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Chapter 1

Introduction

Recent progresses in both experimental and theoretical studies of quantum
nonequilibrium systems [1, 2] lead to the expectation that nonintegrable sys-
tems driven out of equilibrium tend to thermalize [3] whereas systems modeled
by an integrable Hamiltonian should be described in the long time limit by a
Generalized Gibbs Ensemble (GGE) taking into account the conserved quanti-
ties of the model [4]. The dynamics of a quantum many-body system towards
thermal equilibration is in turn a fundamental subject that still lacks a com-
plete understanding [2–6]. One possibility is that there is a single timescale
governing the process so that during equilibration all observables relax simulta-
neously towards their long-time limit. Alternatively some quantities may reach
rapidly a quasi-stationary state, while true thermalization, if any, should occur
only later on a longer timescale. This first relaxation towards a quasi-stationary
state is called prethermalization. The prethermalized quasi-stationary state is
a dephased state in which some physical observables may take a value corre-
sponding to what they would have at equilibrium at an effective temperature
Teff , hence appearing “thermal”. However, a prethermalized state is truly dif-
ferent from a thermal equilibrium one as it can be evinced from its non-thermal
quasi-particle distribution.

Prethermalization was initially proposed in the context of high energy phy-
sics [7] to understand the fact that, in heavy-ions collision experiments, inte-
grated quantities (e.g. kinetic energy) reach their final value much earlier than
mode-dependent observables. Meanwhile, the astounding progress in the ma-
nipulation of ultracold atoms allowed the realization of isolated quantum sys-
tems which are the ideal playground for experimental quantum non-equilibrium
physics [1]. In this context, it is possible to prepare a system in a specific state
and study its unitary time evolution without the dephasing due to the inter-
action with the environment. This possibility, together with the continuous
development in measurement accuracy and precision, had the effect of shifting
the interest in the dynamics of non-equilibrium many-body physics from the
theoretical ground to the experimental one. The study of prethermalization for
cold atomic systems [8, 9], has shown some intimate connection between this
phenomenon and concepts that emerged in the physics of thermalization, for
example, the expectation value of observables in the prethermalization plateau
of an almost integrable system can be computed as the GGE expectation value
built with some quantities that are nearly conserved under the time evolution
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2 CHAPTER 1. INTRODUCTION

of the model and the asymptotic state of an integrable system should be consid-
ered as a prethermalized state that never decays [10]. In addition prethermal-
ization was predicted for a split one-dimensional quasi-condensate loaded on
an elongated microtrap on an atom chip [11] and it was later actually observed
experimentally for that same setup [12,13].

The idea that prethermalization might emerge for almost integrable sys-
tems is very appealing; indeed, integrable systems are a useful but only ideal
construction: integrability breaking effects, however small, necessarily appear
in experimental implementations [14]. This unavoidable departure from in-
tegrability does not necessarily spoil the original features of the model: a
typical example is the “Quantum Newton’s Cradle” experiment [15] (two quasi
one-dimensional bosonic clouds counter-oscillating in a parabolic potential) in
which the realized system is so close to its integrable model [16] that the inte-
grability breaking effects are not enough to produce visible thermalization, at
least on the timescale of the experiment (although one would expect the system
to eventually thermalize). A setup equivalent to their experiment, but in three
dimensions was predicted to thermalize already after three collisions [17, 18].
If energy redistribution between the modes is that fast then, whatever the
kind of relaxation dynamics followed by the system, no experiment can resolve
the two stages of the process and the prethermalization plateau: the system
would reach too early the final thermal state to show interesting dynamical
features. If, however, the same system were taken out of equilibrium without
subjecting it to a large disturbance such as the one induced by a split process,
is prethermalization expected despite the non-integrability of the model?

We choose to adress this question by focusing on a small quantum quench
in the interaction strength g between bosonic atoms: the system is prepared
in the ground state of an Hamiltonian Ĥ(g0), at a given time the parameter
is suddenly changed to a new value g1 and the system evolves under this new
Hamiltonian Ĥ(g1), and the initial state of the system should not be one of
its eigenstate, otherwise the physics would be trivial. It may be useful to
explain what we mean by “sudden” from an experimental point of view, since
any parameter variation cannot be really instantaneous and real suddenness
is just a theoretical idealisation. Let us call τr the relaxation time of the
sytem, i.e. the time-scale that governs the response of the system to external
perturbations; if g is the Hamiltonian parameter we are willing to change, then
we can define τq = g/ġ as the time-scale of our experiment. If both τq and
the time during which the variation of the parameters takes place are much
smaller than τr, then we can say we are effectively performing a quench: in
this scheme the system is not able to respond immediately to the perturbation
we induce and lags behind. This framework is basically the opposite of the
adiabatic protocol which prescribes the system to be almost at equilibrium at
any time during the process. Despite the conceptual simplicity of the protocol,
quantum quenches offer diverse and important opportunities to investigate
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non-equilibrium processes and have been deeply studied both theoretically and
experimentally [19–22].

In this work we study a system of weakly interacting condensed bosons after
a small quench in the interaction strength. We will analyse this scenario in one
and three dimensions, restricting our focus on a set of important observables,
namely the many-body local correlations gp. We define

gp =
1

ρp

〈
(ψ†)p(ψ)p

〉
where ρ =

〈
ψ†ψ

〉
is the particle density, in particular g3 is proportional to the

tree-body recombination rate [23]. We will also perform calculations for the
non-local observable

g2(x) =
1

ρ2

〈
ψ†(x)ψ†(0)ψ(0)ψ(x)

〉
,

which gives the probability of finding two particles at a distance x apart and
therefore gives the characteristic length scale of decay for density–density fluc-
tuations. The choice of this setup and of these observables is also inspired by
the recent calculation of g2(x) in the limits of small and large interaction and
the exact calculation of g3 for a degenerate 1D Bose system [24–29].

In Chapter 2 we recall some basic concepts about cold atom physics nec-
essary for the following calculations. In particular, since the weakness of the
interaction between the particles will allow us to use Bogoliubov approxima-
tion, we discuss how the latter works and what are its limits of applicability;
then employing Bogoliubov rotation we compute the equilibrium behaviour of
the quantities presented above. These results are mainly obtained from the
literature but are somehow generalized and will be used later to characterize
the state of the system after the quench. Chapter 3 contains a general review
on the subjects of thermalization and prethermalization. Thermalization is
described in its relationship with ergodicity and lack of integrability in the
classical and quantum realm respectively. We also introduce the concept of
prethermalization and show how to calculate prethermalized expectation val-
ues from the almost-conserved quantities of the model, moreover we describe
the experimental setup in which prethermalization was actually found. The
original results of the work are presented in Chapter 4 where we use the Bo-
goliubov approximation and related tools to calculate the consequences of a
small interaction quench: a stationary state for the local and non-local cor-
relation functions is found, whose features lead us to claim it is actually a
prethermal state; in addition we obtain that the dynamic behaviour of gp(t)
follows a power law whose exponent is D + 1, where D is the dimensionality
of the system. In the same chapter we show that this result can be obtained
also in a different way, namely with the Keldysh technique. Keldysh contour
integration is described and employed to derive the equations that govern the
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dynamics of the model; moreover we show how this field theory approach is
a good starting point to generalise the present results and as an example in
this direction we calculate the effect of an additional Hartree–Fock interac-
tion term in the Hamiltonian. Subsequently we investigate the possibility and
meaningfulness of the definition of an effective temperature for the system af-
ter the quench and we conclude that, in agreement with Ref. [10], the correct
and meaningful description is indeed a GGE. Then, considered that the 3D
system should finally thermalize, we investigate the evolution towards thermal
equilibrium by introducing in the Hamiltonian an interaction term between
the quasi-particles responsible for two-body decay. The dynamics generated
by this decay channel is extracted from a linearized Boltzmann equation and
the approach to equilibrium is computed starting from the prethermal plateau
previously determined. The outcome is that the dynamics is again described
by a power-law behaviour but for this second stage gp(t) ∼ t−3 so we conclude
that in this system prethermalization might actually emerge as a crossover
phenomenon rather than a well defined plateau.



Chapter 2

Cold atoms

One of the most astonishing manifestations of the quantum nature of matter is
the phenomenon of Bose–Einstein condensation, i.e. the macroscopic occupa-
tion of a quantum state by a system of bosonic particles when the temperature
falls below a critical value [30]. The formation of Bose–Einstein condensates
for spatially homogeneous systems at low dimensionality at finite temperature
is excluded by the Mermin–Wagner theorem [31]. Indeed phase fluctuations
are too large to allow a finite coherence length across the sample, but density
fluctuations can still be limited by a strong enough repulsive interaction. To
describe this situation characterized by strong phase fluctuations but negligi-
ble density variations, Popov introduced the concept of quasi-condensate [32],
whose study is complicated by the fact that if one tries to naïvely introduce the
usual density-phase formalism, divergencies appear. Anyway it is possible to
extend the Bogoliubov approach to treat quasi-condensates of weakly interact-
ing one-dimensional Bose gases [33] by a method that requires to discretize the
real space in small cells in order to allow for a consistent definition of phase and
density operators: two small parameters are then introduced: the relative den-
sity fluctuation inside a cell and the phase gradient across different cells. The
usual interesting observables can be expanded in terms of these parameters and
one obtains divergenceless results that reduce to the known Bogoliubov predic-
tions in the limit of an ordinary 3D condensate. Even though this treatment
gives the correct theoretical foundation for the study of quasi-condensates in
the weak interaction limit, we found more convenient to rely on the procedure
employed in Ref. [28] to obtain simpler expressions for the observables we are
interested in, without the need of any discretization of the real space. For this
reason in the following we proceed with the usual Bogoliubov approximation,
explaining when needed when a formally rigorous construction is necessary.

2.1 Bogoliubov approximation

One of the simplest but still meaningful ways to make calculations for con-
densate systems is to employ the Bogoliubov approximation which is anyway
powerful enough to provide at least qualitative understanding of the conden-
sate behaviour. In order to set the notation we describe now how it works
on a D-dimensional system of N bosonic particles interacting via a generic
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6 CHAPTER 2. COLD ATOMS

potential V :

Ĥ = −
∫
dDx

1

2m
ψ̂†(x)∇2ψ̂(x)+

1

2

∫
dDx dDx′ ψ̂†(x)ψ̂†(x′)V (x,x′)ψ̂(x′)ψ̂(x).

If the system is uniform and spans a volume V = LD, we can move to Fourier
space and rewrite

ψ̂(x) =
1√
LD

∑
k

âk eık·x.

The potentials we will consider in the following are of the form V (x,x′) = V (|x− x′|),
so it is easy to write in momentum space:

Ĥ =
∑
k

k2

2m
â†kâk +

1

2LD

∑
k p q

Ṽ (q) â†k+qâ
†
p-qâkâp

where
Ṽ (q) =

∫
dDr V (r) eıq·r

is the Fourier transform of the potential times the volume.
Up to now the Hamiltonian is still exact, but the quartic term impedes

simple analytic calculations; moreover we want to employ our knowledge that
a large part of the particles that constitute the system is in the condensate
fraction [34], indeed the full system can be thought to behave as the sum of
two interacting sub-systems: a large condensed fraction and a small amount of
particles outside it, populating higher energy levels. We can start our investi-
gation by disregarding the interaction between these more energetic particles;
formally this amounts to a truncation of the Hamiltonian. Operatively this
means that we must discard, in the quartic part, terms with more than two k
different from zero. Subsequently we focus on â0, the operator that destroys
condensate particles and notice that this object, as well as its hermitian conju-
gate, only appears in the form ψ̂0 = â0/

√
V or ψ̂†0 = â†0/

√
V in the Hamiltonian

and these combinations commute in thermodynamic limit[
ψ̂0, ψ̂

†
0

]
=

1

V
−−−→
V→∞

0

without being trivial when acting on the ground state

〈ψ0|
â†0√
V

â0√
V
|ψ0〉 =

N0

V
= ρ,

so they can be replaced by a c-number, in particular Bogoliubov approximation
dictates â0 =

√
N0 ≈

√
N where N0 counts only the particles in the condensate

fraction. In the last relation we relied on the fact that the large majority of
the bosons is actually in the condensate. As we will see later on, this choice
limits the validity of the Bogoliubov approximation.
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The combination of this two approximations (the truncation of the Hamilto-
nian and the replacement of some operators with c-numbers) gives a quadratic
Hamiltonian as a result. Since however

â†0â0 +
∑
p 6=0

â†pâp = N,

we need a final manipulation in order to work consistently at second order in
the field operators. In particular we need to fix

â†0â
†
0â0â0 = N2 − 2N

∑
p 6=0

â†pâ
†
p.

The Hamiltonian we finally get is

Ĥ =
Nρ

2
Ṽ (0) +

∑
k

k2

2m
â†kâ0 +

ρ

2

∑
k6=0

Ṽ (k)
(

2â†kâk + â†kâ
†
-k + âkâ-k

)
(2.1)

where ρ = N/LD is the particle density. This Hamiltonian is quadratic
and diagonalizable though quite different from the original one due to the
approximations we performed. For example the establishment of an order
parameter with U(1) symmetry makes the effective quasi-particle Hamiltonian
no more number conserving. However, a number-conserving version of the
Bogoliubov approximation can be defined and requires some subtleties in the
derivation [34], though the details are not important for the computations we
are going to perform.

The Hamiltonian (2.1) can be diagonalized via the Bogoliubov rotation.
This amounts to the introduction of a new set of bosonic operators b̂k which
are linearly related to the original ones:

âk = uk b̂k + v−k b̂
†
-k

â†k = u∗k b̂
†
k + v∗−k b̂-k

with uk = cosh ξk and vk = sinh ξk in order to preserve canonical commutation
relations. After substitution into (2.1), we get a new expression containing
both a diagonal and a non-diagonal part. The coefficient of the non-diagonal
part becomes zero if we choose

tanh 2ξk =
ρṼ (k)

E(k) + ρṼ (k)

where E(k) = k2/2m. This condition defines the angle of the Bogoliubov
rotation. In the end the Hamiltonian is diagonal in the b̂k’s

Ĥ = E0 +
∑
k

ε(k) b̂†kb̂k
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with a constant shift in the energy

E0 =
ρN

2
Ṽ (0) +

1

2

∑
k 6=0

ε(k)− ρṼ (k)− E(k),

and the energy of the quasiparticles is given by the famous Bogoliubov disper-
sion relation

ε(k) =

√
E(k)2 + 2ρṼ (k)E(k) ,

whereas the rotation coefficients are

uk, vk =
E(k)± ε(k)

2
√
ε(k)E(k)

.

2.2 Equilibrium behaviour

As stated in the Introduction, in the following we will focus our attention on
a set of interesting observables, namely the many-body correlations

gp =
1

ρp

〈
(ψ†)p(ψ)p

〉
and

g2(x) =
1

ρ2

〈
ψ†(x)ψ†(0)ψ(0)ψ(x)

〉
.

While setting V1(r) = 2gδ(r) corresponding to Ṽ1(k) ∼ g independent of
k, allows the extraction of all correlation functions in one dimension, in three
dimension this potential needs a regularisation in order to avoid divergencies:
we will therefore use in three dimensions a Yukawa potential

V3(r) =
g
r
e−µr.

With these choices the transformed potential can be written in the generale
form

ṼD(k) =
g ΩD

(k2 + µ2)
D−1
2

where ΩD is the unit solid angle in D dimensions(Ω1 = 2 and Ω3 = 4π). We
also define the dimensionless coupling constant

γ =
mg
µD−1

ρ1− 2
D ,

which corresponds in one dimension to the usual choice for the Lieb-Liniger
parameter [16].Correspondingly we have the degeneracy temperature

Td =
ρ

2
D

2m
.
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For non-local quantities at large separation the physics is dominated by
the small-momentum part of the potential which is completely described by
the pseudopotential approximation via a single measurable parameter: the
scattering length. One important point is that this quantity can be related to
γ, indeed in one dimension

a1D = − 2

mg
= − 2

ργ
,

as can be found in Ref. [35]; and for the 3D Yukawa potential

a3D =
2mg

µ2
= 2γρ−

1
3

as is computed in Appendix A.1. This means we expect that, at least for
non-local quantities, our results would be expressed only in terms of γ and ρ.

The validity of the Bogoliubov approximation is established by checking its
internal consistency. In other words, since this formalism is used to describe
the situation of negligible depletion, i.e. of small occupation of the higher
nergy levels, we require this quantity to be truly small. For the 3D Bose gas the
depletion is proportional to (ρa3

3D)1/2 [36] therefore we can employ Bogoliubov
expression as long as γ � 1. For a 1D quasicondensate the applicability of
the construction developed in [33] requires (ρ/mg)1/2 � 1 which means again
γ � 1. This condition is consistent with the calculation of the “depletion”:

F =
nex
ρ

=
1

ρL

∑
k>0

|vk|2

=
1

2ρ

∫ ∞
λ

dk
[
E(k) + ρg

ε(k)
− 1

]
≈ √γ

[
ln
(√

γ
ρ

λ

)
− 1
]

and again the occupation of the excited levels is kept low by the condition
γ � 1. The infrared cutoff λ is required for the convergence of the integral.

The equilibrium value of g2 at finite temperature in one dimension has
already been computed both at x = 0 and for finite separation [24, 28]. The
same has been done for local g3 [24]. In the following we derive again these
results and generalize them to higher dimensionality. In the spirit of the Bo-
goliubov approximation we write ψ̂ = ψ0 + δψ̂ where ψ0 is a macroscopic
component containing contributions from modes up to some k0 whereas δψ̂ is
a small component including larger k contributions: later we will be able to
set k0 = 0, relying on the convergence properties of the integrals. Notice that
δψ̂ is still an operator while ψ0 became a c-number. Neglecting fluctuations
beyond quadratic order in δψ̂ we get

|ψ0|2p ' ρp − p ρp−1δψ̂†δψ̂,
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which implies

gp =
1

ρp

〈
(ψ†)p(ψ)p

〉
' 1 +

p(p− 1)

ρ

(〈
δψ̂†δψ̂

〉
+ <

〈
δψ̂δψ̂

〉)
where we have employed 〈δψ̂〉 = 〈δψ̂†〉 = 0. This quantity can be computed
by means of a Bogoliubov rotation of the type we have already seen, i.e. we
can expand

δψ̂ =
1√
LD

∑
k

(
uk b̂k + vk b̂

†
−k

)
eık·x,

and write the expectation values we need in terms of the Bogoliubov coeffi-
cients: 〈

δψ̂†δψ̂
〉

=
1

L

∑
k

|uk|2nk + |vk|2(1 + nk)〈
δψ̂δψ̂

〉
=

1

L

∑
k

ukvk(2nk + 1)

where nk = 〈b̂†kb̂k〉 = (eβε(k) − 1)−1 is the occupation number of the k level at
temperature T = β−1. In termodynamic limit, after substitution of the known
form of the coefficients we get

gp = 1 +
p(p− 1)

2ρ

ΩD

(2π)D

∫ ∞
0
dk kD−1

[
E(k)

ε(k)
(1 + 2nk)− 1

]
. (2.2)

For a one-dimensional quasi-condensate at zero temperature we get

gp = 1− p(p− 1)

π

√
2γ

which is a generalization of the result found in Ref. [25], whereas in three
dimensions

gp ≈ 1− p(p− 1)µ2

ρ
1
3

γ√
µ2 − 16πρ

2
3γ + 4ρ

1
3
√
πγ

,

as can be seen in Fig. 2.1.
Calculations at finite temperature are difficult to perform analitically but

we can extract at least some information from the thermal part (g(T )
p ) of

the integrals defined above, i.e. from the component containing nk. At low
temperature we can approximate ε(k) with its low energy expression ε(k) '
(2ρE(k)Ṽ (0))1/2 = c k, so the integral becomes tractable giving

g(T )
p =

p(p− 1)ΩD

ρ (2π)D

∫ ∞
0
dk kD−1E(k)

ε(k)

(
e
ε(k)
T − 1

)−1

≈ p(p− 1)

4 (4π)D
D! ζ(D + 1)

γ
D
2

+1Ω
D
2
D

(
T

Td

)D+1

. (2.3)
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Figure 2.1: Equilibrium value of g2 as function of γ in 3D. The blue dots
corrspond to numerical exact interation and the red line comes from Eq. 2.2
which is a good approximation for small interaction.

A similar computation can be also performed for the non-local correlator
g2(x)

g2(x) =
1

ρ2

〈
ψ†(x)ψ†(0)ψ(0)ψ(x)

〉
= 1 +

1

ρ

〈
δψ†(x)δψ(0) + h.c.

〉
+

1

ρ

〈
δψ†(x)δψ†(0) + h.c.

〉
.

Using the usual Bogoliubov rotation, taking the thermodynamic limit and
noticing that we can reshuffle all sums in k since all functions only depend
on |k|, the result is that non-local functions can be computed multiplying the
integrand of the corresponding local one by eık·x.

g2(x) = 1 +
1

(2π)Dρ

∫
dΩdk kD−1

(
E(k)

ε(k)
(1 + 2nk)− 1

)
eık·x,

where the additional angular integration in three dimensions can be immedi-
ately performed and gives∫

dΩ eık·x =

∫ 2π

0
dθ
∫ π

0
dφ eıkx cos(θ) = 4π

sin(kx)

kx
.

Let us look at the large-x dependence at zero temperature; to do this we can
again substitute ε(k) with its linear part and add an ultraviolet regularisation:

g2(x) ' 1 +
1

(2π)Dρ

∫
dΩdk kD−1

(
k

2n
1
D
√

ΩDγ
− 1

)
eık·xe−αk,
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at the end we can send α→ 0 and get

g2(x) = 1− 1

2πxD+1ρ1+ 1
D
√

ΩDγ
×

{
1 1D
1
π 3D

.

Subsequently we may investigate the T 6= 0 behaviour for the non-local cor-
relation, to do this we must remember that the regime we are interested in is
characterized by both small temperature (T � Td) and large x, thus we will
fix the separation and look at the leading order in the temperature expansion.
The one-dimensional result is already known [25]:

g
(T )
2 (x) ≈ 1

2πρ2x2
√

2γ
− π

4
√

2γ
3
2

(
T

Td

)2

exp

[
− πxρ√

2γ

T

Td

]
,

whereas in the the 3D case

g
(T )
2 (x) ≈ 1

4π
5
2 ρ

4
3
√
γx4
− 1

26ρ
1
3πxγ2

(
T

Td

)3

exp

[
− ρ

1
3πx√
4πγ

T

Td

]
.

In both cases the large-x expansion has a term that cancels the power law
behaviour at zero temperature and we are left with an exponential decay. The
details of both calculations can be found in Appendix B.1.



Chapter 3

Thermalization and
prethermalization

In this chapter we recall some basic facts about the concept of thermaliza-
tion both in classical and quantum physics, connecting it to system properties
like ergodicity and integrability and describing some important experiments
that gave a particular insight on the subject. We also introduce the idea of
prethermalization presenting some relevant theoretical result, and describe an
experiment that was actually able to observe this phenomenon.

3.1 Ergodicity and equilibration in classical statisti-
cal mechanics

In the classical realm the central concept to understand in order to study the
process of equilibration of a system out of equilibrium is ergodicity. Let us
consider a classical system characterized by the Hamiltonian H which is a
function of a set of variables collectively called x ∈ Γ, where Γ is the phase
space of our system; the value of this x uniquely defines the state of the system
during its time evolution. A generic experiment should give us acces to some
observable O, which is itself a function of the dynamical state of the system:
O(x(t)). However any realistic setup will measure the value of the desired
observable as an average over a discrete amount of time, which is large as
compared to the microscopic timescales of the system,so large that we can
pretend to average over an infinitely long interval of time. Formally, the time
average of an observable is defined as:

O := lim
τ→∞

1

τ

∫ t0+τ

t0

dt O(x(t)).

Despite the conceptual simplicity of this definition, its usage is far from triv-
ial. Indeed, it requires the solution of the corresponding equations of motion
(which are as many as the degrees of freedom, so of the order of the Avogadro
number for a macroscopic system), task that may be hard to achieve. Moreover
the determination of the initial conditions for the dynamics with the necessary
accuracy can be affected by chaoticity: any small error in the evaluation of
the starting point gets exponentially amplified along the evolution so that two

13
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infinitesimally close initial conditions give rise to dynamics that are arbitrarily
distant in the phase-space. This implies that the knowledge of the exact dy-
namics may be extremely difficult to obtain, making it necessary to look for a
different approach.

Statistical mechanics gives us this possibility; it suggests to take infinitely
many copies of a system (anensemble) somehow distributed throughout the
phase space. The ensemble is thus defined by the probability density ρ(x)
that the system is in the state x; this probability density will obey the usual
positivity and unitarity conditions. The choice of the ensemble and of the
corresponding ρ depends on some features of the system and of our knowledge
about it. If, for example, we study an isolated system, we know that the total
energy must be the same in any of its microscopical realizations so the proba-
bility density is nonzero only on the region of the phase space with the correct
energy value, moreover if we do not assue any other feature of its behaviour,
then ρ must be uniform in that subregion. This particular probability density
is widely employed in statistical physics and is known as the microcanonical
distribution ρmc. Once we have introduced the ensemble construction, the out-
come of the measure of O needs to be a weighted averarge over the outcomes
in the different realisations of the system: i.e. an ensemble average.

〈O〉ρ :=

∫
Γ
dx ρ(x)O(x).

An important advantage of the statistical approach is that instead of knowing
exactly the initial state of the system (which is quite an utopic aim), we need
to deal just with a small set of its properties, usually easily controlled by
experimental means (e.g. volume, temperature, etc.).

The connection between these complementary approaches is given by the
concept of ergodicity. The system is said to be ergodic if, for any O and for
almost any initial state x0, the time average is equal to the microcanonical
average, in formulas

O
?
= 〈O〉ρmc .

This is equivalent to the statement that the dynamical evolution of the system
drives it arbitrarily close to any state compatible with energy conservation. If a
system is ergodic we can then compute the long time average of any observable
as an ensemble average. Not every system is ergodic: important exceptions are
integrable system. By definition a classical system with f degrees of freedom
is integrable if there are f independent integrals of motion which are Poisson-
commuting; this means that the equations of motion can be exactly integrated
via action-angle variables and the solutions are forced to move periodically
on tori in the phase space. Thus integrability can confine the dynamics of
the system in a subset of the phase space and the evolution cannot cover it
densely enough; the consequence is that the long-timeaverage is different from
the microcanonical one.
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A requirement stronger than ergodicity is mixing: it requires that the long-
time limit of the expectation value for any observable coincides with the corre-
sponding microcanonical average, this means that if we put the system out of
equilibrium it will evolve towards a stationary state and the observables com-
puted there will have exactly the value given by the microcanonical average.
The difference with respect to ergodicity is that no time average is involved so
if this condition is satisfied it implies ergodicity.

3.2 Thermalization in quantum statistical physics

Dealing with quantum mechanical systems, the counterpart of the state x is
the wavefunction |Ψ〉 ∈ H where H is a vector space called the Hilbert space
and, as in the classical case, we hide in this single function all the information
about the system. Any observable is a function of the state |Ψ〉, so the result
of a measurement is the expectation value of the operator corresponding to the
observable computed over the state of the system,

〈Ô〉Ψ0 = 〈Ψ0| Ô |Ψ0〉 .

The time evolution of this state is governed by the Hamiltonian operator Ĥ
that generates the equation of motion.

ı
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉

The linearity of the Schrödinger equation implies that if we work in the basis
|n〉 of the Hamiltonian, so that Ĥ |n〉 = En |n〉, decomposing the state as

|Ψ0〉 =
∑
n

cn |n〉 ,

then the time evolution looks like:

|Ψ(t)〉 =
∑
n

cne−ıEnt |n〉 .

The number of the cn’s grows with the dimension of the Hilbert space, i.e.
exponentially with the system size so, even in the quantum case, the exact
determination of the initial state of the system and the calculation of its evolu-
tion is practically forbidden for any macroscopic size; therefore we look again
for an alternative statistical description.

The concept of ensemble can be defined also in quantum mechanics by
introducing the density matrix ρ̂: for example the quantum equivalent of the
microcanonical ensemble is the density matrix ρ̂mc

ρ̂mc(E) =
1

N

∑
n∈SE

|n〉 〈n| ,
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where SE is the set of eigenstates |n〉 of Ĥ such that E ≤ En ≤ E + δE with
infinitesimal δE and N is the cardinality of SE . The expectation value of an
observable over this ensemble is

〈Ô〉mc = Tr
[
ρ̂mc Ô

]
=

1

N

∑
n∈SE

〈n| Ô |n〉 .

A naïve extension of the ergodicity condition would require to inspect if the mi-
crocanonical density matrix were equal to the long-time average of the density
matrix, but if we look at this last quantity

|Ψ(t)〉 〈Ψ(t)| =
∑
n

|cn|2 |n〉 〈n|

we deduce that the only way to satisfy this tentative ergodicity requirement
is to impose the condition cn = N−1/2 which is rather special and cannot be
satisfied for a generic initial state [37]. Another important constrain follows
from the unitarity of the quantum evolution: if we take a pure state as a
starting point, its density matrix is ρ̂ = |Ψ0〉 〈Ψ0|; the trace of its square is
identically one and remains constant under the temporal evolution. But a
thermal state has a peculiar density matrix

ρ̂th =
1

Z
e−βĤ ,

which does not satisfy that unitarity condition. This means that true thermal-
ization in a closed system is forbidden and we must necessarily understand it
in an effective sense [2].

A possible sensible definition of thermalization can be proposed if we re-
strict our interest to a subset Λ of the original system, so that the remaining
part Λ will act effectively as a bath and can lead the subsystem to thermaliza-
tion; if we adopt this point of view, the key quantity to look at is the reduced
density matrix

ρ̂Λ = TrΛ [ρ̂]

that is obtained from the original one tracing over the degrees of freedom of
the bath. A meaningful statement about thermalization can now be stated:
we can ask if in the thermodynamic limit, for some subsystem, the long-time
average of the reduced density matrix equals the appropriate density matrix
defined for some statistical ensemble, in formulas

ρ̂Λ(t)
?
= ρ̂Λ,mc.

If this is the case, then the outcome of the measurement of some observable can
be determined equivalently either as the long-time average of the dynamical
expectation value or as the expectation value over the correct ensemble

〈Ψ(t)| Ô |Ψ(t)〉 = Tr
[
Ô ρ̂Λ,mc

]
.
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Analogously, we would like to define a quantum counterpart of integrabi-
lity, but this is not trivial at all [38]: first, it is not clear which should be the
number of degrees of freedom (the size of the system or the dimension of the
Hilbert space?), moreover the projectors on the eigenstates of the Hamiltonian
constitute formally a commuting set of conserved operators thus satisfying a
straightforward extension of the classical definition, but this is true for any
Hamiltonian and thus gives no way to discriminate between systems with dif-
ferent “integrability” behaviour. A sound definition may be the one proposed
by Sutherland [39]: a quantum system is integrable if any scattering is factoriz-
able in a series of binary collisions; this implies that quasi-particles can scatter
only elastically and their identity is preserved upon collisions. In addition to
the conservation of energy, such systems show other non-trivial conservation
laws that allow an exact solution of the model and constrain the dynamics,
therefore they are not expected to show thermalization [3, 4], instead in the
long-time limit their behaviour is usually well described by the Generalized
Gibbs Ensemble (GGE) which is defined by the density matrix that has the
highest entropy and is still compatible with the aforementioned constrains.
Formally, if {În}n is the set of the independent conserved quantities, then[

În , Îm

]
= 0 and

[
În , Ĥ

]
= 0 ∀n,m

and the GGE density matrix is defined as

ρ̂GGE :=
1

ZGGE
e−

∑
n λnÎn

where the partition function is

ZGGE = Tr
[
e−

∑
n λnÎn

]
and the Lagrange multipliers λn are fixed by the consistency of the expectation
values

〈În〉GGE := Tr
[
În ρ̂GGE

]
!

= 〈Ψ0| În |Ψ0〉 ∀n.

Even with this tentative definition of integrability, we still lack a groundend
connection to thermalization like in the classical realm. A proposed answer
to this problem has been the Eigenstate Thermalization Hypothesis (ETH)
[3, 5]. It states that thermalization happens at the level of individual energy
eigenstates so, in order to compute thermal expectation values, it is enough to
average over a single many-body energy level in the appropriate energy window.
In this perspective the time evolution has just the effect of dephasing.

The idea that some observables might reach a prethermal steady state
along the process of thermal equilibration was first mentioned in the context
of high-energy physics [7]: the study of experimental data coming from rela-
tivistic heavy-ions collisions suggested the existence of a two-stage relaxation
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process. Initially (on a time-scale τpt) a dephasing mechanism leads to the
equipartition of energy between kinetic and potential component and the es-
tablishment of an approximately time-independent “equation of state” (i. e.
the functional relation between pressure and energy density); this process is
independent of the details of the interaction and is very rapid. Inelastic col-
lisions are responsible for the existence of a second, larger time-scale τdamp
which characterize the relaxation of mode occupation numbers (see e.g. Fig.
3.1); the most part of the dependence on the initial conditions is already lost
at this stage, even though true equilibration happens only later (for t ∼ τeq).
In particular, for a linear sigma model, they extract the dynamics of integrated
and mode dependenst observables to compute the aforementioned time-scales;
when these are expressed in terms of a reference mass m they find: τpt ∼ m−1,
τdamp ∼ 25 ÷ 28m−1 and τeq ∼ 95m−1, so the prethermalization time-scale is
two orders of magnitude smaller than the equilibration one.

Figure 3.1: Fermion occupation number as a function of time for three differ-
ent momentum modes. Notice that the second, slower, stage of relaxation is
represented in logarithmic scale.

The first important investigation about prethermalization in a condensed
matter framework is the study of the non-equilibrium dynamics of a Fermi–
Hubbard model at half filling in more than one dimension after a sudden inter-
action switch-on [8, 40]. The system Hamiltonian contains a uniform hopping
term between nearest neighbours and a on-site interaction, in formulas it reads

Ĥ = −h
∑
<ij>
σ=↑,↓

ĉ†iσ ĉjσ + θ(t)U
∑
i

n̂i↑n̂i↓

where n̂iσ = ĉ†iσ ĉiσ, and U � h so that the system is always in the Fermi liq-
uid regime. The system is initially prepared in the ground state of the U = 0
Hamiltonian then, as the Heaviside theta function indicates, at t = 0 the in-
teraction is suddenly turned on bringing the system out of equilibrium. The
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Figure 3.2: Relaxation dynamics of the momentum occupation number after
an interaction quench. For an integrable model (right) a non-thermal long-
time limit is observed, whose value is predicted by the GGE; for an almost
integrable model (left) a non-thermal quasi-stationary state is followed by a
second relaxation towards thermal equilibrium, in this case the prethermal
plateau is well approximated by a GGE built with the approximate conserved
quantities of the model.

time evolution is analytically computed using the flow equation method [41]
in the limit of infinite dimensions focusing on three observables: the kinetic
energy, the potential energy and the momentum distribution functions. At
t = 0 both kinetic and potential energy vanish: their sum is kept constant
by the quench but is unevenly parted between the two component and this
redistribution takes place already at an early stage of the time evolution of the
system, when the momentum distribution is still far from its asymptotic value.
Indeed the dynamics of this latter mode-dependent observable is far richer and
can be divided in three stages: initially, for 0 < t . ρ−1

F U−2 where ρF ∼ h−1 is
the density of states at the Fermi energy, there is a short phase during which
correlations between particles are built with the effect that a quasi-particle de-
scription of the system becomes useful; this description remains effective during
the second stage, that appears as a quasi-stationary regime for the observable
under inspection. Later on, for t & ρ−3

F U−4, thermalization occurs and can be
effectively described by a quantum Boltzmann equation: the final state of the
system is a Fermi-Dirac distribution with temperature T ∼ U . This evolution,
therefore, is characterized by two time-scales and the quasi-stationary stage
between the two is a prethermalization plateau. Notice that also in this setup
the “integrated” observables reach their asymptotic value much earlier than the
mode-dependent ones just like in the high-energy framework described above.
Using DMFT it was possible to confirm this results [42] and determine the ex-
istence of a second prethermalization process in the limit of strong interaction
(U � h) [43].

Another important result for the understanding of the prethermalization
phenomenon is the establishment of a direct link between GGE predictions
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and prethermal quasi-stationary states: GGE stationary states for integrable
system could be seen as prethermalization plateaus that never decay and, con-
versely, the prethermal intermediate state of nearly integrable system can be
computed as if it was a GGE asymptotic state constructed with specific quasi-
conserved quantities [10]. Since we will employ this relationship in the fol-
lowing let us understand it in a more formal way; to do this we consider the
Hamiltonian of a system close to integrability

Ĥ = Ĥ0 + gĤ1

where Ĥ0 is integrable and has a set
{
Îα

}
α
of constants of motion so that

Ĥ0 =
∑
α

εαÎα

and Îα |n〉 = nα |n〉. Application of ordinary perturbation theory to study the
evolution after a quanch will lead to the appearance of secular terms that grow
polinomially in time, so it is better to rely on unitary perturbation theory:
we absorb the perturbation term of the Hamiltonian by means of a canonical
transformation generated by an anti-Hermitian operator Ŝ, then we can safely
evolve in time and, at the end of the evolution, transform back to get the
desired quantities; some details about the implementation of this feature can
be found in Appendix A.2. By means of this technique we can construct
the expectation value for an observable at leading order in the integrability
breaking parameter g. The long-time average gives

〈Â〉preth = 〈Â〉t = 2〈Â〉0̃ − 〈Â〉0 +O(g3),

where the averages 〈·〉0 and 〈·〉0̃ are taken respectively on the initial state and on
its transformed. The t→∞ limit in the time average must be understood here
in the sense that g−1 � t� g−2, i.e. it is large enough to enable us to average,
but small enough to prevent the onset of the higher order processes leading
the system to thermalization; this is possible as long as g is so small that the
scales g−1 and g−2 are well separated. It should be also pointed out that this
asymptotic expectation value is generally different from one corresponding to a
thermal ensemble (be it canonical or microcanonical) so if true thermalization
occurs it is due to the O(g3) terms.

Since the Hamiltonian we are dealing with is almost integrable one may
expect that the conservation laws possessed by Ĥ0 are not totally lost; indeed a
set of approximate integrals of motion Ĩα for the full theory can be constructed
and the Hamiltonian can be written as

Ĥ =
∑
α

εαĨα +
∑
ñ

|ñ〉 (gE(1)
n + g2E

(2)
n ) 〈ñ|+O(g3)
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where the meaning of the terms is explained in the appendix. Once we have
these quantities it is straightforward to build the corresponding GGE

ρ̂
G̃

=
1

Z
exp

[
−
∑
α

λαĨα

]

with the constrain
〈Ĩα〉G̃ := Tr

[
ρ̂
G̃
Ĩα

]
!

= 〈Ĩα〉0.

The main claim of Ref. [10] is

〈Â〉preth = 〈Â〉
G̃

+O(g3)

and its proof is outlined in appendix. This result shows that GGE predictions
are valid also away form integrability and can be employed to compute the
value of observables in the prethermalization quasi-stationary state.

3.3 An experimental perspective on thermalization

Recent experimental progresses in cold atoms physics shifted the point of view
on quantum many-body physics from academic to practical. The rising inter-
est in cold atoms is due to some striking properties of this kind of systems:
first of all, their diluteness and coldness imply that they can survive and be
manipulated for a time which is many orders of magnitude longer than the
usual scales of equilibration, thus we are able to inspect dynamical features
that would be otherwise inaccessible. Moreover their interaction can be tuned
via the Feshbach resonances method [44]: Feshbach resonances are low-energy
scattering resonances in the spectrum of cold atomic systems, they can be
tuned with the aid of an external magnetic field in order to give a strong mix-
ing between two neighbouring energy levels. The final effect of this procedure
is the variation of the effective scattering length and consequently a change
in the effective interaction strength among the atoms. Experimentalists also
developed a great control over the realisation of optical lattices and magnetic
traps in which the cold atomic clouds could be loaded, this means that it is
possible to effectively engineer some peculiar condensed matter Hamiltonians
by shaping external potentials and optical lattices in the appropriate fashion:
in particular this allows to build low dimensional models and subsequently
study the interplay between dimensionality and interaction.

As a first example of this kind of experiment we must cite the work of Ki-
noshita et al. [15], who investigated the role of integrability for thermalization
in a system of 1D bosons. They put two one-dimensional clouds of interacting
atoms out of equilibrium in a cigar-shaped confinement and let them collide,
sampling the momentum distribution at given intervals: they found no evi-
dence of thermalization even after many collisions as can be seen in Fig. 3.3.
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Indeed the system under study is very close to an integrable model, apart
from small deviations due to defects in the confinement, so we may expect its
thermalization to be prevented (or at least delayed) by the presence of many
conserved quantities.

Figure 3.3: Left: a sketch of the experimental setup of Ref. [15]. Right: absorp-
tion images for two quasi-one-dimensional clouds of interacting bosons. The
particles scatter at any oscillation, still no appartent sign of thermalization is
visible on the timescale of the experiment.

In turn an important result in the search for the prethermalization plateau
was achieved by the Schmiedmayer group [12] who found strong evidences for
the presence of a non-thermal steady state in a quasi-one-dimensional Bose
system. that was later suddenly split along the longitudinal axis, producing
two uncoupled Bose systems. Although they are indeed uncoupled, they are
not independent since they retain the memory of their common origin from
a single quasi-condensate: they share an almost identical longitudinal phase
profile. The observation of how this memory of the initial state evolves in time
can be followed looking at the phase difference φs(x, t) = φ1(x, t)− φ2(x, t) and
gives important informations on the relaxation of the system and its eventual
approach towards an equilibrium state.

To investigate the evolution they let the system evolve for some time te,
then they released the trap and let the two clouds interfere. They did not
measure directly the local phase difference between the two Bose gases along
the longitudinal direction, instead they looked at the interference pattern along
the transverse direction, integrated it over a variable length L and extracted
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Figure 3.4: Experimental results for the experiment described in Ref. [12].
Left: A) Evolution of 〈C2〉 integrated over the entire length. After a rapid
decay, a slower further evolution sets on. Inset: experimental distributions of
the squared contrast for three different values of te: red lines are the best fit
with equilibrium distributions from which Teff is extracted, blue dashed lines
are the equilibrium distribution at the actual setup temperature B) Evolution
of Teff , the shaded area represents the heating of the trap during the exper-
iment. Right: short time detail of the evolution of 〈C2〉. When integration
is performed on the full cloud the distribution rapidly becomes exponential,
whereas for the shortest integration length the distribution keeps memory of
the initial condition much longer.
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the contrast C(L),

C(L) =
1

L

∣∣∣∣∣
∫ L/2

−L/2
dx eıφs(x,t)

∣∣∣∣∣
2

i.e. the amplitude of the inteference profile wich is a direct measure of the rel-
ative phase fluctuations. If this procedure is performed repeatedly for different
evolution times te it is possible to obtain an image of the evolution of the system
during the relaxation process. Initially, since the phase difference is negligible,
the contrast is large and independendent of the integration amplitude L; as
the evolution proceeds stochastic fluctuations increase the phase difference be-
tween the two parts of the system and this imply that the contrast is reduced
with respect to the initial state, beginning with large L. As a comparison,
two independent 1D clouds separately prepared at equilibrium would show a
very small constrast as a consequence of their independent phases. When this
procedure was applied to the given system they found an initial rapid decay
of 〈C2〉 on the scale of ∼ 10 ms, the emergence of a quasy stationary state
followed by a much slower further evolution. It is apparent that it is crucial
to characterize the intermediate state in order to understand the features of
the relaxation process: to this aim they computed from the measured data
the full distribution of the contrast P (C2)dC2 in the steady state and com-
pared it to the distribution predicted at thermal equilibrium and found that
the experimental observation was remarkably well descripted by an equilib-
rium distribution at some effective temperature Teff which was a factor of five
smaller than the actual temperature: they therefore deduced that this quasi-
stationary state could not be the true thermal equilibrium of the system. To
state more clearly the result it must be observed that for times smaller than
those corresponding to the quasy-stationary state (∼ 10 ms) the distribution
of the contrast could not be described by a thermal equilibrium state at any
effective temperature. Moreover they found that as the system further relaxes,
Teff increases in a way that is consistent with the heating of the trap: this
would suggest that if true thermalization is ever reached by the system, it must
be a very slow process. These features of the examined experimental system
are well described by an integrable model based on the Tomonaga–Luttinger
liquid formalism which also correctly predicts the dependence of the computed
effective temperature on the particle density and on the actual temperature of
the clouds.

The authors claim that the observed quasi-stationary state is actually a
prethermal state as predicted for almost-integrable system [10]. Indeed the
procedures inherent to the realization of a one-dimensional system starting
from a threedimensional cloud necessarily spoil integrability [14]. We there-
fore expect that the system under study should be modeled by an Hamiltonian
which is only close to an integrable point and will eventually thermalize on
some very long time scale. A sensible question in this context regards the
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persistence of the prethermalization plateau: how long does it last? On which
time-scale does subsequent true thermalization begin? The importance of this
concept can be also inferred by its paradigmatic character. Indeed after the
idea of prethermalization was introduced, another experiment by the Schmied-
mayer group [45] performed five years before had to be reinterpreted accord-
ingly. The setup of the two experiments is identical, but in the older one the
measurement was performed for a shorter time and only the coherence factor
was investigated. This quantity is related to the mean interference contrast
but could not offer the same knowledge as the measurement of both the full
probability distribution of phase and contrast of the matter-wave interference
pattern. Moreover the short experimental time prevented them from realizing
the true quasi-stationary character of the prethermal plaeau. The conclusion
of the former paper was that full decoherence and thermalization were found,
but actually in hindsight the authors recognise the outcome of the experiment
must be reinterpreted as a clue of the same fast “integrable” dephasing of the
relative modes in the split of the 1D Bose system. In retrospect we know that
this fast dephasing is followed by a slower true equilibration whose features
were unfortunately invisible so far.
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Chapter 4

Prethermalization in a weakly
interacting Bose system

The main subject of the thesis is the effect of a small interaction quench on a
system of degenerate bosons in one and three dimensions. We will begin by
performing calculations in the Bogoliubov approximation at zero temperature
using techniques closely related to the one used in equilibrium and we will
look at the long time average of correlation functions. For the aforementioned
desire to perturb only slightly the system, we are interested in small quenches
γ0 → γ1, therefore we will usually fix γ1 and expand the results in δγ = γ0−γ1.
In a subsequent section we will define of a set of Green functions suitable
to describe the evolution of the condensate and its thermal cloud, we will
introduce the Keldysh contour integration in order to describe the evolution of
these functions out of equilibrium and show that this procedure gives the same
result of the previous one though it is in principle the ideal framework to move
beyond the Bogoliubov approximation. As an example, we will look at the
effect of the inclusion of a Hartree–Fock term in the interaction Hamiltonian.

The stationary state found with the previous techniques is a prethermal-
ized one, as we will show that it is not possible to describe it in terms of an
effective temperature, but rather in terms of a GGE. Investigation of the dy-
namics towards pretermalisation and thermalisation is also performed in order
to compare the two processes in the perspective of being able to distinguish
them experimentally.

4.1 Interaction quench

In Section 2.2 we computed the equilibrium expectation value of the corre-
lation functions in the Bogoliubov approximation. In this section we will be
interested in the evolution of the same quantities after a sudden change in the
interaction parameter. In the following the density of the condensate fraction
will be considered as a constant parameter of system; this assumption can
be relaxed, as shown in Appendix A.4, even though for realistic values of the
system parameters the effect of the variation of the density is negligible. The
technique used to compute these time-dependent expectation values is analo-
gous to the one used in equilibrium provided we use consistently the fact that

27
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both the initial and the final Hamiltonian are diagonalizable by means of a
Bogoliubov rotation, though with different parameters. If we still call b̂k and
b̂†k the operators that diagonalize the final Hamiltonian and uk and vk the
parameters of the corresponding rotation, for the initial Hamiltonian we write

Ĥ(γ0) = E0(γ0) +
∑
k

ε(k, γ0) ĉ†kĉk (4.1)

and
âk = rk ĉk + sk ĉ

†
-k. (4.2)

This last relation implies that it is also possible to write the final b̂k’s in terms
of the initial ĉk’s; formally

b̂k = χk ĉk + ωk ĉ
†
-k (4.3)

where

χk = ukrk − vksk =
ε(k, g1) + ε(k, g0)

2
√
ε(k, g1)ε(k, g0)

(4.4)

ωk = uksk − vkrk =
ε(k, g1)− ε(k, g0)

2
√
ε(k, g1)ε(k, g0)

.

Once these new quantities are defined we can proceed with the computation
in a way closely related to the equilibrium one

gp(t) =
1

ρ2
〈φ0|

(
ψ̂†(r, t)

)p (
ψ̂(r, t)

)p
|φ0〉 (4.5)

= 1 +
p(p− 1)

ρLD

∑
k

[
ukvk(χ

2
k + ω2

k) + u2
kω

2
k + v2

kχ
2
k+ (4.6)

+ χkωk(uk + vk)
2 cos(2ε(k, γ1)t)

]
, (4.7)

where |φ0〉 is the state of the system before the quench, i.e. the ground
state of Ĥ(γ0). The calculation above is shown in greater detail in Appendix
C.1. The asymptotic long-time limit of the latter expression, denoted in the
following with an overline can be obtained computing the time average. After
substitution of the coefficients and some algebra, in thermodinamic limit we
get

gp = 1 +
p(p− 1)

2ρ

ΩD

(2π)D

∫ ∞
0
dk kD−1

[
E(k)

ε(k, γ0)2 + ε(k, γ1)2

2ε(k, γ0)ε(k, γ1)2
− 1

]
. (4.8)

For the one-dimensional case this can be computed analytically

gp=1− p(p− 1)
√

2

π

√
γ0+


p(p−1)√

2π

√
γ0−γ1 arccosh

[√
γ0
γ1

]
if γ0 > γ1

−p(p−1)√
2π

√
γ1−γ0 arccos

[√
γ0
γ1

]
if γ0 < γ1

, (4.9)
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but in three dimensions calculations are not that straightforward using however
the smallness of the quench we can expand the integrand with the substitution
γ0 = γ1 + δγ:

ε(k, γ0) =

√
E(k)2 + 2ρE(k)Ṽ (k, γ1 + δγ)

=

√
E(k)2 + 2ρE(k)Ṽ (k, γ1) + 2ρE(k)Ṽ (k, δγ) (4.10)

= ε(k, γ1)

1 +
ρE(k)∂γ Ṽ (k, γ)

ε(k, γ1)2
δγ − 1

2

(
ρE(k)∂γ Ṽ (k, γ)

ε(k, γ1)2

)2

(δγ)2

 ,

1

ε(k, γ0)
=

1

ε(k, γ1)

1− ρE(k)∂γ Ṽ (k, γ)

ε(k, γ1)2
δγ +

3

2

(
ρE(k)∂γ Ṽ (k, γ)

ε(k, γ1)2

)2

(δγ)2

 .
We may insert this expansion in the expression for gp and it is just a matter
of algebraic manipulations to see that terms linear in δγ cancel out and we are
left with

gp = 1 +
p(p− 1)

2ρ

ΩD

(2π)D

∫ ∞
0
dk kD−1

[
E(k)

ε(k, γ0)2 + ε(k, γ1)2

2ε(k, γ0)ε(k, γ1)2
− 1

]
≈ 1 +

p(p− 1)

2ρ

ΩD

(2π)D

[∫ ∞
0
dk kD−1

(
E(k)

ε(k, γ1)
− 1

)
+ (4.11)

+
ρ

4
DΩ2

D

m2µ2(1−D)
(δγ)2

∫ ∞
0
dk

kD−1

(k2 + µ2)D−1

E(k)3

ε(k, γ1)5

]
.

One may notice that the first two terms give just the equilibrium value of gp
corresponding to the final value of the interaction whereas the dependence on
the quench amplitude is contained in the last term.

To understand how this long-time limit is reached we should look at the
dynamics of the system by computing goscp (t), the time dependent term of
Eq. 4.1:

goscp (t) =
p(p− 1)ΩD

4ρ(2π)D

∫ ∞
0
dk kD−1E(k)

ε(k, γ1)2−ε(k, γ0)2

ε(k, γ0) ε(k, γ1)2
cos(2ε(k, γ1)t).

(4.12)
Despite the fact that hese integrals cannot be exactly computed, we can eval-
uate the long-time behaviour for a small quench. Since the numerator in the
integrand is linear in δγ, to keep the calculation at first order in this parameter
we retain just the zeroth order expansion in the denominator; moreover we use
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for ε(k) its low energy approximation:

goscp (t) ≈ −
p(p− 1)Ω2

D

(2π)D
µD−1ρ

2
D

2mρ
δγ

∫ ∞
0
dk kD−1 E(k)2

ε(k, γ1)3

cos(2ε(k, γ1)t)

(k2 + µ2)
D−1
2

≈ −
p(p− 1)Ω2

D

(2π)D
ρ

2
D
−1

2m
δγ

∫ ∞
0
dk kD−1 E(k)2(

kρ
1
D

m

√
ΩDγ1

)3 cos

(
2
kρ

1
D

m

√
ΩDγ1 t

)

= − p(p− 1)

(2π)Dρ2+ 2
D

mD+1

2D+4

1√
ΩD

d γ
D+4
1

δγ

tD+1

∫ ∞
0
dλ λD cos(λ)

= − p(p− 1)

(2π)Dρ2+ 2
D

mD+1

2D+4

1√
ΩD

d γ
D+4
1

δγ

tD+1
sin

(
Dπ

2

)
Γ(D + 1)

tD+1
. (4.13)

At large times gp should decay as t−2 in one dimension and as t−4 in three
dimensions. These behaviors are compatible with the numerics as can be seen
in Fig. 4.1.

Figure 4.1: Logarithmic plot of gosc2 (t). The red line corresponds to 4.13.

At fixed finite separation x and for late times in 1D we obtain:

gosc2 (x, t) ≈ − ρ

πm
δγ

∫ ∞
0
dk

E(k)2(
kρ
m

√
2γ1

)3 cos

(
2
kρ

m

√
2γ1 t

)
cos(kx)

= − 1

8π

δγ√
2γ1

8t̃2 + x̃2

(8t̃2 − x̃2)2
, (4.14)
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where t̃ = t ρ2γ1
m and x̃ = xρ

√
γ1. In 3D we get

gosc2 (x, t) ≈ − 1

π2

ρ−
1
3

2m
δγ

∫ ∞
0
dk k2 E(k)2(

kρ
1
3

m

√
4πγ1

)3 cos

(
2
kρ

1
3

m

√
4πγ1 t

)
sin(kx)

kx

(4.15)

=
1

32π
7
2

√
γ δγ

3t̃2 + x̃2

(t̃2 − x̃2)3
. (4.16)

In the long time limit for negligible separation we recover the t−(D+1) asymp-
totic behaviour.

A study of g2(x, t) within the time-dependent Bogoliubov approximation
was previously performed in Ref. [46], where, however, only two particu-
lar quenches were considered: from a finite value of interaction to the non-
interacting gas and viceversa (notice that these particular quenches lay outside
the domain of validity of our approach since we need δγ � γ to hold both for
the initial and final interaction strength γ). It was found that for the quench
from finite to zero interaction one obtains a power law decay gosc2 (x, t) ∼ t−1,
whereas for the reverse quench the approach to the stationary state is asymp-
totically fast

gosc2 (t) ∼ e−gρt. (4.17)

This was attributed to the different low-energy behaviour of the final Hamilto-
nian. Indeed when the final Hamiltonian is non-interacting the group velocity
of the quasi-particles is proportional to the momentum and the wave-packet
spreads as it moves. On the contrary when the final Hamiltonian is interact-
ing we have a linear dispersion relation at low energy so the group velocity is
constant meaning that a wave-packet would not spread. This latter behaviour
would give a faster decay of correlation. Notice however that their argument is
not consistent with the result we obtained since according to it we would ex-
pect the same exponential decay also for our quench between two finite values
of the interaction, while we obtained a mundane power law decay.

4.2 Field theoretic approach

The time evolution of correlation functions can be obtained also more directly
in a field theoretical context and in particular within the Keldysh approach,
whose fundamentals are explained in Appendix A.3. This method has also the
great advantage of being a good starting point to relax some assumptions of
the Bogoliubov approximation and construct a more detailed picture of the
system, let us define the reducible Green function as

Gred(x, y) = 〈T [ψ(x)ψ†(y)]〉 (4.18)
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Figure 4.2: Time evolution of g2(x) for the two dimensionalities for typical
values of the parameters

and separate the contribution of the condensate from that of the thermal cloud
so as to obtain

Gred(x, y) = |ψ0|2 + 〈T [δψ(x)δψ†(y)]〉. (4.19)

In the following we will always discuss the irreducible functions, obtained once
the expectation value of the condensate field is subtracted.

We can describe the bosonic propagator, the presence of a condensate, its
thermal cloud, and the interaction between them in a diagrammatic way, as
done in Fig. 4.3, where solid lines represent quasi-particles, wavy lines stand
for the interaction and dots are condensed particles.

(a)

+

(b)

+

(c)

+

(d)

Figure 4.3: Diagrammatic stucture of interaction between condensate and ther-
mal cloud at first order in the interaction strength. is the interaction, is
a quasi-particle, and is a condensate particle.

The Bogoliubov approximation amounts to considering only the first two
diagrams (a) and (b), while diagrams (c) and (d)are needed in the Bogoliubov-
Hartree-Fock approximation. Let us start with the first two terms. The Hamil-
tonian can be written as

Ĥ =
∑
k6=0

[
E(k) + ρṼ (k)

]
â†kâk +

ρ

2

∑
k6=0

Ṽ (k)
[
â†kâ

†
-k + âkâ-k

]
. (4.20)

Let us now define the “lesser” and “greater” Green functions:

G<(p, t; p′, t′) = −ı〈a†p′(t
′)ap(t)〉 G>(p, t; p′, t′) = −ı〈ap(t)a†p′(t

′)〉. (4.21)
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The same can be done for the anomalous functions

F (p, t; p′, t′) = −ı〈a−p′(t
′)ap(t)〉 F †(p, t; p′, t′) = ı〈a†p(t)a†−p′(t

′)〉. (4.22)

Equations of motion for this functions are computed by commuting them with
the Hamiltonian:

ı
∂

∂t
G<(p, t; p′, t′) = −ı〈a†p′(t

′)
[
ap(t), Ĥ

]
〉

=
[
E(p) + ρṼ (p)

]
G<(p, t; p′, t′)− ρṼ (p)F †(p′, t′; p, t)

(4.23)

and similarly for the derivative with respect to t′

ı
∂

∂t′
G<(p, t; p′, t′) = −ı〈

[
a†p′(t

′), Ĥ
]
ap(t)〉

= −
[
E(p′) + ρṼ (p′)

]
G<(p, t; p′, t′)− ρṼ (p′)F (p, t; p′, t′).

(4.24)

Summing on both sides and restricting to equal time and momentum we get

ı
∂

∂t
G<p,t = −ρṼ (p)

[
Fp,t + F †p,t

]
. (4.25)

With a similar procedure one can find the equations of motion for all the Green
functions and put them together in a compact form

ı∂t

 F + F †

F − F †
G> +G<


p,t

= Λ(p)

 F + F †

F − F †
G> +G<


p,t

(4.26)

where the evolution matrix Λ is

Λ(p) = 2

 0 E(p) + ρṼ (p) ρṼ (p)

E(p) + ρṼ (p) 0 0

−ρṼ (p) 0 0

 . (4.27)

Notice that the eigenvalues of the evolution matrix are {0,±2ε1(p)}.
This system of equations can be solved exactly. The initial condition can be

fixed by writing the Green functions in terms of the operators that diagonalize
the initial Hamiltonian F + F †

F − F †
G> +G<


p,0

=
ı

ε0(p)

 0

ρṼ0(p)

−E(p) + ρṼ0(p)

 . (4.28)
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The solution of the equations of motion is F + F †

F − F †
G> +G<


p,t

= ıE(p)
E(p) + ρ(Ṽ1 + Ṽ0)(p)

ε0ε21

 0

ρṼ1(p)

−(E(p) + ρṼ1(p))

+

+ ıρE(p)
(Ṽ0 − Ṽ1)(p)

ε0ε21

 ε1 sin(2ε1t)

(E(p) + ρṼ1(p)) cos(2ε1t)

−ρṼ1(p) cos(2ε1t)

 .

(4.29)

The correlation functions can be written in terms of these Green functions

g2(x) = 1 + ı
p(p− 1)

ρ

∫
dDk

(2π)D

[
ı+
(
G> +G<

)
k,t + (F − F †)k,t

]
eık·x.

(4.30)
Substituting Eq. (4.29) in Eq. (4.30) one gets the results obtained previously,
Eq. (4.1).

For the sake of completeness let us discuss the insertion of the remaining
two first-order diagrams containing the Hartree–Fock part of the interaction,
even though their use for the characterization of the dynamics is postponed to
future studies. At the operatorial level they correspond to the terms obtained
from the original quartic part of the Hamiltonian once we have contracted all
possible couple of operators.

ĤHF =
1

2

∫
d3x d3y V (r)

[
2〈δψ†xδψx〉δψ†yδψy + 2〈δψ†xδψy〉δψ†yδψx +

+ 〈δψ†xδψ†y〉δψyδψx + 〈δψxδψy〉δψ†yδψ†x
]

=
1

2

∫
d3r V (r)

∑
k

[2(n0 + nr)a
†
kak + (ρ+ αr)a

†
ka
†
-k + (ρ+ α†r)aka-k]

(4.31)

where

nr = n(r) = 〈δψ†xδψx±r〉 = ı

∫
d3k

(2π)3
G<kt e

−ık·r, (4.32)

and

αr = α(r) = 〈δψxδψx±r〉 = ı

∫
d3k

(2π)3
Fkt eık·r. (4.33)

The physical mean-field quantities are just the Fourier transformed Green func-
tions. The equations of motion for the Green functions are computed in the
same way as in the Bogoliubov case

ı∂tG
<
pt = −

∫
d3r V (r)[(ρ+ α†r)Fpt + (ρ+ αr)F

†
pt]e

ıp·r

ı∂tFpt = 2E(p)Fpt +

∫
d3r V (r)[2(ρ+ n0 + nr)Fpt + (ρ+ αr)(G

<
pt +G>−pt)]e

ıp·r

(4.34)
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and by taking the Fourier transform we get the equations of motion for the
integrated quantities

ı∂tn(x) = −
∫

d3r V (r)[(ρ+ α†r)αr−x − (ρ+ αr)α
†
r−x

ı∂tα(x) = 2ı

∫
d3k

(2π)3
E(k)Fkte−ık·x+

+

∫
d3r V (r)[2(ρ+ n0 + nr)αr−x + (ρ+ αr)(2nr−x + δ3(r− x))].

(4.35)

In particular the equation for the depletion is:

ı∂tn(0) = ρ

∫
d3rV (r)(α†r − αr). (4.36)

With the Keldysh machinery we can also study the evolution of the con-
densate wavefunction ψx = ψ(x, t) which must be considered a dynamical
quantity just like the propagators. The full diagramatic representation of the
condensate at first order is shown in Fig. 4.4.

= = = =

Figure 4.4: Diagrammatic representation of the condensate particle. The
meaning of the symbols is the same as in Fig. 4.3.

that translates into formulas as

〈ψx〉 = 〈ψx〉0 +

∫
C
dτ
∫

d3x1 d3x2 V (|x1 − x2|)G0(t, x; τ, x1)×

× [ıG0(τ, x2; τ, x2)〈ψx1〉0 + ıG0(τ, x1; τ, x2)〈ψx2〉0 + 〈ψx1〉0〈ψx2〉0〈ψ†x2〉
0]

(4.37)

When we evaluate the time integral on the Keldysh contour depicted in
Fig. 4.5, substituting the bare condensate functions with the full ones inside
the integrals, we get three terms on which we should apply the operator (ı∂t +
∇2/2m) in order to obtain the equation of motion. The first term is evaluated



36CHAPTER 4. PRETHERMALIZATION OF WEAKLY INTERACTING BOSONS

as:

ı

∫
d3x1d3x2V12

∫ t

−∞
dτ
[
G0>(x, t;x1, τ) G0T (x2, τ ;x2, τ) +

− G0<(x, t;x1, τ) G0T̃ (x2, τ ;x2, τ)

]
〈ψx1〉

ı

∫
d3x1d3x2V12

∫ t

−∞
dτ
[
G0> −G0<

]
(x, t;x1, τ) G0T (x2, τ ;x2, τ)〈ψx1〉

↓ apply (ı∂t +
∇2

2m
)

ı

∫
d3x1d3x2V12(−ı)δ3(x− x1) G0T (t, x2; t, x2)〈ψx1〉

〈ψx〉
∫

d3x2V (x2) G0T (x2, t;x2, t)

〈ψx〉
∫

d3x2V (x2)

∫
d3yG0T (x2, t; y, t)δ

3(y − x2)

〈ψx〉
∫

d3x2V (x2)

∫
d3y(− ı

2
)[δ3(y − x2)]2

− ı

2

〈ψx〉
L3

∫
d3x2V (x2)

− ı

2L3
〈ψx〉Ṽ (0) (4.38)

an identical term comes from the second part of the integrand, whereas the
third part gives a different result

ı

∫
d3x1d3x2V12

∫ t

−∞
dτ
[
G0> −G0<

]
(x, t;x1, τ)〈ψx1(t)〉〈ψx2(t)〉〈ψ†x2(t)〉

↓ apply (ı∂t +
∇2

2m
)

ı

∫
d3x1d3x2V12

[
G0> −G0<

]
(x, t;x1, t)〈ψx1(t)〉〈ψx2(t)〉〈ψ†x2(t)〉∫

d3x1d3x2V12δ
3(x− x1)〈ψx1(t)〉 |〈ψx2(t)〉|2

≈ Ṽ (0)〈ψx(t)〉 |〈ψx(t)〉|2 (4.39)

Collecting all the pieces and disregarding the O(L−3) terms whose contribution
is negligible in thermodynamic limit we get(

ı∂t +
∇2

2m

)
〈ψ(x, t)〉 = Ṽ (0)〈ψ(x, t)〉 |〈ψ(x, t)〉|2 , (4.40)

which is a Gross–Pitaevski equation.
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τ

C
t

Figure 4.5: Keldysh contour for the condensate wave-function

4.3 Effective temperature or GGE?

The correlation functions we calculated within the Bogoliubov approximation
always relax to a finite value in the long time limit. This relaxation is related
to inhomogeneous dephasing of noninteracting Bogoliubov quasi-particles: we
therefore expect these stationary states not to be thermal, hence not described
by a single effective temperature. In order to see this we study the relation
between the value of g2 after a quench and the value at equilibrium at an
effective temperature Teff corresponding to the energy EQ injected in the
quench.

Let us start by computing the energy injected in the quench. We have

EQ = E0(γ1) +
∑
k

ε(k, γ1) 〈φ0| b†kbk |φ0〉

= E0(γ1) +
∑
k

ε(k, γ1)|ωk|2

= E0(γ1) +
ΩD LD

4(2π)D

∫ ∞
0
dk kD−1 [ε(k, γ1)− ε(k, γ0)]2

ε(k, γ0)
. (4.41)

In 1D, for a small quench we get

EQ = E0(γ1) +
Ω

1
D

√
2π

ρ3

m
√
γ1

(δγ)2, (4.42)

which is to be compared to the energy at a given (small) temperature ET

ET = E0(γ1) + Ω
1
D

√
2πm

12ρ
√
γ1
T 2. (4.43)

Inverting this expression we find the relation Teff = (2
√

6/π)Td δγ. If the
state of the system would be thermal substituting Teff into the thermal g2 we
should obtain in the stationary state

g2(Teff ) = 1− 2
√

2

π

√
γ +

1

2
√

2π
γ
− 3

2
1 (δγ)2. (4.44)

Instead we have

g2 = 1− 2
√

2

π

√
γ +

1

6
√

2π
γ
− 3

2
1 (δγ)2. (4.45)
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From this simple exercise, we see that despite being parametrically similar, the
value after the quench is constantly smaller than the corresponding thermal
one.

We can attempt the same analysis in 3D despite the fact that the inte-
grals cannot be solved analytically. Let us by focusing on a particular quench,
namely from zero to finite interaction. We can calculate for different observ-
ables the equilibrium value at given γ and T and compare with the long-time
average of the same quantity after the quench. By comparison one should be
able to get a value for the effective interaction and temperature corresponding
to the quench. The hope is that the outcomes from different quantities are
consistent. As an example let us consider the 3D case with delta interaction

g2(x) = 1− 1

2π2ρ
4
3x4√γ

+
1

ρπ2

∫ ∞
0

dkk2E(k)

ε(k)

1

e
ε(k)
T − 1

sin(kx)

kx

≈ 1− 1

2π2ρ
4
3x4√γ

+
1

ρπ2

∫ ∞
0

dkk2 k
2

2m

1

ck

1

e
ck
T − 1

sin(kx)

kx

= 1− πT 3

2mρxc4
coth(

πTx

c
) cosh(

πTx

c
)−2

≈ 1− πτ3

4ρ
1
3xγ2

e−
πρ

1
3 xτ√
γ , (4.46)

where τ = T/Td. Here we used twice the large x limit, once to expand ε(k) and
keep only its linear part with coefficent c, and then to express the hyperbolic
functions in terms of a single exponential. Let us compare this to the case of
a quench from zero to finite interaction γ̃

g2(x) = 1− γ̃

2πρ
1
3x

e−2ρ
1
3 x
√
γ̃ , (4.47)

One might be tempted to define both effective temperature and interaction as

τ =
8

π2
γ̃ γ =

16

π2
γ̃. (4.48)

in order to put the two expressions in direct correspondence; the prefactors
depend on the scale we choose to define the temperature, but the qualitative
behavior is fixed and is consistent with the expression for the depletion. Indeed
at equilibrium at small temperature and interaction we have from Ref. [47]

nex =
1

3π2
γ

3
2

[
1 + (2π)2 τ

2

γ2

]
(4.49)

and after the quench

nex =
1

4π
γ̃

3
2 . (4.50)
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Notice however that the procedure above is far from being general; indeed, if we
instead perform a quench between two finite values of the interaction (γ0 → γ1)
the result is radically different. The depletion can be exactly computed to be

nex =
1

3π2
γ

3
2
0 −

1

2π2
γ1
√
γ1 − γ0 arccos

(√
γ0

γ1

)
(4.51)

and the non-local correlation function for large separation is well approximated
by

g2(x) = 1− 1

4π2ρ
4
3x4

γ0 + γ1

γ1
√
γ0
. (4.52)

For a small quench we can expand γ1 = γ0 + δγ. Notice that this expansion is
different from the one used before and will give rise to terms linear in δγ,

nex =
1

3π2
γ

3
2
0 −

1

2π2

√
γ0 δγ g2(x) = 1− 1

2π2ρ
4
3x4√γ0

+
δγ

4π2ρ
4
3x4γ

3
2
0

. (4.53)

At the same time we know that at equilibrium at zero temperature we have

nex =
1

3π2
γ

3
2 g2(x) = 1− 1

2π2ρ
4
3x4√γ

, (4.54)

and if we expand this γ as γ = γ0 + δ̃γ we get expressions identical to those
coming from the quench with δγ = δ̃γ. In this case an effective temperature
can hardly be defined.

While in 1D the system under analysis is a simple limit of a Lieb–Liniger
model, thus integrable and never thermalizing, in higher dimensions we expect
the interaction between the quasi-particles to lead to the thermalization of the
system and our observables should reach their equilibrium value corresponding
to the final equilibrium temperature. The stationary state found here should
therefore be only a prethermalized one that should be described by an effective
GGE.

Since the description in terms of a thermal ensemble does not work let us
now attempt a description in terms of a GGE. After the quench the Hamilto-
nian is

Ĥ(γ1) = E0(γ1) +
∑
k

b̂†kb̂k = E0(γ1) +
∑
k

n̂1(k), (4.55)

so the occupation numbers for any level k are conserved quantities and we can
build the corresponding Generalized Gibbs Ensemble

ρ̂GGE =
1

Z
e−

∑
k λkn̂1(k) =

1

Z

∏
k

e−λkn̂1(k). (4.56)

From the unitarity of the trace it follows that

1 ≡ Tr[ρ̂GGE ] =
1

Z

∑
{α}

〈α|
∏
k

e−λkn̂1(k) |α〉 =
1

Z

∏
k

∑
n

e−λkn =
1

Z

∏
k

1

1− eλk
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where α is an eigenstate of
⊗

k n̂1(k), and so

lnZ = −
∑
k

ln (1− eλk). (4.57)

As we explained earlier, the Lagrange multipliers λk are fixed by imposing the
correct expectation for the conserved quantities on the initial state, in this case
if we apply the operator on the state of the system before the quench we get

〈φ0| n̂1(k) |φ0〉 = 〈φ0| b̂†kb̂k |φ0〉 = ω2
k 〈φ0| ĉ†kĉk |φ0〉 = ω2

k. (4.58)

This quantity is showed in Fig. 4.6, computing its average in the GGE ensemble
we obtain

Tr[n̂1(q)ρ̂GGE ] =
1

Z

∑
{α}

〈α| n̂1(q)
∏
k

e−λkn̂1(k) |α〉

=
1

Z

∏
k

∑
nk

nqe−λknk

= −∂λq lnZ

= 1 +
1

eλq − 1
. (4.59)

Comparison between these two quantities gives

lnλq =
ω2
q

ω2
q − 1

. (4.60)

We might use this knowledge to construct the expectation for g2: since we per-
formed all the calculation in the Bogoliubov approximation, i.e. at quadratic
order, we keep the same level of approximation in the following and obtain

Tr [ĝ2 ρ̂GGE ] =
1

ρ2
Tr
[
ψ̂†ψ̂†ψ̂ψ̂ρ̂GGE

]
≈ 1

ρ2
Tr
[(
ψ4

0 + ψ2
0(δψ̂δψ̂ + δψ̂†δψ̂† + 4δψ̂†δψ̂)

)
ρ̂GGE

]
= 1 +

2

ρLD

∑
k

[
(uk + vk)

2ω2
k + vk(uk + vk)

]
= 1 +

1

ρ

ΩD

(2π)D

∫ ∞
0
dk kD−1

[
E(k)

ε(k, γ0)2 + ε(k, γ1)2

2 ε(k, γ0)ε(k, γ1)2
− 1

]
,

(4.61)

which gives back equation (4.1), thus suggesting that, at quadratic level, the
GGE prediction is correct. More details on the above calculation can be found
in Appendix C.2.
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Figure 4.6: Momentum occupation as a function of k. The occupation rapidly
decays as k−1.

What happens however if we consider the two-particle correlator computing
that via Wick theorem?〈
δψ̂†δψ̂†δψ̂δψ̂

〉
GGE
∼
〈
δψ̂†δψ̂†

〉
GGE

〈
δψ̂δψ̂

〉
GGE

+2
〈
δψ̂†δψ̂

〉2

GGE

=
1

L2D

(∑
k

ukvk(2ω
2
k + 1)

)2

+2

(∑
k

[
(u2
k + v2

k)ω
2
k + v2

k

])2
 .

(4.62)

The time average of the expectation value, instead, is computed from the
decomposition〈
δψ̂†(t)δψ̂†(t)δψ̂(t)δψ̂(t)

〉
∼
〈
δψ̂†(t)δψ̂†(t)

〉〈
δψ̂(t)δψ̂(t)

〉
+2
〈
δψ̂†(t)δψ̂(t)

〉2
,

where now the averages are performed on the state of the system before the
quench and the different terms have already been computed in Appendix C.1.
Substituting and averaging over time gives

〈
δψ̂†δψ̂†δψ̂δψ̂

〉
=

1

L2D

(∑
k

ukvk(2ω
2
k + 1)

)2

+ 2

(∑
k

[
(u2
k + v2

k)ω
2
k + v2

k

])2

+

+
∑
k

ω2
kχ

2
k(u

2
k + v2

k)
2

]
. (4.63)

The two expressions are different: the additional component in the long time
average comes from terms whose oscillating part cancel out when they are
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multiplied, so the discrepancy comes from the fact that the time average of
the product is not the product of the time averages: the GGE prediction cannot
be relied on already at this level. Notice however that terms of this type, while
being in principle present in the calculation of g2, have to be consistently
neglected in the Bogoliubov approximation and represent correction of order
L−2D, unimportant for our purposes.

4.4 Boltzmann Equation

In three dimensions the interaction among Bogoliubov quasi-particles (scatter-
ing, as well as decay) is expected to lead to the thermalization of the system. In
order to study the decay from the prethermal plateau to a full thermal state let
us first consider quasi-particle decay. Indeed, if the dispersion relation satisfies
∂2ε(p) > 0 then quasi-particles can decay in two other quasi-particles [36, 48],
thus we are compelled to consider this three-particles process before the four-
particles scattering.

To understand the phonon decay one should start from the hydrodinamic
description of the superfluid. In this framework the expression for the energy
is

Ĥ =

∫
d3r

[m
2
∇φρ∇φ+ e(ρ)

]
, (4.64)

where ρ and φ are canonically conjugate and represent the density and the
phase of the superfluid wavefunction respectively, and the function e(ρ) is the
internal energy per particle.

We promote the observables to operators and define ρ̂′ = ρ̂ − ρ0 as the
fluctuation around the average density. Expand in ρ̂′ and v̂ = ∇φ̂

Ĥ(0) =

∫
d3r e(ρ0) Ĥ(1) =

∫
d3r ρ̂′∂ρe(ρ0)

∣∣
ρ0

= 0, (4.65)

since ρ̂′ is just the fluctuation above the average and thus must integrate to
zero. Then

Ĥ(2) =

∫
d3r

[
mρ0

2
v̂2 +

mu2

2ρ0
ρ̂′2
]

(4.66)

Ĥ(3) =

∫
d3r

[
m

2
v̂ρ̂′v̂ +

m

6
∂ρ0

(
u2

ρ0

)
ρ̂′3
]
, (4.67)

where u2 = ∂2
ρ e(ρ)

∣∣
ρ0

is the squared sound velocity. We write ρ̂′ and φ̂ in
quantized form

φ̂(r, t) = L−
3
2

∑
k

√
u

2ρ0m k

[
b̂keı(k·r−ukt) + b̂†ke

−ı(k·r−ukt)
]

ρ̂′(r, t) = L−
3
2 ı
∑
k

√
ρ0 k

2mu

[
b̂keı(k·r−ukt) − b̂†ke

−ı(k·r−ukt)
]
, (4.68)
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whose coefficients are fixed by the continuity equation ∂tρ̂′ = −ρ0∇ · ∇φ̂ and
the commutation relation

[
φ̂(x), ρ̂′(y)

]
= −ım−1δ(x− y).

The second order term, upon substitution of the operators gives

Ĥ(2) =
∑
k

uk(b̂†kb̂k +
1

2
), (4.69)

validating the interpretation of u as the sound velocity, the third order terms
give rise to phonon decay. To calculate the decay rate we apply Fermi Golden
rule:

dw = 2π|Vif |2δ(Ef − Ei)
L6

(2π)6
d3p2 d3p3. (4.70)

The matrix element Vif is computed on states compatible with the decay of
a phonon of momentum p1 in two other of momenta p2 and p3 or with the
reverse process. For example for the decay the only surviving terms in Ĥ(3)

are those proportional to b̂p1
b̂†p2

b̂†p3
, and there are six terms of this kind:

Vif = 〈f | Ĥ(3) |i〉

= −ıδ(p1 − p2 − p3)
3!(2π)3

2(2L3)
3
2

√
u

mρ0
p1p2p3

[
1 +

ρ2
0

3u2
∂ρ0

u2

ρ0

]
e−ıu(p1−p2−p3)t

(4.71)

Since all the momenta are small by construction, the product of the three,
inside the matrix element, guarantees the applicability of perturbation theory.
The square of the matrix element would actually contain the square of a delta
function which must be replaced with the substitution

[δ(p1 − p2 − p3)]2 =

(
L

2π

)3

δ(p1 − p2 − p3), (4.72)

which comes directly from the integral representation of the delta function.
Integration on the product momenta gives the following expression for the
decay probability per unit time:

w =
3p5

1

320πmρ0

[
1 +

ρ2
0

3u2
∂ρ0

u2

ρ0

]2

. (4.73)

As mentioned before, quasi-particles follow Bose–Einstein statistics so we should
actually include the non-thermal occupation of final states. If this modifica-
tion is performed it turns out that for realistic values of the parameters and for
small quenches the result is unchanged, indeed the np terms are of order 10−3

after the quench (as a reference, ρ ∼ 103 µm−3, γ ∼ 10−2 and δγ ∼ 10−4).
To determine the dynamics towards thermalization we now write the Boltz-

mann equation for the unknown distribution f(r, p; t)(
∂t +

p

m
∇r + F∇p

)
f(r, p; t) =

(
∂f

∂t

)
coll

. (4.74)
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Since we work in an homogeneous system, the space derivative is zero and
the diffusive term is thus disregarded, we neglect also the external force field
although the particles are supposed to be somehow confined. Thus we are left
with the collision term in the Boltzmann equation: for the specific process we
are interested in the kernel comes from the diagrams shown in Fig. 4.7(

∂f

∂t
(p1; t)

)B
coll

=
L6

(2π)5

∫
d3p2d3p3 [(1 + f1)f2f3 − f1(1 + f2)(1 + f3)]×

× |Vif |2δ(Ef − Ei), (4.75)

where the superscript B labels the “Beljaev” term and we simplified the expres-
sion with the shorthand notationf1 = f(r, p1; t). This kernel correctly becomes
zero if f is replaced with f0(p) = (eβε(p)−1)−1 which is just the Bose–Einstein
distribution that we expect at equilibrium where the time derivative vanishes.

p1

p2

p3 p2

p3

p1

Figure 4.7: “Beljaev” diagrams

To proceed further we linearize the equation around the equilibrium distri-
bution, i.e. we expand it at first order in δf(p; t) = f(p; t)− f0(p); to simplify
the following calculations it turns out that it is better to linearize in terms of
an auxiliary variable ϕ(p, t) defined as

f(p; t) =
1

eβε(p)−ϕ(p,t) − 1
, (4.76)

so that when the variation is performed in the last expression we get

δf(p; t) = f0(p)(1 + f0(p)) ϕ(p, t). (4.77)

After substitution into the collision kernel we get the linearized Boltzmann
equation

∂tϕ(p1, t)
B =

V 2

(2π)5

∫
d3p2 d3p3

f0
2 f

0
3

f0
1

[−ϕ(p1, t) + ϕ(p2, t) + ϕ(p3, t)]×

× |Vif |2δ(Ef − Ei). (4.78)

This collision kernel describes only the decay of the given phonon and the
reverse process of recombination of two phonons into it as shown in picture 4.7.
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p2

p1

p3 p1

p3

p2

Figure 4.8: “Non-Beljaev” diagrams

In order to be consistent, however, we need to take into account all the diagram
of the same order, this means we must consider the process of combination of
our initial phonon with a second one into a third phonon and the inverse decay
process as depicted in Fig. 4.8. The squared matrix element |Vif |2 is the same
as before because it is invariant under permutation of the initial and final
momenta but the second collision kernel, now labeled nB for “non-Beljaev” is(

∂f

∂t
(p1; t)

)nB
coll

=
V 2

(2π)5

∫
d3p2 d3p3 [(1 + f1)f2(1 + f3)− f1(1 + f2)f3]×

× |Vif |2δ(Ef − Ei), (4.79)

which should also be linearized in the vicinity of the equilibrium distribution
to give

∂tϕ(p1, t)
nB =

V 2

(2π)5

∫
d3p2d3p3

f0
2 (f0

3 + 1)

f0
1

[−ϕ(p1, t) + ϕ(p2, t)− ϕ(p3, t)]×

× |Vif |2δ(Ef − Ei). (4.80)

Since the labels of the phonons in the two processes are different, also the
delta functions will be different and this will be reflected in the integration
extrema too. As a last simplification we notice that the second term in square
brackets in equation (4.71) is negligible if realistic values of the parameters are
plugged in, so

∂tϕ1 =
9

23(2π)2

u

mρ0
p1×

×
∫
d3p2d3p3 p2p3

[
f0

2 f
0
3

f0
1

δ(p1−p2−p3)δ(εp1−εp2−εp3)[−ϕ1+ϕ2+ϕ3]

+
f0

2 (f0
3 + 1)

f0
1

δ(p2−p1−p3)δ(εp2−εp1−εp3)[−ϕ1+ϕ2−ϕ3]

]
. (4.81)

First we use the delta over momenta to eliminate one of the integration
variables, then we approximate the energy as purely phononic (thus linear in
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the momentum) to express the second delta as

δ(εp1 − εp2 − εp3) ' 1

u
δ(p1 − p2 − |p1 − p2|) =

|p1 − p2|
u p1p2

δ(1− cos θ) (4.82)

in order to integrate over the angles of the remaining variable. The last pas-
sage assumes the produced phonons are almost collinear with the initial one.
Finally, realizing that f0

q + 1 = −f0
−q and renaming dummy variables, we have

∂tϕp =
9

23(2π)mρ0
×[∫ p

0
dq q2(p− q)2

f0
q f

0
p−q
f0
p

[2ϕq − ϕp] +

∫ ∞
p
dq q2(p− q)2

f0
q f

0
p−q
f0
p

[ϕp − ϕq]+

−
∫ ∞

0
dq q2(p+ q)2

f0
−qf

0
p+q

f0
p

ϕq

]
. (4.83)

Once we dicretise momentum and turn integrals into sums, the RHS of the
last equation can be seen as as the action of a linear operator

L(p, q) = D(p)δpq +K(p, q) (4.84)

so that

∂tϕ(p, t) =
∑
q

L(p, q) ϕ(q, t) = D(p) ϕ(p, t) +
∑
q

K(p, q) ϕ(q, t), (4.85)

and the problem reduces to the diagonalization of the L(p, q) operator.
The off-diagonal elements of this operators are negligible with respect to

those on the diagonal so the eigenvalues are well approximated by D(p). It
can be written in terms of polylogarithmic functions but this gives no insight
in the behaviour of such terms, instead since we have already employed the
small momentum condition and we are anyway relying on the properties of the
phononic part of the energy spectrum we can safely extract just the first terms
in p.

D(p) =
9

23(2π)mρ0

[∫ ∞
p
−
∫ p

0

]
dq q2(p− q)2

f0
q f

0
p−q
f0
p

=
9

23(2π)mρ0
(eβup − 1)

[∫ ∞
p
−
∫ p

0

]
dq

q2(p− q)2

(eβuq − 1)(eβu(p−q) − 1)

≈ − 9βup

23(2π)mρ0

∫ ∞
0

dq
q4eβuq

(eβuq − 1)2

= −3π3

20

p

mρ0β4u4
= −Dp. (4.86)



4.4. BOLTZMANN EQUATION 47

Where for later convenience we collect in D all numerical and parametrical
prefactors. We recall here that β is fixed by the quench amplitude and u2 =
ρ0Ṽ0m

−1.
So ∂tϕ(p, t) = D(p)ϕ(p, t) and from the chosen way to perturb around

equilibrium follows that

np(t)− f0(p) = (npreth(p)− f0(p))eD(p)t

=

[
(ε(p, γ0)− ε(p, γ1))2

4ε(p, γ0)ε(p, γ1)
− 1

eβup − 1

]
eD(p)t

≈
[

1

4µ2

γ0 + γ1√
γ0γ1

− 1

2
− 1

βup

]
e−Dpt (4.87)

Where npreth(p) = |ωp|2 is the level occupation at the prethermal plateau as
computed earlier.

We can express the correlations in terms of the occupation numbers

gp(t) = 1 +
p(p− 1)

2π2ρ

∫ ∞
0
dk k2

[
E(k)

ε(k, γ1)
(2nk(t)− 1)

]
(4.88)

The f0(p) part of nk(t) gives just the equilibrium component of gp(t), so we
focus on the truly time-dependent part of the observable: we can approximae
the dispersion relation with its phononic part and consider only the leading
O(p−1) contribution in np(t). this gives:

gp(t)− gp(eq) =
p(p− 1)

2π2ρ

∫ ∞
0
dk k2 E(k)

ε(k, γ1)

[
npreth(k)− f0(k)

]
eD(k)t

≈ p(p− 1)

2π2ρ

∫ ∞
0
dk

k3

2mu

(
− 1

βuk

)
e−Dpt

= −p(p− 1)

2π2

1

mρβu2

1

D3t3

= −p(p− 1)203

54π29

m2ρ2β11u10

t3
(4.89)

The result for gp(t) is a power law decay as t−3 to be compared with the
t−4 one in the prethermalization stage.

In both cases, therefore, the dynamics follows a power law and this implies
that the natural time scales we would extract from an exponential decay are
not present in the system under examination. This absence of scale separation
suggests a different scenario with respect to Ref. [8, 40], where a clear scale
separation was met by the presence of an apparent prethermalization plateau;
instead for our relaxation the absence of natural scales and the difference be-
tween the two power-law exponents induce us to propose that for threedimen-
sional weakly interacting bosons prethermalization may appear as a crossover
between two different stages of relaxation and not as a clearly defined plateau,
but anyway an experiment may be able to discriminate them.
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Figure 4.9: Logarithmic plot of g2(t) in the two relaxation stages. The lines
line corresponds to Eqs. (4.13) and (4.89). The experiments may be able to
discriminate the crossover between the two regimes.



Chapter 5

Conclusions

This PhD thesis deals with the fascinating subject of the dynamics of a system
after it has been driven out of equilibrium, focusing the attention in particular
on prethermalization. The idea that some observables may reach a non-thermal
quasi-stationary state during the time evolution towards thermalization was
proposed for the first time to describe some experimental evidences emerging
from relativistic heavy-ions collisions but proved to be useful also in condensed
matter physics to address some peculiar features of the relaxation process of
cold atomic systems. Indeed many important results on this subject were
produced in the last years, for example prethermalization was theoretically
predicted for a Fermi–Hubbard system in more than one dimension after a
sudden interaction switch-on, as confirmed by DMRG calculations, and was
experimentally found for a split quasi-one-dimensional condensate.

An interesting candidate to look for prethermalization are those close to
integrability; this is due to the fact that it was proved that this kind of system
possess a set of “almost conserved” integrals of motion by means of which a
Generalized Gibbs Ensemble can be built; the expectation values of many ob-
servables on this ensemble corresponds (up to third order in the integrability
breaking parameter) to the value measured on the prethermal quasy-stationary
state. Actually any experimental setup aimed at realizing an integrable model
will necessarily lead to an almost integrable system since the presence of in-
tegrability breaking effects, however small, is unavoidable. For example also
the famous “Quantum Newton’s Cradle” setup will contain some term that
spoils the integrability of the original model, even though on the timescale
of the experiment its effect its not apparent and the system does not reach
neither thermalization nor prethermalization. The threedimensional version
of that model, instead, is expected to thermalize so quickly that any eventual
presence of a two-stage process would be blurred by a single rapid dephas-
ing. We may wonder, however, if this rapid energy redistribution between the
modes can be avoided in order to let the richer features of the prethermaliza-
tion appear. A possibility in this sense is a different way to bring the system
out of equilibrium: instead of a split (which is expected to inject a lot of en-
ergy) one may perform a small quantum quench and change infinitesimally the
interaction between the atoms. Following this idea, in this work we investi-
gated the effect of a small interaction quench on a system of threedimensional
weakly interacting bosons. Inspired by the recent exact calculation of two and

49
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three-body correlation functions for one-dimensional systems, we chose to fo-
cus on these observables for our study of prethermalization; these observables
are physically relevant since the local three-body correlation is proportional to
the rate of three-body losses and non-local two-body correlation is related to
the characteristic length scale of decay for density–density correlations: this
choice proved to be correct.

In chapter 2 we introduced the Bogoliubov approximation and employed
Bogoliubov rotation to compute the equilibrium behaviour of local and non-
local correlation functions. While part of these results were known, in partic-
ular for one-dimensional systems,we generalized the to higher dimemsions and
used them to characterize the state of the system after the quench. In chapter
3 we presented a brief explanation of the topics of thermalization and prether-
malization and the main results obtained so far: we described the relationship
between thermalization, ergodicity and integrability both in the classical and
quantum world. Then we focused on prethermalization: we gave an overview
of its meaning when it was originally introduced and of some recent results.
In particular we showed how to construct prethermal expectation values from
the almost conserved quantities of the model and described the first experi-
ment in which a prethermalization plateau was found. The original part of
the work is mainly contained in Chapter 4, where the consequences of a small
interaction quench are computed in the Bogoliubov approximation. A station-
ary state for the local and non-local correlation functions was found, whose
features led us to claim it is actually a prethermal state; we also computed the
dynamic behaviour of gp(t): it follows a power law whose exponent is D + 1,
where D is the dimensionality of the system. As expected it was not possi-
ble to define an effective temperature for this state, instead the value of the
correlation functions is well approximated by a GGE prediction. In the same
chapter we showed that this result could be also obtained via Keldysh con-
tour integration and how this field theory approach is a good starting point to
generalise the present results, for example by introducing additional terms in
the Hamiltonian like we did with an Hartree–Fock interaction. Since the sys-
tem should eventually thermalize, we studied the evolution towards thermal
equilibrium by introducing in the Hamiltonian an interaction term between
the quasi-particles that allows two-body decay whose dynamics was computed
via a linearized Boltzmann equation and is again described by a power-law
behaviour, with the relevant difference that for this second stage gp(t) ∼ t−3

so we concluded that in this system prethermalization might actually emerge
as a crossover phenomenon rather than a well defined plateau.

The work presented here can be considered a starting point for a deeper
analysis of the prethermalization behaviour of threedimensional bosons: for
example one could try to employ the Keldysh technique to add higher order
terms to the interaction Hamiltonian; indeed we worked only at the leading
order, thanks to the smallness of the quench, but it may be interesting to look,
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for example, for subleading effects in the behaviour of the condensate cloud and
find a richer description than that given by the Gross–Pitaevskii equation. An-
tother possibility is the search for the presence of a second prethermal plateau
in the case of a small quench but for strongly interacting bosons, as in the
case of the Fermi–Hubbard model; in this case the Bogoliubov approximation
can not be used anymore but one may still rely on Keldysh technique or com-
putational methods like DMRG to predict the time evolution. From a more
experimental perspective, a possible additional line of research may focus on
the effect of this quench on the actual measurement of g3, the three-body local
correlation function. Since it is proportional to the rate of three body losses,
it is usually extracted from experiments by fitting the number of atoms that
leave the condensate as time goes on; if this quantity is itself a time-dependent
variable we may wonder how can one measure it in an independent way.
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Appendix A

A.1 Scattering length

The experimentally measurable quantities are the density ρ and the scattering
length a, so we would like to express all our observables in terms of only these
two observables. In this appendix we show how the scattering length for the
Yukawa potential is computed,w e start from the Schrödinger equation: since
the potential is central we can separate the radial part of the wave function
R(r) from the spherical harmonics. We define χ(r) = rR(r) and determine the
equation for this reduced function

∇2χ(r) +

[
2m(E − V )− l(l + 1)

r2

]
χ(r) = 0

If the potential is absent we have a similar equation for χ0:

∇2χ0(r) +

[
2mE − l(l + 1)

r2

]
χ0(r) = 0.

Multiplying the first by χ0(r), the second by χ(r), subtracting both sides and
integrating on r with the condition that χ(0) = 0 we get

∇χ(r)χ0(r)− χ(r)∇χ0(r) = 2m

∫ r

0
dr′ V (r′)χ(r′)χ0(r′)

For V = 0, the differential equation for the radial part can be solved exactly
for any value of l and E: χ(0)

l (r) = 2rkjl(kr) ≈ 2 sin(kr−πl/2) where the last
approximate identity is valid at great distance. When the potential is present,
in the phase-shift formalism we write χl(r) ≈ 2 sin(kr − πl/2 + δl). On the
LHS of the last equation we found we put the asymptotic expressions whereas
in the RHS, in a Born-approximation perspective, we assume we can treat the
potential as a perturbation so we set χ ≈ χ(0) and we use the exact expression.
In the end

sin δl = −2mk

∫ ∞
0

dr V (r) r2 j2
l (kr).
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In particular for l = 0 for the Yukawa potential V (r) = g r−1 e−µr we get

sin δ0 = −2mkg

∫ ∞
0

dr
e−µr

r

(
sin(kr)

kr

)2

r2

= −2mg

k

∫ ∞
0

dλ
e−

µλ
k sin2 λ

λ

= −mg
2k

ln

(
1 + 4

k2

µ2

)
≈ −2mkg

µ2

(
1− 2

k2

µ2

)
the scattering length as is defined as

−a−1
s = lim

k→0
k cot δ0.

and from the expression of sin δ0 we get

as =
2mg

µ2
.

A.2 Unitary perturbation theory

In this appendix we set the notation and prove some identities that are nec-
essary to understand the connection between prethermalization plateaus and
GGE expectation values for nearly-integrable systems that we want to establish
in Section 3.2. We start with the Hamiltonian of a system close to integrability

Ĥ = Ĥ0 + gĤ1

where Ĥ0 is integrable and has a set {Îα}α of constants of motion so that

Ĥ0 =
∑
α

εαÎα.

In addition we define an anti-Hermitian operator Ŝ that will generate the
required canonical transformations and can be expanded in powers of g as

Ŝ = g Ŝ1 +
g2

2
Ŝ2 +O(g3)

so that the canonical transformation of Ĥ is
ˆ̃
H := eŜĤe−Ŝ

= Ĥ0 + g Ĥ(1) + g2Ĥ(2) +O(g3)

= Ĥ0 + g
(
Ĥ1 + [Ŝ1, Ĥ0]

)
+ g2

(
1

2
[Ŝ2, Ĥ0] + [Ŝ1, Ĥ1] +

1

2
[Ŝ1, [Ŝ1, Ĥ0]]

)
+O(g3)
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The transformed Hamiltonian should retain the Îα as constants of motions, so
we impose [eŜĤe−Ŝ , Îα] = 0 at any order in g for all α to compute

〈n| Ŝ1 |m〉 =
〈n| Ĥ1 |m〉
En − Em

, 〈n| Ŝ2 |m〉 =
〈n| [Ŝ1, Ĥ1 + Ĥ(1)] |m〉

En − Em
,

Ĥ(i) =
∑
n
|n〉E(i)

n 〈n|,

E
(1)
n = 〈n| Ĥ1 |n〉, E

(2)
n =

∑
m6=n

| 〈m| Ĥ1 |n〉 |2

En − Em
,

where |n〉 are eigenstates of the integrals of motion with Îα |n〉 = nα |n〉.
The time-evolution of an observable Â that commutes with all the con-

stants of motion can be perturbatively computed by means of this canonical
transformation as

〈Â〉t = 〈ψ0| eıĤtÂe−ıĤt |ψ0〉

= 〈ψ0| e−ŜeŜ(t)Âe−Ŝ(t)eŜ |ψ0〉

= 〈ψ0| Â+ [Ŝ(t)− Ŝ, Â]− 1

2
[Ŝ, [2Ŝ(t)− Ŝ, Â]] +

1

2
[Ŝ(t), [Ŝ(t), Â]] |ψ0〉+O(g3)

= −2 〈ψ0| ŜÂŜ |ψ0〉+ 2< 〈ψ0| ŜÂŜ(t) |ψ0〉+O(g3)

where Ŝ(t) := eı
ˆ̃
HtŜe−ı

ˆ̃
Ht and the initial state |ψ0〉 is an eigenstate of both

Ĥ0 and Îα and is annihilated by Â. The individual terms in the last row are
computed expanding Ŝ in powers of g and inserting resolutions of the identity
in order to give

〈Â〉t = 〈Â〉0 + 4g2

∫ ∞
−∞
dω

J(ω)

ω2
sin2

(
ωt

2

)
+O(g3)

where
J(ω) =

〈
Ĥ1

(
Â− 〈Â〉0

)
δ
(
Ĥ0 − 〈Ĥ0〉 − ω

)
Ĥ1

〉
0
.

Therefore the long-time average gives

〈Â〉preth := 〈Â〉t = 〈Â〉0 + 2g2

∫ ∞
−∞
dω

J(ω)

ω2
+O(g3)

= 2〈Â〉0̃ − 〈Â〉0 +O(g3).

Let us move to the computation of the approximate constants of motion:
they are just the transformed of the original ones under the canonical trans-
formation defined above:

Ĩα = e−Ŝ ÎαeŜ

= Îα − [Ŝ, Îα] + [Ŝ, [Ŝ, Îα]] +O(g3),
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and the full Hamiltonian can be written as

Ĥ =
∑
α

εαĨα +
∑
ñ

|ñ〉 (gE(1)
n + g2E

(2)
n ) 〈ñ|+O(g3)

where |ñ〉 = e−Ŝ |n〉, Ĥ |ñ〉 = Ẽn |ñ〉 and Ẽn = En + gE(1)
n + g2E

(2)
n + O(g3).

The statement that {Ĩα}α are approximately conserved means that[
Ĥ, Ĩα

]
= O(g3) ∀α.

The corresponding GGE is

ρ̂
G̃

=
1

Z
exp

[
−
∑
α

λαĨα

]
with the constrain

〈Ĩα〉G̃ := Tr
[
ρ̂
G̃
Ĩα

]
!

= 〈Ĩα〉0.

The expectation value of an observable Â on the GGE is

〈Â〉
G̃

:=
Tr[Â e−

∑
α λαĨα ]

Tr[e−
∑
α λαĨα ]

=
Tr[e−ŜÂe−Ŝ e−

∑
α λαÎα ]

Tr[e−
∑
α λαÎα ]

= 〈Â+ [Ŝ, Â] +
1

2
[Ŝ, [Ŝ, Â]]〉G

where the 〈·〉G average is performed on a GGE with the original conserved
quantities Îα but with the λα still constrained as in the transformed average.
Let us assume that the observable can be written as a product of some of the
original conserved quantities,

Â =
n∏
i=1

Îαi ,

Then the second term on the last row vanishes, whereas the other two give

〈Â〉G = 〈
n∏
i=1

Îαi〉G =

n∏
i=1

〈Îαi〉G =

n∏
i=1

〈Ĩαi〉G̃

=

n∏
i=1

〈Ĩαi〉0 =

n∏
i=1

〈Îαi〉0̃ +O(g3)

1

2
〈[Ŝ, [Ŝ, Â]]〉G =

g2

2
〈[Ŝ1, [Ŝ1, Â]]〉0 +O(g3) = 〈Â〉0̃ − 〈Â〉0 +O(g3)

= 〈
n∏
i=1

Îαi〉0̃ −
n∏
i=1

〈Îαi〉0 +O(g3).
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If 〈
∏n
i=1 Îαi〉0̃ =

∏n
i=1〈Îαi〉0̃ then it follows that

〈Â〉preth = 〈Â〉
G̃

+O(g3).

A.3 Keldysh contour

Field-theoretical methods proved to be very useful to solve problems in many-
body physics, indeed they are a general and versatile tool to address questions
concerning these systems; in particular they are ideal to investigate the emer-
gence of collective phenomena, a subject otherwise difficult to approach. In
this appendix we briefly explain the equilibrium situation before describing the
true Keldysh formalism needed for non-equilibrium systems.

Let us say we have an Hamiltonian Ĥ which can be written as:

Ĥ = Ĥ0 + Ĥ1

where Ĥ0 is the free part and is exactly solvable and Ĥ1 is time independent
and contains interaction terms. We call ψ the quantum field our theory deals
with, assuming it’s bosonic just for simplicity. We define the two-time Green
function as the time-ordered two-point correlation function:

G(t, t′) = −ı
〈
T{ψĤ(t)ψ†

Ĥ
(t′)}

〉
0

where the 〈.〉0 means we are averaging on ψ0, the ground state of the full Hamil-
tonian. This expression can be recast in a more transparent form by moving
to the interaction representation and defining the time evolution operator as:

U(t) = eıĤ0te−ıĤt

and
S(t, t′) = U(t)U †(t′) = T e−ı

∫ t
t′ dτĤ1(τ).

Performing the evolution and employing the properties of the evolution matri-
ces we get

G(t, t′) = −ı 〈ψ0|T{S(0, t)ψĤ0
(t)S(t, t′)ψ†

Ĥ0
(t′)S(t′, 0)} |ψ0〉 .

In this representation the fields are evolved via the (simpler) free Hamiltonian
instead of the more difficult complete one but we still do not know how to
take averages on the ground state of the theory. To address this problem we
employ the Gell-Mann–Low Theorem: it states that the ground state of the
full theory at finite time can be constructed by evolving adiabatically the free
ground state φ0 from t = −∞ and that if we continue to evolve it adiabatically
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to t = +∞ we get the original free ground state except for a phase factor. In
formulas this means that

|ψ0〉 = S(0,−∞) |φ0〉
eıL |φ0〉 = S(+∞,−∞) |φ0〉 .

Thanks to this theorem we can write our Green function as

G(t, t′) = −ı
〈φ0|T{S(+∞,−∞)ψĤ0

(t)ψ†
Ĥ0

(t′)} |φ0〉
〈φ0|T{S(+∞,−∞)} |φ0〉

where the denominator comes from the phase factor and cancels out the dis-
connected diagrams of the theory.

Unfortunately the second statement of the Gell-Mann–Low Theorem is not
valid out of equilibrium: indeed if dissipation is present during the temporal
evolution we are no more guaranteed to go back to the original ground state.
Actually we can say nothing about the long-time asymptotic state and we
should rely only on the knowledge of the initial one. The idea behind the
Keldysh formalism is to avoid directly to evolve the system to t = +∞ but,
instead, build a time contour that starts at t = −∞, runs up to a fixed time
tM (whose exact value is irrelevant) and then goes back to t = −∞: this is
known as the Keldysh contour and is shown in Figure A.1.

t

K
t0

Figure A.1: Keldysh contour

On this contour the usual time ordering can still be defined, as well as the
usual evolution operators: this allows us to construct averages in a way really
similar to those we saw when working at equilibrium. To be clear, let us say
that our original system is taken out-of-equilibrium because of the presence of
a time dependent term in the Hamiltonian, namely

Ĥ = Ĥ0 + Ĥ1 + Ĥ ′(t).

Again it is useful to move to interaction representation to define the evolution
operator

S0
K = TK{e−ı

∫
K dτ(H1+H′)0(τ)}

where the K subscript means we are integrating along the keldysh contour
and the 0 superscript means the two Hamiltonian terms are defined in the
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interaction representation. The expectation value of any observable on the
initial state may be written as:

〈
Ô(t)

〉
0

=
〈φ0|TK{S0

K Ô0(t)} |φ0〉
〈φ0|TK{S0

K} |φ0〉
.

For observables with two time arguments (like the correlation functions
we are interested in) we face the problem of the relative position of the two
instants of time along the contour. Are they both on the upper or lower half?
Or maybe one of them is above and the other below? This ambiguity is resolved
by defining a set of four different Green functions

tt′
GT (t, t′) = −ıθ(t− t′)

〈
ψ(t)ψ†(t′)

〉
+ ıθ(t′ − t)

〈
ψ†(t′)ψ(t)

〉
tt′

GT̃ (t, t′) = −ıθ(t′ − t)
〈
ψ(t)ψ†(t′)

〉
+ ıθ(t− t′)

〈
ψ†(t′)ψ(t)

〉
t

t′
G<(t, t′) = −ı

〈
ψ†(t′)ψ(t)

〉

t

t′
G>(t, t′) = −ı

〈
ψ(t)ψ†(t′)

〉
.

They are called the time-ordered, anti time-ordered, lesser and greater Green
funcion respectively. At equibrium they are just the same function but this
identity is no more valid in our non-equilibrium setting. Anyway they are not
independent all since

GT +GT̃ = G< +G>.

Sometimes it is better to introduce the so-called advanced and retarded Green
functions:

Ga(t, t′) = −ıθ(t− t′)
〈[
ψ(t), ψ†(t′)

]〉
= θ(t− t′)(G<(t, t′)−G>(t, t′))

Gr(t, t′) = ıθ(t′ − t)
〈[
ψ(t), ψ†(t′)

]〉
= θ(t− t′)(G<(t, t′)−G>(t, t′))

so that
Gr −Ga = G> −G<.

A.4 Evolution of the condensate density

In Section 4.1 correlators were computed under the assumption that the con-
densate density was constant across the quench and it was simply a parameter
of the Hamiltonian. This assumption can be dropped and the computation can
be repeated taking into account the variation of the condensate density after
the quench: we will thus show that its effect is negligible for realistic values of
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the parameters. Following [49] we can generalize the Bogoliubov rotation to a
time-dependent scenario as

uk(t), vk(t) =

√
1

2

(
E(k) + g1ρ(t)

ε(k, t)
± 1

)
with a time dependent dispersion relation ε(k, t) =

√
E(k)(E(k) + 2g1ρ(t)).

The time evolution for the rotated operators comes from the Heisenberg
equation and gives

dĉk
dt

= −ıεk(t)ĉk + g1ρ̇(t)
E(k)

2ε2(k, t)
ĉ†−k.

Again ĉk and ĉ†−k can be written in term of the b̂k via the coefficients χk and
ωk whose equations of motion are now

dχk
dt

= −ıε(k, t)χk −
E(k)g1

2ε2(k, t)
ρ̇(t)ωk

dωk
dt

= ıε(k, t)ωk −
E(k)g1

2ε2(k, t)
ρ̇(t)χk

In addition we have a self-consistency condition on ρ:

ρ̇(t) = 2ρ(t)
g1

LD

∑
k 6=0

= [χ∗k(t)ωk(t)]

This set of equations allows a stationary state for t → ∞. Indeed let us
assume that ρ̇ ≈ 0 then χk(t) ≈ χske

−ıεs(k)t and an analogous form for ωk,
where s labels the value in the stationary state. Substitution into the last
equation of the set gives in the thermodinamic limit

ρ̇(t) ∝
∫

dk
k2

2π2
=
[
χs∗k (t)ωsk(t)e

2ıεskt
]

In the asymptotic limit this integral vanishes for well-behaved k2χs∗k (t)ωsk(t)
due to destructive interference and this means that the stationary state char-
acterized by ρ̇(t) = 0 is compatible with the equations.

To obtain the stationary state values we proceed iteratively. First we com-
pute ρ̇ using the initial values for ωk and χk, then we obtain a better form of
these coefficients from the first approximation of the condensate density and in
the end we get a second approximation for this quantity. All these steps need to
be performed numerically, in particular we employed a IV-order Runge-Kutta
algorithm to integrate the differential equations for the coefficients ωk and χk.
We did this for different initial states and for different values of the quench
amplitude, obtaining that ρ̇ decays to zero exponentially, with a time scale τ
that is inversely proportional both to g0 and to δg. If ρ̇ = αe−t/τ , then the
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asymptotic value of the condensate density is ρ(∞) = ρ(0)−ατ so our previous
assumption of constant condensate density is correct in the limit of the product
ατ much smaller than the initial density. In our numerical computation such
a product appears to be several orders of magnitude smaller than ρ(0).
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Appendix B

Calculations for Chapter 2

B.1 Finite temperature behaviour at equilibrium

In 1D

g
(T )
2 (x) =

2

ρπ

∫ ∞
0
dk

E(k)

ε(k)

1

e
ε(k)
T − 1

cos(kx)

=
2

ρπ

∫ ∞
0
dk

k√
k2 + 8ρ2γ

(
e
Td
T

k
ρ2

√
k2+8ρ2γ − 1

)−1

cos(kx)

=
2

ρπx

∫ ∞
0
dλ

λ√
λ2 + 8ρ2x2γ

(
e
Td
T

λ
x2ρ2

√
λ2+8ρ2x2γ − 1

)−1

cos(λ)

≈ 1

πρ2x2
√

2γ

∫ ∞
0
dλλ

(
e
Td
T
λ2
√
2γ

xρ − 1

)−1

cos(λ)

=
1

πρ2x2
√

2γ

[
1

2
− π2x2n2

16γ

(
T

Td

)2(
sinh(

πxρT

2
√

2γTd
)

)−2
]

≈ 1

2πρ2x2
√

2γ
− π

4
√

2γ
3
2

(
T

Td

)2

exp

[
− πxρT√

2γTd

]
.

In 3D

g
(T )
2 (x) =

1

ρπ2

∫ ∞
0
dk k2E(k)

ε(k)

1

e
ε(k)
T − 1

sin(kx)

kx

≈ 1

ρπ2

1

2ρ
4
3x
√

4πγ

(
Tm√
4πγ

)3 ∫ ∞
0
dk

k2

eλ − 1
sin

(
Txm

ρ
1
3
√

4πγλ

)

=
1

4π
5
2 ρ

4
3
√
γx4
− 1

28ρ
1
3πxγ2

(
T

Td

)3

coth

(
ρ

1
3πx

2
√

4πγ

T

Td

)
sinh

(
ρ

1
3πx

2
√

4πγ

T

Td

)−2

≈ 1

4π
5
2 ρ

4
3
√
γx4
− 1

26ρ
1
3πxγ2

(
T

Td

)3

exp

(
− ρ

1
3πx√
4πγ

T

Td

)
.

63



64 APPENDIX B. CALCULATIONS FOR CHAPTER 2



Appendix C

Calculations for Chapter 4

C.1 Bogoliubov form of the correlation functions

If the Bogoliubov approximation is performed, the form of the correlation
functions that we want to compute is reduced to

gp(t) =
1

ρ2
〈φ0|

(
ψ̂†(r, t)

)p (
ψ̂(r, t)

)p
|φ0〉

= 1 +
p(p− 1)

ρ

[
〈φ0| δψ̂†(r, t)δψ̂(r, t) |φ0〉+ < 〈φ0| δψ̂(r, t)δψ̂(r, t) |φ0〉

]
Let us compute each term separately

〈φ0| δψ̂†(r, t)δψ̂(r, t) |φ0〉 = 〈φ0| eıĤ(γ1)t δψ̂†(r)δψ̂(r) e−ıĤ(γ1)t |φ0〉

=
1

LD

∑
k,k′
〈φ0| eıĤ(γ1)t(uk b̂

†
k + vk b̂−k)(uk′ b̂k′ + vk′ b̂

†
−k′)e

−ıĤ(γ1)t |φ0〉 eı(k
′−k)·r

=
1

LD

∑
k,k′
〈φ0| (uk b̂†ke

ıε(k,γ1)t + vk b̂−ke−ıε(k,γ1)t)×

× (uk′ b̂k′e
−ıε(k′,γ1)t + vk′ b̂

†
−k′e

ıε(k′,γ1)t) |φ0〉 eı(k
′−k)·r

=
1

LD

∑
k

[
(u2
kχ

2
k + v2

kω
2
k) 〈φ0| ĉ†kĉk |φ0〉+ (u2

kω
2
k + v2

kχ
2
k) 〈φ0| ĉkĉ†k |φ0〉+

+ 2ukvkχkωk cos(2ε(k, γ1)t) 〈φ0| ĉkĉ†k + ĉ†kĉk |φ0〉
]

=
1

LD

∑
k

[(
(u2
k + v2

k)(χ
2
k + ω2

k) + 4ukvkχkωk cos(2ε(k, γ1)t)
)
nk(γ0)+

+ u2
kω

2
k + v2

kχ
2
k + 2ukvkχkωk cos(2ε(k, γ1)t)

]
where

nk(γ0) = 〈φ0| ĉ†kĉk |φ0〉

is the occupancy of the k level in the initial state. We will usually quench the
ground state of the initial Hamiltonian, i.e. the vacuum of the quasi-particles
so all our calculations will be done for nk(γ0) = 0.
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Similarly

〈φ0| δψ̂(r, t)δψ̂(r, t) |φ0〉 = 〈φ0| eıĤ(γ1)t δψ̂(r)δψ̂(r) e−ıĤ(γ1)t |φ0〉

=
1

LD

∑
k,k′
〈φ0| eıĤ(γ1)t(uk b̂k + vk b̂

†
−k)(uk′ b̂k′ + vk′ b̂

†
−k′)e

−ıĤ(γ1)t |φ0〉 eı(k
′+k)·r

=
1

LD

∑
k,k′
〈φ0| (uk b̂ke−ıε(k,γ1)t + vk b̂

†
ke
−ıε(k,γ1)t)×

× (uk′ b̂k′e
−ıε(k′,γ1)t + vk′ b̂

†
−k′e

ıε(k′,γ1)t) |φ0〉 eı(k
′+k)·r

=
1

LD

∑
k

[
ωkχk(u

2
ke
−2ıε(k,γ1)t + v2

ke
2ıε(k,γ1)t) + ukvk(χ

2
k + ω2

k)
]

(2nk(γ0) + 1).

From this we deduce:

〈φ0| δψ̂†(r, t)δψ̂†(r, t) |φ0〉 =

=
1

LD

∑
k

[
ωkχk(u

2
ke

2ıε(k,γ1)t + v2
ke
−2ıε(k,γ1)t) + ukvk(χ

2
k + ω2

k)
]

(2nk(γ0)+1).

In the end the expression for the correlation functions in the Bogoliubov ap-
proximation is

gp(t) = 1 +
p(p− 1)

ρLD

∑
k

{
ukvk(χ

2
k + ω2

k) + u2
kω

2
k + v2

kχ
2
k+

+ χkωk(uk + vk)
2 cos(2ε(k, γ1)t)+

+(uk + vk)
2
[
(χ2
k + ω2

k) + 2χkωk cos(2ε(k, γ1)t)
]
nk(γ0)

}
.

The first line contains the time independent term, which gives the asymptotic
expectation after the quench; the second line is an oscillating term whose time
average is zero. The third line contains both time dependent and independent
terms but is different from zero only for a quench whose initial state has excited
levels already populated. Since we do not work in this scenario we can disregard
this lats term.

C.2 GGE calculations

At quadratic order in the δψ̂ operators the GGE prediction for g2 is given by:
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〈ĝ2〉GGE = Tr[ĝ2ρ̂GGE ] =
1

ρ2
Tr[ψ̂†ψ̂†ψ̂ψ̂ρ̂GGE ]

≈ 1

ρ2
Tr[(ψ4

0 + ψ2
0(δψ̂δψ̂ + δψ̂†δψ̂† + 4δψ̂†δψ̂))ρ̂GGE ]

= 1 +
1

ρ
Tr[(δψ̂δψ̂ + δψ̂†δψ̂† + 2δψ̂†δψ̂)ρ̂GGE ]

= 1 +
1

ρLD

∑
k,p

Tr[(â†kâ
†
p + âkâp + 2â†kâp)ρ̂GGE ]

= 1 +
1

Z

2

ρLD

∑
k

∑
{α}

〈α| (uk + vk)
2b†kbk + 2vk(uk + vk) |α〉

∏
q

e−λqnq

= 1 +
1

Z

2

ρLD

∑
k

(
(uk + vk)

2(−∂λk) + vk(uk + vk)
)∏

q
e−λqnq

= 1 +
2

ρLD

∑
k

(
(uk + vk)

2ω2
k + vk(uk + vk)

)
= 1 +

1

ρ

ΩD

(2π)D

∫ ∞
0

dkkD−1

[
E(k)

ε(k, γ0)2 + ε(k, γ1)2

2 ε(k, γ0)ε(k, γ1)2
− 1

]
.

At the next order we perform all possible contractions〈
δψ̂†δψ̂†δψ̂δψ̂

〉
GGE

∼
〈
δψ̂†δψ̂†

〉
GGE

〈
δψ̂δψ̂

〉
GGE

+ 2
〈
δψ̂†δψ̂

〉2

GGE

The anomalous term is〈
δψ̂†δψ̂†

〉
GGE

=
1

LD

∑
k,p

〈
(ukb

†
k + vkb−k)(upb

†
p + vpb−p)

〉
GGE

=
1

LD

∑
k

ukvk 〈2n̂1(k) + 1〉GGE

=
1

LD

∑
k

ukvk(2ω
2
k + 1)

and since it’s real we get an identical expression for
〈
δψ̂δψ̂

〉
GGE

. For the
conventional average instead:〈

δψ̂†δψ̂
〉
GGE

=
1

LD

∑
k,p

〈
(ukb

†
k + vkb−k)(upbp + vpb

†
−p)
〉
GGE

=
1

LD

∑
k

[
(u2
k + v2

k) 〈n̂1(k)〉GGE + v2
k

]
=

1

LD

∑
k

[
(u2
k + v2

k)ω
2
k + v2

k

]
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