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ABSTRACT: 
 

Group III metabotropic glutamate receptors (mGluR III) are known to decrease glutamate 

release and to play an important role in controlling pain as documented in neuropathic pain 

models. Much less is known about their potential neuroprotective effect against excitotoxicity 

that is considered important for damage onset of spinal cord injury. Using rat spinal cord 

organotypic slices model, we investigated if mGluR III receptor activation might contrast 

excitotoxic cell death evoked by kainic acid (0.1 mM) applied for 1h and followed by wash 

for further 24h. The specific agonist of mGluR III receptors L-(+)-2-amino-4-

phosphonobutyric acid (L-AP4; 1 µM) was either co-applied with kainic acid or administered 

during washout. Cell death was quantified in terms of percentage of pyknotic nuclei, total 

number of neurons, motoneurons and astrocytes.  

Furthermore we developed for future long-term studies an in vitro model of Spinal Cord 

Isolated from newborn rats maintained for 3 days in medium. We characterize this model 

using both immunohistochemistry and electrophysiological recordings. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 SPINAL CORD INJURY 

 

Spinal Cord Injury (SCI) is an event related to severe damage to spinal cord that leads to 

loss of sensory and motor function distal to the point of injury (Hulsebosch 2002). SCI can 

be traumatic or non-traumatic, producing long-term effects, severe lifelong disabilities that 

are very problematic for the person affected, but also for their family and society (M. E L Van 

Den Berg et al. 2010). The Annual Incidence of SCI estimated in 22 new cases every millions 

of population and there are ~2.5 million people affected by SCI (Rossignol et al. 2007). The 

average age of the patients is 31.7 years and the ratio between male and female is four to 

one (John W. McDonald and Sadowsky 2002). Life expectancy in spinal cord injured people 

increased from World War II (3 months) to now (25 to 30 years) (Hulsebosch 2002). One or 

more of the following symptoms may characterize SCI: paralysis, loss of the possibility to 

feel cold, heat and touch, hyper-reflexia or spasm, pain, loss of bladder control, loss of 

sexual functions. The spinal cord is divided in several segments; starting from the upper to 

the lower, they are cervical, thoracic, lumbar and sacral. Every segment connects to a 

specific part of the body (e.g. cervical are related to respiratory movements) consequently, 

depending on which segment is injured different muscles, organs and sensation are 

involved. Paralysis can be tetraplegia (or quadriplegia), when the level of injury is above the 

first thoracic vertebra (T1), or paraplegia, when the level of injury is below the T1 (Figoni 

1984; Harkey et al. 2003). Significant improvements have been made on repair and recovery 

of function and in the early medical and surgical management. The major therapeutic goal 

during the rehabilitation of patients is to regain a far-reaching autonomy, which involves 

compensation of the disturbed or missing vegetative and sensorymotor functions. Clinically, 

spinal cord injury leads to a complete loss of motor, sensory and vegetative functions 

underneath the point of injury. In this phase of the spinal shock, the vasomotor and visceral 

motor innervation is distrupted. This results not only in tachycardiac/bradicardiac arrhythmia 

but also in hypotensive and hyperextensive episodes/dysregulation (so called autonomic 

dysreflexia). In addition atony of the efferent urine ducts, the stomach and the intestine along 

with paralytic ileus symptoms, endocrine disruptions like hyperglycemia and derailment of 

the electrolyte metabolism and malfunction of the body temperature control occur (Gerner 

1992; Teasell et al. 2000). Upon the decline of the spinal shock, about 4-6 weeks after the 
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initial accident, pathological reflexes and usually also spasticity develop due to the absence 

of supraspinal control (Ditunno et al. 2004). Looking at past research, there are a lot of 

different pathways that have been explored to describe the pathophysiological development 

of secondary damage in SCI and the intrinsic regenerative response. Different studies 

focused on neuronal and glia protection using different pharmacological approaches, from 

methylprednisolone to cyclooxygenase (Hurlbert 2001; Hurley et al. 2002; Schwab et al. 

2004; Short et al. 2000), then the recently discovered EPO and riluzole (Celik et al. 2002; 

Cifra et al. 2012; Gorio et al. 2002). Another field is related to neurorestoration with 

promotion of axonal conduction (Nashmi and Fehlings 2001), remyelination (Bunge 2001; J 

W McDonald 1999; J W. McDonald and Howard 2002), regeneration/plasticity, elimination 

of the inhibitor factors(Schwab et al. 2005). Further groups focused on the environment near 

the lesion site studying the role of scar inhibition (Grimpe and Silver 2002; De Winter et al. 

2002), the blocking of the inhibitory axonal signal integration into the axon (Dergham et al. 

2002; Fournier et al. 2003) and in the end the stimulation of axons via growth factors such 

as neurotrophins (J W. McDonald and Howard 2002). A lot of these studies started from 

previous work on brain injury and are only the first approach on the pathophysiology of the 

Spinal Cord Injury (SCI). The time has come to move further by investigating the 

pathophysiology of the SCI that at the present day remains largely unknown and there are 

no effective treatments to restore completely motor performance after SCI (Rossignol et al. 

2007; Rowland et al. 2008).  

1.2 EPIDEMIOLOGY OF SCI. 

1.2.1 Complete and incomplete SCI 

SCI can be complete or incomplete from a clinical point of view (Harkey et al. 2003). The 

clinical scale established by American Spinal Injury Association (ASIA) divides persons 

affected by SCI in five clusters. From A to E due to severity of neurological loss evaluated 

by verifying the remaining movement abilities of the person injured: 

 

A) Complete. No sensory or motor function is preserved in the sacral segments S4-5. This 

will result in complete paraplegia or tetraplegia. 

B) Sensory Incomplete. Sensory but not motor function is preserved below the neurological 

level and includes the sacral segments S4-5 and no motor function is preserved more than 

three levels below the motor level on either side of the body.  
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C) Motor Incomplete. Motor function is preserved below the neurological level, and more 

than half of key muscle functions below the neurological level of injury have a muscle grade 

less than 3. 

D) Motor Incomplete. Motor function is preserved below the neurological level, and at least 

half of key muscle functions below the neurological level of injury have a muscle grade more 

than 3. 

E) Normal. Sensory and motor functions are normal, in all segments. 

(http://www.asia-spinalinjury.org/elearning/ISNCSCI_ASIA_ISCOS_low.pdf). 

 

1.2.2 Traumatic SCI 

The National Spinal Cord Injury Statistical Center (NSCISC) report for 2014 underlines that 

in the United States the three leading causes of spinal cord injury before 2013 were 

traumatic (figure 1.1). Vehicular accidents, including cars and motorcycles, ranked as the 

leading cause of SCI (38%), even if there was a steady decrease in this percentage of SCI 

causes from 46.9% (1990-1994) to 38%(2013). Falls ranked second (30%) followed by acts 

of violence, primarily gunshot wounds (14%). A decrease in the percentage of SCI due to 

sports-related activities from 14.4 to 9% occurred during the last twenty years. There has 

been a significant increase in SCI during the last decade as consequence of falls, probably 

due to aging of the population (https://www.nscisc.uab.edu/reports.aspx). There is also a 

progressive increase of traumatic spinal cord diseases among older adults from 79.4 per 

million in 2007 to 87.7 by the end of 2009 (Selvarajah et al. 2013). For studying traumatic 

SCI injuries in the last years a lot of animal models were developed and used. For SCI 

research, it is essential to establish an ideal animal model of injury. Ideal models should 

meet the following conditions (Akhtar, et al. 2008): (1) simulate damage that is similar to 

clinical SCI; (2) control over conditions, reproducibility, stability; (3) involve a simple 

technique that is easy to study; (4) the equipment used to make a model is straightforward 

and quick to produce. All these principles are still valid for other types of models such as in 

vitro models. Differences in injury exist between experimental and clinical SCI. In both 

experimental and clinical SCI, contusion and compression are two of the most common 

injury types. However, in experimental animals, these injuries are frequently induced 

dorsally and in the thoracic spine, whereas most clinical injuries occur anteriorly and in the 

cervical region (Akhtar et al. 2008). According to the National Spinal Cord Injury Statistical 

Center, in 2005, 51% of SCI cases in the U.S. occurred in the cervical region (Akhtar et al. 

https://www.nscisc.uab.edu/reports.aspx
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2008). Most SCI in humans affects the anterior spinal artery that supplies three quarters of 

cord tissue, in contrast to the dorsal arteries affected in experimental SCI (de la Torre 1981). 

  

 

Figure 1.1. Modified from NSCISC 2014 Facts 

 

1.2.3 Non-traumatic SCI 

In parallel with a general decrease in the incidence of trauma-related SCI, another trend has 

been observed, namely that non-traumatic SCI cases are increasing in percentage of the 

total SCI affected persons reaching a total amount to 30-50% of spinal cord disorders (Nair 

et al. 2005). Non-traumatic SCI can constitute a very important risk factor during 

rehabilitation from thrombosis, spasticity or wound infections (McKinley et al. 2002) because 

it may be caused by non-traumatic events due to vertebral stenosis, tumors, vascular 

ischemia, inflammatory conditions or subsequent to abdominal aorta surgery ( Van den Berg 

et al. 2010; Bianchetti et al. 2013; Nair et al. 2005). In general, non-traumatic lesions are 

incomplete with severe clinical symptoms including paralysis and sensory dysfunction (Van 

den Berg et al. 2010; Nair et al. 2005). Tumor compression, tissue degeneration or vascular 

problems that can occur during aging increase the risk of non-traumatic SCI in elderly people 

in contrast to traumatic SCI that is less common during the late phase of life (Van Den Berg 

et al. 2010). Recently our lab developed an in vitro model of damage using a particular type 

of pathological medium and keeping isolated newborn spinal cord in vitro for 24 hours (G. 

Taccola et al. 2008), mimicking post-ischemia like environment. We also further analyzed 

the role of magnesium in this particular medium (Bianchetti et al. 2013) unrevelling the role 
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of this ionic imbalance in ischemic conditions characterized by low oxygen level (Bianchetti 

et al. 2013; Margaryan et al. 2009; Taccola et al. 2008).  

 

1.3 PHASES OF SCI 

 

Understanding the pathophysiological processes occurring after acute SCI is the first step 

for developing new neuroprotective strategies based on a pharmacology approach. No 

matter of its origin, all the different types of traumatic and non traumatic SCI follow similar 

pathways of evolution (Figure 1.2) that has been divided in three main phases: the acute 

and immediate (or primary), the secondary and the chronic injury processes (Hulsebosch 

2002; Tator 1995). 
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Figure 1.2: Pathophysiology of the postlesional secondary damage. A spinal cord injury expands itself during 

the first weeks posttrauma due to both (A) systemic and (B,I–V) local effects (modified from Tator, 1995). The 

cascade of secondary damage is presented in the flow diagram within the schematic neuron. (C) The 

timeprogression after spinal cord injury: upon the start of the undirected depolarization (loss of membrane 

integrity) glutamate is released (astrocytes, neurons), this causesthe activation of the neighboring neurons 

(metabolic stress) and moreover the continuation of the formation of free radicals (Schwab et al. 2006). 
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1.3.1 The Immediate or primary injury phase (1-2 h) 

The first events of traumatic SCI are compressive-contusive-type injuries due to fracture or 

dislocation of the spinal column and include shearing, laceration, and/or acute stretching. 

After this mechanical damage, over a matter of a few minutes, the injured neurons respond 

with abnormal firing of action potentials and significant electrolytic unbalance of the levels 

of Na+, Ca2+, K+. Whenever this condition persists for up to 24 hours, spinal cord networks 

become severely damaged (Hulsebosch 2002; Rowland et al. 2008). In parallel with this 

networks impairment, other events occur like parenchymal hemorrhages in the white and 

grey matter (Kakulas 2004; Quencer et al. 1986). During this initial process there is also an 

upregulation of proinflammatory cytokines TNFα and IL-β and activation of microglia 

(Marcello et al. 2013; Pineau and Lacroix 2007). During the following 24 hours, the 

depolarization induces a massive release of neurotransmitters, including glutamate that is 

involved in excitotoxicity (Lipton and Rosenberg 1994); this can be one step in the disease 

process when decreasing the concentration of excitotoxic compounds may limit or arrest the 

extension of the damage (Norenberg et al. 2004). 

 

1.3.2 The Secondary injury phase (2h to 2 weeks) 

The main actors in secondary injury phase are cell death due to ischemia, the electrolytic 

shift and the edema from the acute primary phase. The whole event is subdivided in two 

further moments, the early acute and the sub-acute stage (Hulsebosch 2002; Rowland et 

al. 2008). Within the first two hours, the increase in extracellular concentration of glutamate 

and other excitatory amino acids such as aspartate causes high level of neuronal deaths via 

activation of multiple pathways. Thus, this is another timepoint when pharmacology 

treatments targeting the general biochemical damage can help to constrain the amplification 

of the lesion (Hulsebosch 2002; Kakulas 2004; Lipton and Rosenberg 1994; Rowland et al. 

2008; Tator and Koyanagi 1997). During the subacute stage, that continues for two weeks 

after the injury, there is a delayed astrocytic response: the periphery of the lesion becomes 

hypertrophic and proliferative with a strong increase in glial fibrillary acid protein expression. 

The lesion grows in size from the initial core of cell death with cells at risk of dying in the 

periphery of the lesion site (Herrmann et al. 2008; Hulsebosch 2002; Pineau and Lacroix 

2007). 
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1.3.3 Glial Scar formation and Chronic phase (>6 months) 

After the secondary injury phase, the delayed astrocytic response leads to the formation of 

a scar that block any possible regenerative axonal sprouting, which is, therefore, insufficient 

for recovery from severe SCI (Hill et al. 2001) (Figure 1.3 for examples). The beginning of 

the scar formation consists of Wallerian anterograde degeneration of axons, and 

demyelination near the lesion site (Norenberg et al. 2004). Subsequently, the astroglial scar 

replaces the destroyed myelinated axons, while opposing neurite outgrowth (Bovolenta et 

al. 1993; Norenberg et al. 2004). The final stage is the so-called myelomalacia, a 

pathological condition of softening of the spinal cord with potential evolution into the 

formation of intramedullary cysts. 

 

 

Figure 1.3: Contusion of the spinal cord subsequent to a luxation fracture of the spinal column. (A) Frozen 

section. Patient died acute of another cause (with kind permission of Dr. v. Rauschning). (B) 35 years old 

patient with an acute fracture/luxation at T12/L1, contusion of the spinal cord leading to complete paraplegia 

after a car accident. (C) Repositioning and stabilization of the fracture on the day of the accident after 

laminectomy using an internal fixation and full persistence of the complete paraplegia. (D) 14 days after an 

overhemisection-transection injury: a mature scar in an experimental model is clearly detectable (arrows). The 

scar is, besides myelin, an important barrier for the regeneration of sprouting axons. (From Schwab et al. 2006) 
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1.4 EXCITOTOXICITY AS A MOLECULAR MECHANISM UNDERLYING 

SECONDARY DAMAGE AFTER SCI 

 

Death of CNS neurons during acute injury occurs as a result of a complex combination of 

excitotoxicity, necrosis, apoptosis, edema and inflammatory reactions (Aarts and Tymianski 

2004). One process contributing to the propagation of delayed cell death after an acute SCI 

is excitotoxicity. There is a strong correlation between the loss of ionic homeostasis and 

excitotoxicity during the acute phase of SCI. Excitotoxicity is a process of overactivation of 

excitatory amino acid receptors causing neuronal cell death (Park et al. 2004; Szydlowska 

and Tymianski 2010). The principal excitatory neurotransmitter in the central nervous 

system (CNS) is glutamate released from vesicles in the presynaptic terminals into the 

synaptic cleft. Excitotoxicity involves glutamate postsynaptic receptors, in particular 

ionotropic receptors such those sensitive to NMDA, AMPA or kainate (Aarts and Tymianski 

2003; Kumar et al. 1991) and other Ca2+ permeable receptors such as TRPM family (Aarts 

and Tymianski 2003; Kaneko et al. 2006; Schmitz and Perraud 2005). Ionotropic receptors 

activation increases Na+, K+ and Ca2+ permeability causing an overload in the network 

activity of the system and an imbalance in Ca2+ compartmentalization triggering cell death 

pathways relying on calcium-dependent enzymes. (Szydlowska and Tymianski 2010). 

Tymianski et al. (1993) suggested that Ca2+ influx via NMDA channels is more toxic than the 

one entering via other sources, proposing a sort of “source specificity” (Arundine and 

Tymianski 2003; Mattson 2000). The imbalance in calcium homeostasis can also occur due 

to its release from the endoplasmic reticulum or mitochondria due to physical damage during 

acute injury. The increase of cytoplasmic calcium concentration can trigger downstream 

neurotoxic cascades including inhibition in energy supply from ATP and activation of 

enzymes such as proteases, protein kinases, nitric oxide synthase (NOS), calcineurin and 

endonucleases (Mattson 2000; Szydlowska and Tymianski 2010). All this metabolic stress 

contributes to glutamate-induced neuronal death occurring during the secondary damage 

phase (Thayer and Wang 1995). Drugs designed to block the entry of calcium into neurons 

have failed to produce a positive outcome in clinical trials, as these treatments often elicited 

side effects such as reduced level of consciousness, hallucinations, hypertension and, in 

the worst cases, death (Davis et al. 2000; Lee et al. 2000; Szydlowska and Tymianski 2010).  

Motoneurons are a quite fragile type of cell due to the low levels of glutamate necessary for 

their activation, and this fragility expose this type of cell to the damaging effects elicited by 
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high glutamate concentration. AMPA receptors on motoneurons often lack the GluR2 

subunit rendering them more permeable to Ca2+ (Van Damme et al. 2002). Furthermore, 

Ca2+ binding proteins (e.g. parvalbumin and calbindin) are poorly expressed in the majority 

of motor neurons limiting their calcium buffering capacity (Ince et al. 1993). Excitotoxicity 

affects glial cells too, in which the increase in extracellular glutamate concentration leads to 

a late-response with microglia activation and release of pro-apoptotic factors (Araque et al. 

2000), and a decrease in the activity of transporters (Li and Stys 2001). Excitotoxicity is not 

only involved in SCI, but it is also proposed to underlie a variety of neurological diseases 

such as stroke, traumatic brain injury, multiple sclerosis, Alzheimer’s disease, amyotrophic 

lateral sclerosis (ALS), Parkinson’s disease, and Huntington’s disease (Singleton and 

Povlishock 2004). 

 

1.5 NEUROPROTECTION IN SPINAL CORD 

 

1.5.1 Exogenous compounds for neuroprotection 

Although advances in pharmacotherapy for the purpose of limiting neuronal injury and 

promoting regeneration after spinal cord injury (SCI) have been achieved, only 

methylprednisolone (MP), administered within the first few hours at high concentration, is 

used in accordance with USA guidelines (Peter Vellman et al. 2003). MP, which attenuates 

the peroxidation of membrane lipids and post-traumatic inflammation, has been reported to  

improve neurobehavioural outcomes in preclinical studies (Braughler and Hall 1984). The 

administration of MP, however, is not without important side effects; therefore, its use in 

treating SCI is controversial (Nash et al. 2002; Shen et al. 2005). Another drug is interleukin 

10 (IL-10) that allegedly shows therapeutic potential related to its trophic effects on spinal 

cord neurons, downregulation of the apoptotic factors Bax and caspase 3, and upregulation 

of anti-apoptotic factors Bcl-2 and Bcl-xl, and neuroprotection against excitotoxicity through 

the PI3K-AKT pathway. Although it is unlikely that IL-10 alone would improve the condition 

of an acute SCI patient, its use in conjunction with other treatment models could potentially 

be valuable, since treatment may necessitate manipulation of spinal cord tissue, leading to 

harmful secondary inflammation. Nonetheless, published data on IL-10 use in a chronic SCI 

model are few and discontinued at the present time (Thompson et al. 2013). Recently 

another compound, namely erythropoietin (EPO) has been described as a glia- and neuro-

protective drug (Goldman and Nedergaard 2002; Gorio et al. 2002). In addition to its anti-

inflammatory role (Agnello et al. 2002), EPO is claimed to possess protective characteristics, 
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e.g., through activation of the anti-apoptotic Janus-kinase-2 pathway. Furthermore, it 

allegedly normalizes the autoregulation of vessel tone and suppresses the release of nitric 

oxide. Unfortunately, by interfering with blood flow, EPO causes an augmented haematocrit 

value and an increased aggregation of thrombocytes (Erbayraktar et al. 2003; Schwab et al. 

2006).  

While other compounds have been studied before such as anaesthetic agents (including 

Xenon gas, with anti-excitotoxic properties), ormones such as 17-estradiol, progesterone, 

thyrotropin-releasing hormone (TRH) and its analogues, clinical trials with these substances 

are few and with frustrating results (Onose et al. 2009).  

More recently our lab has focused on the role of other pharmacological compounds, such 

as riluzole or methoxyflurane, showing neuroprotection effects against excitotoxicity in an in 

vitro model using kainate as a glutamate analogue for eliciting excitotoxic damage (Mazzone 

and Nistri 2011; Shabbir et al. 2015). Both these compounds act during the first phases of 

secondary injury damage by preserving components of the neuronal network activity and by 

preventing excitotoxicity within a short timeframe. Unfortunately it has been reported that 

methoxyflurane administered for long time to man can release fluoride with toxic effects on 

peripheral organs like the kidney (E D Kharasch et al. 1995; E D Kharasch et al. 2006). 

Although with fewer side effects, riluzole seems to provide incomplete neuroprotection to 

the spinal cord network after injury (G L Mazzone and Nistri 2011). Other strategies and 

combined application of several agents seem to be necessary: future studies should address 

this issue. 

 

1.5.2 Pharmacology and neuroprotection 

Activated microglia releases glutamate and neurotoxic pro-inflammatory molecules such as 

cytokines and cytotoxic factors, thus amplifying excitotoxic damage and exacerbating 

neurodegeneration (Barger and Basile 2001; Barger et al. 2007; Cunningham et al. 2005; 

Parker et al. 2002). In addition, prolonged activation of microglia will prevent these cells from 

carrying out their supportive role to neurons such as release of growth factors (Benoit et al. 

2008). Blocking microglial activation has been demonstrated to be neuroprotective in a 

mouse model of Parkinson’s disease (Wu et al. 2002). In general altering microglial 

activation in neurodegenerative processes is likely to have multiple beneficial consequences 

on the progression of pathologies (Williams and Dexter 2014). Different models of SCI have 

indicated that glutamate receptor antagonists may be useful therapeutic strategies in terms 

of improved behavioural outcome and neuroprotection (Hulsebosch 2002). The 
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noncompetitive NMDA ion channel blocker MK-801 (dizocilpine, Merck) and NBQX, a 

soluble AMPA receptor antagonist, have both demonstrated significant improvements in the 

contusion model of SCI in outcome measures of improved behaviour and neuroprotection 

(Faden and Simon 1988; Gorgulu et al. 2000; Li and Stys 2001; Nesic et al. 2001; Wada 

and Shikaki 1999; Wrathall et al. 1996). In the case of NBQX, the neuroprotection occurs 

principally in the oligodendrocyte population (Rosenberg, Teng, and Wrathall 1999). Other 

studies showed that the NMDA antagonists gacyclidine and agmantine, which inhibits nitric 

oxide synthase too, have demonstrated neuroprotective effects (Yu et al. 2000). Recently 

the group I metabotropic glutamate antagonists showed neuroprotective effects on a model 

of contusion SCI (Mills et al. 2002). 

  

1.6 SPINAL CORD METABOTROPIC GLUTAMATE RECEPTORS  

 

After injury there is a short window characterized by large amount of glutamate release at 

the injury site (McAdoo et al., 1999). This event leads to the activation of glutamate 

receptors, which are divided into two major types: ionotropic receptors (iGluRs) further 

divided into 3 groups, NMDA, AMPA and KA receptors; and metabotropic receptors 

(mGluRs).  

The mGluRs are divided in three groups based on sequence homology (table 1), 

transduction mechanism and pharmacology. Group I mGluRs (mGluR1/5) stimulate 

phospholipase  C (PLC), activate protein kinase C (PKC), and increase Ca2+ release from 

internal storage sites. Both group II (mGluR2/3) and group III (mGluR 4/6-8) are coupled to 

inhibition of adenylyl cyclase. All the mGluRs are G-protein coupled and their activation 

affects multiple intracellular signalling pathways having long-lasting effects (Mills et al., 

2002). 
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Table 1.1 

This table lists different families of mGluRs, their main effects, and their agonist and antagonist and their 

location in the synaptic cleft (Niswender and Conn 2010). 

 

The laminar distribution of mGluRs in the dorsal horn is well characterized (Alvarez et al. 

2000; Jia et al. 1999; C D Mills et al. 2001). mGluR1 is found primarily in deeper laminae 

(III-V), whereas mGluR5 is found in all laminae of the dorsal horn (I-V), but mainly in lamina 

II. Localization of mGluR2/3 is found predominately in II, with decreasing expression through 

laminae III and IV.  

In the CNS, group I mGluRs are found at both presynaptic and postsynaptic sites and their 

activation can increase transmitter release (J. P. Pin and Bockaert 1995). Group II and III 

instead are primarily presynaptic (Liu et al. 1998; Lujan et al. 1996; Neki et al. 1996; Ohishi 

et al. 1995; Petralia et al. 1996; Shigemoto et al. 1997) and can inhibit neurotransmission 

(Baskys and Malenka 1991; Forsythe and Clements 1990; Gereau and Conn 1995; Macek 

et al. 1996; Trombley and Westbrook 1992; Vignes et al. 1995) (Figure 1.4).  
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Figure 1.4. Schematic overview of mGluRs at the synapse. In general, group I (green) are localized 

postsynaptically, and group II (blue) and III (red) receptors are localized in presynaptic locations, (Figure 

modified from Niswender and Conn, 2010) 

 

A large amount of work has demonstrated that mGluRs are key components in nociceptive 

processing. Activation of spinal group II mGluRs leads to depression of neuronal hyper-

responsiveness following inflammation (Stanfa and Dickenson 1998) and reduces 

nociceptive behaviour to noxious mechanical stimuli (Dolan and Nolan 2000). Activation of 

spinal group III mGluRs decrease nociceptive responses and reverse central sensitization 

(Fisher and Coderre 1996; Neugebauer et al. 2000). Furthermore, activation of group II and 

III mGluRs may confer neuroprotection by reducing Ca2+ influx through voltage-dependent 

Ca2+ channels (Gerber et al. 2000; J.-P. P. Pin and Duvoisin 1995; Takahashi et al. 1996). 

The typical orthosteric agonist of group III mGluRs is L-AP4, which is highly selective for 

group III mGluRs relative to other mGluRs or ionotropic glutamate receptors (Schoepp et al. 

1999). L-AP4 has submicromolar to low micromolar potencies at mGluRs 4, 6 and 8, but 

submillimolar to millimolar potency at mGluR7 (Schoepp et al. 1999). Each of the group III 

mGluRs has been genetically deleted in mice, who display several interesting phenotypes. 
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Of the groups related to the spinal cord mGluRs 4, 7 and 8, it is known that mGluR4 is 

predominantly presynaptic (Corti et al. 2002) as mice lacking this receptor show impairment 

in cerebellar synaptic plasticity and in learning certain complex motor tasks (Pekhletski et 

al. 1996). These animals also show impaired abilities in spatial memory performance (Gerlai 

et al. 1998). mGluR4 has also been shown to modulate GABA(A) receptor-mediate seizure 

activity (Snead et al. 2000), and mGluR4-/- mice lack motor stimulatory effects induced by 

ethanol (Blednov et al. 2004). mGluR7 exhibits a wide distribution throughout the entire 

brain, has low affinity for glutamate and is highly localized to active zones of synapses 

(Kinoshita et al. 1998; Shigemoto et al. 1997). In previous studies it has been proposed that 

mGluR7 operates like a low pass filter during neurotransmission acting as a brake for 

overstimulation, as it becomes active only when the glutamate concentration becomes too 

high (Niswender and Conn 2010). Supporting this hypothesis, mGluR7 knockout mice are 

prone to manifest seizure and epilepsy, and also have problems in learning (Sansig et al. 

2001). mGluR7 function appears to be very important in mediating learning dependent on 

amygdala activation: moreover, these mice display disorders such as anxiety and 

depression (both related to amygdala and limbic system) (Callaerts-Vegh et al. 2006; 

Masugi et al. 1999). Finally, mGluR8 is expressed at lower levels than mGluR4 and mGluR7, 

but it has wide distribution throughout the CNS. It is localized predominantly presynaptically, 

although it has been identified at some post-synaptic locations and in the periphery 

(Lavreysen and Dautzenberg 2008). The mGLuR8 gene is large, spanning exceptionally 

1000 kilobases of genomic DNA in the same region. Mutations cause two human disorders, 

i.e. the Smith-Lemli-Optiz syndrome and retinis pigmentosa (Scherer et al. 1997). mGLUR8 

knockout mice show enhanced anxiety and weight gain compared to controls, suggesting a 

role for mGluR8 in controlling anxiety disorders and network excitability (Linden et al. 2002).  

  

1.7 ADENOSINE RECEPTORS IN SPINAL CORD 

 

Adenosine (ADO) has been shown to be involved in multiple pathological processes like 

pain, stroke, spinal cord injury and Parkinson’s disease (Dunwiddie and Masino 2001; 

Fredholm et al. 2011; Greene and Haas 1991; Latini and Pedata 2008; Lopes et al. 2011; 

Paterniti et al. 2011; Sperlágh and Vizi 2011). Former studies demonstrate that ADO 

activates A1, A2A, A2B, and A3 receptor and that inhibition mediated by A1 receptors is the 

most common and until now the well-known action on neurons in different brain areas 

(Porkka-Heiskanen and Kalinchuk 2011; Schmitt et al. 2012). ADO roles are currently 
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investigated in neuron-glia interactions during sleep deprivation (Porkka-Heiskanen and 

Kalinchuk, 2011; Schmitt et al., 2012). The latter studies and the above reports state that 

extracellular ADO rises in proximity of excited neurons to modulate their activity. Mutual 

interactions between ADO and neuronal activities have been studied thoroughly for the 

spinal central pattern generator (CPG) controlling swimming movements in tadpoles ( Brown 

and Dale 2000; Brown and Dale 2002; Dale and Gilday 1996; Dale 1998). In this system, 

rhythmic CPG activity leads to release of ATP into spinal cord networks where it is then 

degraded enzymatically to ADO which subsequently terminates bouts of swimming. The 

blocking effect by 8-phenyltheophylline on this ADO action suggests an involvement of A1 

receptors (Dale and Gilday 1996). Focal injection of ATP into newborn mouse brainstem 

slices does not accelerate pre-Bӧtzinger complex (preBӧtC) inspiratory bursting that is 

normally mediated by P2 receptors because of the rapid degradation of this typically 

excitatory neuromodulator to ADO that activates A1 receptors (Zwicker et al. 2011). 

Furthermore, a modest slowing of inspiratory-related rhythm is seen upon ADO injection into 

the mouse preBӧtC slices (Ruangkittisakul and Ballanyi 2010). All these results suggest that 

the inspiratory CPG in the newborn rat is insensitive to ADO in contrast to its slight 

depressing effects on the mouse preBӧtC. As a further example for species differences of 

ADO effects on CPGs, ADO blocks bursting in rat cervical cord networks caused by inhibition 

of GABAA receptors or glycine receptors (Brockhaus and Ballanyi 2000), but it does not 

affect the “disinhibited” rhythm in the mouse lumbar cord (Witts, Panetta, and Miles 2012). 

 

1.8 SPINAL CORD MODEL IN VITRO 

 

In addition to in vivo animal models of SCI (Onifer et al. 2007), there have been numerous 

reports to develop new in vitro models that can lead to useful data and discoveries, and to 

understand mechanisms of SCI pathophysiology. Examples of in vitro models are cell 

cultures, organotypic cultures or isolated spinal cord preparations. In vitro models have 

certain important advantages, for example simplification of the complexity of in vivo 

pathophysiology allows studying certain processes without interference from blood pressure 

or anesthesia. Primary cultures from spinal cord tissue have been studied for reproducing 

in vitro excitotoxicity (Van Den Bosch et al. 2000; Taylor et al. 2007) and secondary damage 

due to lack of oxygen (Kaushal and Schlichter 2008). Despite these advantages, these 

culture models present many disadvantages like the presence of artificial culturing media, 

random assembly of synaptic contacts, and lack of endogenous substances that may be 
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fundamental for axon growth and regeneration (Abu-Rub et al. 2010; Silani et al. 2000). 

Other models are based on organotypic spinal cultures (Guzman-Lenis, Navarro, and Casas 

2009), in vitro spinal slices (Zhang et al. 2010) and even an incision model (Que et al. 2011). 

The principal advantage of the organotypic model is the preservation of the basic 

cytoarchitecture of the tissue with the dorsal/ventral orientation of the spinal segments. 

Furthermore, this model enables long-term studies stretching over weeks during which 

changes in network properties can be explored in relation to changes in the local 

environment (Sibilla and Ballerini 2009). However, these cultures cannot generate 

locomotor rhythms that require a minimum of three intact spinal segments with undamaged 

connections. The same limitation applies to acute slices of the spinal cord that can be used 

for performing functional studies and network pharmacology, though lacking the locomotor 

circuits.  

 

1.8.1 Neonatal rat isolated spinal cord preparation 

Our group has recently developed a novel model of in vitro SCI, in order to investigate the 

rapid events during early secondary damage (G L Mazzone et al. 2010; G. Taccola et al. 

2008). It is a model based on the neonatal rat isolated spinal cord, in which we can mimic 

both non traumatic and incomplete SCI (Kuzhandaivel et al. 2010; Kuzhandaivel et al. 2010; 

Taccola et al. 2008; Taccola et al. 2010) with the aim of mimicking, under experimental 

conditions, the acute clinical setting occurring in vivo. When applying kainic acid for one 

hour, excitotoxic damage is evoked due to large release of endogenous glutamate plus 

direct activation of glutamate receptors by this agonist. After this application, the solution 

containing kainate is washed out using standard Kreb’s solution for 24 hours. Although this 

model lacks the immune system responses and vascular supply, it permits monitoring over 

a period of 24 hours after the kainic acid treatment, the functional responses of the neuronal 

networks and the number, type and topography of damaged or dead cells. This type of 

preparation also shows a type of locomotor-like activity (termed fictive locomotion) that can 

be used as a biomarker for correct performance of the spinal cord networks. This is a very 

important point due to the relationship between the extent of loss of electrophysiological 

function and the extent of damage (Mladinic and Nistri 2013; Nistri et al. 2010).  

 

1.8.2 Organotypic slices from rat embryos  
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Another model recently developed in our laboratory for testing excitotoxicity induced by the 

glutamate agonist kainate is the organotypic spinal culture that mimics the early pathological 

processes occurring during the secondary damage caused by kainic acid (Mazzone et al., 

2010). With this model, kainate toxicity is primarily directed to neurons rather than glia, and 

it develops slowly through the hyperactivation of the intracellular enzyme poly(ADP)ribose 

polymerase-1 (PARP-1) that triggers cell energy failure and DNA damage ( a Kuzhandaivel 

et al. 2010; Graciela L Mazzone and Nistri 2011a; Nasrabady et al. 2011). Our laboratory 

has evaluated the effects of riluzole on the excitotoxic glutamate release, the release of 

lactate dehydrogenase (LDH) (used as a marker of cell damage; Hori et al. 2001), metabolic 

activity of organotypic cultures (with the MTT test; (G L Mazzone et al. 2010)), and number 

of surviving neurons. 
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CHAPTER 2: AIMS OF THE STUDY 

 

2.1 Role of mGluR III Group in Excitotoxic Neuroprotection 

Our previous studies demonstrated that in the rat isolated spinal cord or organotypic 

cultures, kainate induces a large neuronal depolarization followed by neuronal death (G L 

Mazzone et al. 2010; Graciela L Mazzone and Nistri 2011a; G. Taccola et al. 2008). The 

depolarizing action of kainate is associated with a strong release of endogenous glutamate 

that peaks in less than 25 minutes in Ca2+ free medium(G L Mazzone and Nistri 2011b). The 

present study follows similar protocols (G L Mazzone and Nistri 2011; Shabbir et al. 2015)  

to investigate the role of L-AP4, a mGluR III group agonist (Thomsen 1997), in modulating 

the effects of excitotoxicity induced by kainate on organotypic spinal cord cultures. Group III 

metabotropic glutamate receptors (mGluR III) are known to decrease glutamate release and 

to play an important role in controlling pain as documented in neuropathic pain models. 

Much less is known about their potential neuroprotective effect against excitotoxicity that is 

considered important for damage onset of spinal cord injury (Pizzi et al. 2000). Using the rat 

spinal cord organotypic slices model, we wished to investigate if mGluR III receptor 

activation might contrast excitotoxic cell death evoked by kainic acid (0.1 mM). Furthermore, 

for better understanding the events that occur during excitotoxicity and L-AP4 effects, we 

applied CPPG, an mGluR III group antagonist (Niswender and Conn 2010) to find out if 

block of endogenous activation of mGluR III group by glutamate release leads to an increase 

of excitotoxic cell death.  

2.2 Characterization and developing of a 3 days in vitro isolated spinal 

cord. 

Increasing the survival of the rat spinal cord in vitro for more than 1 day is a very interesting 

challenge. Obtaining this type of new model can lead to the discovery of new information 

related to the late-onset events that occur in the SCI. Thus, we wished to try to keep an 

isolated neonatal rat spinal cord in vitro for at least 3 days after the laminectomy. For 

understanding if the spinal cord in vitro is an effective model, we evaluated the extent of cell 

death after the 3 days and the electrophysiological properties such as the ability to generate 

fictive locomotion (Taccola et al., 2008) elicited by NMDA and serotonin (5-HT).  



 

20 
 

 

CHAPTER 3: MATERIALS AND METHODS 

 

3.1 Animal Procedures 

 

3.1.1 Organotypic Slice of rat embryonal spinal cord 

Pregnant Wistar rats, at day 13 of gestation, were used for producing embryonic organotypic 

slice cultures of spinal cord in accordance with previously published procedures (Avossa et 

al. 2003; L Ballerini et al. 1999; Laura Ballerini and Galante 1998; Gähwiler and Capogna 

1997; G L Mazzone and Nistri 2011; G L Mazzone et al. 2010). The fetuses were delivered 

by caeserean section from anaesthetized rats (10,5% chloral hydrate, 0,4 ml/100 g i.m.) 

subsequently killed by an intracardiac injection (2 ml) of chloral hydrate. This procedure is 

in accordance with the regulation of Italian Animal Welfare Act and is in accordance with the 

National Institute of Health (NIH) guidelines. Fetuses were decapitated and their backs, 

isolated form their limbs and viscera, were cut into 275 µm thick transverse slices from which 

the spinal cord was punched out and fixed on a glass coverslip with reconstituted chicken 

plasma coagulated by one drop of thrombin (200 U/ml). Coverslip were inserted into plastic 

tubes with 1 ml of medium contained 82% Dulbecco’s Modified Eagle’s Medium, 8% sterile 

water for tissue culture, 10% fetal bovine serum (FBS; Invitrogen, Italy), osmolarity 300 

mOsm, pH 7.35. For each dissection, 30-40 slices were prepared from thoracic as well as 

the lumbar segments, and kept in culture for 22 days in vitro (DIV) before use. The tubes 

were kept in a roller drum rotating (120xg/h) at 36.5 °C. Dulbecco’s Modified Eagle’s medium 

with high glucose (DME/HIGH), penicillin, and streptomycin (purchased from Euroclone, 

Devon, UK). Fetal calf serum was obtained from Invitrogen, (Carlsbad, CA, USA). Nerve 

growth factor (NGF) was from Alomone Laboratories (Jerusalem, Israel), chicken plasma 

from Rockland (Gilbertsville, PA, Usa), and thrombin from Merck, (Darmstadt, Germany).  

 

3.1.2 Newborn rat spinal cord preparation 

In accordance with the NIH guidelines and Italian act Decreto Legislativo 27/01/1992 n.116 

(implementing the European Community directives n.86/609 and 93/88), 0-2 day old Wistar 
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rats were anesthetized with urethane. All efforts were aimed at reducing the number of 

animals used for the present project and at minimizing their suffering. Subsequently, the 

spinal cord was isolated by laminectomy in Kreb’s solution containing (in mM): 113 NaCl, 

4.5 KCl, 1 MgCl2·7H2O, 2 CaCl2, 1 NaH2PO4, 25 NaHCO3, 11 D-glucose. The solution was 

gassed with 95% O2-5% CO2 to establish a pH of 7.4 at room temperature. For 

electrophysiological recording, one spinal cord was positioned in an acrylic chamber with a 

volume of 5 ml that was perfused with Kreb’s solution at a flow rate of 5 or 7.5 ml/min. All 

details about laboratory procedures have been previously published (M Beato et al. 1999; 

Beato et al. 1997; Bracci et al. 1996a, 1996b) and the experimental setup has been fully 

reported (Margaryan et al. 2009; G. Taccola et al. 2008; Taccola and Nistri 2006). Drugs 

were dissolved in Krebs solution and bath applied at the concentration indicated in the text. 

 

3.1.3 Newborn Isolated 3 days in vitro spinal cord 

After isolation, the neonatal spinal cord was put in a 50 ml tube with 20 ml of Basal Medium 

(Life Technologies), Nerve Growth Factor 7S 30mg/ml (Sigma Aldrich), Insulin 10 µg/ml 

(Sigma Aldrich), Amphotericin B (Fungizone) 250mg/ml (Sigma Aldrich), Gentamycin 100 

µg/ml (Sigma Aldrich). The medium was oxygenated and keep sterile for all the 3 days.  

 

3.2 Staining and Immunohystochemistry procedures 

3.2.1 Immunofluorescence of organotypic slices cultures 

Slices were fixed in 4% paraformaldehyde for 1 hour at room temperature and stored in 

phosphate buffer saline (PBS) until use. Cultures were processed for immunofluorescence 

analysis by immersion for 10 minutes in trypsin solution (0.05% in sterile water) at 37°C. 

Slices were then blocked with 3% fetal calf serum (FCS), 3% bovine serum albumin (BSA), 

0,3% Triton in PBS (blocking solution) for 1 hour at room temperature, followed by overnight 

incubation at 4°C in a blocking solution containing the antibodies. The following antibodies 

were employed: NeuN antibody (Millipore) at 1:500 dilution; SMI 32 antibody at 1:1000 

dilution, mGluR4 (Santa Cruz Biotech), mGluR7 (Novus Biologicals), mGluR8 (Millipore) at 

1:1000 dilution. The primary antibody was visualized using corresponding secondary 

fluorescent antibody (Alexa Fluor 488, at 1:500 dilution, Invitrogen, Carlsbad, CA, USA). To 
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visualize cell nuclei, slices were incubated in 1 µg/ml solution of DAPI for 20 minutes and 

mounted using DAKO mounting medium (Dako, DK-2600 Glostrup, Denmark).  

 

3.2.2 Quantification of dead cells in organotypic spinal cord cultures 

DAPI staining results were analysed using a Zeiss Axioskop2 microscope. The identification 

and quantification of dead or dying cells in the organotypic cultures was performed as 

previously shown (G. Taccola et al. 2008), using DAPI nuclear staining and “eCELLence” 

software. Three different regions of interest (r.o.i.), namely dorsal, central, and ventral, were 

analysed in each slice (see scheme in figure). The average percent values of nuclei showing 

condensed chromatin (normalized to the total number of nuclei) were compared between 

different r.o.i. for controls or treatments and expressed as mean±SD (using at least three 

different cell culture series for each experimental group).  

 

3.2.3 Quantification of NeuN positive cells in organotypic spinal cord 

cultures 

NeuN positive cells were analysed using a Confocal (Nikon) microscope, equipped with 

Ar/ArKr (at 488 nm) laser whereby a stack of 25-30 images (20x magnification) were counted 

with “eCELLence” software using the same intensity threshold (ranging from 0 to 1 where 1 

refers to the maximum intensity of the image) and cell diameter parameters  for all 

experiments. The total number of NeuN positive cells was obtained for each experimental 

condition as the total number of positive cells in all stacks. Multiple entries of the same object 

were considered as single entities by the “eCELLence” software algorithm. 

 

3.2.4 Quantification of SMI 32 positive cells in Organotypic Spinal Cord 

Cultures 

SMI 32 positive cells were analysed with Zeiss Axioscope Microscopy and “eCELLence” 

software for counting. We evaluate the total number of nuclei positive to SMI 32 

immunostaining in the ventral region of interest near the fissure. 
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3.2.5 Quantification of mGluR signal intensity 

Quantification of Immunofluorescence signals for mGluR 4,7,8 subunits (gray level intensity 

expressed in arbitrary units, AU) was performed with Meta-Vue imagine software (Molecular 

devices, Sunnyvale, CA USA) using the densitometry function to calculate mean signal 

intensity for regions of interest (ventral, central and dorsal) reactive to mGluRs antibodies. 

The values are mean ± SD (at least 9 different cultures with at least one sample from each 

culture).  

 

3.2.6 Fluorescence immunohistochemistry procedure in neonatal 

isolated spinal cord 

The free-floating immunofluorescence protocol was used as previously described (Mladinic 

and Nistri 2013; G. Taccola et al. 2008). The primary antibodies were visualized using 

appropriate secondary fluorescent Alexa Fuor 488 or 594 antibodies (1:500 dilution, 

Invitrogen Carlsbad, CA, USA). Sections were stained in 1 µg/ml solution of 4,6-diaminio-2-

phenylindole (DAPI) for 20 minutes to visualize cell nuclei and mounted on Superfrost Plus 

(Menzel-Glazer, Braunschweig, Germany) slides. The immunostaining signal was analysed 

by Zeiss Axioskop2 microscope (Oberkochen, Germany) using 1µM z sectioning. 

 

3.2.7 Statistical Analysis 

Data were collected from at least three independent experiments, and are expressed as 

mean ± standard error of the mean (SEM), where n indicates the number of independent 

experiments, as indicated in the respective figure legend. Statistical analysis was performed 

using the SigmaStat (SigmaStat 3.1, SystatSoftware, Chicago, IL, USA): after normality test 

values were analysed with one-way ANOVA for multiple comparisons (with Turkey-Kramer 

post-hoc test). For non-parametric values, Kruskal-Wallis one-way analysis of variance and 

the student-Newman-Keuls method test were used for multiple comparison. The accepted 

level of significance was p<0.05. 
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3.3 Electrophysiological recording and stimulation 

Rhytmic motor Central Pattern Generator (CPG) activity was recorded with suction electrode 

form the second and fifth ventral lumbar roots (L2, L5). L2 roots contain axons from 

motoneurons which innervate mainly hindlimb flexor muscles, while L5 roots contain axons 

that drive primarily hindlimb extensor muscles. Locomotor-associated CPG activity 

alternates rostrocaudally between L2 and L5 and bilaterally between ipsilateral and 

contralateral L2 or L5 roots (Clarac et al. 2004; Kiehn 2006; Taccola and Nistri 2006). 

Rhythmic bursting with these characteristics was induced by combined bath application of 

serotonin (5-HT; 10 µM; Sigma-Aldrich, Milan) and N-methyl-D-aspartate (NMDA; 3-5 µM; 

Ascent Scientific, Bristol, UK) and such chemically evoked fictive locomotion was typically 

stable for time period of more than 3 hours (Clarac et al. 2004; Kiehn 2006; G. Taccola et 

al. 2008). Single electrical pulses were applied to dorsal root L5 for eliciting a dorsal 

root/ventral root potential comprising a polysynaptic dorsal root reflex (Marchetti et al. 2001; 

G. Taccola et al. 2008). Tight-fitting suction electrodes filled with control solution were 

applied to the distal cut end of L2 and L5 ventral roots for DC-coupled extracellular 

population recordings via a high input impedance, low noise DC amplifier with a gain of 

x1000. The signals were bandpass-filtered 0.1-10 kHz and fed at sampling rate of 5 kHz via 

an Axon Digital Interface (Molecular Device LLC, Sunnyvale, CA, USA) into a personal 

computer (G Taccola and Nistri 2006). Burst amplitude was calculated at the highest point 

of the activity bout. Values are given in percentage of control because the absolute 

amplitude of extracellular signals depends on various parameters such as suction electrode 

resistance and tightness of the seal between electrode and spinal root. Rhythmic discharges 

were characterized on the basis of their period that is defined as the time between the onset 

of two subsequent cycles of oscillatory activity. For averaging period values from different 

preparations, data from each spinal cord were calculated as the mean of at least 20 burst 

cycles. The regularity of bursting was determined in terms of the coefficient of variation (CV; 

given by the standard deviation [S.D.] mean-1) of the period. Single burst duration was 

calculated between the onset of the event and the start of the rapid phase of its decay. Data 

were quantified as means ± S.D. Parametric data were analysed with t-test, paired t-test for 

two groups, or one way ANOVA followed by a post-hoc analysis for multiple groups. Non 

parametric data were evaluated with Rank Sum test, Signed Rank Sum test for two groups, 
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or Kruskal-Wallis one way ANOVA test followed by a post-hoc analysis for multiple groups. 

The accepted level of significance was p<0.05. 

 

3.4 Organotypic Spinal Cord Slices treatments 

As depicted in figure 3.1 the organotypic slices of embryonal spinal cord were subjected to 

different treatments. In the first treatment (Fig. 3.1A) kainate at the concentration of 100 µM 

was applied for 1 hour and L-AP4 at the concentration of 1 µM was either co-applied or 

applied only in the kainate 24 h washout. In the second set of experiments kainate at the 

concentration of 50 µM was applied for 1 hour and L-AP4 and CPPG both at the 

concentration of 1 µM were applied only in the 24 hour washout. In the last set of 

experiments, we applied kainate at the concentration of 100 µM and then L-AP4 1µM and 

adenosine (ADO) at 100 µM either in co-application or during washout only. 

 

Figure 3.1 Different treatments for organotypic spinal cord cultures. The figure illustrates the three different 

types of treatment for evaluating the impact of protection by modulation of mGluR III group receptors and 
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adenosine receptors. Figure 3.1A show the treatment with the application of only L-AP4 after kainate. Figure 

3.1B shows the treatment with application of CPPG or co-application of CPPG and L-AP4 during the kainate 

washout. Figure 3.1C show the coapplication of adenosine (ADO) and L-AP4 during the treatment with kainate 

or during washout. 
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CHAPTER 4: RESULTS 

4.1 Dead cells quantification after kainate 100µM and L-AP4 1µM 

application 

We identified dead cells (using DAPI) characterized by condensed chromatin (example of 

pyknotic nuclei is indicated by black arrow in figure 4.1A). Cell death was quantified in terms 

of percentage of pyknotic nuclei. Percentage of pyknotic nuclei treated with kainate at 

100µM concentration is statistically different (p=0.033) in all the three regions (ventral, 

central and dorsal). L-AP4 co-applied with kainic acid decreased pyknosis from 39±1 to 14±3 

%, and from 16±4 to 2±1 % in the dorsal and ventral regions, respectively, and from 31±3 

to 7±2% in central area. Delayed L-AP4 application was less effective, yet still significant 

with pyknosis decreasing to 32±2% in dorsal, 7±2% in ventral regions and 23±2 % in central 

region (Figure 4.1). There is no deleterious effect using only L-AP4 at 1 µM for 24 hours 

concentration (Figure 4.1C). This results suggests that kainate evokes excitotoxic damage, 

an effect counteracted by the activation of mGluR III group receptors.  
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Figure 4.1 Cell death analysis of organotypic cultures 24 hours after application of kainate in the presence of 

L-AP4 by using the experimental protocol for early excitotoxicity shown in Fig.3.2. (A) Examples of DAPI-

stained cells in the central region in control condition, or after kainate for 1 hour at 100 µM and wash out (w/o) 

with medium, treated with coapplication of kainate 100 µM and L-AP4 1 µM for 1 hour and then washed out 

with medium and L-AP4 or with the application of L-AP4 only in the washout medium. (B) Histograms show 

average percent of pyknotic cells in ventral, central and dorsal region in presence of kainate (100 µM) for 1 

hour with or without L-AP4 (1 µM). In Blue control condition, in red kainate 100 µM only, in green with co-

application of L-AP4 1µM, in purple application of L-AP4 only in the washout (w/o) after 1 hour application of 

kainate. (C) Comparison of example of central region in control condition and treated with L-AP4 for 24 hours.  
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4.2 NeuN positive cells quantification after kainate (100µM) and L-AP4 

1µM application 

To further confirm the action of L-AP4 on kainate induced excitotoxicity, we analyzed the 

NeuN staining (example of central part of organotypic slices in figure 4.2A) counting the total 

number of NeuN positive cells. A statistical increase (p=0.039) in total number of NeuN 

positive residual cells is present in both treatments. For example, in the ventral region from 

193±27 with the application of only kainate at the concentration of 100 µM to 245±34 in the 

co-applied treatment of both kainate 100 µM and L-AP4 1µM. Organotypic slices treated 

with L-AP4 1µM only during kainate wash-out show improved number of NeuN positive cells 

too. In the ventral region, values increase from 193±27 to 238±5 with p=0.041 (Figure 4.2). 

This result shows that the counteracting effect of L-AP4 involves blocking excitotoxic 

damage to neurons. 

 

Figure 4.2 Neuronal loss evoked by kainate 24 hours later can be counteracted by L-AP4. (A) Example of 

central region with NeuN positive neurons 24 hours in complete medium (control), after 1 hour application of 

kainate (100 µM), or kainate and L-AP4 in co-application or only in the washout (w/o) (lower images, 

respectively left and right). (B) Histograms showing average number of NeuN positive cell in the three regions 

analyzed as described above. * P< 0.05 vs kainate (n=8). In Blue control condition, in red kainate 100 µM only, 

in green with co-application of L-AP4 1µM, in purple application of L-AP4 only in the washout after 1 hour 

application of kainate.  
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4.3 SMI 32 positive cells quantification after kainate 100 µM and L-AP4 

application 

We assessed if the group of neuronal cells protected by excitotoxic damage comprise 

motoneurons too. We focus on motoneurons because these are the major group of cells 

that are damaged by excitotoxic events during secondary damage (Van Damme et al. 2002; 

Ince et al. 1993). We use SMI 32 antibody (G L Mazzone and Nistri 2011; G L Mazzone et 

al. 2010; G. Taccola et al. 2008) to identify large diameters (>25 µm) cells in the ventral 

region. Figure 4.3B depicts a strong fall in motoneuron number induced by kainate (100µM) 

with a significant protection by subsequent application of mGluR III group antagonist L-AP4 

either in co-application or only during the washout. The result suggests that mGluR III 

activation is capable of stopping motoneuron death due to excitotoxic damage. 

 

Figure 4.3 Kainate-induced damage of motoneurons in organotypic slice cultures is prevented by L-AP4 

applied even after 1 hour of treatment with kainate. (A) Example of motoneuron staining (with SMI 32 antibody) 

in control, or 24 hours after kainate (100 µM), or kainate co-applied or followed by L-AP4. (B) Histograms show 

number of motoneurons from 8 experiments with 3 slices; * P<0.05 vs control. 

 

4.4 Cell death evaluation after treatment with CPPG, kainate and L-AP4 

Focusing on the neuroprotection effect of L-AP4, we further wished to evaluate the role of 

mGluR III group receptors in excitotoxic events following kainate treatment. For investigating 

these events we used a lower concentration of Kainate (50 µM) to prevent maximum 

damage level at one hour. Previous studies from our laboratory have shown that the release 

of glutamate is slower following 50 µM kainate even if the final damage is as strong as after 
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100 µM (G L Mazzone and Nistri 2011). Figure 4.4 shows that in presence of CPPG during 

the washout after kainate at 50 µM there is more excitotoxic damage compared with the 

damage in kainate alone (e.g. in ventral region: from 9.6±1 to 35±3 %). Co-application of L-

AP4 1 µM with CPPG 1 µM in the washout leads to levels statistically different (p<0.05) from 

both kainate 50 µM and kainate plus CPPG 1 µM treated slices. There is no effect using 

only CPPG at 1 µM for 24 hours in terms of cell death (Figure 4.4C). The result suggests 

that decreasing the activity of mGluR III receptors leads to an increase in glutamate release 

leading to a massive cell death. The co-application of both mGluR III group agonist and 

antagonist decreases the cell death probably due to the different affinity of the two 

compounds with a smaller counteracting effect of L-AP4. 

 

4.5 NeuN positive cells quantification after kainate 50µM and CPPG and 

L-AP4 1µM application 

To better investigate the role of CPPG in kainate induced excitotoxicity, we analyzed the 

NeuN staining (example of central part of organotypic slices in figure 4.2A). A statistical 

decrease (p<0.05) in total number of NeuN positive cells is observed in all regions but not 

incremented by CPPG treatment. For example, in the ventral region from 194±23 with the 

application of kainate at the concentration of 50 µM, treatment with kainate 50 µM and CPPG 

1µM during washout left the same damage (190±34). Organotypic slices treated with L-AP4 

1µM co-applied with CPPG 1µM show an apparent increase in the total number of NeuN 

positive cells without reaching control values (Figure 4.5).  
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Figure 4.4 Characterization of organotypic cultures 24 hours after application of kainate and CPPG. (A) 

Examples of DAPI-stained cells in the central region in control condition, after kainate (50 µM) for 1 hour with 

or without CPPG and co-application with L-AP4, CPPG and KA 50 µM. (B) Histograms show average percent 

of pyknotic cells in ventral, central and dorsal regions in presence of kainate (50 µM) for 1 hour with or without 

CPPG (1 µM) and coapplication of the  three compounds. In Blue control condition, in red Kainate 100 µM 

only, in green with co-application of L-AP4 1µM, in purple application of L-AP4 only in the washout after 1 hour 

application of Kainate. In light blue control condition, in red Kainate 50 µM only, in heavy blue with co-

application of CPPG 1µM, in orange combined application of L-AP4 1µM, Kainate 50 µM and CPPG 1µM. (C) 

example of central region in control condition and with the application of only CPPG for 24 hours.  
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Figure 4.5 Neuronal loss evoked by kainate and CPPG. (A) Example of central region with NeuN positive 

neurons after 24 hours in complete medium (control), after 1 hour application of kainate (50 µM) and CPPG (1 

µM), or kainate, CPG and L-AP4 in co-application during the kainate washout (lower images, respectively left 

and right). (B) Histograms showing average number of NeuN positive cells in the three regions analyzed after 

the protocol described above. * P< 0.05 (n=8). In light blue control condition, in red kainate 50 µM only, in dark 

blue with co-application of CPPG 1µM, in orange application of L-AP4, CPPG  only in the washout phase after 

1 hour application of Kainate.  
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4.6 SMI 32 positive cell quantification after kainate 50 µM and CPPG 

application 

Using the same protocol of SMI 32 antibody staining for identifying motoneurons, we further 

evaluated the impact of CPPG-kainate treatment on these cells. Figure 4.6B depicts a strong 

fall in motoneuron number induced by kainate (50µM) and CPPG (1 µM) in the washout 

similar to the effect by kainate alone. The coapplication of L-AP4 alongside with CPPG in 

the washout phase results in a partial increase in the number of motoneurons without fully 

counteracting the kainate excitotoxic treatment. These data suggest that without fast, strong 

activation of mGluR III group receptors the degree of excitotoxicity is too high for their 

survival. 

 

 

Figure 4.6 CPPG effect on motoneurons. (A) Example of motoneuron staining (with SMI 32 antibody) in control, 

or 24 hours after kainate (50 µM), or kainate followed by CPPG in washout or co-application of CPPG and L-

AP4 during washout. (B) Histograms showing numbers of motoneurons from 8 experiments with 3 slices; * 

P<0.05 vs control. 

 

4.7 Characterization mGluR receptor subunits 

For a better characterization of the events following excitotoxic damage in the spinal cord 

organotypic slices we performed immunostaining against three types of mGluR III group 

subunits that are reported in the spinal cord (Niswender and Conn 2010). We analyzed the 

total intensity of the fluorescence signals of mGluR 4 antibody, mGluR 7 antibody and 
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mGluR 8 antibody to evaluate if there are differences in the localizations of these receptors 

in our model and within the different treatments.  

 

4.7.1 mGluR 8 characterization 

Figure 4.7 shows that the intensity of the signal of the mGluR8 antibody is no different in 

control condition between the three regions of interest. In the organotypic slices treated with 

kainate at 100 µM concentration, there is a decrease in the values of the signal (p<0.01). L-

AP4 co-application counteracts this fall in fluorescence intensity (Figure 4.7C). When slices 

are treated with L-AP4 only during kainate washout, a stronger fluorescence  signal than 

after kainate alone is observed, although this value does not reach the control level.  

 

4.7.2 mGluR 4 characterization 

We next proceeded to characterize the signal intensity of mGluR 4 type subunit. Figure 4.8 

shows that also in this case there is no difference between the three regions of the 

organotypic spinal cord slice. The fluorescence levels after the different treatments appear 

to be broadly comparable with the pattern observed with the mGluR8 one. Notably, there is 

a large decrease of the signal intensity following kainate 100 µM, good preservation with 

kainate and L-AP4 coapplication, and a smaller decrease in the slices treated with L-AP4 

only during the kainate washout. 

 

4.7.3 mGluR 7 characterization 

Finally, the immunohistochemistry signal of mGluR 7 units is comparable with the two 

reported above: thus, there is a strong decrease following kainate 100 µM, a good protection 

level with either co-application of L-AP4 and kainate or delayed application of L-AP4 in the 

three regions of interest.   
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Figure 4.7 Signal Intensity of mGluR8 immunocytochemistry. Panel A shows an example of ventral, central 

and dorsal tissue. There are no differences in immunostaining signal intensity among these three regions. 

Panel B shows an example of the central region of the organotypic slice immunohistochemistry under various 

treatments. C shows histograms depicting the decrease in arbitrary units (A.U.) of the signal between control 

and treatments (**p<0.01, *p<0.05 n=11). w/o=washout of kainate. 
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Figure 4.8 Signal Intensity of mGluR 4 immunohistochemistry. Panel A shows no signal difference among the 

three regions (ventral, central, dorsal, respectively). Panel B shows an example of the central region of  

organotypic slices under various treatments. Panel C shows histograms indicating the decrease in arbitrary 

units (A.U.) of the signal between control and treatments (**p<0.01, *p<0.05 n=9). w/o = washout of kainate. 
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Figure 4.9 Signal Intensity of mGluR 7 immunohistochemistry. Panel A shows is no signal difference among 

the three regions (ventral, central, dorsal, respectively). Panel B shows an example of the central region of the 

organotypic slice immunohistochemistry under various treatments. Panel C shows histograms indicating the 

decrease in arbitrary units (A.U.) of the signal between control and treatments (**p<0.01, *p<0.05 n=11). 

w/o=washout of kainate. 
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4.8 Dead cells quantification after kainate 100µM and L-AP4 1µM and 

adenosine 100 µM application 

My previous work (see attached reprint) has demonstrated that adenosine inhibits the 

excitatory currents recorded from spinal cord neurons. On the basis of these results we used 

adenosine co-applied with L-AP4 to explore a potential increase in cell survival after kainate, 

in particular in central and dorsal regions in which L-AP4 seems to be less effective. We 

applied adenosine at 100 µM concentration together with L-AP4 at 1 µM concentration or 

only during the kainate washout. The preliminary results of nuclear staining with DAPI and 

immunohistochemistry with NeuN and SMI 32 (as done before for the other treatments) 

show no significant improvement in comparison with L-AP4 alone (p>0.05; n=3). 

 

4.9 Spinal Cord 3 days in vitro histology characterization 

To understand if it is viable to keep a neonatal isolated spinal cord in vitro after dissection 

for more than 1 day, we analyzed the newborn rat isolated spinal cord maintained for 3 days 

in vitro. We performed a DAPI staining comparing data with the freshly fixed tissue 

(dissected and fixed) to find out the degree of cell death. Results in Figure 4.10 show no 

difference between the two spinal cord specimens, suggesting that is possible to keep the 

isolated spinal cord in vitro for this length of time. We next analyzed if neurons (labeled with 

NeuN antibody), and motoneurons (labeled with SMI 32 antibody) remain viable after 3 days 

in vitro. The results in panel B and C of Figure 4.10 demonstrate that there is no difference 

in the number of neurons and motoneurons, thus confirming the observations obtained using 

DAPI staining. 
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Figure 4.10 Histological comparison between fresh fixed and 3 days in vitro neonatal isolated spinal cords. (A) 

Example of ventral horn of isolated spinal cord, on the left the fresh fixed tissue, on the right the 3 days in vitro 

spinal cord: the histograms show that there is no difference between the two conditions concerning the 

percentage of pyknotic nuclei in various regions of interest (p>0.05 n=12). (B) Immunohistochemistry results 

for SMI 32 positive cells (motoneurons) showing no statistical difference between the two conditions (p>0.05 

n=12). (C) Immunohistochemistry data for NeuN positive cells (neuronal nuclei) indicating no difference 

between fresh fixed and 3 days in vitro spinal cords (p>0.05 n=12). 

 

4.10 Electrophysiological recording from Spinal Cords kept 3 days in 

vitro  

To support our histological results, we performed electrophysiological recording with NMDA 

(3-5 µM) and 5-HT (10 µM) to elicit fictive locomotion both in P0-P3 fresh isolated neonatal 

spinal cord and in 3 days in vitro isolated spinal cord. In line with histology results as depicted 
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in figure 4.11, there is no statistical difference in the average rhythmicity between the two 

conditions. Analysis of data from 8 spinal cords shows s rhythm with a mean cycle for P0-

P3 freshly isolated preparations of 5.48 ± 0.83 s and a period CV of 0.18±0.04, while for 3 

days in vitro isolated spinal cords a mean cycle of 6.11 ±1.56 s and a period CV of 

0.0.16±0.03 (p>0.05) is present.  

 

Figure 4.11 Fictive locomotion of P3 fresh isolated spinal cord and 3 days in vitro isolated spinal cord. The 

figure shows the absence of significant differences between the two conditions. Two examples of fictive 

locomotion lasting 60 seconds elicited by bath application of NMDA and serotonin (5-HT) are shown. 

 

4.11 A₁ adenosine receptor modulation of chemically and electrically 

evoked lumbar locomotor network activity in isolated newborn rat spinal 

cords. 

See article attached. Taccola G, Olivieri D, D'Angelo G, Blackburn P, Secchia L, Ballanyi K.; 

Neuroscience 2012 
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CHAPTER 5: DISCUSSION 

5.1. L-AP4 neuroprotection against kainate induced excitotoxicity 

In previous experiments of our laboratory conducted by Taccola et al. (2004), L-AP4 was 

able to block strongly and reversibly synaptic transmission evoked by dorsal root stimulation 

and thus decreased spinal reflexes. The principal finding of this thesis is the novel 

demonstration that L-AP4, either co-applied with kainate or after washout, on a model of 

spinal cord injury is able to counteract excitotoxicity by reducing cell losses and the number 

of pyknotic nuclei. In particular, neuroprotecting motoneurons in the ventral part of the spinal 

cord organotypic cultures was an important observation, in connection with the high 

vulnerability of this cell type (Van Damme et al. 2002). These effects suggested that L-AP4 

was able not only to act as a spinal analgesic drug (Fisher et al. 2002; Mills et al. 2002b; 

Onaka et al. 1996), but also to have an effect on the levels of glutamate release and 

subsequent activation of postsynaptic pathways that lead to excitotoxicity. We can suggest 

that the activation of mGluR III group is similar to the one demonstrated in brain by Martin 

et al. (2007) modulating glutamate release by inhibiting P/Q-type Ca2+ channels and 

decreasing cAMP. Using both L-AP4 as an agonist and CPPG as an antagonist of the 

mGluR III group on organotypic spinal cord cultures, we suggest that these effects are 

related to the mGluR III group activation that are located in the pre-synaptic cleft (Niswender 

and Conn 2010). The decrease of the glutamate released in the synaptic cleft has a very 

important impact on the postsynaptic ionotropic glutamate receptor activation and 

contrasting kainate (0.1-0.5 mM) that strongly and rapidly increases extracellular levels of 

glutamate, a phenomenon that does not disappear with washout as demonstrated by 

Mazzone and Nistri, (2011b). Moreover, kainate binding to specific receptors leads to an 

increase in intracellular calcium levels leading to cell death phenomena in spinal cord (A. 

Kuzhandaivel, Nistri, and Mladinic 2010; A. Kuzhandaivel et al. 2011; G L Mazzone et al. 

2010): The mGluR III group activation seems to reduce the total increase of excitation 

probably through various different patterns. Deactivation of excitotoxic pathways is not only 

related to glutamate release, a recent work done by McMullan et al. (2010) shows that 

metabotropic glutamate receptors can inihibit microglial glutamate release, so probably  L-

AP4 neuroprotection is related, at least in part, to a similar cascade in our model too. . 

Furthermore, we investigated the role of mGluR III group antagonist CPPG that has been 

demonstrated to increase the damage related to kainate excitotoxicity by a strong 

deactivation of mGluR III group receptors. These findings underline the entanglement 



 

43 
 

between mGluR III group receptors and the modulation of the release of glutamate. The high 

neuroprotection of motoneurons in the ventral area can  suggest that different regions of the 

spinal cord differ for mechanisms underlying cell death becauset theh mGluR III group 

agonist L-AP4 seems to have a somewhat different extent of neuroprotection. Pizzi et al 

(1999) underlined neuroprotection by L-AP4 in motoneurons. suggesting that these neurons 

can be much more sensitive to this fine tuning by the mGluR III group receptor. Our model 

demonstrates that the neuroprotection by L-AP4 can be potentially helpful for future spinal 

cord injury treatments. Furthermore, the effect of CPPG suggests that during the excitotoxic 

damage exerted by kainate  there is an activation of mGluR III group receptor, but this 

activation is not enough to protect the cells from the harmful events related to kainate 

application. These events are presumably related to increased intracellular calcium and ionic 

imbalance (A. Kuzhandaivel et al. 2011; G L Mazzone and Nistri 2011). These  important 

effects are elicited by a relatively small concentration of L-AP4 (1 µM) that has been 

demonstrated have no toxic effect if used alone. All these results agree with previous data 

reported by Pizzi et al., (1999) and Tomiyama et al., (2001) comparing this secondary 

damage due to excitotoxicity to the neuronal degeneration typical of ALS These data, open 

further possibilities to study the relationship between SCI, traumatic or not, and other 

neurodegenerative diseases related of of the spinal cord. The present work not only is 

consistent with these observations but it also indicates that Ca2+ dependent and 

independent release mechanisms activated by kainate can be largely counteracted by the 

activation of mGluR III group receptors. Moreover, we can suggest that glutamate 

accumulating extracellularly actually has the potential to moderate its own action via 

activation of mGluR receptors, this can once more  be demonstrated by the increasing of 

cell death due to the CPPG presence. The different levels of neuroprotection in the different 

regions of interest seem not to be related to different type of localization of the different type 

of mGluR III subtypes. This result can be explained in two ways, the first is related to the 

type of analysis used, suggesting that a qualitative analysis such as the fluorescence signal 

intensity cannot detect small differences among the three subtypes of receptor; the other 

reason can be related to the specificity of the organotypic spinal cord cultures. The spinal 

cord cultures are characterized by a high number of neurons compared to other cell 

populations such as microglial cells or astrocytes: this high number of neurons might amplify 

the size of responses to treatments, but on the other hand it can mask relatively small 

differences like the metabotropic glutamate receptor distribution. The preliminary results 

using adenosine in co-application with L-AP4 suggest that the neuroprotection with mGluR 
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III group agonist probably reached a maximum level and cannot be increased by combined 

treatments with other substances. Moreover, considering that adenosine is able to shut 

down the rhythmic bursting at 2 mM concentration (G Taccola et al. 2012), probably an 

increase in the concentration of adenosine can induce multiple effects. These 

pharmacological results should be evaluated in future experiments using different 

concentrations of both adenosine and L-AP4 on organotypic spinal cord cultures or other 

types of spinal cord models. 

 

5.2. Neonatal spinal cord Isolated for 3 days in vitro  

Having a good model for studying long-term events after spinal cord injury is very important 

for the future of research (Akhtar et al. 2008). A model must follow 4 principles to be 

considered a good model: 1) simulate damage that is similar to clinical SCI; (2) control over 

conditions, reproducibility, stability; (3) involve a simple technique that is easy to study; (4) 

the equipment used to make a model is straightforward and quick to produce. Our results 

show that it is possible to maintain for at least 3 days in vitro an isolated spinal cord from 

neonatal rat and to possess a model that displays all 4 principles. Our model can be used 

to simulate damage (in particular excitotoxic damage) with high control over the 

experimental conditions. Having a significant number of samples allows a demonstration of 

a high reproducibility and stability of the model, and the whole process is very simple and 

easy to manage because it starts from previous models that are already used in spinal cord 

injury research such as the newborn isolated spinal cord. All these results can lead to new 

perspectives in the study of the role of late onset events after injury and this new model 

shows that in an oxygenated medium the isolated spinal cord suffers no damage and no 

events of necrosis and cell death after the dissection. Another important keypoint in the 

development of a good spinal cord model is the presence of electrical activity. Our model 

shows that not only electrical activity is maintained but also we are able to elicit the same 

pattern of responses using the same concentration of NMDA and 5-HT with fictive 

locomotion rhythm equal to the one elicited in freshly dissected newborn spinal cord. Having 

this model will help to analyze what happen in the late onset events at the central patter 

generator level, responsible of the fictive locomotion. The previous model has been 

important for understanding the basics of the spinal cord networks with or without injuries: 

we hope that another type of model can lead to other studies focusing on molecular biology 
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and electrophysiology of late-onset events. These new results can verify some of the 

findings that have been discovered withthe organotypic spinal cord cultures and give us a 

better understanding of the complex organization of the spinal cord tissue and networks. In 

future experiments we can analyze the role of mRNAs that can be translated after the initial 

injuries or other events related to changes in electrical activity during the first days of spinal 

cord injuries. 
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