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We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant
external electric and magnetic fields in the context of the θ-expanded noncommutative QED. We show that
there is no birefringence to the first order in the noncommutativity parameter θ. By analyzing the group
velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction.
This phenomenon depends on the mutual orientation of the external electromagnetic fields and the
noncommutativity vector. We argue that the propagation of signals with superluminal group velocity
violates causality in spite of the fact that the noncommutative theory is not Lorentz invariant and speculate
about possible workarounds.
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I. INTRODUCTION

The general belief [1] that space-time at the Plank scale is
quantized has materialized in the abundant development
over the last decades in the field of noncommutative
quantum field theory and quantum mechanics [2].
Despite the general failure of the hope to regularize
quantum field theory [3–5] and the scarcity of renormaliz-
able models [6,7], this field is still being actively researched
[8–11]. With regard to the usual realization of noncom-
mutativity in physics, where the star product in the
deformed algebra of functions is given in terms of a
constant antisymmetric matrix, numerous phenomenologi-
cal consequences from noncommutativity have placed
stringent conditions on the magnitude of the noncommu-
tativity parameter [8,12,13].
Noncommutative theories constitute an example of

theories with Lorentz symmetry violation, since they
contain an “external” antisymmetric tensor θμν stemming
from the commutation relation between the operator-valued
coordinates ½Xμ; Xν� ¼ i θμν, and should be considered in
this context [14]. To theories with broken relativistic
invariance, superluminal propagation is generally peculiar,
starting with the theoretical evidence in Ref. [15] of
photons that propagate faster than light in the background,
specially Schwarzschild, metrics. Another context for
superluminal propagation is presented by quantum electro-
dynamics, when its Lorentz-invariance is violated by the
presence of an exponentially high external (e.g., magnetic)
field [16], owing to the lack of asymptotic freedom in that

theory. There is vast literature where the superluminal
signals in Lorentz-violated theories [17] are revealed and
discussed.1

The dramatic role of the superluminal propagation in
destroying the causality principle is often underestimated,
following the view that once there is no relativistic
invariance from the outset, one may not be upset by the
appearance of a superluminal signal. Such an attitude is,
certainly, too thoughtless. The simplest refutation may be
found in the example of the electrodynamics in a medium,
whose presence violates Lorentz invariance—formally by
the involvement of an external vector of the 4-velocity of
the medium. The group velocity of an electromagnetic
wave in a moving medium is its group velocity in the
medium at rest relativistically added to the speed of the
medium. (This statement also can be extended to a Lorentz-
non-invariant vacuum, characterized by the presence of
any external vector or a tensor). If a superluminal signal
should exist in the medium at rest, it would also be
superluminal in the moving frame and might lead to the
paradoxical reversal of the time coordinates of timelike
separated events, following the same standard consider-
ation of a Lorentz-invariant vacuum.
In the present paper we are dealing with the problem of

propagation of electromagnetic waves when an external
constant electromagnetic field is present, in the nonlinear
electrodynamics to which the noncommutative theory with
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1Referring to the speed of the wave-front propagation follow-
ing [18]. We consider the group velocity also as that of a signal
following Refs. [19,20]. It must not exceed the speed of light. As
for the phase velocity, its use by some authors as a criterion for
superluminosity is not justified: it is permitted to outrun light
without any contradiction with causality.
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the Abelian gauge group is reduced by the Seiberg-Witten
map [21]. In the lowest order of noncommutativity, the
nonlinearity is only cubic in the electromagnetic field. We
restrict ourselves to the so-called space-space noncommu-
tativity, when the noncommutativity tensor has its time
components vanishing in a certain reference frame, and we
are working within the lowest nontrivial term in the
expansion of the Taylor series in powers of the non-
commutativity parameter. We impose mutually orthogonal
electric and magnetic fields of arbitrary magnitudes, but
constant in time and space (the property of orthogonality
is retained in any Lorentz frame). Unlike the Lorentz-
invariant vacuum, neither of these fields can be excluded
by a Lorentz boost, since this boost would change the
noncommutativity parameter (by supplying time compo-
nents to it). Therefore, our case is more general, indeed,
than the case of the magnetic field alone, considered
previously in the literature [22], because it includes both
fields, but it does not overlap with the external field of
Ref. [23], where electric and magnetic fields are taken
together, but restricted to the condition that—in the frame
where the noncommutativity tensor has vanishing time
components—they are mutually parallel and parallel to the
noncommutativity (pseudo)vector.2

In the most general constant external field, we calculate
the second- and third-rank polarization tensors (Sec. II),
responsible, respectively, for the light propagation and for
the electromagnetic wave splitting into two. We consider
the general problem of light propagation by finding the
eigenvalues of the second-rank polarization tensor in
Secs. III and IV. The photon dispersion laws are found
for the simplest special case, where a magnetic or electric
field is parallel to the noncommutativity (pseudo)vector
θi ¼ ϵijkθjk in Sec. IV. The dispersion laws for mutually
perpendicular electric and magnetic fields are established in
Sec. VI. Also the two intermediate special cases, where
there is either only magnetic or only electric external fields
are considered. In all cases the absence of birefringence3 is
noted and formulas for the group velocities are derived. In
all cases the group velocities prove to exceed the speed of
light c, taken as unity, when certain relations between the
orientation of the external fields and the noncommutative
vector take place. While in the case where only electric or
magnetic fields are present, a direction of the wave vector
(namely, the one along the coinciding directions of the

fields and θ) exists, where the speed of propagation is
simply unity, no such direction is found in the general
context of Sec. VI, where both fields are present
simultaneously.
In the concluding remarks of Sec. VII we discuss two

possible scenarios intended to avoid the verdict—that
suggests itself—on the inconsistency of the noncommuta-
tive theory due to the incompatibility with the causality
principle.

II. INCLUSION OF AN EXTERNAL FIELD IN THE
NONCOMMUTATIVE MAXWELL ACTION

Following [22,25] we consider the first-order Seiberg-
Witten map [21] of the noncommutative Maxwell
theory that results in the action for the electromagnetic
field Fμν

SSW ¼ −
1

4

Z
d4xFμνFμν −

1

2

Z
d4xθαβFμνFαμFβν

þ 1

8

Z
d4xθαβFαβFμνFμν þOðθ2Þ: ð1Þ

It is understood that the coupling constant is included in θ.
Throughout this paper we restrict ourselves to space-space
noncommutativity. That is, in Lorentz invariant terms, we
require the following relations4:

ðθ ~θÞμν ¼ 0; θ2 < 0; ð2Þ
to be obeyed by the noncommutativity tensor, which imply
the existence of a Lorentz frame—the special frame—
where the noncommutativity tensor only has space-space
components: θ0i ¼ 0.
In what follows, it is convenient to divide the Lagrangian

density from (1) in two parts,

LSW ¼ L0 þ L; ð3Þ
where

L0¼−
1

4
FμνFμν; L¼−

1

2
θαβFμνFαμFβνþ

1

8
θαβFαβFμνFμν:

Let us divide the gauge connection into two parts, a
dynamic field a and an external field A,

Aμ ¼ aμ þAμ:

Then,

Fμν¼fμνþF μν; fμν¼∂μaν−∂νaμ; F μν¼∂μAν−∂νAμ

2In that paper the author first points the superluminal propa-
gation in the direction perpendicular to the fields.

3The phenomenon of birefringence can be generally stated as
existence of distinct solutions to the dispersion equations of light
for its different polarization modes (see e.g., [19]). An example of
absence of birefringence in an anisotropic medium is given by
[24] an external magnetic field in the vacuum treated via the
Born-Infeld model, where the anisotropy of the medium, that the
direction of the energy propagation does not coincide with that of
the wave vector, is retained in that example.

4Here the contraction of the electromagnetic field strength
tensor Fμν with its dual ~Fμν is to be understood as F ~F ¼ Fμν

~Fνμ.
Likewise, θ2 ¼ θμνθ

νμ and ðθ ~θÞμν ≡ θμα ~θ
α
ν . For a summary of our

notational conventions, see the Appendix.
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and the action SSW (1) becomes

SSW ¼−
1

4

Z
d4xðfμνfμνþF μνF μνþ2fμνF μνÞ

−
1

2

Z
d4xθαβðfμνfαμfβνþF μνF αμF βνþ2fμνfαμF βν

þfμνF αμF βνþF μνfαμfβνþ2F μνfαμF βνÞ

þ1

8

Z
d4xθαβfαβðfμνfμνþF μνF μνþ2fμνF μνÞ

þ1

8

Z
d4xθαβF αβðfμνfμνþF μνF μνþ2fμνF μνÞ:

Let us write the integrand here as

LSW ¼ LðF Þ þ 1

2
D−1

μν aμaν þ
1

6
Πμνσaμaνaσ; ð4Þ

where

D−1
μν ¼ k2ημν − kμkν þ Πμν ð5Þ

is the photon propagator. The polarization second- and
third-rank tensors are defined as

Πμν ¼
∂2L

∂Aμ∂Aν

����
F¼F

; Πμνρ ¼
∂3L

∂Aμ∂Aν∂Aρ

����
F¼F

: ð6Þ

These are transverse in every index: Πμνkν ¼ Πμνρkρ ¼ 0.
These identities follow from the definition Eq. (6) and from
the fact that due to the Uð1Þ gauge invariance of the action,
Eq. (1), the latter depends on the vector potential only
through the field intensity tensor. The mechanism may be
traced as in Ref. [26].
The first term on the right-hand side of (4), LðF Þ, is

LðF Þ ¼ −
1

4
F μνF μν −

1

2
θαβF μνF αμF βν

þ 1

8
θαβF αβF μνF μν: ð7Þ

We did not include the term linear in a in (4), since it
vanishes for constant external fields F μν ¼ const, because
∂LSW∂Aμ

���
A¼A

¼ ∂
∂xν

∂LSW∂Fνμ

���
F¼F

¼ 0. In other words, any constant

field, in no way correlated with the tensor θαβ, is an exact
source-free solution to the equation of motion.
The part quadratic in the dynamic fields aμ contains the

terms

−
1

4
fμνfμν − θαβfμνfαμF βν −

1

2
θαβF μνfαμfβν

þ 1

4
θαβfαβfμνF μν þ

1

8
θαβF αβfμνfμν;

while cubic contributions come from

−
1

2
θαβfμνfαμfβν þ

1

8
θαβfαβfμνfμν:

Taking into account that the Fourier transform of ∂μaνðxÞ is
ikμaνðkÞ, the quadratic contribution gives rise to the
expression for the photon propagator

D−1
μν ¼ k2ημν − kμkν þ

1

2
ðθF Þðk2ημν − kμkνÞ

− f½ðθF Þμν þ ðθF Þνμ�k2 þ 2ðkθFkÞημν
− ðk½θF þ Fθ�Þνkμ − ðk½Fθ þ θF �Þμkνg ð8Þ

and to the polarization tensor quadratic in k. The third-rank
polarization tensor is given by the expression

Πμν ¼
1

2
ðθF Þðk2ημν − kμkνÞ − ½ðθF Þμν þ ðθF Þνμ�k2

− 2ðkθFkÞημν þ ðk½θF þ Fθ�Þνkμ
þ ðk½Fθ þ θF �Þμkν;

Πμνσ ¼ 3ikαθασðk2ημν − kμkνÞ; ð9Þ

cubic in k. This character of dependence on the
4-momentum vector is a direct consequence of the fact
that the action (1) is local in the sense that it does not
include space and time derivatives of the field intensities,
the same as in the local or infrared, k → 0, approximation
of quantum electrodynamics with or without a constant
external field, in which case the power of k coincides with
the rank of the polarization tensor [26]. The equation of
motion for the field a above the external field background,
resulting from (4), is the classical quadratic equation of
nonlinear optics

∂L
∂Aμ

¼ Πμνaμ þ
1

2
Πμνρaνaρ ¼ 0:

It describes in a classical way a transformation of a photon
into two (or vice versa), which may be also treated via
classical scattering theory in probabilistic terms after we
define one- or two-photon asymptotic states. The proba-
bilities of photon splitting/merging are given in terms of the
third-rank polarization tensor, whereas the photon normal
modes, as well as integrals of motion associated with
conserved Noether generators of canonical transformations
within the Hamiltonian formalism are determined by the
second-rank polarization tensor. Therefore the term quad-
ratic in a of (4) is taken as the “free” Lagrangian. Then the
cubic term should be treated as the “interaction” part.
Before proceeding, we find it interesting to mention the

Lorentz-covariant treatment within the standard commuta-
tive electrodynamics of quite a different system where the
Lorenz invariance is violated not only by an external field,
but also by the “vacuum,” whose role in that case was
played by the electron-positron plasma in a magnetic field
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[27,28]. Let us take the following antisymmetric tensor
kμuν − kνuμ formed by the photon momentum and by the
four-velocity of the medium uμ and substitute it for the
noncommutativity tensor θμν in the polarization operator
(9). Then, apart from the trivial unit transverse tensor its
tensor structure coincides with the matrix ψ ð8Þ

μν from
[27,28], which appears when the plasma with excess of
electrons over positrons is taken. [Contrary to the latter
case, however, there is no antisymmetric matrices in the
expansion (9) that might be responsible for elliptical
polarization of eigenmodes and hence for the Faraday
rotation of the polarization plane.5] This demonstrates a
way of how an analog of the noncommutative tensor may
be modeled by such medium.

III. GENERAL COVARIANT DESCRIPTION
OF PHOTON PROPAGATION

Since the external field and the noncommutativity
parameter θ are constant, the second rank polarization
tensor only depends on coordinate differences and hence on
one momentum kμ. By calculating the second derivative of
LSW with respect to the potential, we arrive at the
expression (9), which is a linear combination of symmetric
transverse matrices. The symmetry is explicitly provided by
the relation ðFθÞμν ¼ ðθF Þνμ that follows from the anti-
symmetry of the matrices θ and F .
It is noteworthy that when the external field is absent, the

polarization operator is zero in spite of the presence of the
noncommutativity parameter θ. Thus, the dispersion laws
are in that case all trivial k2 ¼ k2 − k20 ¼ 0.
The eigenvalues of the vacuum polarization tensor define

the energy spectrum of free electromagnetic waves propa-
gating in the external field. The most general gauge-
invariant expression for the polarization tensor in a constant
and homogeneous background (including an electromag-
netic field and the noncommutativity tensor) is [27,28,30]

ΠμνðkÞ ¼
X6
i¼1

ΠiðIÞΨðiÞ
μν ; ð10Þ

where ΨðiÞ are linearly independent transverse symmetric
matrices, and the coefficients ΠiðIÞ depend on the invar-
iants of the theory, such as the ones involving the vector kμ
and the electromagnetic field strengthF μν, k2, kF 2k,F and
G, and also the ones depending on the external tensor θμν,
such as kF 2θFk. The number of independent matrices in
(10) is 6, because the symmetry conditions ΠμνðkÞ ¼
ΠνμðkÞ following from the definition (6) leave 10 out of
16 ¼ 4 × 4 independent components of the polarization
operator, whereas the four transversality conditions
ΠμνðkÞkν ¼ 0 reduce their number to 6.

In general, in order to find the Green function D as well
as dispersion laws for photon eigenmodes it is necessary to
diagonalize the polarization tensor (9) following the
method developed in [27,28,30]. The polarization operator
has three nontrivial scalar eigenvalues ϰi, i ¼ 1; 2; 3
(ϰ4 ¼ 0 due to its transversality)

Πν
μd

ðiÞ
ν ¼ ϰid

ðiÞ
μ ; i ¼ 1; 2; 3; 4 ð11Þ

(that may depend on the scalars available in the problem),
which are linear in θ and F , and quadratic in k. Then the
dispersion equations are

ϰi ¼ k2; i ¼ 1; 2; 3; ð12Þ
while the three eigenvectors dðiÞμ carry information about
polarizations of the three (as a matter of fact, two)
eigenmodes. To find the eigenvalues and eigenvectors
one generally needs to solve a cumbersome cubic equation.
More important is that the corresponding eigenvectors are
not universal, but depend on dynamics, that is on θ, which
includes the coupling constant.
We shall proceed with the general case in Sec V, where

this cubic equation will be avoided by considering only the
lowest order in θ. But preliminarily, in the next subsection,
we consider the special case when the magnetic field is
parallel to the pseudovector θi ¼ εijkθjk, in a frame where
θ0i ¼ 0. In this case, the diagonalization of the polarization
tensor simplifies to a closed-form purely kinematic sol-
ution, the same as in the standard, commutative electro-
dynamics in external magnetic field [28,30].

IV. MAGNETIC FIELD PARALLEL TO THE
NONCOMMUTATIVITY PSEUDOVECTOR θ

In the special case to be considered now the simplest
relation between the external field and the noncommuta-
tivity tensor θμν ¼ 1

2
αF μν is adopted, where α is a dimen-

sional parameter (½α� ¼ mass−4). Consequently, in view of
(2), also G ¼ 0, ðkθ ~FkÞ ¼ 0, F > 0. As a result, the
external field is purely magnetic in the special frame,
Bi ¼ 1

2
ϵijkF jk, and parallel to the noncommutativity pseu-

dovector θ, defined as θi ¼ ϵijkθjk. We therefore align the
axes of our special frame so that the third axis coincides
with the direction of the magnetic field. Then,
θ1 ¼ θ2 ¼ B1 ¼ B2 ¼ 0, in other words, θ3 ¼ θ12 and
F 12 are the only nonvanishing components of the non-
commutativity vector and of the external field strength
tensor.
With the condition θμν ¼ 1

2
αF μν the field tensor remains

the only external tensor in the problem, and the covariant
expansion of the polarization operator is the same as
in the problem of commutative electrodynamics in a
constant field of the most general form. While G ≠ 0,
the expansion (10) contains four independent matricesΨðiÞ

μν ,
given by [28]

5The Faraday rotation, as well as birefringence, was reported in
[29] for a model with two noncommutativity tensors against the
background of a plane wave and a magnetic field.
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Ψð1Þ
μν ¼ k2ημν − kμkν; Ψð2Þ

μν ¼ −ðFkÞμðFkÞν;

Ψð3Þ
μν ¼ −k2

�
δσμ −

kμkσ

k2

�
F2
σκ

�
δκν −

kκkν
k2

�
;

Ψð4Þ
μν ¼ ðFkÞμF 3

νσkσ þ F 3
μσkσðFkÞν: ð13Þ

In our present special case G ¼ 0; therefore, one has
F 3

μν ¼ −2FF μν. As a result, the set of matrices ΨðiÞ is
no longer linear independent (Ψð4Þ is proportional to Ψð2Þ).
Moreover, the eigenvectors dðiÞμ , i ¼ 1; 2; 3; 4, of the polari-

zation tensor have the simple form dðiÞμ ¼ bðiÞμ

bð1Þμ ¼ ðF 2kÞμk2 − kμðkF 2kÞ; bð2Þμ ¼ ð ~FkÞμ;
bð3Þμ ¼ ðFkÞμ; bð4Þμ ¼ kμ: ð14Þ
The nonvanishing eigenvalues are given in terms of the
coefficients Πi in (10) as

ϰ1 ¼ Π1k2 þ Π3ðkF 2kþ 2Fk2Þ;
ϰ2 ¼ Π1k2;

ϰ3 ¼ Π1k2 þ Π2kF 2kþ Π32Fk2: ð15Þ
The solutions of the dispersion equations (12) supply

poles to the photon propagator. The equation with i ¼ 1 has
only k2 ¼ 0 as its solution, which is pure gauge due to the
properties of the corresponding eigenvector bð1Þμ .
Using the condition θμν ¼ 1

2
αF μν we get for the polari-

zation tensor (9)

ΠμνðkÞ ¼ −αFðk2ημν − kμkνÞ − αF 2
μνk2 − αF 2

αβk
αkβημν

þ αkσF 2
σνkμ þ αkσF 2

σμkν

¼ −α
�
Fþ F 2

σκ
kσkκ

k2

�
ðk2ημν − kμkνÞ

− αk2
�
δσμ −

kσkμ
k2

�
F 2

σκ

�
δκν −

kκkν
k2

�
:

Comparing this expression with the general expansion (10),
where the ΨðiÞ matrices are given by (13), one finds the
coefficients Πi to be

Π1 ¼ −αF
�k2 þ kF 2k

F

k2

�
; Π2 ¼ 0; Π3 ¼ α:

Therefore, the nonzero eigenvalues of the polarization
tensor are readily obtained from (15) taking into account
the above coefficients,

ϰ1 ¼ αFk2; ϰ2 ¼ −αF
�
k2 þ kF 2k

F

�
;

ϰ3 ¼ αF

�
k2 −

kF 2k
F

�
:

The solutions to the equations ϰi ¼ k2 can be found with
the help of the relations

k2 þ kF 2k
2F

¼ k2
∥ − k20;

kF 2k
2F

¼ −k2⊥;

valid in the special frame. The two-dimensional vector k⊥
is the photon momentum projection onto the plane orthogo-
nal to B, while k∥ is the photon momentum projection onto
the direction of B.
The dispersion equations (12) with i ¼ 2; 3 have the

common solution

k20 − k2
∥ ¼ ð1 − αB2

3Þk2⊥ ¼ ð1 − 2θ3B3Þk2⊥

or

k0 ¼ jkj − θ3B3

k2⊥
jkj þOðθ2Þ:

In O(3)-invariant form this looks like

k0 ¼ jkj − ðθ ·B)B
2k2 − ðB · kÞ2

B2jkj þOðθ2Þ:

There is no birefringence (within the linear-in-θ accuracy
adopted), since these solutions are the same. In this respect
the situation is analogous to the Born-Infeld model of
nonlinear electrodynamics, only there the absence of
birefringence is an exact property of the model, distinguish-
ing it from any other nonlinear electrodynamics.
In spite of the absence of birefringence, the anisotropic

character of the propagation retains and manifests itself in
the fact that the group velocity is not parallel to the wave
vector k, its modulus, the speed of the wave packet, being
different for different orientations of the wave vector. Again
there is complete analogy with the Born-Infeld model, see
e.g., [16].
One can calculate the group velocity vector

vgr ¼
dk0
dk

¼ k
jkj

�
1 − 2ðθ ·B)þ ðθ · B)B

2k2 − ðB · kÞ2
B2jkj2

�

þ 2B
ðθ ·B)ðB · kÞ

B2jkj2 þOðθ2Þ

and its modulus

vgr ¼
���� dk0dk

���� ¼ 1 − θ3B3

k2⊥
k2

þOðθ2Þ: ð16Þ

The direction of propagation as identified with that of the
group velocity does not, obviously, coincide with the
direction of the wave vector k, but makes the angle φ
with it, such that cosφ ¼ 1 − 2ðθ3B3 cos η sin ηÞ2,
jφj ¼ jθ3B3 sin 2ηj, where cos η ¼ k∥

jkj. The directions of
vgr and k coincide for propagations parallel ðk⊥ ¼ 0;
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cos η ¼ 1Þ and perpendicular ðk∥ ¼ 0; cos η ¼ 0Þ to the
magnetic field.
It is seen from (16) that for any direction of propagation

but parallel, the speed can be smaller or larger than one,
depending on whether B and θ are parallel or antiparallel.

V. GENERAL COVARIANT DESCRIPTION
OF PHOTON PROPAGATION CONTINUED

In this section we come back to the general case of
Sec. III and proceed by diagonalization of the inverse
propagator (5), instead of diagonalizing the polarization
tensor, as in the previous section.
We need to solve the eigenvalue equation for the inverse

propagator (8), which is equivalent to (11)

ðD−1Þμσdσ ¼ λdμ ð17Þ

where the vector dσ is a linear combination of the vectors
bðiÞσ (14), which, unlike the special case of Sec. IV, no
longer are eigenvectors, but still form an orthogonal basis,

dσ ¼
X4
i¼1

αib
ðiÞ
σ : ð18Þ

Contrary to the eigenvectors (14) of the problem in the
previous section, the eigenvectors (18) will depend on the
dynamics, i.e., on the noncommutativity parameter that
contains the coupling constant.
One can check that the basis vectors bðiÞ are eigenvectors

of the free part of the propagator,

ðδσμk2 − kμkσÞbðaÞσ ¼ k2baμ; for a ¼ 1; 2; 3;

ðδσμk2 − kμkσÞbð4Þσ ¼ 0:

Since the polarization vector is transverse, Πμ
σkσ ¼ 0, as

are the first three basis vectors, Eq. (17) reduces to

ðD−1Þμσ
X3
a¼1

αab
ðaÞ
μ ¼ ðk2 − ϰÞ

X3
i¼a

αab
ðaÞ
μ ≡ λ

X3
a¼1

αab
ðaÞ
μ ;

where ϰ is the eigenvalue of the polarization tensor whose
eigenvector is

P
3
a¼1 αab

ðaÞ
μ . Making use of the orthogon-

ality of the eigenvectors bðaÞ, bðaÞμbðbÞμ ¼ 0 for a ≠ b,
one has

xabαb ≡ bðaÞμðD−1ÞμσbðbÞσ

bðaÞνbðaÞν

αb ¼ λαa:

Now in order to determine λ we need to solve the
equation

det jxab − λδabj ¼ 0;

which expresses λ in terms of the matrix elements xab.
Taking into account that the off-diagonal components of
xab are of order θ, they only contribute terms of order at
least θ2 in the characteristic polynomial. Therefore, the
dominant contributions come from the diagonal part,

det jxab − λδabj ¼
Y3
a¼1

ðxaa − λÞ þOðθ2Þ:

Therefore, to first order in θ, the dispersion equations (12)
can be written in the form λa ¼ xaa ¼ 0.

VI. MUTUALLY ORTHOGONAL ELECTRIC
AND MAGNETIC FIELDS

We are going to solve the dispersion relations in the
special case where the electric and magnetic fields are
orthogonal, and a Lorentz frame exists where the non-
commutativity tensor has vanishing time-space compo-
nents. Therefore, we add the restriction G ¼ 0 to
conditions (2).
In calculating the diagonal components of the matrix xab,

the only nontrivial contribution from the polarization
operator (9) comes from the term ðθF Þμν, due to the
transversality of the basis vectors and the simplifying
relations ðF ~F Þμν ¼ 0 and F 3

μν ¼ −2FFμν, peculiar to
the configuration G ¼ 0 (see the Appendix).

x11 ¼ k2
�
1−

1

2
ðθF Þ

�
þ 2

k2

ðkF 2kÞ ðkF
2θFkÞ;

x22 ¼ k2
�
1−

1

2
ðθF Þ

�
þ 2ðkθFkÞ;

x33 ¼ k2
�
1−

1

2
ðθF Þ

�
þ 2ðkθFkÞ þ 2

k2

ðkF 2kÞ ðkF
2θFkÞ:

ð19Þ

As in Sec. IV, we go over to a special reference frame
where the orientation of the spatial axes are such that the
third axis is aligned to the magnetic field, i.e., B1;2 ¼ 0,
B3 ≠ 0. Then the electric field should lie in the (1,2) plane.
Now we may rotate the spatial frame around the magnetic
field (axis 3) to nullify θ1. Hence the choices θ2, θ3, B3 ≠ 0,
and E1;2 ≠ 0 to be considered in the present section
represent the most general case specified by the condi-
tions (2) and G ¼ 0.
With the help of the identities (A1) from the Appendix,

we are able to write the eigenvalues (19) in the special
reference frame as
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x11 ¼ k2ð1 − θ ·BÞ;
x22 ¼ k2ð1þ θ ·BÞ

þ 2½k0k · ðθ × EÞ − k2ðθ ·BÞ þ ðk ·BÞðk · θÞ�;
x33 ¼ k2ð1 − θ ·BÞ

þ 2½k0k · ðθ × EÞ − k2ðθ ·BÞ þ ðk ·BÞðk · θÞ�:

As a result, the equation x11 ¼ 0 implies k2 ¼ 0, while the
two equations x22 ¼ x33 ¼ 0 imply the common solution

k2 ¼ −2½k0k · ðθ × EÞ − k2ðθ · BÞ þ ðk ·BÞðk · θÞ�:

This means again that birefringence is absent up to the
adopted accuracy of oðθ2Þ. The positive branch of k0 is

k0 ¼−ðk · ðθ×EÞÞþ
�
ð1−θ ·BÞjkjþ 1

jkðjðk ·BÞðk ·θÞ
�
:

ð20Þ

The group velocity is

vgr ≡ dk0
dk

¼ k
jkj

�
1 − ðθ ·BÞ − ðk ·BÞðk · θÞ

k2

�

þ θ
ðk ·BÞ
jkj þ B

ðk · θÞ
jkj − ðθ × EÞ; ð21Þ

and its norm is

vgr ¼ 1 − ðθ ·BÞþ ðk · BÞðk · θÞ
k2

−
ðk · ðθ × EÞÞ

jkj

¼ 1 −
k2⊥
k2

θ3B3 þ
k2k3
k2

θ2B3

þ 1

jkj ðk3θ2E1 þ k1θ3E2 − k2θ3E1Þ: ð22Þ

Since θ and B are pseudovectors, while E is a vector,
Eqs. (20), (21) are vectors and (22) is a scalar.
Special cases can be obtained from the above by

removing field components. For instance, by setting
E ¼ 0, one obtains the following modification:

vgr ¼ 1 −
k2⊥
k2

θ3B3 þ
k2k3
k2

θ2B3 ð23Þ

of the group velocity (16), valid for the special case6 θ2, θ3,
B3 ≠ 0, E ¼ 0. This case can be specified in an invariant
manner by adding the invariant conditions F ~θ ¼ 0,
ðFθ ~θÞ ¼ 0 and F > 0, which have the effect of removing
the electric field from the special frame. Because of the
factor of k3 in the θ2 term in (23), the propagation

transverse to the magnetic field still gives v⊥gr¼1−θ3B3,
which may be greater than unity, like in (16), but it also
remains equal to unity for propagation parallel to the
magnetic field. This is no longer the case for the more
general Eq. (22): for the parallel propagation, too, the group
velocity (22)

vgr ¼ 1þ θ2E1

may exceed unity.
One can proceed in a similar fashion by specifying

another particular case of interest, by setting B ¼ 0. Then,
by rotating the coordinate system around the third axis we
can annihilate the component E2 of the electric field, and
annihilate the component θ3 by the subsequent rotation
around the first axis. Therefore, by setting B3¼E2¼θ3¼0
(22) we get the following expression:

vgr ¼ 1þ θ2E1

k3
jkj

for the group velocity in an electric field directed along the
first axis. The photon propagating in the plane spanned by
the mutually orthogonal vectors of the electric field E and
the noncommutativity vector θ does so with unit speed (that
of light in the vacuum). For other directions it exceeds unity
when the three vectors E, θ, and k make a right triad,
Ei ¼ aϵijkθjkk with a > 0.

VII. CONCLUDING REMARKS

We have considered, in the lowest order of the non-
commutativity parameter, photon propagation in an aniso-
tropic medium, equivalent to the vacuum in the space-space
noncommutative electrodynamics with external constant
electric and magnetic fields. The most general case con-
sidered includes mutually perpendicular electric and mag-
netic fields, arbitrarily oriented with respect to the
noncommutativity vector, taken together or—as special
cases—separately. Our consideration is based on the
Lorentz-covariant formalism of the Lorentz-noninvariant
theory, that operates with the local action written as a
Lorentz scalar including the noncommutativity tensor and
the background constant electromagnetic fields, violating
Lorentz invariance. We found the dispersion laws and we
derived expressions for the group velocities. In neither case
the birefringence occurs within the accuracy adopted, i.e.,
the solutions of dispersion equations for two propagating
modes coincide. In neither case the direction of the wave-
vector, the photon 3-momentum, coincides with the direc-
tion of the energy-momentum propagation given by the
group velocity (see [31] for the Lorentz-noninvariant case
and nonsymmetric energy-momentum tensor). The direc-
tion of the wave vector should not be referred to as the
direction of propagation. Also no conclusions on the speed
of propagation can be arrived at based on the phase6The dispersion law in this special case was obtained in [22].
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velocity, contrary to what some authors are inclined to do.
However, the group velocity should be considered as
carrying information. Consequently it must not exceed
the speed of light in vacuum, c ¼ 1, without conflicting
with the causality principle, even though we are dealing
with a Lorentz-noninvariant theory. (The known exception
to this rule made by the phenomenon of abnormal
dispersion can be easily circumvented by a redefinition
of the group velocity for complex energy instead of
complex momentum [32].) Contrary to the causality
requirement, we have found that the group velocity does
exceed unity if special relations between the background
electromagnetic field and the noncommutativity tensor are
fulfilled. Moreover, in the general case considered, there is
no special direction of propagation relative to the back-
ground fields that would exclude propagation with speed
exceeding unity. We consider this situation as a serious
indication of inconsistency of the theory.
What may the possible way out be?
In general physics courses, professors sometimes tell

students that a perfectly rigid body cannot be built, because
the speed of sound in it would be greater than the speed of
light in vacuum. However, they do not explain what
mechanisms can prevent one from constructing such a
body. A positive example of such a mechanism may be
found in quantum electrodynamics with external fields,
where a super-Plank background field leads to the pos-
sibility of superluminal propagation. However, this field
cannot be achieved, because the instability destroying that
field occurs earlier [16]. Following that line we must admit
that a certain mechanism should exist that would exclude or
forbid causality violating relations between the background
field and the noncommutativity tensor. Within the simplest
case of Sec. IV this would mean a prohibition of the
background magnetic field being opposite to the non-
commutativity vector. Such a mechanism, however, is
unknown; anyway it is not seen to be provided by the
field equations.
On the other hand, we may speculate that the presence of

a superluminal signal may not be considered a catastrophe,
indeed, provided that the excess over the speed of light is
extremely small. We should take into account that the
realization of a time machine would require a Lorentz
transformation with speed V < 0, enough to reverse the
sign of the time coordinate. This means that the inequality
jVj > 1=v is at least necessary. (It is understood here that
the signal is superluminal, v > 1, albeit the speed of the
reference frame does not exceed the speed of light, jVj
< 1.) Such must be also the speed of the device that
registers the arrival of the superluminal signal and sends a
superluminal signal back, as explained in [17]. Since the
signal speed is expected to exceed unity only just a little,
the speed of that device should closely approach the speed
of light. Moreover, to get a sufficiently negative time
interval, as it is desirable for achieving a sufficiently remote

past, it is required that jVj approach unity still closer. Since
we never experimented with such devices, we cannot state
that the whole manifold of the established physical facts
contradicts the possibility of constructing a time machine
once we have at our disposal a superluminal signal,
whereas the logical paradox implied by this device is
not alone sufficient for ruling it out.
Let us estimate the necessary speed of the detector/

emitter in the case of noncommutative electrodynamics
with external fields considered in the present paper.
According to the present results, the excess of the group
velocity over unity Δv ¼ vgr − 1 is of the order of θB. It
makes sense to take for the magnetic field its largest value
known from pulsars and magnetars, which is of the order of
magnitude of Schwinger’s characteristic value m2

e or two
orders higher. With m and e being the electron mass and
charge this makes approximately 4.4 × 1013G. According
to the strongest estimate of the noncommutativity param-
eter found in [13], θ < ð1000 TevÞ−2, then Δv ¼
θB < ∼10−18. Hence the speed of the emitter/detector in
the pulsar magnetosphere must be greater than 1–10−18

One cannot fathom this speed for a macroscopic body. This
corresponds to the speed of a cosmic proton with energy of
1018 ev. The kinetic energy of the emitter/detector weigh-
ing one gram would be 1041 ev.
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APPENDIX NOTATION AND USEFUL
RELATIONS

We follow the conventions adopted in [28], in particular,
the metric is given by η ¼ diagð1; 1; 1;−1Þ, μ; ν; ρ;… ¼
1; 2; 3; 0, and ε1230 ¼ 1. We use the following conventions
with regard to contractions:

Fn
αβ ≡ Fα

α1Fα1
α2…Fαn−1β; ðθFnÞαβ ≡ θα

α1Fn
α1β

;

ðθKÞ ¼ ðθKÞαα; n ¼ 0; 1; 2;…;

ðKkÞα ≡ Kαβkβ; ðkKÞα ≡ kβKβα;

ðKkÞα ¼ −ðkKÞα for KT ¼ −K:

Thus, ðkFθkÞ≡ kμFμνθ
νσkσ and ðθFÞ ¼ ðFθÞ≡ θαβFβα.

We also have
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F ¼ −
1

4
F2 ¼ 1

2
ðB2 −E2Þ; G ¼ −

1

4
ðF ~FÞ ¼ E ·B;

where ~Fμν ¼ 1
2
εμνρσFρσ , Ei ¼ Fi0 and Bi ¼ 1

2
εijkFjk. We

also note the useful relations

ðF ~FÞμν ¼ −ημνG;

F3
μν ¼ −2FFμν −G ~Fμν;

ð ~F2Þμν ¼
1

2
ημνF2 − ðF2Þμν:

We list some identities for the case where in the special
frame one has θ0i ¼ 0. The dual noncommutativity tensor
is defined as ~θμν ¼ 1

2
εμνρσθ

ρσ. The noncommutativity

vector is θi ¼ ϵijkθjk, and its dual is ~θi ¼ ϵijk ~θjk. The
following relations hold:

ðθFÞ¼−2θ ·B;

ðkF2kÞ¼−ðk0Þ2E2−2k0k · ðE×BÞ
þðk ·EÞ2−k2B2þðk ·BÞ2;

ðkθFkÞ¼ k0k · ðθ×EÞ−k2ðθ ·BÞþðk ·BÞðk ·θÞ;
ðkF2θFkÞ¼ ½ðk0Þ2E2− ðk ·EÞ2þ2k0k · ðE×BÞ

þk2B2− ðk ·BÞ2�ðθ ·BÞ− ðk0Þ2ðE ·BÞðθ ·EÞ
þðk ·EÞðE ·BÞðk ·θÞ−k0ðE ·BÞk · ðθ×BÞ:
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