(r− r′) + ∑

β

ε
β
GGA(r)∇βδ(r− r′), (4.34)

where

ε′GGA(r) =
∂εGGA(n,∇n)

∂n
(r)

ε
β
GGA(r) =

∂εGGA(n,∇n)
∂(∇βn)

(r)∫
f (r′)∇βδ(r− r′)dr′ = ∇β f (r).

By inserting eq. (4.34) into eq. (4.33), one sees that the term with the derivative with respect

to the local density vanishes, in agreement with eq. (4.30). The gradient term gives:

JPBE
XC,α = ∑

β

∫
(r− r′)αn(r)ṅ(r′)εβ

GGA(r)∇βδ(r− r′)drdr′

= ∑
β

∫
drn(r)εβ

GGA(r)
[
∇′β(r− r′)αṅ(r′)

]
r′=r

= ∑
β

∫
drn(r)εβ

GGA(r)(−δαβ)ṅ(r)

= −
∫

n(r)ṅ(r)εα
GGA(r)dr, (4.35)

4.1.3 Kohn-Sham current JKS

The macroscopic current associated with ˙̄eKS(r), eq. (4.14), is:

JKS =
∫

˙̄eKS(r)rdr

=
Nv

∑
v=1

(〈φv|rHKS|φ̇v〉+ 〈φ̇v|rHKS|φv〉) . (4.36)

This can be rewritten:

JKS =
∂

∂t′ ∑v
〈φv(t′)|rHKS(t)|φv(t′)〉|t′=t, (4.37)

thus making it apparent its gauge invariance properties, thanks to the appearance of a trace

over the base manifold. The only gauge invariant part of |φ̇v〉 is its component onto the con-

duction manifold (the only present in the gauge of parallel transport [51]) and therefore we

can replace all wavefunctions with their projections onto the conduction band. To make this

point more explicit we check it in the gauge where all orbitals at time t are real and using the
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4. Heat transport in Density-Functional theory

connection given by first order perturbation theory [52]. Decomposing the operator into its

Hermitian and anti-Hermitian part:

JKS =
1
2

(
∂

∂t′ ∑v
〈φv(t′)|{r, H(t)}|φv(t′)〉|t′=t+ (4.38)

∂

∂t′ ∑v
〈φv(t′)|[r, H(t)]|φv(t′)〉|t′=t

)
(4.39)

The expectation value of the anti-hermitian part is zero, because the wavefunctions are chosen

real. Therefore:

JKS =
1
2

(
∂

∂t′ ∑v
〈φv(t′)|{r, H(t)}|φv(t′)〉|t′=t

)
= (4.40)

R∑
v
〈φv(t)|{r, H(t)}|φ̇v(t)〉 (4.41)

Using the connection given by first order perturbation theory:

|φ̇v〉 = ∑
k 6=v
|φk〉
〈φk|Ḣ|φv〉

εk − εv
, (4.42)

we get:

JKS = R∑
v
〈φv(t)|{r, H(t)}|φ̇v(t)〉 = (4.43)

= R∑
v

∑
k 6=v

〈φv|{r, H}|φk〉〈φk|Ḣ|φv〉
εk − εv

= (4.44)

= R∑
v

∑
k∈C

〈φv|{r, H}|φk〉〈φk|Ḣ|φv〉
εk − εv

. (4.45)

where the last step follows because the sum is antisymmetric under k, v exchange and there-

fore only the conduction band contribution survives. Indicating with Pv as the projector onto

the valence band and Pc = 1− Pv the projector onto the conduction band, we can for conve-

nience define the following vectors:

φ̄c
v = Pcr|φv〉 (4.46)

φ̇c
v = Pc|φ̇v〉, (4.47)

which are both well defined in PBC and whose computation may be performed using density

functional perturbation theory techniques [7]. With these notations:

JKS = R∑
v
〈φv(t)|{r, H(t)}|φ̇c

v(t)〉 = (4.48)

= R∑
v
〈φv(t)|rH(t)|φ̇c

v(t)〉+R∑
v

εv〈φv(t)|r|φ̇c
v(t)〉. (4.49)
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4.1. Derivation

Since H does not mix conduction and valence band:

JKS = R∑
v
〈φ̄c

v(t)|H(t)|φ̇c
v〉+R∑

v
εv〈φ̄c

v(t)|φ̇c
v(t)〉 = (4.50)

= R∑
v
〈φ̄c

v|H + εv|φ̇c
v〉, (4.51)

which is the final expression of the Kohn-Sham current.

The current (4.51) is not manifestly invariant with respect to the arbitrary choice of the zero of

the one-electron energy levels: if this zero is shifted by a quantity ∆, the current gets modified

by 2∆ ∑v〈φ̄c
v|φ̇c

v〉 a term proportional to the zero component of the adiabatic electronic current,

defined by the conservation equation ∂a Jel
a (r) = ∑v φ∗v(r)φv(r) and introduced in reference

[47]. It can be derived by the same techniques used in this chapter:

Jel =
∫

Ω
ṅ(r)rdr = ∑

v
< φ̇v|r|φv > + < φv|r|φ̇v >, (4.52)

and from here an analysis analogous to the one already performed leads to the desired result.

The electronic current is the difference between the total charge current and its ionic compo-

nent: the first is by definition non-diffusive in insulators, while the second vanishes in the

center of mass of mono-atomic systems (to which we restrict our analysis for the time being),

because of momentum conservation. We conclude that the electronic current is non-diffusive,

thus not contributing to the heat conductivity of insulators, and that the current is indepen-

dent of the reference chosen for the energy levels.

4.1.4 Zero current J0 and ionic current Jn

The macroscopic current associated with ė′0(r) is:∫
Ω

rė0(r)dr = ∑
n
〈φn|r ˙̂v0|φn〉

= ∑
n

∑
I

〈
φn

∣∣∣∣r(VI ·
∂v̂0

∂RI

)∣∣∣∣ φn

〉
(4.53)

= J0 + J′0 (4.54)

J0 = ∑
I

∑
n

〈
φn

∣∣∣∣(r− RI)

(
VI ·

∂v̂0

∂RI

)∣∣∣∣ φn

〉
(4.55)

J′0 = ∑
I

∑
n

RI

(
VI ·

〈
φn

∣∣∣∣ ∂v̂0

∂RI

∣∣∣∣ φn

〉)
= −∑

I
RI

(
VI · Fel

I

)
, (4.56)
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where Fel
I , according to the Hellmann-Feynman theorem [48][7], is the electronic contribution

to the force acting on the I-th atom. According to eq. (4.55) J0 is well defined in PBC, whereas

J′0 is not. The latter, however, will cancel a similar term appearing in the ionic contribution to

the current.

The ionic contribution to the current can be calculated along similar lines as in the classical

case [53]. Performing the computation:∫
rėn(r)dr = (4.57)

∑
I

VI

(
1
2

MIV2
I + wI

)
+ ∑

I
RI

(
V̇I ·

∂

∂VI

1
2

MIV2
I + ∑

L
VL ·

∂wI

∂RL

)
. (4.58)

Using the equations of motion, MIV̇I = FI , eq. (4.58) we can write:∫
rėn(r)dr = J′n + J′′n + J′′′n (4.59)

where:

J′n = ∑
I

VI

(
1
2

MIV2
I + wI

)
(4.60)

J′′n = ∑
I

RI(FI ·VI), (4.61)

J′′′n = ∑
I

∑
L 6=I

RI

(
VL ·

∂wI

∂RL

)
. (4.62)

Using eq. (4.56), one can combine the second and third contribution with the term previously

obtained J′0:

J′0 + J′′n + J′′′n = ∑
I

RI

[
(FI − Fel

I ) ·VI + ∑
L 6=I

(
VL ·

∂wI

∂RL

)]

= ∑
I

[
RI(Fn

I ·VI) + ∑
L 6=I

RI

(
VL ·

∂wI

∂RL

)]

= ∑
I

∑
L 6=I

RI

(
VL ·

∂wI

∂RL
−VI ·

∂wL

∂RI

)
. (4.63)

where Fn
I = −∑L

∂wL
∂RI

is the nuclear (ionic) contribution to the force acting on the I-th atom. By

interchanging the I and L dummy indexes in the above equation, we have therefore obtained:

J′0 + J′′n + J′′′n = ∑
I

∑
L 6=I

(RI − RL)

(
VL ·

∂wI

∂RL

)
. (4.64)

Summing all the contributions we define:

Jn = J′n + J′0 + J′′n + J′′′n , (4.65)
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4.1. Derivation

which is our last current:

Jn = ∑
I

[
VI

(
1
2

MIV2
I + wI

)
+ ∑

I
∑
L 6=I

(RI − RL)

(
VL ·

∂wI

∂RL

)]
. (4.66)

4.1.5 Summary

We write down here all formulas obtained:

JH =
1

4πe2

∫
Ω
5νH(r)ν̇H(r)dr

J0 = ∑
I

∑
n

〈
φn

∣∣∣∣(r− RI)

(
VI ·

∂v̂0

∂RI

)∣∣∣∣ φn

〉
JKS = R∑

v
〈φ̄c

v|HKS + εv|φ̇c
v〉

JLDA
XC = 0 JPBE

XC = −
∫

n(r)ṅ(r)εα
GGA(r)dr

Jn = ∑
I

[
VI

(
1
2

MIV2
I + wI

)
+ ∑

I
∑
L 6=I

(RI − RL)

(
VL ·

∂wI

∂RL

)]
(4.67)
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4. Heat transport in Density-Functional theory

4.2 Numerical implementation

We now describe the methodologies developed in order to compute at each time step of the

dynamics the heat flux J(t) in plane wave ab-initio computer simulations codes. The use of

a supercell is required in order to simulate the bulk behavior of liquid systems. This means

that only wavefunctions at the Γ point are needed, thus permitting to exploit the reality of the

wavefunctions through standard Gamma point tricks often used in plane wave codes [54].

Nevertheless, formulas are here written for simplicity without these tricks. It is supposed that

positions and velocities at time t are available from a previous performed molecular dynamics

calculation, obtained for example through the Car-Parrinello scheme.

4.2.1 Hartree current JH and Exchange correlation current JXC

First of all explain how time derivatives, which are present both in JH and in JXC, have been

implemented (the same technique has been applied also to the derivative of the projector in

the Kohn-Sham current). Time derivatives are applied always to quantities f depending only

on the ions positions (for example, the time derivative of the Hartree potential) and not on ion

velocities. A finite difference scheme has been used:

ḟ (t) =
f (R(t + dt))− f (R(t))

dt
, (4.68)

where R(t) are the ion positions at time t. The quantity f has therefore to be computed twice

for each current computation at slightly different times. The time step dt required has been

found to be much smaller than the frequency necessary to sample the dynamics of the heat

flux. In order to avoid saving positions at a frequency much higher than required, positions

at time t + dt have been computed from ion velocities and positions at time t, which are

supposed to be available:

R(t + dt) = R(t) + V(t)dt. (4.69)

This scheme is exact at first order in dt.

The Hartree current is then most easily computed in reciprocal space, with the formula:

JH =
Ω

4πe2 ∑
G

ν̇H(G)νH(−G)(−iG). (4.70)

In a DFT calculation, where reciprocal G-vectors are distributed across different processors,

this formula is easily implemented in a parallel scheme.
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4.2. Numerical implementation

The exchange correlation current has to be computed in real space:

Jα
XC ∼ −∑

i
n(ri)ṅ(ri)ε

α
GGA(ri), (4.71)

where the explicit expression for εα
GGA is readily deduced from the original article [55] and is

a scalar function of the local density and local gradient density. Also this sum is easily paral-

lelizable, since different points of the real space grid are not coupled.

4.2.2 Kohn-Sham current JKS

The two main ingredients necessary to compute the Kohn-Sham current are the wavevectors

φ̄c
v and φ̇c

v, as defined in section 4.1.3. Using DFPT techniques, the first of the two is recognized

to be the solution of the linear system:

(H − εv + αPv)|φ̄c
v〉 = Pc[H, r]|φv〉, (4.72)

where α is a constant different from zero, chosen to make the system non singular. The com-

mutator is well defined in periodic boundary conditions and therefore a conjugate gradient

procedure [56] can be performed to solve the linear system in an efficient way.

To compute φ̇c
v we exploit the identity [51]:

Pc|φ̇v〉 = Ṗv|φv〉 = PcṖv|φv〉 ∼ (4.73)

∼ 1
∆t

[(1− Pv(t))(Pv(t)− Pv(t− dt))] |φv(t)〉, (4.74)

which permits to avoid problematic alignment of the wavefunctions at different time steps,

thanks to the fact that the derivative has been moved from the wavefunction to the projector.

This is useful because the projector on the valence band is a gauge invariant quantity. When

calculating finite differences in equation 4.74 we can therefore choose uncorrelated bases sets

for the valence band at different times. The direct computation of φ̇v using finite differences

with an expression of the type φ̇v = (φ(t + dt)− φ(t))/dt is problematic because it is difficult

numerically to assure that φ(t) and φ(t− dt) are correctly aligned, especially in the presence

of degeneracy and crossing levels.

The projector Pc has been added in the second step of equation (4.74) in order to guarantee

numerically that the resulting wavefunction is orthogonal to the valence band, even when

discretizing the time derivative.
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4. Heat transport in Density-Functional theory

4.2.3 Ionic current Jn

The ionic current Jn and the zero current J0 are separately subject to Coulumbian divergences.

In order to deal with the divergence we replace the Coulomb potential 1
x with a screened one

f (x) = e−µx 1
x , a Yukawa potential. For finite µ both currents are finite, but Jn and J0 are di-

vergent as µ → 0. Nevertheless, the divergent terms originating from the two currents sum

to zero, leading to well defined limit . We notice that the introduction of a finite screen is

just a formal device aimed at dealing with the divergent Coulombian behavior of the singular

terms, but it does not enter into the final formulas actually implemented.

We used Ewald summation technique. This is convenient both because fast converging sum-

mations appear and the divergent terms are isolated in the zero component of the reciprocal

space summation.

We consider here for the the sake of simplicity the case of a cubic cell. L indicates a lattice

vector in real space. With the definitions:

S1(d)α,β = ∑
L

(d− L)α(d− L)β

|d− L| f ′(|d− L|)

S1,B =
1
3 ∑

L 6=0
L f ′(L)

S2(d) = ∑
L

f (|d− L|)

S2,B = ∑
L 6=0

f (L),

the ionic current is written as a sum of three terms:

Jn = J1,n + J2,n + J3,n (4.75)

J1,n = ∑
i

vi

(
1
2

mv2
i

)
(4.76)

J2,n = ∑
i

vi

(
1
2 ∑

j 6=i
ZiZj e2 S2(|Ri − Rj|) +

1
2

e2 Z2
i S2,B

)
(4.77)

J3,n = ∑
i

∑
j 6=i

vj,b
ZiZje2

2
S1(|Ri − Rj|)−∑

i
vi

Z2
i e2

2
S1,B. (4.78)
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4.2. Numerical implementation

The Ewald techniques applies with no further modifications in the case of S1,B, S2(d) and S2,B,

as it is discussed in [44][57]:

S2(d) = ∑
L

f (|d− L|)er f c(
√

η|d− L|)+ (4.79)

+
4π

Ω ∑
G 6=0

exp(−G2

4η )

G2 eiGd +
4π

Ω

(
1
µ2 −

1
4η

)
, (4.80)

S2,B = ∑
L 6=0

f (L)er f c(
√

ηL)+ (4.81)

+
4π

Ω ∑
G 6=0

exp(−G2

4η )

G2 +
4π

Ω

(
1
µ2 −

1
4η

)
− 2
√

η

π
, (4.82)

S1,B =
1
3 ∑

L 6=0
L f ′(L)er f c(

√
ηL)− (4.83)

− 4π

3Ω ∑
G 6=0

exp(−G2

4η )

G2 eiGd − 4π

Ω

(
3
µ2 −

1
4η

)
+

2
3

√
η

π
, (4.84)

where er f c(x) = 1− er f (x) and er f (x) is the standard error function. η is the Ewald conver-

gence factor.

In order to apply the Ewald technique to S1(d), it is convenient to replace first d with a con-

tinuous x and then exploit the formula:

∂b f (|x− L|) = (x− L)b

|x− L| f ′(|x− L|). (4.85)

Without this trick summations in reciprocal space would be convergent, but not exponentially.

With this trick fast summations formulas are obtained. We obtain:

S1(x)a,b = ∂b ∑
L
(x− L)a f (|x− L|)−∑

L
f (|x− L|)δa,b ≡ S(x)a,b − S2(x)δa,b. (4.86)

Now the Ewald technique is applied to S(x)a,b. With the definition:

h(x) =
er f c(x)

x
(4.87)

and S = SR + SK, one has:

SR = ∑
L

[
√

ηh(
√

η|x− L|)δa,b + ηh′(
√

η|x− L|) (x− L)a(x− L)b

|x− L|

]
(4.88)

SK = ∑
G 6=0

4π

Ω
GaGb

G2

exp(−G2

4η )

G2

[
2 +

G2

2η

]
eiGx. (4.89)
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4. Heat transport in Density-Functional theory

We note that SK has no Coulombian divergent terms. Summing all the Coulombian divergent

contributions from the G = 0 terms till now obtained we get:

Jdiv
n =

Ztot

Ω
4π

µ2 ∑
i

viZi. (4.90)

We will find an equal, opposite Coulombian divergence, in current J0.

4.2.4 Zero-current J0

We consider here norm conserving potentiality, whose derivative with respect to the ionic

positions is given by a local and a non-local contribution.

∂ν̂0

∂RI
=

∂ν̂I
NL

∂RI
+

∂

∂RI
f i(|r− RI |), (4.91)

where in this paragraph f i refers to the local part of the pseudo-potential of atom i. We study

first the local part , the only one divergent when the Coulomb screen goes to zero.

4.2.4.1 Local part

We call this local long range contribution JLR
0 . With the definitions:

n(r) ≡∑
n
|φn(r)|2

hi
a,b(x) ≡∑

L

(x− L)a(x− L)b

|x− L| f i′(|x− L|) (4.92)

u(r) = −∑
i

vi,bhi
a,b(r− Ri), (4.93)

the current is rewritten:

JLR
0 =

∫
Ω

n(r)u(r) = Ω ∑
G

n(G)u(G). (4.94)

The reciprocal components of hi
a,b(x), from which the reciprocal components of u are easily

obtained, are computed through a similar procedure followed for obtaining the component of

S1(d) in the ionic current. One writes:

hi
a,b(x) = ∂b

[
∑
L
(x− L)a f i(|x− L|)

]
− δa,b ∑

L
f i(|x− L|) = (4.95)

= ∑
G

(
h1i

a,b(G) + h2i
a,b(G)

)
eiG·x. (4.96)
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4.2. Numerical implementation

Numerical integrations of the radial part of the pseudo-potential are performed adding and

subtracting the asymptotic behavior of the local pseudo-potential, as it is common in plane

wave computations. The resulting formulas implemented:
h1i

a,b(G) = 0 for G = 0

h1i
a,b(G) =

4π

Ω
GaGb

G2 G
∫ ∞

0
x2[x f i(x) + 2Zv]J1(Gx)dx−

− 4π

Ω
(2Zv)

GaGb

G2
2

G2 for G 6= 0

(4.97)

and 

h2i
a,b(G) = −δa,b

4π

Ω

∫ ∞

0
[x2 f i(x) + 2Zvx]dx+

+ 2δa,bZv
4π

Ω
1
µ2 for G = 0

h2i
a,b(G) = −δa,b

4π

Ω

∫ ∞

0
[x2 f i(x) + 2Zvx]J0(Gx)dx+

+ δa,b
2Zv

G2
4π

Ω
for G 6= 0

(4.98)

We not here that only from h2 we get a Coulombian divergence when µ → 0. By explicit

computation this is exactly equal, apart from a sign, to the one obtained in the computation of

the ionic current Jn.

4.2.4.2 Non-local part

The non-local part is inherently short range and we call it JSR
0 :

JSR
0 = ∑

I,n
〈φn|(r− RI)

(
VI ·

∂ν̂NL

∂RI

)
|φn〉, (4.99)

where index I runs over all atoms, even belonging to periodic images of the supercell, whereas

index n runs over the occupied electronic manifold. We consider only non conserving non

local potentials:

ν̂NL = ∑
I,k

Dk,I |βI
k〉〈βI

k|v, (4.100)

where index k = (l, m) is a composite index considering the angular momentum of the pro-

jector. β-functions are localized but not periodic. Explicitly the potential acts in this way on a

periodic wave-function φn:

(ν̂NLφn)(x) = ∑
I,k

Dk,I βI
k(x− RI)

∫
R3

βI
k(y− RI)φn(y)dy (4.101)
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4. Heat transport in Density-Functional theory

(thanks to localization, for every x, only a finite number of atoms enter in the summation,

which is therefore well defined).

We define from a localized function γ(x) its periodic and translated counterpart as:

γ(x− a)(G) = e−iGa 1
Ω

∫
Ω

∑
L

γ(x− L)e−iGxdx = (4.102)

= e−iGa 1
Ω

∫
R3

γ(x)e−iGxdx = (4.103)

= e−iGaγ̃(x)(G), (4.104)

where γ(x) is a standard Fourier transform. These functions are easily computed in a plane

wave code.

From two such periodic functions we define:

A[γ; δ](a) = ∑
n
〈φn(x)|γ(x− a)〉〈φn(x)|δ(x− a)〉 (4.105)

After computation one ends up with the final expression:

JSR
0 = ∑

i,k
Vi,bDi,k

(
A[−xa∂bβi

k; βi
k](Ri) + A[xaβi

k;−∂bβi
k](Ri)

)
(4.106)

where index i runs over all atoms of the unit cell (periodic images are no more present). One

needs to take care of the angular dependence of the projectors when doing Fourier transforms

of needed beta functions.
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Chapter 5
Implementation and benchmarks

We implemented the methodology outlined in chapter 3 in the quantum ESPRESSO suite of

computer codes [54] and used norm-conserving pseudo potentials from the quantum espresso

public repository. As a first preliminary test we computed with high precision the heat flux

for systems at equilibrium, translating at constant speed, using different pseudo potentials

and exchange correlation functionals. Then, for a real benchmark, we computed thermal con-

ductivity of ab initio DFT Argon, following the computational procedure described in section

5.2. It was possible for this system to devise a classical pair potential reproducing faithfully

the quantum Born-Oppenheimer dynamics. We therefore compared our results with the ones

computed within a classical framework, finding good correspondence.

5.1 Preliminary tests: isolated systems

The result expected for the heat flux in the case of an isolated system (even interacting), trans-

lating at constant speed, is known a priori and has been derived in appendix D. Calling E the

total energy of the system (including the kinetic energy component) and v the translational

velocity, the instantaneous heat flux will not depend on time and its value must be equal to

J = Ev. As a consequence current and velocity point in the same direction. We will first show,

for testing purposes, that our program satisfies this condition, when an isolated system is

simulated with the use of a big enough supercell. We will consider first the case of an Helium

atom and then of an Hydrogen chloride molecule.
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5. Implementation and benchmarks

5.1.1 Helium atom

Pseudo-potential datasets used for Helium computation are reported in the "He.pbe-hgh.UPF"

pseudo-potential file [54]. We tested a PBE functional [55], used both for exchange and corre-

lation contributions. The pseudo potential is of a local type, norm conserving.

The simulation cell was taken cubic, with an edge of 20 Bohr. Ion velocity was chosen equal

to 0.01 Bohr
τBO

, where τBO is the unit of time usually used in Born-Oppenheimer dynamics, with

a value of 4.8379 10−2 fs. The threshold for self consistency was taken very small, equal to

10−15 Ryd in order to obtain, for this test case, very good convergence. A time step of 0.5τBO

was used for performing numerical derivatives.

Table 5.1: Currents computed at convergence for the case of an Helium atom translating at

constant speed, in units of Ryd Bohr
τBO

, as defined in equations (4.67). The trivial kinetic com-

ponent ( 1
2 Mv2)v in current Jn has not been considered. In the same units the value of total

energy multiplied by atomic velocity has been reported.

JH: -2.322e-2

Jn: -7.566e-3

J0: -4.008e-2

JKS: 1.392e-2

JXC: 8.651e-4

Jtot: -5.781e-2

|Ev| : -5.780e-2

As expected, neglibile value of the current were observed along directions orthogonal to

the atomic velocity. In figure 5.1 we report on the same graph the heat flux along the direction

of the velocity (taking out the trivial kinetic component appearing ( 1
2 Mv2)v in the ionic cur-

rent Jn (4.66)) as a function of the kinetic energy cutoff , and the modulus of v times internal

energy E. The energy has been obtained of course by the same self consistent calculation by

which Kohn-Sham orbitals were derived. Total energy, being a variational propriety, will tend

monotonically to its asymptotic value, but we do not expect this propriety to hold for the heat

flux.

In the inset of figure 5.1 the ratio of the same quantities is also plotted. We expect this value

to reach unity when both total energy and current are converged and this is indeed observed.

Actually even at very small cutoffs the quantities differ only by less than 10%.
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Figure 5.1: Total energy multiplied by atomic velocity and the heat flux along the direction of

the velocity, as a function of the kinetic energy cutoff. The quantities refer to the case of an

Helium atom translating at constant speed. In the inset the ratio of the two quantities, which

must be equal under convergence, is reported.

In table 5.1 we report the values of the different components of the heat flux in this system,

when converged with respect to the kinetic energy cutoff. It is observed that every current is

bigger than the difference between total energy times velocity and the total current, which is

given by the sum of the different components. This confirms that each current has been cor-

rectly computed, even if we do not expect such a precision to be needed in a real calculation.

5.1.2 Hydrogen chloride molecule

In this paragraph the different case of an Hydrogen chloride molecule rigidly translating is

considered. This system differs from the previous one qualitatively because of two main rea-

sons. First of all it is no more isotropic and we take the axes of the molecule to lie on the x

direction. Secondly, the total force acting on each of the two atoms can be non-zero, depending

on the inter-atomic distance chosen. We point out that in the derivation the time derivative

of velocities in formula (4.61) was substituted by a force term. Therefore, if the total force act-

ing on one of the molecules is different from zero, the heat flux, computed through equations

(4.67), is not associated anymore to a rigidly translating system. As a practical consequence,

before performing any current computation the positions of Hydrogen and Chlorine were re-

laxed to their equilibrium positions.
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5. Implementation and benchmarks

We used pseudo potentials from file "Cl.pz-bhs.UPF" for Chlorine and from "H.pz-vbc.UPF"

for hydrogen. These possess LDA type exchange correlation functionals and are both norm-

conserving. The pseudo potential for Chlorine is non local with two different beta functions,

whereas Hydrogen pseudo-potential is local. A molecular velocity of 0.01 Bohr
τBO

was again cho-

sen and a time step for time derivatives 0.5τBO used. The simulation cell was again cubic with

a length of 20Bohr and a self consistency cutoff of 10−15 Ryd used.

An equilibrium distance of 2.434 Bohr was first computed. The molecule has then been given

a translational velocity along each of the three cartesian directions and a heat flux equal to

total energy times velocity has always been computed. As before, apart from numerical er-

rors, the heat flux and the velocity point always in the same direction. Furthermore, y and z

directions are equivalent by symmetry and this is indeed observed. In table 5.2 we report the

values of the of the partial currents along the velocity, for the two inequivalent directions, as

well as the total current and the total energy computed.

Table 5.2: As in table 5.1 we report the values of the currents computed in the case of an

Hydrogen chloride molecule moving at constant speed. The axes of the molecule lies along

the x direction. The molecule has been given a translational velocity along each of the three

cartesian directions and all cases are reported.

velocity along x velocity along y/z

JH -1.434e-1 -1.550e-1

Jn -5.409e-3 -6.344e-2

J0 -9.115e-3 5.425e-3

JKS -1.540e-1 -9.892e-2

Jtot: -3.120e-1 -3.120e-1

|Ev| : -3.120e-1 -3.120e-1

An other complication arises from the degeneracy of the highest occupied molecular hor-

bital (HOMO). We are therefore able to check that the numerical procedures exploited (section

4.2) are indeed automatically able to deal with such situations. Interestingly, the value of the

currents depends strongly on the direction chosen, but they sum always to the same value, as

expected. As before, in figure 5.2 we plot on the same graph the total current and total energy

times velocity, as a function of the kinetic energy cutoff. It can be seen that in this molecular
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Figure 5.2: As in figure 5.1 for the case of a translating HCl molecule . Both the case when

translational velocity is along the axes of the molecule, lying in the x direction, and when it is

orthogonal to the axes, are reported.

system we obtain a faster convergence to the asymptotic value than in the previous Helium

atom test case.

5.2 First benchmark and implementation scheme: Argon DFT

Before applying the devised technique in a predictive way and in interesting systems, we

need to test it. We chose Argon as a first, non trivial test, because it is a simple system, well

described by a simple pair Lennard Jones potential, and often used in classical molecular

dynamics simulations for testing purposes. Unluckily, Argon is well known not to be well

described by local DFT functionals, to which our formulation is for the moment restricted and

dispersion forces in the exchange-correlation energy functionals must be included [58]. There-

fore we do not expect to be able to compare the results with experimental ones. To circumvent

this problem we fitted the DFT Born-Oppenheimer, many body potential, to an effective clas-

sical pair potential. We then used this classical potential to generate a trajectory, as closest as

possible to the DFT one, and computed the heat flux in this new system. For this purpose

the classical formula for the heat flux, applicable to a generic pair body potentials, equation

(3.104), has been used.

The computational procedure followed for obtaining the DFT heat flux time series is qualita-

tively divided into four main steps:
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1. First a quantum trajectory is generated. We used for this purpose the Car Parrinello

technique (CPMD) [59]. After this step, positions and velocities of the atoms are saved

on disk with a chosen frequency, much bigger than the time step used for the dynamics;

2. As a first post-processing step, for every configuration two self consistent calculations

are performed in order to save on disk the exact Kohn-Sham orbitals required for com-

puting the current. As discussed in section 4.2.1, two self consistent calculations are

performed, with the positions of the atoms slightly displaced according to their velocity,

because of the finite difference scheme used for performing time derivatives;

3. As a third step, saved orbitals are fed into the program devoted to the current compu-

tation, applying equations (4.67) and the computational techniques described in section

4.2. After this step the heat flux current time series is at disposal;

4. Finally, exploiting ergodicity a Green-Kubo estimate for the autocorrelation function

〈J(t) · J(0)〉 is readily obtained [60]:

〈J(k∆t) · J(0)〉eq ∼
1

N − k

N−k

∑
n′=1

J(n′) · J(n′ + k). (5.1)

Using a trapezoidal rule the autocorrelation function has been integrated and inserted

into formula (2.14), therefore obtaining thermal conductivity values as in section 2.3.

Error bars were estimated using the block averaging technique, as described in [61];

To equilibrate the system we used a Nosè Hoover thermostat [62], as implemented in the cp.x

program of the quantum espresso suite, for 8 picoseconds, selecting at least qualitatively the

temperature of the system. We then switched off the thermostat and the actual production

runs were computed in the micro-canonical ensemble. Four long trajectories of 100 picosec-

onds each were computed. Car Parrinello simulations data are reported in table 5.3. The

number of atoms chosen, 108, is known to be able to describe well the thermodynamic limit

in the Green-Kubo formula [16],[24].

In figure 5.3. we can see the fictitious electronic kinetic energy compared to the total kinetic

energy of the ions, confirming that the simulations parameters we chose permitted to main-

tain the adiabatic separation between electrons and ions. Indeed, what must be observed for

determining the quality of a CPMD dynamics is the absence of a drift in the fictitious elec-

tronic kinetic energy comparable with the natural fluctuations of ionic kinetic energy.

Classical trajectories were implemented in the open-source code Lammps [63], where a

new pair style was implemented, thus permitting to exploit all the levels of parallelization
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Table 5.3

Details for CPMD Argon computation

Simulation length: 100 ps, 8 ps of equilibration

Cell dimension (cubic): 33 Bohr

Number of atoms: 108

Density: 1.34 g
cm3

Pseudo-potential file: Ar.pz-rrkj.UPF

Exchange correlation functional: LDA, Slater

Pseudo potential type: non local, 2 beta functions

with l = 0 and l = 1, norm conserving

Electronic mass: 1000 a.u.

Energy cutoffs: 24/96 Ryd

Time step: 10.0 a.u.

Preconditioning: not present

Thermostat: Nosè Hoover, not present in production

and molecular dynamics technicalities (neighbor lists, energy shifts...) implemented in this

code.

In the next section we describe the fitting procedure followed in order to obtain a classical

pair potential able to describe the DFT dynamics. Then we describe the details for the heat

flux computation and compare classical and quantum results.

5.2.1 Generation of a classical model

We first derived a classical pair potential computing the force acting between two isolated

Argon atoms in a DFT self consistent calculation. This method relies on the hypothesis that

forces between argon atoms are not affected by the presence of other particles and therefore

can be computed first by a simulation where only two Argon atoms are present and then used

in a many particle simulation. We than took as initial condition an equilibrated configuration
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Figure 5.3: Total kinetic energy of ions and electrons for each of the liquid argon simulations

after equilibration, in Hartree units. The fictitious electronic kinetic energy presents no drift

comparable with the natural fluctuations of the total ionic kinetic energy.

at 184 K obtained by a previous CPMD run. In figure 5.4 we report the temperature depen-

dence obtained. Temperature was observed to vary even more than the standard finite size

fluctuations , meaning that the pair potential used did not furnish a good description of the

dynamics.

Despite this failure, one can still look for better two body potentials, able to take into account

many body effects in an effective way. We decided to fit a functional form for the potential

u(α, x), depending on several parameters α and optimized them with the following scheme.

This way we obtained a classical potential able to reproduce the DFT dynamics. We will refer

to it as the fitted potential.

In particular we fixed N = 2 and fixed as a functional form:

u(x) = e−αx
N−1

∑
n=0

cnxn. (5.2)

We chose the optimized parameters α, c0, c1, c2 as the ones giving the best fit of the Car-

Parrinello forces computed during the dynamics. Therefore we saved the forces f CP
a,t,i acting

along direction i on atom a at time t during a CPMD run. Fα
a,t,i are instead the forces com-

puted using the new pair potential (but along the same CPMD trajectory) and the optimal

parameters are chosen to minimize:

χ2(α, cn) =
1
T ∑

a,t,i
| f CP

a,t,i − Fα
a,t,i|2, (5.3)
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Figure 5.4: Running averaged temperature obtained for three different runs: (red) Car Par-

rinello run; (green) classical molecular dynamics (CMD) starting with an equilibrated initial

condition from the CMPD run and using the fitted potential from section 5.2.1; (blue) CMD

starting from the same equilibrated initial condition from the CMPD run but using the poten-

tial obtained from the interaction energy between isolated atoms;

where T is the total simulation length over which the parameters are optimized (just a nor-

malization factor).

Minimization of cn at fixed α can be performed in an analytic way, since the dependence on

these parameters is quadratic. One can write for convenience:

Fα
a,t,i =

N−1

∑
n=0

cnGn,α
a,t,i (5.4)

Gn,α
a,t,i = − ∑

a′ 6=a
e−αraa′ rn−2

aa′ (n− αraa′)(ra,i − ra′,i), (5.5)

where as usual ra,i are the i components of the atomic positions and raa′ = |ra − ra′ |. With

these definitions:

∂χ2

∂ck
= 0⇒∑

n
Aα

k,ncn = Bα
k , (5.6)

Aα
n,k = ∑

a,t,i
Gn,α

a,t,iG
k,α
a,t,i, (5.7)

Bα
k = ∑

a,t,i
Gk,α

a,t,i f CP
a,t,i. (5.8)

The solution to the linear system gives the best coefficients ck(α) for fixed α. Minimiza-

tion over α was then finally performed numerically plotting the resulting function f (α) =
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Figure 5.5: Potential derived from interaction energy between isolated atoms computed at 24

and at 60 Rydberg, compared with the one resulting from the fitting procedure. We can see

that, because of the interaction with other atoms, the effective pair potential gets modified in

a substantial way. The temperature dependence of the fitted potential (not reported) is much

less than the difference with respect to the potential derived from the interaction energy.

χ2(α, ck(α)) and studying its minima. The optimal values of α and of cn were found to be

stable with respect to the choice of different trajectories in the temperature range of interest.

This means that dynamics of DFT Argon is effectively well described by a pair potential. One

can see the difference between this fitted potential and the one derived from the interaction

energy between two isolated atoms in figure 5.5.

In figure 5.6 we plot the computed radial distribution functions using the fitted potential and

the ones obtained by the CPMD runs at the extreme temperatures of 184K and 400K. The

agreement is excellent across the whole temperature range. To compare a dynamical quantity,

we report in table 5.4 the measured diffusion coefficients.

5.2.2 Comparison of classical and quantum heat fluxes

If the fitted potential reproduces well DTF dynamics, we expect the thermal conductivities

of the two systems, the quantum and the classical one, to agree with a degree of accuracy

depending on the quality of the fit.

We do not instead expect to find an agreement between the following quantities, computed in
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Figure 5.6: Computed radial distribution functions at the temperature of 184K and 400K, re-

sulting from the fitted potential and the CPMD runs. The Agreement is excellent across the

whole temperature range of interest.

the quantum and classical case:

1. The heat fluxes computed for a fixed ionic configuration;

2. The autocorrelation function of the heat fluxes before being integrated;

This is clear from the discussion of the previous chapter. Even if the systems were exactly

equivalent, the heat fluxes would be related to different local "unpacking" of the total energy

density. As a consequence, the head flux autocorrelation functions can differ, but their inte-

grals, which are the measurable physical quantities, should be comparable. This is exactly

what we find from our calculations.

We chose to compute the current every 50 CPMD steps, which means that the current is com-

puted every 12.09 fs. As it can be seen in figure 5.7 this is enough for following precisely

all time frequencies describing the evolution of the total current. In the same figure the time

series is reported both at 24 Ryd and at 40 Ryd, thus confirming that 40 Ryd is enough for

obtaining convergence. We choose 2.0 a.u. as the time step for time derivatives, which was

verified to be small enough. It is essential to choose a small enough energy convergence factor

for obtaining well converged wavefunctions: 10−13Ryd was found to be small enough.

In figures from 5.8,5.9,5.10 and 5.11 we report the autocorrelation function 〈J(t)J(0)〉 of the

heat flux, for the four temperatures considered. For each temperature a classical molecular
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Table 5.4: Temperatures measured in the CPMD run and in the restart, from equilibrated

configuration, with the fitted potential. Also reported are the diffusion coefficients in the two

cases. An error for the temperatures in the last significant digit is intended.

Temperature measured (K) Diffusion coefficient (10−5cm2/s)

cp.x Lammps cp.x Lammps

184 185 7.8 ± 0.1 8.3 ± 0.1

217 219 9.6 ± 0.1 9.3 ± 0.1

250 252 10.8 ± 0.1 10.3 ± 0.1

400 407 15.6 ± 0.2 15.8 ± 0.2

dynamics run, using the fitted potential and starting from an equilibrated Car Parrinello con-

figuration, was performed for one nanosecond. The first 100 picoseconds of these CMD runs

were used to compare classical and quantum autocorrelation functions with the same statis-

tics. The values obtained by the whole one nanosecond run are also computed and effectively

considered as converged values. We can see from the figures that 100 picoseconds of dynam-

ics are sufficient for obtaining a good autocorrelation function, since the converged classical

functions are much similar to the ones obtained from the first 100 ps of dynamics. When

T = 184K there is a certain discrepancy, which does not affect the qualitative behavior, but

does not permit to integrate the autocorrelation function with the required precision. At the

higher temperatures this problem is not present.

As expected the classical and the quantum adiabatic autocorrelation function differ much

more than statistical errors, even if they retain the same order of magnitude. In figures 5.12

and 5.13 we report instead the values of 1
3

∫ t
0 〈J(t

′)J(0)〉dt′, as a function of t: a quantitatively

compatible value for large t, for the quantum and the classical computation, is obtained, apart

from statistical errors. Only when T = 184 the classical converged value is not contained

in the error estimated and this means that the 100 picoseconds of dynamics were not suffi-

cient at this low temperature. This is clear because also the first 100 picoseconds of classical

dynamics suffer of the same problem, as it can be seen in figure 5.12. In figure 5.14 we there-

fore plotted the thermal conductivities for the three higher temperatures, computed using

the Green-Kubo formula. The conductivities are of the same order of magnitude of the ones

reported in ref. [24], where a classical molecular dynamics of liquid Argon was performed,
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Figure 5.7: Example of the time series of the total current in Argon simulation, along x direc-

tion, computed with a kinetic energy cutoff of 24 and of 40 Ryd

using the well known Lennard Jones potential. In particular we estimate thermal conductivi-

ties of (94± 5)mW
mK for T = 217, (104± 5)mW

mK for T = 250 and (118± 8)mW
mK for T = 400, to be

compared with classical converged values of 93, 103 and 110 respectively. These results con-

firm that the methodology is working and can be used in more realistic systems. We present

in the next section such an application.
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Figure 5.8: Quantum and classical auto-correlation functions 1
3 〈J(t)J(0)〉, in units of (Kcal

mol f s )
2,

for T = 184K. The classical autocorrelation function is computed both with the same statistics

of the quantum case and with a nanosecond of dynamics, thus permitting to compare with

a well converged value. Statistical error bars are shaded. At this temperature the converged

value and the classical autocorrelation function differ more than statistical errors. This means

that the sampling was not good enough.

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0  100  200  300  400  500  600  700

time (fs)

Quantum adiabatic current
Classical current-100ps

Classical current-1000ps

Figure 5.9: As in figure 5.8, for T = 217K.
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Figure 5.10: As in figure 5.8, for T = 250K.
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Figure 5.11: As in figure 5.8, for T = 400K.
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Figure 5.12: In red continuous line
∫ t

0
1
3 〈J(t′)J(0)〉dt′ as a function of t, for the quantum adi-

abatic head flux with a statistics of 100 picoseconds. The integral is reported in units of

(Kcal
mol f s )

2 f s and the trapezoidal rule used for integration. The converged classical value is

reported in black dotted lines. The shaded blue region corresponds to the value with uncer-

tainty obtained using only the first 100 picoseconds of the classical molecular dynamics run

with the fitted potential. The integrals refer to the temperatures T = 184, 217, 400, with a value

increasing with temperature.
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Figure 5.13: As in figure 5.12, for T = 400K
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Figure 5.14: Thermal conductivities obtained for T = 217, 250 and 400 K, as a function of the

upper integration interval, in mJ
mKs units. It can be seen that, even considering statistical errors,

shaded in blue, three statistically different values for the thermal conductivities are obtained.

Thermal conductivity increases with increasing temperature.

5.3 Thermal conductivity of heavy water at ambient conditions

We can now apply the tested methodology to analyze thermal conductivity of water at ambi-

ent conditions. At the moment, water properties are still not well replicated by classical sim-

ulations. A large number of classical model potentials have been proposed, trying to mimic

the physics of the system in different ways, but all of them overestimate the value of thermal

conductivity at ambient conditions by approximately 30% [18] , as we reported at the end of

section 2.3. We do not aim for the moment at a realistic description of water as well, because

dispersion forces have not been implemented yet in the heat transport equations, but we will

show that reasonable results can be obtained in an ab-initio framework, thus motivating fu-

ture research.

Heavy water differs from standard light water because in all molecules hydrogen is replaced

by one of its isotopes, deuterium. Deuterium differs from hydrogen mainly because its atomic

mass has a value of 2 a.m.u. instead of one and this explains the name heavy water attached

to this water flavor. The two types have equivalent equilibrium structural properties, at a

classical level, since the kinetic contribution in the Boltzmann distribution trivially factors out

in both cases. On the other hand, simulating heavy water is more convenient because ions

move slowlier and a longer time step can be used. When computing structural properties like
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e.g. radial distribution functions, the mass of hydrogen and of oxygen can even be considered

equal, in order to achieve optimal performance. Dynamical properties, like self diffusion and

thermal conductivity are expected to differ, but numerical results for particle diffusion [64]

and experimental results for thermal conductivity [65] confirm that the values obtained for

the two water flavors are rather similar.

Following the same scheme developed for liquid Argon computations, we first generated a

quantum trajectory using the cp.x code of the QUANTUM-ESPRESSO distribution, starting

from a previously equilibrated trajectory, and the simulation parameters reported in table 5.5.

We note here that only for a ionic temperature around 400 Kelvin the choice of PBE exchange

correlation energy functionals is known to replicate qualitatively the self diffusion coefficient

of water at ambient conditions, i.e. around 300 K [64]. We therefore imposed this condition in

our simulation.

We report in figure 5.15 the total kinetic energy of ions and the fictitious kinetic energy of

Table 5.5

Details for CPMD water computation

Simulation length: 90 ps

Cell dimension (cubic): 23.46 Bohr

Number of molecules: 64

Density: 1.11 g
cm3 , the experimental one

Pseudopotential files: O.pbe-hgh.UPF, H.pbe-vbc.UPF

Exchange correlation functional: PBE

Pseudopotential types: Norm conserving. Oxygen non local,

1 beta function. Hydrogen local.

Electronic mass: 340 a.u.

Energy cutoffs: 80/320 Ryd

Time step: 3.0 a.u.

Preconditioning: not present

Thermostat: not present

78



5.3. Thermal conductivity of heavy water at ambient conditions

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  10  20  30  40  50  60  70  80  90

time (ps)

Figure 5.15: Total kinetic energy of ions and electrons for the heavy water simulation, in

Hartree units.

electrons, confirming the absence of energy exchange between electrons and ions during the

CPMD run. An average temperature of 385K was computed. As an other index of the quality

of the dynamics we computed a diffusion coefficient of (2.6± 0.2)× 10−5 cm2

s , to be compared

with the experimental value at ambient conditions of 2.0× 10−5 cm2

s . In figure 5.16 we report

the integral of the velocity autocorrelation functions of oxygens and of hydrogens. They must

be equal in the limit of large t, within statistical errors, because the dynamics is too short to

observe proton transfers between molecules and this is indeed confirmed.

The analysis of the energy current in this system is different from the case of Argon, because

of two main factors:

• The energy current is highly correlated with a different signal, called here Jn ≡ ∑i vi,

where the sum is over all molecules. This signal in the case of a mono-atomic system

is zero because proportional to the total momentum, whereas in molecular systems it is

proven to be non diffusive (see Appendix E) but can spoil the data because of its very

slow decay and high amplitude;

• It is difficult to integrate directly long-lived high frequency intra-molecular modes, even

if they contribute very little to the thermal conductivity;

The first problem can be tackled replacing the computed heat flux J with a modified one

J′ = J− λJn and choosing λ such as to force the new signal to be uncorrelated from Jn, that

is Corr(J− λJn, Jn) = 0. This approach can be generalized uncorrelating the signal also with
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Figure 5.16: Diffusion coefficient of water, as obtained from the integrated velocity autocorre-

lation function, in units of 10−5 cm2

s . The values obtained from oxygens (shaded in blue, with

error bars) and from hydrogens are reported. Within statistical uncertainty the two values

obtained are equal, as expected.

respect to the electronic current Jel , which is not diffusive as well, and fixing two constants

λn, λel imposing the new current J′ = J− λnJn − λelJel to be uncorrelated both from Jel and Jn.

Similar results were obtained from the two approaches and the coefficients λn and λel could

be estimated with high precision from the time series, thus leading to a well defined scheme.

As far as the second problem is concerned, the high frequency intra-molecular modes not only

make the tail of the autocorrelation function noisy, but also force to use a very high sample

frequency for the heat flux, which is a problem for ab-initio computations. In figure 5.17 we

report the autocorrelation function 〈J′(t)J′(0)〉 computed with a sample interval of 3.628 f s

from the whole trajectory and with a sample interval of 0.725 f s, using only 15 ps of dynamics.

To get rid of these oscillations we use the equivalent Einstein relation which automatically

wipes out, thanks to the convolution with a Kernel, these contributions:

〈|
∫ t

0 J(t′)dt′|2〉
2t

=
∫ t

0
dt′〈J(t′) · J(0)〉

(
1− t′

t

)
(5.9)

Furthermore, computing the slope obtained plotting 〈|
∫ t

0 J(t′)dt′|2〉
2 versus t, rather then simply

dividing by 2t and making the limit for t → ∞, reduces further the simulation time nec-

essary to compute the thermal conductivity. Inserting the necessary factors, the final plot

of 1
6VkBT2 〈|

∫ t
0 J(t′)dt′|2〉 vs t is reported in figure 5.18, with superposed the estimated linear
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Figure 5.17: Autocorrelation function 〈J′(t)J′(0)〉 in units of (Ryd Bohr
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)2, where τBO was de-

fined in section 5.1.1

behavior. A thermal conductivity of (0.74± 0.12) W
mK was finally computed, which must be

compared with the experimental one of 0.06096 W
mK [18] for light water at ambient conditions.

Within statistical errors, the agreement we found is very good.
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Figure 5.18: We plot here 1
6VkBT2 〈|

∫ t
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conductivity oscillates wildly about the value (reported for comparison) obtained fitting a
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Appendix A
Fourier transforms of response functions

We fix notations and state, as a summary, some general results that are needed for following

the calculations in sections 2.1, 2.2 and 2.3. A more detailed description can be found in

[66],[34]. We will deal in this appendix only with Fourier transforms in the time domain.

The Fourier-Laplace transform of a function of real argument f (t) is a function with complex

argument f (z) defined by the relation:

f (z) =
∫ ∞

0
f (t)eiztdt (A.1)

If the function f (t) goes to zero faster than e−γt for a certain γ > 0, than the function f (z)

is analytic in the semi-plane Iz > −γ (and in particular at z = 0). For the plain Fourier

transform we use the convention:

f̃ (ω) =
∫ ∞

−∞
f (t)eiωtdt (A.2)

and will use the tilde only for referring to this standard Fourier transform. It can well happen

that the Fourier-Laplace transform is well defined but not the Fourier transform. When both

are defined (as it is usually the case in the functions that we consider) one can prove a useful

relation between the two:

f (z) =
∫ +∞

−∞

dω

2πi
f̃ (ω)

ω− z
, Iz > 0 (A.3)

This equality holds only in the upper complex plane, since the right member defines a func-

tion with a branch cut on the real axes. It is clear that f (z) depends only on the values of f (t)

for t > 0, whereas the Fourier transform depends also on values for t < 0.

These transforms are routinely applied to the response function formalism. The Fourier-

Laplace transform of the response function is called dynamical susceptibility and is often de-
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noted with the greek letter χ:

χij(z) ≡
∫ +∞

0
ΦAi Aj(t)e

iztdt, (A.4)

where Ai is a set of observables of the system. In case the Fourier-Laplace transform were

not defined in the real axes but the limit from the upper complex plane is, we will use the

standard notation:

χij(ω) ≡ lim
ε→0+

∫ +∞

0
ΦAi Aj(t)e

iωt−εtdt (A.5)

Taking real and imaginary parts of the above one defines χ′ and χ”:

χij(ω) = χ′ij(ω) + iχ′′ij(ω) (A.6)

Making explicit sine and cosines one recognizes that this is equivalent to performing two

one-sided Fourier transforms:

χ′ij(ω) = lim
ε→0

∫ +∞

0
ΦAi Aj(t) cos(ωt)e−εtdt (A.7)

χ′′ij(ω) = lim
ε→0

∫ +∞

0
ΦAi Aj(t) sin(ωt)e−εtdt (A.8)

which make it explicit that χ′ij(ω) is even and χ′′ij(ω) is odd. The one sided cosine and sine

transforms are not independent but are linked by the celebrated Kramers-Kronig relations:

χ′ij(ω) =
1
π
P
∫ +∞

−∞

χ′′(ω)

ω′ −ω
dω′ χ′′ij(ω) = − 1

π
P
∫ +∞

−∞

χ′(ω)

ω′ −ω
dω′ (A.9)

Since the diagonal elements Φii(t) are odd in t only χ′′ii(ω) suffices to determine the Fourier

transform of the response function:

Φ̃ii(ω) = 2iχ̃′′ii(ω) (A.10)

Static response functions are the ω → 0 limit of χij(ω):

χij ≡ lim
ω→0

χij(ω) (A.11)

Only χ′(ω) determines the static response functions, since χ′′(ω), being an odd function, does

not contribute to the limit. Inserting the linear response result (3.25) into the definitions and

integrating by parts one understands that the χij are equal time commutators:

χij = χ′ij(ω = 0) = lim
ε→0

∫ +∞

0
ΦAi Aj(t)e

−εtdt = −βCij(0) (A.12)

Other two results are used in the the text, which link the Fourier-Laplace transform of the

correlation function and the dynamical susceptibility. The first one is:

χij − χij(z)
βiz

= Cij(z), (A.13)
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which follows from the identity:

χij(z) = β
∫ +∞

0
dt

∂

∂t
Cij(t)eizt = −βCij(0)− βizCij(z). (A.14)

Whereas the second relation:

χ′′ii(ω) = βωRCii(ω + iε) (A.15)

is a consequence of the parity of C and of equation (A.10).
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Appendix B
The hydrodynamic matrix

We summarize here the main steps necessary to derive the hydrodynamic matrix M starting

from the system of equations (3.54). The manipulations can be summarized into three main

points:

1. We replace the momentum density 〈δga(r, t)〉 with its longitudinal and transverse com-

ponents: 〈δga(r, t)〉 = 〈δgl
a(r, t)〉+ 〈δgt

a(r, t)〉. Looking at the second equation in (3.54),

since the gradient of pressure is a purely longitudinal function, we can conclude that

the evolution of the transverse momentum density is decoupled from the other modes.

The evolution equation for the longitudinal part is still coupled because of the pressure

term, but it simplifies thanks to the identity:

∂b∂b〈δgl
a(r, t)〉 = ∂a∂b〈δgl

b(r, t)〉 (B.1)

which holds actually for every longitudinal field;

2. We replace the energy density ε(r, t) with the hydrodynamic variable q(r, t):

q(r, t) = ε(r, t)− ε + p
n

n(r, t) (B.2)

This is convenient because combining the first and the third equation in (3.54) we obtain:

∂t〈δq(r, t)〉 = λ∂b∂bδT(r) (B.3)

and this relation will replace the energy continuity equation for the energy;

3. The third manipulation consists in replacing pressure and temperature as a function
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B. The hydrodynamic matrix

of the chosen thermodynamic variables, 〈δn(r)〉 and 〈δq(r)〉 1. Formally, from the hy-

pothesis of local thermodynamic equilibrium and the fact that p and T are intensive

thermodynamic quantities it follows:

δp(r, t) =
(

∂p
∂n

)
q

δn(r, t) +
(

∂p
∂q

)
n

δq(r, t) (B.4)

δT(r, t) =
(

∂T
∂n

)
q

δn(r, t) +
(

∂T
∂q

)
n

δq(r, t) (B.5)

In order to link these derivatives with more common thermodynamic quantities it is

useful to characterize dq for constant number of particle transformations, that is when

dN = 0. In this case:

T
dS
V

= dε− ε + p
n

dn = dq (B.6)

When considering an intensive variable α = P, T, we can therefore write:(
∂α

∂n

)
q
=

(
∂α

∂n

)
q,N

=

(
∂α

∂n

)
S,N

(B.7)

where the first identity follows from the fact that α is intensive and therefore the deriva-

tive can be performed at constant N, thus permitting to exploit relation (B.6). Analo-

gously: (
∂α

∂q

)
n
=

(
∂α

∂q

)
n,N

=
V
T

(
∂α

∂S

)
n,N

(B.8)

We have therefore succeeded, as a first step, in rewriting everything in terms of thermo-

dynamic derivatives where q is no longer present. It is instructive to verify explicitly the

previous relations, without taking the detour of constant number of particle transforma-

tions. We write as an example the first one, which is the most cumbersome:(
∂α

∂n

)
S,N

=

(
∂α

∂n

)
s
+

(
∂α

∂s

)
n

(
∂s
∂n

)
S,N

= (B.9)

=

(
∂α

∂ε

)
n

(
∂ε

∂n

)
s
+

(
∂α

∂n

)
ε

+
Ts
n

(
∂α

∂ε

)
n
= (B.10)

=

(
∂α

∂ε

)
n

(
µ +

Ts
n

)
+

(
∂α

∂n

)
ε

= (B.11)

=

(
ε + p

n

)(
∂α

∂ε

)
n
+

(
∂α

∂n

)
ε

=

(
∂α

∂n

)
q

(B.12)

1Other choices are possible for the independent hydrodynamic variables. One could decide for example to

consider the local temperature in addition to number and momentum density and obtain an equally good de-

scription of the dynamics [35]. The normal modes of the system would not change but will be merely expressed

in a different base. On the other hand, since here we want to link the energy density correlation function with the

thermal conduction coefficient, this choice is not the best one
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, where s = S
V is the entropy density. The relations dε = Tds + µdn, µ = ε+p−Ts

n and the

chain rule have been exploited.

Now standard thermodynamic manipulations lead to expressions where only the spe-

cific heat per particle cv, the isothermal compressibility βV and the adiabatic speed of

sound c2 appear: (
∂p
∂n

)
S,N

= mc2
(

∂p
∂S

)
n,N

=
βV T
ncvV

(B.13)(
∂T
∂n

)
S,N

=
βV T
n2cv

(
∂T
∂S

)
n,N

=
T

cvV
(B.14)

It is also useful to define Dl =
4
3 η+ζ
mn as the longitudinal diffusion coefficient.

Performing the three previous steps we can rewrite the system in the following way:

∂t〈δn(r, t)〉+ 1
m

∂a〈δgl
a(r, t)〉 = 0

∂t〈δga(r, t)〉+ Dl∂b∂b〈δgl
a(r, t)〉+

+ mc2∂a〈δn(r, t)〉+ βV

ncv
∂a〈δq(r, t)〉 = 0

∂t〈δq(r, t)〉 − λ
βV T
n2cv

∂b∂b〈δn(r)〉 − λ

cv
∂b∂b〈δq(r, t)〉 = 0

This is almost the final form 2. In order to be able to compare with the results from LRT and

obtain the matrix used in the text it is necessary to rewrite these linearized Navier Stokes

equations in reciprocal space and to introduce the Fourier-Laplace transform of appendix A

but this step is quite mechanical.

In the text we need also the eigenvalues of the hydrodynamic matrix M(k) up to the second

order in k, to perform the matrix inversion. These can be found by perturbation theory, di-

viding the matrix M into an unperturbed part M0, proportional to q and a perturbation M1,

proportional to q2, such that M = M0 + M1. M0 has the form:

M0 =


0 A 0

B 0 C

0 0 0

 (B.15)

2We can observe that the dependence on the volume V of the subsystem is not present anymore and only

intensive quantities remained.
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B. The hydrodynamic matrix

with A,B and C parameters linear in k and:

M1 =


0 0 0

0 D 0

E 0 F

 (B.16)

where D, E and F are quadratic in k. The eigenvalues, right and left eigenvector of M0 are

simple to compute:

λ0 = 0 eR
0 =


−C

B

0

1

 eL
0 =


0

0

1

 (B.17)

λ+ =
√

AB eR
+ =


1√

B
A

0

 eL
+ =

1
2


1√

B
A

C
B

 (B.18)

λ− = −
√

AB eR
− =


1

−
√

B
A

0

 eL
− =


1

−
√

B
A

C
B

 (B.19)

Using these results one can compute ∆λi = (eL
i )

+M1(eR
i ). Extensive use must be made of the

relations:

γ =
cp

cv
(B.20)

mc2 =
γ

nχT
(B.21)

γ− 1 =
TχT β2

V
ncv

(B.22)

Inserting the explicit expression of the coefficients one obtains λ0 = 0, λ+ = ck, λ− = −ck

and:

∆λ0 = F− EC
B

= iq2 λ

ncv

(
1− Tβ2

V
n2cvmc2

)
= iq2 λ

ncp
= iq2DT (B.23)

where DT = λ
ncp

is the thermal diffusivity. The correction for the second eigenvalue:

∆λ+ =
1
2

(
D +

EC
B

)
= iq2

(
Dl −

Tβ2
Vλ

n3c2
vmc2

)
= (B.24)

= iq2
(

Dl −
λ

ncp
(γ− 1)

)
= iq2 (Dl + DT(γ− 1)) = iq2Γ (B.25)

where Γ , defined as Dl + DT(γ− 1), is called the sound attenuation constant. Along similar

lines the result ∆λ+ = ∆λ− is obtained.
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Appendix C
Equal time correlators

We show here how the results:

1
V

lim
k→0
〈δn(k, 0)δq(−k, 0)〉 = kBT2

(
∂n
∂T

)
p

, (C.1)

1
V

lim
k→0
〈δq(k, 0)δq(−k, 0)〉 = ncp, (C.2)

1
V

lim
k→0
〈δgl(k, 0)δq(−k, 0)〉 = 0, (C.3)

reported in section 2.3.1 can be obtained from macroscopic fluctuation theory, as it is devel-

oped in [67], chap. XII, to which we refer for several formulas. 1.

Equation (C.3) is obvious because g(r) and q(t) have opposite signs under time reversal.

We can compute the first limit as:

lim
k→0
〈δn(k, 0)δq(−k, 0)〉 = 〈δNδQ〉V , (C.4)

where Q is the volume integral of density q(r) and N the total number of particles. We put

a subscript V to point out the fact that statistical fluctuations are computed in a constant

volume ensemble, thus permitting the total number of particles and of Q to fluctuate. It is

possible to rewrite equation (C.4) in terms of a correlation function computed in a constant

particle ensemble. This can be performed exploiting the relation respected by macroscopic

fluctuations [67] 〈δnδQ〉V = 〈δnδQ〉N , where n = N
V is the density as usual. As a consequence:

〈δNδQ〉V = −n〈δVδQ〉N = −nT〈δVδS〉N , (C.5)

1We remember that, as in the text, specific heats per particle are always intended.
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C. Equal time correlators

The last equality holds because TδS = δQ, when δN = 0, as shown in appendix B.

The probability w of a fluctuation in a constant particle ensemble is known to be:

w ∼ Exp
[
−N2cv

2T2 (δT)2 +
1

2T

(
∂p
∂V

)
T
(δV)2

]
. (C.6)

To proceed we need to express δS as a function of δV and δT:

δS =

(
∂S
∂T

)
V

δT +

(
∂S
∂V

)
T

δV (C.7)

and the result follows:

〈δVδS〉N =

(
∂S
∂V

)
T
〈(δV)2〉 = −T

(
∂S
∂V

)
T

(
∂V
∂P

)
T
= −T

(
∂S
∂P

)
T

. (C.8)

Using then the Maxwell identity derived from the Gibbs potential dG = −SdT + Vdp we

obtain:

〈δVδS〉N = −T
(

∂V
∂T

)
p

, (C.9)

which is the last needed result to obtain the first equation (C.1).

The second equation (C.2) is proved along similar lines considering P and S as independent

variables. In this case the probability, always in the constant particle ensemble, reads:

w ∼ Exp
[
− 1

2T

(
∂V
∂p

)
S
(δP)2 − 1

2Ncp
(δS)2

]
(C.10)
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Appendix D
Green Kubo current for isolated systems,

moving at constant speed

In these particular systems the Green Kubo current is known a priori. The analysis of this

section will be very useful for preliminary tests of correct code implementation.

An isolated system is characterized by a localized energy density. Formula (4.9) therefore

reads:

J =
∫

V
ε̇(r)rdr =

∂

∂t
PO

PO =
∫

V
ε(r)rdr, (D.1)

where the first momentum of the energy density is not affected by boundary problems because

the energy density is localized. Subscript O means that we are computing the momentum

with respect to the origin O. If we compute it with respect to a point O′ the usual relation is

satisfied:

PO′ = PO + E(RO − RO′), (D.2)

where E is the conserved total energy of the system. Choosing the origin O′ moving together

with the system and deriving with respect to time:

∂

∂t
PO′ =

∂

∂t
PO − Ev, (D.3)

where v = ṘO. If the system is at internal equilibrium the energy density is rigidly translating.

Therefore we have ∂
∂t PO′ = 0 and J = Ev. This is the result we wanted to prove.

We want now here to see explicitly that the procedure followed in the text, applied to an
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D. Green Kubo current for isolated systems, moving at constant speed

isolated, non interacting quantum system leads to the same result: J = Ev. We start by the

definitions, equivalent to (4.8):

e(r, t) = ∑
v

ϕv(r− vt)
(

Ĥ(t)ϕv(r− vt)
)

ė(r, t) = ∑
v

[
ϕ̇v(r, t)

(
Ĥ(t)ϕv(r, t)

)
+ ϕv(r, t)

(
ˆ̇H(t)ϕv(r, t)

)
+ ϕv(r− vt)

(
Ĥ(t)ϕ̇v(r, t)

)]
. (D.4)

And one has:

Ĥ(t)ϕv(t) = εv ϕv(t) (D.5)

ˆ̇H(t)ϕv(t) + Ĥ(t)ϕ̇v(t) = εv ϕ̇v(t). (D.6)

By substituting Eqs. (D.5) and (D.6)into Eq. (D.4), we obtain:

ė(r, t) = 2 ∑
v

εv ϕ̇v(r− vt)ϕv(r− vt)

= −2 ∑
v

εv ϕv(r− vt)v · ∇ϕv(r− vt).

The corresponding current is:

Jα =
∫

xα ė(r, t)dr

= −2 ∑
v

εvvβ

∫
ϕv(r− vt)(xα − vαt)∂β ϕv(r− vt)dr

− 2tvαvβ

∫
ϕv(r− vt)∂β ϕv(r− vt)dr.

The second term in the above equation vanishes, while the first reads:

Jα = −2i ∑
v

εv〈ϕv|xα pβ|ϕv〉

= − i ∑
v

εvvβ

(
〈ϕv|xα pβ|ϕv〉 − 〈ϕv|pβxα|ϕv〉

)
= − i ∑

v
εvvβ〈ϕv|[xα, pβ]|ϕv〉

= vα ∑
v

εv,

where use has been made of the canonical commutation rules: [xα, pβ] = iδαβ.
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Appendix E
Non diffusivity of particle current in

molecular systems

We fix first some notation. We number the species of the atoms in the molecule with an index

i = 1, n and call mi their masses. Molecules will be referred instead with an index a running

from 1 to Nm. ni indicates the stechiometric number associated to species i and Ni the total

number of particles of type i in the system. Therefore Ni = niNM and the total number of

atoms is N = ∑i Ni. We indicate with {vi
j(t), i = 1, n, j = 1, Ni} the velocity at time t of the

j− esime particle of type i and with V the volume of the system.

We want here to prove that, in the center of mass reference frame, the signal:

Jn(t) = ∑
i

Ni

∑
j=1

vi
j(t), (E.1)

, is non diffusive. With this we mean that:

lim
t→∞

〈|
∫ t

0 Jn(t′)dt′|2〉
2tV

=
1
V

∫ ∞

0
dt〈Jn(t)Jn(0)〉 = 0 (E.2)

It is convenient for this purpose to define a partial signal for every species:

wi(t) =
N
Ni

Ni

∑
j=1

vi
j(t) (E.3)

and the quantity ∆ij
a (t) as the variation after time t of the position of the centre of atoms of

type i and atoms of type j beloning the a−molecule. Explicitely:

∆ij
a (t) =

∫ t

0

1
ni

∑
k∈a

vi
k −

∫ t

0

1
nj

∑
k∈a

vj
k (E.4)
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E. Non diffusivity of particle current in molecular systems

Since molecular covalent bonds do not break during the dynamics ∆ij
a (t) can assume only

limited values. As a consequence the signal wi − wj is non diffusive for every i, j. In fact

its time integral
∫ t

0 dt′(wi(t′)−wj(t′)) is equal to N
Nm

∑Nm
a=1 ∆ij

a (t) and inserting this expression

into the Einstein relation, the numerator remains limited as t grows, whereas the denominator

increases linearly, thus confirming the non diffusivity of the signal wi −wj.

The total momentum P, equal to zero in the center of masse referance frame, can be written in

terms of the wi:

P =
n

∑
i=1

miNi

N
wi(t) (E.5)

It is easily seen that the n vectors:

{(w1 −w2), (w2 −w3), ..., (wn−1 −wn),
n

∑
i=1

(miNi)wi} (E.6)

form a linear indipendent set and every quantity has been proven to be non diffusive. Since

linear combinations of non diffusive quantities are non diffusive as well (sec. 3.4), we can

conclude that Jn (∑n
i=1

Ni
N wi = Jn) and actually every wi is non diffusive.
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