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Abstract

A possible connection between the dark matter and strong first order elec-
troweak phase transition, which is an essential ingredient of the electroweak
baryogenesis, has been explored in this thesis. It is shown that the extension
of the Standard Model’s minimal Higgs sector with an inert SU(2)L scalar
doublet can provide light dark matter candidate and simultaneously induce
a strong first order phase transition. There is however no symmetry reason
to prevent the extension using scalars with higher SU(2)L representations.
Therefore, by making random scans over the models’ parameters, we show,
in the light of electroweak physics constraints, strong first order electroweak
phase transition and the possibility of having a sub-TeV cold dark matter
candidate, that the higher representations are rather disfavored compared
to the inert doublet. This is done by computing generic perturbativity be-
havior and impact on electroweak phase transitions of higher representations
in comparison with the inert doublet model. Explicit phase transition and
cold dark matter phenomenology within the context of the inert triplet and
quartet representations are used for detailed illustrations.
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Chapter 1

Introduction

The discovery of an about 126 GeV Higgs boson [1, 2] is yet another im-
portant support for and completion of the Standard Model (SM). The SM
with minimal Higgs sector contains one complex Higgs doublet which after
electroweak symmetry breaking gives a neutral CP-even Higgs boson. But
one can consider a scenario with singlets, with more than one doublet or with
an N copies of SU(2)L n-tuplets where the (non standard) Higgs sector can
be used to explicitly account for Baryogenesis and cold dark matter. Using
these phenomena and related experimental data we set to qualitatively ex-
plore for the preferred scalar representation in the SM.

Extensive astrophysical and cosmological observations have already put
dark matter (DM) as a constituent of the universe. The existence of DM
has been indicated by the rotation curves for spiral galaxies [3], velocity dis-
persion of individual galaxies in galaxy clusters, large x-ray temperatures of
clusters [4], bulk flows and the peculiar motion of our own local group [5],
Moreover, inferred from the gravitational lensing of background images, the
mass of galaxy clusters turn out to be consistent with the large dark-to-
visible mass ratios [6]. Furthermore, one of the most compelling evidence, at
a statistical significance of 8σ comes from the two colliding clusters of galax-
ies, known as the Bullet cluster [7] for which the spatial displacement of the
center of the total mass from the center of the baryonic mass peaks cannot
be explained with an alteration of gravitational force law. Also, the large
scale structure formation from the initial seed perturbations from inflation
requires a significant non-baryonic dark matter component [8]. Finally the
observed acoustic peaks in the cosmic microwave background radiation en-
ables us to determine most precisely the relic density of DM in the universe
to be, ΩDMh

2 = 0.1196 ± 0.0031 (68% CL) [9] as the DM density provides
the required potential well for the observed acoustic oscillation seen in the
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CMB. Still we have to determine the exact nature of the dark matter from
particle physics point of view. Within many viable candidates for DM, the
most popular one is considered to be the stable weakly interacting particle
(WIMP) [10] for which the observed DM relic density is obtained if it’s mass
lies near the electroweak scale.

Apart from DM identification, one other unresolved question within the
SM is the observed matter-antimatter asymmetry of the universe. Such asym-
metry is described by Baryogenesis scenario first put forward by Sakharov [11]
and one essential ingredient of this mechanism is ’out of equilibrium process’.
Now that the study of beyond standard model (BSM) physics is being ex-
plored with the LHC, a well motivated scenario within the testable reach of
LHC is Electroweak Baryogenesis [12] where out of equilibrium condition is
given by strong first order phase transition. The SM has all the tools required
by the Sakharov’s condition for Baryogenesis, i.e. baryon number violation
at high temperature through sphalerons [13–16], C and CP violation with
CKM phase and strong first order phase transition [17, 18]. However, it was
shown that to avoid baryon washout by sphalerons, Higgs mass has to be be-
low 45 GeV for strong electroweak phase transition (EWPhT) [19–22], which
was later confirmed by lattice studies [23–25] and eventually it was ruled out
by the LEP data [26]. Now with Higgs at 126 GeV, clearly one can see the
requirement of extending SM by new particles, possibly lying nearly the elec-
troweak scale, which could not only provide strong EWPhT for explaining
matter asymmetry but also the DM content of the universe.

One promising way is to extend the scalar sector of the SM. Within the
literature there are numerous considerations for non minimal Higgs sector
with various representations of the additional Higgs multiplet in order to ac-
count for Baryogenesis and/or dark matter. For instance, in the inert doublet
case considered in [27–29], it was shown that it can enable one to achieve
strong EWPhT with DM mass lying between 45 GeV and 80 GeV and pre-
dicts a lower bound on the direct detection that is consistent with XENON
direct detection limit [208] (in case of sub-dominant DM, see [30]). Inert
doublet is a well motivated and minimal extension of scalar sector which
was first proposed as dark matter [31], was studied as a model for radiative
neutrino mass generation [32], improved naturalness [33] and follows natu-
rally [34, 35] in case of mirror families [36–39] that was to fulfill Lee and
Yang’s dream to restore parity [40]. The DM phenomenology regarding In-
ert doublet model has been studied extensively in Refs. [41–55]. Moreover,
tentative 130 GeV gamma line from galactic center can be accommodated in
inert doublet framework [57]. Therefore, one can extend scalar sector by in-
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troducing inert scalar representations and explore the nature of phase transi-
tion, consistency of the theory at high scale and dark matter phenomenology.

Apart from the doublet, one other possibility is the scalar singlet [58–62]
(and references there) which can be accounted for strong EWPhT and light
DM candidate but not simultaneously (for exceptions, see [63–65]). Scalar
singlet can also be a force carrier between SM and dark matter sector induc-
ing strong EWPhT [66,67] or trigger EWPhT independent of being DM [68].

In the case of larger representations, a systematic study for DM candi-
date has been performed in [69] from doublet to 7-plet of SU(2)L with both
fermionic and scalar DM where only allowed interactions of DM are gauge in-
teractions. Additionally, scalar multiplet allows renormalizable quartic cou-
plings with Higgs doublet. In [70], study of DM phenomenology for such
scalar multiplet was carried out for large odd dimensional and real represen-
tation and the mass of the DM turned out to be larger than the scale relevant
for strong EWPhT. Besides, fermions with large yukawa couplings to Higgs
can trigger strong EWPhT by producing large entropy when they decouple
and also they can be viable dark matter candidates [71] but it requires some
fine tuning of Higgs potential. Another approach with vector-like fermions
is explored in [72].

The work presented in the thesis focused on the comparison among var-
ious models of extended the Higgs sector using different representations in
order to find the favored representation that not only provides a viable DM
candidates but also trigger strong 1st order EWPhT accounting for Baryo-
genesis.

Outline The thesis is organized as follows. In chapter 2 we have presented
the elements of finite temperature field theory. In chapter 3 we have presented
a brief review of electroweak baryogenesis and showed how the requirement
of baryon number violating sphaleron decoupling leads to strong first order
electroweak phase transition (EWPhT) condition where results obtained in
original work [137] have been partly used in 3.3.1. Chapter 4 is based on
original works [27,144] where the results of the investigation regarding scalar
representations: inert doublet, triplet and quartet in triggering strong first
order EWPhT and providing cold dark matter in the universe, are presented
in details. We conclude in chapter 5. In appendix A some mathematical
formulas are collected. Appendix B collects the expressions of the Coleman
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Weinberg potential in MS and cut-off schemes. Appendix C focuses on
the derivation of high and low temperature limit of various thermodynamic
quantities and finite temperature effective potential. In appendix D we have
presented the asymptotic solutions of sphaleron profile functions and their
dependence on scalar representations [137]. The explicit form of generators
and vertex factors in gauge-scalar sector are given in appendix E. Appendix
F has described tree unitarity condition briefly. In appendix G we have
described a method to derive renormalization group (RG) equations from
effective potential and collected RG equations for inert doublet and triplet
cases.
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Chapter 2

Elements of finite temperature
field theory

Finite temperature field theory has a wide range of applications in particle
physics, condensed matter physics, astrophysics and cosmology.In this chap-
ter we have mainly focused on the background tools needed to understand
the electroweak phase transition because of its importance in the evolution
of the universe.

The chapter is organized as follows. In section 2.1, we have derived the
thermodynamic quantities from the statistical point of view. Section 2.3 is
devoted to describe briefly key ingredients of thermal field theory: Imaginary
time formalism and finite temperature effective potential. In section 2.4
we have addressed the basics of phase transition in the early universe. In
section 2.5 we have pointed out infrared divergences which occur in finite
temperature field theory.

2.1 Thermodynamic quantities

The investigation of equilibrium thermodynamics and the determination of
relevant thermodynamic quantities can be readily determined once partition
function is defined. In the section, starting from the partition function of the
Bosonic and fermionic oscillator we have derived finite temperature effective
potential [73].

First consider the ensemble of bosonic harmonic oscillators. The creation
and annihilation operators for a i-th bosonic oscillator are ai and a†i which
follow the commutation relation [ai, a

†
j] = δij, In case of non-interacting os-

cillators, the Hamiltonian associated with the ensemble is just the sum of
individual Hamiltonians of the oscillators,
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HB =
∑
i

HBi =
∑
i

ωi
2

(a†iai + aia
†
i )

=
∑
i

ωi(Ni +
1

2
)

where the energy of the i-th oscillator is ωi and occupation number Ni = a†iai.
Also, HBi|n〉 = (n+ 1

2
)ωi|n〉.

On the other hand, fermionic annihilation and creation operators, bi and
b†i respectively for i-th oscillator follows anticommutation relation, {bi, b†j} =
δij. Therefore the total Hamiltonian associated with the ensemble of fermionic
oscillators is

HF =
∑
i

HFi =
∑
i

ωi
2

(b†ibi + bib
†
i )

=
∑
i

ωi(Ni −
1

2
)

where the number operator for fermionic oscillator is Ni = b†ibi and HFi|n〉 =
(n− 1

2
)ωi|n〉

In the continuum limit where V is the volume of the system, we have∑
i

= V

∫
d3~p

(2π)3
(2.1)

ωi → ω =
√
~p2 +m2 (2.2)

HB(F )i → HB(F )(ω) (2.3)

Therefore, the total Hamiltonian of an ensemble of particles is,

HB(F ) = V

∫
d3~p

(2π)3
HB(F )(ω) (2.4)

The partition function of i-th oscillator in the discrete case, is given by,

Zi = Tr e−Hi/T (2.5)

and in the continuum limit,

Z(ω) = Tr e−H(ω)/T (2.6)

For bosonic oscillator,

ZB(ω) =
∑
n

e−(n+ 1
2

)ω/T = e−ω/2T (1− e−ω/T ) (2.7)
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And for the fermionic oscillator,

ZF (ω) =
∑
n

e−(n− 1
2

)ω/T = eω/2T (1 + e−ω/T ) (2.8)

Starting from H =
∑

iHi and using the fact that unitary transformation
which changes basis does not change the spectrum of the Hamiltonian oper-
ator, it can be shown that Z = Tr e−H/T =

∏
i Zi. So, lnZ =

∑
i lnZi or in

the continuum limit,

lnZB(F ) = V

∫
d3~p

(2π)3
ZB(F )(ω) (2.9)

The occupation number and the energy The average occupation num-
ber of the oscillator is,

n̄B(F )(ω) =
TrNe−HB(F )/T

ZB(F )

(2.10)

Therefore the average occupation number of the system,

nB(F ) =

∫
d3~p

(2π)3
n̄B(F )(ω)

=

∫
d3~p

(2π)3

∑
n ne

−(n± 1
2

)ω/T

ZB(F )(ω)

=

∫
d3~p

(2π)3

1

eω/T ∓ 1
(2.11)

On the other hand, the average energy of the oscillator is

ε(ω) =
TrHB(F )e

−HB(F )/T

ZB(F )

(2.12)

Therefore, the energy density associated with the system is

ρB(F ) =

∫
d3~p

(2π)3

∑
n ω(n± 1

2
)(e−(n± 1

2
)ω/T

ZB(F )(ω)

=

∫
d3~p

(2π)3

[
±ω

2
+ ωnB(F )

]
(2.13)

12



Free energy, entropy and the pressure The probability for an oscillator
to be in the state with energy En is

Pn =
e−En/T

Z
(2.14)

Here, En = ω(n ± 1
2
) for boson and fermion respectively. Therefore the

entropy of the oscillator is S(ω) = −
∑

n Pn lnPn. And the total entropy of
the ensemble is

sB(F ) =

∫
d3~p

(2π)3
SB(F )(ω) (2.15)

=

∫
d3~p

(2π)3

[ω
T
nB(F ) ∓ ln(1∓ e−ω/T )

]
(2.16)

The free energy is defined as F = E − TS where, E = V ρ, S = V s and
F = V f . From the first law of thermodynamics,

dE = −pdV + TdS (2.17)

So the relation for the Free energy is,

dF = −pdV − SdT (2.18)

For free energy density, f = F/V ,

f = ρ− Ts (2.19)

So now if we plug Eq.(2.11), Eq.(2.13) and Eq.(2.15) into the relation Eq.(2.19),
we have the free energy density of the ensemble,

fB(F ) =

∫
d3~p

(2π)3

[
±ω

2
± T ln(1∓ e−ω/T )

]
(2.20)

From Eq.(2.18), we have the pressure associated with the system,

p = −
(
∂F

∂V

)
T

= −f (2.21)

The above set of expressions provides us the necessary tools to investi-
gate the thermodynamic behavior of the system. At this point we will look
into two limits: a. relativistic and b. non-relativistic limits of the relevant
quantities.
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Relativistic and non-relativistic limits The relativistic limit is consid-
ered to be T � m. The detailed derivation of the results collected in this
section is given in appendix C. In this limit, the total number density n of
the system containing boson and fermion is,

n = (gB +
3

4
gF )

ζ(3)

π2
T 3 (2.22)

where gB and gF are the bosonic and fermionic degrees of freedom.
Again, the total energy density ρ of the system is,

ρ = (gB +
7

8
gF )

π2

30
T 4 (2.23)

Moreover, the entropy density s associated with that system is

s = (gB +
7

8
gF )

2π2

45
T 3 (2.24)

And, the free energy density f of the system, which is also negative of
the pressure p

f = −p = (gB −
7

8
gF )

π2

90
T 4 (2.25)

On the other hand at the non-relativistic limit where m � p, T , the
number density n is

n =

(
mT

2π

)3/2

e−m/T (2.26)

Furthermore, the energy density is given as

ρ = ρB = ρF = mn (2.27)

2.2 Tools of finite temperature field theory

In the previous section we have derived the essential thermodynamic quan-
tities from statistical mechanics point of view. In this section we are going
to describe how one can incorporate temperature in quantum field theory
and apply the field theoretical tools to investigate thermodynamic system.
Finite temperature field theoretic approach to investigate the symmetry be-
havior and the phase transition of the universe was first addressed in [74–79].
The following telegraphic review of finite temperature field theory is heav-
ily leaned on [80–85] where the topics of finite temperature field theory are
covered in a more detailed manner.
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The statistical behavior of a quantum system, in thermal equilibrium, is
normally studied using appropriate ensemble. If the density matrix for the
system is

ρ(β) = e−βH (2.28)

Here β = 1/T , the inverse of the temperature and H is the Hamiltonian
depending on the choice of the ensemble. For example, in grand canonical
ensemble, H = H −

∑
i µiNi where H, Ni and µi are the dynamical Hamil-

tonian, number operator and the chemical potential of the system. On the
other hand, for microcanonical ensemble where the number of particles of
the system remains constant, we have H = H. We will adopt the particular
ensemble based on the nature of thermodynamic system under study.

Again the partition function of the system is

Zβ = Tr ρ(β) = Tr e−βH (2.29)

And the ensemble average of any observable A is

〈A〉β = Z−1
β Tr ρ(β)A (2.30)

Let us also define, the Heisenberg operatorAH(t) for corresponding Schroedinger
operator A as

AH(t) = eiHtAe−iHt (2.31)

So for thermal correlation between two Heisenberg operators AH(t) and
BH(t′) is

〈AH(t)BH(t′)〉β = Z−1
β Tr e−βHAH(t)BH(t′)

= Z−1
β Tr e−βHAH(t)eβHe−βHBH(t′)

= Z−1
β TrAH(t+ iβ)e−βHBH(t′)

= Z−1
β Tr e−βHBH(t′)AH(t+ iβ)

= 〈BH(t′)AH(t+ iβ)〉β (2.32)

The above Eq.(2.32) holds independent of the grassmann parities of the
operators A andB. This relation is known as Kubo-Martin-Schwinger (KMS)
relation and such relation can be viewed as a general criterion for thermal
equilibrium of the system.

2.2.1 Imaginary time formalism

In this section, we are going to describe one of the prescription for finite
temperature field theory-Imaginary time formalism [86] which is suitable to
study thermodynamic system in equilibrium or near-equilibrium state.
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As the dynamical Hamiltonian H can be separated into free and an in-
teraction part, H = H0 +H ′, we can write, total Hamiltonian in the density
matrix as H = H0 +H ′. Then the density matrix can be written as

ρ(β) = e−βH = ρ0(β)S(β) (2.33)

where ρ0(β) = e−βH0 and S(β) = eβH0e−βH = ρ−1
0 (β)ρ(β). The density

matrix satisfies the following evolution equation over the interval 0 ≤ τ ≤ β,

∂ρ0(τ)

∂τ
= −H0ρ0(τ)

∂ρ(τ)

∂τ
= −Hρ(τ) = −(H0 +H ′)ρ(τ) (2.34)

Using equations Eq.(2.34), we have the evolution equation for S(β),

∂S(τ)

∂τ
= −ρ−1

0 (τ)H ′ρ0(τ)S(τ)

= −H ′I(τ)S(τ) (2.35)

Here, we have defined H ′I = ρ−1
0 (τ)H ′ρ0(τ) = eτH0H ′e−τH0 which is taken in

the interaction picture. These two relations resemble the evolution equation
of the evolution operator as in zero temperature field theory.

Consider the transformation, AI(τ) = eτH0Ae−τH0 which is not neces-
sarily unitary for real τ and therefore, A†I(τ) = eτH0A†e−τH0 6= (AI(τ))†.
However, if τ were a complex variable, then for imaginary values of τ , the
transformation will be unitary. For this reason, we have to identify τ on the
negative imaginary time axis,

t = −iτ (2.36)

We can also see from Eq.(2.35) that we have

S(β) = Pτ (e
−

∫ β
0 dτH′I(τ)) (2.37)

where, Pτ stands for ordering in the τ variable. Eq.(2.37) resembles the usual
S-matrix of the zero temperature field theory except for the fact that the time
integration is over a finite interval along imaginary time axis. So as in zero
temperature, we can expand the exponential and each term in the expansion
would give rise to a (modified) Feynman diagram.

Let us now address the 2-point temperature Green’s functions. It is de-
fined as the following,

Gβ(τ, τ ′) = 〈Pτ (φH(τ)φ†H(τ ′))〉β (2.38)
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φH(τ) accounts for both bosonic and fermionic field operator and we have
suppressed spatial and spinorial indices for notational simplicity. Also τ
ordering is sensitive to the Grassmann parity of the field variables and it is
defined as

Pτ (φH(τ)φ†H(τ ′)) = θ(τ − τ ′)φH(τ)φ†(τ ′)± θ(τ ′ − τ)φ†(τ ′)φH(τ) (2.39)

where the minus sign in the second term is for fermionic fields. The relation
between the Heisenberg and interaction picture is in the following

AH(τ) = eτHAe−τH

= S−1(τ)AI(τ)S(τ) (2.40)

Therefore the 2-point temperature green’s function for τ and τ ′ such that
0 ≤ τ, τ ′ ≤ β,

Gβ(τ, τ ′) =
Tr e−βH0Pτ (φI(τ)φ†I(τ

′)S(β)

Tr e−βH0S(β)
(2.41)

Matsubara frequencies The temperature Green’s functions are

Gβ(τ, τ ′) = 〈Pτ (φH(τ)φ†H(τ ′))〉β (2.42)

Here we are going to show the periodic (anti-periodic) behavior of 2 point
Green’s function in τ variable. Consider for τ > 0,

Gβ(0, τ) = ±〈φ†H(τ)φH(0)〉β
= ±Z−1

β Tr e−βHφ†H(τ)φH(0)

= ±Z−1
β Tr e−βHφH(β)φ†H(τ)

= ±Gβ(β, τ) (2.43)

where + and − signs are for bosonic and fermionic operators respectively.
So we can see that the bosonic and fermionic Green’s function has to satisfy
periodic and anti-periodic boundary conditions.

Since the Green’s functions are defined within a finite time interval, the
corresponding Fourier transformation will only involve discrete frequencies.
Suppressing spatial co-ordinates,

G̃β(ωn) =
1

2

∫ β

−β
eiωnτGβ(τ) (2.44)

where ωn = nπ
β

with n = 0,±1,±2, ... Now because of periodicity of Green’s
function for bosonic and fermionic operators are different, we will see that
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only even integer modes contribute to bosonic Green’s function while only
odd integer modes contribute to the fermionic Green’s function.

G̃β(ωn) =
1

2

∫ 0

−β
eiωnτGβ(τ) +

1

2

∫ β

0

eiωnτGβ(τ)

= ±1

2

∫ 0

−β
eiωnτGβ(τ + β) +

1

2

∫ β

0

eiωnτGβ(τ)

=
1

2
(1± e−iωnβ)

∫ β

0

eiωnτGβ(τ)

=
1

2
(1± (−1)n)

∫ β

0

eiωnτGβ(τ) (2.45)

So we immediately see that for bosons G̃β(ωn) vanishes for odd n while for
fermions it vanishes for n even. Therefore,

ωn =

(
2πn
β

for bosons
(2n+1)π

β
for fermions

)
(2.46)

They are commonly referred to as the Matsubara frequencies. The spatial
co-ordinates are continuous as in the case of zero temperature field theory so
putting together, the Fourier transform of 2-point Green’s function is,

Gβ(~x, τ) =
1

β

∑
n

∫
d3k

(2π)3
e−i(ωnτ−

~k.~x)G̃β(~k, ωn) (2.47)

To find the form of bosonic propagator, we take zero temperature Klein-
Gordon equation

(∂µ∂µ +m2)G(x) = −δ4(x) (2.48)

and by making the transformation t → −iτ or p0 → ip0, which is the Wick
rotation and using Eq.(2.47), we have

G̃β(~k, ωn) =
1

ω2
n + ~k2 +m2

=
1

4n2π2/β2 + ~k2 +m2
(2.49)

Similarly we can determine the fermionic propagator to be

S̃β(~k, ωn) =
γ0ωn + ~γ.~k −m
ω2
n + ~k2 +m2

=
γ0((2n+ 1)π/β) + ~γ.~k −m
(2n+ 1)2π2/β2 + ~k2 +m2

(2.50)
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Again, after wick rotation, k0 → ik0 we identify the loop integral as
follows, ∫

d4k

(2π)4
→ 1

β

∑
n

∫
d3k

(2π)3
(2.51)

In summary, in imaginary time formalism the Feynman rules are the zero
temperature rules with temperature, β = 1/T and the following replace-
ments,

• Performing the wick rotation for the momenta, k0 → ik0.

• The zero component of the momentum,

k0 = 2πnT for bosons

k0 = (2n+ 1)πT for fermions

• Loop integral is identified as∫
d4k

(2π)4
→ T

∞∑
n=−∞

∫
d3k

(2π)3

• The propagators are the following

Boson Propagator :
1

4n2π2T 2 + ~k2 +m2

Fermion Propagator :
γ0((2n+ 1)πT ) + ~γ.~k −m
(2n+ 1)2π2T 2 + ~k2 +m2

• Vertex factor: 1
T

(2π)3δωn1+ωn2+...δ
(3)(~k1 + ~k2 + ...)V , where V involves

couplings.

2.2.2 A toy model at finite temperature

We have considered Yukawa model as an example to demonstrate imaginary
time formalism of the previous subsection. The Lagrangian is the following

L =
1

2
∂µφ∂

µφ+ iψ̄γµ∂µψ −
1

2
m2
φφ

2 +mψψ̄ψ −
1

4!
λφ4 − yφψ̄ψφ (2.52)
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Figure 2.1: One loop correction to the scalar self energy due to its self inter-
action

One loop mass correction Here we are going to calculate the one loop
mass correction of the scalar field due to it’s self interaction and interaction
with fermions at finite temperatures. We will see that how finite temperature
modifies the mass of a scalar particle. This is the thermal screening of particle
in the plasma. First we look into one loop correction due to scalar field itself.

From Fig. 2.1, we have

−iδ(B)m2 = −iλT
2

∑
n,even

∫
d3k

(2π)3

1

n2T 2 + ~k2 +m2
φ

or δ(B)m2 =
λ

2π2T

∑
n

∫
d3k

(2π)3

1

n2 + (ωk/πT )2
(2.53)

where, ω2
k = ~k2 + m2

φ. Now if y = ωk/πT , using Eq.(A.18), we have from
Eq.(2.53),

δ(B)m2 =
λ

4

∫
d3k

(2π)3

1

ωk
coth

( ω
2T

)
(2.54)

Furthermore, using Eq.(A.20), Eq.(2.54) reduces into

δ(B)m2 =
λ

4

∫
d3k

(2π)3

1

ωk
+
λ

2

∫
d3k

(2π)3

1

ωk

1

eωk/T − 1
(2.55)

The first part is the zero temperature part of the mass correction and contains
the divergence. The temperature dependent part is free from ultraviolet
divergences. Therefore it is enough to use zero temperature counter-terms
to renormalize the theory. As the integral in the second part can not be
evaluated in a closed form, we need to look into the high temperature limit,
mφ/T � 1 and low temperature limit mφ/T � 1. But before going into high
temperature expansion we look into fermionic contribution to self energy of
the scalar.

From Fig. 2.2, we have,
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Figure 2.2: One loop correction to the scalar self energy by fermions

−iδ(F )m2 = −y2
φ

∫
d4k

(2π)4

Tr [(/k + /p+mψ)(/k +mψ)]

((k + p)2 −m2
ψ)(k2 −m2

ψ)

= 4iy2
φT
∑
n,odd

∫
d3k

(2π)3

n2π2T 2 + ω2
k − 2m2

ψ

(n2π2T 2 + ω2
k)

2

= 4iy2
φT
∑
n,odd

∫
d3k

(2π)3

(
1

n2π2T 2 + ω2
k

−
2m2

ψ

(n2π2T 2 + ω2
k)

2

)
(2.56)

In the second step, we have taken zero external momentum. First part of
Eq.(2.56) gives,

δ(F )m2
1 = −4y2

φT
∑
n,odd

∫
d3k

(2π)3

1

n2π2T 2 + ω2
k

= −2y2
φ

∫
d3k

(2π)3

1

ωk
tanh

(ωk
2T

)
= −2y2

φ

∫
d3k

(2π)3

1

ωk
+ 4y2

φ

∫
d3k

(2π)3

1

ωk

1

eωk/T + 1
(2.57)

where the first term is the zero temperature quadratic divergent contribu-
tion which can be regulated by the usual counterterms introduced at zero
temperature. The second term contains the finite temperature contribution
of fermion to the self energy of the scalar. Also, the second integral in the
finite temperature part is actually logarithmically divergent therefore it will
not provide O(T 2) correction which is given by quadratic divergent loop con-
tribution as the momentum is now cut off with the temperature.

As the the scalar and fermion contribution in finite temperature part
cannot be evaluated in closed form apart from some limiting cases, in the
following, we present the results of the integrals in the high temperature
limit.
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High temperature expansion In the high temperature limit mi/T � 1,
the correction to scalar self energy due to it’s self interaction1 is,

δ(B)m2
T =

λT 2

24
(2.58)

On the other hand the correction due to fermion is

δ(F )m2
T = y2

φ

T 2

6
(2.59)

Therefore we can see that due to temperature correction, the mass of the
scalar has become

m2
φ(T ) = m2

R + Π(T ) (2.60)

where mR is the renormalized mass and Π(T ) is the thermal correction which
is

Π(T ) =

(
λ

2
+ 2y2

φ

)
T 2

12
(2.61)

Eq.(2.60) expresses the thermal mass of the scalar with the Debye screening
Π(T ).

2.3 Effective potential at finite temperature

In the previous sections, the main ingredients of finite temperature field
theory have been introduced. In this section, we describe the steps to obtain
the finite temperature effective potential which is equivalent to the free energy
of the thermodynamic system and essential to investigate the nature of phase
transition.

For simplicity, let us consider a theory with a real scalar field φ(x) with
the Lagrangian density L and the action

S[φ] =

∫
d4xL (2.62)

The generating functional (vacuum-to-vacuum amplitude) is

Z[j] = 〈0out | 0in〉j ≡
∫
Dφ exp[i(S[φ] +

∫
d4xφ(x)j(x))] (2.63)

The connected generating functional W [j] is

Z[j] = eiW [j] (2.64)

1The derivations are given in the appendix C
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The effective action Γ[Φ] is as the Legendre transform of W [j],

Γ[Φ] = W [j]−
∫
d4x

δW [j]

δj(x)
j(x) (2.65)

where Φ is the vacuum expectation value of the field operator φ̂ in the pres-
ence of the source j which is Φ(x) = 〈0|φ̂(x)|0〉j. It is also determined from

Φ(x) =
δW [j]

δj(x)
(2.66)

In particular, from Eq.(2.65) and Eq.(2.66), we can have

δΓ[Φ]

δΦ
= −j (2.67)

In the absence of the external source, Eq.(2.67) implies that,

δΓ[Φ]

δΦ
|j=0 = 0 (2.68)

which defines the vacuum of the theory.
There are two ways to obtain the one loop effective potential. One method

involves the summing of one particle irreducible (1PI) diagrams. Another
one is directly from the path integral by shifting the field with respect to
a classical background field. In the following we describe two methods in
order.

2.3.1 Effective potential as the sum of 1PI digrams

The one-loop effective potential one can also obtain it as the sum of all 1PI
diagrams as shown first by [87]. We can expand Z[j] (W [j]) in a power series
of j, to obtain its representation in terms of Green functions G(n) (connected
Green functions G c

(n)) as,

Z[j] =
∞∑
n=0

in

n!

∫
d4x1 . . . d

4xnj(x1) . . . j(xn)G(n)(x1, . . . , xn) (2.69)

and

iW [j] =
∞∑
n=0

in

n!

∫
d4x1 . . . d

4xnj(x1) . . . j(xn)G c
(n)(x1, . . . , xn) (2.70)
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The effective action is also expanded in powers of Φ as

Γ[Φ] =
∞∑
n=0

1

n!

∫
d4x1 . . . d

4xnΦ(x1) . . .Φ(xn)Γ(n)(x1, . . . , xn) (2.71)

where Γ(n) are the one-particle irreducible (1PI) Green functions.
We can make the Fourier transform of Γ(n) and Φ(x) as,

Γ(n)(x1, . . . , xn) =

∫ n∏
i=1

[
d4pi

(2π)4
exp{ipixi}

]
(2π)4δ(4)(p1+· · ·+pn)Γ(n)(p1, · · · , pn)

(2.72)

Φ(p) =

∫
d4xe−ipxΦ(x) (2.73)

and by using them in Eq.(2.71) we have,

Γ[Φ] =
∞∑
n=0

1

n!

∫ n∏
i=1

[
d4pi

(2π)4
Φ(−pi)

]
(2π)4δ(4)(p1 + · · ·+ pn)Γ(n)(p1, . . . , pn)

(2.74)
The effective action can also be expanded in powers of the momentum,

about the point where all external momenta vanish. In configuration space
this expansion is

Γ[Φ] =

∫
d4x

[
−Veff(Φ) +

1

2
(∂µΦ(x))2Z(Φ) + · · ·

]
(2.75)

For a translationally invariant theory Φ(x) = φc where φc is a constant.
So Eq.(2.75) becomes

Γ[φc] = −
∫
d4xVeff(φc) (2.76)

where Veff(φc) is the effective potential. Now using the definition of Dirac
δ-function,

δ(4)(p) =

∫
d4x

(2π)4
e−ipx (2.77)

we obtain,
Φ(p) = (2π)4φcδ

(4)(p). (2.78)

Therefore using Eq.(2.78) in (2.74), we can write the effective action for
constant field configurations as,

Γ(φc) =
∞∑
n=0

1

n!
φnc (2π)4δ(4)(0)Γ(n)(pi = 0) =

∞∑
n=0

1

n!
φncΓ(n)(pi = 0)

∫
d4x

(2.79)
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where δ(4)(0) is the space-time volume factor
∫
d4x. Now comparing it with

(2.76) we obtain the final expression for the effective potential,

Veff(φc) = −
∞∑
n=0

1

n!
φncΓ(n)(pi = 0) (2.80)

2.3.2 Effective potential from the path integral

Determining the effective potential by summing 1PI diagrams may become
cumbersome at times. There is another procedure shown in [88] to determine
the effective potential by shifting the scalar field φ(x) as follows

φ(x) = φc + φ̃(x) (2.81)

where φc is the space time independent constant field value and φ̃(x) is
the small fluctuation. The exponential in the partition function Eq.(2.63)
becomes

S[φc + φ̃(x)] +

∫
d4xj(x)(φc + φ̃(x))

= S[φc] +

∫
d4xj(x)φc +

∫
d4x{j(x) +

δS

δφ
|φ=φc}φ̃

+
1

2

∫
d4xd4yφ̃(x)

δ2S

δφ(x)δφ(y)
|φ=φcφ̃(y) (2.82)

In the classical limit the path integral over the field φ(x) is dominated by
the classical solution φc which extremizes the exponent in Eq.(2.63),

δS

δφ(x)
|φ=φc = −j (2.83)

Moreover, the propagator of the theory is given by,

iD−1(x, y;φc) =
δ2S

δφ(x)δφ(y)
|φ=φc (2.84)

Therefore, Eq.(2.83) implies that the third term of second line of Eq.(2.82)
is zero. So the partition function is

Z[j] = exp{iW [j]} ∼ exp[i{S[φc] +

∫
d4xj(x)φc}]∫

Dφ̃(x)exp[
i

2

∫
d4xd4yφ̃(x)(iD−1(x, y;φc))φ̃(y)]

∼ exp[i{S[φc] +

∫
d4xj(x)φc}](DetiD−1(x, y;φc))

−1/2

∼ exp[i{S[φc] +

∫
d4xj(x)φc +

i

2
logDetiD−1(x, y;φc)}] (2.85)
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where we have used ∫
Dφexp[

i

2
φMφ] = (DetM)−1/2 (2.86)

Also from Eq.(2.65) we have,

W [j] = Γ[φc] +

∫
d4xφcj(x) (2.87)

And,

Γ[φc] = −
∫
d4xVeff(φc) (2.88)

So from Eq.(2.85), Eq.(2.87) and Eq.(2.88) and removing the space-time
volume factor, the effective potential at 1-loop is given by,

Veff(φc) = V0(φc)−
i

2
ln Det iD−1(x, y;φc) (2.89)

Here, V0(φc) is the tree-level potential. Using ln DetM = Tr lnM and going
to the momentum space, from Eq.(2.89),

Veff(φc) = V0(φc)−
i

2
Tr

∫
d4k

(2π)4
ln iD−1(k;φc) (2.90)

In case of determining the fermionic contribution to the effective potential
we follow the same procedure of shifting the fermion fields ψ(x) = ψb +
ψ̃(x) where ψb is the classical background field and ψ̃(x) is the quantum
fluctuation. The Lagrangian describing the fermion fields is

L = iψ̄ /∂ψ −mψ̄ψ − yψ̄ψφ (2.91)

By shifting both scalar and fermion fields we extract the part of Lagrangian
quadratic in the fermion fields,

L̂(φc, ψ̃(x)) = i ¯̃ψ/∂ψ̃ − ¯̃ψM(φc)ψ̃ (2.92)

So the partition function for fermion fields is

ZF =

∫
Dψ̄Dψexp[i

∫
d4xL] (2.93)

Keeping up to the quadratic fluctuations, we have

ZF = exp[iW ] ∼
∫
Dψ̄Dψexp[i

∫
d4xd4y ¯̃ψ(x)(iD−1

F (x, y;φc))ψ̃(y)]

∼ exp[i{−iln Det(iD−1
F (x, y;φc) (2.94)
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Therefore from Eq.(2.76), we can have,

Veff(φc) = iln Det iD−1
F (x, y;φc) (2.95)

= iTr

∫
d4k

(2π)4
ln iD−1

F (k;φc) (2.96)

where
iD−1

F (k;φc) = /k −M(φc) ;M(φc) = m+ yφc (2.97)

2.3.3 Effective potential for scalar, fermion and vector
fields

In the following sections, because of its simplicity and straightforward fea-
tures, we will use the second procedure to determine the effective potential
for scalar, fermion and gauge fields respectively.

Scalar fields Consider a model of self interacting real scalar field described
by the Lagrangian,

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 (2.98)

Now we shift the field, φ(x) = φc + φ̃(x) and the inverse of the propagator in
momentum space, iD−1(k;φc) is given by

iD−1(k;φc) = k2 −m2(φc) (2.99)

where the field dependent mass m2(φc) is

m2(φc) = m2 +
1

2
λφ2

c (2.100)

Therefore the effective potential at one-loop is

Veff(φc) = V0(φc)−
i

2
Tr

∫
d4k

(2π)4
ln [k2 −m2(φc)] (2.101)

After the Wick rotation, k0 → ik0, we have

Veff(φc) = V0(φc) +
1

2
Tr

∫
d4k

(2π)4
ln [k2 +m2(φc)] (2.102)

The result can be generalized for the case of Ns complex scalar fields
described by the Lagrangian

L = ∂µφ
†
a∂

µφa − V0(φ†a, φ
a) (2.103)
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Therefore the effective potential at one loop is given by

Veff(φc) = V0(φc) +
1

2
Tr

∫
d4k

(2π)4
ln [k2 +M2

s (φc)] (2.104)

where

(M2
s )ab =

∂2V0

∂φ†a∂φb
|φ=φc (2.105)

Fermion fields The Lagrangian describing the fermion field is

L = iψ̄ /∂ψ −mψ̄ψ − yψ̄ψφ (2.106)

By shifting the fields, we have,

iD−1
F (k;φc) = /k −M(φc) ;M(φc) = m+ yφc (2.107)

Therefore from Eq.(2.95), the fermionic contribution to the effective potential
at one loop is

V 1
eff(φc) = i

∫
d4k

(2π)4
ln Det(/k −M(φc)) (2.108)

As the determinant of an operator remains invariant under transposition, we
can have

ln Det(/k −M(φc)) = ln Det(/k −M(φc))
T

= ln Det(−C−1γµCkµ −M(φc)) , Cγ
µC−1 = −γµT

= ln Det(−/k −M(φc)) (2.109)

Therefore we can write Eq.(2.108) as

V 1
eff(φc) = 2iTr

∫
d4k

(2π)4
ln(k2 −M2(φc)) (2.110)

where trace is taken over the internal indices. Now again doing the Wick
rotation k0 → ik0, we have from Eq.(2.110),

V 1
eff(φc) = −2Tr

∫
d4k

(2π)4
ln(k2 +M2(φc)) (2.111)

If there are NF fermion fields with the Lagrangian

L = iψ̄i/∂ψi − ψ̄iMijψj − iψ̄iY a
ijψjφa (2.112)

After shifting the fields, the mass matrix for the fermion is (Mf )ij = Mij +
Y a
ijφ

a
c . Therefore the effective potential will be,

V 1
eff(φc) = −2gf

1

2
Tr

∫
d4k

(2π)4
ln(k2 +M2

f (φc)) (2.113)

where gf = 1 for Weyl fermions and gf = 2 for the Dirac fermions.
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Gauge fields Consider the gauge fields described by the Lagrangian,

L = −1

4
Tr(FµνF

µν) + (Dµφ)†Dµφ− V0(φi) (2.114)

For physical results, we need to fix the gauge. A convenient choice is the
Landau gauge which preserves the renormalizability of the theory. In this
gauge the propagator for the gauge field is purely transverse,

∆ab
µν(k) =

−iδab

k2 + iε
[ηµν −

kµkν
k2

] (2.115)

One calculational advantage of this gauge is that in theories with scalars
which acquire vevs, the Faddeev-Popov ghost fields decouple from these
scalar fields in this gauge.

After shifting the scalar fields, the mass term for the gauge bosons is

Lm =
1

2
(Mgb)

2
abA

a
µA

µb (2.116)

where
(Mgb)

2
ab(φc) = g2φ†cT

aT bφc (2.117)

Following the procedure of determining the effective potential for the scalar
fields, we have the vector boson contribution to the effective potential at one
loop

V 1
gb(φc) = gv

1

2
Tr

∫
d4k

(2π)4
ln[k2 +M2

gb(φc)] (2.118)

where gv = 3 is the degrees of freedom of a massive gauge boson.
Therefore for a gauge theory with Ns scalar fields and NF fermion fields,

we have from Eq.(2.105), Eq.(2.113) and Eq.(2.118),

Veff(φc) = V0(φc) +
1

2
Tr

∫
d4k

(2π)4
ln[k2 +M2

s (φc)]

− 2gf
1

2
Tr

∫
d4k

(2π)4
ln(k2 +M2

f (φc))

+ gv
1

2
Tr

∫
d4k

(2π)4
ln[k2 +M2

gb(φc)] (2.119)

2.3.4 Finite temperature effective potential

In the previous sections we have presented the effective potential for scalar,
fermion and vector fields. Now, by using the Feynman rules for the imaginary

29



time formalism, we can derive the finite temperature effective potential and
compare the results with those of section 2.1.

Let us first concentrate on scalar effective potential. Using the Feyn-
man rules for finite temperature, one loop contribution of Eq.(2.102) can be
expressed as

V T
eff(φc) = T

∞∑
n=−∞

∫
d3k

(2π)3
ln(4π2n2T 2 + ~k2 +m(φc)

2)

= T

∞∑
n=−∞

∫
d3k

(2π)3
ln(4π2n2T 2 + ω2) (2.120)

where ω2 = ~k2 +m(φc)
2. Let us define,

v(ω) =
∞∑

n=−∞

ln(4π2n2T 2 + ω2) (2.121)

therefore

∂v

∂ω
=

∞∑
n=−∞

2ω

4π2n2T 2 + ω2

=
ω

2π2T 2

∞∑
n=−∞

1

n2 + (ω/2πT )2

=
1

T
coth

( ω
2T

)
(2.122)

So we have
∂v

∂ω
=

1

T
(1 +

2

eω/T − 1
) (2.123)

By integrating Eq.(2.123),

v(ω) =
ω

T
+ 2ln(1− e−ω/T ) (2.124)

So we have from Eq.(2.120),

V T
eff =

∫
d3k

(2π)3

[ω
2

+ T ln(1− e−ω/T )
]

(2.125)

In the following we show that the first term of Eq.(2.125) is zero tem-
perature Coleman-Weinberg (CW) one loop effective potential. Details of
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renormalization of of the CW potential is presented in appendix B. We again
start from Eq.(2.102) where Wick rotation is already performed.

V
(1)

eff =
1

2

∫
dk0

2π

d3k

(2π)3
ln(k02

+ ~k2 +m2) (2.126)

Let us again define

f(ω) =

∫ ∞
−∞

dk0

2π
ln(k02

+ ω2) (2.127)

Therefore
∂f

∂ω
=

∫ ∞
−∞

dk0

2π

2ω

k02 + ω2
(2.128)

The poles for the integrand in Eq.(2.128) are k0 = ±iω. Now defining the
contour from −∞ to∞ covering the upper half plane of complex k0 plane, we
pick up the pole at k0 = iω. Therefore the contour integration in Eq.(2.128)
gives

∂f

∂ω
=

∫
C

dk0

2π

2ω

k02 + ω2
= 1 (2.129)

So by integrating Eq.(2.129) we have

f(ω) = ω (2.130)

So from Eq.(2.126) we have

V
(1)

eff =

∫
d3k

(2π)3

ω

2
(2.131)

Therefore decomposing zero temperature and finite temperature part of
Eq.(2.125),

V T
eff = V

(1)
CW + V

(1)
T

V
(1)

CW =

∫
d3k

(2π)3

ω

2
(2.132)

V
(1)
T = T

∫
d3k

(2π)3
ln(1− e−ω/T ) (2.133)

We can see that finite temperature scalar effective potential, Eq.(2.133) is
exactly the temperature-dependent part of the bosonic free energy density
given in Eq.(2.20). By changing variable x = k/T we have from Eq.(2.133),

V
(1)
T =

T 4

2π2

∫ ∞
0

dxx2ln(1− e−
√
x2+m2(φc)/T 2

) (2.134)
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Fermionic finite temperature effective potential To determine the
finite temperature effective potential for fermions we start from Eq.(2.113)
and using again Feynman rules for finite temperature, we have

V T
F eff = −2gf

1

2
T
∑
n,odd

∫
d3k

(2π)3
ln(n2π2T 2 + ~k2 +m2

f ) (2.135)

Again we define

vF (ω) =
∑
n,odd

ln(n2π2T 2 + ω2) (2.136)

where ω2 = ~k2 +m2
f .

∂vF
∂ω

=
∑
n,odd

2ω

n2π2T 2 + ω2
(2.137)

The sum over odd integer can be recasted as follows. If we denote,

S(y) =
∞∑

n=−∞

1

n2 + y2
=
π

y
coth(πy) (2.138)

then, ∑
n,odd

1

n2 + y2
= S(y)− 1

4
S(y/2)

=
π

y
coth(πy)− π

2y
coth

(πy
2

)
(2.139)

Using Eq.(2.139), from Eq.(2.137), we have

∂vF
∂ω

=
2ω

π2T 2

∑
n,odd

1

n2 + (ω/πT )2

=
1

T
(2 coth(ω/T )− coth(ω/2T ))

=
1

T
(1− 2

eω/T + 1
) (2.140)

Therefore by integrating Eq.(2.140) we have

vF (ω) =
ω

T
+ 2ln(1 + e−ω/T ) (2.141)

Inserting Eq.(2.141) back in Eq.(2.111), we have

V T
F eff = −2gf

∫
d3k

(2π)3

[ω
2

+ T ln(1 + e−ω/T )
]

(2.142)
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Like in the case of scalar effective potential, we can decompose the zero
and finite temperature contribution for fermion effective potential.

V T
F eff = V

(1)
FCW + V

(1)
FT

V
(1)
FCW = −2gf

∫
d3k

(2π)3

ω

2
(2.143)

V
(1)
FT = −2gfT

∫
d3k

(2π)3
ln(1 + e−ω/T ) (2.144)

where again, Eq.(2.144) is exactly the temperature-dependent part of fermionic
free energy density given by Eq.(2.20). Now by changing the variable x =
k/T we have from Eq.(2.144),

V
(1)
F T =

T 4

2π2

∫ ∞
0

dxx2ln(1 + e−
√
x2+m2

f (φc)/T 2

) (2.145)

Finite temperature effective potential for gauge fields The deter-
mination of finite temperature effective potential for gauge boson is similar
to the case of scalar effective potential. In the Landau gauge, after shifting
the scalar field, φ = φc + φ̃, the gauge boson acquires the mass mgb(φc).
Therefore the finite temperature effective potential is

V β
gbeff = V

(1)
gbCW + V

(1)
gbT

V
(1)
gbCW = 3

∫
d3k

(2π)3

ω

2
(2.146)

V
(1)
gbT = 3T

∫
d3k

(2π)3
ln(1− e−ω/T ) (2.147)

where ω2 = ~k2 + m2
gb(φc) and 3 enters because of degrees of freedom for

massive gauge boson. Again the finite temperature part can be recasted by
changing the variable as follows,

V
(1)
gbT = 3

T 4

2π2

∫ ∞
0

dxx2ln(1− e−
√
x2+m2

gb(φc)/T
2

) (2.148)
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Therefore we can write the finite temperature effective potential as

Veff(φc) = V0(φc) +
∑
B

gB
m4
B(φc)

64π2

[
ln
m2
B(φc)

µ2
− cB

]
+ gB

T 4

2π2

∫ ∞
0

dxx2ln(1− e−
√
x2+m2

B(φc)/T 2
)

−
∑
F

gF
m4
F (φc)

64π2

[
ln
m2
F (φc)

µ2
− cF

]
+ gF

T 4

2π2

∫ ∞
0

dxx2ln(1 + e−
√
x2+m2

F (φc)/T 2
) (2.149)

where MS renormalization is used for CW potential. Here, cB = 3/2 for
scalar particles and cB = 5/6 for the gauge bosons. On the other hand for
fermions cF = 3/2.

High temperature effective potential

The high temperature expansion2 of thermal effective potential Eq.(2.149) is

VT (φc) =
∑
B

gB

[
m2
B(φc)T

2

12
− m3

B(φc)T

12π
− m4

B(φc)

64π2

(
ln
m2
B(φc)

abT 2
− 3

2

)]
+

∑
F

gF

[
m2
F (φc)T

2

48
+
m4
F (φc)

64π2

(
ln
m2
F (φc)

afT 2
− 3

2

)]
(2.150)

where, ab = 16π2e−2γE and af = π2e−2γE .

Scalar thermal masses

As the main focus of the presented work is the EWPhT in the SM with
extended scalar sector, we have listed here the general formula for scalar
thermal mass at the high temperature limit following [75,78,79].

Consider a gauge theory with group G where the scalar Q is in represen-
tation R and the fermion Ψ is in representation F of G. The scalar potential
can be written as,

V = M2
ΦΦ†Φ + λ1(Φ†Φ)2 + λ2(Φ†T aΦ)2 (2.151)

where T a is the generator of G in Φ’s representation. Also the yukawa term
is

LY = Ψ̄ΓΨΦ + Φ†Ψ̄Γ̄Ψ (2.152)

2The derivation is given in appendix C.3
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where Γ is the gauge covariant Yukawa matrix and Γ̄ = γ0Γγ0. Furthermore,
the scalar gauge boson interaction term contributing to the thermal mass is

Lg = g2Φ†T aT bΦV a
µ V

µb (2.153)

Now at finite temperature with, T � m we have for non-zero scalar
condensate 〈Φ〉 = φc, the thermal mass term, (m2)ji (φc, T )φ†iφj where,

(m2)ji (φc, T ) = (m2)ji (φc)+
T 2

12

[
2λ1(N + 1)δji + 2λ2(T aT a)ji + 3g2(T aT a)ji + Tr (Γ̄iΓ

j)
]

(2.154)
Here N is the dimension of the representation R and trace is taken over
spinor and representation indices of F .

2.4 Phase transition in the early universe

To study the phases of a general thermodynamic system, we basically deal
with the free energy associated with the system (for detailed review [89]).
The system will involve, in general sense, coupling constants {Kn} and the
combinations of dynamical degrees of freedom, {Θn}. {Kn} can be external
parameters like temperature, field values and {Θn} will be local operators.
Therefore if the partition function of the system is Z[{Kn}] then the free
energy is

F [{Kn}] = −T lnZ[{Kn}] (2.155)

For notational simplicity we denote [K] = {Kn}. The phases of the system
is characterized by the region of analyticity of F [K] in the phase diagram.
If there are D number of external parameters K1,...,KD, then phase diagram
is a D-dimensional space. The possible non-analyticities are points, lines,
planes, hyperplanes etc in the phase diagram. Therefore the phase transition
is signaled by a singularity in the thermodynamic potential such as free
energy. There are two types of phase transitions:

• If either one or more of ∂F
∂Ki

is discontinuous across the phase boundary
the transition is said to be first order phase transition.

• If ∂F
∂Ki

is continuous across the phase boundary then it is called continu-
ous phase transition. One subset of this class is second order phase tran-
sition where first derivatives are continuous but second order derivatives
∂2F

∂Ki∂Kj
across the phase boundary are discontinuous.
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Order parameters The phenomenological approach to the phase transi-
tion is the Landau theory where the thermodynamic potential, for example,
the free energy, is written as the function of order parameter η. The order
parameter is the quantity which distinguishes the phase of the system, i.e.
when η = 0 for the temperature T > Tc, where Tc is critical temperature, the
system is in disordered phase. On the other hand, at temperature T < Tc,
η 6= 0 and the system is in ordered phase. For example the Gibbs free energy,
G(P, T ) will be function of order parameter η too. But as the free energy is
uniquely determined by P and T , η = η(P, T ) and it is determined from the
condition,

∂G

∂η
= 0 ;

∂2G

∂η2
> 0 (2.156)

which is the condition for minima of the free energy. Moreover, the free
energy can be expanded in the following,

G(P, T, η) = G0(P, T ) + Aη2 +Bη3 + Cη4 + ... (2.157)

The order parameter can be a scalar, vector, tensor, pseudoscalar or a
group element of a symmetry group. Also the order parameter is not uniquely
defined for a given system because any thermodynamic variable which be-
comes zero in the disordered phase and non-zero in an ordered phase can be
a possible choice of the order parameter.

To address the cosmological phase transition, we have chosen the order
parameter to be vacuum expectation value of the scalar field: φc(T ). In the
standard hot big bang scenario, the universe is initially at the very high tem-
perature and it can be in the symmetric phase, φc = 0 which is the absolute
minimum of the free energy or equivalently that of the finite temperature
effective potential, V T

eff(φc). At some critical temperature Tc the minimum
at φc = 0 becomes metastable and the phase transition will take place. The
phase transition may be first or second order in nature depending on the
parameters of the theory.

2.4.1 First and second order phase transitions

In the section we are going to illustrate the difference between the first and
second order phase transitions by using a simplified example [17,18].

V (φ, T ) = D(T 2 − T 2
o )φ2 +

λT
4
φ4 (2.158)

where D and T 2
o are the constant terms and λT is a coupling constant which

can have temperature dependence. At zero temperature, the potential has
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a negative mass-squared term −DT 2
0 , which indicates that the state φ = 0

is unstable, and the energetically favored state corresponds to the minimum

at φ = ±
√

2D
λT
To, where the symmetry φ ↔ −φ of the original theory is

spontaneously broken.
From finite temperature potential Eq.(2.158) we have T -dependent mass,

m2(φ, T ) = 3λTφ
2 + 2D(T 2 − T 2

o ) (2.159)

and its stationary points, i.e. solutions to dV (φ, T )/dφ = 0, are given by,

φ(T ) = 0

and (2.160)

φ(T ) =

√
2D(T 2

o − T 2)

λT

Therefore the critical temperature is given by To. At T > To, m
2(0, T ) > 0

and the origin φ = 0 is a minimum. At the same time only the solution
φ = 0 in Eq.(2.160) does exist. At T = To, m

2(0, To) = 0 and both solutions
in Eq.(2.160) collapse at φ = 0. The potential Eq.(2.158) becomes,

V (φ, To) =
λT
4
φ4 (2.161)

At T < To, m
2(0, T ) < 0 and the origin becomes a maximum. Simultane-

ously, the solution φ(T ) 6= 0 does appear in Eq.(2.160). This phase transition
is a second order transition, because there is no barrier between the symmet-
ric and broken phases. Actually, when the broken phase is formed, the origin
(symmetric phase) becomes a maximum and the phase transition may be
achieved by a thermal fluctuation for a field located at the origin.

However, a barrier can develop between the symmetric and broken phases
during phase transition. This is the characteristic of first order phase tran-
sitions. A typical example is provided by the following potential,

V (φ, T ) = D(T 2 − T 2
o )φ2 − ETφ3 +

λT
4
φ4 (2.162)

where, as before, D, T0 and E are T independent coefficients, and λT is a
slowly varying T -dependent function. The difference between Eq.(2.162) and
Eq.(2.158) is in the cubic term with coefficient E. This term is provided by
the zero mode contribution in bosonic effective thermal potential Eq.(C.39).
At T > T1 the only minimum is at φ = 0. At T = T1

T 2
1 =

8λTDT
2
o

8λTD − 9E2
(2.163)
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a local minimum at φ 6= 0 appears as an inflection point. The value of the
field φ at T = T1 is,

φ∗ =
3ET1

2λT
(2.164)

At T < T1, φ∗ splits into a barrier φ− and a local minimum, φ+.

φ±(T ) =
3ET

2λT
± 1

2λT

√
9E2T 2 − 8λTD(T 2 − T 2

o ) (2.165)

At the temperature T = Tc, V (φ(Tc), 0) = V (0, Tc), so we have,

T 2
c =

λTDT
2
o

λTD − E2
(2.166)

φ+(Tc) =
2ETc
λT

(2.167)

and

φ−(Tc) =
ETc
λT

(2.168)

For T < Tc the minimum at φ = 0 becomes metastable and the minimum
at φ+ becomes the global one. At T = To the barrier disappears, the origin
becomes a maximum and

φ−(To) = 0 (2.169)

and the second minimum becomes equal to

φ+(To) =
3ETo
λT

(2.170)

2.4.2 Electroweak phase transition in the Standard Model

For the zero temperature CW part of the finite temperature effective poten-
tial for the standard model, we have taken

V (φ) = V0(φ) +
1

64π2

∑
i=W±,Z,t

{
m4
i (φ)

(
log

m2
i (φ)

m2
i (v)

− 3

2

)
+ 2m2

i (v)m2
i (φ)

}
(2.171)

where the radiative corrections due to the W , Z bosons and the top quark
are considered. For the thermal part, we have taken the high temperature
approximation, Eq.(2.150).

To address the nature of transition in the SM, though the mass of the
Higgs is greater than the W boson, we have taken as an illustration, the
same approximation of the Higgs mass being much smaller than W boson
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mass, considered in the previous works on the electroweak phase transition.
In section 2.5.2 we will see that such approximation was essential to ensure
the validity of the perturbation theory in the SM at finite temperature. The
finite temperature effective potential of the SM is

VSM(φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λT
4
φ4 (2.172)

where the coefficients are given by

D =
2m2

W +m2
Z + 2m2

t

8v2
(2.173)

E =
2m3

W +m3
Z

4πv3
(2.174)

T 2
o =

m2
h − 8Bv2

4D
(2.175)

B =
3

64π2v4

(
2m4

W +m4
Z − 4m4

t

)
(2.176)

λT = λ− 3

16π2v4

(
2m4

W log
m2
W

abT 2
+m4

Z log
m2
Z

abT 2
− 4m4

t log
m2
t

afT 2

)
(2.177)

where ab = 16π2e−2γE and af = π2e−2γE

Denoting φ+(Tc) = φc, from Eq.(2.167) and Eq.(2.172) we have

φc
Tc

=
2E

λT
=

4Ev2

m2
h

(2.178)

where,

E =
2m3

W +m3
Z

4πv3
= 9.6× 10−3

The criterion for the strong first order phase transition in the SM (which
is shown in details in section 3.3.3) is given by

φc
Tc
≥ 1.0− 1.3 (2.179)

which puts a bound on the Higgs mass from Eq.(2.178),

mh ≤
√

4Ev2/1.3 ∼ 42 GeV (2.180)

This bound was already excluded by higgs searches at LEP [26]. Moreover,
now Higgs withmh = 125.5 GeV discovered in ATLAS [1] and CMS [2] clearly
indicates that standard model cannot provide strong first order phase transi-
tion for keeping any previously generated baryon asymmetry. For this reason,
one explores beyond SM scenario which can satisfy the bound, Eq.(2.179) for
physical Higgs mass.
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2.5 Infrared problems and resummation

In this section we are going to address the appearance of infrared divergences
in high temperature field theory.

It was pointed out in [75] that symmetry restoration implies that ordi-
nary perturbation theory must break down at the onset of phase transition.
Otherwise perturbation theory should hold and, since the tree level potential
is temperature independent, radiative corrections (which are temperature de-
pendent) should be unable to restore the symmetry. Moreover it mentioned
that the appearance of infrared divergences for the zero Matsubara modes of
bosonic degrees of freedom leads to failure of perturbative expansion. This
just means that the usual perturbative expansion in powers of the coupling
constant fails at temperatures beyond the critical temperature. It has to be
replaced by an improved perturbative expansion where an infinite number of
diagrams are resummed at each order in the new expansion. Consider a dia-
gram which has superficial divergence D. By rescaling all internal momenta
by T , we have

TDf(pext/T, ωext/T,mint/T ) (2.181)

where pext and ωext represent the various external momenta and energies
and mint represents various internal masses. Thus at T → ∞, the graph
behaves like TD unless there are infrared divergences when the arguments of
the function f vanish.

Bosonic zero mode sets the form of the expansion parameter in finite tem-
perature field theory. The zero mode contribution n = 0 to the propagator
in the loop integral is of the form

T
∑
n

∫
d3k

(2π)3

1

4π2n2T 2 + ω2
|n=0 ∼ T

∫
d3k

1

ω2
(2.182)

On the other hand, for fermionic propagator there is no zero mode con-
tribution. Therefore in that case, at high temperature, for n = ±1,

T
∑
n,odd

∫
d3k

(2π)3

1

n2π2T 2 + ω2
|n=±1 ∼ T

(πT )2
∼ 1

π2T
(2.183)

Based on the above estimates, let us construct a dimensionless expansion
parameter relevant for high temperature. Apart from additional propagator,
each loop order also brings in an additional vertex whose coupling is denoted
by g2. As the summation involves factor of T , the expansion parameter will
contain g2T . Now we have to use other scales of the theory to transform
it into a dimensionless quantity. For zero modes from Eq.(2.182), we can
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see that the inverse of ω or after carrying out the spatial momentum inte-
gration, inverse power of m enters. Therefore we can assume that for large
temperature πT � m we have the expansion parameter for bosonic case as

εb ∼
g2T

πm
(2.184)

In case of fermions, Eq.(2.183) tells that after integration over spatial
momenta, the inverse power of m does not appear in πT � m limit. So we
are lead to estimate

εf ∼
g2T

π2T
∼ g2

π2
(2.185)

We are going to address the perturbative and non-perturbative regime of
both theories shortly.

Now that we have estimated the expansion parameter for bosonic and
fermionic high temperature field theory, we again consider real scalar field
theory as a simple example.

L =
1

2
(∂µφ)2 − 1

2
φ2 − λ

4!
φ4 (2.186)

Shifting the field will give φ = φc + φ̃(x) and the mass of scalar is m2(φc) =
m2 + 1

2
λφ2

c . Now the one loop contribution to the self-energy of Fig. 2.3
is quadratically divergent (D = 2), and so from Eq.(2.181), it will behave

Figure 2.3: One-loop contribution to the scalar self-energy.

like λT 2. In the case of D ≤ 0, i.e. logarithmically divergent or convergent
loop contributes a factor of T only. For instance Fig. 2.4 contains two loga-

Figure 2.4: Two-loop contribution to the scalar self-energy.

rithmically divergent loops and so behaves like, λ2T 2 = λ(λT 2). It is clear
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that to a fixed order in the loop expansion the largest graphs are those with
the maximum number of quadratically divergent loops. These diagrams are
obtained from the diagram in Fig. 2.3 by adding N quadratically divergent
loops on top of it, as shown in Fig. 2.5. They behave as,

Figure 2.5: Daisy (N+1)-loop contribution to the scalar self-energy diagram.

λN+1 T
2N+1

M2N−1
= λ2T

3

M

(
λT 2

M2

)N−1

(2.187)

where M is the mass scale of the theory and as seen from Eq.(2.182), the zero
mode contribution implies that inverse power of M will enter in the expansion
parameter. Also from Eq. (2.187), we can see that adding a quadratically
divergent bubble to a propagator which is part of a logarithmically divergent
or finite loop amounts to multiplying the diagram by

α ≡ λ
T 2

M2
(2.188)

This means that for the one-loop approximation to be valid it is required
that

λ
T 2

M2
� 1

along with the usual requirement for the ordinary perturbation expansion

λ� 1

If the mass of the scalar at high temperature is

M(φ, T ) = M + cλT 2 (2.189)

where c is O(1) numerical factor then at critical temperature we have Tc ∼
M/
√
λ. Therefore we can see that the expansion parameter, Eq.(2.188) be-

comes O(1) at Tc and so the perturbation theory breaks down at critical
temperature. For this reason, higher loop diagrams where multiple quadrat-
ically divergent bubbles are inserted, cannot be neglected. By using daisy
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resummation technique [90, 91], one can consistently resum all powers of α
and provides a theory where mass of the theory becomes m2(φc) → m2

eff ≡
m2(φc) + Π(T ), where Π(T ) is the self-energy corresponding to the one-loop
resummed diagram of order O(T 2).

Now let us consider two-loop diagram of Fig. 2.4 which is suppressed by
λ with respect to the diagram of Fig. 2.3 as follows.

Figure 2.6: Non-daisy (n+2)-loop contribution to the self-energy for the
scalar theory.

λN+2T
2N+2

M2N
= λN+1 T

2N+1

M2N−1

(
λ
T

M

)
(2.190)

and it is suppressed with respect to the multiple loop diagram of Eq. (2.187)
by λT/M . Therefore the validity of the improved expansion is guaranteed
provided that,

λ� 1 (2.191)

β ≡ λ
T

M
� 1

2.5.1 The scalar theory

In the following we have shown the contribution to the effective potential
due the the daisy diagrams where the zero modes dominate. Therefore for
n = 0 we have [92]

Vdaisy = −1

2
T

∫
d3k

(2π)3

∞∑
N=1

(−1)NΠ(T )N

(k2 +m2(φc))2
(2.192)
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where Π(T ) are the one loop bubble diagrams which are independent of the
loop momentum k. Using Eq.(A.12) we have

Vdaisy = −1

2
T
∞∑
N=1

1

N
(−Π(T ))N

π
3
2

Γ(3
2
)(2π)3

(m2(φc))
3
2
−N Γ(3

2
)Γ(N − 3

2
)

Γ(N)

= − T

16π
3
2

∞∑
N=1

1

N
(−1)N

(
Π(T )

m2(φc)

)N
m3(φc)

Γ(N − 3
2
)

Γ(N)

= −m
3(φc)T

12π

∞∑
N=1

(−1)N
3

4
√
π

(
Π(T )

m2(φc)

)N Γ(N − 3
2
)

Γ(N + 1)

= − T

12π
[(m2(φc) + Π(T ))

3
2 −m3(φc)] (2.193)

Therefore the effective potential is

Veff(φc) = V0(φc) + VCW(φc) + V
(1)
T (φc, T ) + Vdaisy(φc, T ) (2.194)

And taking the high temperature expansion of thermal effective potential
V

(1)
T (φc, T ) and recollecting terms which are relevant for present case, we

have,

V (φc, T ) =
1

2
(m2 +

λ

12
T 2)φ2

c −
T

12π
(m2(φc) + Π(T ))

3
2 +

λ

4
φ4
c + · · · (2.195)

In the limit, m2 + Π(T )� λφ2
c , the potential (2.195) yields a first order

phase transition. At T ∼ Tc, we have the mimimum,

φc ∼
√
λTc (2.196)

Then from Eq.(2.191), with M ∼ m2(φc, T ) and considering the limit m2 +
Π(T )� λφ2

c again we have,

β ∼ λ
Tc
λTc

= O(1) (2.197)

which indicates that the expansion parameter is of O(1) and therefore per-
turbation theory is invalidated for first order phase transition shown by the
scalar theory. On the other hand if m2 + Π(T ) is significantly larger, it will
reduce the order parameter and the transition will cease to be first order.

2.5.2 The Standard Model

For the Standard Model, where there are gauge and Yukawa interactions, the
case is different from the previous example of the scalar theory. From the
simplified effective potential of the SM, Eq.(2.162) and Eq.(2.167) we have
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φc ∼
g3

λ
Tc (2.198)

Here we have only considered the contribution of transverse gauge bosons to
the phase transition strength, and neglected that of the (screened) longitu-
dinal gauge bosons.

The expansion parameter β associated with the Standard Model is,

βSM ∼ g2 T

mW (φ)
(2.199)

Therefore at the vicinity of the symmetry breaking mimimum,

βSM ∼ g
Tc
φc
∼ λ

g2
∼ m2

H

m2
W

(2.200)

For this reason, in the Standard Model, the validity of the perturbation the-
ory implies that mH � mW and as this requirement is already invalidated by
the experimental results, we have to extend the SM to accommodate strong
first order electroweak phase transition within the validity of the perturbation
theory.
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Chapter 3

Electroweak Baryogenesis: the
need for strong phase transition

The observed baryon asymmetry of the universe still does not have any satis-
factory explanation and it requires us to explore possible beyond the standard
model scenarios. In this chapter we have presented a telegraphic review of
the electroweak baryogenesis and the requirement of strong first order elec-
troweak phase transition in this scenario. Section 3.1 has described the key
ingredients for successful baryogenesis. In section 3.2, we have described
the features of electroweak baryogenesis briefly. In section 3.3, we have con-
structed the sphaleron solution for SU(2) scalar multiplets, described the
baryon number violating rate at above and below the critical temperature
and showed how the sphaleron decoupling condition leads to strong first or-
der electroweak phase transition. More detailed account on Baryogenesis can
be found in [93–99].

The baryon asymmetry of the universe is evident from

• The null observation of abundance of the antimatter in the universe.
Naturally it is only found in the cosmic ray. The antiproton in the
cosmic ray is produced as secondaries in collisions (pp→ 3p+ p). The
ratio of the number density of anti-proton to proton is bounded by
np
np
∼ 3 × 10−4 [100–104]. Also, the flux ratio of antihelium to helium

in the cosmic ray has the upper bound of 1.1× 10−6 [105].

• The baryon to photon ratio is,

η =
nB − nB̄

nγ
(3.1)

where nB, nB̄ and nγ are the number density of baryon, antibaryon
and photon respectively. This parameter is essential for big bang nu-
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cleosynthesis (BBN) because abundances of 3He, 4He, D, 6Li and 7Li
are sensitive to the value of η. From one measured value of deuterium
abundance (D/H), η is given as [106]

η = 6.28± 0.35× 10−10 (3.2)

• The Cosmic Microwave Background (CMB) radiation facilitates an in-
dependent measurement of the baryon asymmetry of the universe be-
cause the observed Doppler peaks of the temperature anisotropy in
CMB are sensitive to the value of η [107] and the accuracy is bet-
ter than the BBN measurement [108]. With measured value ΩBh

2 =
0.02207± 0.00033 (68% limit) by Planck collaboration [9], η is

η = 6.1± 0.1× 10−10 (3.3)

η = nB/nγ (as nB̄ ∼ 0) is a good measurement of baryon asymmetry at
late time because nB and nγ stay constant but at the early time, when the
temperature of the universe was low enough to decouple baryon violating
processes but still high enough to keep various heavy particles in thermal
equilibrium, η is not suitable because the annihilation or decay of those
heavy particles afterwards, would create photons. So, it is convenient to
consider entropy instead of number density of photons for expressing baryon
to photon ratio.

s =
π4

45ζ(3)
3.91 nγ = 7.04 nγ and

nB − nB̄
nγ

=
1

7.04
η (3.4)

3.1 Sakharov’s conditions for baryogenesis

Although the universe was initially baryon symmetric (nB ' nB) one needs
to explain the matter-antimatter asymmetry observed today in the universe.
Either one has to put it as an initial condition or there are some dynam-
ical mechanism which would lead to the observed asymmetry. It was first
suggested by Sakharov [11] that it is possible to produce a small baryon asym-
metry in the early universe dynamically. The three ingredients necessary for
baryogenesis are:

1. Baryon number nonconservation This condition is obvious since
we want to start with a baryon symmetric universe (∆B = 0) and evolve
it to a universe where ∆B 6= 0. Although still lacking positive results from
experiments searching for B non-conservation, the baryon asymmetry of the
universe is a unique observational evidence in favour of it.
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2. C and CP violation If C and CP were conserved, the rate of reactions
with particles would be the same as the rate with antiparticles. If the initial
state of the universe was C and CP symmetric, no charge asymmetry could
develop from it. Consider the initial density matrix that commutes with
C and CP operations, ρ0 = UC,CPρ0U

†
C,CP and the Hamiltonian, H of the

system is C and CP invariant. If the time evolution operator is U(t) =
exp(iHt), the density matrix at time t, ρ(t) = U(t)ρ0U(t)† will also be C and
CP invariant. In such cases, the average of any C or CP odd operator, for
example B and L, is zero.

Here we elaborate more on the role of this second condition in baryon
asymmetry. Consider a process A→ B+C that produces baryon B. Charge
conjugation of this process is Ā → B̄ + C̄. So the net production rate of
baryon is

dB

dt
∼ Γ(Ā→ B̄ + C̄)− Γ(A→ B + C) (3.5)

When charge conjugation is a symmetry, we have

Γ(A→ B + C) = Γ(Ā→ B̄ + C̄) (3.6)

Therefore, Eq.(3.5) yields zero net production of baryon. But C violation
alone is not enough for baryon asymmetry. One also requires CP violation
in conjunction with C violation. Let us first denote the how left and right
handed fermions transform under P, C and CP:

P : ψL −→ ψR, ψR −→ ψL (3.7)

C : ψL −→ ψCL ≡ iσ2ψ
∗
R, ψR −→ ψCR ≡ −iσ2ψ

∗
L

CP : ψL −→ ψCR , ψR −→ ψCL

Consider A decays into two left handed and two right handed quarks

A→ qL qL , A→ qR qR (3.8)

Now the C violation implies

Γ(A→ qL qL) 6= Γ(Ā→ qCL qCL )

Γ(A→ qR qR) 6= Γ(Ā→ qCR qCR) (3.9)

But CP invariance will imply that

Γ(A→ qL qL) = Γ(Ā→ qCR qCR)

Γ(A→ qR qR) = Γ(Ā→ qCL qCL ) (3.10)
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When one adds up two decay channels,

Γ(A→ qL qL) + Γ(A→ qR qR) = Γ(Ā→ qCR qCR) + Γ(Ā→ qCL qCL ) (3.11)

For this reason, as long as we have equal number density for A and Ā, we
will not obtain any net quark asymmetry. The only asymmetry that will be
generated because of C violation is the asymmetry between number density
of left and right handed quarks.

3. Departure from thermal equilibrium As the consequence of CPT
invariance, if B violating process are in thermal equilibrium, the inverse pro-
cess will wash out any the pre-existing asymmetry. For this reason a de-
parture from thermal equilibrium is needed to retain the baryon asymmetry
of the universe. There are several ways to achieve departure from equilibrium.

1. Out-of-equilibrium decay or scattering: In this case, the rate of inter-
action must be smaller than the expansion rate of the universe, Γ < H.

2. Phase transition: First order phase transition proceeds through bubble
nucleation which creates a temporary departure from equilibrium. Second
order transition can’t provide such non-equilibrium condition as it doesn’t
have any barrier between symmetric and broken phase and the transition is
continuous.

3. Non-adiabatic motion of a scalar field: A coherent scalar field can be
trapped in a local minimum of the potential but if the shape of the po-
tential changes to become a maximum in such a way that the field may
not have enough time to re-adjust with the potential, it will onset a com-
pletely non-adiabatic motion of the field. This is similar to a second order
phase transition but it is the non-adiabatic classical motion which prevails
over the quantum fluctuations, and therefore, departure from equilibrium
can be achieved. If such field condensate carries a global charge such as the
baryon number, the motion can charge up the condensate. Such mechanism
has been used in the Affleck-Dine baryogenesis [109] and its variants (for
review, [110,111]).

3.2 Electroweak baryogenesis

Electroweak Baryogenesis involves a first order phase transition which pro-
ceeds through the nucleation of bubbles of broken phase within the surround-
ing electroweak plasma in the symmetric phase. These bubbles expand, col-
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lide and coalesce until the broken phase remains. Steps involving electroweak
baryogenesis are [99]:

• Particles in the electroweak plasma scatter at the bubble wall. If the
theory contains CP violation, this scattering can generate C and CP
asymmetries in particle number densities in front of bubble wall.

• These asymmetries diffuse into symmetric phase ahead of bubble wall,
where they will bias electroweak sphaleron transition to produce more
baryons than antibaryons.

• Some of the net baryon charge created outside the bubble wall is swept
up by the expanding wall into the broken phase. In the broken phase,
the rate of sphaleron transition is strongly suppressed and can be small
enough to avoid washing away the baryons created in first two steps.

From the above steps of EWBG, we can see that Sakharov’s three con-
ditions are satisfied manifestly. First, departure from thermal equilibrium is
achieved by the rapidly expanding bubble walls through electroweak plasma.
Second, violation of baryon number is provided by the rapid sphaleron transi-
tion in the symmetric phase. And third, both C and CP violating scattering
processes of the particles at phase boundary create particle number asym-
metries over those of antiparticles and this excess biases sphaleron transition
to create more baryons over antibaryons.

Anomalous nonconservation of fermion quantum numbers

Consider a theory with left handed ψL and right handed ψR fermions belong-
ing to different representations of the gauge group. The partition function is
given as

Z =

∫
DAµDψDψ̄eiS (3.12)

The following transformations

ψ′L = ei(QV −QA)α(x)ψL (3.13)

ψ′R = ei(QV +QA)α(x)ψR (3.14)

will induce additional terms in the action given by,

δS =

∫
d4xψ̄L(R)γ

µ(QV ∓QA)ψL(R)∂µα(x) (3.15)
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The transformations also give rise to non-trivial Jacobian due to the non-
invariance of the measure DψDψ̄. This anomaly can be expressed as the
additional contribution to the action as [112,113],

δSanomaly =

∫
d4xα(x)[g2

L

QV −QA

16π2
TrF (L)µνF̃(L)µν−g2

R

QV +QA

16π2
TrF (R)µνF̃(R)µν ]

(3.16)
where F (L)µν and F (R)µν are the field strengths with coupling constants gL
and gR and they are coupled to left handed and right handed fermionic cur-
rent respectively. Here, F̃µν = 1

2
εµνρσF

ρσ. First consider the transformation
related to baryon number which is QV = 1

3
and QA = 0. Now integrating by

parts Eq.(3.15) and requiring that the partition function is invariant under
baryonic number transformation, we have the baryon current in the standard
model,

JµB =
∑
q

1

3
q̄γµq (3.17)

to be anomalous,

∂µJ
µ
B =

NF

32π2
(−g2F aµνF̃ a

µν + g′2fµν f̃µν) (3.18)

where NF is the number of fermion generation, F a
µν is the field strength of

SU(2)L and fµν is that of U(1)Y with coupling constants g and g′ respectively.
Also here Tr(T aT b) = 1

2
δab is used for SU(2)L generators and in the case of

U(1)Y , we have used Y = 1/6, 2/3,−1/3 for QL = (uL, dL), uR and dR
respectively.

Similarly for lepton number transformation we have QV = 1 and QA = 0.
Therefore, following the same steps for Eq.(3.18), we have the lepton current,

JµL =
∑
l

(l̄γµl + ν̄lγ
µνl) (3.19)

with it’s non vanishing divergence,

∂µJ
µ
L =

NF

32π2
(−g2F aµνF̃ a

µν + g′2fµν f̃µν) (3.20)

where Y = −1/2,−1 are used for lL = (νL, eL) and eR respectively in the
case of U(1)Y . Therefore we have

∂µJ
µ
B = ∂µJ

µ
L (3.21)

which shows that the current associated with B−L is conserved. Moreover,
since each quark and lepton family gives same contribution to the anomaly
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and as lepton flavor is conserved in the SM (because of neutrino mass being
zero in the SM at the renormlizable level), there are three conserved charges
in the SM

li =
1

3
B − Li (3.22)

where Li (i = e, µ, τ) are the leptonic flavors and
∑

i Li = L.

Baryon number violation

The RHS of Eq.(3.18) can be re-expressed in the following way,

∂µJ
µ
B =

NF

32π2
(−g2∂µK

µ + g′2∂µk
µ) (3.23)

where

Kµ = εµνρσ(∂νW
a
ρW

a
σ −

1

3
gεabcW

a
νW

b
ρW

c
σ) (3.24)

kµ = εµνρσ(∂νBρBσ) (3.25)

Here, W a
µ and Bµ are the SU(2) and U(1) gauge field respectively.

The variation of the baryon number B =
∫
d3xJ0

B over time interval ∆t
is ∆B. It is proportional to the variation of the Chern-Simons number over
the same time interval. The Chern-Simons numbers are defined as follows,

NCS = − g2

16π2

∫
d3xεijkTr[∂iWjWk +

2i

3
gWiWjWk] (3.26)

nCS = − g′2

16π2

∫
d3xεijk∂iBjBk (3.27)

where NCS and nCS are associated with SU(2) and U(1) respectively. The
variation of Chern-Simons number is related to the nonzero winding number
associated with non-abelian gauge transformation.

Consider an element of SU(2), U = exp(iαaτa) which can also be written
as U(x) = x0 + ixaτa where (x0, xa) ∈ R4. Because of UU † = U †U = 1, x0

and xa satisfies, x02 + xaxa = 1 which describes S3. As SU(2) is isomorphic
to S3, U(x) can be associated with the mapping S3 → S3. The mappings
~x→ U1(~x) and ~x→ U2(~x) will belong to the same equivalence class if there
exists a continuous deformation from U1(~x) to U2(~x). The equivalence class is
characterized by positive or negative integer which is called winding number.
This topological winding number n associated with U(x0, ~x) is

n = − 1

24π2

∫
d3xεijkTr (AiAjAk) (3.28)
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with Ai = ∂iU(x0, ~x)U−1(x0, ~x).
Now first consider the transformation of SU(2), U (0) = 1 and it’s contin-

uous deformation
Ũ(x) = (1 + iεa(x)τa)U (0) (3.29)

For U (0) and any Ũ(x), the winding number n[U ] is zero. On the other hand,
for transformation

U (1) =
x0 + i~x.~τ

r
, r =

√
x2

0 + |~x|2 (3.30)

we have n[U (1)] = 1. This result also holds for any continuous deforma-
tion of U (1). Furthermore, if U (n) = [U (1)]n, we have n[U (n)] = n. So the
SU(2) gauge transformation is divided into two classes: those which have
zero winding numbers and those which have non-zero winding numbers.

Now under the U(1) gauge transformation Bi → Bi + i
g′
∂iUU

−1 where

U = eiα(x), nCS remains unchanged. On the other hand, SU(2) gauge trans-
formation for which one has non-zero winding number Eq.(3.28), will induce
non-vanishing variation of NCS,

δNCS = − 1

24π2

∫
d3x εijkTr(U∂iU

−1 · U∂jU−1 · U∂kU−1). (3.31)

Classically the ground state of the gauge theory should be time inde-
pendent field configuration with vanishing energy density. Therefore we
have F a

µν = 0 which implies that the gound state will be pure gauge state
~Wvac = i

g
∇UU−1. Furthermore, the transformation U is required to satisfy

U → 1 as |~x| → ∞. For SU(2)L gauge theory with Higgs field Φ, in the
temporal gauge, W0 = 0, we have the vacuum defined as

W
(0)
i =

i

g
∂iU

(0)U (0)−1

Φ(0) = (0, v/
√

2)

NCS = 0

Using the gauge transformation U (n), we can have classically degenerate
vacua with different Chern-Simons numbers as follows

W
(n)
i =

i

g
∂iU

(n)U (n)−1

Φ(n) = U (n)Φ(0)

NCS = n
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As ∆B is proportional to the change of the Chern-Simons number, nCS
associated with U(1), will not contribute to ∆B. So, when the system makes
a transition from n-th vacuum to n+1-th vacuum, the Chern-Simons number
changes by one unit and therefore the variations in B, L and B + L are,

∆B = ∆L = Nf ,∆(B + L) = 2Nf (3.32)

For the SM, number of generation is Nf = 3. When ∆NCS = 1, the vacuum
to vacuum transition, because of fermion number nonconservation, will lead
to the production of 9 left handed quarks (3 color states for each generations)
and 3 left handed leptons so that ∆B = ∆L = 3. Moreover, in the SM
∆(B + L) = 6 whereas proton decay, p → e+π0 requires ∆(B + L) = 2.
Therefore, despite having B violation due to the anomaly, proton decay is
forbidden in the SM. The probability amplitude for tunneling from n-th
vacuum to n+ ∆NCS was estimated by WKB method [114,115],

P (∆NCS) ∼ exp(−4π∆NCS

αW
) ∼ 10−162∆NCS (3.33)

which implies that baryon number violation in the SM is completely negligible
at zero temperature.

3.3 Baryon number violation at finite tem-

perature by the sphaleron

As already pointed out in Section 3.2, in the Standard Model (SM), the
anomalous baryonic and leptonic currents lead to fermion number non-conservation
because of the instanton induced transitions between topologically distinct
vacua of SU(2) gauge fields [114, 115] and at zero temperature, the rate
is of the order, e−2π/αw , αw ∼ 1/30, which is irrelevant for any physical
phenomena. However, there exists static unstable solution of the field equa-
tions, known as sphaleron [13, 14, 116, 117], that represents the top of the
energy barrier between two distinct vacua and at finite temperature, be-
cause of thermal fluctuations of fields, fermion number violating vacuum to
vacuums transition can occur which is only suppressed by a Boltzmann fac-
tor which contains the height of the barrier at the given temperature, i.e.
the energy of the sphaleron [12]. Such baryon number violation induced by
the sphaleron is one of the essential ingredients of Electroweak Baryogene-
sis [15, 16, 19, 21, 118, 119] and therefore, it has been extensively studied not
only in the SM [120–124,126–131] and but also in extended SM variants such
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as, SM with a singlet [59, 132], two higgs doublet model [133], Minimal Su-
persymmetric Standard Model [134], the next-to-Minimal Supersymmetric
Standard Model [135] and 5 dimensional model [136].

3.3.1 Sphaleron in SU(2)L scalar representation

The standard way to find sphaleron solution in the Yang-Mills-Higgs theory
is to construct the non-contractible loops in the field space [14]. As the
sphaleron is a saddle point solution of the configuration space, it is really
hard to find them by solving the full set of equations of motion. Instead one
starts from an ansatz depending on a parameter µ that characterizes the non-
contractible loop in the configuration space and corresponds to the vacuum
for µ = 0 and π while µ = π

2
corresponds the highest energy configuration, in

other words, the sphaleron. In the following, we have focused on determining
the energy functional and profile functions for the sphaleron in the SM for
general scalar multiplet [137].

Consider the scalar multiplet Q, charged under SU(2)L × U(1)Y group,
is in J representation and has U(1) charge Y . The generators in this rep-
resentation are denoted as Ja such that, Tr[JaJ b] = D(R)δab where D(R)
is the Dynkin index for the representation. We define the charge operator,
Q = J3 + Y and require the neutral component (J3 = −Y ) of the multi-
plet to have the vacuum expectation value. The gauge-scalar sector of the
Lagrangian is

L = −1

4
F aµνF a

µν −
1

4
fµνfµν + (DµQ)†DµQ− V (Q), (3.34)

with scalar potential

V (Q) = −µ2Q†Q+ λ1(Q†Q)2 + λ2(Q†JaQ)2. (3.35)

It was shown in [59] that the kinetic term of the scalar field makes larger
contribution to the sphaleron energy than the potential term. Therefore, for
simplicity, we have considered CP-invariant scalar potential involving single
scalar representation to determine the sphaleron solution. It is straight-
forward to generalize the calculation for the potential with multiple scalar
fields1.

1In fact, in the SM, one needs large couplings between Higgs and extra scalars to trigger
a strong first order phase transition.
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Also for convenience we elaborate,

F a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν ,

fµν = ∂µBν − ∂νBµ,

DµQ = ∂µQ− igW a
µJ

aQ− ig′BµY Q, (3.36)

where, g and g′ are the SU(2) and U(1) gauge couplings. The mixing angle
θW is tan θW = g′/g.

The energy functional and variational equations

In the following, we have addressed the energy functional and the variational
equations of the sphaleron. The classical finite energy configuration are con-
sidered in a gauge where the time component of the gauge fields are set to
zero. Therefore the classical energy functional over the configuration is

E(W a
i , Bi, Q) =

∫
d3x[

1

4
F a
ijF

a
ij +

1

4
fijfij + (DiQ)†(DiQ) + V (Q)]. (3.37)

The non-contractible loop (NCL) in the configuration space is defined as map,
S1×S2 ∼ S3 into SU(2) ∼ S3 using the following matrix U∞ ∈ SU(2) [126],

U∞(µ, θ, φ) = (cos2 µ+ sin2 µ cos θ)I2 + i sin 2µ(1− cos θ)τ 3

+ 2i sinµ sin θ(sinφτ 1 + cosφτ 2), (3.38)

where µ is the parameter of the NCL and θ, φ are the coordinates of the
sphere at infinity. Also, τa are the SU(2) generators in the fundamental
representation. We also define the 1-form in the following,

iU∞−1dU∞ =
∑
a

Faτ
a, (3.39)

which gives

F1 = −[2 sin2 µ cos(µ− φ)− sin 2µ cos θ sin(µ− φ)]dθ

− [sin 2µ cos(µ− φ) sin θ + sin2 µ sin 2θ sin(µ− φ)]dφ,

F2 = −[2 sin2 µ sin(µ− φ) + sin 2µ cos θ cos(µ− φ)]dθ

+ [sin2 µ sin 2θ cos(µ− φ)− sin 2µ sin θ sin(µ− φ)]dφ,

F3 = − sin 2µ sin θdθ + 2 sin2 θ sin2 µdφ. (3.40)

As shown in [126] the NCL starts and ends at the vacuum and consists
of three phases such that in first phase µ ∈ [−π

2
, 0] it excites the scalar
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configuration, in the second phase µ ∈ [0, π] it builds up and destroys the
gauge configuration and in the third phase µ ∈ [π, 3π

2
] it destroys the scalar

configuration.
The field configurations in the first and third phases, µ ∈ [−π

2
, 0] and

µ ∈ [π, 3π
2

] are
gW a

i τ
adxi = g′Bidx

i = 0, (3.41)

and

Q =
v(sin2 µ+ h(ξ) cos2 µ)√

2

(
0 .. 1 .. 0

)T
, (3.42)

with ξ = gΩr is radial dimensionless coordinate and Ω is the mass parameter
used to scale r−1, which we choose in what follows as Ω = mW/g. In the
second phase µ ∈ [0, π], the field configurations are

gW a
i τ

adxi = (1− f(ξ))(F1τ
1 + F2τ

2) + (1− f3(ξ))F3τ
3,

g′Bidx
i = (1− f0(ξ))F3, (3.43)

and

Q =
vh(ξ)√

2

(
0 .. 1 .. 0

)T
. (3.44)

Here, f(ξ), f3(ξ), f0(ξ) and h(ξ) are the radial profile functions. From
Eq.(3.43), one can see that, in the spherical coordinate system, for the chosen
ansatz, the gauge fixing has led to, W a

r = Br = Bθ = 0. Moreover, similar
to Eq.(3.43), the gauge fields acting on the scalar field Q can be written as

gW a
i J

adxi = (1− f)(F1J
1 + F2J

2) + (1− f3)F3J
3. (3.45)

Finally the energy over the NCL for first and third phases is,

E(h, µ) =
4πΩ

g

∫ ∞
0

dξ[cos2 µ
v2

Ω2

1

2
ξ2h′2 + ξ2V (h, µ)

g2Ω2
], (3.46)

and for second phase,

E(µ, f, f3, f0, h, µ) =
4πΩ

g

∫ ∞
0

dξ[sin2 µ(
8

3
f ′

2
+

4

3
f ′3

2
) +

8

ξ2
sin4 µ{2

3
f 2

3 (1− f)2

+
1

3
{f(2− f)− f3}2}+

4

3
(
g

g′
)2{sin2 µf ′0

2
+

2

ξ2
sin4 µ(1− f0)2}

+
v2

Ω2
{1

2
ξ2h′

2
+

4

3
sin2 µh2{(J(J + 1)− J2

3 )(1− f)2 + J2
3 (f0 − f3)2}}

+
ξ2

g2Ω4
V (h)]. (3.47)
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From Eq.(3.47), the maximal energy is attained at µ = π
2

which corresponds
to the sphaleron configuration.

If there are multiple representations J (i) with non-zero neutral compo-
nents J

(i)
3 ,

Q(i) = vihi(ξ)√
2

(0, .., 1.., 0)T , we have the energy of the sphaleron can be param-
eterized as

Esph = E(µ =
π

2
) =

4πΩ

g

∫ ∞
0

dξ[
8

3
f ′

2
+

4

3
f ′3

2
+

8

3ξ2
{2f 2

3 (1− f)2

+ (f(2− f)− f3)2}+
4

3
(
g

g′
)2{f ′0

2
+

2

ξ2
(1− f0)2}+

∑
i

{1

2

v2
i

Ω2
ξ2h′i

2

+
4

3
h2
i [2αi(1− f)2 + βi(f0 − f3)2]}+ ξ2V (vihi)

g2Ω4
], (3.48)

where the parameters

αi =
(J (i)(J (i) + 1)− J (i)2

3 )v2
i

2Ω2
, βi =

J
(i)2
3 v2

i

Ω2
, (3.49)

refer to the scalar field couplings to the charged and neutral gauge fields.
respectively.

The energy functional, Eq.(3.48) will be minimized by the solutions of
the following variational equations

f ′′ +
2

ξ2
(1− f)[f(f − 2) + f3(1 + f3)] +

∑
i

αih
2
i (1− f) = 0,

f ′′3 −
2

ξ2
[3f3 + f(f − 2)(1 + 2f3)] +

∑
i

βih
2
i (f0 − f3) = 0,

f ′′0 +
2

ξ2
(1− f0)− g′2

g2

∑
i

βih
2
i (f0 − f3) = 0,

h′′i +
2

ξ
h′i −

8Ω2

3v2
i ξ

2
hi[2αi(1− f)2 + βi(f0 − f3)2]− 1

g2viΩ2

∂

∂φi
V (φ)

∣∣∣∣
φk=vkhk

= 0,

(3.50)

with the boundary conditions for (3.50) are given by: f(0) = f3(0) = h(0) =
0, f0(0) = 1 and f(∞) = f3(∞) = f0(∞) = hi(∞) = 1. For g′ → 0, we
have, f0(ξ) → 1. The behavior of the field profiles Eq.(3.50) at the limits
ξ → 0 and ξ → ∞ are given in appendix D. According to the last term in
both first and second lines in Eq.(3.50), it seems that the couplings of the
scalar to gauge components, i.e (3.49), will play the most important role on
the shape of the field profiles as well the sphaleron energy.
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Estimating the energy of the sphaleron

The sphaleron is therefore the solution which interpolates between the vac-
uum at NCS = 0 (for ξ → 0) and the vacuum with NCS = 1 (for ξ →∞). The
energy and the typical dimension of the sphaleron configuration are basically
the result of the competition between the energy of the gauge configuration
and the energy of the Higgs field. The latter introduces the weak scale into
the problem.

For the doublet case, we can set (J, Y ) = (1/2, 1/2) in Eq.(3.48) and
Eq.(3.50) to determine the energy of the sphaleron and field profiles numer-
ically. In fact, this investigation has been carried out in [137] for scalar
multiplets, (J, Y ) = (1/2, 1/2), (1, 0), (1, 1), (3/2, 1/2), (3/2, 3/2), (2, 0), (2, 1)
and (2, 2). But as our main focus is on the Higgs doublet of the SM, the
results regarding larger representations are not presented here. The quanti-
tative numerical results for Higgs doublet case is already presented in [14].
Still qualitative estimate can give a more physical intuitive picture of the
sphaleron. As we pointed out before, the potential energy of the Higgs field
is less important so for the sphaleron configuration of dimension l, we have

Wi ∼
1

gl
,

E(Wi) ∼
4π

g2l
, (3.51)

while the energy of the Higgs field is

E(φ) ∼ 4πv2l. (3.52)

Minimizing the sum E(Wi) + E(φ), we obtain that the typical dimension of
the sphaleron is

lsp ∼
1

gv
∼ 10−16 cm, (3.53)

and

Esp ∼
8πv

g
∼ 10 TeV. (3.54)

The energy of the sphaleron in the case for doublet can be recast into the
following form,

Esp =
4πv

g
B(

λ

g2
) (3.55)

where B is a function which depends very weakly on λ/g2: B(0) ' 1.52 and
B(∞) ' 2.72. Inclusion of the mixing angle θW changes the energy of the
sphaleron at most of 0.2%. The calculation done so far for the sphaleron
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energy is when the temperature is zero. However, it was shown that at finite
temperature, its energy follows approximately the scaling law

Esp(T ) = Esp
φ(T )

v
, (3.56)

where φ(T ) is the VEV of the Higgs field at finite temperature in the broken
phase. This energy can be re-written as

Esp(T ) =
2mW (T )

αW
B

(
λ

g2

)
, (3.57)

where mW (T ) = 1
2
gφ(T ) is the mass of W boson at finite temperature.

Moreover, the Chern-Simons number of the sphaleron can be computed
in a straightforward manner by using Eq.(3.43) into Eq.(3.26) for µ = π

2
and

one can obtain

N sp
CS =

1

2
. (3.58)

3.3.2 Baryon number violation at T > Tc and T < Tc

The rate at T > Tc: At temperatures above the electroweak phase tran-
sition, the vacuum expectation value of the Higgs field is zero, φ(T ) = 0, the
Higgs field decouples and the sphaleron configuration ceases to exist.

Let us estimate the rate Γsp on dimensional grounds. As we mentioned,
at high temperature T the Higgs field decouples from the dynamics and it
suffices to consider a pure SU(2) gauge theory. Topological transitions take
place through the creation of non-perturbative, nearly static, magnetic field
configurations that generate a change in the Chern-Simons number, ∆NCS

with a corresponding baryon number generation, ∆B = Nf∆NCS.
If the field configuration responsible for the transition has a typical scale

l, a change ∆NCS ' 1 requires

∆NCS ∼ g2 l3 ∂AiAi ∼ g2l3
Ai
l
Ai ∼ 1⇒ Ai ∼

1

gl
(3.59)

This means that the typical energy of the configuration is

Esp ∼ l3 (∂Ai)
2 ∼ 1

g2l
. (3.60)

To evade the Boltzmann suppression factor this energy should not be larger
than the temperature T , which requires

l >∼
1

g2T
. (3.61)
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Such a length scale corresponds to the one of the dynamically generated
magnetic mass of order g2T which behaves as a cut off for the maximum
coherence length of the system. The rate of one unsuppressed transition per
volume l3 and time t ∼ l is therefore

Γsp ∼
1

l3t
∼ (αW T )4. (3.62)

But it was pointed out in [138] that due to the damping effects in the plasma,
the rate is suppressed by an extra power of αW to give Γsp ∼ α5

WT
4. The

rate however is modified further as [139–141]

Γsym ∼ α5
wT

4 ln(1/αw), (3.63)

From now on, we will parametrize the sphaleron rate in symmetric phase as

Γsp = κ(αW T )4. (3.64)

Therefore, it can be seen that in the symmetric phase, T > Tc, the baryon
number violating processes are unsuppressed.

The Rate at T < Tc: Once the temperature drops off the critical one T <
Tc, bubbles of true vacuum (φc 6= 0) start to nucleate where the sphaleron
processes rate is suppressed as [124]

Γsp ∼ κ 2.8× 105T 4
(αW

4π

)4
(

ξ(T )

B(λ/g2)

)7

e−ξ(T ) (3.65)

where, ξ(T ) = Esp(T )/T and B(λ/g2) is the function entering in Eq.(3.55).
The factor κ is the functional determinant associated with fluctuations around
the sphaleron [16]. It has been estimated to be in the range: 10−4 . κ .
10−1 [124,143].

B+L Washout

Considering the simplified case where all the conserved charges in the plasma
(Q, Li, B − L, `i = B/3 − Li, · · · ) are zero. If we introduce a chemical
potential for the charge B + L, µB+L, the free energy density of the system
(fermions) is given by

F = T

∫
d3k

(2π)3

[
log

(
1 + e−(Ek−µB+L)/T

)
+ (µB+L → −µB+L)

]
. (3.66)
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The charge density of B + L may be expressed in terms of the chemical
potential by

nB+L ∼ µB+LT
2 (3.67)

and therefore we may relate the free energy with nB+L

F ∼ µ2
B+LT

2 +O(T 4) ∼
n2
B+L

T 2
+O(T 4). (3.68)

The free energy increases quadratically with the fermion number density and
the transitions which increase nB+L are energetically disfavored with respect
to the ones that decrease the fermion number. If these transitions are active
for a long enough period of time, the system relaxes to the state of minimum
energy, i.e. nB+L = 0. Therefore any initial asymmetry in B + L relaxes to
zero.

To address this issue more quantitatively, one has to consider the ratio
between the transition rate with ∆NCS = +1, Γ+ and the one with ∆NCS =
−1, Γ−,

Γ+

Γ−
= e−∆F/T , (3.69)

where ∆F is the free energy difference between the two vacua that arises due
to the presence of chemical potential µB+L. If we define Γsp to be the average
between Γ+ and Γ−, we may compute the rate at which the baryon number
is being washed out [20]

dnB+L

dt
= Γ+ − Γ− ' −

13

2
NF

Γsp

T 3
nB+L. (3.70)

Let us now consider temperatures much above the electroweak phase tran-
sition, T � mW . The exponential depletion of the nB+L due to the sphaleron
transition remains active as long as

Γsp

T 3
>∼ H ⇒ T <∼ α

4
W

Mpl

g
1/2
∗
∼ 1012 GeV. (3.71)

where the Hubble rate is H(T ) = 1.66
√
g∗T

2/Mpl. Therefore, at any tem-
perature below T = 1012 GeV, the sphaleron transition will wash out any
pre-existing B + L asymmetry with the time scale τ ∼ 2T 3/(13ΓspNF ).

3.3.3 Sphaleron decoupling and the strong EWPhT
condition

In the previous section, we can see that if the conserved charges in the plasma
are taken to be zero, the asymmetry generated in B, L or B + L will be
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washed out by the sphaleron transitions if the system is kept in equilibrium
for sufficiently long period of time because these transitions do not conserve
these charges. Therefore we require the B violating sphaleron transition to
get out of equilibrium after the electroweak phase transition.

The dilution S = Bfinal/Binitial of the baryon asymmetry due to the
sphaleron transition is

dS

dt
=' −13

2
NF

Γsp

T 3
S (3.72)

Assuming T is constant during the phase transition the integration of Eq.(3.72)

yields S = e−X with X =
13

2
Nf

Γsp

T 3
t. Using t = 3 × 10−2Mpl

T 2 and Eq.(3.65),

the exponent X is written as X ∼ 1010κξ7e−ξ, where we have taken the values
of the parameters, B = 1.87, αW = 0.0336, Nf = 3, Tc ∼ 100 GeV. Now the
final baryon asymmetry seen from the observation, is, Bfinal ∼ 10−8 − 10−10

and largest initial asymmetry in the SM can be Binitial ∼ 10−5−10−6 [20,142].
Therefore, S >∼ 10−5 or we have X <∼ 10. This bound is translated into,

ξ(Tc) >∼ 7 log ξ(Tc) + 9 log 10 + log κ (3.73)

By considering first the upper bound of κ, κ = 10−1, we obtain from
Eq.(3.73),

Esph(Tc)

Tc
>∼ 45, (3.74)

and using the lower bound, κ = 10−4 we obtain,

Esph(Tc)

Tc
>∼ 37, (3.75)

The bounds Eq.(3.74) and Eq.(3.75) put a condition on the ratio, φ(Tc)/Tc.
From Eq.(3.57), at critical temperature Tc, we have

φ(Tc)

Tc
=

g

4πB

Esph(Tc)

Tc
∼ 1

36

Esph(Tc)

Tc
(3.76)

where we have used the previous values of the parameters. The bound
Eq.(3.74) translates into

φ(Tc)

Tc
>∼ 1.3 (3.77)

while the bound Eq.(3.75) translates into,

φ(Tc)

Tc
>∼ 1.0 (3.78)
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For a second order phase transition, φ(Tc) ' 0. So, the above bounds,
Eq.(3.77) and (3.78), imply that the electroweak phase transition has to
be a strong first order transition so that the sphaleron transitions do not
wash way the baryon asymmetry produced during the transition. However,
it is already shown in section (2.4.2) that Higgs mass has to be below 45
GeV to have strong electroweak phase transition (EWPhT). Furthermore,
lattice studies [23–25] pointed out that for mh > 75 GeV, the transition
actually become a cross-over. Therefore, now with Higgs at 126 GeV, clearly
one can see the requirement of extending SM by new particles, possibly
lying nearly the electroweak scale, which could provide strong EWPhT for
successful electroweak baryogenesis.
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Chapter 4

Scalar representations in the
light of electroweak phase
transition and cold dark matter
phenomenology

From chapter 2 and 3, we have seen that strong first order electroweak phase
transition required by the electroweak baryogenesis is not possible to obtain
in the Standard Model because for this to happen, the Higgs mass has to be
much smaller than the experimentally confirmed value. Also from chapter
1, we have seen that, the observed dark matter of the universe lacks a sat-
isfactory explanation with the SM. Therefore, we explore a class of models
with extended scalar sector of the SM, generally known as the inert multiplet
model where we can achieve a strong first order phase transition and have a
dark matter candidate.

In this chapter we have focused on the correlation between the EWPhT
and DM properties for various inert scalar representations and identified the
most favorable candidate from this class of models [27,144]. In section 4.1, we
have presented the scalar potential and mass spectrum of the inert doublet,
triplet and quartet model; an upper bound on the size of the multiplet and
the electroweak precision observables. In section 4.2 we have identified the
region of parameter space where strong EWPhT occurs for the inert doublet,
complex tripet and quartet and also showed the impact of the size of the
multiplet on the strength of the transition by calculating latent heat release.
In section 4.3 we have presented the correlation between strong EWPhT and
dark matter properties for the inert doublet case. Section 4.4 has featured the
relic density analysis, direct detection limit for light DM in the quartet and
finally the correlation between the strong EWPhT and DM properties which
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has indicated that the smaller representation is favorable than the larger one
in providing a light DM and simultaneously trigger strong EWPhT.

4.1 Scalar representations beyond the Stan-

dard Model

4.1.1 Scalar multiplets with cold dark matter candi-
dates

The scalar multiplet charged under SU(2)L × U(1)Y gauge group is char-
acterized by (J, Y ). The electric charge for components of the multiplet is
given by, Q = T3 + Y . For half integer representation J = n/2, T3 ranges
from −n

2
to n

2
. So the hypercharge of the multiplet needs to be, Y = ±T3 for

one of the components to have neutral charge and can be considered as the
DM. For integer representation n, similar condition holds for hypercharge.

When one considers the lightest component of the scalar multiplet as a
good dark matter candidate [161], its lifetime has to be longer than about
1026 sec which is set by the current experimental limits on the fluxes of
cosmic positrons, antiprotons and γ radiation [162, 163]. Such limits on the
lifetime of the DM requires new couplings to be extremely small.1 Therefore,
it is natural to adopt a Z2 symmetry under which all the SM particles are
Z2 even and the extra scalars are Z2 odd such a way that the new couplings
don’t arise in the Lagrangian which will lead to the decay of the dark matter.
Also this Z2 symmetry becomes accidental for representations J ≥ 2 if we
only allow renormalizable terms in the Lagrangian. Moreover, our study is
performed in a region of parameter space where inert scalar multiplets do
not develop any vev both in zero and finite temperature.2

Denoting scalar multiplet as Q, and the SM Higgs as Φ, the most general
Higgs-scalar multiplet potential , symmetric under Z2, can be written in the
following form,

V0(Φ, Q) = −µ2Φ†Φ +M2
QQ
†Q+ λ1(Φ†Φ)2 + λ2(Q†Q)2 + λ3|Q†T aQ|2

+ αΦ†ΦQ†Q+ βΦ†τaΦQ†T aQ+ γ[(ΦT ετaΦ)(QTCT aQ)† + h.c](4.1)

1For example, inert doublet can have yukawa coupling to fermions, yS f̄f , that can lead
into its decay. But for mDM ∼ 100 GeV (illustrating WIMP scale), the bound on DM
lifetime, τDM ∼ 1025 − 1027 sec sets yS ∼ 10−25 − 10−27. Also five dimensional operator,
ε
ΛSF

µνFµν can induce DM decay into monochromatic gamma rays. But for mDM ∼ 100
GeV and cut-off at EW scale, Λ ∼ v, the DM lifetime again sets ε ∼ 10−25 − 10−27.

2One can consider a scenario where inert multiplet can have non-zero vacuum expec-
tation value at some finite temperature but it relaxes to zero as the temperature lowers
down. Such scenario has been explored for doublet [56] and real triplet [193].
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Here, τa and T a are the SU(2) generators in fundamental and Q’s repre-
sentation respectively. C is an antisymmetric matrix analogous to charge
conjugation matrix defined as,

CT aC−1 = −T aT (4.2)

C, being antisymmetric matrix, can only be defined for even dimensional
space, i.e only for half integer representation. If the isospin of the reps.
is j then C is a (2j + 1) × (2j + 1) dimensional matrix. The generators
are normalized in such a way that they satisfy, for fundamental representa-
tion, Tr[τaτ b] = 1

2
δab and for other representations, Tr(T aT b) = D2(Q)δab.

Also T aT a = C2(Q). Here, D2(Q) and C2(Q) are Dynkin index and second
Casimir invariant for Q’s representation. The explicit form of generators, ε
and C matrix are given in section E.1. Notice that, γ term is only allowed
for representation with (J, Y ) = (n

2
, 1

2
).

For the doublet, real triplet, complex triplet, and the quartet, the scalar
multiplet Q is respectively

(
C+

D0 ≡ 1√
2
(S + iA)

)
,

∆+

∆0

∆−


(Y=0)

,

 ∆++

∆+

∆0 ≡ 1√
2
(S + iA)


(Y=1)

, and


Q++

Q+

Q0 ≡ 1√
2
(S + iA)

Q
′−

 .

(4.3)
In general, for the half-integer representation with (J, Y ) = (n

2
, 1

2
) and the

Integer representation with (J, Y ) = (n, Y = 0 or ±T3), the scalar multiplets
with component fields denoted as ∆(Q), where Q is the electric charge, are
respectively

Qn
2

=


∆(n+1

2
)

...
∆(0) ≡ 1√

2
(S + i A)

...

∆(−n−1
2

)

 and Qn =


∆(n)

...
∆(0)

...
∆(−n)


Y=0

. (4.4)

For the former representation every component represents a unique field while
for the latter there is a redundancy ∆(−n) = (∆(n))∗ except the Y 6= 0 case
for which the component are also unique.

4.1.2 Inert Doublet, Triplet and Quartet mass spectra

Mass spectra: half integer representation with Y = 1/2 We now
sketch the general form of mass spectrum for the multiplet. As Y = 1/2, T3
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value of the neutral component of the multiplet has to have T3 = −1
2
. Now

for the Higgs vacuum expectation value, 〈Φ〉 = (0, v√
2
)T , the term 〈Φ†〉τ 3〈Φ〉

gives −v2

4
. So masses for the neutral components, S and A are respectively

m2
S = M2

Q+
1

2
(α+

1

4
β+p(−1)p+1γ)v2 and m2

A = M2
Q+

1

2
(α+

1

4
β−p(−1)p+1γ)v2.

(4.5)
Here, p = 1

2
Dim(n

2
) = 1, 2, ... comes from 2p× 2p C matrix. For the charged

component, with T3 = j, we have,

m2
(j) = M2

Q +
1

2

(
α− 1

2
jβ

)
v2. (4.6)

Now because of the γ term, there will be mixing between components
carrying the same amount of charge. So to write down the mixing matrix,
we have considered the ordering as follows. A component of the multiplet
is denoted as |J, T3〉. Components below the neutral component |n

2
,−1

2
〉 are

denoted with |n
2
,−1

2
−m〉 where, m = 1, 2, ...., n−1

2
and corresponding charge

is Q = −m. The piece 〈Φ〉T ετa〈Φ〉 gives v2

2
√

2
. Therefore, the mixing term

between between components with charge |Q| = m is,

(−1)m+1γv
2

4

√
(n+ 2m+ 1)(n− 2m+ 1)

In the ordering, (∆+
( 1

2
)
,∆+

(− 3
2

)
), with m = 1, the mass matrix becomes,

M2
+ =

 m2
( 1

2
)

γv2

4

√
(n+ 3)(n− 1)

γv2

4

√
(n+ 3)(n− 1) m2

(− 3
2

)

 (4.7)

And with m = 2 and (∆++
( 3

2
)
,∆++

(− 5
2

)
) we have,

M2
++ =

 m2
( 3

2
)

−γv2

4

√
(n+ 5)(n− 3)

−γv2

4

√
(n+ 5)(n− 3) m2

(− 5
2

)

 (4.8)

and so on, for charges with m = 3, 4, . . ..
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Doublet model If we consider S of the inert doublet to be the DM can-
didate, then following our parameterization Eq.(4.1) and Eq.(4.3), the mass
spectrum, is in the following

m2
S = M2

Q +
1

2

(
α +

1

4
β + γ

)
v2

m2
A = m2

S − γv2

m2
C = m2

S −
1

2

(
γ +

1

2
β

)
v2 (4.9)

mS is the smallest mass in the spectrum when γ < 0 and γ + 1
2
β < 0.

The couplings α, β and γ used in our parameterization is connected to
λ3, λ4 and λ5 used in the literature, as follows,

λ3 = α− 1

4
β , λ4 =

β

2
, λ5 = γ (4.10)

Also, for convenience, we define,

λS = α +
1

4
β + γ , λA = α +

1

4
β − γ , λC = α− 1

4
β (4.11)

which are the couplings of S, A and C+ to the higgs.
The conditions which ensure boundedness of the potential at large field

values for the doublet are

λ1 > 0 , λ2 > 0

α +
1

4
β > −2

√
λ1λ2 in (h,C+, 0, ..) surface

α +
1

4
β + γ > −2

√
λ1λ2 in (h, S, 0, ..) surface

Quartet model The immediate generalization of doublet case is the J =
3/2 quartet case. Apart from splitting between S and A, γ term also mixes
two single charged components of the quartet. According to Eq.(4.7), the
mass matrix for the single charged fields in (Q+, Q

′+) basis is

M2
+ =

(
M2

Q + 1
2

(
α− 1

4
β
)
v2

√
3

2
γv2

√
3

2
γv2 M2

Q + 1
2

(
α + 3

4
β
)
v2

)
(4.12)

Diagonalizing the mass matrix, we have mass eigenstates for single charged
fields, Q+

1 = Q+ cos θ + Q
′+ sin θ, Q+

2 = −Q+ sin θ + Q
′+ cos θ with tan 2θ =

−2
√

3γ
β

.
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Again we consider S to be the dark matter. So masses of the components
of the multiplet are as follows,

m2
S = M2

Q +
1

2

(
α +

1

4
β − 2γ

)
v2

m2
A = m2

S + 2γv2

m2
Q++ = m2

S −
1

2
(β − 2γ)v2

m2
Q+

1 (Q+
2 )

= m2
S +

(
γ ∓ 1

4

√
β2 + 12γ2

)
v2 (4.13)

Because of the mixing between two single charged states, the mass relation
is

m2
S +m2

A = m2
Q+

1
+m2

Q+
2

(4.14)

The full stability analysis for the quartet potential is an involved task so
for time being, we can give a partial set of necessary stability conditions by
taking Higgs-scalar two dimensional complex surface (h, ξi, 0, 0, ...) in field
space.3.

λ1 > 0 , λ2, λ3 > 0

α +
1

4
β − 2γ > −2

√
λ1(λ2 +

1

4
λ3) in (h, S, 0, ..) surface

α +
1

4
β + 2γ > −2

√
λ1(λ2 +

1

4
λ3) in (h,A, 0, ..) surface

α− 3

4
β > −2

√
λ1(λ2 +

3

4
λ3) in (h,Q++, 0, ..) surface

α− 1

4
β > −2

√
λ1(λ2 +

1

4
λ3) in (h,Q+, 0, ..) surface

α +
3

4
β > −2

√
λ1(λ2 +

9

4
λ3) in (h,Q′−, 0, ..) surface (4.15)

The last two conditions, when expressed in terms of mass eigenstates Q+
1 , Q

+
2

becomes

α∓ 1

4
β(1∓2 cos 2θ)±

√
3γ sin 2θ > −

√
λ1λ2 +

1

4
λ1λ3(3∓ 4 cos 2θ + 2 cos 4θ)

(4.16)
in (h,Q+

1,2) surface.

3For general treatment see [164]
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Mass spectra: integer representation with Y = 0 and Y 6= 0 For
integer representation, γ term is not allowed. Therefore, there will not be
any mass splitting between real and imaginary part of the neutral component.
Moreover, for Y = 0 or real representation, the term Q†T 3Q is zero. So tree
level mass spectrum is degenerate and is given by,

m2
∆ = M2

Q +
1

2
αv2. (4.17)

On the other hand, if Y 6= 0, there will be mass splitting due to β term. Also
one can choose Y as, from −n to n, to set one component to be neutral. If
T3 = j, the mass is given by,

m2
(j) = M2

Q +
1

2

(
α− 1

2
βj

)
v2 (4.18)

Triplet model Two representatives from this class are the real triplet (T =
1, Y = 0) and the complex triplet (T = 1, Y = 1). For real triplet, the term,
∆†T 3

T∆ is zero, so the mass spectrum will be degenerate and given as,

m2
∆+ = m2

∆0 = M2
∆ +

1

2
αv2. (4.19)

On the other hand, for the complex case the mass spectrum is,

m2
S = m2

A = M2
∆ +

1

2

(
α +

1

2
β

)
v2 (4.20)

m2
∆+ = M2

∆ +
1

2
αv2 (4.21)

m2
∆++ = M2

∆ +
1

2

(
α− 1

2
β

)
v2 (4.22)

There is a relation between masses:

m2
∆++ −m2

∆+ = m2
∆+ −m2

∆0 = −1

4
βv2 (4.23)

And the stability conditions are,

λ1 > 0 , λ2, λ3 > 0

2α + β > −2
√
λ1(λ2 + λ3) in (h,∆0, 0, ..) surface

α > −2
√
λ1λ2 in (h,∆+, 0, ..) surface (4.24)

2α− β > −2
√
λ1(λ2 + λ3) in (h,∆++, 0, ..) surface (4.25)
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When we don’t consider the Z2 symmetry and allow the new yukawa cou-
plings with the complex triplet in the lagrangian, it will enable the neutrino
to acquire mass through the Type-II seesaw mechanism [165]. But in that
case, the triplet will not able to provide any no viable DM candidate.

Because of the absence of γ term as in half integer representation, there
is no mass splitting between S and A of the neutral component ∆0. S
and A have vector interaction with Z boson that produces spin-independent
elastic cross section which is already 8 − 9 orders of magnitude above the
CDMS direct detection bound [166] and for this reason, complex triplet or
any larger integer multiplet with non zero hypercharge is not going to satisfy
direct detection bound as one will require a non-zero splitting between S and
A larger than the kinetic energy of DM in our galactic halo to make Z−S−A
process kinematically forbidden. Therefore, only neutral component of the
real triplet can be a plausible DM candidate. In fact, real triplet DM has been
already studied in [69, 70, 167, 168]. In [69, 167] it was shown that observed
relic density can be accounted for the DM if the mass of the DM lies about 2.5
TeV. Being degenerate, one can easily see that, such particle would decouple
from electroweak plasma and had no significant effect on EWPhT. But the
question of having a strong first order EWPhT in complex triplet is relevant
for cosmic evolution of the universe. Therefore we only focused on EWPhT
in the complex triplet case in a later section.

4.1.3 Perturbativity and EW physics constraints on
the size of the multiplets

Perturbativity: Landau pole of the gauge coupling, g

What is the largest possible inert multiplet allowed to be added to the stan-
dard model? One possible bound comes from the beta function of SU(2)
gauge coupling in presence of large scalar multiplets because the addition of
such large multiplet not only halts the asymptotic freedom of non-Abelian
gauge couplings but also lowers the scale of landau pole with its size.

Consider non-abelian gauge theory with gauge group G and coupling g.
If there are NF different fermion fields in different representations RF

i and
NS scalar fields in different representations RS

i , the 1-loop beta function is

β(g) = µ
dg

dµ
= − g3

16π2

[
11

3
T (A)− 2η

3

NF∑
i=1

T (RF
i )− 1

3

NS∑
i=1

T (RS
i )

]
= − g3

16π2
β̃

(4.26)
Here, η = 1 (2) for Weyl (Dirac) fermions and β̃ is the group theoretic factor.

72



Again, the Dynkin index of representation R, T (R) is define as

Tr (T aRT
b
R) = T (R)δab (4.27)

T (R) is determined from the following formula,

T (R) =
dimR

dimG
C2(R) (4.28)

where the quadratic Casimir of representation R is

T aRT
a
R = C2(R)IdimR (4.29)

Now by integrating Eq.(4.26) from µ0, where g(µ0) = g0, to µ where
g(µ) = g, we have,

g2 =
1

1 +
β̃g2

0

8π2 ln µ
µ0

(4.30)

Now if the matter contribution becomes larger than the gauge contribution
in the beta function, β̃ < 0. So the asymptotic freedom of non-abelian gauge
theory is lost and the landau pole will occur as follows,

Λlandau = µ0exp

(
8π2

|β̃|g2
0

)
(4.31)

where we can see that, the presence of larger representation of fermion and
scalar fields increase |β̃| and therefore, the scale of landau pole, Λlandau be-
comes smaller.

The one-loop beta function of SU(2) gauge coupling for Standard Model
solely augmented by a scalar multiplet of isospin J is

β(g) =
g3

16π2

(
−19

6
+

1

9
J(J + 1)(2J + 1)

)
(4.32)

It can be seen that, β(g) remains negative only for J ≤ 3
2
. For, J ≥ 2, it

becomes positive and hits the landau pole as shown in Fig.(4.1). For instance
adding a scalar multiplet with isospin J ≥ 5 will bring the Landau pole of
SU(2) gauge coupling at Λ ≤ 10 TeV and for J ≥ 10, its even smaller,
Λ ≤ 180 GeV. Therefore, perturbativity of gauge coupling at the TeV scale
sets a upper bound on the size of the multiplet to be J ≤ 5.
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Figure 4.1: Landau pole with different scalar multiplet.

Bound from tree-unitarity

The tree-unitarity condition played an important role in development of the
Standard model. The bad high energy behavior and inconsistency with the
unitarity of Born-scattering in weak interaction theory mediated by interme-
diate massive vector bosons was first pointed out in [145] and later showed
in [146] that such behavior does not occur in the case for the standard model.
Subsequently the tree unitarity condition was generalized in [147–152] and
was used to put the upper bound on the Higgs mass [153,154].

Here, we are focusing on scattering of the scalar particles so from appendix
F, we have for spinless particles,

Tfi(s, cos θ) = 16π
∑
J

(2J + 1)aJ(s)PJ(cos θ) (4.33)

where s is the center of mass (CM) energy and θ is the angle between incoming
and outgoing particles in CM frame. The coefficient aJ is,

aJ(s) =
1

32π

∫ 1

−1

d(cos θ)PJ(cos θ)Tfi(s, cos θ) (4.34)

Since a0 is real in the Born approximation, we can have the following bound,

Re a0 ≤
1

2
(4.35)

In [169,170], the 2→ 2 scattering amplitudes for scalar pair annihilations
into electroweak gauge bosons have been computed and by requiring zeroth
partial wave amplitude satisfying the unitarity bound Eq.(4.35), it was shown
that maximum allowed complex SU(2)L multiplet would have isospin J ≤
7/2 and real multiplet would have J ≤ 4.
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One-loop renormalization group equations

The presence of a larger representation of the scalar field enables the scalar
quartic couplings to grow much faster than that of a lower dimension. In
the case of fermions, the yukawa coupling will drive the scalar couplings to
negative value at high energy and destabilizes the scalar potential.

Here, we have compared the running of Standard model and additional
scalar couplings in the presence of a doublet and triplet charged under the SM
group and showed that, if the scalar couplings are positive and large at EW
scale mZ , then in triplet case, the scalar quartic couplings grow much faster
and will reach 4π compared to the doublet case. In the appendix G, we have
presented an algebraic method to determine the one-loop beta functions for
doublet scalar quartic couplings from the effective potential which matched
the results of [33].

Now if we compare the triplet [171] to the doublet [33], we obtain Fig.
(4.2) which shows that on increasing the size of the multiplet, the scalar
couplings will run faster compared to the smaller representation and will
become non-perturbative much faster if one starts with large scalar coupling
at EW scale.
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Figure 4.2: The running of Higgs quartic coupling λ1 and coupling α. The
initial values of the couplings at energy µ = 100 GeV are (λ1, λ2, λ3, α, β, γ) =
(0.13, 0.1, 0.1, 2, 0.1, 0.1) for both cases. Here we can see that large values of
α which also drives strong EWPhT, as we will see later, drives Higgs coupling
to run much faster in triplet than the doublet case.

Electroweak precision observable

A straightforward way to observe the indirect effect of new physics is in
the modification of vacuum polarization graph of W± and Z0 boson and
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one convenient way to parameterize these ’Oblique correction’ is through S,
T and U parameters [172, 173] (analysis of one-loop correction in SM was
first done in [174]); plus V, W and X parameters [175] if new physics is at
scale comparable to the EW scale. Oblique corrections are dominant over
other ’non-oblique’ corrections (vertex diagram and box diagram with SM
fermions as external states) because all the particles charged under SM group
will couple to gauge bosons but usually only one or two particles in a theory
will couple to specific fermion species.

Because of the absence of coupling between inert scalar fields and SM
fermions, the only dominant effects will come from oblique corrections. T
parameter, measuring the shift of ρ = MW

MZ cos θw
from SM value due to the

radiative correction by new particles, is

αT =
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

(4.36)

where, ΠWW (0) and ΠZZ(0) vacuum polarization graph of W and Z bosons
evaluated at external momentum, p2 = 0.

EWPO in the Inert Doublet The contribution of the inert doublet to
T parameter is [33]

T ≈ 1

24π2αv2
(mC −mA)(mC −mS) . (4.37)

If the mass of the Higgs were heavier than the present value, one would
then require substantial T or a non-degenerate spectrum of the inert doublet
states. On the other hand, we are motivated by the first-order phase transi-
tion, which favors as light SM Higgs, which is also confirmed experimentally.
This in turn implies T ≈ 0. There are two possibilities to achieve this: a)
mS < mC ≈ mA or b) mS ≈ mC < mA. It will turn out that S, as the DM,
has to be lighter than about 80 GeV. It is not completely clear whether the
possibility b) is in accord with the experiment [176]. For this reason, we pur-
sued possibility a), where A and C are quite degenerate [44] or equivalently
γ ≈ β/2 (λ4 ≈ λ5).

As the scalar contribution to the S parameter is small compared to T
parameter, we have from [33],

S =
1

2π

∫ 1

0

dxx(1− x)ln
xm2

S + (1− x)m2
A

m2
C

(4.38)
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EWPO for the Quartet The gauge-scalar-scalar vertices required for
calculating S and T parameters for the quartet are given in section E.2. The
quartet contribution to T parameter,

16π2α

g2
T =

1

M2
W

(
3

2
cos2 θ F (mQ++ ,mQ+

1
) +

3

2
sin2 θ F (mQ++ ,mQ+

2
)

+
1

4
(
√

3 sin θ + 2 cos θ)2 F (mQ+
1
,mS) +

1

4
(
√

3 sin θ − 2 cos θ)2 F (mQ+
1
,mA)

+
1

4
(
√

3 cos θ − 2 sin θ)2 F (mQ+
2
,mS) +

1

4
(
√

3 cos θ + 2 sin θ)2 F (mQ+
2
,mA))

− 1

4c2
wM

2
Z

(F (mS,mA) + sin2 2θ F (mQ+
1
,mQ+

2
)) (4.39)

here,

F (m1,m2) =
m2

1 +m2
2

2
− m2

1m
2
2

m2
1 −m2

2

ln
m2

1

m2
2

(4.40)

In addition, S parameter for quartet multiplet is,

S =
s2
w

8π

∫ 1

0

dx x(x− 1)[ln
m2
Q+

1

m2
Q+

2

m4
Q++

+ 2 cos 2θ ln
m2
Q+

2

m2
Q+

1

+ ln
(1− x)m2

S + xm2
A

m2
Q++

+ sin2 2θ ln
[(1− x)m2

Q+
1

+ xm2
Q+

2

]2

m2
Q+

1

m2
Q+

2

] (4.41)

Best fit values of S and T The best fit values of S and T parameter with
(U = 0)4 is [178]

S = 0.04± 0.09 and T = 0.07± 0.08 (4.42)

Therefore, one can put constraints on S and T parameter by comparing the
theoretical predictions with well measured experimental values of observ-
ables.

4.2 Electroweak phase transition (EWPhT)

4.2.1 Finite temperature effective potential

In chapter 2, we have described the finite temperature effective potential in
details. Here we recapitulate the main points. If there are multiple classical

4The contribution to U parameter by scalar multiplet with only gauge interactions
considered in our case, will be smaller compared to T parameter by a factor (MW /MS)2,
where MS is the leading scalar mass of theory [177]
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background fields φi , which act as order parameters of the thermodynamic
system, the total one-loop effective potential at finite temperature is,

Veff (φi, T ) = V0(φi) + VCW (φi) + VT (φi, T ) (4.43)

Here, V0, VCW and VT are tree-level, 1-loop Coleman-Weinberg and finite
temperature potential respectively. The daisy resummed finite temperature
potential is,

VT =
∑
B(F )

(±)gB(F )
T 4

2π2

∫ ∞
0

dxx2 ln(1∓ e−
√
x2+m2

B(F )
(φi,T )/T 2

) (4.44)

Here, gB and gF are bosonic and fermionic degrees of freedom and ± cor-
respond to boson and fermion respectively. Thermal mass correction deter-
mined with respect to background fields φj is,

m2
i (φj)→ m2

i (φj, T ) = m2
i (φj) + Πi(T ) (4.45)

where Πi(T ) is the thermal self energy correction (Debye correction) and at
the high temperature limit, it is of the form T 2 times coupling constants.
Πi(T ) measures how much particles are screened by thermal plasma from
the classical background field φ (just like the Debye screening) and large
screening reduces the strength of phase transition. In other words, it is the
amplitude for the external particle (sourced by classical field) to forward
scatter off from a real physical particle present in the thermal bath [179].

For numerical convenience, in subsequent studies, we have used the fol-
lowing form of the effective potential in high temperature approximation,

Veff = V0 + VCW +
∑
B

gB[
m2
B(φ, T )T 2

24
− T

12π
[m2

B(φ, T )]
3
2 (4.46)

+
m4
B(φ, T )

64π2
ln
m2
B(φ, T )

AbT 2
] +
∑
F

gF

[
m2
F (φ)T 2

48
− m2

F (φ)

64π2
ln
m2
F (φ)

AfT 2

]
It was shown in [17] that high T approximation agrees with exact potential

better than 5% for m/T < 1.6(2.2) for fermions (bosons). So unless great
accuracy is required, one can use Eq.(4.46) to explore the thermodynamic
properties of system.

Issue of imaginary effective potential and gauge dependence There
will be some region of parameter space, for example, the Goldstone modes,
where the effective potential will become imaginary due to the non-analytic
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cubic terms (m2(φ, T ))
3
2 and the log terms. It doesn’t signal the breakdown

of perturbative calculation, instead, as it was shown in [180, 184] that the
imaginary part signals the instability of the homogeneous zero modes. More-
over, as mentioned in [181] that the imaginary part vanishes when effective
potential is calculated to all orders but at any finite order, it can be present.
Therefore, in calculation we are only concerned with the real part of the
potential. To ameliorate the gauge dependence of finite temperature effec-
tive potential, gauge invariant prescriptions have been developed [182–185].
Moreover, in [184], it was shown that landau gauge (ξ = 0) is better in captur-
ing the thermodynamic properties by comparing them with those determined
with gauge invariant Hamiltonian formalism. So in this work we have chosen
to follow the landau gauge to carry out our numerical calculation. The main
motivation for us is to explore the phase transition qualitatively and it’s al-
ready apparent from the above discussion that perturbative techniques can
at best capture the approximate nature of the finite temperature phenomena.
For quantitative accuracy one eventually has to use lattice methods.

4.2.2 EWPhT with the Inert Doublet, Triplet and Quar-
tet representations

The nature of electroweak phase transition is a cross over for Higgs boson with
mass about 125.5 GeV (for a recent lattice study, [186]). Therefore to achieve
strong first order phase transition, one must extend the scalar sector of the
theory. Consider an inert multiplet Q with isospin, j and hypercharge Y = 0
and the parameter space is chosen in such a way that inert multiplet does
not obtain any VEV at all temperatures. So, 〈Φ〉 = (0, φ√

2
)T and 〈Q〉 = 0.

Because of zero VEV at all temperatures, the only classical background field
is that of Higgs doublet and therefore the sphaleron configuration is exactly
like that of the Standard Model. For this reason, in this case, first order
phase transition is determined by the condition φc/Tc ≥ 1 as seen in section
3.3.3.

The thermal masses for the component fields of the Higgs doublet Φ and
real multiplet Q are

m2
h(φ, T ) = −µ2 + 3λ1φ

2 + a(j)
T 2

12
(4.47)

m2
G±(φ, T ) = m2

G0(φ, T ) = −µ2 + λ1φ
2 + a(j)

T 2

12

and due to degenerate mass spectrum,

m2
i (φ, T ) = M2 +

1

2
αφ2 + b(j)

T 2

12
(4.48)
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Temperature coefficients are,

a(j) = 6λ1 +
1

2
(2j + 1)α +

9

4
g2 +

3

4
g′2 + 3y2

t (4.49)

b(j) = (2j + 3)λ2 + 2α + 3j(j + 1)g2 (4.50)

Here one can see that from 1st and 3rd term of b(j) that larger representation
receives relatively large thermal corrections due to the scalar loops and gauge
boson loops. These coefficients capture how much particles are screened
by the plasma from the classical field which determines the strength of the
transition. The larger the coefficients are, the weaker the transition will
become because those particles are effectively decoupled from the plasma.
This plasma screening effect on the nature of phase transition for complex
singlet was already studied in [187]. In the following, we showed similar
effect for real multiplet as it captures the essential features that depend on
size of the multiplet. Generalization to complex odd dimensional or even
dimensional scalar multiplet is straightforward.

Using Eq.(4.46) and neglecting the terms coming from CW-corrections
and log terms we have,

VT (φ, T ) = A(T )φ2 +B(T )φ4 + C(T )[φ2 +K2(T )]
3
2 (4.51)

where,

A(T ) = −1

2
µ2 + a(j)

T 2

12
(4.52)

B(T ) =
1

4
λ1

C(T ) = −(2j + 1)
T

12π
(
α

2
)

3
2

K2(T ) =
2

α

(
M2 + b(j)

T 2

12

)
When the universe is at very high temperature, it is in the symmetric

vacuum φ = 0 but when the universe cools down, there can be two char-
acteristic temperatures: T1 and T2. For temperature, T < T2, the origin is
the maximum and there is only one global minimum at φ 6= 0 that evolves
towards zero temperature minimum. For T > T2, the origin is a minimum
and there is also a maximum at φ−(T ) and another minimum at φ+(T ) given
by,

φ2
±(T ) =

1

32B2
[9C2 − 16AB ± 3|C|

√
9C2 + 32(2B2K2 − AB] (4.53)
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The second order transition temperature T2 is determined by the condition,

4A2 − 9C2K2 = 0 (4.54)

And the first order transition temperature, T1 where VT (φc(T1), T1) = VT (0, T1)
and φ+(T1) = φ−(T1) sets the condition,

9C2 + 32(2B2K2 − AB) = 0 (4.55)

From two conditions, T1 and T2 are determined as,

T 2
1 =

4λ1µ
2 +

8M2+λ2
1

α

1
3
a(j)λ1 − 2b(j)λ2

1

3α
− (2j + 1)2 α3

128π2

(4.56)

and

T 2
2 =

1

2D
(E +

√
E2 − 4Dµ4) (4.57)

with

D =
a(j)2

144
− (2j + 1)2 b(j)α

2

768π2
(4.58)

E =
1

6
a(j)µ2 + (2j + 1)2M

2α2

64π2

The nature of the transition depends on the relation between T1 and
T2. If T1 > T2, the transition is first order and plasma screening is not
so effective. When T1 < T2, the transition is actually second order due to
dominant plasma screening. Actually, T1 = T2 gives the turn over condition
from first to second order transition and from (4.56) and (4.57), we can have
a condition on the parameter space (λ2, α,M, j).

3

256π2
(2j + 1)2α4 − b(j)λ2

1 ≥ (a(j)λ1 −
3

64π2
(2j + 1)2α3)

(
M

v

)2

(4.59)

Here, the strict inequality implies the region of parameter space where first
order transition persists and equality corresponds to the turn-over. Here one
can see that, this inequality saturates if M and b(j) becomes large as these
two terms control the plasma screening for the particle. For small values of
α, we can easily see from LHS of (4.59) that the second term increases faster
than the first term due to the quadratic Casimir for gauge boson contribution
and self interacting quartic term in b(j) (Eq.(4.49)). Also if invariant mass
term M is large, the RHS will saturates the inequality much faster. So
one can infer that although large representation will favor the first order
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transition up to certain value of j because of more degrees of freedom in the
plasma coupling to the background field, at one point, due to large thermal
mass coming from gauge interaction, plasma screening will be large enough
to cease the first order transition and make it as a second order.

Electroweak phase transition with scalar singlet, two higgs doublet model5

[142,188–192] (and references therein) and real triplet [193] have been studied
extensively. Therefore, in the following sections, we have focused on the
inert doublet, complex triplet and the quartet to study the nature of phase
transition.

Inert Doublet

The thermal mass for the Higgs and Goldstone fields are

m2
h(φ, T ) = −µ2 + 3λ1φ

2 + a
T 2

12
(4.60)

m2
G± = m2

G0 = −µ2 + λ1φ
2 + a

T 2

12
(4.61)

And thermal masses for the component fields of the inert doublet are

m2
S(φ, T ) = M2

D +
1

2
(α +

1

4
β + γ)φ2 + b

T 2

12
(4.62)

m2
A(φ, T ) = M2

D +
1

2
(α +

1

4
β − γ)φ2 + b

T 2

12
(4.63)

m2
C(φ, T ) = M2

D +
1

2
(α− 1

4
β)φ2 + b

T 2

12
(4.64)

Here the thermal coefficients a and b are,

a = 6λ1 + 2α +
9

4
g2 +

3

4
g′2 + 3y2

t (4.65)

b = 6λD + 2α +
9

4
g2 +

3

4
g′2 (4.66)

MD and λD are denoting common mass term and self quartic coupling of the
inert doublet respectively.

5Inert doublet can be considered as a special case of two Higgs doublet model
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The thermal effective potential is

Veff (φ, T ) =
1

2
(−µ2 + a

T 2

12
)φ2 +

λ1

4
φ4 +

∑
i

(±)gi
mi(φ)4

64π2

[
ln
m2
i (φ)

Q2
− ci

]
− T

12π

∑
B

gB[m2
B(φ, T )]3/2 −

∑
B

m4
B(φ, T )

64π2
ln
m2
B(φ, T )

AbT 2

+ 12
m4
t (φ)

64π2
ln
m2
t (φ)

AfT 2
(4.67)

where the bosonic sum is taken over, h, G±, G0, S, A, C±, W± and Z with
corresponding degrees of freedom, gi are {h,G±, G0, S, A, C±,W±, Z, t} =
{1, 2, 1, 1, 1, 2, 6, 3, 12}. AlsoQ is the renormalization scale and inMS scheme,
{cS, cF , cGB} = {3/2, 3/2, 5/6}.

The criterion for having a strong first-order electroweak phase transition
is φc/Tc & 1 at the critical point, which calls for a large cubic thermal
potential φ3T . In the inert doublet model the new scalars play this crucial
role with a sufficiently large coupling to the SM Higgs boson, λi ∼ O(1)
where λC = α − β

4
and λA = α + 1

4
β − γ. In the subsequent section, we

will show that direct detection implies λS . 0.1. Therefore, only large λA
and λC can trigger strong EWPhT, which implies that the corresponding
pseudoscalar and charged components are heavy at zero temperature.

We also showed in Fig.(4.3), the dependence of the critical temperature
and the Higgs VEV on the DM self coupling λD and the SM Higgs mass. We
found that both the increase of DM self-interaction and the SM Higgs mass
reduced φc and increased Tc, and thus weakened the strength of the phase
transition. In particular, Tc increased very quickly with the Higgs mass and
we found an upper bound on the Higgs boson mass which is now compatible
with the observation.

mh . 130 GeV . (4.68)

In short, the scalar doublet DM can trigger the strong electroweak phase
transition, as long as it is light, below 80 GeV or so, and its partners end up
being heavier.

Complex Triplet

The thermal mass for the Higgs and Goldstone fields are

m2
h(φ, T ) = −µ2 + 3λ1φ

2 + a
T 2

12
(4.69)

m2
G± = m2

G0 = −µ2 + λ1φ
2 + a

T 2

12
(4.70)
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Figure 4.3: Shape of the Higgs potential at the critical temperature and its
dependence on different choices of parameters: DM self-interaction λD (left
panel) and SM Higgs boson mass mh (right panel). While varying λD, we
have fixed mh = 120 GeV, mS = 60 GeV, mA = mC = 300 GeV and while
varying mh, we have fixed λD = 0, mS = 76 GeV, mA = mC = 300 GeV,
respectively. Taken from [27].

And thermal masses for the component fields of the triplet are

m2
S(φ, T ) = m2

A(φ, T ) = M2
∆ +

1

2
(α +

1

2
β)φ2 + b

T 2

12
(4.71)

m2
∆+(φ, T ) = M2

∆ +
1

2
αφ2 + b

T 2

12
(4.72)

m2
∆++(φ, T ) = M2

∆ +
1

2
(α− 1

2
β)φ2 + b

T 2

12
(4.73)

Here the thermal coefficients a and b are,

a = 6λ1 + 3α +
9

4
g2 +

3

4
g′2 + 3y2

t (4.74)

b = 8λ2 + 6λ3 + 2α + 6g2 + 3g′2 (4.75)
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Also, M∆ and λ2 are denoting common mass term and self quartic coupling
of the inert complex triplet respectively. So the effective potential is

Veff (φ, T ) =
1

2
(−µ2 + a

T 2

12
)φ2 +

λ1

4
φ4 +

∑
i

(±)gi
mi(φ)4

64π2

[
ln
m2
i (φ)

Q2
− ci

]
− T

12π

∑
B

gB[m2
B(φ, T )]3/2 −

∑
B

m4
B(φ, T )

64π2
ln
m2
B(φ, T )

AbT 2

+ 12
m4
t (φ)

64π2
ln
m2
t (φ)

AfT 2
(4.76)

where bosonic sum is taken over, h, G±, G0, ∆++, ∆+, ∆0, W± and Z with
corresponding degrees of freedom, gi are {h,G±, G0,∆++,∆+,∆0,W±, Z, t} =
{1, 2, 1, 2, 2, 2, 6, 3, 12}. AlsoQ is the renormalization scale and inMS scheme,
{cS, cF , cGB} = {3/2, 3/2, 5/6}.
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Figure 4.4: Correlation between m∆++ and m∆+ in the inert complex
triplet model. We have scanned the parameter space: M ∈ (10, 150) GeV,
α ∈ (0, 3), λ2,3 ∈ (0, 0.01) and |β| ∈ (0, 2). Here for β < 0 (brown points) we
have m∆0 < m∆+ < m∆++ and strong EWPhT region (orange points) lies for
m∆++ ∼ 250 − 340 GeV. For β > 0 (blue points) the mass hierarchy is op-
posite and strong EWPhT region (orange points) lies for m∆++ ∼ 170− 315
GeV. In random scan, for β > 0 and β < 0, out of initial 104 points, 8.54%
and 8.79% points which are consistent with stability conditions and elec-
troweak precision data (EWPD) showed strong EWPhT respectively. The
straight line represents m∆++ = m∆+ . Taken from [144].

In the above analysis, Z2 symmetry is retained but one can introduce
the term µΦT ε∆†Φ which breaks Z2 symmetry softly, which happens, for
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example, in the type-II seesaw model. Such term will induce a triplet vev,
〈∆0〉 = v∆ where v∆ = µv2

√
2M2

∆

. As indicated in [194], such term will modify

the Higgs quartic coupling to λ1

4
→ λ1

4
− µ2

2M2
∆

which in turn, will reduce

the effective Higgs quartic coupling and enhance the strength of the transi-
tion. The upper bound of v∆ set by precision measurement of ρ parameter,
is 2.5 − 4.6 GeV [195] and lower bound is 10−10 GeV set by the neutrino
mass [197]. Now from inequality Eq.(4.59), one can see that strong 1st order
EWPhT favors M∆ ≤ Tc ∼ 100 − 120 GeV. Therefore, µ will lie within the
range 10−11 ≤ µ ≤ 1.5 GeV. Hence, the correction to the Higgs quartic cou-
pling is about O(10−3) so it is negligible and does not quantitatively change
the transition which is mostly driven by large α coupling of the potential.
Also correction to the mass spectrum due to non zero µ term (therefore,

nonzero v∆) is O(
v2
∆

v2 ) and thus very small. So EWPhT results obtained in
Z2 symmetric triplet case also holds for softly broken Z2 symmetric model.

In [196], for like-sign dilepton final states with 100% branching ratio at 7
TeV LHC run, the lower limit on mass of the doubly charged scalar was put
as 409 GeV, 398 GeV and 375 GeV for e±e±, µ±µ± and e±µ± final states.
But as pointed out in [197] the mass limit crucially depends on the value of v∆

and the di-leptonic decay channel Γ∆++→lilj is dominant only when 10−10 ≤
v∆ ≤ 10−5 − 10−4 GeV and when v∆ = 10−4 − 10−3 it becomes comparable
to Γ∆++→W+W+ . Also for mass difference ∆M = m∆++ − m∆+ ≥ 5 GeV
and v∆ ≥ 10−4 GeV, cascade decay is the most dominant decay channel
(β < 0). Therefore when v∆ ∼ 4 × 10−5 GeV, di-leptonic branching ratio is
around 11% and lower limits on m∆++ are 212 GeV (e+e+), 216 GeV (µ+µ+)
and 190 GeV (e+µ+)6 which is still compatible with strong EWPhT region
shown in Fig.(4.4). Moreover, for v∆ ≥ 10−4 the limit goes down all the way
to m∆++ ≥ 100 GeV and thus again compatible with strong EWPhT region.

Quartet representation

In case of quartet representation, the thermal mass for the Higgs and Gold-
stone fields are

m2
h(φ, T ) = −µ2 + 3λ1φ

2 + aq
T 2

12
(4.77)

m2
G± = m2

G0 = −µ2 + λ1φ
2 + aq

T 2

12
(4.78)

6Table.1 of [196]
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And for quartet, the thermal mass for the component fields are

m2
S(φ, T ) = M2

Q +
1

2
(α +

1

4
β − 2γ)φ2 + bq

T 2

12
(4.79)

m2
A(φ, T ) = M2

Q +
1

2
(α +

1

4
β + 2γ)φ2 + bq

T 2

12
(4.80)

m2
Q++(φ, T ) = M2

Q +
1

2
(α− 3

4
β)φ2 + bq

T 2

12
(4.81)

m2
Q+

1
(φ, T ) = M2

Q +
1

2
(α +

1

4
β − 1

2

√
β2 + 12γ2)φ2 + bq

T 2

12
(4.82)

m2
Q+

2
(φ, T ) = M2

Q +
1

2
(α +

1

4
β +

1

2

√
β2 + 12γ2)φ2 + bq

T 2

12
(4.83)

The thermal coefficients aq and bq are,

aq = 6λ1 + 4α +
9

4
g2 +

3

4
g′2 + 3y2

t (4.84)

bq = 10λ2 +
15

2
λ3 + 2α +

45

4
g2 +

3

4
g′2 (4.85)

Here, MQ and λ2 are denoting common mass term and self quartic coupling
of the quartet respectively. Similarly the thermal potential is

Veff (φ, T ) =
1

2
(−µ2 + aq

T 2

12
)φ2 +

λ1

4
φ4 +

∑
i

(±)gi
mi(φ)4

64π2

[
ln
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m4
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ln
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+ 12
m4
t (φ)

64π2
ln
m2
t (φ)

AfT 2
(4.86)

where bosonic sum is taken over, h, G±, G0, Q++, Q+
1 , Q+

2 , S, A, W± and Z
with corresponding degrees of freedom, {h,G±, G0, Q++, Q+

1 , Q
+
2 , S, A,W

±, Z, t} =
{1, 2, 1, 2, 2, 2, 1, 1, 6, 3, 12}.

Expansion parameter One also has to keep in mind the validity of finite
temperature perturbation expansion. In case of the Standard Model, the
first order phase transition is dominated by the gauge bosons but for the
case of inert doublet, complex triplet or quartet, the phase transition is
mainly driven by new scalar couplings to the Higgs. Therefore, we can safely
neglect the gauge boson contribution. As an illustration, we can see by
simplifying Eq.(4.51) and Eq.(4.53) that if the effective scalar coupling, αS
is responsible for the transition, in the region near the symmetry breaking
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Figure 4.5: Correlation between (left fig.) mQ++ and mA and (right fig.)
mS and mA in the quartet model. We have scanned the parameter space:
M ∈ (0, 60) GeV, λ2,3 ∈ (0, 0.01), α ∈ (0, 2), |β| ∈ (0, 1.5) and γ ∈ (0, 1.5).
Out of initial 105 models, for β > 0 (blue points in left and right fig.), 0.43%
points satisfy stability conditions + precision data and mass hierarchy when
considering S to be dark matter where as for β < 0 (brown points in both
fig.), 3.47% points satisfy the same bounds. In addition, for β > 0 and β < 0,
strong EWPhT condition (red points in both figures) is satisfied by 0.04%
points with mQ++ ∼ 200 − 250 GeV and mA ∼ 230 − 270 and 0.8% points
with mQ++ ∼ 230− 275 GeV and mA ∼ 235− 320 respectively. The straight
line in left fig. represents mQ++ = mA and in right fig., mS = mA. Taken
from [144].

minimum, φ/T ∼ α
3/2
S /λ1. The thermal mass of the corresponding particle

is,

m2
S(φ, T ) = M2 +

1

2
αSφ

2 + Π(T ) (4.87)

Additional loop containing scalar will cost a factor ∼ αST and loop ex-
pansion parameter can be obtained by dividing this factor with the leading
mass of the theory which in this case is the mass of the new scalar; β ∼ αST

mS
.

Now only in the limit, M2 + Π(T ) � αSφ
2, we have, β ∼ √αS Tφ or, near

the region of minimum, β ∼ λ1

αS
∼ m2

h

m2
S

. Therefore, perturbation makes sense

only for λ1 < αS or mh < mS. On the other hand if M2 + Π(T ) term is sig-
nificantly larger, it will reduce the order parameter and eventually transition
will cease to be first order. In the case of complex triplet, from Fig.(4.4),
the 1st order EWPhT occurs for region: m∆++ ∼ 170 − 340 GeV. And for
the quartet, from Fig.(4.5), first order EWPhT region is: mQ++ ∼ 200− 275
GeV and mA ∼ 230 − 320 GeV. Therefore we can see that for both cases,
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the mass regions where first order transition occurs are larger than the Higgs
mass and hence, within the validity of perturbation theory.

Other uncertainties? So far, we have worked in the improved one-loop
approximation for the effective potential at non-zero temperature, and so one
can question its reliability at higher orders in the perturbation theory. In fact,
in the MSSM, it turns out that the two-loop effects [198] help to strengthen
the phase transition. Similarly, the non-perturbative lattice simulations tend
to do the same over the perturbative results [199].

4.2.3 Impact of multiplets’ sizes on EWPhT

Latent heat release The phase transition is characterized by the release
of latent heat. If there is a latent heat release, the transition is first order in
nature otherwise it is second or higher order (as in Ehrenfest’s classification).
The nature of cosmological phase transition is addressed in [200,201]. In this
section, we have addressed how the size of the representation affects the latent
heat release during the electroweak phase transition with assumption that
the transition is first order driven by large Higgs-inert scalar coupling, i.e. α.
Consider a system gone through first order phase transition at temperature,
Tc. The high temperature phase consists of radiation energy and false vacuum
energy and energy density is denoted as ρ+. On the other hand, although
low temperature phase has equal free energy F it will have different energy
density, ρ−. The discontinuity ∆ρ(Tc) = ρ+(Tc) − ρ−(Tc), gives the latent
heat, L = ∆ρ(Tc) = Tc∆s(Tc) where ∆s(Tc) = s+ − s− is entropy density
difference and it is liberated when the region of high-T phase is converted
into the low-T phase. Therefore, using F = ρ− Ts with s = −dF

dT
and from

expression for effective potential (equivalent to free energy), Eq.(4.44) and
as for 1st order phase transition, F+(0, Tc) = F−(φc, Tc), we have the latent
heat for the transition,

L = T
dF−
dT
|(φc,Tc) − T

dF+

dT
|(0,Tc) (4.88)

For simplicity we can again take real degenerate representation for prob-
ing the impact of dimension of large multiplet on the latent heat release. As
the amount of latent heat represents the strength of first order transition, it
is already clear from Fig.(4.6) that larger representation disfavors first order
phase transition. In addition, in section 4.1.3 we have seen that arbitrarily
large scalar multiplet makes gauge and scalar couplings non-perturbative in
TeV or even at smaller scale. Therefore, larger scalar multiplet cannot si-
multaneously strengthen the electroweak phase transition and stay consistent
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with perturbativity and unitarity of the theory. Similar conclusion can be
drawn for complex even integer and half integer multiplets.
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Figure 4.6: In the left graph, latent heat decreases when isospin increases;
blue, black and brown dots represents α =2, 1 and 0.1 respectively. On the
right, we can see again the reduction of latent heat with isospin for invariant
mass term, M = 0 (blue), 500 (red) and 1000 (orange) GeV respectively.

Latent heat and Φc/Tc Though the correspondence between the latent
heat and φc/Tc is not straightforward, we can use the simplified form of the
effective potential to show the correlation manifestly. The potential Eq.(4.51)
is re-written in the following way,

ṼT (φ, T ) =
a(j)

12
(T 2 − T 2

0 )φ2 − yβ̃(j)Tφ3 +
1

4
λ1φ

4 (4.89)

where, β̃(j) = 2j+1
12π

(α
2
)

3
2 and T 2

0 = 6µ2

a(j)
is the second order transition tem-

perature. y parameterizes the cubic thermal term in such a way that, when
φ � K(T ), y ∼ 1 and when φ � K(T ), y ∼ 0. Now from Eq.(4.89), using

the conditions for first order transition we have, φc
Tc

= 3yβ̃(j)
2λ1

and Eq.(4.88)
immediately gives,

L = T 4
c

φ2
c

T 2
c

(
a(j)

6
− 3yβ̃(j)

φc
Tc

)
(4.90)

From Eq.(4.90), we can see that, latent heat becomes negative for larger
multiplets but it is defined as a non-negative quantity in Eq.(4.88). Therefore,

90



with increasing size of the multiplet, j, the ratio, φc
Tc

has to be decreasing
(< 1) to keep L non-negative and thus unable to satisfy the strong EWPhT
condition, φc

Tc
≥ 1, relevant for electroweak baryogenesis. Evaluating L using

full thermal integrals will lead to results of Fig.(4.6). So we can see from
this example that, latent heat measure can be a complement to φc/Tc for
studying the impact of larger representations on the EWPhT.

4.3 Interplay between EWPhT and CDM con-

straints in the Inert Doublet

4.3.1 The inert doublet as dark matter

The neutral component of the inert doublet, S is considered as a thermal
DM candidate, as in the conventional WIMP picture. The main processes
governing the freeze out include annihilation into gauge bosons W , Z and to
fermions via the Higgs boson exchange. It has been shown in [44] that the
WMAP already puts strong constraints on the viable parameter space.

The spin independent cross section is given by,

σSI =
λ2
Sf

2

4π

µ2m2
n

m4
hm

2
S

(4.91)

Here, µ = mnms/(mn + ms) is the DM-nucleon reduced mass. f parame-
terizes the nuclear matrix element,

∑
u,d,s,c,b,t〈n|mq q̄q|n〉 ≡ fmnn̄n and from

recent lattice results [206], f = 0.347131. XENON100 with 100 days live
data [207] set bound on cross section to be σSI . 7 × 10−45cm2. From sec-
tion 4.2.2, we can see that A and C are much heavier than S. So in this case,
their roles in thermal freeze out and direct detection are safely negligible.

The combined limit from both relic density and direct detection experi-
ments seen in Fig.(4.7) indicates that the DM mass lies approximately be-
tween 45−80 GeV [35]. Here mh = 120 GeV was used, the present value of
126 GeV does not change the results significantly as will be seen the CDM
study for quartet. In the above favored DM mass window, XENON100 also
put tight constraint on the interaction between DM and the Higgs boson,

λS . 0.1 . (4.92)

A useful constraint follows from the above results. The mass spectrum in
Eq.(4.9) leads to γ ≈ β/2, when mA ≈ mC � mS, up to corrections of
order 10 %. Furthermore, the mono-chromatic gamma ray line from DM
annihilation in the galaxy could also serve as a promising indirect detection
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Figure 4.7: Spin-independent direct detection cross section on nucleon plot-
ted as a function of the DM mass. Colored regions represent DM relic density
favored by WMAP, ΩDMh

2 ∈ (0.085, 0.139) at 3σ, for positive (red) and neg-
ative (blue) λS. We have taken SM Higgs mass mh = 120 GeV. The lower
limit on the direct detection cross section from XENON100 experiment is
shown by the black solid line. Also shown in the figure are the dashed curves
for constant |λS|. Taken from [27].

of DM. In this model, the flux is predicted [35] to lie only a factor of 4−5
below the current Fermi-LAT limit.

4.3.2 Interplay between EWPhT and CDM constraints

After identifying the CDM constraints on the inert doublet, we try to identify
the interplay between strong EWPhT condition and DM properties of inert
doublet. As pointed out in section 4.2.2, the φ-independent terms in the
thermal masses of A and C introduce plasma screening and these had to be
small enough in order not to dilute their contribution to the thermal cubic
term which drives the transition. Namely, the optimal situation is realized
when the following term,

M2
D +

T 2
c

12

[
6λD +

m2
S+m2

A+2m2
C−4m2

D

φ2
c

+
9g2 + 3g′2

4

]
(4.93)

is minimized at the critical temperature. For a given mass spectrum, this
means that there is a window for M2

D where the phase transition could be
strongly first order. Since S shares the same M2

D contribution to the mass as
its heavier partners, i.e., M2

D = m2
S−λSv2/2, it in turn predicts a lower bound

on the DM direct detection rate, as shown in Fig. 4.8. This is an important
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Figure 4.8: Correlation between spin-independent direct detection cross sec-
tion and the mass of the charged scalar, after imposing the strong elec-
troweak transition condition φc/Tc > 1. We have scanned the parameter
space: mh ∈ (115, 200) GeV, mS ∈ (40, 80) GeV, mA ∈ (100, 500) GeV,
mC ∈ (mA − 10 GeV,mA + 10 GeV), λS ∈ (0, 1) and λD ∈ (0, 3). We veto
points where the thermal mass of A or C exceeds 1.8Tc, which would invali-
date the high temperature expansion. Taken from [27].

result in view of the upper bound set by XENON100, which constrains the
masses of A and C to lie in a window between 270−350 GeV.

This mass window of heavy scalar masses can be probed by the LHC. In
particular, the pseudo-scalar component A can be produced in association
with the DM S, and leads to dilepton final state with missing energy. Here,
the preferred mass difference between A and S is larger than the sample
values studied in [51], which makes it easier to be distinguished from the SM
background by imposing a harder cut on the missing energy.

Why not a singlet? Before turning to higher representations, let us dis-
cuss explicitly the case of the singlet DM. After all, this is a simpler possibility
with fewer couplings and thus more constrained. In fact, it fails to do the job.
More precisely, while the singlet by itself can actually help the phase transi-
tion to be of the first order [17], it cannot simultaneously be the DM [210],
and vice versa.

What happens is the following. In this case, there is only one coupling
with the Higgs and λA ≡ λC ≡ λS. We survey all the points in Fig. 4.8
and find they all satisfy λA,C & 1. On the other hand, direct detection, as
shown in Eq. (4.92), constrains this coupling to be much smaller than what
is needed to trigger a strong first-order phase transition. The failure of the
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real singlet thus makes the choice of the inert doublet scalar the simplest
one. One can further extend the real scalar singlet case to a complex one.
It was shown [63] that the double job of dark matter and strong electroweak
phase transition can be achieved in this case.

4.4 The Quartet/Doublet versus EW, EW-

PhT and CDM constraints.

In this section, we have tried to identify the region of parameter space for
higher representations where one can have a light DM candidate consistent
with other phenomenological constraints along with strong EWPhT. As al-
ready pointed out in section (4.1.2), the DM of complex even integer multiplet
(Y 6= 0) is excluded by the bound from the direct detection. On the other
hand, the γ term of Eq.(4.1) can split the neutral component of half integer
representation and one can easily obtain a light DM component. As quar-
tet multiplet (j = 3/2) is the immediate generalization of the inert doublet,
we have focused on identifying DM properties in parallel with its impact on
strong EWPhT.

4.4.1 Model parameters scan and constraints

The masses of quartet’s component fields are determined by four free pa-
rameters {MQ, α, β, γ}, Eq.(4.13). But (co)annihilation cross sections which
control the relic density of the dark matter depend on the mass splittings
among the dark matter and the other components in the multiplet. There-
fore we used alternative free parameter set {mS, λS,mQ++ ,mA} where mS

is the DM mass and λS = α + 1
4
β − 2γ is the coupling between the Higgs

and dark matter component. One can express {MQ, α, β, γ,mQ+
1
,mQ+

2
} in

terms of these four parameters using mass relations Eq.(4.13). Moreover, in
the case of quartet, for S to be the lightest component of the multiplet, one
needs to impose two conditions, γ > 0 and γ ≥ |β|

2
which in turn sets the

mass spectrum to be mS < mQ+
1
< mQ++ < mQ+

2
< mA.

Collider constraints:

Direct collider searches at LEP II has put a strong bound on single charged
particle which is mQ+

1
> 70 − 90 GeV [203]. But the doubly charged scalar

of the quartet which only has the cascade decay channel is not strongly
constrained by collider searches. One constraint can come from W and Z
boson width. In our case, setting S as DM imposes in the mass spectrum:
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mQ++ ≥ mQ+
1

, so the constraint on the single charged scalar is also translated
into a bound on the doubly charged scalar for such mass spectrum. Moreover,
the deviations of W and Z width from their SM values can take place through
decay channels: W± → SQ±1 /AQ

±
1 /Q

±±Q∓1 and Z → Q+
1 Q
−
1 /SA/Q

++Q−−.
Therefore to avoid such deviation the following mass constraints are also
imposed: mS +mQ+

1
> mW , mA +mQ+

1
> mW , mQ++ +mQ+

1
> mW , mQ+

1
>

mZ/2, mQ++ > mZ/2 and mS + mA > mZ . Apart from collider constraints,
one also impose constraints coming from electroweak precision observables.
In our scan, we used the allowed range of T parameter, Eq.(4.39) and S
parameter, Eq.(4.41).

DM relic density constraint:

The dark matter density of the universe measured by Planck collaboration
is ΩDMh

2 = 0.1196 ± 0.0031 (68% CL) [9]. To determine the relic density
of the multiplets, we used FeynRules [205] to generate the model files for
MicrOMEGAs [211]. For inert multiplets, mass splitting between compo-
nents are set by both β and γ couplings. In case of doublet, one can set
β and γ to produce large spitting between S component and single charged
component C+ or between S and A in such way that such splitting is compat-
ible with electroweak precision observables. Such large splitting can lead to
suppression of co-annihilation channels SA, SC+ → SM particles. But such
simple tuning of the couplings like in the doublet is not possible for quartet
because of the mass relation Eq.(4.13). Therefore there is a possibility for
co-annihilation channel to open up when mQ+

1
/mS ≤ 1.5 ( [204]).

Apart from co-annihilation, other dominant channels which will control
the relic density of DM at the low mass region are SS → h∗ → bb̄ and
SS → WW .

Direct DM detection and invisible Higgs decay constraints:

The updated direct detection limit on the spin independent DM-nucleon
cross section is set by XENON100 with 225 days live data [208] where σSI .
2 × 10−45cm2. In addition, the future XENON1T will reach the sensitivity
of σSI . 2× 10−47cm2 [209].

Also if the mass of the dark matter is smaller than half of the Higgs mass,
it will contribute to the invisible decay of the Higgs through h → SS with
branching ratio Brinv = Γinv/(ΓSM + Γinv), where ΓSM = 6.1 MeV and,

Γinv =
λ2
Sv

2

64πmh

√
1− 4m2

S

m2
h

(4.94)
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Consequently, current limit on the branching ratio for Higgs invisible
decay [202] will constrain the λS coupling. However, note that as can be seen
in Fig.(4.9), the limit imposed on λS by XENON100 is more stringent than
the limit coming from invisible Higgs decay for mass range 45 ≤ mS ≤ 63
GeV.

50 60 70 80 90 100

0.00

0.01

0.02

0.03

0.04

0.05

0.06

mS GeV

Λ
S

C
o

u
p

lin
g

Figure 4.9: The region in mS −λS plane allowed by invisible branching ratio
limit Brinv ≤ 0.65 (green region) and XENON100 limit (brown region) and
XENON1T limit (orange region) respectively for DM mass range 45 ≤ mS ≤
100 GeV. The future XENON1T will significantly reduce the allowed region
down to 0.002 . λS . 0.004 for mS = 45− 100 GeV. Taken from [144].

4.4.2 Allowed parameter regions

To determine the allowed parameter region for the quartet and compare it
with the inert doublet case, we used dark matter relic density constraint at 5σ
to take into account all the numerical uncertainties. For numerical scanning,
we considered the following range: mS ∈ (45, 100) GeV, λS ∈ (0.001, 0.02),
mQ++ ∈ (100, 350) GeV and mA ∈ (100, 350) GeV for both doublet and
quartet case.

At low mass region (mS ≤ mW ), the dominant annihilation channel
is SS → h∗ → bb̄. When the mass becomes larger than mW and mZ ,
SS → W+W− and SS → ZZ open up and dominate the annihilation rate.
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Therefore the relic density becomes much lower than the observed relic den-
sity. Subsequent increase of mS will open up SS → hh and SS → tt̄ which
will dominate along with WW and ZZ annihilation channels and eventually
the relic density will be much smaller than observed value. The inert doublet
has already shown such behavior [35,44].

From scatter plot, Fig.(4.10) we can see that, unlike the doublet case, for
the quartet, the parameter space allowing both light DM consistent with ob-
served relic density and strong first order phase transition is hard to achieve.
Out of initial 105 models, for the doublet, 20% are consistent with stability
conditions + precision data+ collider constraints, 0.77% satisfy, in addition,
the EWPhT condition φc/Tc ≥ 1 and 0.234% agree with the observed ΩDMh

2

at 5σ, DM direct detection bounds and invisible Higgs decay limits. Only
0.02% of the initial models survive all the constraints. In contrast, for the
quartet, from an initial of 105 models only 2% satisfy stability conditions +
EWPD +collider constraints, 0.13% points satisfy additional strong EWPhT
condition and only 0.03% models, observed ΩDMh

2 at 5σ and direct detection
bounds. Lastly, only 0.003% models satisfied all the conditions. Therefore,
in case of providing strong EWPhT with a light dark matter, the quartet is
disfavored with respect to the doublet.
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Figure 4.10: Scatter plot representing the correlation between mS and mA

for doublet(left fig.) and quartet (right fig.). Brown points represent models
satisfying stability conditions + precision bounds+collider constraints. Red
points correspond to models also satisfying the EWPhT condition φc/Tc ≥ 1
and blue points correspond to models consistent only with observed relic
density at 5σ and DM direct detection and invisible Higgs decay bounds.
Black points are models consistent with stability conditions + EWPD +
collider constraints + the EWPhT condition φc/Tc ≥ 1 + observed ΩDMh

2

+ DM direct detection and invisible Higgs decay limits. Taken from [144].
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4.5 Summary

The combination of the electroweak constraints with the results of EWPhT
and dark matter properties for the inert doublet and the quartet has pointed
out that the inert quartet provides much smaller region of parameter space
compared to the doublet in this class of models. Therefore, the inert doublet
can be a more plausible candidate for the dark matter which simultaneously
provides strong first order EWPhT in the universe.
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Chapter 5

Conclusions and outlook

We have considered the electroweak phase transition and dark matter phe-
nomenology with various inert scalar representations used for extending the
SM’s Higgs sector. The details of the phenomenological studies are done by
making random scans of parameters within the triplet and quartet context.
The results from our analyses in comparing the allowed parameter regions of
the above mentioned models with the inert doublet model case are summa-
rized as follows

• As the size of an inert multiplet which can be added to the SM is not
arbitrary but is rather controlled by the perturbativity of SU(2) gauge
coupling at TeV scale (∼ 10 TeV), which sets an upper bound on the
size of the multiplet to be j ≤ 5, that motivated us to study the EWPhT
(and subsequently, the DM characteristics) for inert doublet, triplet
and quartet models as representatives for allowed larger multiplets.
We explicitly showed that it is possible to have strong EWPhT within
the inert doublet, complex inert triplet and the inert quartet models.

– In case of inert doublet, from Fig.(4.7), we can see that, the strong
EWPhT region: mA ≡ mC ∼ 270− 350 GeV.

– For complex triplet, from Fig.(4.4), the 1st order EWPhT occurs
for region: m∆++ ∼ 170− 340 GeV.

– For quartet, from Fig.(4.5), first order EWPhT region is: mQ++ ∼
200− 275 GeV and mA ∼ 230− 320 GeV.

• Using the expression for the latent heat measure, we have made a
generic study of the impact of higher (than the doublet) scalar multi-
plets on the strength of electroweak phase transition. The competition
between the number of scalar quasiparticles coupled to EW plasma with
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large couplings and the screening of those particles resulting from scalar
self quartic and gauge boson interaction, which will decouple them from
the plasma, determines the strength of the transition. The rise and fall
of the latent heat with large multiplet, as shown in Fig.(4.6), qualita-
tively shows such variation of the EWPhT strength.

• Next we require the simultaneous explanation of EWPhT and the cold
DM content of the universe within the doublet and quartet frame. The
triplet with Y = 2, unlike the half integer representations, is already
excluded by the direct detection limit thus can’t play any viable role
of DM triggering strong EWPhT. For both doublet and quartet cases,
we first identified the region of parameter space, out of the randomly
scanned parameter points, which allows both strong EWPhT and a
light DM candidate by imposing stability conditions, electroweak pre-
cision bounds and corresponding experimental limits. Afterwards The
parameter regions for doublet and quartet that survive all constraints
are compared with each other. Requiring that all the CDM content of
the universe is explained by the scalar multiplet then, from the scatter
plot Fig.(4.10), it can be seen that the quartet has only a very small
allowed parameter space in contrast to inert doublet case. Moreover,
the allowed parameter space for having DM with observed relic density
and strong EWPhT in both inert doublet and quartet cases will be
significantly constrained by future XENON1T experiment.

Why higher multiplets are disfavored The above results combined to-
gether point out that the higher inert representations are rather disfavored
compared to the inert doublet. In the case of quartet, when masses of dou-
bly charged scalar and pseudoscalar are set to have strong EWPhT (i.e.
mQ++ ∼ 200− 275 GeV and mA ∼ 230− 320 GeV), bounds on electroweak
precision variables, specially on T parameter that depends on the mass dif-
ferences between the components of the multiplet, makes the mass of one
of the single charged components comparable with the DM mass and that
leads to coannihilation which in turn gives relic density much smaller than
the observed value. In addition, the mass of that light charged scalar be-
comes smaller than the LEP II bound (∼ 90 GeV) when all other constraints
are combined. Larger allowed multiplets j = 5/2, 7/2 also have more than
one single charged scalars and similar situation will arise when different con-
straints will be combined. Therefore it is harder to satisfy strong EWPhT
condition, EWPD constraints, collider bounds, observed ΩDMh

2 and DM
direct detection constraints simultaneously for higher representations.

The conclusion is qualitative and only valid within the set of experimental
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and phenomenological constrains considered. There are however room for
doing more in directions we did not consider here:

• The computational and phenomenological machineries are well within
reach for making detailed quantitative analyses within Bayesian sta-
tistical framework. Using strong EWPhT condition and recent results
from relic density measurement, direct and indirect detection limits and
collider constraints from LHC, a comparison between the allowed pa-
rameter spaces of inert doublet and quartet can be carried out in this
Bayesian framework, in a similar manner to the work done for com-
paring different supersymmetric models [212,213] and for comparing a
single versus multi-particle CDM universe hypotheses [214].

• Higher (than doublet) scalar multiplets have relatively more charged
components that couple to the Higgs. As such, they will alter the
decay rate of Higgs going to two photons relative to the SM value
[215–220]. Persistence of the apparent (given the large uncertainties)
excess in the h→ γγ data will severely constrain the triplet and quartet
parameter regions with EWPhT driven by large positive couplings [221,
222]. This and similar studies will be interesting for establishing the
inert multiplets’ status and/or prospects within collider phenomenology
framework.

• Successful baryogenesis requires CP violation, not only the first order
phase transition. It is easy to imagine new sources of CP violation,
but the problem then arises as to whether the new physics behind it
affects the nature of the phase transition. In this sense, new fermions
are more welcome, at least in the perturbative regime, while adding
new scalars is less desirable since they may upset the first order phase
transition. Of course, there is always a large parameter space where
they are innocuous, since even tiny couplings with the SM particles
may give enough CP violation.

• Apart from detecting new particles within the mass ranges where they
trigger strong first order electroweak phase transition, one could have
a more direct consequence of it in the production of gravitational
waves [223–226] in the universe.

• Another possibility is the pre-existence of baryon asymmetry in the
universe. In order to elucidate this possibility, let us recall the problem
in the conventional picture: due to the symmetry restoration at high
temperature, the unsuppressed rate of sphaleron transition erase any
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original B + L asymmetry unless the B − L or any other conserved
charge in the electroweak plasma is non-zero. This, however, is not
necessarily true in the BSM physics with enlarged Higgs sector: gauge
symmetry may get even more broken at high temperature [75,79]. For
this to happen, it suffices that the cross-term couplings between differ-
ent scalar multiplets be negative. It may be worthwhile to investigate
this possibility; however it requires improving the perturbative results
for next-to-leading effects which tend to be large [227].
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Appendix A

Mathematical tools

A.1 Properties of Γ(s) and ζ(s)

In the following we have collected some properties of Γ(s) and ζ(s) that are
used in evaluating thermal integrals.

Γ(s) =

∫ ∞
0

dxxs−1e−x (A.1)

Γ(s) =
Γ(s+ 1)

s
(A.2)

Γ′(1) = −γE = −0.57721...

Γ(
1

2
) =

√
π

Γ′(
1

2
) = −

√
π(γE + 2ln2)

Γ(
1

2
+ ε) =

√
π(1− ε(γE + 2ln2) +O(ε2))

Γ(−1

2
+ ε) = −2

√
π +O(ε) (A.3)

ζ(s) =
∞∑
n=1

1

sn
(A.4)

ζ(0) = −1

2

ζ ′(0) = −1

2
ln(2π)

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s) (A.5)
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For any positive even integer 2n,

ζ(2n) =
(−1)n+1(2π)2nB2n

2(2n)!
(A.6)

where, B2n are the Bernoulli numbers; B0 = 1, B2 = 1/6, B4 = −1/30,...and
B1 = ±1

2
, B3 = B5 = 0,...

ζ(2) =
π2

6
; ζ(3) = 1.202.. ; ζ(4) =

π4

90
(A.7)

Moreover, we also have,

ζ(−1 + ε) = − 1

12
+O(ε)

ζ(1 + ε) = 21+επε(sin
π

2
(1 + ε))Γ(−ε)ζ(−ε)

= −1

ε
+ γE +O(ε)

ζ(3 + ε) ∼ ζ(3) +O(ε) ∼ 1.202...+O(ε) (A.8)

A.2 Some useful integrals

I±n =

∫ ∞
0

dx
xn

ex ± 1
(A.9)

I−n − I+
n =

∫ ∞
0

dxxn
2

e2x − 1

=
1

2n

∫ ∞
0

dy
yn

ey − 1

=
1

2n
I−n

I+
n = (1− 1

2n
)I−n (A.10)
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Evaluation of I−n

I−n =

∫ ∞
0

dx
xn

ex − 1

=

∫ ∞
0

dxxne−x(1− e−x)−1

=

∫ ∞
0

dx
∞∑
m=1

xne−mx

=
∞∑
m=1

1

mn+1

∫ ∞
0

dyyne−y

= ζ(n+ 1)Γ(n+ 1) (A.11)

Evaluation by dimensional regularization We define a function f(m,D, n)
which is used to evaluate the integrals by dimensional regularization.

f(m,D, n) =

∫
dDk

(2π)D
1

(k2 +m2)n

=
1

(4π)D/2Γ(D/2)

∫ ∞
0

(k2)
D
2
−1 1

(k2 +m2)n

=
1

(4π)D/2
(m2)

D
2
−nΓ(n− D

2
)

Γ(n)
(A.12)

When D = 3− ε, we have

f(m, 3− ε, n) =
µ−ε

(4π)
3
2

(
4πµ2

m2
)
ε
2 (m2)

3
2
−nΓ(n− 3

2
+ ε

2
)

Γ(n)
(A.13)

A.3 Frequency sum

When we deal with loop diagrams in the finite temperature field theory in
the imaginary time formalism, we usually need to evaluate the summation
given the following

∞∑
n=−∞

1

n2 + y2
(A.14)

where n is even and odd respectively. First we focus on the even n.
Consider a complex function f(z) with the property |f(z)| ≤ M

|z|p where

p > 1 and M is a constant. cot(π
2
z) has poles at z = 0,±2,±4, ... So the
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residues of f(z) cot(π
2
z) at z = n with n even integer and provided f(z) does

not have poles at n,

Resn = limz→n(z − n)
cos(π

2
z)

sin(π
2
z)
f(z)

=
2

π
f(n) (A.15)

If f(z) = 1
z2+y2 , the poles are z = ±iy will give residues

Res±iy = − i
y

cot(
iπ

2
y) (A.16)

Consider the contour integral where the path C circulates the poles of cot(π
2
z)

and f(z) so ∫
C

f(z) cot(
π

2
z)dz = 2πi

∑
i

Resi (A.17)

But this contour can be deformed so that the integral will be zero. So we
immediately get,

∞∑
n=−∞,even

1

n2 + y2
=

iπ

2y
cot(

iπ

2
y)

=
π

2y
coth(

π

2
y) (A.18)

where coth(x) = i cot(ix) is used.
On the other hand, when n = ±1,±3, ..., tan(π

2
n) has poles at those

values of n. Therefore, following the same line of arguments, we can derive
that

∞∑
n=−∞,odd

1

n2 + y2
=

π

2y
tanh(

π

2
y) (A.19)

We will use the following two simplifications of coth(x) and tanh(x),

coth(x) = 1 +
2

e2x − 1
(A.20)

tanh(x) = 1− 2

e2x + 1
(A.21)
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Appendix B

Coleman-Weinberg potential

In this appendix, we have collected the expression for the one-loop Cole-
man Weinberg (CW) potential in both MS scheme and cut-off regulariza-
tion scheme. Here we have presented MS renormalization scheme for zero-
temperature one loop Coleman-Weinberg potential as an illustration.

B.1 MS renormalization

From Eq.(2.132), we have

V
(1)

CW =

∫
dDk

(2π)D

√
k2 +m2

2
(B.1)

Using Eq.(A.12) and Eq.(A.13) we have,

V
(1)
SCW =

1

2
f(m, 3− ε,−1/2)

=
µ−εm4

2(4π)3/2
(
4πµ2

m2
)ε/2

Γ(−2 + ε
2
)

Γ(−1
2
)

(B.2)

As Γ(−1
2
) = −2

√
π and Γ(−2+ ε

2
) = 1

ε
+ 3

4
− γE

2
+O(ε), we have from Eq.(B.2)

in the limit ε→ 0,

V
(1)
SCW = − m4

64π2
(
2

ε
− γE + ln4π) +

m4

64π2
(ln

m2

µ2
− 3

2
) (B.3)

So removing the first term in M̄S scheme, we have,

V
(1)
SCW =

m4
s(φc)

64π2
(ln

m2
s(φc)

µ2
− 3

2
) (B.4)
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Similarly for fermions, we have from Eq.(2.144) by removing the divergent
part in M̄S scheme,

V
(1)
FCW = −2gf

m4
f (φc)

64π2
(ln

m2
f (φc)

µ2
− 3

2
) (B.5)

On the other hand for the gauge bosons we have

V
(1)
gbCW = 3

m4
gb(φc)

64π2
(ln

m2
gb(φc)

µ2
− 5

6
) (B.6)

B.2 CW effective potential in the Standard

Model

Here we collect the expression for one loop CW potential for the Standard
Model. The Higgs field of the Standard Model is,

Φ =

 G±

φc + h+ iG0

√
2

 (B.7)

where φc is the real constant background, h the Higgs field, and G± and G0

are the three Goldstone bosons. The tree level potential reads, in terms of
the background field, as

V0(φc) = −m
2

2
φ2
c +

λ

4
φ4
c (B.8)

with positive λ and m2, and the tree level minimum corresponding to

v2 =
m2

λ
.

The field dependent masses of the scalar fields are

m2
h(φc) = −m2 + 3λφ2

c

m2
G±,G0(φc) = −m2 + λφ2

c (B.9)

so that m2
h(v) = 2λv2 = 2m2 and m2

G±,G0(v) = 0. The gauge bosons con-
tributing to the one-loop effective potential are W± and Z, with tree level
field dependent masses,

m2
W (φc) =

g2

4
φ2
c (B.10)

m2
Z(φc) =

g2 + g′2

4
φ2
c
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Finally, the only fermion which can give a significant contribution to the one
loop effective potential is the top quark, with a field-dependent mass

m2
t (φc) =

y2
t

2
φ2
c (B.11)

where yt is the top quark Yukawa coupling.

B.2.1 MS renormalization

In the MS renormalization scheme the finite effective potential for the SM is
provided by

V (φc) = V0(φc) +
1

64π2

∑
i=W,Z,h,G±,G0,t

nim
4
i (φc)

[
log

m2
i (φc)

µ2
− Ci

]
(B.12)

where Ci are constants given by,

CW = CZ =
5

6
(B.13)

Ch = CG±,G0 = Ct =
3

2
and ni are the degrees of freedom

nW = 6, nZ = 3, nh = 1, nG±,G0 = 3, nt = −12 (B.14)

B.2.2 Cut-off regularization

A useful cut-off regularization scheme was presented in [17] where the fol-
lowing two conditions are imposed:

• the tree level minimum is preserved at one loop.

• At one loop, tree level value of the Higgs mass is also preserved

or in other words,

d(V1 + Vct)

dφc

∣∣∣∣
φc=v

= 0 (B.15)

d2(V1 + Vct)

dφ2
c

∣∣∣∣
φc=v

= 0

where V1 is the one loop effective potential and Vct is the counter-term po-
tential to remove the divergences. The final result is [17,84],

V (φc) = V0(φc) +
1

64π2

∑
i

{
m4
i (φc)

(
log

m2
i (φc)

m2
i (v)

− 3

2

)
+ 2m2

i (v)m2
i (φc)

}
(B.16)
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Appendix C

High and low temperature
expansion

C.1 Limits of thermodynamic quantities

The high and low temperature limits, which is also called relativistic and
non-relativistic limits follow mi/T � 1 and mi � p, T respectively.

For convenience at first we present the following two results from section
A.2 which are going to used for evaluating momentum integrals. The integrals
are

I±n =

∫ ∞
0

dx
xn

ex ± 1
(C.1)

I+
n = (1− 1

2n
)I−n (C.2)

I−n = ζ(n+ 1)Γ(n+ 1) (C.3)

Now let us consider first Eq.(2.11) in the relativistic limit,

nB =
1

2π2

∫ ∞
0

p2dp
1

ep/T − 1

=
T 3

2π2

∫ ∞
0

dx
x2

ex − 1
replacing x = p/T

=
ζ(3)

π2
T 3 (C.4)

Using Eq.(C.2) we have for number density for fermionic case,

nF =
3

4

ζ(3)

π2
T 3 (C.5)
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Here, ζ(3) = 1.202.. is the Riemann zeta function. If the degrees of freedom
for bosons and fermions are gB and gF respectively, we have the total number
density in the relativistic limit,

n = (gB +
3

4
gF )

ζ(3)

π2
T 3 (C.6)

For example, for photons, gB = 2, for real(complex) scalar, gB = 1(2) and
for Majorana(Dirac) fermion, gF = 4(2).

Now let us consider the relativistic limit for the energy density. From
Eq.(2.13), we can see that there are two contributions. The first term is
the zero temperature one-loop Coleman Weinberg potential and second term
represents the finite temperature part. Focusing on second term, again in
the relativistic limit, we have from Eq.(2.13),

ρB =
1

2π2

∫ ∞
0

p2dp
p

ep/T − 1

=
T 4

2π2

∫ ∞
0

dx
x3

ex − 1

=
π2

30
T 4 (C.7)

Similarly again using Eq.(C.2), we have for fermionic case,

ρF =
7

8

π2

30
T 4 (C.8)

So the total energy density in the relativistic limit is

ρ = (gB +
7

8
gF )

π2

30
T 4 (C.9)

Now let us consider the non-relativistic case where m � p, T . In this
limit,

n =
1

2π2

∫ ∞
0

p2dpe−
√

(p2+m2)/T 2

=
T 3

2π2

∫ ∞
0

dxx2e−
√
x2+y2

; y = m/T

=
T 3

π2

∫ ∞
y

dzz
√
z2 − y2e−z ;x2 = z2 − y2

=
T 3

π2

√
2y

3
2 e−y

∫ ∞
0

dvv
1
2 e−v ; v = z + y

=

(
mT

2π

)3/2

e−m/T (C.10)
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And the energy density in non-relativistic case is

ρB = ρF = mn (C.11)

We can see that, the contribution of non-relativistic spices in the number
and energy densities is very small compared to the relativistic particles.

Let us now consider the entropy and the free energy of in the relativistic
limits. From Eq.(2.16), the first term has turned out to be,

sB1 =
π2

30
T 3 (C.12)

The second term of entropy in Eq.(2.16) is evaluated in the following way.
In the relativistic limit, we can write it as

sB2 =
1

2π2

∫ ∞
0

dp p2ln(1− e−p/T ) (C.13)

So we can have,

∂sB2

∂T
= − 1

2π2T 2

∫ ∞
0

dp
p3

ep/T − 1

= − T 2

2π2

∫ ∞
0

dx
x3

ex − 1

= − T 2

2π2
ζ(4)Γ(4) = −π

2

30
T 2

So we have

sB2 = −π
2

90
T 3 (C.14)

By adding two pieces,

sB =
2π2

45
T 3 (C.15)

In case of fermion, the entropy density is

sF =
2π2

45

7

8
T 3 (C.16)

Therefore the total entropy density of the system will be

s =
2π2

45
T 3(gB +

7

8
gF ) (C.17)

Finally let us address the free energy density in the relativistic limit.
From Eq.(2.19), considering only the temperature dependent part, we have,

fB =
T

2π2

∫ ∞
0

dp p2ln(1− e−p/T ) (C.18)
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Following the same steps for Eq.(C.13), we have

fB = −π
2

90
T 4 (C.19)

So now the total free energy density and the pressure of a system with bosons
and fermions is,

f = −p = −π
2

90
T 4(gB −

7

8
gF ) (C.20)

C.2 High temperature expansion for the toy

model

In this section we have presented the derivation of high temperature limit of
scalar and fermionic contribution to scalar self energy and find out the Debye
screening which occurs at finite temperature. The high temperature limit is
the condition, mi/T � 1. First we consider bosonic contribution.

δ(B)m2
T =

λ

2

∫
d3k

(2π)3

1

ωk

1

eωk/T − 1

=
λT 2

4π2

∫
dx

x2√
x2 +m2/T 2

1

e
√
x2+m2/T 2 − 1

At the high temperature limit it is reduced to

δ(B)m2
T =

λT 2

4π2

∫ ∞
0

dx
x

ex − 1
=
λT 2

4π2
ζ(2)Γ(2)

=
λT 2

24
(C.21)

Following similar steps for fermion loop, we have,

δ(F )m2
T =

2y2
φT

2

π2

∫ ∞
0

dx
x

ex + 1

= y2
φ

T 2

6
(C.22)

Therefore the Debye screening is,

Π(T ) = (
λ

2
+ 2y2

φ)
T 2

12
(C.23)
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C.3 High and low temperature expansion of

the effective potential

The high and low temperature expansion of the finite temperature effective
potential is done following [85]. Let us first consider the bosonic finite tem-
perature effective potential.

C.3.1 Bosonic high temperature expansion

The starting expression for the bosonic effective potential is

V T
eff(φc) = T

∞∑
n=−∞

∫
d3k

(2π)3
ln(4π2n2T 2 + ~k2 +m(φc)

2)

= T
∞∑

n=−∞

∫
d3k

(2π)3
ln(4π2n2T 2 + ω2) (C.24)

Therefore let us define,

J(m,T ) = T
∞∑

n=−∞

∫
dDk

(2π)D
ln(4π2n2T 2 + k2 +m2) (C.25)

And,

H(m,T ) = T
∞∑

n=−∞

∫
dDk

(2π)D
1

4π2n2T 2 + k2 +m2
(C.26)

From Eq.(C.25) and Eq.(C.26) we can see that,

H(m,T ) =
1

m

d

dm
J(m,T ) (C.27)

J(m,T ) =

∫ m

0

dm′m′H(m′, T ) (C.28)

Let us start from Eq.(C.26). The zero mode contribution n = 0 to the
Eq.(C.26) can be evaluated using f(m, 3− ε, 1) in the limit ε→ 0 as follows,

H(n=0)(m,T ) = Tf(m, 3− ε, 1)

= T
m

(4π)
3
2

Γ(−1/2) = −mT
4π

(C.29)
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Now we focus on the contributions of non-zero modes in the integral
Eq.(C.26).

H(n 6=0)(m,T ) = T
∑
n

∫
dDk

(2π)D
1

(2πnT )2 + k2 +m2

= 2T
∞∑
n=1

∫
dDk

(2π)D
1

(2πnT )2 + k2
(1 +

m2

(2πnT )2 + k2
)−1

= 2T
∞∑
n=1

∞∑
l=0

∫
dDk

(2π)D
(−1)l

m2l

((2πnT )2 + k2)l+1

=
2T

(4π)D/2
1

(2πT )2−D

∞∑
l=0

(−1)l
m2l

(2πT )2l

∞∑
n=1

1

n2l+1−D

=
2T

(4π)D/2
1

(2πT )2−D

∞∑
l=0

(−1)l
m2l

(2πT )2l
ζ(2l + 1−D)(C.30)

Now evaluating Eq.(C.30) for D = 3− ε gives,

H(n6=0) =
µ−εT 2

√
4π

(
4πµ2

4π2T 2
)
ε
2

∞∑
l=0

(−1)l(
m2

4π2T 2
)l

Γ(l − 1
2

+ ε)

Γ(l + 1)
ζ(2l−1+ε) (C.31)

In the following we have evaluated H(n6=0) for l = 0 and l = 1 respectively.

H
(n6=0)
l=0 =

µ−εT 2

√
4π

(
4πµ2

4π2T 2
)
ε
2 Γ(−1

2
+ ε)ζ(−1 + ε)

=
T 2

2
√
π

Γ(
1

2
)ζ(−1)

=
T 2

12
(C.32)

H
(n6=0)
l=1 = −µ

−εT 2

√
4π

(
4πµ2

4π2T 2
)
ε
2
m2

4π2T 2

Γ(1
2

+ ε
2
)

Γ(2)
ζ(1 + ε)

= −µ
−εm2

8π2
(1 +

ε

2
ln

4πµ2

4π2T 2
)(

1

ε
+
γE
2
− 1

2
ln4)

= − m2

8π2ε
− m2

8π2
ln
µ̄eγE

4πT
; (µ̄2 = 4πµ2/eγE) (C.33)

where we have used

Γ(
1

2
+
ε

2
)ζ(1 + ε) =

√
π(

1

ε
+
γE
2
− 1

2
ln4 +O(ε)) (C.34)
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Now by using dimensional regularization again, we get the zero temper-
ature contribution to H(m,T )

H0(m) =

∫
dDk

(2π)D
1

2
√
k2 +m2

=
1

2
f(m, 3− ε, 1

2
)

=
µ−εm2

2(4π)
3
2

(
4πµ2

m2
)
ε
2

Γ( ε
2
− 1)

Γ(1
2
)

=
µ−εm2

2(4π)
3
2

(1 +
ε

2
ln

4πµ2

m2
)

1√
π

(−2

ε
+ γE − 1 +O(ε))

= − m2

8π2ε
− m2

8π2
ln
µ̄

m
− m2

16π2
(C.35)

Now the bosonic thermal integral is

H(m,T ) =
T 2

12
− mT

4π
− m2

8π2ε
− m2

8π2
ln
eγE µ̄

4πT

+
T 2

2
√
π

∞∑
l=2

(−1)l(
m2

4π2T 2
)l

Γ(l − 1
2
)

Γ(l + 1)
ζ(2l − 1) (C.36)

Therefore the thermal contribution to the bosonic integral, Eq.(C.26) is

HT (m,T ) = H(m,T )−H0(m)

=
T 2

12
− mT

4π
− m2

8π2ε
− m2

8π2
ln
eγE µ̄

4πT

+
T 2

2
√
π

∞∑
l=2

(−1)l(
m2

4π2T 2
)l

Γ(l − 1
2
)

Γ(l + 1)
ζ(2l − 1)

+
m2

8π2ε
+
m2

8π2
ln
µ̄

m
+

m2

16π2
(C.37)

Therefore we have

HT (m,T ) =
T 2

12
− mT

4π
− m2

8π2
(ln

m

4πe−γET
− 1

2
)

+
T 2

2
√
π

∞∑
l=2

(−1)l(
m2

4π2T 2
)l

Γ(l − 1
2
)

Γ(l + 1)
ζ(2l − 1) (C.38)
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From Eq.(C.38) we have,

JT (m,T ) =

∫ m

0

dm′m′HT (m,T )

=
m2T 2

24
− m3T

12π
− m4

64π2
(ln

m2

16π2e−2γET 2
− 3

2
)

+
m2T 2

4
√
π

∞∑
l=2

(
m2

4π2T 2
)l

Γ(l − 1
2
)

Γ(l + 2)
ζ(2l − 1) (C.39)

C.3.2 Fermionic high temperature expansion

Let us now focus on the high temperature expansion of the fermionic effective
potential. In bosonic case, we encounter frequency sum of the following form,

σb(T ) = T
∞∑

n=−∞

f(ωn) (C.40)

where f(ωn) = 1
ω2
n+ω2 with ωn = 2πnT and ω2 = k2 +m2.

On the other hand, for fermionic cases, the frequency sum is

σf (T ) = T
∞∑

n=−∞

f(ωn) (C.41)

where ωn = (2n + 1)πT . In the following we are going to recast fermionic
sum in terms of bosonic sum, Eq.(C.40).

σf (T ) = T [...+ f(−3πT ) + f(−πT ) + f(πT ) + ...]

= T [...+ f(−3πT ) + f(−2πT ) + f(−πT ) + f(0) + f(πT ) + f(2πT )...]

− T [...+ f(−2πT ) + f(0) + f(2πT ) + ...]

= 2
T

2
[...+ f(−6π

T

2
) + f(−4π

T

2
) + f(−2π

T

2
) + f(0) + f(2π

T

2
) + f(4π

T

2
)...]

− T [...+ f(−2πT ) + f(0) + f(2πT ) + ...]

= 2σb(
T

2
)− σb(T ) (C.42)

Using Eq.(C.42), the fermionic thermal integrals can be evaluated using the
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results of bosonic thermal integrals.

H̃(m,T ) = T
∑
n

∫
d3k

(2π)3

1

(2n+ 1)2π2T 2 + k2 +m2

=

∫
d3k

(2π)3
σf (T )

=

∫
d3k

(2π)3

[
2σb(

T

2
)− σb(T )

]
= 2H(m,

T

2
)−H(m,T ) (C.43)

Now using Eq.(C.36), we have

H̃(m,T ) = −T
2

24
− m2

8π2ε
− m2

8π2
ln
eγE µ̄

4πT
− m2

8π2
ln4

− T 2

2
√
π

∞∑
l=2

(−1)l(1− 22l−1)(
m2

4π2T 2
)l

Γ(l − 1
2
)

Γ(l + 1)
ζ(2l − 1)(C.44)

The thermal contribution to the fermionic integral is

H̃T (m,T ) = H̃(m,T )−H0(m) (C.45)

H̃T (m,T ) = −T
2

24
−m

2

8π2
ln
eγEm

πT
− T 2

2
√
π

∞∑
l=2

(−1)l(1−22l−1)(
m2

4π2T 2
)l

Γ(l − 1
2
)

Γ(l + 1)
ζ(2l−1)

(C.46)
Therefore, from Eq.(C.46), the fermionic integral is determined as follows

J̃T (m,T ) =

∫ m

0

dm′m′H̃T (m′, T ) (C.47)

J̃T (m,T ) = −m
2T 2

48
− m4

64π2
(ln

m2

π2e−2γET 2
− 3

2
)

− m2T 2

4
√
π

∞∑
l=2

(−1)l(1− 22l−1)(
m2

4π2T 2
)l

Γ(l − 1
2
)

Γ(l + 2)
ζ(2l − 1)(C.48)
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C.3.3 Low temperature expansion

In this section we will consider the case, m � T . Denoting y = m/T � 1
we have in such limit,

JT (m,T ) =

∫ ∞
0

dxx2ln(1− e−
√
x2+y2

)

= −
∫ ∞

0

dxx2e−
√
x2+y2

+O(e−2y)

=

∫ ∞
y

dzz
√
z2 − y2e−z +O(e−2y)

= −e−y
∫ ∞

0

dv(v + y)
√
v2 + 2vye−v +O(e−2y)

= −
√

2y
3
2 e−y

∫ ∞
0

dvv
1
2 e−v(1 +

v

y
)(1 +

v

4y
) +O(e−2y)

= −
√

2y
3
2 e−yΓ(

3

2
)(1 +O(

1

y
) +O(e−y)) (C.49)

Therefore we have,

VT = −T 4(
m

2πT
)

3
2 e−

m
T (1 +O(

T

m
) +O(e−

m
T ) (C.50)

and

HT (m,T ) =
T 3

m
(
m

2πT
)

3
2 e−

m
T (1 +O(

T

m
) +O(e−

m
T ) (C.51)

Therefore the high temperature expansion of thermal effective potential
Eq.(2.149), we have

VT (φc) =
∑
B

gB

[
m2
B(φc)T

2

12
− m3

B(φc)T

12π
− m4

B(φc)

64π2

(
ln
m2
B(φc)

abT 2
− 3

2

)]
+

∑
F

gF

[
m2
F (φc)T

2

48
+
m4
F (φc)

64π2

(
ln
m2
F (φc)

afT 2
− 3

2

)]
(C.52)

where, ab = 16π2e−2γE and af = π2e−2γE .
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Appendix D

Asymptotic limits of the
sphaleron field profiles

To capture the dependence of solutions on (J, Y ), in this section we have
included the analytical estimates of solutions for the asymptotic region ξ → 0
and ξ →∞.

For the energy functional Eq.(3.48) to be finite, the profile functions
should be f(ξ) → 0, f3(ξ) → 0, f0(ξ) → 1 and h(ξ) → 0. Therefore, at
ξ ∼ 0, the equations Eq.(3.50) are reduced into

ξ2f ′′ − 4f + 2f3 + αξ2h2 = 0 (D.1)

ξ2f ′′3 − 6f3 + 4f + βξ2h2 = 0 (D.2)

f ′′0 + 2(1− f0)− (
g′

g
)2βξ2h2 = 0 (D.3)

ξ2h′′ + 2ξh′ − 8m

3
h = 0 (D.4)

where

m =
Ω2

v2
(2α + β) (D.5)

The solution of Eq.(D.4) which leads to the finite energy of the sphaleron
is

h(ξ) ∼ Aξ−
1
2

(1−p) (D.6)

where

p =

√
1 +

32

3
m (D.7)

Now at ξ ∼ 0, f(ξ) ∼ f3(ξ), so using this approximation, from Eq.(D.1)
we have,

f(ξ) ∼ Bξ2 − 4Aαξ
1
2

(3+p)

(p
2
− 1)(p

2
+ 5)

(D.8)
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On the other hand, we have considered f(ξ) as a perturbation in Eq.(D.2).
Therefore, we have

f3(ξ) ∼ Cξ3 +Bξ2 −Kξ
1
2

(3+p) (D.9)

Here, K is defined as follows,

K =
k1

k2

(D.10)

k1 = 3A{3α(3p− 8m+ 3) + 8mβ(4m− 9)} (D.11)

k2 = 4m(4m− 9)(8m+ 3p− 15) (D.12)

Finally from Eq.(D.3), we have

f0(ξ) ∼ 1 +Dξ2 +
3Aβn2

1ξ
1
2

(3+p)

3p− 8m+ 3
(D.13)

where n1 = g′/g.
Here, A, B, C and D are the integration constants.
On the other hand, for asymptotic region, ξ ∼ ∞, all the profile functions

must approach unity to have finite energy of the sphaleron. So we consider
the functions to be the small perturbation to unity as follows. Taking, f(ξ) =
1 + δf(ξ), f3(ξ) = 1 + δf3(ξ), f0(ξ) = 1 + δf0(ξ) and h(ξ) = 1 + δh(ξ) and
keeping only the linear terms of the variation, we have

δf ′′ − αδf = 0 (D.14)

δf ′′3 + β(δf0 − δf3) = 0 (D.15)

δf ′′0 −
g′2

g2
β(δf0 − δf3) = 0 (D.16)

ξ2δh′′ − 2ξδh− 3
λv2

g2Ω2
ξ2δh = 0 (D.17)

The asymptotic solutions at ξ ∼ ∞ are,

f(ξ) ∼ 1 + Ee−
√
αξ (D.18)

f3(ξ) ∼ 1 + Fe−
√
βξ (D.19)

f0(ξ) ∼ 1 +Ge−
√
βξ (D.20)

h(ξ) ∼ 1 +
He−

√
3λv
gΩ

ξ

ξ
(D.21)

where E, F , G and H are again integration constants. The constants from A
to H depend on (J, J3) and couplings and they are determined by matching
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the corresponding asymptotic solutions and their first derivatives at ξ = 1.
Therefore after the matching, the integration constants are,

H = −
1
2
(p− 1)e

v
Ω
n

1
2
(p+ 1) + v

Ω
n

(D.22)

A = 1 +He−
v
Ω
n (D.23)

where, n =
√

3λ
g

The constants B and E are given as,

E = − e
√
α

√
α + 2

(2 +
2Aα(1− p)

(p
2
− 1)(p

2
+ 5)

) (D.24)

B = 1 + Ee−
√
α +

4Aα

(p
2
− 1)(p

2
+ 5)

(D.25)

Again the constants C and F are in the following,

F =
e
√
β

√
β + 3

(−3 +B − 1

2
(3− p)K) (D.26)

C = 1 + Fe−
√
β −B +K (D.27)

And finally D and G are given as

G =
e
√
β

√
β + 2

3Aβn2
1(1− p)

2(3p+ 8m− 3)
(D.28)

D = Ge−
√
β − 3Aβn2

1

3p+ 8m− 3
(D.29)
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Appendix E

Quartet SU(2) representation

E.1 SU(2) generators in the quartet

The generators R(T a) in representation R of SU(2) are taken in such a
way that they satisfy the following relation: Tr[R(T a)R(T b)] = T (R)δab.
Here T (R) is the dynkin index for the corresponding representation. It is
obtained from T (R)D(Ad) = C(R)D(R) where dimension of Adjoint reps.
is D(Ad) = 3 for SU(2) and Casimir invariant is

∑
aR(T a)R(T a) = j(j + 1)

and dimension of the reps. R is D(R) = 2j + 1. For SU(2) reps. T (1
2
) = 1

2

and T (3
2
) = 5.

The explicit form of the generators for quartet reps are the following:

T 1 =


0

√
3

2
0 0√

3
2

0 1 0

0 1 0
√

3
2

0 0
√

3
2

0

 , T 2 =


0 −

√
3i
2

0 0√
3i
2

0 −i 0

0 i 0 −
√

3i
2

0 0
√

3i
2

0

 , T 3 = diag(
3

2
,
1

2
,−1

2
,−3

2
).

(E.1)
The raising and lowering operators are defined as T± = T 1 ± iT 2. The
antisymmetric matrices in doublet reps is ε and the similar antisymmet-
ric matrix for quartet representation, C is constructed using the relation
CT aC−1 = −T aT because the explicit form of it depends on the matrix
representation of the corresponding generators:

ε =

(
0 1
−1 0

)
, C =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 (E.2)
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E.2 Gauge-scalar-scalar vertices

In this section we have collected the gauge-scalar-scalar vertices in the quartet
sector needed for the electroweak precision observables. All the momenta are
taken inward.

Q++(p1)Q−1 (p2)W−
µ :

ie

sw

√
3

2
cos θ(p1 − p2)µ (E.3)

Q++(p1)Q−2 (p2)W−
µ :

ie

sw

√
3

2
sin θ(p1 − p2)µ (E.4)

Q+
1 (p1)S(p2)W−

µ :
ie

2sw
(2 cos θ +

√
3 sin θ)(p1 − p2)µ (E.5)

Q+
1 (p1)A(p2)W−

µ :
e

2sw
(2 cos θ −

√
3 sin θ)(p1 − p2)µ (E.6)

S(p1)Q+
2 (p2)W−

µ :
ie

2sw
(
√

3 cos θ − 2 sin θ)(p1 − p2)µ (E.7)

A(p1)Q+
2 (p2)W−

µ : − e

2sw
(
√

3 cos θ + 2 sin θ)(p1 − p2)µ (E.8)

Q++(p1)Q−−(p2)Zµ :
ie

2swcw
(3c2

w − s2
w)(p1 − p2)µ (E.9)

Q+
1 (p1)Q−1 (p2)Zµ :

ie

2swcw
(2c2

w − cos 2θ)(p1 − p2)µ (E.10)

Q+
2 (p1)Q−2 (p2)Zµ :

ie

2swcw
(2c2

w + cos 2θ)(p1 − p2)µ (E.11)

S(p1)A(p1)Zµ : − e

2swcw
(p1 − p2)µ (E.12)

Q+
1 (p1)Q−2 (p2)Zµ : − ie

2swcw
sin 2θ(p1 − p2)µ (E.13)

(E.14)

Q++(p1)Q−−(p2)Aµ : 2ie(p1 − p2)µ (E.15)

Q+
1 (p1)Q−1 (p2)Aµ : ie(p1 − p2)µ (E.16)

Q+
2 (p1)Q−2 (p2)Aµ : ie(p1 − p2)µ (E.17)
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Appendix F

Tree-Unitarity

The tree-unitarity condition presented in section 4.1.3 is derived here based
on [228, 229]. The S-matrix of the give process can be decomposed in the
following way,

S = I + iT (F.1)

where T is the transfer matrix containing the information of the interaction.
The unitarity of S-matrix implies

S†S = SS† = I (F.2)

which gives,

T − T † = iT †T

= iTT † (F.3)

where the two equivalent relations arises due to S†S and SS†. If the initial
and final states (also considering them to be orthonormal) are denoted as |i〉
and |f〉, then we have,

〈f |T |i〉 = i(2π)4δ4(Pf − Pi)Tfi (F.4)

where Pi and Pf are the initial and final total 4-momenta respectively. So
we have,

Tfi − T ∗if = i(2π)4
∑
n

δ4(Pf − Pn)TfnT
∗
in

= i(2π)4
∑
n

δ4(Pf − Pn)T ∗nfTni (F.5)

where n are the intermediate multiparticle states. To characterize a state, one
can use the total angular momentum J , it’s projection along z-component
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Jz and the helicity operator Λ̂ = ~J.p̂ because they are conserved quantities
therefore serve as good quantum numbers.

Consider for simplicity the elastic scattering A + B → A + B in the
center of mass frame. At first the states are labeled by momentum and
helicity: initial two particle state is |i〉 = |pa, λa; pb, λb〉 and final two particle
state is |f〉 = |p′a, λ′a; p′b, λ′b〉. In the center of mass frame, the 3-momenta of
|i〉 are ~pa = −~pb = ~pi. Similarly the 3-momenta in the final state |f〉 are
~p ′a = −~p ′b = ~pf .

As the helicity is the component of the spin along the direction of mo-
mentum, if we now consider the two particle state as a single particle with
helicity Λ in ~pi direction, then Λ = λa − λb. Similarly for final state, we
have Λ′ = λ′a − λ′b along ~pf direction. Now consider, ~pi is along the ẑ axis
and ~pf has the polar angles φ and θ with respect to this fixed coordinate
system. The rotation matrix Rfi, which is the product of the rotation of
angle θ about ŷ axis and the rotation of angle φ about ẑ axis, transforms
p̂i ≡ ẑ into the unit vector p̂′a = ~p ′a

|~p ′a|
.

For the case of 2→ 2 elastic scattering, only 2 particle intermediate states
will contribute in the summation. Therefore the summation over these states
in Eq.(F.20) will be the integration over the intermediate 3-momenta ~p1 and
~p2 and summation over the spin quantum numbers or the helicities of the
two particles denoted by λ1 and λ2. Also in the CM frame of this system,
~p1 = −~p2 = ~pk. ∑

n

→
∫

d3~p1

(2π)32E1

d3~p2

(2π)32E2

∑
λ1,λ2

(F.6)

The rotation matrix Rki(φ
′, θ′, 0) takes ~pi into ~pk and Rkf (φ

′′, θ′′, 0) takes
~pf into ~pk. Also, Rki = RkfRfi. Now combining with the delta function we
have∑
λ1,λ2

∫
d3~p1

(2π)32E1

d3~p2

(2π)32E2

(2π)4δ4(p1 + p2 − Pf ) =
1

32π2s
λ1/2(s,m2

a,m
2
b)dΩk

(F.7)
with λ(x1, x2, x3) = (x2

1 + x2
2 + x2

3)2 − 2x1x2 − 2x2x3 − 2x3x1 and dΩk =
sin θ′′dθ′′dφ′′.

For any two particle system |p1, λ1; p2, λ2〉, we have ~p1 = −~p2 = ~p in the
CM frame and helicity Λ = λ1 − λ2. Moreover, the rotation Rθ,φ transforms
ẑ into p̂ direction with polar angles θ and φ. So in this case, the state of total
angular momentum J with M being it’s component in ẑ axis is given by

|J,M ;λ1, λ2〉 =

√
2J + 1

4π

∫
dφ sin θ dθDJλ1−λ2,M

(R−1
θ,φ)|p1, λ1; p2, λ2〉 (F.8)
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The Wigner’s D-matrix is defined as

DJm′,m(α, β, γ) = 〈J,m′|e−iαĴze−iβĴye−iγĴz |J,m〉 (F.9)

Here, α, β and γ are the Euler angles and Ĵi are the generators of the rotation
group. As the helicity is a conserved under rotation, using the Wigner-Eckart
theorem, we have

Tfi = 〈p′a, λ′a; p′b, λ′b|T |pa, λa; pb, λb〉
= 16π

∑
J

(2J + 1)〈λ′a, λ′b|T J(s)|λa, λb〉DJ∗λa−λb,λ′a−λ′b(φ, θ, 0)(F.10)

Therefore, expanding the LHS of Eq.(F.5) in angular momentum states,

16π
∑
J

(2J + 1)[〈λ′a, λ′b|T J(s)|λa, λb〉DJ∗λa−λb,λ′a−λ′b(Rfi)

− 〈λ′a, λ′b|T †J(s)|λa, λb〉DJλ′a−λ′b,λa−λb(Rfi)]

= 16π
∑
J

(2J + 1)[〈λ′a, λ′b|T J(s)|λa, λb〉 − 〈λ′a, λ′b|T †J(s)|λa, λb〉]×

DJ∗λa−λb,λ′a−λ′b(Rfi) (F.11)

where symmetry property, DJ
m′m(R) = DJ∗

mm′(R) is used. Now the RHS of
Eq.(F.5) gives,

i
8λ1/2(s,m2

a,m
2
b)

s

∑
J,J ′

∑
λ1,λ2

(2J + 1)(2J ′ + 1)〈λ′a, λ′b|T †J(s)|λ1, λ2〉 〈λ1, λ2|T J(s)|λa, λb〉

×
∫
dΩkDJλ1−λ2,λ′a−λ′b

(Rkf )DJ
′∗

λa−λb,λ1−λ2
(Rkf )DJ

′∗
λa−λb,λ1−λ2

(Rfi)

where we have used, DJ
m′m(R2.R1) = DJ

m′m(R2)DJ
m′m(R1). Now using∫

dφ sin θ dθDJ∗m1m2
(R)DJ ′m′1m′2(R) =

4π

2J + 1
δJJ ′δm′1m1

δm′2m2
(F.12)

we have the RHS as follows,

i
32πλ1/2(s,m2

a,m
2
b)

s

∑
J

(2J + 1)|〈λ′a, λ′b|T J(s)|λa, λb〉|2DJ∗λa−λb,λ′a−λ′b(Rfi)

(F.13)
Therefore, equating both sides and picking up J-th contribution,

〈λ′a, λ′b|T J(s)|λa, λb〉 − 〈λ′a, λ′b|T †J(s)|λa, λb〉

=
2iλ1/2(s,m2

a,m
2
b)

s
|〈λ′a, λ′b|T J(s)|λa, λb〉|2(F.14)
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In the high energy limit, when the masses of the particles can be neglected,
from Eq.(F.14), by taking absolute value we have,

|ImT J | ≥ |T J |2 = (ImT J)2 + (ReT J)2 (F.15)

where we have suppressed the helicity indices. The unitarity of S matrix
implies |T J | ≤ 1. Therefore by re-arranging Eq.(F.15) we have,

(ReT J)2 ≤ |ImT J |(1− |ImT J |) ≤ 1

4
(F.16)

which yields the bound,

|ReT J | ≤ 1

2
(F.17)

In case of spinless particles, DJ
00(0, θ, 0) = PJ(cos θ) and T J ≡ aJ . PJ(cos θ)

is the Legendre polynomial with θ -the scattering angle. So, Eq.(F.10) re-
duces to

Tfi(s, cos θ) = 16π
∑
J

(2J + 1)aJ(s)PJ(cos θ) (F.18)

Therefore using the orthogonality of the Legendre polynomial∫ 1

−1

d(cos θ)PJ(cos θ)PJ ′(cos θ) =
2

2J + 1
δJJ ′ (F.19)

we have,

aJ(s) =
1

32π

∫ 1

−1

d(cos θ)PJ(cos θ)Tfi(s, cos θ) (F.20)

Since a0 is real in the Born approximation, we can put the bound Eq.(F.17)
as the following,

Re a0 ≤
1

2
(F.21)

This is the desired tree unitarity condition.
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Appendix G

Renormalization group
equations

Besides the standard diagrammatic methods available to calculate one loop
[155] and two loop [156–158], here we are going to describe briefly a simple
and straightforward algebraic method [159, 160] to determine one loop beta
functions for scalar couplings from one loop effective potential.

Consider the one loop effective potential,

Veff = V0 + V1 (G.1)

where for simplicity, we have considered Z2 invariant scalar potential,

V0 = λ1(φ†φ)2 + λ2(χ†χ)2 + αφ†φχ†χ+ βφ†τaφχ†τaχ

+ γ[(φT ετaφ)†(χT ετaχ) + c.c] (G.2)

where φ and χ are the SU(2) doublets. Moreover, τa are the generators of
SU(2) and ε is an antisymmetric matrix in the following,

ε =

(
0 −1
1 0

)
(G.3)

The scalar potential written in the form above can be generalized to the
larger scalar multiplets.

The one-loop correction is given by,

V1 =
1

64π2
STrM4ln

M2

µ2
(G.4)

where STr is the spin-weighted trace.
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In the Landau gauge, the effective potential follows the following equation,[
µ
∂

∂µ
+
∑
i

βλi
∂

∂λi
− (γiξi

∂

∂ξi
+ c.c)

]
Veff = 0 (G.5)

Here, λi = {λ1, λ2, α, β, γ} and βλi are the associated beta functions. Also,
ξi = {φ, χ} and γi = {γφ, γχ} are the anomalous dimensions.

At one loop level,

D(1)V0 = −µ∂V1

∂µ
=

1

32π2
STrM4 (G.6)

where for n-th loop order,

D(n) =
∑
i

β
(n)
λi

∂

∂λi
− (γ

(n)
i ξi

∂

∂ξi
+ c.c) (G.7)

If we know anomalous dimensions γi, we can determine all the one loop
beta functions by comparing different quartic terms in the both sides of
Eq.(G.6). Therefore let us focus on calculating the mass matrices for different
fields.

For the scalar fields, the squared mass matrix is given by,

M2
S =

(
A B
C D

)
(G.8)

where

A =

(
∂2V0

∂φi∂φ†j
∂2V0

∂φi∂χ†j

∂2V0

∂χi∂φ†j
∂2V0

∂χi∂χ†j

)
(G.9)

B =

(
∂2V0

∂φi∂φj

∂2V0

∂φi∂χj
∂2V0

∂χi∂φj

∂2V0

∂χi∂χj

)
(G.10)

and
C = B† , D = A† (G.11)

For example,

(A11)ij = δij(λ1φ
†φ+ αχ†χ) + λ1φ

†iφj +
β

2
χ†iχj (G.12)

Now,
STrM4

S = TrA2 + 2 Tr (BC) + TrD2 (G.13)
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So from Eq.(G.6), we have for scalar couplings,∑
i

βλi
∂V0

∂λi
=

1

32π2
STrM4

S + (
∑
i=φ,χ

γiξi
∂V0

∂ξi
+ c.c) (G.14)

At the one-loop the anomalous dimension of scalar field is zero, so the
anomalous dimensions of φ and χ are

γφ = 3y2
t −

9

4
g2 − 3

4
g′2 (G.15)

γχ = −9

4
g2 − 3

4
g′2 (G.16)

Moreover, the squared mass matrix for the vector bosons is

M2
V =

(
1
4
g2φ†

{
τa, τ b

}
φ+ (φ→ χ) 1

2
gg′φ†τaφ+ (φ→ χ)

1
2
gg′φ†τaφ+ (φ→ χ) 1

2
g′2φ†φ+ (φ→ χ)

)
(G.17)

By using the following identities,{
τa, τ b

}
=

1

2
δab

(τa)ij(τ
b)kl = δilδ

k
j −

1

2
δijδ

k
l (G.18)

we have,

STrM4
V = (

9

4
g4 +

3

4
g′4)

(
(φ†φ)2 + (χ†χ)2

)
+

3

2
g2g′2

(
(φ†φ)2 + (χ†χ)2 − φ†φχ†χ

)
(G.19)

Finally, squared mass matrix for fermion is

M2
t = y2

t φ
†φ (G.20)

and therefore we have

STrM4
F = −12y4

t (φ
†φ)2 (G.21)

The LHS of Eq.(G.14) gives,

βλ1(φ†φ)2 + βλ2(χ†χ)2 + βαφ
†φχ†χ+ ββφ

†τaφχ†τaχ

+ βγ[(φ
T ετaφ)†(χT ετaχ) + c.c] (G.22)
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Comparing with the RHS of Eq.(G.14) we can immediately determine the
beta functions of scalar couplings.

16π2βλ1 = 24λ2
1 + 2α2 +

1

8
β2 + γ2 − 9λ1g

2 − 3λ1g
′2 +

9

4
g4 +

3

4
g′4 +

3

2
g2g′2 + 12λ1y

2
t − 12y4

t

16π2βλ2 = 24λ2
2 + 2α2 +

1

8
β2 + γ2 − 9λ2g

2 − 3λ2g
′2 +

9

4
g4 +

3

4
g′4 +

3

2
g2g′2

16π2βα = 4α2 + 12λ1α + λ2α +
3

4
β2 + 6γ2 − 9αg2 − αg′2 +

9

4
g4 +

3

4
g′4 − 3

2
g2g′2 + 12αy2

t

16π2ββ = 4λ1β + 4λ2β + 8αβ + 16γ2 − 9βg2 − βg′2 + 12βy2
t

16π2βγ = 4λ1γ + 4λ2γ + 8αγ + 4βγ − 9γg2 − γg′2 + 12γy2
t

(G.23)

Moreover, the one loop beta functions for the SU(2)L, U(1)Y , SU(3)c and
top-yukawa couplings g, g′, g3 and yt respectively are,

16π2βg = −3g3, 16π2βg′ =
22

3
g′3, 16π2βg3 = −7g3

3

16π2βyt = yt(
9

2
y2
t −

17

12
g′2 − 9

4
g2 − 8g2

3) (G.24)

Here we also presented triplet RG equations [171] relevant for our analysis,

16π2βλ1 = 24λ2
1 + 6α2 + β2 − 9λ1g

2 − 3λ1g
′2 +

9

2
g4 +

3

2
g′4 + 3g2g′2 + 12λ1y

2
t − 6y4

t

16π2βλ2 = 28λ2
2 + 48λ2λ3 + 24λ2

3 + 2α2 + β2 − 24λ2g
2 − 12λ2g

′2 + 6g4 + 6g′4 + 24g2g′2

16π2βλ3 = 36λ2
3 + 24λ2λ3 −

1

2
β2 − 24λ3g

2 − 12λ3g
′2 + 3g4 − 12g2g′2

16π2βα = 3α2 + 6λ1α + 16λ2α + 24λ3α−
33

2
αg2 − 15

2
αg′2 + 6g4 + 3g′4 + 12y2

tα

16π2ββ = 2λ1β + 4λ2β − 4λ3β + 16αβ − 33

2
βg2 − 15

2
βg′2 + 12g2g′2 − 6βy2

t

16π2βg = −5

2
g3, 16π2βg′ =

47

6

√
5

3
g′3, 16π2βg3 = −7g3

3

16π2βyt = yt(
9

2
y2
t −

17

12
g′2 − 9

4
g2 − 8g2

3) (G.25)
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