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Abstract—Numerical analysis of 3D regimes of convection-radiation heat transfer in cubic en-
closure with two isothermal faces and adiabatic walls is performed. The mathematical model
is constructed in dimensionless variables “vector potential–vorticity vector–temperature” in the
Boussinesq approximation and with regard to diathermal medium filling the enclosure. 3D temper-
ature and velocity fields, medium motion trajectories in a wide range of key parameters are obtained.
Correlations for the integral heat exchange coefficient as a function of the key process characteristics
are found.
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INTRODUCTION

Development of state-of-the-art electronics is associated with constant increase of efficiency of the
products and reduction of their mass-dimension parameters. Such tendencies lead to rapid increase in
the dissipated heat power. For this reason, in designing electronics it is particularly important to develop
methods of heat removal and temperature control [1, 2]. It is known that in air-filled enclosures the
intensity of heat transfer as a result of convection is comparable with that of radiation energy transfer [3,
4]. In relation to the last-mentioned fact, it seems most urgent to simultaneously analyze the processes
of energy transfer by mechanisms of convection and radiation in enclosures and thus to find the most
common regularities of combined heat exchange.

By present, few theoretical investigations of the convection-radiation heat transfer in enclosures have
been carried out [5–10], which is concerned with substantial computational expenses and mathematical
complications. Three-dimensional convection and radiation in a cubic cavity filled with diathermal or
nontransparent media were numerically analyzed in [5]. The mathematical model formulated in primitive
variables was implemented by the control volume method with the use of the discrete ordinate method for
solving the radiation transfer equation. As a result, it was found that the heat flux density substantially
grows in the case of a radiation-transmitting medium due to the radiation component of the process.
In investigation of a nontransparent medium it was shown that for a fixed value of optical medium
thickness an increase in the Rayleigh number leads to an increase in the heat flux density, and an
increase of τλ reduces the heat flux. As a result of mathematical modeling of hydrodynamics and heat
transfer due to mechanisms of combined convection, thermal radiation, and heat conductivity in a cubic
enclosure exposed to external flow it was shown [6] that thermal radiation may have the governing
value in formation of a temperature field. An increase in the Reynolds number of the external incoming
flow results in a change of the Nusselt number and leads to decreasing average temperature of the
cubic cavity. Numerical analysis of the effect of surface radiation on 3D regimes in a differentially
heated parallelepiped at Pr = 13.6 and Ra = 106 has shown the presence of relative intense spiral
motion in the volume [7]. As a result of mathematical modeling of natural convection in a shallow
wedge with a small aperture angle subject to solar radiation [8], there were found three independent
stages of development of convection recirculation: an initial stage (dominance of heat conductivity and
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formation of thermal boundary layer), a transition stage (formation of Benar instability) and a quasi-
stationary stage (formation of a steady-state temperature field and reduction of instability intensity).
The numerically found effects were previously observed in the experiment of [9]. Mathematical modeling
of conjugate natural convection in an enclosure with regard to thermal radiation in the Rosseland
approximation [10] has made it possible to reveal a temperature growth in a cavity on the initial time
interval by 11% on average. It was also shown that increasing thermal conductivity coefficient of the
material of solid walls results in decreasing integral heat transfer coefficient on the surface of the energy
source.

The aim of the present work is mathematical modeling of 3D regimes of thermal gravitational
convection and surface radiation in a cubic enclosure filled with diathermal medium Pr = 0.7 in the
presence of two vertical isothermal faces. Comparison of the obtained results with the data on the 2D
model makes it possible to evaluate the 3D statement for a cubic cavity.

STATEMENT OF THE PROBLEM

We consider the combined natural convection–surface radiation process in a cubic enclosure (see
Fig. 1). It is assumed that initially the walls of the enclosure and the air that fills it have a constant
temperature that is the same at all points, the air being stagnant. The vertical walls (x = 0, x = L)
of the enclosure are assumed to be isothermal with temperatures Th > Tc, and the rest of the walls
are adiabatic. The air is assumed to be a Newtonian incompressible diathermal medium satisfying the
Boussinesq approximation. It is assumed that all cube faces are diffusive-gray radiators. For the reflected
radiation, there are two assumptions [11]: the reflected radiation is diffusive, i.e., the reflected radiation
intensity at any point of the surface boundary is uniformly distributed in all directions, and the reflected
radiation is uniformly distributed over each surface of the closed solution domain.

In this statement, the heat transfer process is described by a system of nonstationary 3D equations
of convection in the Boussinesq approximation in the enclosure [10, 12]. The mathematical model is
formulated in dimensionless variables “vector potential–vorticity vector–temperature.”

The distance scale was the size of solution domain L. To obtain a dimensionless form of the system
of equations, we used the following relationships:

X = x/L, Y = y/L, Z = z/L, τ = t/t0, U = u/V0, V = v/V0, W = w/V0,

Θ = (T − T0)/(Th − Tc), Ψx = ψx/ψ0, Ψy = ψy/ψ0, Ψz = ψz/ψ0,

Ωx = ωx/ω0, Ωy = ωy/ω0, Ωz = ωz/ω0, ω0 = V0/L, ψ0 = V0L,

V0 =
√

gzβ(Th − Tc)L, t0 = L/V0 = [L/(gzβ(Th − Tc))]0.5.

Fig. 1. Solution domain of the problem considered.
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Dimensionless heat transfer equations:
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Initial conditions for the system of equations (1)–(7):

Ψx (X,Y,Z, 0) = Ψy (X,Y,Z, 0) = Ψz (X,Y,Z, 0) = 0,

Ωx (X,Y,Z, 0) = Ωy (X,Y,Z, 0) = Ωz (X,Y,Z, 0) = Θ (X,Y,Z, 0) = 0.

Boundary conditions:

at the boundary X = 0: ∂Ψx
∂X = Ψy = Ψz = 0, Θ = 0.5;

at the boundary X = 1: ∂Ψx
∂X = Ψy = Ψz = 0, Θ = −0.5;

at boundaries Y = 0 and Y = 1: Ψx = ∂Ψy

∂Y = Ψz = 0, ∂Θ
∂Y ± NradQrad = 0;

at boundaries Z = 0 and Z = 1: Ψx = Ψy = ∂Ψz
∂Z = 0, ∂Θ

∂Z ± NradQrad = 0.
To determine the dimensionless radiation flux density Qrad, we applied a method of solution with the

use of effective radiation flux density [11, 13], which is based on realizing two difference equations with
the use of a sequential overrelaxation method:

Qrad,k = Rk −
N∑

i=1

Fk−iRi, (8)

Rk = (1 − εk)
N∑

i=1

Fk−iRi + εk (1 − ξ)4
(

Θk + 0.5
1 + ξ

1 − ξ

)4

. (9)
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Fig. 2. A scheme of radiation heat exchange between perpendicular (a) and parallel (b) surfaces.

The view factors were calculated by definition [6, 11]:
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which was expanded for the cubic enclosure (Fig. 2) as [6, 11]:
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and in the case of parallel faces (Fig. 2b) [6, 11]:

G (x, y, η, ξ) =
1
2π

⎧
⎨

⎩
(y − η)

√
(x − ξ)2 + L2 · arctan

⎡

⎣ y − η
√

(x − ξ)2 + L2

⎤

⎦ + (x − ξ)

×
√

(y − η)2 + L2 · arctan

⎡

⎣ x − ξ
√

(y − η)2 + L2

⎤

⎦ − L2

2
ln

[
(x − ξ)2 + (y − η)2 + L2

]
⎫
⎬

⎭
.

To verify accuracy of the calculated view factors, we applied a very important property of the view
factors, which follows from the energy conservation law. Radiation energy radiated from any surface k
in a closed system is necessarily distributed over the other system surfaces in such a manner that the
total energy incident on surfaces is equal to energy radiated from the surface k. From this it follows that
N∑

i=1
Fk−i = 1.

The problem (1)–(9) with the corresponding boundary conditions was solved by a finite difference
method [10, 12]. The applied method of solution was tested on the following model problems: 2D
convection-radiation heat transfer in a square enclosure [13] and 3D thermal gravitational convection
in a cube [10, 12]. Comparison of the results with those of other authors has revealed that the applied
method yields quite good agreement.

ANALYSIS OF THE OBTAINED RESULTS

The calculations were performed with the following values of dimensionless complexes: Ra = 103,
Nrad = 16.79; Ra = 104, Nrad = 36.34; Ra = 105, Nrad = 77.87; Ra = 106, Nrad = 167.85; Pr = 0.7;
ξ = 0.97; 0 ≤ τ ≤ 100; 0 ≤ ε < 1.

Figure 3 represents motion trajectories of internal medium and temperature fields with ε = 0.6, τ =
100, which correspond to different values of temperature difference. Regardless of the Rayleigh number
value, a 3D convection structure is formed in the enclosure, which represents onset of upflows near the
heated surface and downflows near the opposite cooled wall. The increase of the temperature difference
results in narrowing along the vertical axis of the circulation region. We should note development of spiral
motion of air masses from the side adiabatic walls toward the center of the enclosure. The observed vortex
structures were earlier described in detail in conditions of the conjugate problem of thermal gravitational
convection in a cubic enclosure with ε = 0 [14, 15]. Consideration of surface radiation for nonconjugate
heat transfer problems is evident, first of all, near adiabatic walls due to physical characteristics of this
effect. Thermal radiation is received by the walls whose temperature changes as a result of this contact
and this affects the motion intensity of the medium near these walls. The latter, due to the convective
heat transfer mechanism leads to changes in thermal hydrodynamic parameters of the entire volume of
the medium. We should note also that the influence of thermal radiation is mathematically described
by boundary heat-insulation conditions that represent zero summarized density of heat fluxes due to
radiation and thermal conductivity.

Figure 4 shows the influence of the presented surface emissivity of the walls on the flow structure
and the temperature field inside the enclosure. An increase in ε has slight effect on configuration of the
flow in the center of the enclosure. The most prominent changes are observed near the walls, one can
see growing velocity of upflows and downflows, and also increasing amplitude of side spiral structures
that characterize mass transfer from the vertical adiabatic walls. The temperature field also changes, one
can observe decreasing temperature near the upper vertical horizontal wall and increasing temperature
at the boundary Z = 0.

We analyzed the influence of the Rayleigh number (Fig. 5) and the surface emissivity (Fig. 6) on av-

erage convection
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)

Nusselt numbers on the vertical isothermal face X = 0.
The growing temperature difference with ε = 0.6 leads to intensification of convective and radiative

heat transfer (Fig. 5). At 103 ≤ Ra ≤ 105 the influence of problem dimension on the integral convection
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Fig. 3. Motion trajectories of medium and temperature fields for ε = 0.6, τ = 100: Ra = 103 (a), Ra = 104 (b),
Ra = 105 (c), Ra = 106 (d).

Fig. 4. Motion trajectories of medium and temperature fields for Ra = 105, τ = 100: ε = 0 (a), ε = 0.3 (b), ε = 0.9 (c).
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Fig. 5. Average Nusselt convection (a) and radiation (b) numbers versus time, problem dimension, and Rayleigh
number for ε = 0.6.

Fig. 6. Average Nusselt convection (a) and radiation (b) numbers versus time, problem dimension, and surface
emissivity at Ra = 105.

coefficient of heat transfer is insignificant (Fig. 5a), whereas the Nusselt radiation number, with regard
to the third coordinate, decreases (Fig. 5b). At high Rayleigh numbers (Ra ≥ 106), there is observed
considerable influence of the problem dimension: Nuconv grows, while Nurad decreases when passing
from 2D problem to 3D problem.

The influence of time on the process analyzed manifests itself in formation of an initial nonstationary
stage for an average Nusselt convection number. Growth of Ra leads to increasing time of Nuconv onset,
at that, the time of onset of the integral convection heat exchange coefficient does not depend on problem
dimension. For Nurad, nonstationarity appears only at Ra = 106.

Growth of the surface emissivity regardless of the problem dimension leads to increasing average
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Fig. 7. Isolines of y-component of vector potential and temperature in 3D case (—) and stream function and
temperature in 2D case (- - -) at Ra = 105, τ = 100: ε = 0 (a), ε = 0.3 (b), ε = 0.6 (c), ε = 0.9 (d).

Fig. 8. Maximum absolute value of stream function versus surface emissivity and problem dimension at Ra = 105,
τ = 100.

Nusselt radiation number (Fig. 6b). At that, Nuconv behavior is nonmonotonic: at Ra = 103 an increase
in ε leads to a growth of Nuconv; at Ra = 104, a change in the surface emissivity in the range from 0 to 0.6
results in increasing Nuconv, and at ε > 0.6 there is observed a decrease in the integral convection heat
exchange coefficient; at Ra ≥ 105, Nuconv decreases over the entire range of ε. The noticed features
for Nuconv are observed regardless of the problem dimension. The influence of considering the third
coordinate is similar to Fig. 5, and this variation becomes more considerable as the surface emissivity
grows, particularly, for average Nusselt radiation number.
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Figure 7 represents comparison of both the isolines of stream function (for 2D problem) and Ψy

component of vector potential (for 3D problem at the section Y = 0.5) and the isotherms for two
statements of the problem with different values of the surface emissivity. Over the entire range of ε,
we observe some distinctions in the structure of the central part of isolines of stream function and y-
component of vector potential. The level of these distinctions grows with the surface emissivity, which is
most evident in the distribution of isotherms.

Figure 8 shows growing convective flow intensity with regard to the third coordinate.
As a result of our investigations we obtained approximation relationships for average radiation

(Nurad) and total (Nurad) (Nutotal = Nuconv + Nurad) Nusselt numbers on the vertical isothermal face
at 103 ≤ Ra ≤ 106, Pr = 0.7, and 0.3 ≤ ε ≤ 0.9:

Nu2D
rad = 0.135 · Ra0.336 · ε1.16,

Nu2D
total = 0.324 · Ra0.3 · ε0.455

and
Nu3D

rad = 0.098 · Ra0.344 · ε1.027,

Nu3D
total = 0.275 · Ra0.305 · ε0.362.

CONCLUSIONS

The numerical analysis of convection-radiation heat transfer in a cubic enclosure was performed
in a wide range of key parameters: 103 ≤ Ra ≤ 106, 0 ≤ ε ≤ 0.9, and 0 ≤ τ ≤ 100. As a result, we
have obtained distributions of isolines of the y-component of the vector potential and temperature,
and also 3D motion trajectories of the medium, velocity and temperature fields. The influence of the
Rayleigh number, surface emissivity, and dimensionless time on local and integral characteristics of the
process were analyzed in detail. Considerable influence of problem dimension at Ra ≥ 106 has been
observed: Nuconv increases and Nurad decreases when passing from the 2D problem to the 3D problem.
It has been shown that growth of the surface emissivity regardless of the Rayleigh number value and
the problem dimension results in increasing average Nusselt radiation number, whereas the integral
Nusselt radiation number changes nonmonotonically. Also, it has been shown that the most prominent
distinctions in the structure of the core of local process parameters are attained at high values of Ra
and ε. We have found approximation relationships for average radiation and total Nusselt numbers as a
function of Rayleigh number, surface emissivity, and problem dimension.
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NOTATIONS

a—thermal diffusivity coefficient, m2/s
Fk−i—view factors between kth and ith surfaces
gz—gravitational acceleration component projected onto the z axis, m/s2

k—heat conductivity coefficient of diathermal medium, W/(m·K)
L—size of solution domain, m
N—the number of partition surfaces
Nrad = σT 4

hL/[k(Th − Tc)]—radiation parameter
Pr = ν/a—Prandtl number
Qrad—dimensionless radiation flux density
Qrad,k—dimensionless density of radiation flux supplied to the kth surface
Rk—dimensionless density of effective radiation of the kth surface
Ra = gzβ(Th − Tc)L3/(νa)—Rayleigh number
t—time, s
t0—time scale, s
T —temperature, K
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T0 = 0.5(Th + Tc)—initial temperature in the solution domain, K

Tc—temperature at the boundary x = L, K

Th—temperature at the boundary x = 0, K

u, v, w—velocity components projected onto x, y, z axes, respectively, m/s

U , V , W —dimensionless velocities corresponding to velocities u, v, w

V0—velocity scale (convection velocity), m/s

x, y, z—coordinates of Cartesian coordinate system, m

X, Y , Z—dimensionless coordinates corresponding to x, y, z coordinates

β—temperature coefficient of volumetric expansion, 1/K

ε—surface emissivity of the wall

εk—surface emissivity of the kth surface

Θ—dimensionless temperature

Θk—dimensionless temperature of the kth surface

λ—radiation wavelength, m

ν—kinematic viscosity coefficient, m2/s

ξ = Tc/Th—temperature parameter

σ—Stephan–Boltzmann constant, W/(m2 · K4)

τ—dimensionless time

τλ—optical thickness of the medium

ψx, ψy , ψz—vector potential components in Cartesian coordinate system, m2/s

ψ0—scale of vector potential component, m2/s

Ψx, Ψy, Ψz—dimensionless components of vector potential, corresponding to ψx, ψy, ψz

ωx, ωy, ωz—components of vorticity vector in Cartesian coordinate system, 1/s

ω0—scale of vorticity vector components, 1/s

Ωx, Ωy, Ωz—dimensionless components of vorticity vector, corresponding to ωx, ωy, ωz

Indices

c—cooled surface

h—heated surface

i, k—surface number

rad—radiation
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