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a b s t r a c t

In this paper, we consider MPC for constrained discrete-time systems with stochastic parameters which
are assumed to be a set of serially correlated time series. A generalized performance criterion is composed
of aweighted sum of a linear combination of the (a) expected value of quadratic forms of state and control
vectors, (b) quadratic forms of the expected value of the state vector, and (c) the linear component of
the expected value of the state vector. The purpose of the present paper is to design optimal control
strategies that are independent of distributional assumptions on the stochastic parameters and subject to
hard constraints on the input manipulated variables and to provide a numerically tractable algorithm for
practical applications. All expressions are presented in terms of the first- and second-order conditional
moments. The results are applied to a problem of investment portfolio optimization with serially
correlated returns. We present the numerical modelling results, based on stocks traded on the Russian
Stock Exchanges MICEX.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Lately, there has been a steadily growing need and interest in
systems with stochastic parameters and/or multiplicative noise.
The same systems have been gaining greater acceptance in many
engineering applications. Financial engineering is also an impor-
tant field of application where suchmodels are used for describing
the evolution of investment portfolios (see, for instance, Costa and
Araujo (2008), Dombrovskii and Lyashenko (2003), Hu and Zhou
(2005)).

Several results related to control systems with stochastic pa-
rameters subject to constraints have already been derived. In
recent years, considerable interest has been focused on model
predictive control (MPC), also known as receding horizon con-
trol (RHC). MPC proved to be an appropriate and effective tech-
nique to solve the dynamic control problems subject to input and
state/output constraints.

MPC for constrained discrete-time linear systems with random
parameters and/ormultiplicative noises has been intensively stud-
ied lately. Someof the recentworks on this subject can be found, for
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instance, in Bemporad and Di Cairano (2011), Bernardini and Bem-
porad (2009), Calafiore and Fagiano (2013), Cannon, Kouvaritakis,
and Wu (2009), Dombrovskii, Dombrovskii, and Lyashenko (2005,
2006), Dombrovskii andObyedko (2011), Lee andCooly (1998), and
Primbs (2009).

In particular, Lee and Cooly (1998) investigate systems with
independent and identically distributed parameters, while Dom-
brovskii et al. (2005) study systems with both control and state
multiplicative noises and stochastic independent parameters un-
der hard constraints on input variables. Cannon et al. (2009) study
systems with control and state multiplicative noises where con-
straints are assumed to be soft and probabilistic. Primbs and Sung
(2009) study systems with control and state multiplicative noises
in the presence of soft quadratic expectation constraints. In Dom-
brovskii et al. (2006), MPC of linear systems with random de-
pendent parameters, where the evolution of parameters is de-
scribed by linear difference stochastic equations under hard con-
straints on the control variables, is considered. Dombrovskii and
Obyedko (2011) investigate the MPC problem of discrete-time
Markov jump linear systems with multiplicative noise subject to
hard constraints on the control variables. Related results in MPC
design via scenario generation can be found in Bemporad and Di
Cairano (2011), Bernardini andBemporad (2009), andCalafiore and
Fagiano (2013). Note that the scenario-based MPC is often compu-
tationally demanding and assumes a specific probability distribu-
tion for the model parameters.
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In this paper, we consider MPC for constrained discrete-time
systems with stochastic parameters which are assumed to be a
set of serially correlated time series. The lead–lag relationships
between component series are described by the matrices of the
second-order conditional moments and the knowledge of the sta-
tistical distribution of the parameters is not assumed.

We consider a generalized performance criterionwhich is com-
posed of a weighted sum of a linear combination of the (a) ex-
pected value of quadratic forms of state and control vectors, (b)
quadratic forms of the expected value of the state vector, and (c)
a linear part in the expected value of the state vector. The motiva-
tion for adopting this type of criterion is that in several situations
we provide solutions for two special cases. The first one is MPC for
the quadratic criterion and the secondMPC for the mean–variance
criterion. Note that this cost function is not traditionally used in
MPC theory. This approach to cost function formulation is based
on an idea proposed in Costa and Araujo (2008) that a generalized
multi-periodmean–variance portfolio selection problem is consid-
ered without constraints and with a finite horizon.

The main goal of the present paper is to design optimal con-
trol strategies that are independent of distributional assumptions
on the stochastic parameters and are subject to hard constraints
on the input manipulated variables and to provide a numerically
tractable algorithm for practical applications. We derive an exact
expression for the predicted performance criterion as an explicit
function of predicted input variables that can be optimized online
by minimizing over the vector of predicted input variables subject
to hard constraints.

The results are applied to a problem of investment portfolio op-
timization with serially correlated returns. Note that the portfolio
management problem is the key problem of financial engineering
that includes a set ofmajor problems associatedwith the control of
complex dynamic systems with stochastic parameters under con-
straints. Therefore, the investment portfolio canbe apowerful plat-
form for testing the effectiveness of the designed control strategies.

There are many examples of the MPC in finance applications.
Some recent works can be found in Bemporad, Puglia, and Gab-
briellini (2011), Dombrovskii, Dombrovskii, and Lyashenko (2004),
Dombrovskii et al. (2005, 2006), Dombrovskii and Obyedko (2011),
Herzog, Dondi, and Geering (2007), and Primbs (2009). In all of
these papers, authors assume the hypothesis of serially inde-
pendent returns and/or consider the explicit form of the model
describing the price process of the risky assets (e.g., geometric
Brownian motion, etc.).

Related results in multi-period portfolio optimization can be
found in Calafiore (2008, 2009) where a multi-stage optimization
model is developed. In a developed model portfolio, diversity con-
straints are imposed in expectation (soft constraints). Calafiore
(2008, 2009) in hisworks has proposed the use of a linearly param-
eterized class of feedback control policies that are affine functions
of the past return innovations. However, it is difficult to obtain
an exact analytic formulation of the optimization problem based
on the proposed model for the case of generic and serially corre-
lated return processes. Calafiore (2008, 2009) proposed an approx-
imated technique to solve the problem via stochastic simulations
of the return series that can be used in practicewhen a full stochas-
tic model for return dynamics is available.

In this paper, we propose a framework for the computation of
dynamic trading strategies subject to serially correlated returns
and hard constraints on the trading amounts. The only conditions
imposed on the distributions of the asset returns are the existences
of the conditional mean vectors and of the conditional second-
order moments. No assumptions about the correlation structure
between different time points or about the distribution of the as-
set returns are needed. The proposed trading strategies are conve-
nient to adaptive implementation. Adaptive algorithms have the
ability to adapt to the underlying data by dynamically incorporat-
ing new information into the decision process and they are more
suitable for non-stationary environments, such as those in finance.
The motivation is within the context of algorithmic trading, which
demands fast and recursive updates of portfolio allocations as new
data arrives.

We want to demonstrate the performance of our model un-
der real market conditions. We present the numerical modelling
results, based on stocks traded on the Russian Stock Exchanges
MICEX.

2. Problem formulation

Weconsider the following discrete-time systemwith stochastic
parameters on the probabilistic space (Ω, F, P).

x(k + 1) = Ax(k)+ B[η(k + 1), k + 1]u(k), (1)

where x(k) ∈ Rnx is the vector of state, u(k) ∈ Rnu is the vector
of control inputs, and η(k) ∈ Rq is assumed to be a stochastic
time series. The matrices A ∈ Rnx×nx , B [η (k) , k] ∈ Rnx×nu are
the system matrix and the input matrix, respectively. All of the
elements of B[η(k), k] are assumed to be linear functions of η(k).

Let F = (Fk)k≥1 be the complete filtration with σ -field Fk
generated by the {η(s) : s = 0, 1, 2, . . . , k} that models the flow
of information to time k.

Throughout the paper, we use the following notations. We
denotewith E {a/b} the conditional expectation of awith respect to
b. For anymatrixψ[η(k+i), k+i], dependent onη(k+i),ψ(k+i) =

E {ψ[η(k + i), k + i]/Fk} ,ψ(k + i) = ψ(k + i)− ψ(k + i), i ≥ 1,
without indicating the explicit dependence of matrices on η(k+ i).
Additionally, we use the standard notation, for square matrix M ,
M ≥ 0 (M > 0) to denote that thematrixM is positive semidefinite
(positive definite).

We allow the time series η(k) to be serially correlated. Let
us assume that we know the first- and second-order conditional
moments for the stochastic vector η(k) about Fk:

E {η(k + i)/Fk} = η(k + i),
E


η(k + i)ηT (k + j)/Fk


= Θij(k), (i, j = 1, 2, . . . , l).

Therefore, the lead–lag relationships between component series
ηt(k + i) and ηf (k + j) are described by the matrices Θij(k) of the
second-order conditional moments.

We impose the following inequality constraints on the control
inputs (element-wise inequality)

umin(k) ≤ S(k)u(k) ≤ umax(k), (2)

where S(k) ∈ Rp×nu; umin(k), umax(k) ∈ Rp.
We use the MPC methodology in order to define the optimal

control strategy. The main concept of MPC is to solve an open-
loop constrained optimization problem at each time instant and
to implement only the initial optimizing control action of the
solution.

We define the following cost function with receding horizon,
which is to be minimized at every time k,

J(k + m/k) =

m
i=1

E{xT (k + i)R1(k + i)x(k + i)/x(k), Fk}

−

m
i=1

E{xT (k + i)/x(k), Fk}R2(k + i)E{x(k + i)/x(k), Fk}

−

m
i=1

R3(k + i)E{x(k + i)/x(k), Fk}

+

m−1
i=0

E{uT (k + i/k)R(k + i)u(k + i/k)/x(k), Fk}, (3)
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on trajectories of system (1) over the sequence of predictive control
inputs u(k/k), . . . , u(k+m−1/k) dependent on information up to
time k, under constraints (2),whereR1(k+i) ≥ 0,R2(k+i) ≥ 0, and
R(k+i) > 0 are given symmetricweightmatrices of corresponding
dimensions, R3(k + i) is given vector; m is the prediction horizon.

Only the first control vector u(k/k) is actually used for control.
Thereby we obtain control u(k) as a function of Fk and x(k), i.e., the
feedback control. This optimization process is solved again at the
next time instant k + 1 to obtain control u(k + 1).

Different cost functions can be obtained from this criterion after
setting the coefficients R1(k + i), R2(k + i), and R3(k + i) to some
appropriate values.

Problem 2.1. Taking R2(k+i) = 0,we have theMPC problemwith
quadratic criterion, composed by a linear combination of quadratic
and linear parts.

Problem 2.2. Let system (1) have a scalar output y(k) = L(k)x(k),
where L(k) is a vector of appropriate dimension. Taking

R1(k + i) = R2(k + i) = µ(k + i)LT (k + i)L(k + i),
R3(k + i) = ρ(k + i)L(k + i), (i = 1,m),

where µ(k + i) ≥ 0, ρ(k + i) ≥ 0 are scalar values, we have a
mean–variance optimization problem. The input parametersµ(k+
i), and ρ(k + i) can be seen as risk aversion coefficients, giving a
trade-off between the expected system state and the associated
risk (variance) level at time k.

3. Model predictive control strategy design

Consider the problem of minimizing the objective (3) with re-
spect to the predictive control variables u(k+i/k), i = 0, 1 . . . ,m−

1, subject to constraints (2).

Theorem 3.1. Let the system dynamics be given by (1) under
constraints (2). Then, the MPC policy with receding horizon m, such
that it minimizes the objective (3), for each instant k is defined by

u(k) =

Inu 0nu . . . 0nu


U(k),

where Inu is a nu-dimensional identity matrix, 0nu is a nu-dimensional
zero matrix, and U(k) = [uT (k/k), . . . , uT (k + m − 1/k)]T is the
set of predictive controls defined from the solving of the quadratic
programming problem with criterion

Y (k + m/k) =

2xT (k)G(k)− F(k)


U(k)+ UT (k)H(k)U(k) (4)

under constraints

Umin(k) ≤ S(k)U(k) ≤ Umax(k), (5)

where

S(k) = diag(S(k), . . . , S(k + m − 1)),
Umin(k) = [uT

min(k), . . . , u
T
min(k + m − 1)]T ,

Umax(k) = [uT
max(k), . . . , u

T
max(k + m − 1)]T , and

H(k),G(k), F(k) are the block matrices and blocks satisfy the
following equations

Htt(k) = R(k + t − 1)+ E{BT
[η(k + t), k + t]

× [Q1(m − t)− Q2(m − t)]B[η(k + t), k + t]/Fk}

+ E{BT (k + t)Q2(m − t)B(k + t)/Fk}, (6)

Htf (k) = E{BT
[η(k + t), k + t](AT )f−t

× [Q1(m − f )− Q2(m − f )]B[η(k + f ), k + f ]/Fk}

+ E{BT (k + t)(AT )f−tQ2(m − f )B(k + f )/Fk}, t < f , (7)
Htf (k) = HT
ft (k), t > f , (t, f = 1,m),

Gt(k) = (At)T [Q1(m − t)− Q2(m − t)]B(k + t), (8)

Ft(k) = Q3(m − t)B(k + t), (9)
Q1(t) = ATQ1(t − 1)A + R1(k + m − t),
Q2(t) = ATQ2(t − 1)A + R2(k + m − t),
Q3(t) = Q3(t − 1)A + R3(k + m − t),
Q1(0) = R1(k + m), Q2(0) = R2(k + m),
Q3(0) = R3(k + m).

If R2(k + i) = 0, (i = 1,m) then Q2(i) = 0 and we have optimal
control strategies based on quadratic criterion (Problem 2.1).

If R1(k + i) = R2(k + i) = µ(k + i)LT (k + i)L(k + i),
R3(k+ i) = ρ(k+ i)L(k+ i), (i = 1,m), then Q1(i) = Q2(i), G(k) =

0 and we have optimal control strategies based on mean–variance
criterion (Problem 2.2).

A proof of this theorem is reported in Appendix A.

Remark 3.1. Note that the optimal controller does not assume any
specific probability distribution for the model parameters. The so-
lution exclusively depends on the conditional mean vectors and
the conditional second-order moments matrices. These quantities
can be directly obtained by applying the well-developed theory of
multivariate time series (Lütkepohl, 2005; Tsay, 2002).

Remark 3.2. The condition R(k+i) > 0 guarantees that thematrix
H(k) is positive definite for two particular problems: Problems 2.1
and2.2. Thus in both cases the solution of a quadratic programming
task with a criterion (4) exists and is unique if the constraints (5)
are admissible.

Remark 3.3. It might seem computationally difficult to calculate
the conditional moments in expressions (6) and (7). However, due
to the assumption of linear dependence of matrix B[η(k+ i), k+ i],
(i = 1,m)onη(k+i), these values dependon conditionalmoments
and can be easily calculated because we assume that conditional
moments are known.

4. Portfolio optimization problem

In this section, we present an application of the previous results
to a portfolio optimization problem. The portfolio management
question addresses choosing how to allocate money into different
securities with some objective defined by the investor. We use the
same portfoliomodel as in Dombrovskii et al. (2006).We introduce
two dynamic portfolio optimization problems. Each of the
problems is solved by using the algorithm given by Theorem 3.1.

Consider an investment portfolio consisting ofn risky assets and
one risk-free asset (e.g., a bank account or a government bond).
We assume that the decision time horizon is composed of a large
number of periods. During each such period, the decision-maker
(investor) obtains new information about the returns (prices of as-
sets) and reacts to a newmarket situation (information) by selling
some assets and acquiring some other assets.

Let ui(k) (i = 1, 2, . . . , n) denote the amount of the wealth
invested in the ith risky asset at time k; u0(k) is the amount
invested in the risk-free asset. Then, the wealth process V (k)
satisfies

V (k) =

n
i=1

ui(k)+ u0(k). (10)
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Let ηi(k+1) denote the (simple) return of the ith risky asset per
period [k, k + 1]. It is a stochastic unobservable at time k with the
value defined as

ηi(k + 1) =
Pi(k + 1)− Pi(k)

Pi(k)
,

where Pi(k)denotes themarket value of the ith risky asset at time k.
By considering self-finance strategies (self-financing means

that we do not allow wealth to be added to or extracted from the
portfolio), the wealth process at the time k + 1 is given by

V (k + 1) =

n
i=1

[1 + ηi(k + 1)] ui(k)+ [1 + r] u0(k), (11)

where r is a risk-free interest rate.
From (10), we have u0(k) = V (k) −

n
i=1 ui(k). Then we can

rewrite (11) as follows:

V (k + 1) = [1 + r] V (k)+ b[η(k + 1), k + 1]u(k),

where η(k) = [η1(k)η2(k) . . . ηn(k)]T is the vector of risky asset
returns, u(k) = [u1(k) u2(k) . . . un(k)]T is the vector of input
(manipulated) variables, and

b [η(k), k] =

η1(k)− r η2(k)− r . . . ηn(k)− r


.

We impose the following constraints on the manipulated vari-
ables (trading amounts):

umin
i (k) ≤ ui(k) ≤ umax

i (k), (i = 1, n), (12)

umin
0 (k) ≤ V (k)−

n
i=1

ui(k) ≤ umax
0 (k). (13)

If umin
i (k) < 0, (i = 1, 2, . . . , n), we suppose that the amounts

of the short-sale are restricted by |umin
i (k)|; if short-selling is pro-

hibited, then umin
i (k) ≥ 0, (i = 1, 2, . . . , n). The amounts of long-

sale are restricted by umax
i (k), (i = 1, 2, . . . , n). If umin

0 (k) < 0,
we can borrow capital (risk-free assets), then the volume of bor-
rowing is restricted by |umin

0 (k)|; umax
0 (k) ≥ 0 defines the upper

bound of the amountwe can invest in the risk-free asset. Note, that
values umin

i (k) and umax
i (k) (i = 0, 1, . . . , n) are often dependent

on the commonwealth of the portfolio in practice. So, we canwrite
umin
i (k) = βiV (k) and umax

i (k) = γiV (k), where βi and γi are con-
stant parameters.

Constraints (12)–(13) canbe rewritten inmatrix form (element-
wise inequality):

umin(k) ≤ Su(k) ≤ umax(k), (14)

where S =

In −ET T , E =


1 . . . 1


,

umin(k) =

umin
1 (k) umin

2 (k) . . . umin
n (k) umin

0 (k)− V (k)
T
,

umax(k) =

umax
1 (k) umax

2 (k) . . . umax
n (k) umax

0 (k)− V (k)
T
.

Let us assume that the vectors of risky asset returns η(k) =

[η1(k)η2(k) . . . ηn(k)]T , k = 0, 1, . . . , form a serially correlated
non-stationary discrete-time multivariate process with finite
conditional moments

E {η(k + i)/Fk} = η(k + i),

E

η(k + i)ηT (k + j)/Fk


= Θij(k), (i, j = 1, l; k = 0, 1, 2, . . .).

One motivation for such a model is the fact that a large number of
empirical analyses of assets’ price dynamics show that there exists
salient serial correlations in the returns of financial assets (Fama &
French, 1988; Tsay, 2002).

We use the MPC methodology in order to define the optimal
control portfolio strategy. The advantage of using a receding hori-
zon implementation is that at each decision stage, we can profit
from observations of actual market behaviour during the preced-
ing period and use this information to feed fresh estimates to the
model.

We define two portfolio control problems.

Problem 4.1. Our objective is to control the investment portfolio,
via dynamic asset allocation among the n stocks and a risk-free as-
set, by tracking, as closely as possible, a desired deterministic ref-
erence trajectory

V 0(k + 1) = [1 + µ0]V 0(k), (15)

where µ0 is a given parameter representing the growth factor and
the initial state is V 0(0) = V (0).

So, we have a dynamic tracking problem of a reference portfolio
(15) with desired return µ0 subject to constraints (14) with crite-
rion

J(k + m/k) = E


m
i=1


V (k + i)− V 0(k + i)

2
− ρ(k + i)


V (k + i)− V 0(k + i)


+ uT (k + i − 1/k)R(k, i − 1)u(k + i − 1/k)/V (k), Fk


, (16)

where m is the prediction horizon, u(k + i/k) = [u1(k +

i/k), . . . , un(k+ i/k)]T is the predictive control vector,R(k+ i) > 0
is a positive symmetric matrix of control cost coefficients, and
ρ(k + i) ≥ 0 is the weight coefficient.

The performance criterion (16) is composed by a linear com-
bination of a quadratic part, representing the conditional mean-
square error between the investment portfolio value and a
reference (benchmark) portfolio, and a linear part, penalizing
wealth values that are less than the desired value. The trade-off
between these two terms is balanced by the weight ρ(k + i).

Criterion (16) can be transformed into the equivalence form

J(k + m/k) =

m
i=1


E


V 2(k + i)/V (k), Fk


−


2V 0(k + i)+ ρ(k + i)


E {V (k + i)/V (k), Fk}

+ E{uT (k + i − 1/k)R(k, i − 1)u(k + i − 1/k)/V (k), Fk}

,

where we eliminated the term that is independent on control vari-
ables.

Problem 4.2. We define a multi-period mean–variance portfolio
optimization problem with criterion

J(k + m/k) =

m
i=1

[E {(V (k + i)

− E {V (k + i)/V (k), Fk})
2 /V (k), Fk


− ρ(k + i)E {V (k + i)/V (k), Fk}

+ E{uT (k + i − 1/k)R(k + i − 1)u(k + i − 1/k)/V (k), Fk}

,

where the input parameter ρ(k + i) denotes the level of risk aver-
sion, giving a trade-off between the expected portfolio value and
the associated risk (variance) level at time k.

It is obvious that the results presented in Theorem 3.1 can be
applied to solve Problems 4.1 and 4.2.
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5. A real data numerical example

The purpose of this chapter is to demonstrate the efficiency and
the powerful practical potential of the proposed algorithms us-
ing the example of stochastic system as complex as an investment
portfolio. In this section, our approach is tested on a set of real
stocks. The data used for these tests are taken from the Russian
Stock Exchange MICEX (www.finam.ru). They include the actual
daily closing stock prices of the largest companies such as Sber-
bank, Gazprom, VTB, LUKOIL, NorNickel, Rosneft, and Sibneft. The
portfolio was composed of five risky assets. Performing numerical
modelling, we looked over all of the possible combinations of the
five assets.

We consider the situation of an investorwho has to allocate one
unit of wealth over the investment horizon of approximately 1000
trading days (about four years) among risky assets and one risk-
free asset. The risk-free asset considered here is a bank account
with risk-free rate r1 = 0.00005 per day (approximately 2%
per annum). The updating of the portfolio based on the MPC is
executed once every trading day. For our portfolio, we assumed an
initial wealth of V (0) = V 0(0) = 1. The weight coefficients are
set as R = diag(10−4, . . . , 10−4). We impose hard constraints on
the portfolio problem with parameters βi = −0.6, γi = 3 (i =

1, . . . , n), and γ0 = 3. In this example, short-selling is allowed.
For the case of tracking a reference portfolio (Strategy 1), we set
the tracking target to return 0.15% per day (µ0 = 0.0015) and
the weight ρ(k + i) = 0. For the case of mean–variance approach
(Strategy 2), we set the weight as (1) ρ(k + i) = 0.005 and (2)
ρ(k+ i) = 0.002. For the on-line finite horizon MPC problems, we
used a horizon ofm = 10, and numerically solved it in MATLAB by
using the quadprog.m function.

At each time k, the optimization problem requires as input pa-
rameters the predicted returns and predicted second moments of
returns over the predictive horizonm. These parameters can be es-
timated using different model specifications describing the return
asset evolution. Examples include using autoregressive models,
conditional heteroscedastic models, factor models, complex non-
parametric methods and others (see, for instance Chan, Karceski, &
Lakonishok, 1999; Lütkepohl, 2005; Tsay, 2002).

As a simple example, we assume that the multivariate process
of risky asset returns follows the VAR(1)model (vector autoregres-
sive model of order 1) (Lütkepohl, 2005; Tsay, 2002)

η(k + 1) = ν + A1η(k)+ ω(k + 1),

where A1 is a coefficient matrix, ν = (In − A1)µ is a vector of in-
tercept terms, µ = E{η(k)}; and ω(k + 1) is an n-dimensional
white noise, that is, E{ω(k + 1)} = 0; E{ω(k + 1)ωT (k + 1)} =

σ ; E{ω(k + i)ωT (k + j)} = 0, i ≠ j.
The covariance matrix σ is assumed to be nonsingular.
We estimated parameters of this model by the ordinary least

squares method using the observed historical data based on the
past 200 trading days prior to the tracking period. These parame-
ters were considered constant along the entire period under study
and equal to the initial empirical estimates, based on backwards
data. We calculated the predicted conditional second moments
based on this VAR(1) model and substituted them into Eqs. (6)–(7).

In practice, time series of risky asset returns have a trending
behaviour which is not compatible with the assumptions of the
classical VAR model. In order to capture short-run trends of risky
asset returns, we use the following modification of the forecasting
procedure based on the VAR(1) model. We calculate the sample
means of returns η̂(k) using 10-day windows of past historical
return data and incorporate these estimates in the VAR(1) -
predictor Ê{η(k + h)/η(k)} = (In + Â1 + Â2

1 + · · · + Âh−1
1 )ν̂(k) +

Âh
1η(k), where the true coefficients ν, A1 are replaced by estimators
Fig. 1. Line 1 — tracking portfolio values (Strategy 1); 2— reference portfolio
values; 3 — mean–variance portfolio values with ρ = 0.005 (Strategy 2); 4 —
mean–variance portfolio values with ρ = 0.002 (Strategy 2).

Fig. 2. Wealth invested in NorNickel for tracking a reference portfolio approach.

ν̂, Â1; ν̂ = (In − Â1)η̂(k); h = 1, 2, . . . ,m. This predictor is used
to predict the expected returns over the predictive horizon m at
each decision time k in Eqs. (8) and (9). When a newmeasurement
becomes available, the oldest measurement is discarded and the
new measurement is added. So, we use the adjusted procedure,
updating the estimates of mean returns at each time k. One
motivation for such a heuristic approach is that we have no
restrictions to construct any type of predictors in order to obtain
the best asset allocation strategies.

We present the typical results of the experiments on Figs. 1–4.
In the pictures below, the portfolio was composed of five risky
assets: LUKOIL, Gazprom, Sberbank, Rosneftj, and NorNickel. In-
vestment period is from 17.06.2010 to 10.06.2014 (approximately
4 years). Fig. 1 plots the tracking portfolio (line 1) and a reference
portfolio (line 2) values for Strategy 1 and amean–variance perfor-
mance for Strategy 2 with ρ(k+ i) = 0.005 (line 3) and ρ(k+ i) =

0.002 (line 4). Fig. 1 (see, Fig. 1, lines 3 and 4) shows that when the
risk is greater, the yield is higher and vice versa. In Figs. 2 and 3,
we have investments in the risky asset NorNickel for two control
strategies. Fig. 4 plots risky asset returns for asset NorNickel.

Several insights can be gathered from the examples illustrated
above. Fig. 1 shows that the tracking a reference portfolio strategy
allows us to obtain a smoother curve of growth compared with the
mean–variance strategy. The advantage of the control according to
the quadratic criterion is that it is possible to predict the trajectory
of the growth of portfolio wealth, which should follow as close as
possible to the deterministic benchmark given by the investor.

It is important to acknowledge that in our experiments, where
we use a rather simple model for parameters estimation, the per-
formance of proposed strategies appears to be rather efficient. So,
our approach allows us to design strategieswhich are desensitized,
i.e., robustified, to parameters estimation. It is clear that one can
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Fig. 3. Wealth invested in NorNickel for mean–variance approach, ρ = 0.005.

Fig. 4. Risky asset returns (NorNickel).

use more sophisticated estimation schemes to improve the preci-
sion of parameters estimation.

6. Conclusion

In this paper, we have offered a predictive control strategy
for discrete-time systems with stochastic parameter uncertainties
subject to hard constraints on input variables. System parameters
are assumed to be correlated vector sequences for which only the
first and the second conditional moments are known. The knowl-
edge of the statistical distributions of the parameters is not as-
sumed. We consider the control problem with a receding horizon
under a generalized criterion. The proposed approach was applied
to the control of stochastic system as complex as an investment
portfolio.
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Appendix

Proof of Theorem 3.1. Let us introduce the following Lyapunov-
type equations

Q1(t) = ATQ1(t − 1)A + R1(k + m − t), (t = 1,m), (17)

Q2(t) = ATQ2(t − 1)A + R2(k + m − t), (t = 1,m), (18)

and equation

Q3(t) = Q3(t − 1)A + R3(k + m − t), (t = 1,m), (19)
starting with Q1(0) = R1(k + m), Q2(0) = R2(k + m), Q3(0) =

R3(k + m). Straightforward calculations lead to the following
expression for J(k + m/k):

J(k + m/k) = xT (k)AT
[Q1(m − 1)− Q2(m − 1)]Ax(k)

+ 2xT (k)
m
i=1

(Ai)T [Q1(m − i)− Q2(m − i)]

× B(k + i)u(k + i − 1/k)

+

m
i=1

uT (k + i − 1/k)

E{BT

[k + i, η(k + i) ]

× [Q1(m − i)− Q2(m − i)]B[k + i, η(k + i)]/Fk}

+ E{BT (k + i)Q2(m − i)B(k + i)/Fk}

+ R(k + i − 1)} u(k + i − 1/k)

+ 2
m−1
i=1

m
j=i+1

uT (k + i − 1/k)

E{BT

[k + i, η(k + i)](AT )j−i

×Q1(m − j)B[k + j, η(k + j)]/Fk}

+ E{BT (k + i)(AT )j−iQ2(m − j)B(k + j)/Fk}

u(k + j − 1/k)

−

m
i=1

Q3(m − i)B̄(k + i)u(k + i − 1/k)− Q3(m − 1)Ax(k), (20)

where Q1(i),Q2(i),Q3(i) are defined by Eqs. (17)–(19).
Criterion (20) can be written in matrix form

J(k + m/k) = xT (k)AT
[Q1(m − 1)− Q2(m − 1)]Ax(k)

−Q3(m − 1)Ax(k)+

2xT (k)G(k)− F(k)


U(k)

+UT (k)H(k)U(k). (21)

It is obvious that the problem of minimizing the criterion (21) is
equivalent to the problem ofminimizing the criterion (4). Thus, we
have that the problem ofminimizing the criterion (3) subject to (2)
is equivalent to the quadratic programming problemwith criterion
(4) subject to (5). This completes the proof.
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