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Chapter 1
Introduction

Shortly after Erwin Schrödinger formulated his famous equation describing the behavior of

matter at the atomic scale, P.M. Dirac immediately realized what would have been the next de-

manding task pointing out that: “the underlying physical laws necessary for the mathematical

theory of a large part of physics and the whole of chemistry are thus completely known, and

the difficulty is only that the exact application of these laws leads to equations much too com-

plicated to be soluble” [1]. Indeed in the last decades enormous efforts have been devoted

to the development of approximate methods for the solution of the Schrödinger equation,

most of them relying on the use of computational techniques. However, staying within wave

function-based methods one has to face what Walter Kohn in his Nobel lecture [2] defined

the “exponential wall”. As the number of particles increases the dimension of the Hilbert

space and the complexity of the many-body wave-function grow exponentially preventing

the practical application of these methods but also posing doubts on the effective possibility

to understand such complicated mathematical objects.

Shifting the emphasis from the wave function to the density as the basic quantity for the

description of many-particle systems, Density Functional Theory (DFT) [3] provides a com-

plementary insight for a better understanding of complex systems. Unlike the many-body

wave function, the particle density is a physical quantity, independent on the representation

and always depends on three spatial coordinates only, regardless of the dimension of the

system; it thus turns out to be a much easier object to deal with when the dimension of the

system increases. Beside this appealing conceptual advantage, the real strength of DFT is

its favorable price/performance ratio compared with correlated wave function-based meth-

ods. In its formulation due to W. Kohn and L. Sham [4], DFT allows to compute the ground
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1. Introduction

state density and total energy of a many-particle system simply solving a set of single par-

ticle Schrödinger-like equations. This can be done with a computational cost that grows as

a power of the number of particles whereas, as mentioned before, an exact solution of the

Schrödinger equation requires a time that grows exponentially with the size of the system.

Thanks to the constant improvements which have been making the method acceptably accu-

rate for quantum-chemical applications, DFT is now by far the most widely used electronic

structure method and its undeniable importance in physics and chemistry is evidenced by the

1998 award of the Nobel Prize to Walter Kohn “for his development of the density-functional

theory” [2].

Although exact in principle, DFT relies, in all its practical applications, on approximate

treatments of the unknown exchange and correlation energy functional, the most widely used

being the local spin density approximation (LSDA) [4, 5] and its generalized gradient correc-

tions (GGAs) [6, 7]. Both these approximations have been proved to successfully predict the

properties of a wide class of electronic systems but still there exist many situations in which

they perform poorly or even fail qualitatively. One such fundamental problem that has be-

come increasingly apparent as the systems that could be treated have become larger, is the

description of dispersion interactions. Although a weak interaction per se, dispersion interac-

tion is ubiquitous and can add up to give a substantial contribution to the interaction in large

assemblies of atoms and molecule thus becoming very important in systems like, for instance,

biomolecules, adsorbates or nanomaterials. Dispersion forces originate from the correlation

between electron density fluctuations in widely separated region of space and therefore can

not be captured by standard approximations for the exchange-correlation functional which

have an intrinsic local or semi-local nature.

Another class of materials for which standard Density Functional Approximations (DFAs)

badly fail is represented by the strongly correlated systems. Strong correlations is usually meant

to refer to situations where multiple determinants associated with degeneracy or near degen-

eracy are needed and a single-particle picture becomes inadequate. However it is understood

that this is not a failure of DFT itself, which is actually based on a determinant of single-

particle Kohn-Sham (KS) orbitals, but just a break-down of current DFAs. In this respect many

different corrective approaches have been developed for ab initio calculations on strongly cor-

related systems ranging from Self Interaction Correction [8] to Exact-Exchange and hybrid

functionals [9] to DFT+U [10].

However, rather than introducing ad hoc corrections to describe selected problems, it would

be highly desirable to find a new class of functionals that perform uniformly better than the

2



present one as already happened passing from LDA to GGAs and more recently with the de-

velopment of hybrid functionals. In this respect it is illuminating to start with a formal exact

way of constructing the exchange and correlation functional using the Adiabatic Connection

Fluctuation-Dissipation (ACFD) theory [11, 5, 12]. In this framework an exact expression for

the exchange-correlation energy can be derived in terms of the density-density response func-

tions of a continuous set of fictitious systems defining a path that couples the non-interacting

KS system with the real many-body interacting one. The formalism thus provide a power-

full theoretical framework for a systematic development of advanced functionals but also a

practical way to compute accurate correlation energies. Moreover all ACFD methods treat

the exchange energy exactly thus cancelling out the spurious self-interaction error present in

Hartree energy and the correlation energy is fully non-local and automatically includes van

der Waals interactions. Indeed the most successful DFAs specifically designed to treat disper-

sion interactions descend from the exact expression of the correlation energy derived from the

ACFD theory [13, 14, 15].

Although much more expensive than simple approximation to it, a direct evaluation of the

exact formula is also possible when the interacting density-density response function is given.

A Dyson equation-like linking the latter to its non-interacting (KS) counterpart can be derived

from the time dependent density functional theory (TDDFT) but still requires suitable ap-

proximation for the exchange-correlation kernel to be solved. Nevertheless it has been shown

that using the Random Phase Approximation (RPA), i.e. completely neglecting the unknown

exchange and correlation kernel, plus a local-density correction for short range correlation,

leads to a qualitatively correct description of van der Waals interactions [16, 17, 18, 19] and

static correlation as seen for instance when studying dissociation of molecules in open-shell

fragments [20, 21].

These encouraging results obtained already at the lowest level of approximations, indicate

the potential offered by an exact treatment of the ACFD formula for the evaluation of accurate

exchange and correlation energy and encourage to insist in this direction and develop futher

improvements. In this Thesis we will illustrate how combining the general ACFD framework

with a many-body approach along the adiabatic-connection path leads to a systematic scheme

for computing increasingly accurate correlation energies. Resorting to a many-body perturba-

tion approach allows to practically define an expansion for the exchange-correlation kernel in

a power series of the electron-electron interaction and thus to proceed order-by-order toward

increasingly accurate approximations for the linear density response function and hence for

the correlation energy via the Adiabatic Connection formula. Applying this scheme to first
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1. Introduction

order we recover the RPAx (or EXXRPA) approximation [22, 23, 24] for which we propose a

novel and efficient implementation based on an eigenvalue decomposition of the interacting

time-dependent density response function in the limit of vanishing electron-electron interac-

tion.

The Thesis is organized as follows. In the next Chapter we will describe the theoreti-

cal framework underlying the present work with a special emphasis on Kohn-Sham density

functional theory. A brief review of the most widely used exchange-correlation functionals is

given before introducing the Adiabatic Connection Fluctuation-Dissipation formalism and the

exact formula for the exchange-correlation energy in terms of density-density linear response

functions. The Dyson equation for the latter is introduced within the time dependent gen-

eralization of DFT and the simple RPA approximation is reviewed from both computational

and physical point of views highlighting its successes and limitations. A general and system-

atic scheme aiming at computing increasingly accurate correlation energies within the ACFD

framework is described at the beginning of Chapter 3 and applied to first order, recovering

the so called RPAx approximation. Our efficient implementation for the calculation of correla-

tion energies at the RPAx level is also described here with some details on its plane-wave and

pseudo-potential implementation. We then test the performance of the RPAx approximation

on selected systems in Chapter 4, highlighting its successes and finding simple corrections for

its limitations.

The results presented in Chapter 3 and Chapter 4 are contained in two publications:

1. N. L. Nguyen, N. Colonna, and S. de Gironcoli, Phys. Rev. B 90, 045138 (2014).

2. N. Colonna, M. Hellgren, and S. de Gironcoli, Phys. Rev. B 90,125150 (2014).
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Chapter 2
Theoretical background

In this Chapter we will introduce the theoretical background underlying the present work. The stan-

dard wave-function formulation of the many-electron problem and its density-functional restatement

are briefly described in Sections 2.1 and 2.2, together with an overview of the most common approx-

imations for the exchange-correlation energy functional. In Section 2.3 we will introduce the Adi-

abatic Connection Fluctuation-Dissipation theory which provides the general theoretical framework

the present work is based on for the development of a new and advanced class of exchange-correlation

functionals. As an example of such ACFD-derived functionals, we will review the Random Phase

Approximation highlighting its successes and limitations.

2.1 The many-body electronic problem

Ordinary matter such as atoms, molecules and condensed matter, is built up by mutually

interacting electrons and nuclei. From a standard quantum-mechanical point of view they

are described by the many-body wavefunction, |Ψ〉, solution of the well-known Schrödinger

equation:

Ĥ|Ψ〉 = W|Ψ〉 (2.1)

where W is the total energy of the system. For a generic system of electrons and nuclei in

reciprocal interaction via Coulomb forces, the non-relativistic Hamiltonian Ĥ can be written
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2. Theoretical background

as:

Ĥ =− h̄2

2me
∑

i
∇2

i −∑
i,I

ZIe2

|ri − RI |
+

1
2 ∑

i 6=j

e2

|ri − rj|

−∑
I

h̄2

2MI
∇2

I +
1
2 ∑

I 6=J

ZI ZJe2

|RI − RJ |
(2.2)

where electrons are denoted by lower case subscripts and nuclei, with charge ZIe and mass

MI , by upper case subscripts. The terms appearing in Eq. (2.2) represent the kinetic energy of

the electrons, the electron-nucleus attractive potential energy, the electron-electron repulsive

potential energy, the kinetic energy of the nuclei and the nucleus-nucleus repulsive potential

energy. This extremely complicated problem is, in practice, impossible to treat both analyt-

ically and numerically, and appropriate approximations can not be avoided. The very fun-

damental one is the Born-Oppenheimer approximation [25]. It is based on the large difference

between the masses of nuclei and electrons which allows to decouple the dynamics of the fast

degrees of freedom (the electrons) from the dynamics of the slow variables (the nuclei). In a

first stage the nuclei can be regarded as fixed in selected spatial configurations, and attention

is focused on the so called potential energy surfaces Ei({RI}) which specify the electronic en-

ergies Ei as a function of the chosen nuclear positions {RI}. Then the dynamics of the nuclear

degrees of freedom is determined by the nuclear kinetic energy and by the effective potential

energies Ei({RI}). Formally this amount to write the total wavefunction as a product of an

electronic and a nuclear wavefunction

Ψ({ri, RI}) = Φ({RI})ψ({ri}; {RI}) (2.3)

where Φ({RI}) is the solution of the nuclear equation[
−∑

I

h̄2

2MI
∇2

I + Ei({RI})
]

Φ({RI}) = WΦ({RI}), (2.4)

and ψ({ri}; {RI}) satisfies the Schrödinger equation for the electrons moving in the external

potential of the nuclei kept fixed in the configuration {RI}[
− h̄2

2me
∑

i
∇2

i −∑
i,I

ZIe2

|ri − RI |
+

1
2 ∑

i 6=j

e2

|ri − rj|
+

1
2 ∑

I 6=J

ZI ZJe2

|RI − RJ |

]
ψ({ri}; {RI}) =

Ei({RI})ψ({ri}; {RI}). (2.5)

Although the Born-Oppenheimer approximation greatly simplifies the original problem,

Eq. (2.5) is still a formidable complicated task due to the presence of the electron-electron

interaction. Solving the many-electron problem requires further approximations and it is the

main object of electronic structure methods.
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2.2. Density Functional Theory

2.1.1 Electronic structure in practice

Soon after the formulation of the Schrödinger equation, the first attempts to solve the many-

electron problem appeared; in 1927 D. R. Hartree introduced a procedure to calculate approxi-

mate wave functions and energies for atoms and ions [26], pioneering the self-consistent field

(scf) approach and setting the stage for many of the numerical methods still in use today.

Hartree method was later refined by Fock [27] who recognized the importance of correlation

effects due to the Pauli exclusion principle and performed the first calculations using prop-

erly antisymmetrized Slater-determinant wave-functions, the first example of what is now

know as Hartree-Fock method. Electronic correlations, beyond the exchange effects, origi-

nating from the electron-electron interaction, are in some cases very important and difficult

to describe and represent the great challenge of electronic structure theory. Correlated meth-

ods for total energy calculation routinely used by the quantum chemistry community, such as

Many-Body Perturbation Theory (MBPT), e.g. Møller-Plesset perturbation theory [28], Con-

figuration Interaction (CI) [29] or Coupled Cluster theory [30], are able, in most of the case,

to describe the electronic correlation but are computationally very demanding thus limiting

their application to systems with a small number of electrons typically no more than a few

tens. On the other hand mean-field approaches based on a single-particle description of the

system, have much cheaper computational costs but, in their early developments, did not

give accurate results since the correlation effects beyond the Pauli exclusion principle were

completely neglected. This scenario which can be summarized as a compromise between

accuracy (correlated methods in quantum chemistry) and efficiency (mean-field approaches)

has been gradually changing in the last decades thanks to the advent of DFT. Unlike other

mean-field single-particle methods, the one based on DFT gives in principle an exact descrip-

tion of the electronic ground state. The continuous progress in the development of accurate

exchange-correlation functionals, improving their ability to describe an increasingly wider

class of materials, has made DFT the most widely used approach for quantitative calculations

on realistic systems in physics, chemistry and material science.

2.2 Density Functional Theory

In traditional many-body methods the wave-function is the central quantity. It is a mathe-

matical object which contains a great deal of information about the system and usually much
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2. Theoretical background

more than we want. Moreover since it is a function of 3N variables1, it is not easy to calculate,

store and in general to deal with when the number of electrons in the system increases. In den-

sity functional theory the emphasis shifts from the wave-function to the electron density, n(r),

which is a much more easy object to treat and always depends on three spatial coordinates

only, regardless of the dimension of the system.

Actually the idea of using the density as a key quantity to describe the properties of an

electronic system, dates back to 1927; in the early days of quantum mechanics there was no

practical way of using the Schrödinger equation to determine the electronic structure of many-

electron systems; forced by these difficulties Thomas [31] and Fermi [32] separately proposed

a simple approximate method for computing the energy of atoms starting from statistical

arguments and using the electronic density as the central quantity. In the original Thomas-

Fermi method the kinetic energy of the interacting system is “locally” approximated by the

kinetic energy of a non-interacting homogeneous electron gas with density equal to the local

density at any given point. Then two classical terms, one for the electron-nucleus interaction

and one for the electron-electron electrostatic interaction, are added while the exchange and

correlation contributions are completely neglected. Although the model was later extended

by Dirac who formulated the local approximation for the exchange energy still in use today,

the local-density approximation adopted for the kinetic energy is a too large source of error,

preventing the application of this approach to real systems.

Even though at that time it was not know whether the total energy could be formally

expressed in terms of density alone, the Thomas-Fermi method was a first attempt of density

functional approach to the many-electron problem and as such can be viewed as a precursor to

modern DFT. It was only in 1964 that DFT was put on a firm theoretical footing by Hohenberg

and Kohn who published their famous paper demonstrating that any properties of a many-

electron system can be viewed as a functional of the ground state electronic density alone.

One year later Kohn and Sham formulation of DFT was established paving the way for DFT

as the most widely used computational method for electronic structure calculations.

2.2.1 The Hohenberg-Kohn theorems

DFT is based on two theorems first proved by Hohenberg and Kohn (HK) [3]. The first one

states that for any system of interacting particles in an external potential Vext(r), the potential

Vext(r) is determined uniquely, up to an additive constant, by the ground state particle density

1 A factor two has to be added if spin is also considered
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2.2. Density Functional Theory

n0(r). Since the Hamiltonian is fully determined, except for a constant shift of the total en-

ergy, it follows that the many-body wavefunctions for all the electronic states are determined.

Therefore all properties of the system are completely determined by the ground state density n0(r).

The second theorem states that a universal function for the total energy E[n] in terms of the

density n(r) can be defined, valid for any external potential Vext(r). Given a particular Vext(r),

the exact ground state energy of the system is the global minimum of the functional

E[n] = F[n] +
∫

dr Vext(r)n(r) (2.6)

and the density that minimizes this functional is the exact ground state density n0(r). Here

F[n] = T[n] + Eint[n] includes all the internal energies, kinetic and potential, of the interacting

electron system and must be universal2 in the sense that it depends on the density alone and

not on the external potential Vext(r).

The HK theorems clearly state that any property of the electronic system can be expressed

as a functional of the ground state density; however they do not give any prescription on

how to construct these functionals. Looking at the ground state density itself is not enough

in order to understand the properties of a generic electronic system; what one really needs

are the explicit expressions for the functionals relating the density to the desired observable

quantities. This is true for any property of the system and becomes a crucial point, because

of the variational principle, as long as the total energy functional is concerned. All direct

approximation of the total energy functional in terms of density alone, e.g. the Thomas-Fermi

theory, give poor results. It is the approach proposed by Kohn and Sham that proved a major

step forward toward accurate DFT calculations.

2.2.2 The Kohn-Sham equations

The central idea in the Kohn-Sham (KS) approach [4] is to replace the difficult interacting

many-body system described by the Hamiltonian in Eq. (2.5) with an auxiliary system that

can be solved more easily. In the KS method one assumes that the ground state density of the

original interacting system of electrons is equal to that of a non-interacting system of electrons

moving in an effective local potential vKS(r). This leads to single-particle equations whose

solution gives the ground state density and energy of the original interacting system.

In order to define what is the effective local potential vKS(r), the HK energy functional

2 Here “universal” means the same for all electron systems. Different functionals have to be defined for differ-

ent kinds of particle depending on their masses and interactions.
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2. Theoretical background

E[n] is decomposed as

E[n] = Ts[n] + EH [n] +
∫

dr vext(r)n(r) + Exc[n] (2.7)

where Ts[n] is the kinetic energy of the non-interacting system and can be explicitly written in

terms of single particle wavefunctions |φi〉

Ts[n] =
N

∑
i=1
〈φi| −

h̄2

2me
∇2|φi〉 =

h̄2

2me

N

∑
i=1

∫
dr |∇φi(r)|2, (2.8)

EH [n] is the classical Hartree term representing the electrostatic interaction energy of the elec-

tronic density distribution

EH [n] =
e2

2

∫
drdr′

n(r)n(r′)
|r− r′| , (2.9)

and Exc[n], defined by Eq (2.7), is the still unknown exchange and correlation (xc) energy func-

tional. From the stationary property of Eq. (2.7) one obtains the equation:∫
δn(r)

{
δTs[n]
δn(r)

+ vext(r) + vH(r) + vxc(r)− µ

}
dr = 0 (2.10)

where µ is a Lagrange multiplier imposed to keep fixed the total number of electrons,

vH(r) = e2
∫

dr′
n(r′)
|r− r′| (2.11)

is the Hartree potential and vxc(r) is the exchange-correlation (xc) potential defined as the

functional derivative of the xc energy with respect to the density:

vxc(r) :=
δExc[n]
δn(r)

. (2.12)

Within the HK theory, Eq. (2.10) describes a system of non-interacting electrons moving in an

effective local potential, vKS(r), sum of the external, the Hartree and the exchange-correlation

contributions. Therefore one obtain the density which satisfies this equation simply by solving

self-consistently the KS equations:[
− h̄2

2me
∇2 + vKS[n](r)

]
φi(r) = εiφi(r),

n(r) =
N

∑
i=1
|φi(r)|2,

vKS[n](r) = vext(r) + vH [n](r) + vxc[n](r). (2.13)

Here the functional dependence of the KS potential and its individual contributions on the

density has been highlighted. Finally the total energy of the interacting system is simply

10



2.2. Density Functional Theory

related to the eigenvalues, εi, of the KS equations (2.13) by

E[n] =
N

∑
i

εi − EH [n] + Exc[n]−
∫

dr vxc(r)n(r). (2.14)

It’s worth mentioning that if the xc functional were known exactly, the self-consistent so-

lution of the KS equations would give the correct ground state density and energy of the

interacting system. Therefore the KS method, unlike other mean-field independent-particle

approaches, incorporates the effects of the interactions and correlations among the particles

and gives, in principle, an exact description of the electronic ground state. However, in prac-

tice, one has to resort to some reasonable approximations for the unknown xc functional.

In a nutshell, the breakthrough of the KS theory is that by treating exactly the independent

electron kinetic energy and the long-range Hartree terms, the remaining exchange and corre-

lation functional can be reasonably approximated, in most of the situations, by very simple

local functionals of the density. Within these local approximations the KS method becomes

very similar to the Hartree approach but in addition it also includes exchange and correlation

effects making KS-DFT very attractive from a computational point of view.

2.2.3 Solving the Kohn-Sham equations: plane-wave and

pseudopotential method

The numerical solution of the KS equations (2.13) is a matter of computational strategy and

convenience. One can either use a discretized form of the differential operators and wave-

functions on a real-space grid or expand the orbitals in a complete basis set. In the latter case

the integro-differential KS equations can be recast into a linear algebra problem which can

be solved by a variety of available numerical methods. Plane waves, together with the pseu-

dopotential method and the fast Fourier transform (FFT) algorithm, provide a powerful tool

for the efficient solution of the KS equations.

In a periodic system the orbitals are usually required to be normalized and obey periodic

boundary conditions in a volume Ω that is allowed to go to infinity. Following the derivation

in Ref. [33], the eigenfunctions of the KS problem can by written as

φi(r) = ∑
q

ci,q ×
1√
Ω

exp (iq · r) ≡ ∑
q

ci,q × |q〉 (2.15)

where ci,q are the coefficients representing the orbital φi in the basis of orthonormal plane

waves |q〉 satisfying

〈q|q′〉 =
1
Ω

∫
Ω

dr exp(−iq′ · r) exp(iq · r) = δq,q′ . (2.16)

11



2. Theoretical background

The KS equations (2.13) in Fourier space reads

∑
q
〈q′|ĤKS|q〉ci,q = εi ∑

q
〈q′|q〉ci,q = εici,q′ . (2.17)

The kinetic operator T̂ is diagonal in Fourier space and its matrix elements are simply given

by

〈q′|T̂|q〉 = 〈q′| − h̄2

2me
∇2|q〉 =

h̄2

2me
|q|2δq′,q. (2.18)

For a crystal the potential VKS has the periodicity imposed by the lattice and can be expressed

as a sum of Fourier components

VKS(r) = ∑
m

VKS(Gm) exp(iGm · r) (2.19)

where Gm are the reciprocal lattice vectors3 and

VKS(Gm) =
1

Ωcell

∫
Ωcell

dr VKS(r) exp(−iG · r), (2.20)

with Ωcell the volume of the primitive cell. Therefore the matrix elements of the potential

〈q′|V̂KS|q〉 = ∑
m

VKS(Gm)δq′−q,Gm (2.21)

are different from zero only if q and q′ differ by a reciprocal lattice vector Gm. Denoting

with k a proper wave-vector in the first Brilloiun zone, one can always define q = k + Gm

and q′ = k + Gm′ meaning that the Hamiltonian becomes block-diagonal and each block

corresponds to a vector k in the first Brillouin zone. The KS equations for any given k become

∑
m′

Hm,m′(k)ci,m′(k) = εi(k)ci,m(k), (2.22)

where

Hm,m′(k) =
h̄2

2me
|k + Gm|2δm,m′ + VKS(Gm −Gm′). (2.23)

The eigenfunction φi(r) can be labeled by the vector k as well and can be written

φi,k(r) = ∑
m

ci,m ×
1√
Ω

exp[i(k + Gm) · r] = exp(ik · r)
1√
Ncell

ui,k(r) (2.24)

where Ncell is the number of primitive cells in the total volume, Ω = Ωcell Ncell and

ui,k(r) =
1√

Ωcell
∑
m

ci,m(k) exp(iGm · r) (2.25)

3 See for instance Ref. [33] or Ref. [34] for the definition of the reciprocal lattice.
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2.2. Density Functional Theory

are functions which have the periodicity of the lattice and are orthonormal in one primitive

cell. Eq. (2.24) is nothing but the well known Bloch theorem. The eigenpairs solution of the KS

Hamiltonian can therefore be labeled by a wave vector k belonging to the first Brillouin zone

and by an index i representing the discrete set of eigenvalues of the Hamiltonian at any given

vector k. As the volume Ω goes to infinity and the system approaches the macroscopic limit,

the allowed values of k becomes very dense and the eigenvalues εi(k) become continuous

bands.

Although the periodicity of the lattice allows to select only a discrete set of plane waves

(PW), the representation of the Hamiltonian and its eigenfunctions for any value of k requires

in principle an infinite number of such plane waves with wave vectors k + Gm. In practice

since the valence wavefunctions are in general smooth and slowly varying functions, the high

wave-vector components in the PW expansion are small enough, allowing for the truncation

of the expansion. The plane waves used in a calculation are usually chosen to have a kinetic

energy smaller than a given cut-off Ecut

h̄2

2me
|k + Gm|2 ≤ Ecut (2.26)

meaning that the convergence with respect to the number of plane waves can be easily checked

by increasing the parameter Ecut.

While in the region between the nuclei the valence wavefuncions are slowly varying and

thus can be easily described using a PW expansion, close to the nuclei positions, because of

the orthogonality condition with respect to the core-electrons wavefunctions, they still vary

strongly. In order to use an acceptable number of PW also in the core region, the strong

variations of the valence wavefunctions can be “ smoothened” resorting to the pseudopotential

method.

The pseudopotential idea arises from the fact that many relevant properties of a system,

such as bonding, chemical reactivity and many response functions, are mostly related to va-

lence electrons only. Core electrons often play minor roles and can be regarded as a rigid

object forming, together with the corresponding nucleus, a background of ion cores. In this

picture the combined effects of the nucleus plus the core electrons on the valence electrons

via Coulomb interaction is replaced by an effective potential which is called pseudopotential.

These potentials are required to give smooth and nodeless pseudowave-functions which are

identical to the all-electron wave-functions outside a given radius and smooth enough in the

core region in order to be well represented by a small number of plane waves.
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2. Theoretical background

The operation required to build an ab-initio pseudopotential are basically three:

1 an all-electron calculation within some DFT approximation (LDA, GGA etc...) is per-

formed for a single atom in order to obtain the electronic states;

2 the core states are kept in the ground state of the atomic configuration while the valence

states are pseudized in such a way to be identical to the all-electron ones outside a given

cut-off radius and smooth and nodeless in the core region;

3 the KS problem is inverted in order to find the corresponding pseudopotentials.

The additional requirement that the norm of the wave-functions is conserved leads to the

so called norm-conserving pseudopotentials [35]. This condition is crucial to ensure the correct

scattering properties around the atomic reference energy and leads to much more accurate

results if compared to empirical pseudopotentials that do not fulfill this requirement.

A new class of pseudopotentials has been later proposed by Vanderbilt called ultrasoft

pseudopotential [36]. The constraint on the total charge is relaxed allowing for the construction

of very smooth pseudowavefunctions with a sensible reduction of the number of PW needed

for the expansion. At the same time the atomic scattering properties are not compromised.

Although the approach is technically rather complicated it allows to speed up the calculation

especially for elements, like for instance N, O and F, whose norm-conserving pseudopotentials

are still quite “hard” thus requiring a significant amount of Fourier components to be well

represented.

2.2.4 Approximations for the xc functional

Already in their original paper Kohn and Sham pointed out that for systems characterized

by a slowly varying density the xc energy can be locally approximated by the xc energy of

a homogeneous electron gas with a density equal to the local density of the inhomogeneous

system. This leads to the Local Density Approximation (LDA):

ELDA
xc [n] =

∫
dr εxc(n(r))n(r) (2.27)

where εxc(n) is the exchange and correlation energy per particle in an electron gas with uni-

form density n, for which parametrizations [37, 8, 38] based on accurate Quantum Monte

Carlo results [39] exist. By construction LDA is exact in the limit of uniform density and, as

expected, works very well for systems with densities that vary slowly over space. However

the success of LDA is far more than originally expected; highly non-homogeneous systems
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2.2. Density Functional Theory

such as atoms, molecules and metal surfaces are indeed reasonably described by LDA. A par-

tial explanation for this success of the LDA is a systematic error cancellation: typically, LDA

underestimates Ec but overestimates Ex, resulting in unexpectedly good values of Exc. This

error cancellation is not accidental, but systematic, and caused by the fact that for any density

the LDA xc hole (see Eq. (2.38) and Eq. (2.39) for a definition of the xc hole) satisfies the correct

sum rule ∫
dr′ nLDA

xc (r, r′) = −1 (2.28)

which is only possible if integrated errors in nLDA
x cancel with those of nLDA

c .

These encouraging results motivated the community to develop many extensions on the

LDA by including also the gradient of the density into the functional. The first attemps in this

direction leads to the so colled “gradient-expansion approximations” (GEAs) in which one

tries to systematically calculate gradient-corrections of the form |∇n(r)|, |∇n(r)|2, ∇2n(r),

etc., to the LDA. However it immediately turned out that inclusion of low-order gradient

corrections almost never improves on the LDA, and often even worsens it. In the early eighties

it was realized that instead of power-series-like systematic gradient expansions one could

experiment with more general functions of n(r) and ∇n(r), without requiring an order by

order expansion. This leads to the so called Generalized Gradient approximations (GGAs)

which are usually defined as:

EGGA
xc [n] =

∫
dr εx(n(r))Fxc(n(r),∇n(r))n(r) (2.29)

where εx is the exchange energy per particle of a homogeneous electron gas with a density

equal to the local density of the inhomogeneous system and Fxc is an enhancement factor

over the local exchange which depends on the local density n(r) and on its variation ∇n(r).

Depending on the different expressions for Fxc several GGAs have been developed; in partic-

ular, GGAs used in quantum chemistry typically proceed by fitting parameters to test sets of

selected molecules. On the other hand, GGAs used in physics tend to emphasize exact con-

straints. Nowadays the most popular (and most reliable) GGAs are PBE (denoting the func-

tional proposed in 1996 by Perdew, Burke and Ernzerhof [7]) in physics, and BLYP (denoting

the combination of Becke’s 1988 exchange functional [6] with the 1988 correlation functional

of Lee, Yang and Parr [40]) in chemistry. In the last few years a consensus has developed

about a few GGAs that are qualitatively similar for systems of physical interest and which

are able to give reliable results for all main types of chemical bonds (covalent, ionic, metallic

and hydrogen bridge) and to significantly improve over the LDA providing in many cases the

accuracy required by the chemistry community.
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A step up in what Perdew called the “Jacob’s ladder” toward the heaven of chemical

accuracy4 is represented by the hybrid functionals characterized by a combination of orbital-

dependent Hartree-Fock and an explicit density functional. The physical insight behind this

class of functionals is that the xc energy can be exactly expressed as an integral over a cou-

pling constant tuning the electron-electron interaction (see Sections below) and the contri-

bution when the interaction is turned off is exactly the Hartree-Fock exchange energy. The

construction of hybrid functionals involves a certain amount of empiricism in the choice of

functionals that are mixed and in the optimization of the weight factors given to the HF and

DFT terms. Formally, this might be considered a drawback, but in practice hybrid functionals

have proven to be the most successful exchange-correlation functionals for chemical applica-

tions.

All the functionals mentioned so far are built using informations from occupied states only.

Exact exchange used for the construction of hybrid functionals can be combined with exact

partial correlation, making use of the virtual KS states in addition to the occupied ones. Ex-

amples are the Random Phase Approximation (RPA) and its modifications. One particularly

convenient approach to derive such functionals is the so called adiabatic connection fluctuation-

dissipation theory, which is a powerful tool to obtain, in principle, the exact ground state total

energy of an interacting many-body system.

2.3 The Adiabatic Connection Fluctuation-Dissipation Theory

The most disappointing drawback of the different approximations briefly described in Sec. 2.2.4,

is probably the fact that it is extremely difficult to find a systematic way to improve them. In

this respect it is illuminating to start with a formally exact way of constructing the xc energy

functional using the Adiabatic Connection Fluctuation-Dissipation Theory. This elegant ap-

proach has been derived independently by Langreth and Perdew[11, 12], and by Gunnarsson

and Lundqvist [5] and provide a route to overcome the shortcomings of standard LDA/GGA

density functional theory. In particular i) an exact expression for the exchange-correlation

energy in term of density-density response function can be derived from the ACFD theo-

rem providing a promising way to develop systematic improvements for the xc functional;

ii) all ACFD methods treat the exchange energy exactly thus canceling out the spurious self-

interaction error present in Hartree energy; moreover iii) the correlation energy is fully non-

4 The so-called “chemical accuracy” requires calculations with an error of not more than about 1 kcal/mol =

0.04336 eV/particle.
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2.3. The Adiabatic Connection Fluctuation-Dissipation Theory

local and automatically includes long-range van der Waals interactions.

The starting point for the derivation is the adiabatic-connection technique which allows to

exactly define the ground-state energy of an interacting many-body system. Then in the DFT

context one can use the fluctuation-dissipation theorem to obtain an exact expression for the

exchange-correlation energy in term of density-density response functions meaning that any

approximation for the latter directly translates into an approximate DFT exchange-correlation

functional.

2.3.1 Adiabatic Connection Formula

The basic idea of the adiabatic connection is to introduce a continuous set of coupling-strength

(λ) dependent Hamiltonians Ĥ(λ) which connect a reference non-interacting Hamiltonian

Ĥ0 = Ĥ(λ = 0) with the target many-body Hamiltonian Ĥ = Ĥ(λ = 1) describing the

Coulomb-interacting electronic system. This is usually done with a smooth turning-on of the

electron-electron interaction controlled by the coupling-strength parameter λ. The choice of

the reference Hamiltonian and of the adiabatic-connection path is not unique. In DFT context

the natural choice is to set the path in such a way to keep the electron density constant along

the way and fixed to its physical value (the ground state density of the interacting system)

meaning that the reference non-interacting Hamiltonian is just the KS Hamiltonian. Then

when the electron-electron interaction is turned-on a non-trivial λ-dependent local potential

vλ(r) is introduced in such a way to keep the density constant along the path. For a generic

value of λ the Hamiltonian can be written as:

Ĥλ = T̂ + λŴ + V̂λ (2.30)

where Ŵ = e2 ∑N
i<j |ri − rj|−1 and V̂λ = ∑N

i=1 vλ(ri). The local multiplicative potential vλ(r) is

such that at λ = 1, it is equal to the external potential vext(r) (usually the nuclear potential)

of the fully interacting system while at λ = 0 it coincides with the KS potential vKS(r). A

schematic representation of the adiabatic connection in the DFT context is shown in Fig. 2.1

Using the Hellmann-Feynman theorem we can easily define the derivative of the energy with

respect to the external parameter λ

dE(λ)
dλ

=
d

dλ
〈Ψλ|Ĥλ|Ψλ〉 = 〈Ψλ|Ŵ|Ψλ〉+ 〈Ψλ|

V̂λ

dλ
|Ψλ〉, (2.31)

where Ψλ denotes the ground-state of Ĥλ. Integrating this equation over λ between zero and

one, the total ground-state energy E = E(λ = 1) of the interacting system is obtained:

E = E0 +
∫ 1

0
dλ 〈Ψλ|Ŵ|Ψλ〉+

∫
dr n(r)[vext(r)− vKS(r)], (2.32)
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Figure 2.1: Schematic representation of the adiabatic coupling connection in a DFT context.

Starting from the non-interacting KS system (λ = 0), the electron-electron interaction is turned

on and a local potential V̂λ is introduced in such a way to keep the density fixed along the path.

with E0 = E(λ = 0) being the energy of the non-interacting KS system and where the fact that

the density is independent on λ has been exploited in the second integral. Using the standard

decomposition for the energies E0 and E

E0 = Ts +
∫

dr n(r)vKS(r)

E = Ts +
∫

dr n(r)vext(r) + EH + Exc, (2.33)

we are left with the well know identity

EH + Exc =
∫ 1

0
dλ 〈Ψλ|Ŵ|Ψλ〉 =

∫ 1

0
dλ W(λ). (2.34)

We can rewrite the electron-electron interaction operator Ŵ as

Ŵ =
e2

2

N

∑
j 6=k

1
|rj − rk|

=
e2

2

N

∑
j 6=k

∫
dr
∫

dr′
δ(r− rj)δ(r′ − rk)

|r− r′| , (2.35)

which in terms of the density operator n̂(r) = ∑j δ(r− rj) becomes

Ŵ =
e2

2

∫
dr
∫

dr′
1

|r− r′|
[
n̂(r)n̂(r′)− n̂(r)δ(r− r′)

]
. (2.36)

Inserting Eq. (2.36) into Eq. (2.34) we find

W(λ) =
e2

2

∫
dr
∫

dr′
1

|r− r′|
[
〈n̂(r)n̂(r′)〉λ − n(r)δ(r− r′)

]
(2.37)

where 〈· · · 〉λ means an average on the ground-state |Ψλ〉. Introducing the density fluctuation

operator δn̂(r) = n̂(r)− n(r) we can isolate the Hartree term and obtain an exact expression for

the exchange-correlation energy

Exc =
e2

2

∫ 1

0
dλ
∫

dr
∫

dr′
1

|r− r′|
[
〈δn̂(r)δn̂(r′)〉λ − n̂(r)δ(r− r′)

]
=

e2

2

∫ 1

0
dλ
∫

dr
∫

dr′
nλ

xc(r, r′)n(r)
|r− r′| . (2.38)
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2.3. The Adiabatic Connection Fluctuation-Dissipation Theory

Here

nλ
xc(r, r′) =

〈δn̂(r)δn̂(r′)〉λ

n(r)
− δ(r− r′) (2.39)

is the formal expression for the so-called xc hole which show that nλ
xc(r, r′) is intimately related

to the density-density correlation function.

The fluctuation-dissipation theorem (FDT) [41, 42] can be used to establish a link between the

density-density correlation (fluctuation) to the response properties of the system (dissipation).

The theorem state that a system at thermodynamic equilibrium responses to a small external

perturbation in the same way it responses to spontaneous internal fluctuations in absence of

the perturbation. In this context the zero-temperature FDT leads to

〈δn̂(r)δn̂(r′)〉λ = − h̄
π

∫ ∞

0
dω=

[
χλ(r, r′; ω)

]
= − h̄

π

∫ ∞

0
duχλ(r, r′; iu) (2.40)

where χλ(r, r′; ω) and χλ(r, r′; iu) are the density-density response function of the λ-scaled

interacting system evaluated for real and imaginary frequencies. In the second identity we

moved the integration path onto the imaginary axis in the complex-frequency plane exploiting

the fact that χ(r′, r′; ω) is analytic in the upper-half plane. Then we used the fact that χ(r, r′; iu)

is a real function. For numerical evaluation the integration over imaginary frequencies is more

suitable because it avoids the poles (related to the excitations energies of the system) that the

response function presents on the real axis. Combining Eq. (2.40) with Eq. (2.38) the ACFD

formula for the xc energy is obtained

Exc = −1
2

∫ 1

0
dλ
∫

drdr′
e2

|r− r′|

{
h̄
π

∫ ∞

0
χλ(r, r′; iu) du + δ(r− r′)n(r)

}
. (2.41)

Notice that if χλ(r, r′; iu) is replaced by the non-interacting KS density-density response func-

tion χ0(r, r′; iu), which has the familiar expression in terms of KS orbitals φi(r), KS eigenvalues

εi and occupation number fi

χ0(r, r′; iu) = ∑
i,j

( fi − f j)
φ∗i (r)φj(r)φ∗j r′φi(r′)

εi − εj + ih̄u
, (2.42)

the so-called KS exact-exchange energy Ex is recovered

Ex = − e2

2

∫
drdr′

|∑occ
i φ∗i (r)φi(r′)|2
|r− r′| . (2.43)

Ex has the same expression as the Hartree-Fock exchange energy but it is evaluated with the

KS orbitals. The xc energy in Eq. (2.41) can be thus separated into the KS exact exchange

energy, Ex, and the correlation energy, Ec, which can be expressed in terms of interacting and
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non-interacting density-density response functions as

Ec = − h̄
2π

∫ 1

0
dλ
∫

du Tr {v [χλ(iu)− χ0(iu)]} , (2.44)

where v = e2/|r − r′| is the Coulomb kernel and the compact notation “Tr” means a trace

over the spatial coordinates r and r′. The interacting response function χλ can be related

to its non-interacting counterpart resorting to the generalization of DFT for time-dependent

phenomena.

2.3.2 Time-dependent linear density response

The time-independent Hohenberg-Kohn-Sham theory described in previous section has been

extended to time-dependent phenomena by Runge and Gross [43] who proved that for any

given initial state and interparticle interaction there exist a one-to-one mapping between time-

dependent densities and time-dependent external potentials. As a consequence of this con-

nection, if the time-dependent density of an interacting system can be reproduced in a fic-

titious system of non-interacting electrons moving under the influence of an effective time-

dependent potential vKS[n](r, t), this potential is a universal functional of n(r, t). Accordingly,

the time-dependent density of the interacting system can be obtained from

n(r, t) =
N

∑
j
|φj(r, t)| (2.45)

where the orbitals φj(r, t) satisfies the the so-called time-dependent KS (TDKS) equations

ih̄
∂

∂t
φj(r, t) =

(
− h̄2

2me
∇2 + vKS[n](r, t)

)
φj(r, t), (2.46)

and the TDKS potential can be defined to be the sum of the external potential, the Hartree

potential and the xc potential

vKS[n](r, t) = vext(r, t) +
∫

dr′
n(r′, t)
|r− r′| + vxc[n](r, t). (2.47)

Eq. (2.47) defines the time-dependent xc potential which is an unknown functional of the time-

dependent density and needs to be adequately approximated for any practical applications.

As far as weakly perturbations are concerned one can use linear response theory and the

basic theorem of TDDFT to formally derive an exact representation of the linear density re-

sponse n1(r, t) of an interacting many-body system in terms of the response function of the

corresponding KS system and a frequency-dependent xc kernel.
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Consider an electronic system moving in a static external potential v0(r) (typically the

nuclear potential) until time t = t0 when a time-dependent perturbation v1(r, t) is switched

on. Assuming that for t < t0 the system was in its ground-state, the initial density n0(r)

is simply given by the solution of the ordinary KS problem in Eq. (2.13). In a perturbative

regime, i.e., for sufficient small v1(r, t) the density can be expanded into a Taylor series with

respect to the perturbation v1(r, t)

n(r, t) = n0(r) + n1(r, t) + n2(r, t) + . . . (2.48)

where the subscript indicates the order of the perturbation. The first-order density response

is given by

n1(r, t) =
∫

dt′
∫

dr′ χ(r, t, r′, t′)v1(r′, t′) (2.49)

where we have introduced the density-density response function

χ(r, t, r′, t′) =
δn(r, t)

δvext(r′, t′)

∣∣∣∣
v0

. (2.50)

Notice that owing to the static HK theorem, the unperturbed potential v0 = vext[n0] is a func-

tional of the unperturbed ground-state density n0, meaning that the density-density response

function χ(r, t, r′, t′) is a functional of n0 as well.

For the corresponding non-interacting KS system the density-density response function

(which has a non interacting form) is formally given by

χ0(r, t, r′, t′) =
δn(r, t)

δvKS(r′, t′)
. (2.51)

Since the external potential vext(r, t) uniquely determines the density n(r, t)5 and, thanks to

the Runge-Gross theorem, the density uniquely determine the effective potential vKS(r, t), a

unique functional vKS[vext] can be formally defined such that the density of non-interacting

particles moving in vKS(r, t) is identical with the density of Coulomb-interacting particles

moving in the external potential vext(r, t) [44]. By virtue of the functional chain rule, the func-

tional derivative of vKS with respect to vext provides a link between the interacting density-

density response function χ and the non-interacting one χ0:

χ(r, t, r′, t′) =
∫

dr1 dt1
δn(r, t)

δvKS(r1, t1)
δvKS(r1, t1)
δvext(r′, t′)

∣∣∣∣
n0

=
∫

dr1 dt1 χ0(r, t, r1, t1)
δvKS(r1, t1)
δvext(r′, t′)

∣∣∣∣
n0

(2.52)

5 In this case there is no additional dependence on the initial many-body ground-state. By virtue of the static

HK theorem the initial many-body ground-state is uniquely determined by the initial ground state density n0

meaning that, in this case, the time-dependent density is a functional of the external potential alone.
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Using the definition of vKS in Eq. (2.47) and once more the functional chain rule, the functional

derivative of vKS with respect to vext becomes:

δvKS(r1, t1)
δvext(r′, t′)

∣∣∣∣
n0

= δ(t1 − t′)δ(r1 − r′) +
∫

dr2 dt2

[
δ(t1 − t2)
|r1 − r2|

+
δvxc(r1, t1)
δn(r2, t2)

]
δn(r2, t2)

δvext(r′, t′)
.

(2.53)

Replacing into Eq. (2.52) and using the definitions Eq. (2.50) and Eq. (2.51), a Dyson-like equa-

tion is obtained relating the interacting and the non-interacting density-density response func-

tions

χ(r, t, r′, t′) = χ0(r, t, r′, t′) +
∫

dr1 dt1

∫
dr2 dt2 χ0(r, t, r1, t1) ×

×
[

δ(t1 − t2)
|r1 − r2|

+ fxc(r1, t1, r2, t2)
]

χ(r2, t1, r′, t′) (2.54)

where the time-dependent xc kernel [45, 44, 46]

fxc(r, t, r′, t′) :=
δvxc[n](r, t)

δn(r′, t′)

∣∣∣∣
n0

(2.55)

is a functional of the initial ground-state density n0. If we take the Fourier transformation of

Eq. (2.54) passing from time domain to (imaginary) frequency domain and insert the scaling

parameter λ, we get the desired relation between the (scaled) interacting response function

and the non-interacting one

χλ(iu) = χ0(iu) + χ0(iu)[λv + f λ
xc(iu)]χλ(iu) (2.56)

where spatial coordinates dependence is implicit in the matrix notation. The system of Eqs. (2.56),

(2.44) and (2.42) can be closed, thus allowing to compute the correlation energy, once the xc

kernel f λ
xc is specified. In this context the simplest approximation is the random-phase approx-

imation (RPA) where the xc kernel is simply neglected and only the frequency-independent

Coulomb or Hartree kernel is taken into account.

2.3.3 The Random Phase Approximation

The random phase approximation was introduced in the context of quantum many-body the-

ory for the first time by Bohm and Pines[47, 48, 49, 50] during the 1950s extending concepts

and techniques of quantum electrodynamics to the study of solids and nuclei. But it was only

in the late 1970s that the RPA was formulated in the context of DFT and it took until recent

years to be applied as a first principle electronic structure method. Within the ACFD frame-

work described in previous sections it amounts to replace the interacting response function
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with its RPA approximation given by the solution of the Dyson-like equation

χRPA
λ (iu) = χ0(iu) + λχ0(iu)vχRPA

λ (iu). (2.57)

It has been shown, see for instance Ref [51], that RPA yields the correct 1/R6 long range

behavior for the interaction energy of well-separated closed shell subsystems such as van der

Waals compounds; moreover RPA correctly describes static correlation [21, 52], as seen for

instance when studying H2 dissociation. Beside this encouraging results RPA is known to

overestimate the correlation energies and thus to poorly describe total energies [53, 54] and in

this respect various approaches have been developed that introduce “ad hoc” corrections or

modifications to RPA [55, 56, 57].

From a practical point of view the greatest limitation of RPA, and its modifications or ex-

tensions, is its computational cost which is much more considerable compared to conventional

LDA or GGAs functionals, preventing its widespread use in chemistry and material science.

However also in this field great improvements have been achieved with respect to initial im-

plementations which had very unfavorable scaling with the size of the system. In particular

for what concern plane wave based implementations the scaling is O[N4] automatically, but

some expedients can be used to speed up the calculations. A straightforward plane-wave

and pseudo-potential implementation [18] requires the diagonalization of the KS Hamilto-

nian for all occupied and unoccupied orbitals so that the KS response function χ0(iu) can be

explicitly calculated from its definition in Eq. (2.42). Then the Dyson equation for the RPA re-

sponse function χRPA
λ (iu) has to be solved for a discrete set of values of the coupling-constant

λ and imaginary frequency iu. Finally the RPA correlation energy is obtained integrating

over these variables. An obvious disadvantage of this kind of implementation is that a great

number of unoccupied state has to be calculated in order to get well-converged correlation en-

ergies. Therefore the KS problem has to be solved using full matrix diagonalization techniques

which have unfavorable scaling if compared to iterative diagonalization methods commonly

used to calculate KS orbitals and energies. Moreover the representation of the response func-

tions in reciprocal space requires to store very large matrices and solving the Dyson equation,

which becomes a linear equation relating full matrices, is memory-demanding and cpu-time-

comsuming, thus limiting the size of the systems that can be treated.

Recently Nguyen and de Gironcoli [58, 59] and Galli and coworkers [60] independently

proposed an alternative implementation based on the eigenvalues decomposition of the RPA

dielectric function εRPA(iu) = 1− vχ0(iu), efficiently computed resorting to iterative density

response calculations in the framework of Density Functional Perturbation Theory (DFPT) [61].
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2. Theoretical background

In this context the RPA correlation energy can be written as

ERPA
c =

h̄
2π

∫ ∞

0
du ∑

α

[eα(iu) + ln (1− eα(iu))] (2.58)

where eα(iu) are the eigenvalues of the operator vχ0(iu)

vχ0|zα〉 = eα|zα〉. (2.59)

Eq. (2.58) can be easily derived combining the RPA Dyson equation (2.57) with the equation

above:

vχRPA
λ |zα〉 = vχ0|zα〉+ λvχRPA

λ vχ0|zα〉 = eα|zα〉+ λeαvχRPA
λ |zα〉. (2.60)

This relation shows that vχRPA
λ has the same eigenpotentials |zα〉 of vχ0 while its eigenvalues

are simply related to eα by the relation:

vχRPA
λ |zα〉 =

eα

1− λeα
|zα〉 (2.61)

The trace appearing in the general expression for the correlation energy in Eq. (2.44) is simply

given by the sum over eigenvalues of vχRPA
λ and vχ0. Analytical integration over the coupling

constant λ leads to the final expression for the RPA correlation energy in Eq. (2.58). Since only

a small fraction of the eigenvalues eα differs significantly from zero [62], the full spectrum

is not needed and only the “most relevant” eigenvalues aα and eigenvectors |zα〉 can be effi-

ciently calculated using an iterative diagonalization procedure. Moreover the matrix elements

of vχ0(iu) needed during the diagonalization procedure can be efficiently computed resorting

to the linear response technique of DFPT since the action of vχ0(iu) on a generic potential |ωα〉
is essentially the linear density variation induced by the potential itself.

The computational cost of this alternative RPA implementation is reduced from N2
pwχ0

NoccNvir

to NpwψN2
occNeig where Npwχ0 and Npwψ are the number of plane waves for the expansions of

the KS response function and the KS single particle orbitals, Nocc and Nvir are the number

of occupied and virtual KS state and Neig is the number of the relevant eigenvalues of the

dielectric function. Althought the general scaling is still O[N4] the iterative diagonalization

implementation allows a reduction of the prefactor estimated to be 100− 1000 [58, 59].

Despite the efforts in trying to reduce the computational woarkload of RPA calculations,

they still remain computationally very demanding. For this reason, most of the RPA calcula-

tion are limited to a post self-consistent correction where the xc energy is computed from the

charge density obtained from a self-consistent calculation performed with a more traditional

xc functional. This implies that the results may depend strongly on the imput orbitals so that
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2.3. The Adiabatic Connection Fluctuation-Dissipation Theory

when using different exchange-correlation functional or different basis set, the final RPA to-

tal energy also differs [20, 19]. In principle self consistent field (scf) RPA calculations can be

done by relying on the optimized effective potential (OEP) method which provides a way to

compute the local multiplicative potential that minimizes a given orbital dependent energy

functional. The first ante-litteram example of scf-RPA within the OEP framework dates back to

more than 20 years ago when Godby, Schlüter and Sham solved the Sham-Schlüter equation

to obtain the effective KS potential of a few semiconductor systems [63, 64]. However they

did not compute the RPA ground state total energy. More recently fully scf-RPA calculations

have been performed for closed shell atoms [54, 65] showing that the RPA potentials in these

systems bear a close resemblance to the exact correlation potentials. Soon after applications

to simple molecules appeared [66, 67, 68]. For what concerns plane wave implementations,

an efficient way to compute the scf-RPA energy and potential has been recently proposed by

Nguyen et al. [69, 70], stemming from the non-scf implementation of Nguyen and de Giron-

coli [58] paving the way for extensive calculations also for extended systems. The functional

derivative of the RPA correlation energy ERPA
c with respect to the density n(r) defines the RPA

correlation potentials vRPA
c (r) and can be written as

vRPA
c (r) =

δERPA
c

δn(r)
=
∫

dr′
δERPA

c
δvKS(r′)

· δvKS(r′)
δn(r)

(2.62)

where the functional chain rule has been used. This integral equation defines the OEP problem

and can be solved when the functional derivative of the RPA energy with respect to the KS

potential in given. In the implementation based on the dielectric-function diagonalization,

this amounts to calculate the derivative of the eigenvalues aα(iu) appearing in Eq. (2.58) with

respect to vKS(r); infact

δERPA
c

δvKS(r′)
= − h̄

2π

∫
du ∑

α

aα

1− aα
· δaα

δvKS(r)
. (2.63)

Nguyen et al. [69, 70] derived an exact expression for δaα/δvKS(r) just in terms of KS orbitals

and its first order variations and showed how to efficently compute it resorting, again, to

linear response technique of DFPT. Moreover they have shown that the additional compu-

tational cost for this operation is a fraction of the one needed to compute Ec, meaning that

beside ERPA
c one can also abtain its functional derivative δERPA

c /δvKS(r′) basically at the same

computational cost. Once δERPA
c /δvKS(r′) is given, the OEP equation (2.62) is solved using an

efficient iterative scheme.

However, employing the RPA in a self consistent manner seems not enough to overcome

all the already mentioned shortcomings of the RPA. In particular the total energies from scf
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RPA calculations are bound to be even worse that those from non-scf RPA ones. The reason

is that the RPA correlation energy is too large in magnitude leading to a too low total energy.

Going from non-scf to scf calculations of the RPA correlation energy, the total energy becomes

even lower because of the variational nature of the RPA energy functional leading to worse

results.

2.3.4 Beyond the Random Phase Approximation

In the previous section we have briefly described virtues and vices of RPA. In order to correct

for the latter various approaches have been developed that introduce corrections or modifi-

cations to the RPA. It is generally accepted that RPA is able to correctly describe long-range

interaction but it is not adequate when short-range correlation are concerned. Perdew and

coworkers [55] proposed a first modification, named RPA+, in which a local or semi-local

correction is added to the standard RPA. This formally amount to approximate what is left

outside the RPA correlation energy with a local or semi-local functional:

∆ERPA
c = Ec − ERPA

c ∼
∫

dr n(r)
(

εc[n(r)]− εRPA
c [n(r)]

)
(2.64)

where Ec is the exact correlation energy of the non-homogeneous system and εc and εRPA
c the

correlation energy per particle and its RPA counterpart of the homogeneous electron gas. The

RPA+ correction, although good for total energy, does not improve the description of energy

differences and in particular the atomization energies of small molecules [20].

The basic idea of RPA+ scheme, i.e. of retaining only the long-range behavior of RPA, is

also exploited in the range-separated approaches [56]. In this case the short-range RPA contri-

bution is completely removed (and not just corrected as in the RPA+ scheme) and replaced

by a local, semi-local or hybrid functional. The computational efficiency and the accuracy in

describing atomization energies take advantage from this approach, however at the price of

introducing an empirical parameter that controls the range-separation.

In Ref [57] the inclusion of single-excitation contribution has been suggested as a possible

solution of the RPA deficiencies. It is a second-order contribution to the energy which is

neglected at the RPA level. Adding this term to the RPA energy improves the accuracy of

van der Waals bonded molecules [57] which are generally underbinded at RPA level. Also

atomization energies of covalent molecules [71] benefit from the inclusion of this term.

Staying within the ACFD framework, a rigorous possibility to address the shortcomings

of RPA is to add an exchange-correlation contribution to the kernel appearing in the Dyson

equation (2.56) looking for better approximations for the interacting response function. To
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2.3. The Adiabatic Connection Fluctuation-Dissipation Theory

the best of our knowledge very little is known about the exchange-correlation kernel. The

most common approximations for fxc, are based on properties of the HEG ( see, for instance,

Refs. [72], [73] and [74] for a review), the simplest being the Adiabatic Local Density Ap-

proximation (ALDA) where the non-locality and the frequency dependence of the kernel are

completely neglected. A truly non-local (but still adiabatic) approximation for fxc has been de-

rived by Petersilka et al. starting from the time-dependent generalization of the approximate

OEP scheme proposed by Krieger, Li, and Iafrate [75].

Recently the expression for the full frequency-dependent exact-exchange contribution to

fxc has been derived by Göerling [76, 77, 78] within the time-dependent optimized effective

potential (TDOEP) framework and by Hellgren and von Barth [79, 80] from a variational for-

mulation of the MBPT. It defines, together to the Coulomb kernel, the full first order contri-

bution to fxc
6, and, if plugged into the Dyson equation (2.56), leads to an approximation for

the response function, known in litterature as RPAx or EXXRPA, which is on the same level

of the RPA but correctly takes into account all the first order contributions to the kernel in the

interaction strength λ.

In the next Chapter we set the RPAx approximation within a general scheme which in

principle allows to compute contributions to the kernel beyond the exact-exchange one, by es-

tablishing a link between the TDDFT expression for the response function in Eq. (2.56) and the

power expansion of χλ in the interaction strength, which can be obtained resorting to the well-

established Görling -Levy Perturbation Theory (GLPT) [81] along the adiabatic-connection

path. Combining this MBPT approach with the ACFD theory provides a promising and pow-

erful tool for the systematic development of new and advanced functionals.

6 Both the Hartree and the exchange energy are linear in the coupling strength λ, meaning that both the

Coulomb and the exchange kernel contribute to linear order.
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Chapter 3
Advanced exchange-correlation

functionals from ACFD Theory

In this Chapter we will derive a strategy for a systematic improvement of the xc energy integrating the

general framework of the ACFD theory with a many-body perturbation approach along the adiabatic

connection path. Applying our strategy to first order leads to the random-phase plus exact-exchange

kernel approximation, known in literature as RPAx. In Sec. 3.2 we will describe an efficient approach to

solve the RPAx equation based on an eigenvalue decomposition of the full-interacting density response

function in the limit of vanishing electron-electron interaction. Details of a plane-wave implementation

are also supplied.

3.1 Systematic improvement of the correlation energy

Within the ACFD formalism the central quantity defining the correlation energy is the (scaled)

linear density response function χλ(iu) which is linked to the KS response function χ0(iu) via

the Dyson-like equation (2.56), and thus ultimately to the (scaled) exchange and correlation

kernel f λ
xc:

Ec = − h̄
2π

∫ 1

0
dλ
∫

du Tr {v [χλ(iu)− χ0(iu)]}

χλ(iu) = χ0(iu) + χ0(iu)[λv + f λ
xc(iu)]χλ(iu). (3.1)

Any approximation for f λ
xc will turns into a corresponding approximation for the response

function and for the correlation energy. As already pointed out in Section 2.3.4, to the best of

our knowledge, very little is known about how to obtain explicitly the exchange-correlation
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3. Advanced exchange-correlation functionals from ACFD Theory

kernel. In the following we will describe a general scheme which allows us to formally define

a power expansion for f λ
xc, by establishing a link between the TDDFT expression for the re-

sponse function in Eq. (3.1) and the power expansion of χλ in the interaction strength, which

can be obtained from a many-body approach along the adiabatic-connection path.

The starting point of our derivation is the λ-dependent Hamiltonian in Eq. (2.30) which

describes the continuous set of fictitious systems defining the adiabatic-connection path. We

already pointed out that for λ = 1 the local potential vλ(r) is equal to the external potential

(usually the nuclear potential) of the fully interacting system and Ĥλ=1 coincides with the fully

interacting Hamiltonian, while for λ = 0 the local potential coincides with the KS potential

and Ĥλ=0 is the KS Hamiltonian. For intermediate values of λ an explicit expression for the

local λ-dependent potential has been derived by Görling and Levy [81]:

vλ(r) = vKS(r)− λ[vH(r) + vx(r)]− δEλ
c [n]

δn(r)
(3.2)

where vKS(r) is the KS potential, vH(r) is the Hartree potential, vx(r) is the local exchange

potential defined as the functional derivative of the exact KS exchange energy Ex in Eq. (2.43)

with respect to the density, and δEλ
c /δn(r) is the correlation contribution to the local potential.

The λ-dependent Hamiltonian in Eq. (2.30) becomes

Ĥλ = ĤKS + λ[Ŵ − V̂Hx]− V̂λ
c (3.3)

where ĤKS is the KS Hamiltonian while the operators V̂Hx and V̂λ
c are simply given by:

V̂Hx =
N

∑
i=1

vH(ri) + vx(ri), V̂λ
c =

N

∑
i=1

Eλ
c [n]

δn(ri)
. (3.4)

Once the many-body λ-dependent Hamiltonian is given, one can use a systematic pertur-

bative approach, specifically the well-established Görling-Levy Perturbation Theory [81], in

order to find increasingly more accurate xc kernels and energies. The basic idea is to establish

a link between the TDDFT expression for the response function in Eq. (3.1) and the power

expansion of χλ in the interaction strength, which can be obtained from the GLPT along the

adiabatic-connection path.

We start by considering the power expansion for the xc kernel f λ
xc = λ fx + λ2 f (2)

c + . . . ;

to first order in the interaction strength λ, not only the Hartree term v, defining the RPA, but

also an exchange contribution fx enters in the definition of the kernel, reflecting the fact that

the Hartree and the exchange energy are both linear in the interaction. Explicitely writing the
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3.1. Systematic improvement of the correlation energy

Dyson equation (2.56) order by order in λ

χλ =χ0+

+λ [χ0 (vc + fx) χ0] +

+λ2
[
χ0 (vc + fx) χ0 (vc + fx) χ0 + χ0 f (2)

c χ0

]
+

+ . . . , (3.5)

it can be seen that the first order kernel, vc + fx, is intimately related to the first-order varia-

tion of χλ with respect to λ and similarly higher order correlation contributions to the kernel

are related to the corresponding power in the χλ expansion. Therefore i) we can define an

arbitrarily accurate approximation to the density-density response function considering the

expansion of the kernel up to a desired order in λ:

χ
(n)
λ = χ0 + χ0[λvc + λ fx + . . . + λn f (n)

c ]χ(n)
λ ; (3.6)

where ii) the kernel up to order λn can be exactly determined by comparing with the λn

expansion of χλ from GLPT and iii) the solution of the Dyson equation for χ
(n)
λ leads to a

density-density response function which is exact to order λn but also contains, although in an

approximate way, all higher-order terms.

In order to solve the Many Body Hamiltonian in Eq. (3.3) so as to obtain the xc kernel to

a given order in λ, the xc potential, and hence the xc energy, must be known up to the same

level. This apparent circular dependence does not actually hinder the application of the pro-

cedure since, thanks to the coupling constant integration involved in Eq. (3.1), the knowledge

of the xc energy, and therefore its functional derivatives, up to order λn only depends on the

xc kernel up to order λn−1. Our strategy can thus be applied in a sequential way where higher

and higher orders in λ can be systematically included as follows:

E0
δ/δn−−→ vKS

GLPT−−−→ χ0
ACFD−−−→

→Ex
δ/δn−−→ vx

GLPT−−−→
(

fx, χ
(1)
λ

)
ACFD−−−→

→E(r2)
c

δ/δn−−→ v(2)
c

GLPT−−−→
(

f (2)
c , χ

(2)
λ

)
ACFD−−−→

→E(r3)
c → . . . (3.7)

To 0th order, i.e. replacing χλ with its non-interacting counterpart χ0, the exact-exchange KS

energy is obtained; moving to the next step, the exact-exchange kernel can be derived from

first order many-body perturbation theory and the RPAx approximation [22, 24, 79] for the
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3. Advanced exchange-correlation functionals from ACFD Theory

correlation energy, i.e. E(r2)
c , is recovered. We stress here that E(rn)

c refers to an approximation

of the correlation energy which is exact to order λn but also contains, via the Dyson equation,

contributions to all order and should not be confused with the nth perturbative correction to

the correlation energy in GLPT [81].

The mathematical complexity of this sequential procedure increases very rapidly and make

extremely hard its application already at the second order; nevertheless the prescription is in

principle given. The functional derivative of E(r2)
c with respect to the density defines the exact

λ2 correction to the Hamiltonian in Eq. (3.3) and allows to apply GLPT to second order and

hence to have access to the corresponding second-order contribution to the xc kernel. Solving

the Dyson equation with the improved kernel defines a new approximation for the response

function χ
(2)
λ which is exact up to second order. Plugging χ

(2)
λ into the ACFD formula (3.1),

leads to a new approximation for the correlation energy, E(3r)
c , which is exact to order λ3 but

also contains, although in an approximate way, all higher-order terms.

Essentially this scheme can be regarded as a revised version of the standard GLPT [81,

82, 77] with the additional step provided by the solution of the Dyson equation for the re-

sponse function and the calculation of a non-perturbative correlation energy (all order in the

coupling-constant appears in E(r2)
c and following approximation to Ec) from the ACFD for-

mula in Eq. (3.1). In this way we expect this approach to be applicable also to small gap or

metallic systems where finite-order many-body perturbation theories break down [83, 73].

Having introduced the general framework, we apply our strategy to first order in the

coupling strength, hence we focus on the frequency-dependent exact-exchange kernel fx and

on the calculation of the contribution E(r2)
c to the correlation energy (previously denoted as

RPAx [79, 23] or EXXRPA [22, 24, 52]) for which we propose a novel and efficient implemen-

tation.

3.2 RPA plus exact-exchange kernel

The RPAx problem is completely specified by the following two equations:

E(r2)
c = − h̄

2π

∫ 1

0
dλ
∫

du Tr
{

v
[
χ

(1)
λ (iu)− χ0(iu)

]}
χ

(1)
λ (iu) = χ0(iu) + λχ0(iu)[v + fx(iu)]χ(1)

λ (iu), (3.8)

whose solution is a matter of computational strategy. Our implementation for computing the

RPAx correlation energy is based on an eigenvalue decomposition of the time-dependent re-

sponse function χλ in the limit of vanishing coupling constant. The scheme, described below,
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3.2. RPA plus exact-exchange kernel

is a generalization of the implementation proposed by Nguyen and de Gironcoli [58, 59] for

computing RPA correlation energies briefly introduced in Sec. 2.3.3.

3.2.1 An efficient scheme for RPAx energy calculation

Let us start by defining the following generalized eigenvalue problem:

− χ0[vc + fx]χ0|ωα〉 = aα[−χ0]|ωα〉 (3.9)

where the eigenpairs {|ωα〉, aα} and all the operators implicitly depend on the imaginary fre-

quency iu and the spatial coordinates dependencies are implicit in the matrix notation. Once

the solution of the generalized eigenvalue problem (3.9) is available, the trace in Eq. (3.8) is

simply given by

Tr
[
v
(

χ
(1)
λ − χ0

)]
= −∑

α

〈ωα|χ0v(χ
(1)
λ − χ0)|ωα〉

= ∑
α

(
1− 1

1− λaα

)
〈ωα|χ0vχ0|ωα〉 (3.10)

where the second identity can be derived as follows: removing [−χ0] from both sides of

Eq. (3.9) it becomes (v + fx)χ0|ωα〉 = aα|ωα〉 and substituting into the Dyson equation (3.8)

for χ
(1)
λ we get:

χ
(1)
λ |ωα〉 = χ0|ωα〉+ λχ

(1)
λ (v + fx)χ0|ωα〉

= χ0|ωα〉+ λaαχ
(1)
λ |ωα〉. (3.11)

Thus the action of χ
(1)
λ on the eigenvectors |ωα〉 simply becomes:

χ
(1)
λ |ωα〉 = χ0|ωα〉+ λaαχ

(1)
λ |ωα〉 ⇒ χ

(1)
λ |ωα〉 =

χ0|ωα〉
1− λaα

(3.12)

from which Eq. (3.10) immediately follows. The integration over the coupling constant in

Eq. (3.8) can be done analytically and leads to the final expression for the RPAx correlation

energy

E(r2)
c = − h̄

2π

∫ ∞

0
du ∑

α

〈ωα|χ0vχ0|ωα〉
aα(iu)

{aα(iu) + ln[1− aα(iu)]} , (3.13)

which is indeed completely specified once the solution of the generalized eigenvalue problem

in Eq. (3.9) is given. Notice that if the exchange kernel fx is neglected the RPA correlation

energy given in Eq. (2.58) is recovered. Moreover Eq. (3.9) and Eq. (3.13) show that knowledge

of hx = χ0 fxχ0 is sufficient for computing the RPAx correlation energy and the exact-exchange
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kernel fx is not explicitly needed. In the next sections we will derive an expression for hx =

χ0 fxχ0 in terms of the KS eigenvalues and eigenfunctions and their first-order corrections

only, and show how it can be efficiently computed resorting to the linear-response techniques

of density functional perturbation theory [61].

3.2.2 The exact-exchange kernel

The exact expression for hx = χ0 fxχ0 in terms of the KS eigenvalues and eigenfunctions

has been derived by Görling starting from the time-dependent optimized potential method

equation[76, 77] and by Hellgren and von Barth starting from the variational formulation of

many-body perturbation theory [54, 79]. In this work we propose an alternative derivation

staying within the general scheme described in the previous Section and show how the de-

sired matrix elements of hx can be efficiently computed resorting to the linear-response tech-

niques of density functional perturbation theory [61]. In our implementation for computing

the RPAx correlation energy only the eigenvalues and eigenvectors of hHx = χ0(v + fx)χ0 are

needed. We thus now derive an exact expression for the matrix elements of hHx exploiting the

fact that it is simply the first-order variation of χλ with respect to the coupling strength λ.

Let us start by considering the matrix element of χ0 on two arbitrary, α and β, time-

dependent perturbing potentials ∆V = ∆V(r)eut at imaginary frequency ω = iu

χ
αβ
0 (iu) = 〈∆αV|χ0|∆βV〉 =

∫
dr ∆αV∗(r)∆βn(r; iu). (3.14)

Assuming that the non-interacting KS Hamiltonian has a non degenerate ground state, the

linear response density ∆n at imaginary frequency ω = iu can be written as

∆n(r; iu) = 〈Φ0|n̂(r)|∆Φ(+)
0 + ∆Φ(−)

0 〉, (3.15)

where |∆Φ±
0 〉 are the first-order corrections to the KS Slater determinant |Φ0〉 due to the per-

turbation ∆V, and satisfy the linearized time-dependent KS equations

[HKS − (E0 ± iu)]|∆Φ(±)
0 〉+ ∆V|Φ0〉 = 0 (3.16)

being E0 = 〈Φ0|ĤKS|Φ0〉 the ground state energy. Using Eq. (3.15), Eq. (3.14) can thus be

written as

χ
αβ
0 (iu) = 〈Φ0|∆αV∗|∆βΦ(+)

0 + ∆βΦ(−)
0 〉. (3.17)

In order to compute the first-order variation of the response function in the coupling

strength λ, i.e. hHx, we switch on the (static) first-order perturbation δV̂ = Ŵ − V̂Hx (see
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Eq. (3.3)) and we compute its effect on the matrix elements in Eq. (3.17). As already pointed

out in Sec. 3.1, the correlation contribution to the local potential V̂λ
c appearing in Eq. (3.3) is

at least of order λ2, since Eλ
c is, hence it does not contribute to the first-order correction to χ0

which is completely determined by δV̂:

hαβ
Hx = δχ

αβ
0 = 〈δΦ0|∆αV∗|∆βΦ(+)

0 + ∆βΦ(−)
0 〉

+ 〈Φ0|∆αV∗|δ∆βΦ(+)
0 + δ∆βΦ(−)

0 〉 (3.18)

where |δ∆Φ0〉 is obtained by taking the linear variation of Eq (3.16)

[HKS − (E0 ± iu)] |δ∆Φ(±)
0 〉+ [δV − δE0] |∆Φ(±)

0 〉+ ∆V|δΦ0〉 = 0 (3.19)

while the variation |δΦ0〉 satisfies the linearized time-independent Schrödinger equation

[HKS − E0]|δΦ0〉+ [δV − δE0]|Φ0〉 = 0 (3.20)

with δE0 = 〈Φ0|δV|Φ0〉.

With a simple manipulation it’s easy to show that δχ0 depends only on the ground state

wavefunction and its first-order corrections (and not on the second order correction |δ∆Φ0〉).
Multiplying the h.c. of Eq. (3.16) on the right by |δ∆Φ0〉 and Eq. (3.19) on the left by 〈∆Φ0| the

following identities are obtained:

〈∆αΦ(+)
0 |[HKS − (E0 − iu)]|δ∆βΦ(−)

0 〉+ 〈Φ0|∆αV∗|δ∆βΦ(−)
0 〉 = 0

〈∆αΦ(+)
0 |[HKS − (E0 − iu)]|δ∆βΦ(−)

0 〉+ 〈∆αΦ(+)
0 |[δV − δE0]|∆βΦ(−)

0 〉+ 〈∆αΦ(+)
0 |∆βV|δΦ0〉 = 0

(3.21)

〈∆αΦ(−)
0 |[HKS − (E0 + iu)]|δ∆βΦ(+)

0 〉+ 〈Φ0|∆αV∗|δ∆βΦ(+)
0 〉 = 0

〈∆αΦ(−)
0 |[HKS − (E0 + iu)]|δ∆βΦ(+)

0 〉+ 〈∆αΦ(−)
0 |[δV − δE0]|∆βΦ(+)

0 〉+ 〈∆αΦ(−)
0 |∆βV|δΦ0〉 = 0

(3.22)

Comparing the two couple of identities, one for each signs (±), an expression for 〈Φ0|∆αV∗|δ∆βΦ(−)
0 +

δ∆βΦ(+)
0 〉 is obtained where the second order corrections cancel out:

〈Φ0|∆αV∗|δ∆βΦ(+)
0 + δ∆βΦ(−)

0 〉 = + 〈∆αΦ(+)
0 + ∆αΦ(−)

0 |∆Vβ|δΦ0〉

+ 〈∆αΦ(+)
0 |δV − δE0|∆βΦ(−)

0 〉

+ 〈∆αΦ(−)
0 |δV − δE0|∆βΦ(+)

0 〉. (3.23)
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Substituting into Eq. (3.18), leads to the final expression for hαβ
vx :

hαβ
Hx = + 〈δΦ0|∆αV∗|∆βΦ(+)

0 + ∆βΦ(−)
0 〉+ 〈∆αΦ(−)

0 + ∆αΦ(+)
0 |∆βV|δΦ0〉

−
[
〈∆αΦ(+)

0 |∆βΦ(−)
0 〉+ 〈∆αΦ(−)

0 |∆βΦ(+)
0 〉

]
δE0

+ 〈∆αΦ(+)
0 |δV|∆βΦ(−)

0 〉+ 〈∆αΦ(−)
0 |δV|∆βΦ(+)

0 〉. (3.24)

Eq. (3.24) together with Eq. (3.16) and Eq. (3.20) defines the matrix elements hαβ
Hx as a function

of the KS Slater determinant |Φ0〉 and its first-order corrections |∆Φ±
0 〉 and |δΦ0〉. Introducing

their definitions in terms of the single particle KS orbitals, |φa〉’s, and their first-order varia-

tions, |∆φ
(±)
a 〉’s and |δφa〉’s, Eq. (3.24) becomes:

hαβ
Hx = +

occ

∑
ab
〈∆αφ

(−)
a φb|W|∆βφ

(+)
b φa〉+

occ

∑
ab
〈∆αφ

(+)
a φb|W|∆βφ

(−)
b φa〉

+
occ

∑
ab
〈∆αφ

(−)
a φb|W|∆βφ

(−)
b φa〉+

occ

∑
ab
〈∆αφ

(+)
a φb|W|∆βφ

(+)
b φa〉

−
occ

∑
ab
〈∆αφ

(−)
a φb|W|φa∆βφ

(+)
b 〉 −

occ

∑
ab
〈∆αφ

(+)
a φb|W|φa∆βφ

(−)
b 〉

−
occ

∑
ab
〈φbφa|W|∆βφ

(+)
b ∆∗αφ

(−)
a 〉 −

occ

∑
ab
〈φbφa|W|∆βφ

(−)
b ∆∗αφ

(+)
a 〉

+
occ

∑
a
〈∆αφ

(−)
a |Vx − vx|∆βφ

(+)
a 〉+

occ

∑
a
〈∆αφ

(+)
a |Vx − vx|∆βφ

(−)
a 〉

−
occ

∑
ab

[
〈∆αφ

(−)
a |∆βφ

(+)
b 〉+ 〈∆αφ

(+)
a |∆βφ

(−)
b 〉

]
〈φb|Vx − vx|φa〉

+
occ

∑
a
〈δφa|∆αV∗|∆βφ

(+)
a + ∆βφ

(−)
a 〉+

occ

∑
a
〈∆αφ

(+)
a + ∆αφ

(−)
a |∆βV|δφa〉

−
occ

∑
ab
〈δφa|∆βφ

(+)
b + ∆βφ

(−)
b 〉〈φb|∆αV∗|φa〉 −

occ

∑
ab
〈∆αφ

(−)
a + ∆αφ

(+)
a |δφb〉〈φb|∆βV|φa〉.

(3.25)

where the sums run over the occupied single-particle KS states only and |∆φ
(±)
a 〉, |∆∗φ

(±)
a 〉

and |δφa〉 are the (conduction-band projected) variations of the occupied single-particle states.

They can be efficiently computed resorting to the linear-response techniques of density func-

tional perturbation theory:

[HKS + γPυ − (εa ± iu)]|∆φ
(±)
a 〉 = −(1− Pυ)∆V|φa〉

[HKS + γPυ − (εa ± iu)]|∆∗φ
(±)
a 〉 = −(1− Pυ)∆V∗|φa〉

[HKS + γPυ − εa]|δφa〉 = −(1− Pυ)[Vx − vx]|φa〉 (3.26)
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where Vx is the non-local exchange operator identical to the Hartree-Fock one but constructed

from KS orbitals, vx = δEx/δn is the local exchange potential, Pυ = ∑occ
a |φa〉〈φa| is the projec-

tor on the occupied manifold and γ is a positive constant larger than the valence bandwidth

in order to ensure that the linear system is not singular even in the limit for iu → 0. A detailed

derivation of Eq. (3.25) from its many-body counterpart Eq. (3.24) is given in Appendix A.

The first two lines are simply the Hartree contribution hαβ
H = 〈∆αV|χ0vχ0|∆βV〉 and the rest

correspond therefore to hαβ
x = 〈∆αV|χ0 fxχ0|∆βV〉. The basic operations required for comput-

ing these matrix elements, and ultimately the RPAx correlation energy, are essentially DFPT

calculations for different imaginary frequencies and trial potentials and are basically the same

required for the calculation of RPA energies and potentials in the implementations proposed

by Nguyen and de Gironcoli [58, 59] and Nguyen et al. [69, 70] respectively. Our implemen-

tation share therefore the same main advantages and in particular the possibility to avoid

explicit cumbersome summations over unoccupied states and the possibility to use efficient

iterative diagonalization technique to calculate valence state of the KS problem and low-lying

eigenvalues of the generalized eigenvalue problem (3.9).

3.2.3 Implementation in plane wave basis set

The method presented in previous sections for the calculation of the RPAx correlation energy

is very general and in principle applicable to all cases. In this section we will present some

technical aspects of the implementation in the plane-wave basis set which is now part of a

developer version of the QUANTUM ESPRESSO distribution [84].

In the plane-wave approach any system is treated as periodic, meaning that the response

functions are block diagonal and can be classified by a vector q in the first Brilloiun zone. For

each q-vector the linear response of the system to pertubing potentials of the form ∆V(r, t) =

[∆vq(r)eiq·r + ∆v∗q(r)e−iq·r]eut, where ∆vq(r) is a lattice-periodic potential, is considered. The

correlation energy Ec can therefore be computed solving Nq independent generalized eigen-

values problems, one for each q in the first Brilloiun zone, and then summing-up all the con-

tributions:

Ec = − h̄
2π

∫ 1

0
dλ
∫ ∞

0
du

1
Nq

Nq

∑
q=1

Tr
{

v[χq
λ(iu)− χ

q
0 (iu)]

}
. (3.27)

The RPAx approximation given in Eq. (3.13) becomes

E(2)
c = − h̄

2π

∫ ∞

0
du

1
Nq

Nq

∑
q=1

∑
α

sα(q, iu)
aα(q; iu)

{aα(q; iu) + ln[1− aα(q; iu)]} (3.28)
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3. Advanced exchange-correlation functionals from ACFD Theory

where sα(q, iu) = 〈ωq
α |χq

0 (iu)vχ
q
0 (iu)|ωq

α 〉 and
{

aα(q; iu), |ωq
α 〉
}

are the eigenpairs solution of

the generalized eigenvalues problem (3.9) for hq
Hx(iu)

− hq
Hx(iu)|ωq

α 〉 = aα(q; iu)[−χ
q
0 (iu)]|ωq

α 〉. (3.29)

The integration over the first Brillouin zone, represented by the sum over the regular grid

of q-vectors, can be efficiently computed resorting to the special point technique [85, 86, 87],

thus reducing the number of q vectors needed to accurately approximate the integral. In

the present work we have focused our attention on the study of atoms and simple diatomic

molecules using the supercell approach; in this particular case we expect that the dependence

on the q-vector is negligible, meaning that just one q-vector is enough for a good estimation

of the correlation energy. Finally the integration over imaginary frequency iu can be done

efficiently by Gauss-Legendre method since the correlation energy is a smooth function of

this variable.

We can now turn to the solution of the generalized eigenvalues problem (3.29) for hq
Hx(iu)

with χ
q
0 (iu) as an overlap matrix. In principle an iterative diagonalization technique can be

adopted to solve this eigenvalue problem (see Appendix B); however we found that this im-

plementation suffers of numerical instability problems related to the inversion of the overlap

matrix χ
q
0 (iu). It’s likely that during the iterative procedure some of the trial eigenpotentials

of hq
Hx(iu) have components corresponding to very small eigenvalues of χ

q
0 (iu) leading to nu-

merical instabilities when the latter is inverted. In order to overcome this problem we have

not found any better solution than solve the generalized eigenvalues problem (3.9) on a fixed

basis set where the representation of the overlap matrix χ
q
0 (iu) is always well behaved. For

each value of the wave-vector q and imaginary frequency iu we choose the basis set defined

by the eigenpotentials {|zq
i 〉} (imaginary frequency label is implicitly implied) associated to

the low-lying eigenvalues of the RPA eigenvalues problem in Eq. (2.59) which for a periodic

system reads

χ
q
0 (iu)|zq

i 〉 = ei(q, iu)v−1|zq
i 〉. (3.30)

On this basis set χ
q
0 (iu) is simply diagonal with matrix elements χ

ij
0 (q, iu) = δijei(q, iu). Since

only the low-lying eigenvalues (negative and different from zero) are considered we are guar-

anteed that the overlap matrix can be inverted without any numerical instability.

As pointed out the eigenvalue problem (3.30) defining the basis set is exactly the same

problem one has to solve for computing the RPA correlation energy (see Sec. 2.3.3); its eigen-

38



3.2. RPA plus exact-exchange kernel

values ei define the RPA correlation via Eq. (2.58) which, for a periodic system, reads

ERPA
c =

h̄
2π

∫ ∞

0
du

1
Nq

Nq

∑
q=1

∑
i

[ei(q, iu) + ln (1− ei(q, iu))] , (3.31)

while its eigenpotentials {|zq
i 〉} define the basis set for the solution of the RPAx eigenvalues

problem (3.29) and hence the RPAx correlation energy. Therefore our implementation allows

to compute both RPA and RPAx correlation energies at the same time and procede as follows:

1 RPA eigenvalues problem (3.30) is solved on a discrete grid of the wave-vector q and

imaginary frequency iu, using an iterative diagonalization technique; the eigenvalues

ei(q, iu) are kept in memory while the eigenpotentials {|zq
i 〉} are used as a basis set for

the next step;

2 RPAx eigenvalues problem (3.29) is solved on the basis set defined by the RPA eigenvec-

tors {|zq
i 〉}; the eigenvalues aα(q, iu) and the auxiliary quantities sα(q, iu) are computed

and kept in memory;

3 the RPA and RPAx correlation energy are calculated according to Eq. (3.31) and Eq. (3.28)

respectively, summing all the contributions on the q-vector and iu-frequency grids.

We will now describe in some detail each step of the implementation.

Step-1: RPA eigenvalue problem and basis set calculation. In order to find the eigen-

vectors {|zq
i 〉} corresponding to the lowest eigenvalues ei(q, iu) an iterative technique has

been used. The basic operation involved in this is the application of the non-interacting

response function to a trial potential ∆V(r, t) = [∆vq(r)eiq·r + ∆v∗q(r)e−iq·r]eut, that is the

induced density response ∆n(r, t). Denoting with φk,v(r) and εk,v the solution of the time-

independent KS equations for an electron moving in a periodic potential

HKS(r)φk,v(r) = εk,vφk,v(r), (3.32)

and with ψk,v(r, t) = φk,v(r)e−iεk,vt its time dependent counterpart, the density variation

∆n(r, t) can be written as

∆n(r, t) = ∑
k,v

ψ∗k,v(r, t)∆ψk,v(r, t) + ∆ψ∗k,v(r, t)ψk,v(r, t) (3.33)

where the sum runs over occupied state and ∆ψk,v(r, t) is the wavefunction variation induced

by the perturbation ∆V(r, t). Because of the linearity of the Schrödinger equation, the latter
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3. Advanced exchange-correlation functionals from ACFD Theory

can be written as

∆ψk,v(r, t) = [∆φk+q,veiq·r + ∆φk−q,ve−iq·r]e−iεk,vteut. (3.34)

Substituting into Eq. (3.33) leads to

∆n(r, t) =

{
∑
k,v

[φ∗k,v(r)∆φk+q,v(r) + ∆φ∗k−q,v(r)φk,v(r)]eiq·r + c.c.

}
eut

=
{

∆nq(r)eiq·r + ∆n∗q(r)e−iq·r
}

eut (3.35)

where the frequency dependence of ∆nq(r) is implicitly implied. Exploiting the fact that the

Hamiltonian is real, φk,v(r) can always be chosen such that φ−k,v(r) = φ∗k,v(r); therefore

changing k ↔ −k in the second summation, it can be seen that ∆nq(r) is determined by

∆φk+q,v(r) and ∆φ∗−k−q,v(r). Moreover it’s easy to verify that contributions to ∆nq(r) com-

ing from product of occupied state cancel out so that ∆φk+q,v(r) can be thought of as its own

projection onto the empty-state manifold and it satisfies the linearized Schrödinger equation:[
HKS(r) + γPk+q

v − (εk,v + iu)
]

∆φk+q,v(r) = −(1− Pk+q
v )∆vq(r)φk,v(r)[

HKS(r) + γP−k−q
v − (ε−k,v + iu)

]
∆φ−k−q,v(r) = −(1− P−k−q

v )∆v−q(r)φ−k,v(r). (3.36)

where Pk+q
v and P−k−q

v are the projectors onto occupied states of wave vector k + q and

−k− q, respectively, and γ is a positive constant larger than the valence bandwidth in order

to ensure that the linear system is not singular even in the limit for iu → 0. Tacking the

complex conjugate of the second one and exploiting the fact that the Hamiltonian is real1,

leads to[
HKS(r) + γPk+q

v − (εk,v + iu)
]

∆φk+q,v(r) = −(1− Pk+q
v )∆vq(r)φk,v(r)[

HKS(r) + γPk+q
v − (εk,v − iu)

]
∆φ∗−k−q,v(r) = −(1− Pk+q

v )∆vq(r)φk,v(r). (3.37)

Renaming ∆φ∗−k−q,v(r) with ∆φ
(−)
k+q,v(r) and ∆φk+q,v(r) with ∆φ

(+)
k+q,v(r), the equations defin-

ing the linear density response at wave vector q and imaginary frequency iu can be written

as

∆nq(r) = ∑
k,v

φ∗k,v(r)[∆φ
(+)
k+q,v(r) + ∆φ

(−)
k+q,v(r)][

HKS(r) + γPk+q
v − (εk,v ± iu)

]
∆φ

(±)
k+q,v(r) = −(1− Pk+q

v )∆vq(r)φk,v(r). (3.38)

1 For a real Hamiltonian [HKS(r)]∗ = HKS(r), ∆v∗−q(r) = ∆vq(r), φ∗−k,v(r) = φk,v(r) and ε−k,v = εk,v
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The equations for ∆φ
(±)
k+q,v(r) are a generalization to the time-dependent domain of the static

equations of DFPT which are routinely used, for instance, for phonon frequencies calcula-

tions. Note however that in this case there is no need to perform a self-consistent cycle over

density responses and screened perturbing potentials, since we are dealing with the response

of a non-interacting system. However several iterations are needed to obtain well-converged

eigenvalues ei(q, iu) and eigenpotentials |zi
q〉, making the computational cost of the two cal-

culations more or less similar.

Step-2: RPAx eigenvalue problem solution. Once the RPA problem is solved for a given

wave-vector q and imaginary frequency iu we use the RPA eigenpotentials {|zi
q〉} as a basis

set for the solution of the RPAx eigenvalue problem (3.29). The matrix element of hq
Hx(iu)

on this basis set are given by the general expression in Eq. (3.25) just specified for a periodic

system. The Hartree contribution hij
H(q, iu) (first two line in Eq. (3.25)) and the exchange

contribution hij
x (q, iu), are given by

hij
H(q, iu) =〈zq

i |χ
q
0 (iu)vχ

q
0 (iu)|zq

j 〉 = δije2
i (q, iu)

hij
x (q, iu) =−

occ

∑
k,v

occ

∑
p,v′
〈∆iφ

(−)
k+q,vφp,v′ |W|φk,v∆jφ

(+)
p+q,v′〉 −

occ

∑
k,v

occ

∑
p,v′
〈∆iφ

(+)
k+q,vφp,v′ |W|φk,v∆jφ

(−)
p+q,v〉

−
occ

∑
k,v

occ

∑
p,v′
〈φp,v′φk,v|W|∆jφ

(+)
p+q,v′∆

∗iφ
(−)
k−q,v〉 −

occ

∑
k,v

occ

∑
p,v′
〈φp,v′φk,v|W|∆jφ

(−)
p+q,v′∆

∗iφ
(+)
k−q,v〉

+
occ

∑
k,v
〈∆iφ

(−)
k+q,v|Vx − vx|∆jφ

(+)
k+q,v〉+

occ

∑
k,v
〈∆iφ

(+)
k+q,v|Vx − vx|∆jφ

(−)
k+q,v〉

−
occ

∑
k,v,v′

[
〈∆iφ

(−)
k+q,v|∆

jφ
(+)
k+q,v′〉+ 〈∆iφ

(+)
k+q,v|∆

jφ
(−)
k+q,v′〉

]
〈φk,v′ |Vx − vx|φk,v〉

+
occ

∑
k,v
〈δφk,v|∆iv∗q|∆jφ

(+)
k+q,v + ∆jφ

(−)
k+q,v〉+

occ

∑
k,v
〈∆jφ

(+)
k+q,v + ∆jφ

(−)
k+q,v|∆

jvq|δφk,v〉

−
occ

∑
k,v,v′

〈δφk+q,v|∆jφ
(+)
k+q,v′ + ∆jφ

(−)
k+q,v′〉〈φk,v′ |∆iv∗q|φk+q,v〉

−
occ

∑
k,v,v′

〈∆iφ
(−)
k+q,v + ∆iφ

(+)
k+q,v|δφk+q,v′〉〈φk+q,v′ |∆jvq|φk,v〉. (3.39)

The linear variations ∆φ
(±)
k+q,v(r) are the same computed in Step-1 for the solution of the RPA

problem while ∆∗φ
(±)
k−q,v(r) is given by the solution of the linear problem[

HKS(r) + γPk−q
v − (εk,v ± iu)

]
∆∗φ

(±)
k−q,v(r) = −(1− Pk−q

v )∆v∗q(r)φk+q,v(r); (3.40)

however it can be shown that for a real Hamiltonian ∆∗φ
(±)
−k−q,v(r) =

[
∆φ

(∓)
k+q,v(r)

]∗
, thus
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3. Advanced exchange-correlation functionals from ACFD Theory

changing k → −k in the second line of the expression for hij
x (q, iu) and using this identity the

solution of the linear systems for ∆∗φ
(±)
k−q,v(r) can be avoided.

The only yet unknown quantity in Eq. (3.39) is δφk,v(r) which is given by the solution

of equation (3.26) just restated for the particular case of an electron moving in a periodic

potential:

[HKS(r)− εk,v]δφk,v(r) = −[V̂x − vx(r)]φk,v(r) (3.41)

In order to solve this equation we need to compute first the local exchange potential vx(r) =

δEx[{φk,v(r)}]/δn(r). This has to be done using an OEP approach since the exact KS exchange

energy

Ex[{φk,v}] = − e2

2

∫
dr
∫

dr′
|∑occ

k,v φ∗k,v(r)φk,v(r′)|2

|r− r′| (3.42)

is an implicit functional of the density via the single-particle KS orbitals φk,v. Its functional

derivative with respect to the density can be written as

vx(r) =
δEx

δn(r)
=
∫

dr1
δEx

δvKS(r1)
δvKS(r1)

δn(r)
(3.43)

where δvKS(r1)/δn(r) is formally the inverse of the non-interacting response function χ0(r, r1)

meaning that the solution of the problem, vx(r), is such that∫
dr χ0(r1, r)vx(r) =

δEx

δvKS(r1)
= δnx(r1). (3.44)

This integral equation can be solved using an iterative approach; starting from a guess solu-

tion, v(0)
x (r), and applying the non-interacting response function the induced density response

χ0(r, r′)|v(0)
x (r′)〉 is computed. Comparing with the target density response δnx(r) a correction

can be estimated for the trial potential v(0)
x (r), improving the initial guess and leading to a new

trial solution. More generally, assuming that at a given iteration, ith, the approximate effective

potential is v(i)
x (r), the residual quantity

S(i)(r) = χ0(r, r′)|v(i)
x (r′)〉 − δEx

δvKS(r)
(3.45)

can be efficiently calculated using DFPT. This quantity vanishes everywhere if and only if the

potential is the solution of our OEP problem. Otherwise S(i)(r) can be used, together with the

residual vectors of the previous iterations, to update the trial potential as:

v(i+1)
x (r) = v(0)

x (r) +
i

∑
m=1

βmS(m)(r), (3.46)

where the βm coefficients are re-optimized at each step in order to minimize the new residuum

||S(i+1)(r)|| =
∫

dr[S(i+1)(r)]2. The iterative process could be terminated when a given thresh-

old, typically of the order of 10−6, is reached.
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We can now turn to the target density variation δnx(r). It is defined as the variation of the

exact KS exchange energy with respect to the variation of the KS potential and can be written

as

δnx(r) =
δEx

δvKS(r)
=
∫

dr′ ∑
k,v

δEx

δφk,v(r′)
· δφk,v(r′)

δvKS(r)
+
∫

dr′ ∑
k,v

δEx

δφ∗k,v(r′)
·

δφ∗k,v(r′)
δvKS(r)

; (3.47)

where δφk,v(r′)/δvKS(r) can be easily derived from standard time-independent perturbation

theory (a similar equation holds true for δφ∗k,v(r′)/δvKS(r))

δφk,v(r′) = ∑
p,u

φp,u(r′)
〈φp,u|vKS|φk,v〉

εp,u − εk,v
⇒ δφk,v(r′)

δvKS(r)
= ∑

p,u
φp,u(r′)

φ∗p,u(r)φk,v(r)
εp,u − εk,v

(3.48)

while δEx/δφk,v(r′) and δEx/δφ∗k,v(r′) can be written as the non local exchange operator Vx

acting from the right on 〈φk,v(r′)| and from the left on |φk,v(r′)〉 respectively. Putting all to-

gether we get

δnx(r) = ∑
k,v

∑
p,u
〈φk,v|Vx|φp,u〉

φ∗p,u(r)φk,v(r)
εp,u − εk,v

+ c.c. = ∑
k,v

φ∗k,v(r)δNLφk,v(r) + c.c. (3.49)

where δNLφk,v(r) is given by the solution of the linear problem

[HKS − εk,v]δNLφk,v(r) = −Vxφk,v(r). (3.50)

The OEP approach described above allows to compute the local exchange potential vx(r)

which determines the vectors δφk,v(r) and δφk+q,v(r) via Eq. (3.41) and hence contributes to

completely define the matrix elements of the exchange kernel matrix hq
x (iu) in Eq. (3.39).

Step-3: Integration over imaginary frequency and sampling of the Brillouin zone.

The last step of our implementation consists of summing up all the contribution for each q-

vector and imaginary frequency iu. As already pointed out the integral over q-vector can be

efficiently done using special point technique for the sampling of the first Brilloiun zone. In-

tegration over imaginary frequency can be done efficiently by Gauss-Legendre method since

the correlation energy is a smooth function of this variable.

Compared to the RPA correlation energy calculation, the only additional operations required

for the RPAx correlation energy calculation are that needed in Step-2. They are essentially

the solution of the linear systems for δφk,v(r) and δφk+q,v(r) via DFPT and the calculation of

the matrix elements hij
Hx(q, iu) in Eq. (3.39). Considering that the equations defining δφk,v(r)

and δφk+q,v(r) do not depend on iu, they can be solved once for every fixed values of the
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Figure 3.1: Comparison between the Hartree potential and the local exchange potential of

the Hydrogen molecule at interatomic distance d = 3.2 Å. In the top panel the potentials are

plotted along the molecule axis. The blue dashed lines indicate the positions of the Hydrogen

atoms. In the lower panel the difference between the the Hartree and the exchange potential

is plotted having set the zero to the mean value of the difference 〈∆V(r)〉.

q-vector outside the loop over the imaginary frequencies. Also the local exchange potential

vx(r), which enters in the definition of these vectors and of the matrix elements hij
Hx(q, iu),

can be computed once for all outside the q-vector and imaginary frequency loops. The ma-

trix elements calculation, although requires Coulomb integrals in real space, can be efficiently

done thanks to FFT algorithm. The only time-consuming operation remains the iterative so-

lution of the RPA eigenvalues problem. Therefore the workload increase passing from RPA to

RPAx correlation energy calculation is restrained and accounted for by a small multiplicative

prefactor in front of the RPA computational cost.

3.2.4 Testing the implementation

In order to check the correctness of the implementation some simple tests have been con-

ducted over 2-electrons systems. For this kind of systems the local exchange potential vx(r)

and the exact-exchange kernel fx(r, r′; iu) are simply related to the Hartree potential and ker-

nel. In particular vx(r) = −vH(r)/2 (a part from a trivial shift) and consequently fx(r, r′; iu) =

−v(r, r′)/2. Both these relations simply come from the fact that the exact KS energy for 2-

electrons systems is just half of the Hartree energy (with a minus sign in front). Taking the
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3.2. RPA plus exact-exchange kernel

functional derivative with respect to the density leads to the relation between the exchange

and Hartree potentials; one more functional derivative leads to the relation between the cor-

responding kernels 2. Thanks to these simple relations all the properties of a 2-electron system

at the RPAx level can be easily related to the corresponding properties in the RPA. This kind

of systems therefore represents a perfect testing case to validate the RPAx implementation

by simply comparing the results from the new approximation with the well-established RPA

calculations.

We started testing our OEP implementation for the local exchange potential. In Fig. 3.1

we report the Hartree and the local exchange potential (multiplied by a factor −2 for a easier

comparison), plotted along the molecular axis of the H2 molecule at bond-length d = 3.2 Å.

The calculation has been performed with the supercell approach using a simple-cubic cell

with size length a = 22 bohr and placing the atoms along the diagonal of the simulation box.

Norm-conserving pseudopotentials3 have been used with a kinetic-energy cut-off of 50 Ry.

As expected, a part from an irrelevant constant, the two potentials essentially coincide; a

rigid shift of 〈∆V(r)〉 ∼ 0.1 a.u. aligns the two curves within an error of ∼ 10−3; this can

be seen from the lower panel of the figure, where the difference between the two potential,

∆V(r) = vH(r) + 2vx(r), is plotted along the molecular axis setting its mean value, 〈∆V(r)〉,
as a reference.

For a 2-electrons system also the RPAx eigenvalues problem greatly simplify; the matrix

hHx becomes hHx = χ0(v/2)χ0 since the exchange kernel is just half of the Hartree kernel

(with a minus sign); therefore the RPAx eigenvalue problem

− χ
q
0 (iu)[v + fx(iu)]χq

0 (iu)|ωq
α 〉 = aα(q, iu)[−χ

q
0 (iu)]|ωq

α 〉 (3.51)

simply reduce to the RPA eigenvalue problem

vχ
q
0 (iu)|ωq

α 〉 = 2aα(q, iu)|ωq
α 〉, (3.52)

showing that, for 2-electrons systems, the RPAx eigenpotentials coincide withe the RPA ones

and a simple relation exists between the RPAx and RPA eigenvalues: aα(q, iu) = eα(q, iu)/2.

Therefore in order to validate the expression derived for the matrix hq
Hx(iu), we computed

and compared the lowest 20 eigenvalues of the RPA and RPAx response functions of the

2 Actually this way of deriving the kernel as the second functional derivative of the energy, is rigorous just

for the static case; however the relation holds true also for the time dependent kernels and can be rigorously

derived from Eq. (3.25) considering that δφa = 0 and [Vx − vx]|φa〉 = 0 for a 2-electron system in a spin-restricted

configuration.
3 We used the pseudopotential H.pbe-mt_fhi.UPF from the http://www.quantum-espresso.org webpage
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3. Advanced exchange-correlation functionals from ACFD Theory

Index RPA RPAx ∆ (×10−4) Index RPA RPAx ∆ (×10−4)

1 -5.5598 -2.7799 +0.00 11 -0.0836 -0.0418 +14.96

2 -0.5315 -0.2657 -2.01 12 -0.0811 -0.0404 -22.90

3 -0.3889 -0.1944 -1.76 13 -0.0639 -0.0320 +0.53

4 -0.3485 -0.1743 +1.00 14 -0.0639 -0.0320 +0.50

5 -0.3485 -0.1743 +1.00 15 -0.0590 -0.0295 +18.04

6 -0.2838 -0.1419 +0.13 16 -0.0584 -0.0292 -2.19

7 -0.2838 -0.1419 +0.13 17 -0.0584 -0.0292 -2.19

8 -0.2670 -0.1335 +1.50 18 -0.0570 -0.0285 +10.61

9 -0.1641 -0.0821 +1.02 19 -0.0570 -0.0285 +10.56

10 -0.0836 -0.0418 +14.96 20 -0.0564 -0.0282 -7.07

Table 3.1: Eigenvalues of the RPA and RPAx response function at q = (0, 0, 0) and iu = 0.1Ry

for the hydrogen molecule at bond length d = 3.2 Å.

H2 molecule at an interatomic distance d = 3.2 Å. The calculation has been performed for

q = (0, 0, 0) and iu = 0.1 Ry using well-converged PBE density and orbitals. In Tab 3.1 the

RPA and RPAx eigenvalues are listed together with the quantity ∆ = 1− 2aα/eα which indi-

cates how much the calculations are close to the exact relation eα = 2aα and therefore gives

and estimation of the correctness of our implementation. The mean values of ∆ over the 20

eigenvalues is about 10−4, thus indicating that the general expression for hHx in Eq. (3.25) and

its plane-wave implementation in Eq. (3.39) are both correct.

As already pointed out, in the present work we focused on the study of simple diatomic

molecules using the supercell approach. It’s therefore important to check the convergence

of the calculations with respect to the kinetic energy cut-off, supercell size and number of

eigenvalues used for computing the RPA and RPAx correlation energies. While important in

general the convergence issue becomes crucial, for instance, for a system with very small bind-

ing energy where a not converged calculations could lead to a qualitatively wrong description

of the physical property of the system. We chose the beryllium dimer as an example of such

situations and in the following we describe and discuss all the test carried out to carefully

check how the exact-exchange and correlation energy depends on the parameters mentioned

before. It’s understood that this kind of analysis has to be carried out for any system under
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3.2. RPA plus exact-exchange kernel

study.

As a starting estimation for the kinetic energy cut-off and supercell size we used the values

of 30 Ry and 22 bohr respectively which has been verified to give well converged results for the

PBE total energy (less than 1 meV). Keeping fixed the size of the simulation box we increased

the cut-off up to 60 Ry and check the changes in all the different contributions to the total

energy. While the RPA correlation energy change by less than 0.5 meV passing from 30 to 60

Ry, the exact-exchange and RPAx correlation energies are more sensitive and a cut-off of 40 Ry

is needed to ensure the same degree of accuracy.

The dependence of the exact-exchange and RPA correlation energy of the Be dimer on

the supercell size has been already carefully analyzed by Nguyen and de Gironcoli [58]. In

their calculations the sampling of the RPA correlation energy on the first Brillouin zone was

computed on a shifted mesh of q point since for q → 0 both the leading matrix elements of

χ0(q → 0) and v−1 goes to zero as |q|2 making the RPA eigenvalue problem (3.30) ill de-

fined. Here we use a different strategy and compute the RPA and RPAx correlation energy

for q = 0 but using a modified coulomb interaction. The long range tail of the coulomb in-

teraction in real space is truncated after a distance of the order of half of the supercell size

making its Fourier transformation going to a finite values for q → 0 thus leading to a well

defined problem even in this limit. The idea of using a modified coulomb interaction relies on

the assumption that the truncation does not affect the properties of the system under study.

The approximation becomes exact in the limit of infinite supercell meaning that a carefully

check of the convergence with respect to the supercell size is needed. In Fig. 3.2 we report

the result for the RPA and RPAx correlation energies of the Be dimer at equilibrium distance

(d = 2.45 Å) as a function of the volume of the simulation box calculated within different

approximations. Simply setting to zero the |q + G| = 0 component (G0 = 0 in the figure),

leads to a slowly convergent behavior for the correlation energies that eventually goes to a

limiting value (extrapolated with a fit of the G0 = 0 data) represented by the dashed black

lines in Fig. 3.2. For the RPA correlation energy (top panel) we also report the result from

a calculation with a shifted q mesh (in particular we setted q = (0, 0, 0.01)) and notice that

a much faster convergence toward the same limit of the G0 = 0 calculation is obtained thus

validating this strategy. We then tested two different modified Coulomb interactions imple-

mented in the QUANTUM ESPRESSO distribution [84]. The first one, referred to as “Spherical

cut” in the figure, is an abrupt truncation of the coulomb interaction for distances greater than

half of the supercell size. In the second one, “WS cut”, the coulomb interaction is unchanged

inside the Wigner-Seitz cell and periodically repeated outside. Both these two approximation

47



3. Advanced exchange-correlation functionals from ACFD Theory

0 2e-05 4e-05 6e-05 8e-05 1e-4 1.2e-4
1/V 

-0.26

-0.255

-0.25

-0.245

E
c[R

y]

-0.405

-0.400

-0.395

-0.390

-0.385

E
c[R

y]

G
0
=0

q=(0,0,0.01)
Spherical cut
WS cut

30 28
25

22
20

RPA

RPAx

30 28
25

22
20

Figure 3.2: Convergence of the RPA (top panel) and RPAx (bottom panel) correlation energy

Ec of the Be2 molecule at an interatomic distance d = 2.45 Å , with respect to the size of the

supercell. The numbers close to the black circles indicate the size in bohr of the cubic supercell.

Different schemes for treating the q → 0 limit are compared. See text for details.

converge fast and to the correct limit increasing the simulation box volume. In particular the

Wigner-Seitz truncation is the most effective and already for a supercell lattice size of 20 bohr

gives very well converged results for both RPA and RPAx correlation energies.

The same analysis has been carried out for the exact-exchange energy and the result are

shown in Fig. 3.3. The slow convergence of the exact-exchange energy with respect to the

Brillouin zone sampling in a plane-wave implementation is a well known problem and orig-

inate from an integrable divergence in the expression for the exact-exchange energy. Using

the scheme proposed by Gygi-Baldereschi (GB) [88], one adds and subtracts a reference term

which has the same singularity and whose integral on the Brilloiun zone can be evaluated

analytically. One is therefore left with the integral of a smooth function that can be evaluated

numerically with standard sampling technique. Using the GB scheme one gets a convergence

behavior (black circle in Fig. 3.3) that is proportional to the inverse of the simulation box vol-

ume and eventually goes to the infinite volume limit represented by the dashed black lines in

Fig. 3.3. Nguyen and de Gironcoli [58, 59], argued that this error proportional to 1/V is due

to a finite contribution for q = 0 that cannot be computed numerically in q = 0 since it’s a

0/0 limit. They proposed an extrapolation scheme that allows to efficiently estimate this con-

tribution leading to a much faster convergence (brown square in Fig. 3.3) to the correct value.
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Also in this case, both modified coulomb interactions recover the same limit and in particular

the Wigner-Seitz renormalization gives converged results within few tenths of meV already

for a supercell lattice size of a = 25 bohr.

We therefore expect that using the “Wigner-Seitz prescription” for the coulomb interaction

truncation, together with a kinetic energy cut-off of 40 Ry and a supercell lattice size of 25 bohr

is the best set-up for the Be2 simulation and should give results within an error estimated to

be of the order of 1 meV.

It’s worth mentioning that using a modified coulomb interaction is an approximation that

can be used for isolated system only, when a supercell approach is needed. For extended

system, instead, using the GB approach plus the extrapolation scheme for the exact-exchange

energy, and a shifted mesh of q point for the calculation of the RPA/RPAx correlation energies

is probably the best strategy one can choose since it does not require the analytic evaluation

of the ill-defined limit for q → 0 and still gives good results.

Finally the convergence with respect to the number of eigenvalues Neig has also been

checked. In Fig. 3.4 we report the RPA and RPAx correlation energy of the Be2 molecule at

equilibrium as a function of Neig for two different values of the simulation box size. In all the

cases the convergence is achieved with a relative small number of eigenvalues showing that
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Ec is a rapidly converging function of Neig; truncating the sum at Neig = 160 already ensure

a convergence within few meV for the absolute correlation energies and one could expect an

even smaller error if energy differences are considered.
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Chapter 4
Application to selected systems

In this Chapter we will assess the performance of the RPAx approximation in some test cases. We will

first analyze in some detail the homogeneous electron gas computing the correlation energies and its

spin magnetization dependence for different values of the density. We then move to realistic systems

studying the dissociation curves of small molecules. We found that a sensible improvement in the

total energy description is disturbed by a pathological behavior of the RPAx response function which

ultimately leads to a break-down of the method. We propose here two simple modifications of the orig-

inal RPAx approximation which are able to overcome its deficiency without compromising the overall

accuracy of the approach.

4.1 The homogeneous electron gas

As a test of the accuracy of the RPAx approximation we choose the simple homogeneous

electron gas. The homogeneous electron gas is an idealized system of electrons moving in a

uniform neutralizing background. At zero temperature it is characterized by two parameters

only, i.e. the number density n = 1/(4πr3
s a3

B/3), or equivalently the Wigner-Seitz radius

rs, and the spin polarization ζ = |n↑ − n↓|/(n↑ + n↓), where n↑(↓) is the density of spin up

(down) electrons and n = n↑ + n↓. Despite its simplicity, (i) the HEG model represents the first

approximation to metals where the valence electrons are weakly bound to the ionic cores (see

for instance Ref. [34]), (ii) the system is found to display a complex phase diagram including

magnetic ordering and transition to the Wigner crystal [89] with lowering the density and in

addition (iii) it provides the basic ingredient of any practical density functional calculation.

As described in Sec. 2.2.4, the most widely used approximations for the unknown xc-energy

functional are based on properties of the HEG.
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For this model system the Hartree energy exactly cancel out the sum of the electron-

background and background-background interaction; therefore the total energy per particle

ε(rs) (let us forget about the spin dependence for the moment) can be decomposed as

ε(rs) = t(rs) + εxc(rs) (4.1)

where t(rs) is the kinetic energy per particle of the non-interacting system and εxc(rs) is the

exchange and correlation energy per particle. By symmetry the KS potential must be constant

and we can always take it to be zero; imposing periodic boundary condition on a cubic box of

volume Ω, the single particle KS orbitals are then plane-waves, |k〉 = exp (ik · r)/
√

Ω, with

wave-vector k and energy εk = h̄2k2/(2me). The kinetic and exchange energy per particle can

be exactly calculated [73] and are given by

t(rs) =
3
5

h̄2k2
F(rs)

2me

εx(rs) = −3
4

e2kF(rs)
π

(4.2)

where kF(rs) is the Fermi wave-vector defined by kF(rs) = (3π2n(rs))1/3.

The generalization to the spin-polarized case for the kinetic and exchange energy is very

simple since the up and down components of the gas contribute independently to the total

energy. One can therefore define two Fermi wave-vectors k↑F and k↓F associated to the cor-

responding up and down densities and compute each spin component contribution to the

kinetic and exchange energy simply replacing the kF vector in Eq. (4.2) with its spin counter-

parts kσ
F (with σ =↑, ↓). It’s then easy to show that

t(rs, ζ) = t(rs)
(1 + ζ)5/3 + (1− ζ)5/3

2

εx(rs, ζ) = εx(rs)
(1 + ζ)4/3 + (1− ζ)4/3

2
(4.3)

The correlation energy εc is defined as the difference between the total energy of the system

and the kinetic plus exchange contributions. In the limit for rs → 0 an asymptotic expansion

for εc can be derived from the RPA correlation energy which is exact in the high density limit.

In the opposite limit the Coulomb potential energy, decreasing like 1/rs, eventually becomes

much greater that the average kinetic energy, meaning that, as a starting point, the kinetic

contribution to the Hamiltonian of the system can be neglected. The ground state of this

system is close to the equilibrium state of a system of N classical point charges distributed on

a uniform background and it’s believed to be crystalline. This hypothesis was first suggested

by Wigner [89] and the state is now know as “Wigner crystal”.
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More insight on the phase diagram of the electron liquid has been achieved thanks to

Quantum Monte Carlo (QMC) methods. The exact correlation energy of the paramagnetic

phase as well as that of magnetic ordered phases and Wigner crystal (with different lattice)

for a wide range of densities, has been calculated [39, 90]. Accurate parametrizations of these

results [8, 38, 37] provide the basic ingredients used to construct LDA and GGA functionals

for non-homogeneous electronic systems and will be used in the next section as a reference

for our RPAx correlation energy calculations.

4.1.1 The RPAx correlation energy of the unpolarized HEG

While the solution of Dyson equation is demanding in general, it becomes trivial in the case

of the HEG; the response functions and the kernels are all diagonal in momentum space and

the RPAx Dyson equation can be easily solved as

χRPAx
λ (q, iu) =

χ0(q, iu)
1− λ[v(q) + fx(q, iu)]χ0(q, iu)

(4.4)

where vc(q) = 4πe2/q2 and fx(q, iu) is the exchange kernel at a given momentum and imag-

inary frequency. The RPAx correlation energy per electron εRPAx
c follows from the general

expression in Eq. (2.44) where the interacting response function is approximated by χRPAx
λ ,

the trace is replaced by an integral over momentum q1 and the integration over λ is done

analytically

εRPAx
c =

h̄
2π2n

∫ ∞

0
q2dq

∫ ∞

0
du υc(q)χ0(q, iu)

[
1 +

ln[1− K(q, iu)]
K(q, iu)

]
. (4.5)

Here K(q, iu) has been defined as

K(q, iu) = [v(q) + fx(q, iu)]χ0(q, iu) = υ(q)χ0(q, iu) +
hx(q, iu)
χ0(q, iu)

(4.6)

While the Lindhard function χ0(q, iu) at imaginary frequency iu is known exactly [73]

χ0(q, iu) =
mkF

2(h̄π)2

{
−1 +

Q2 − ũ2 − 1
4Q

ln
[
(1 + Q)2 + ũ2

(1−Q)2 + ũ2

]
+α

[
arctan

(
1 + Q

ũ

)
+ arctan

(
1−Q

ũ

)]}
(4.7)

1 In the thermodynamic limit the discrete sum over the momenta q imposed by the periodic boundary condi-

tion, can be replaced by the integral

Tr = ∑
q
→ Ω

(2π)3

∫
dq
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Figure 4.1: Correlation Energy per particle in the homogeneous electron gas as a function

of the Wigner-Seitz radius evaluated with different kernels: RPA (red squares), RPAx (green

diamonds) and QMC calculation (black circles).

with Q = q/(2kF) and ũ = mu/(h̄qkF), the function hx(q, iu) can be directly derived from

the general expression given in Eq. (3.25) replacing the generic single particle orbitals φa with

the plane-waves |k〉 and removing the generic perturbing potentials ∆α,βV. After a straight-

forward manipulation hx(q, iu) can be rewritten as a six-fold integral over crystal momenta.

Its static values was computed first numerically by several author [91, 92, 93] and later an-

alytically by Engel and Vosko [94, 95].The frequency dependence of hx has been calculated

by Brosens, Lemmens and Devreese [96, 97] for real frequencies and by Richardson and

Ashcroft [98] for imaginary frequencies. Following Brosens et al. four integrations can be

done analytically using cylindrical coordinates; we used numerical quadrature for the two re-

maining integrations. Our numerical integration is able to recover the analytic results of Engel

and Vosko [94, 95] in the limit u → 0. Finally the integration over momentum q and imaginary

frequency u in Eq. (4.5) has been computed numerically. The results are shown and listed in

Fig. 4.1. RPA can be easily obtained from Eq. (4.5) and Eq. (4.6) with hx = 0 and can be seen

to seriously overestimate the correlation energy at all densities. Including the exact exchange

kernel greatly improves over simple RPA and the RPAx correlation energy per particle is close

to the accurate Quantum Monte Carlo (QMC) results [39].

As expected RPAx works well for small values of rs with very good results for typical

metallic density regime (rs = 3− 6) and becomes less accurate when rs increases. Accord-

ing to our calculation, within RPAx for rs > 10.6 there is a charge density instability with
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Figure 4.2: Critical behavior of the static density-density RPAx response function when the

density decreases. For rs > 10.6 the system becomes unstable respect to charge modulation

with wavevector ≈ 2kF.

wave-vector q ≈ 2kF. In Fig. 4.2 the critical behavior of the static density-density RPAx re-

sponse function is shown for the full interacting system (Eq. (4.4), λ = 1). When the density

decreases a pronounced peak appears at q ≈ 2kF indicating the instability with respect to

charge modulations with this wave-vector. As can be seen from the inset in Fig. (4.2), for suf-

ficient large values or rs, K = (v + fx)χ0 approaches unity and the denominator in Eq. (4.4)

tends to vanish leading to the appearance of the peak. Beyond rs = 10.6, K exceeds unity and

RPAx approximation breaks down as the density-density response function χλ is not anymore

negative definite.

This instability resembles the charge density wave instability, already observed at the

Hartree-Fock level by Overhauser [99, 73] and is an artifact of the truncation of the kernel

expansion to first order in the interacting strength. A full treatment of correlation in the QMC

calculations moves the density instability toward the Wigner crystal to much smaller densi-

ties [39] corresponding to rs ≈ 80.

4.1.2 Alternative RPAx resummations

In Sect. 3.1 we have established a strategy for a systematic inclusion of higher order terms in

the kernel expansion. However, because of the complexity of the procedure, before proceed-
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ing along this way we propose here two simple modifications to the original RPAx approxi-

mation which are able to fix the instability problem and, at the same time, to give correlation

energies on the same level of accuracy as RPAx.

We notice that i) the RPA response function is negative defined for any values of rs and

also that ii) the RPAx response function is exact up to first order in the coupling strength λ,

meaning that the instability observed at the RPAx level must be due to the re-summation

up to infinite order of the “bare” exact-exchange kernel contributions, that is without any

correlation corrections. Therefore, in order to mitigate the instability problem, we can either

include higher order contributions to the kernel (rigorous but expensive) or truncate the re-

summation of the exact-exchange kernel (approximate but inexpensive) mimicking the effect

of the missing correlation kernel as discussed below.

Introducing the irreducible polarizability Pλ, the Dyson equation Eq. (2.56) for the interact-

ing response function χλ can be written as χλ = Pλ + λPλυcχλ, where the polarizability itself

is the solution of the Dyson equation Pλ = χ0 + χ0[λ fx + fc(λ)]Pλ. Neglecting the unknown

fc(λ) leads to the original RPAx approximation, while just truncating the power expansion of

Pλ to first order in the coupling strength gives a new approximation, here named tRPAx, for

the interacting response function:

χtRPAx
λ = P(1)

λ + λP(1)
λ υcχtRPAx

λ (4.8)

with P(1)
λ = χ0 + λχ0 fxχ0. A similar idea has also been proposed in Ref. [100] where the

authors suggest to expand the full interacting response function χλ in a power series of the

RPA response function (instead of the non-interacting one), and then to truncate this expan-

sion to first order. This amounts to have an other approximation, here named t′RPAx, for the

interacting response function:

χt′RPAx
λ = χRPA

λ + λχRPA
λ fxχRPA

λ (4.9)

We notice that the only quantity entering in the definitions of the tRPAx and t′RPAx re-

sponse functions is χ0 fxχ0 = hx, which is nothing but the first-order exchange contribution to

the response function χλ and does not require any explicite reference to fx in order to be de-

fined. While the Dyson-like equation for the original RPAx approximation requires a formal

definition of the exchange kernel, the alternatives resummations only need hx in order to be

defined and therefore are simply based on standard many-body perturbation theory.

Up to first order these two alternative response functions coincide with the original RPAx

one, while they have different power expansions starting from the λ2 term, meaning that
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0 2 4 6 8 10 12 14 16 18 20
r
s

-0.2

-0.16

-0.12

-0.08

-0.04

ε c 
(R

y)
QMC
RPAx
t’RPAx
tRPAx
RPA

Figure 4.3: Correlation energies per particle as a function of rs evaluated from the RPA, origi-

nal and modified RPAx response functions and compared to accurate QMC calculations.

only contributions already approximated at the RPAx level are affected by these alternative

re-summations. Moreover we notice that the tRPAx and t′RPAx response functions can be

obtained from the TDDFT Dyson-like Eq. (2.56) setting f λ
xc = λ fx/(1 + λχ0 fx) and f λ

xc =

λ fx/(1 + λχRPA
λ fx) respectively, explaining how the truncations mimic the correlation contri-

butions that are missing at RPAx level.

Fig. 4.3 shows the correlation energies per particle obtained starting from the alternative

RPAx approximations of the response function. As expected, for high density electron gases

(small values of rs) the correlation energies are essentially identical to the original one, since

the underlying response functions are the same in the limit for λ → 0. At the same time they

are well behaved also where the original RPAx approximation breaks down.

In Fig. 4.4 we compare the corresponding static density response functions (calculated at

full interaction strength λ = 1) with the exact one, obtained from QMC calculation [101], for a

density corresponding to rs = 5. The difference between RPA and QMC results reveals that ex-

change and correlation effects in the kernel are important already at this density; including the

exact-exchange kernel (original RPAx) overcorrects the RPA deficiency, in particular between

kF and 2kF, while both the alternative RPAx approximations give a much better agreement

with accurate QMC calculations. Thus despite the fact that the RPAx energy is better at this

value of rs the static response function is worse suggesting that the RPAx results are subjected

to a cancellation of errors when integrated over the frequency. In addition the plots in Fig. 4.5

confirms the effectiveness of truncating the re-summations in fixing the instability problem.

The static tRPAx and t′RPAx response functions (evaluated at full interaction λ = 1), plotted
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Figure 4.5: tRPAx and t′RPAx static response

functions for different values of rs. No criti-

cal behavior is found even in the low density

regime.

in the lower panel of Fig. 4.5, do not show any critical behavior in the range of density ana-

lyzed (rs up to 20); moreover when the density decreases a trend opposite to the one found for

the RPAx response function is observed with a reduction (instead of the enhancement shown

in the top panel of Fig. 4.5) of the height of the peak near 2kF, suggesting no divergence would

appear even for smaller densities.

4.1.3 The RPAx correlation energy of the spin-polarized HEG

We continue our analysis of the HEG at the RPAx level by studying the spin magnetization de-

pendence of the correlation energy of the system. We start noticing that for the non-interacting

system the spin-up and spin-down components of the gas are independent so that a simple

scaling relation between the non-interacting density-density response functions of the polar-

ized and unpolarized gas can be derived:

χ↑↑0 [n↑] =
1
2

χ0[2n↑]

χ↓↓0 [n↓] =
1
2

χ0[2n↓] (4.10)

while χ↑↓0 = χ↓↑0 = 02.

2 These results can be derived from the fact that the kinetic energy functional of a arbitrarily spin-polarized

system T[n↑, n↓] can be written in terms of the kinetic energy functional of the spin-unpolarized system T[n]
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4.1. The homogeneous electron gas

The spin-up and spin-down components behave as independent constituents of the sys-

tem at the exchange level too and a scaling relation similar to Eq (4.10) holds true also for the

exchange energy [102] and, accordingly, for the exchange potential and kernel:υ↑x[n↑] = υx[2n↑]

υ↓x[n↓] = υx[2n↓]

 f ↑↑x [n↑] = 2 fx[2n↑]

f ↓↓x [n↓] = 2 fx[2n↓]
(4.11)

while f ↑↓x = f ↓↑x = 0. Thus at the RPAx level the interaction between the spin-up and

spin-down components of the system is only mediated by the Coulomb kernel v. Eq. (4.10)

and (4.11) show that the non-interacting spin-dependent response function and the spin-

dependent exchange kernel can be written in term of their spin-unpolarized counterparts

already introduced and computed in the previous section.

We can now derive the generalization of the RPAx Dyson equation for the spin-polarized

gas. Applying a spin-independent perturbing potential ∆V0, the induced self-consistent field

∆vσ
KS is such that ∆nσ = ∑σ′ χσσ′

0 ∆vσ
KS and can be written as ∆vσ

KS = ∆V0 + ∆vH + ∆vσ
x + ∆vσ

c

where

∆vH = v(∆n↑ + ∆n↓)

∆vσ
x = f σσ

x [nσ]∆nσ

∆vσ
c = ∑

σ′
f σσ′
c [n]∆nσ′ (4.12)

are the Hartree, exchange and correlation contributions to the induced KS potential ∆vσ
KS. At

the RPAx level the correlation contribution is neglected and the density variations for the up

and down component read

∆n↑ =
1
2

χ0(2n↑)
[
∆V0 + v∆n + 2 fx[2n↑]∆n↑

]
∆n↓ =

1
2

χ0(2n↓)
[
∆V0 + v∆n + 2 fx[2n↓]∆n↓

]
(4.13)

where we have used Eq. (4.10) and (4.11). Solving for ∆n↑ in the first and for ∆n↓ in the second

and then summing up the results we get

∆n =
1
2

[
χ0(2n↑)

1− χ0(2n↑) fx(2n↑)
+

χ0(2n↓)
1− χ0(2n↓) fx(2n↓)

]
∆V0

+
1
2

[
χ0(2n↑)

1− χ0(2n↑) fx(2n↑)
+

χ0(2n↓)
1− χ0(2n↓) fx(2n↓)

]
v∆n. (4.14)

as [102]:

T[n↑, n↓] =
1
2

T[2n↑] +
1
2

T[2n↓].

Taking the functional derivative with respect to the external perturbation shows that the non-interacting response

function is made up of the two separate contributions, given in Eq. (4.10).
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Figure 4.6: Spin polarization function γ for rs = 2 from RPA (red squares), RPAX (green

diamonds), Perdew-Zunger parametrization [8] (blue solid line), Perdew-Wang parametriza-

tion [38] (brown dashed line) and Quantum Monte Carlo calculation [90] (black circles).

Comparing this expression with the definition of the response function ∆n = χ∆V0 and in-

serting the scaling factor λ, we obtain the final result

χλ =
1
2

{[
χ0

1−λχ0 fx

]
2n↑

+
[

χ0
1−λχ0 fx

]
2n↓

}
1− 1

2

[
λχ0v

1−λχ0 fx

]
2n↑
− 1

2

[
λχ0v

1−λχ0 fx

]
2n↓

(4.15)

where χ0 and fx are the same functions already used for the unpolarized case but evaluated

at density 2n↑ or 2n↓.

Integrating the ACFD formula in Eq. (2.44) with the new definition of χλ in Eq. (4.15) and

χ0 in Eq. (4.10), gives the correlation energy per particle, εc, as a function of n↑ and n↓ or,

equivalently, as a function of rs and ζ. At the RPA level the dependence of the correlation

energy on the spin magnetization has been already calculated long time ago by Von Barth and

Hedin [103] and more recently by Vosko, Wilk, and Nusair [37]. Our RPA results, simply ob-

tained by setting fx = 0 in Eq. (4.15), are, within the numerical accuracy, in perfect agreement

with both the above mentioned calculations. Fig. 4.6 shows the spin-polarization function γ

defined as

γ(rs, ζ) =
εc(rs, ζ)− εc(rs, 0)
εc(rs, 1)− εc(rs, 0)

(4.16)

for the case rs = 2 evaluated at the RPA and RPAx level, and compares it with the exchange-

only dependence that is the one assumed in the Perdew-Zunger parametrization [8] of Spin

60



4.2. Dissociation of small molecules

Local Density Approximation (LSDA) and with the Perdew-Wang parametrization [38], that

is based on the more physically motivated spin-interpolation expression proposed by Vosko,

Wilk, and Nusair [37]. While within RPAx the correlation energy significantly improves

with respect to RPA results, there is essentially no difference between the RPA and RPAx

spin-polarization functions. Calculations done with the alternative re-summations (tRPAx

and t′RPAx) give essentially the same results as the original RPAx and are not shown in

Fig. (4.6). Thus for this property of the system RPA and all the RPAx (original and alter-

native) approximations give results in very good agreement with accurate Quantum Monte

Carlo calculations[90] performing much better than the Perdew-Zunger parametrization and

slightly better than the more sophisticated Perdew-Wang parametrization.

4.1.4 Summary

We have tested the accuracy of the RPAx approximation on the homogeneous electron gas.

RPAx correlation energies greatly improve RPA results and are in very good agreement with

accurate QMC calculations. The spin magnetization dependency of the RPA and RPAx cor-

relation energies has been calculated as well, showing a big improvement if compared to

standard parametrizations and a nearly perfect agreement with QMC calculations.

These encouraging results are however disturbed by the break-down of the approximation

for large values of rs where the RPAx density-density response function unphysically changes

sign thus indicating that correlation contributions to the kernel are needed to obtain accurate

results for the HEG at low densities. Although combining higher order GLPT with the sys-

tematic approach proposed here could give access to the needed higher order contributions

to the kernel, we have suggested two simpler and inexpensive modifications of the RPAx ap-

proximation which are able to mimic the missing correlation contributions leading to a good

description of the correlation energy of the system even in the limit of small densities.

4.2 Dissociation of small molecules

As already pointed out in Section 2.2.4, one of the most serious problems of present KS meth-

ods is their inability to describe dispersion interaction between non overlapping molecular

fragments, and weakly bound systems such as molecules about to break during a chemical

reaction. Both these drawbacks are due to the intrinsic local or semi-local nature of these

approximations which are obviously not able to give a correct description of systems with im-

portant long-ranged correlation effects. These limitations reflect in a wrong description of all
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sparsely packed systems, ranging from the simple noble-gas dimers to bio-molecule and in a

poor characterization of processes such as, for instance, adsorption on surfaces and chemical

reactions.

Also system with a significant static correlation3 are poorly described within LDA, GGAs

and by hybrid functionals as well. This limitation leads, for instance, to a dramatic failure of

standard KS method when studying the dissociation of open shell systems whose simplest

and paradigmatic example is the stretched hydrogen molecule.

The poor performances of standard Density Functional Approximations (DFAs) in very

simple systems, reflect those of much larger and complex systems. It’s therefore of primary

importance to understand the origin of these inadequacies and to develop functionals which

are able to correctly describe simple physical situations before claiming them to be suitable

for much complicated problems.

In particular in order to achieve a more complete description of chemistry, DFAs are asked

to perform well for molecules beyond their equilibrium geometries and above all to correctly

describe molecular dissociation, starting from that of very simple ones.

4.2.1 Van der Waals dimers

Although one of the weakest, dispersion (or van der Waals) interaction is of primary impor-

tance to an accurate understanding of, for instance, biological processes as well as adsorption

on surfaces and chemical reactions. Dispersion forces originate from the response of an elec-

tron in one region to instantaneous charge-density fluctuations in another one. The leading

contribution arises from dipole-induced dipole interaction and leads to an attractive energy

with the well-known −1/R6 decaying behavior with the interatomic separation R. Standard

xc functionals only consider local properties in order to calculate the xc energy and cannot ob-

viously describe these kinds of interactions. They give binding or repulsion only when there

is an overlap of density charges of the individual components of the system, and since the

overlap decay exponentially with the interatomic separation so does the binding energy too.

In Fig. 4.7 this wrong behavior is shown for the Kr2 molecule.

In order to recover the correct −1/R6 decay at large interatomic separation, the simplest

approach proposed was to add an extra energy term which accounts for the long-range at-

traction. Within these new method, usually called “DFT-D” (Density Functional Theory plus

3 In terms of “hand-waving” arguments dynamic correlation is roughly associated to “simple” correlations due

to Coulomb repulsion, while static correlation appears in situations where multiple determinants associated with

degeneracy or near degeneracy are needed.
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Figure 4.7: LDA and PBE binding energy for the Kripton dimer compared to an accurate

model potential [104]. The −1/R6 decay is not reproduced by standard functionals which

instead give an exponential behavior originating from the overlap of the atomic charge densi-

ties.

Dispersion), the total energy reads

Etot = EDFT −∑
ij

Cij
6

R6
ij

fdamp(Rij) (4.17)

where the sum in the dispersion term run over all pairs of atoms i and j, and a damping

function fdamp has to be introduced in order to remove the short-range divergence of the extra

energy term. The major question in the application of these methods is the origin of the C6

coefficients. One possibility is to derive them from experimental information or calculate them

using ab-initio method. Using an extended data-base for the C6 coefficient and appropriate

damping functions allows the application of the equation above to a large range of interesting

chemical application. However the C6 coefficient can vary considerably depending on the

different chemical states of the atom and the influence of its environment and it’s unclear how

one should assign the chemical environment to apply the correct C6 coefficient. Although

some progres has been made in order to capture the environmental dependence of the C6

coefficients [105, 106, 107, 108, 109], all the DFT-D methods required anyway, to a lesser or

greater extent, predetermined input parameters.

Truly non-local and parameter-free functionals have been introduced in 1990s, but in their

original formulation, they were restricted to non-overlapping fragments. New ideas by Lan-
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greth et al. [13] removed this limitation renewing the community interest in the area of non-

local correlation functionals and leading to a new class of functionals called vdW-DF [13, 15].

They are usually defined as an additional correction

Enl
c =

∫
dr
∫

dr′ n(r)Φ(r, r′)n(r′), (4.18)

to the local or semilocal approximation ELDA/GGA
xc for exchange-correlation energy. In the gen-

eral expression for Enl
c , n(r) is the electron density and the integral kernel Φ(r, r′) is derived

starting from the exact ACFD formula (2.44) for the correlation energy followed by several

approximations. For this reason it automatically recover the correct O(|r − r′|−6) asymp-

totic behavior and therefore correctly describe long-range correlation interactions. The total

exchange-correlation energy in this approach is then given by Exc = ELDA/GGA
xc + Enl

c with

ELDA/GGA
xc taking into account for the exchange and short-range correlation effects. However

it is a difficult task to find the best xc functional to go with the non-local piece; the interplay

between the short-range part and the non-local one is still a matter of active research. While

the long-range limit of these functionals is designed to recover exact expressions for weakly-

interacting fragments, in the overlapping regime double-counting could produce sensible er-

rors in the energy and reduce the predictive power of the total functional.

As already pointed out in Sec. 2.3 correlation energy functionals derived within the ACFD

formalism are fully non-local and therefore include automatically and seamlessly dispersion

interactions (see, for instance, Ref. [51] for a detailed proof). Moreover they perfectly combine

with exact-exchange energy calculation thus removing the ambiguity, present in almost any

other approach to van der Waals systems, in the choice of the combination of exchange, short-

range correlation and non-local correlation contributions.

In order to assess the performace of the RPAx approximation for van der Waals system we

computed the binding energy of two simple noble-gas dimers, i.e. the Ar2 and Kr2 molecules,

and compare our results with,vdW-DF methods, well established RPA calculations and accu-

rate model potential-energy-surfaces fitted on experimental data.

Noble-gas dimers have binding energies (BEs) of the order of tens of meV and represent

an interesting testing case to investigate the accuracy of RPA and RPAx methods. Most of

the RPA calculations for realistic system in general and for noble-gas in the specific case have

been performed in a non self-consistent-field (non-scf) fashion, namely, exact-exchange and

RPA correlation energies were computed using single particle orbitals obtained from a local or

semi-local self-consistent DFT calculation. For convenience we will indicate these kinds of cal-

culations as RPA@DFA, and similarly RPAx@DFA, specifying any time the density functional
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4.2. Dissociation of small molecules

 Ar2 R0(Å) BE(meV) ω(cm-1) 

PBE 3.99 6.1 23.4 

RPA 3.84 8.3 26.8 

RPAx 3.75 11.1 30.8 

rVV10 3.75 13.4 32.3 

vdW-DF2 3.74 18.6 38.6 

vdW-DF 3.91 23.4 34.1 

LDA 3.39 31.0 58.3 

Exp 3.76 12.4 31.2 

Figure 4.8: Dissociation curve of Argon dimer obtained with different xc functionals. LDA

(brown dashed line) and PBE (violet dashed-dotted line) functionals give very poor results.

RPA@PBE(red circle) perform better than vdW-DF [13] (blue dashed-dotted line) and its re-

vised version vdW-DF2 [15] (turquoise dotted-dashed line). RPAx@PBE further improve and

gives results comparable to the the one obtained from the recent rVV10 [110] functional.

approximation (LDA, GGAs etc...) used to compute the input orbitals.

Only recently we [69] have performed for the first time a fully scf calculation for Ar2 and

Kr2 at the RPA level revealing a close agreement between the scf-RPA and the RPA@PBE

dissociation curves. This indicates that the PBE density is rather close to the scf-RPA density

and thus justifies the use of this density in non-scf calculations instead of performing a full

scf-RPA one. According to these finding and in absence of a scf-RPAx method, we performed

our RPAx correlation energy calculation starting from well converged PBE orbitals.

The dimers and the corresponding isolated atoms have been simulated using a simple-

cubic supercell with a size length a = 25 bohr. The electron ion interactions have been de-

scribed by conventional norm-conserving pseudopotentials [35]; a kinetic energy cut-off of 80

Ry and 50 Ry for Ar and Kr, respectively, has been used. Finally we used up to 400 low-lying

eigenvalues of vχ0 in order to calculate RPA correlation energy according to Eq. (3.31) and

the corresponding 400 eigenvectors as a basis set for the solution of the RPAx problem (3.29).

Extensive tests have been conducted to ensure that these parameters give well converged

binding energy with errors estimated to be less than 1meV.

In Fig. 4.8 we report our results for the RPAx@PBE dissociation curve or Ar dimer (green

squares) together with those of several DFA and compare with an accurate model potential
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 Kr2 R0(Å) BE(meV) ω(cm-1) 

PBE 4.33 6.7 15.4 

RPA 4.11 11.7 20.1 

RPAx 4.06 14.0 22.8 

rVV10 4.01 17.7 23.8 

vdW-DF2 4.05 23.2 26.8 

vdW-DF 4.24 27.0 22.6 

LDA 3.67 36.6 39.8 

Exp 4.01 17.4 23.6 

Figure 4.9: Dissociation curve of Kripton dimer obtained with different xc functionals. See

text an Fig. 4.8 for details.

fitted on experimental data [104] (black solid line). The RPAx and RPA binding energies have

been calculated using well converged PBE orbitals as input while all the other density func-

tional calculations are fully self-consistent.

As expected LDA and PBE (and GGAs in general) give very poor results predicting either

too large or too small binding energies and equilibrium distances. The non-local vdW-DF

functional proposed by Langreth et al. [13] and briefly described at the beginning of this sec-

tion, overestimates binding energy and bond-length by about 90% and 4% respectively. Its

revised version vdW-DF2 [15], although giving a better description of the whole dissociation

curve, still greately overestimates the binding energy. Including the exact-exchange kernel

leads to an overall improvement of the RPA performance. Compared to the binding energy

(12.4 meV), bond-length (3.76 Å) and vibrational frequency (31.2 cm−1) obtained from a model

potential fitted to experimental data [104], our RPAx results of 11.1 meV, 3.75 Å and 30.8 cm−1

show an impressive agreement. The RPAx dissociation curve turns out to be as good as the

newly developed vdW functional rVV10 [110] which is a a simple revision of the VV10 non-

local density functional by Vydrov and Van Voorhis [111], specifically designed for molecular

systems.

Similar results are also observed for Kripton dimer and reported in Fig. 4.9. Although

comparison with dissociation energy curve obtained from an accurate model potential fitted

to experimental data [104] shows that RPAx scheme underestimate the binding energy by

about 20%, the structural properties at the RPAx level show an improvement if compared to
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the RPA and vdW-DF counterparts; our RPAx results for the bond length and the vibrational

frequency differ only by 1% and −3% from the experimental values, respectively, and com-

pare better than RPA (3%, −15%), vdW-DF (6%, −5%) and vdW-DF2 (1%, 13%) bond lengths

and vibrational frequencies. Only the rVV10 functional outshines the RPAx and gives result

essentially identical to the experiments.

We end this section mentioning that the alternative RPAx re-summation proposed in the

previous section give, for the cases of Ar2 and Kr2, essentially the same results as the original

RPAx and are therefore not shown in Figs. 4.8 and 4.9.

4.2.2 Covalent dimers

Besides their inability to describe dispersion interaction, another limitation of standard DFA is

their very poor performance in systems with a significant static correlation. This becomes par-

ticularly problematic for the dissociation of electron pair bonds in situations where multiple

determinants associated with degeneracy or near degeneracy are needed. The simplest and

paradigmatic example is the dissociation of the H2 molecule. While around the equilibrium

position standard DFAs gives reasonable results, the proper (singlet) KS ground state at large

interatomic separations has too high total energy, as shown in Fig. 4.10. Hartree-Fock energies

are too high both around the equilibrium position and at dissociation; GGAs improve the de-

scription of the whole dissociation curve but still give wrong total energies for the stretched

molecule. Not surprisingly hybrid functional calculations (HSE [9, 112] in Fig 4.10), which

admix HF exchange with explicit density xc functionals, lead to an intermediate behavior. A

better agreement with the accurate potential energy curve can be achieved resorting to spin-

polarized calculations (not shown in Fig. 4.10) which give good energies, however at the price

of a qualitatively wrong spin-density. Beyond a certain bond-length, the spin-up and spin-

down electron densities are no longer equal leading to a solution which is no more a singlet

as it should. These limitations, illustrated for the paradigmatic case of the H2 molecules, are

intrinsic of standard local or semi-local DFAs and appears for any covalent bond breaking.

Also in this case, like for van der Waals systems, fully non-local functionals derived form

the ACFD theory have been shown to be a promising way to overcome standard DFA de-

ficiencies. The behavior of RPA for breaking covalent bonds was examined in its early day

by Furche [20] who argued that most of the strong static correlation in the N2 dimer at large

interatomic distances can be recovered at the RPA level. Soon after Fuchs et al. [21] have

shown that RPA is size-consistent and can correctly describe bond dissociation in H2 without
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Figure 4.10: Dissociation curve of H2 from PBE, HF and Hybrid-functional (HSE) spin-

restricted calculations.

resorting to any artificial spin-symmetry breaking. However the RPA total energy is far too

negative because of the well know overestimation of the correlation energy [55]; moreover

an erroneous repulsion hump happears in the dissociation curve of covalent bonded systems

at intermediate distances. Recently Heßelmann et al. [52] reported the H2 dissociation curve

within the RPAx approximation showing very good result for the total energy both around

the equilibrium position R0 and at dissociation but still the problem of the unphysical bump

at intermediate bond-lengths remains. We are not aware of any dissociation curve for N2 at

the RPAx level.

Here we have assessed the performance of the RPAx, the original one and the alternative

re-summations introduced in Section 4.1.2, for covalent bonded system beyond their equi-

librium geometries studying the dissociation curves of H2 and N2. The dimers atoms have

been simulated using a simple-cubic super cell with a size length a = 22 and a = 25 bohr,

respectively. A kinetic energy cut-off of 50 Ry has been used for both systems and up to 200

lowest-lying eigenpairs of the generalized-eigenvalue problem in Eq. (3.9) has been used to

compute the RPA and RPAx correlation energies. All the calculations have been done starting

from well converged PBE orbitals.

In Figs. 4.11 we report our results for the dissociation curves of H2 and the structural pa-

rameters extracted from it. Comparison with accurate calculations [113] illustrates the afore-

mentioned deficiencies of PBE and RPA dissociation curves: standard DFAs give too high total
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 H2 R0(Å) BE(eV) ω(cm-1) 

PBE 0.755 6.78 4219 

RPA 0.740 4.85 4520 

RPAx 0.738 4.41 4560 

tRPAx 0.742 4.48 4506 

t’RPAx 0.738 4.45 4406 

Accurate 0.741 4.75 4529 

Figure 4.11: Dissociation curve of H2 from PBE, RPA and RPAx (original and alternative)

spin-restricted calculations compared with accurate calculation [113].

energies in the dissociation limit while the simple RPA severely overestimates the correlation

energy leading to a curve well below the reference one. Including the exact-exchange kernel

leads to a sensible improvement in the total energy description; as can be seen from the inset

in Fig. 4.11 the RPAx total energies around the equilibrium position is in very good agreement

with accurate quantum chemistry calculations. The alternative re-summations while essen-

tially giving the same energy as the original RPAx in the minimum region, have a positive

effect on the dissociation curve at intermediate distances reducing the height of the repulsive

hump. Finally we notice that at large interatomic separations all the RPAx approximation

drops below the exact dissociation limit of 2 Ry in agreement with the analysis reported in

Ref. [21].

With the simple H2 example in mind we can turn to analyze the more interesting case of

the N2 molecule. In Fig. 4.12 we report our results for the dissociation curve and the structural

parameters obtained from them. As already observed for the H dimer also in this case the

whole RPA dissociation curve lies far below all the other curves. Nevertheless the structural

parameters at the RPA level are in very good agreement with results from accurate quantum

chemistry calculations [114]. Including the exact-exchange contribution to the kernel corrects

for the RPA overestimation of the correlation energy shifting the RPAx dissociation curve

upward. At the same time, the good performance for the equilibrium bond length and the

vibrational frequency already obtained at the RPA level is maintained. However, unlike what

happens for the H2 molecule, in this case the original RPAx approximation breaks-down when
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 N2 R0(Å) BE(eV) ω(cm-1) 

PBE 1.102 16.86 2274 

RPA 1.100 9.92 2322 

RPAx 1.085 -- 2569 

tRPAx 1.090 9.22 2430 

t’RPAx 1.085 9.07 2482 

Accurate 1.095 9.91 2383 

Figure 4.12: Dissociation curve of N2 from PBE, RPA and RPAx (original and alternative)

spin-restricted calculations. The table shows structural parameter obtained from the curves

compared with accurate calculation results [114].

the nitrogen atoms are separated. For bond lengths greater than R = 1.45Å the RPAx response

function is no more negative-definite leading to an instability which is very similar to the

one observed in the low-density homogeneous electron gas and, ultimately, causes the break-

down of the approximation. The alternative re-summations proposed to fix the pathological

behavior of the RPAx response function in the HEG, turn out to be effective also in this very

different situation. The tRPAx and t′RPAx dissociation curves are close to the RPAx one in

the equilibrium region (see the inset in Fig. 4.12) but they are well-behaved also for bond

lengths greater that R = 1.45Å overcoming, also in this case, what appears to be an intrinsic

inadequacy of the original RPAx approximation.

4.2.3 The beryllium dimer

As an interesting example of a mixed covalent-vdW system we studied the challenging case

of beryllium dimer. Be2 represents a more complex situation in which both long-range van

der Waals interaction and static correlation play an important role. Several theoretical inves-

tigations have been devoted to this simple molecule using different ab initio methods rang-

ing from standard DFT calculations with local or semi-local functionals, which predict bond

lengths rather close to the experimental value but Eb about 500% too large (see, e.g., Ref. [16]),

to quantum Monte Carlo (QMC) techniques [115, 116], to high accuracy quantum chemistry

methods such as the second-order Møller-Plesset perturbation theory [117], the couple-cluster
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 Be2 R0(Å) BE(meV) ω(cm-1) 

PBE 2.456 399.4 336 

RPA 2.405 25.1 293 

RPAx 2.493 -13.1 221 

tRPAx 2.460 20.0 231 

t’RPAx 2.470 18.8 239 

Exp 2.454 115.3 276 

Figure 4.13: Dissociation curve of Be2 from PBE, RPA and RPAx (original and alternative)

spin-restricted calculations. The table shows structural parameter obtained from the cureves

compared with experimental results [119].

approach [117] and the configuration interaction (CI) method [118]. In addition, the study of

dissociation energy curve and structure of Be dimer using RPA technique has also been car-

ried out [16, 19, 58, 69]. Although nscf-RPA can predict R0 and ω0 in rather good agreement

with experiment, Eb is severely underestimated. Moreover in Ref. [19] the presence of an un-

physical maximum in the nscf-RPA dissociation curve was found and the whole curve was

shown to be very sensitive to the input orbitals used. The authors suggested the full self-

consistent treatment of the RPA density and potential as a possible solution for the hump

puzzle. Recently Nguyen et al. [69] have performed such a calculation for this systems and

pointed out that the scf treatment is indeed important and significantly lower the total energy

of the system, yet it is not enough to fix the unphysical maximum problem and even leads to

the metastability of the Be dimer since the energy at the minimum of the potential energy sur-

face is higher than the one at the dissociation limit. These finding, as already pointed out in

the original work, indicate a real limitation of the RPA that call for the inclusion of correlation

contributions beyond the simple Coulomb kernel.

In Fig. 4.13 we report our results for the binding energy curve of Be2 and structural pa-

rameters from standard PBE, RPA and RPAx calculations and compare them with an accurate

model potential-energy-surface fitted on experimental data [119]. The dimer and the cor-

responding isolated atom have been simulated using a simple-cubic super cell with a size

length a = 25 bohr and a kinetic energy cut-off of 40 Ry. Up to 200 lowest-lying eigenpairs
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of the generalized-eigenvalue problem in Eq. (3.9) have been used to compute the RPA and

RPAx correlation energies. All the RPA and RPAx calculations have been performed starting

from well converged PBE orbitals.

The PBE calculation predicts a bond length rather close to the experimental value but too

large a binding energy (400% overestimate). At the RPA level the dissociation curve exhibit an

unphysical hump for intermediate values of the bond length very similar to the one observed

for covalent bonded systems. The RPA severely underestimate the binding energy but still

gives equilibrium bond length and vibrational frequency in good agreement with experimen-

tal data. Passing from RPA to RPAx leads to a worse description of the dissociation curve

near the equilibrium position and even to the metastability of the Be dimer. However we

notice that in the dissociation region the RPAx curve approaches the experimental potential

energy surface faster than the RPA one. The results obtained from the alternative resumma-

tions tRPAx and t′RPAx, recover the RPA performance near the minimum, reduce the height

of the hump for intermediate values of the bond length and approach the correct asymptotic

behavior of the Be-Be interaction potential much faster then all the other DFA.

Compared to the previous results for the dissociation curve of covalent bond and vdW

systems, not surprisingly Be2 shows similarity with both. In the range of intermediate in-

teratomic separation, where the bond is expected to be mostly covalent in nature, an hump

similar to the one observed for the H2 and N2 molecules appears in the dissociation curve. In

the dissociation region instead, where the vdW interaction between the atoms becomes im-

portant, RPAx approximations and in particular the alternative resummation give results in

very good agreement with experimental data, illustrating the effectiveness of ACFD-derived

functional in describing long-range interactions.

Given the sensitivity of the results on the input orbital already reported in literature [19]

we decided to investigate this issue. Although we do not have an scf RPAx method we can

still indirectly infer how a fully self-consistent treatment of the density and potential would

modify the dissociation curve by performing calculations similar to the one reported before

but starting with different input densities. Therefore we repeated the dissociation curve cal-

culations starting from LDA, exact-exchange (EXX) and RPA orbitals. While for the former a

standard DFT calculation is needed, EXX and RPA orbitals have been determined using the

efficient OEP approach recently implemented by Nguyen et al. [69, 70] in a developper version

of QUANTUM ESPRESSO. In Fig. 4.14 we report our results. Each panel of the figure shows

the potential energy surface of the Be dimer calculated within different total energy scheme:

RPA (top left panel), RPAx (top right panel) tRPAx (bottom left panel) and t′RPAx (bottom
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Figure 4.14: Total energies of Be2 within different schemes: RPA (top left panel), RPAx (top

right panel) tRPAx (bottom left panel) and t′RPAx (bottom right panel). Different colors cor-

respond to different input densities: LDA (green), PBE (blue), EXX(red) RPA (brown).

right panel). In each panel the results obtained using different input orbitals are represented

with different colors. The plots clearly indicate that a scf treatment could significantly lowers

the total energy of the system since using the RPA orbitals as input shifts the whole curves

downwards by about ∼ 100 meV which is a significant change if compared to the binding

energy of this system.

Further the dissociation curves change also qualitatively using different input densities.

In particular using EXX and RPA orbitals, instead of PBE ones, leads to a much pronounced

metastable behavior as can be seen from the binding energy plots in Fig. 4.15. For the RPA cal-

culations, reported in the top left panel of Fig. 4.14 and Fig. 4.15, it can be seen that the energy

gain obtained passing from non scf densities to the scf RPA one is higher at large interatomic

separation than near the equilibrium position, leading to the metastability of the dimer. This

seems to be an intrinsic limitation of the RPA itself that calls for the inclusion of correlation

contributions beyond the simple Coulomb kernel. However, despite some improvements in

the description of the molecule in its stretched geometry, the RPAx approximations (original

and alternative) does not seem to be sufficiently accurate for the challenging case of Be dimer.
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Figure 4.15: Binding energies of Be2 within different schemes: RPA (left top panel), RPAx

(right top panel) tRPAx (left bottom panel) and t′RPAx (right bottom panel). Different col-

ors correspond to different input densities: LDA (green), PBE (blue), EXX(red) RPA (brown).

An accurate model potential-energy-surface fitted on experimental data [119] (black) is also

shown.

Nevertheless the fact that for large interatomic distances the binding energy obtained start-

ing from different densities are close one to each others and to the experimental data, may

indicate that in this region the density is close to the real one and a self consistent calculation

at the RPAx level would not change much the results. Instead near the equilibrium position

we could expect much bigger changes given the strong dependence of the results on the in-

put orbitals in this region. Therefore, before a final conclusion can be drown for the RPAx

approximation in the delicate case of Be dimer, a fully self-consistent calculation is certainly

needed.

4.2.4 Summary

We have assessed the performance of the RPAx approximation and its modifications tRPAx

and t′RPAx for purely van der Waal, covalent and mixed van der Waals covalent systems.

The binding energy and structural properties of Ar and Kr dimers computed at the RPAx
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level (the original and alternative re-summations perform identically in these cases) improve

compared to standard DFAs and RPA results. The study of covalent molecules dissociation

within the RPAx approximation, reveal the same virtues and vices already observed in the

HEG case. A sensible improvement of the total energy description is however disturbed by

a pathological behavior of the response function. The alternative re-summations, tRPAx and

t′RPAx, proposed here, have been shown to be simple and inexpensive modifications to the

original one and able to fix RPAx inadequacy without compromising its virtues. For the chal-

lenging case of Be2 dimer, although not improving upon RPA in the equilibrium region the

alternative RPAx re-summations have been shown to give results in perfect agreement with

the experiments for the molecule in its stretched geometry.
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Chapter 5
Conclusion

In this work we described a general and systematic scheme aiming at computing increas-

ingly accurate correlation energy in the ACFD framework. It is based on a many-body per-

turbative approach along the adiabatic connection path that allows to practically define an

expansion for the exchange-correlation kernel of TDDFT in the coupling strength tuning the

electron-electron interaction. Within this general scheme the simple RPA is an “incomplete”

approximation. If the exact-exchange kernel is correctly taken into account one obtains a con-

sistent description to first order in the interaction strength and recover the so called RPAx

approximation for the correlation energy for which a novel and efficient implementation has

been proposed. It is based on an eigenvalue decomposition of the time-dependent response

function of the many body system in the limit of vanishing coupling constant, efficiently eval-

uated resorting to the linear response technique of DFPT. We verified that a relative small

number of its eigenvalues and eigenvectors are sufficient to obtain an accurate representation

of the RPAx response function and, ultimately, well converged results for the RPAx correla-

tion energy. The additional workload needed in order to pass from RPA correlation energies

calculations to their exact-exchange corrected counterparts is limited and accounted for by a

small multiplicative prefactor in front of the RPA computational cost. Technical details of the

method as implemented in the plane-wave pseudopotential approach were discussed at some

level.

The accuracy of the RPAx approximation has been first tested on the homogeneous elec-

tron gas revealing a great improvement over RPA results and a very good agreement with

accurate QMC calculations. The well-known overestimation of the correlation energy at the

RPA level is indeed almost completely corrected by including the exact-exchange contribution
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to the kernel. The spin magnetization dependency of the RPA and RPAx correlation energies

has been calculated as well, showing a big improvement if compared to standard parametriza-

tions and a perfect agreement with QMC calculation. These encouraging results are however

disturbed by the break-down of the procedure for values of rs & 10 where the RPAx density-

density response function unphysically changes sign. In this density regime the full treatment

of the contributions coming from the exchange kernel, induces the observed instability and

would require large correlation contributions to compensate for it and move the density insta-

bility toward the Wigner crystal to much smaller densities of the order of rs ≈ 80 [39]. Staying

within an exact first order approximation to the particle-hole interaction we have suggested

two simple and inexpensive modifications of the RPAx approximation which lead to a good

description of the correlation energy of the system even in the limit of small densities. The ra-

tionale of the proposed approximate resummations is indeed to prevent the instability at low

density by removing the higher order contributions from the exchange kernel, and therefore

the need for compensating higher-order correlation ones, keeping the expansion accurate at

high density.

As a second and more stringent test for the RPAx approximation, we investigated the dis-

sociation of simple molecules. Indeed one of the most serious problems of present KS meth-

ods is their inability to describe dispersion interaction between non overlapping molecular

fragments, and weakly bound systems such as molecules about to break during a chemical

reaction. Already at their lowest level of approximation, i.e. RPA methods, ACFD-derived

functionals have been shown to be a promising way to overcome these deficiencies. How-

ever also the RPA and its modifications are not without limitations. We found that including

the exact-exchange contribution to the kernel leads to an improvement of the binding ener-

gies and structural properties of noble gas dimers. We reported a sensible improvement of

the total energy description within the RPAx approximation also for H2 and N2 molecule.

However examining the dissociation of N2, we discovered the same virtues and vices already

observed in the HEG case. The good description of the total energy is disturbed by a patho-

logical behavior of the response function which thus appears to be an intrinsic features of

the RPAx itself and ultimately poses doubts on the broad applicability of this approximation.

Also in this very different situation the alternative re-summations, tRPAx and t′RPAx, have

been shown to be able to fix the RPAx inadequacy without compromising its virtues and thus

emerge as promising and stable alternatives to the original RPAx approximation. We believe

the success of these two alternative resummation in overcoming the limitations of the original

RPAx approximations lies in a reduction of the strength of the contributions coming from the

78



exact-exchange kernel and thus indicates a proper renormalization of the exchange terms as a

possible route to follow.

Beside the improvements obtained taking into account the exchange contribution to the

kernel, some questions are still open. The hump problem already observed at RPA level for

covalent bonded system is still not solved and deserves further investigation. The extensive

calculations on the Be dimer indicate that correlation effects in the kernel may play a major

role for this very delicate system. However we can not completely rule out a possible role of

a fully self-consistent treatment at the RPAx level.

In conclusion, a general and systematic scheme for the calculation of increasingly accurate

correlation energies in the ACFDT has been formally introduced and practically applied to

first order. Our efficient implementation for the calculation of RPAx correlation energies has

been presented and used to study selected systems representative of well know drawbacks

of standard density functional approximations. We found that the inclusion of the exact-

exchange contribution to the kernel plays a crucial role for a correct and accurate description

of the total energy of an electronic system without compromising the achievements of the

original RPA functional. An intrinsic pathological behavior of the RPAx response function, not

reported before, has been successfully treated by introducing two inexpensive modifications

of the original RPAx Dyson-like equation. Staying within an exact first order approximation

to the many-body response function, these slight redefinitions of RPAx fix the instability in

total energy calculations without compromising the overall accuracy of the approach.
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Appendix A
EXX-kernel

We give here the detailed derivation of Eq. (3.25). For convinience we rewrite here the starting

point of our derivation, i.e. Eq. (3.24):

hαβ
Hx = + 〈δΦ0|∆αV∗|∆βΦ(+)

0 + ∆βΦ(−)
0 〉+ 〈∆αΦ(−)

0 + ∆αΦ(+)
0 |∆βV|δΦ0〉

+ 〈∆αΦ(+)
0 |δV|∆βΦ(−)

0 〉+ 〈∆αΦ(−)
0 |δV|∆βΦ(+)

0 〉.

−
[
〈∆αΦ(+)

0 |∆βΦ(−)
0 〉+ 〈∆αΦ(−)

0 |∆βΦ(+)
0 〉

]
〈Φ0|δV|Φ0〉

(A.1)

This equation can be recast in a more symmetric form explicitely separating the ground state

contribution to |∆Φ(±)
0 〉:

|∆Φ(±)
0 〉 = |∆̃Φ(±)

0 〉+ |Φ0〉
〈Φ0|∆V|Φ0〉

±iu
= |∆̃Φ(±)

0 〉+ |Φ0〉
〈∆V〉
±iu

. (A.2)

Replacing into Eq. (A.1) and considering that 〈Φ0|∆̃Φ(±)
0 〉 = 0 we get

hαβ
Hx = + 〈δΦ0|∆αV∗|∆̃βΦ(+)

0 + ∆̃βΦ(−)
0 〉+ 〈∆̃αΦ(−)

0 + ∆̃αΦ(+)
0 |∆βV|δΦ0〉

− 〈∆αV∗〉
iu

[
〈Φ0|δV|∆̃βΦ(−)

0 〉 − 〈Φ0|δV|∆̃βΦ(+)
0 〉

]
−
[
〈∆̃αΦ(+)

0 |δV|Φ0〉 − 〈∆̃αΦ(−)
0 |δV|Φ0〉)

] 〈∆βV〉
iu

+ 〈∆̃αΦ(+)
0 |δV|∆̃βΦ(−)

0 〉+ 〈∆̃αΦ(−)
0 |δV|∆̃βΦ(+)

0 〉.

−
[
〈∆̃αΦ(+)

0 |∆̃βΦ(−)
0 〉+ 〈∆̃αΦ(−)

0 |∆̃βΦ(+)
0 〉

]
〈Φ0|δV|Φ0〉. (A.3)
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Multipying the h.c. of Eq (3.16) on the right by |δΦ0〉 and Eq. (3.20) on the left by 〈∆̃Φ(±)
0 |, the

following identities can be easily derived

〈∆̃Φ(±)
0 |H0 − E0|δΦ0〉 = −〈∆̃Φ(±)

0 |δV|Φ0〉

〈∆̃Φ(±)
0 |H0 − E0|δΦ0〉 = −〈Φ0|∆V∗|δΦ0〉 ∓ iu〈∆̃Φ(±)

0 |δΦ0〉 (A.4)

where again we have splitted |∆Φ(±)
0 〉 according to Eq. (A.2) and we have exploited the fact

that 〈Φ0|∆̃Φ(±)
0 〉 = 0. Comparing these identities leads to

〈∆̃Φ(±)
0 |δV|Φ0〉 = 〈Φ0|∆V∗|δΦ0〉 ± iu〈∆̃Φ(±)

0 |δΦ0〉. (A.5)

A similar expression can be derived for 〈Φ0|δV|∆̃Φ(±)
0 〉 in the same way. Replacing into

Eq. (A.3) we find a symmetric expression for hαβ
Hx:

hαβ
Hx = + 〈δΦ0|∆αV∗|∆̃βΦ(+)

0 + ∆̃βΦ(−)
0 〉+ 〈∆̃αΦ(−)

0 + ∆̃αΦ(+)
0 |∆βV|δΦ0〉

− 〈∆αV∗〉〈δΦ0|∆̃βΦ(−)
0 + ∆̃βΦ(+)

0 〉 − 〈∆̃αΦ(−)
0 + ∆̃αΦ(+)

0 |δΦ0〉〈∆βV〉

+ 〈∆̃αΦ(+)
0 |δV|∆̃βΦ(−)

0 〉+ 〈∆̃αΦ(−)
0 |δV|∆̃βΦ(+)

0 〉.

−
[
〈∆̃αΦ(+)

0 |∆̃βΦ(−)
0 〉+ 〈∆̃αΦ(−)

0 |∆̃βΦ(+)
0 〉

]
〈Φ0|δV|Φ0〉

(A.6)

We can now turn to the expression of the many-body wave-functions in terms of single

particle KS orbitals |φi〉. In the following the subscripts a, b, c will refer to occupied states,

the subscripts s, t, u to unoccupied states and the subscripts k, l, m, n to both occupied and

unoccupied states. In second quantization the single particle perturbation ∆V = ∑i ∆V(ri)

can be written as

∆V = ∑
kl
〈k|∆V|l〉c†

k cl with 〈k|∆V|l〉 =
∫

dr φ∗k (r)∆V(r)φl(r). (A.7)

where c†
i and ci are the fermion creation and annihilation operators for the single-particle KS

orbital |φi〉. Since ∆V is a one-body operator the perturbed wave-functions |∆̃Φ(±)
0 〉 only have

contributions from single exitations (we destroy a particle in the occupied state “a” and create

a particle in the empty state “t”) and precisely are

|∆̃Φ(±)
0 〉 = ∑

atkl
|c†

t ca〉
〈k|∆V|l〉
εat ± iu

〈c†
actc†

k cl〉 = + ∑
atkl
|c†

t ca〉
〈k|∆V|l〉
εat ± iu

δalδtk = + ∑
at
|c†

t ca〉
〈t|∆V|a〉
εat ± iu

(A.8)

where |c†
t ca〉 is a short notation for c†

t ca|Φ0〉 and 〈. . . 〉 is the average over the ground-state |Φ0〉
that can be easily computed using the Wick’s theorem (see for instance Ref. [120] or Ref. [73]).
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The variation δΦ0 is instead determined by the static perturbation

δV = ∑
klmn

〈kl|W|mn〉
2

c†
k c†

l cmcn + ∑
kl
〈k| − vH − vx|l〉c†

k cl

〈kl|W|mn〉 =
∫

dr
∫

dr′ φ∗k (r)φ∗l (r′)W(|r− r′|)φm(r′)φn(r)

〈k| − vH − vx|l〉 =
∫

dr φ∗k (r)[−vH(r)− vx(r)]φl(r) (A.9)

which has both a two-body and a one-body part. Correspondingly |δΦ0〉 has a single-exitations

contribution |δΦS
0〉 and a double-exitations contribution |δΦD

0 〉. While the latter is only de-

termined by the Coulomb interaction W, the former has contribution both from W and the

one-body operator −vH − vx:

|δΦS
0〉 = ∑

atklmn
|c†

t ca〉
1

εat

〈kl|W|mn〉
2

〈c†
actc†

k c†
l cmcn〉+ ∑

atkl
|c†

t ca〉
1

εat
〈k| − vH − vx|l〉〈c†

actc†
k cl〉

(A.10)

If we compute all the contractions and exploit the symmetry of the Coulomb interaction when

r ↔ r′ we find

∑
atklmn

|c†
t ca〉

1
εat

〈kl|W|mn〉
2

〈c†
actc†

k c†
l cmcn〉 = + ∑

atc
|c†

t ca〉
1

εat
〈ct|W|ac〉 −∑

atc
|c†

t ca〉
1

εat
〈tc|W|ac〉

= + ∑
at
|c†

t ca〉
〈t|vH + Vx|a〉

εat

∑
atkl
|c†

t ca〉
1

εat
〈k| − vH − vx|l〉〈c†

actc†
k cl〉 = + ∑

at
|c†

t ca〉
〈t| − vH − vx|a〉

εat
(A.11)

The sum of these two contribution gives the single-exitations variation |δΦS
0〉:

|δΦS
0〉 = + ∑

at
|c†

t ca〉
〈t|Vx − vx|a〉

εat
. (A.12)

The double-exitations contribution is instead given by

|δΦD
0 〉 = ∑

a<bs<t
∑

klmn
|c†

t c†
s cbca〉

1
εat + εbs

〈kl|W|mn〉
2

〈c†
ac†

bcsctc†
k c†

l cmcn〉

= ∑
a<bs<t

|c†
t c†

s cbca〉
1

εat + εbs
〈st|W|ab〉 − ∑

a<bs<t
|c†

t c†
s cbca〉

1
εat + εbs

〈st|W|ba〉

= ∑
abst

|c†
t c†

s cbca〉
1

εat + εbs

〈st|W|ab〉 − 〈st|W|ba〉
4

(A.13)

where the restriction on the sum is needed to correctly identify a Fock state of indistinguish-

able particle thus avoiding any double counting of equivalent1 states. At the end the restric-

1 Here “equivalent states” means states that differ only by a phase factor.
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A. EXX-kernel

tion can be relaxed multiplying by a factor 1/4. Summing up the single and double contribu-

tion we get the perturbed wave-function

|δΦ0〉 = |δΦS
0〉+ |δΦD

0 〉 = ∑
at
|c†

t ca〉
〈t|Vx − vx|a〉

εat
+ ∑

abst
|c†

t c†
s cbca〉

〈st|W|ab〉 − 〈st|W|ba〉
4(εat + εbs)

.

(A.14)

We have now all the ingredients (∆Φ(±)
0 , δΦ0, δV = W − υH − υx) we need in order to express

Eq. (A.6) in term of single-particle wave-functions. Let us start with the third and forth lines

in Eq. (A.6).

Evaluation of
[
〈∆̃αΦ(−)

0 |δV|∆̃βΦ(+)
0 〉 − 〈∆̃αΦ(−)

0 |∆̃βΦ(+)
0 〉〈Φ0|δV|Φ0〉

]
.

The static perturbation δV is made up of a 2-body, i.e. W, and a 1-body, i.e. −vH − vx, opera-

tors. The contribution form the latter is as follows

〈∆̃αΦ(−)
0 | − vH − vx|∆̃βΦ(+)

0 〉 = ∑
atbskl

〈a|∆αV∗|t〉
εat + iu

〈k| −VH − vx|l〉
〈s|∆βV|b〉

εbs + iu
〈c†

actc†
k clc†

s cb〉

=−∑
ab

[
∑

t

〈a|∆αV∗|t〉
εat + iu

〈t|
] [

∑
s
|s〉 〈s|∆

βV|b〉
εbs + iu

]
〈b| − vH − vx|a〉

+ ∑
a

[
∑

t

〈a|∆αV∗|t〉
εat + iu

〈t|
]

[−vH − vx]

[
∑

s
|s〉 〈s|∆

βV|b〉
εbs + iu

]

+ ∑
a

[
∑

t

〈a|∆αV∗|t〉
εat − iu

〈t|
] [

∑
s
|s〉 〈s|∆

βV|b〉
εbs + iu

]
∑

k
〈k| − vH − vx|k〉

〈∆̃αΦ(−)
0 |∆̃βΦ(+)

0 〉 = ∑
atbs

〈a|∆αV∗|t〉
εat + iu

〈s|∆βV|b〉
εbs + iu

〈c†
actc†

s cb〉

= ∑
a

[
∑

t

〈a|∆αV∗|t〉
εat + iu

〈t|
] [

∑
s
|s〉 〈s|∆

βV|b〉
εbs + iu

]

〈Φ0| − vH − vx|Φ0〉 = ∑
kl
〈k| − vH − vx|l〉〈c†

k cl〉 = ∑
k
〈k| − vH − vx|k〉.

(A.15)

where again we have evaluated all the contractions and used a resolution of the identity as

needed. Notice that the term 〈∆̃αΦ(−)
0 |∆̃βΦ(+)

0 〉〈Φ0| − vh − vx|Φ0〉 excatly cancel out the last

contribution of 〈∆̃αΦ(−)
0 | − vH − vx|∆̃βΦ(+)

0 〉. For the sake of clearness in the expressions above

we have highlighted in the square brackets the (conduction-band projected) variations of oc-
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cupied KS orbital which are the given by the solutions of the following linear problems

|∆φ
(±)
a 〉 = ∑

t
|t〉 〈t|∆V|a〉

εat ± iu
⇔ [HKS + γPυ − (εa ± iu)]|∆φ

(±)
a 〉 = −(1− Pυ)∆V|φa〉.

(A.16)

Sustituting the definitions above in Eq. (A.15) and putting all the pieces together, we get the fi-

nal result for the 1-body contribution to
[
〈∆̃αΦ(−)

0 |δV|∆̃βΦ(+)
0 〉 − 〈∆̃αΦ(−)

0 |∆̃βΦ(+)
0 〉〈Φ0|δV|Φ0〉

]
1-Body = ∑

ab
〈∆αφ

(−)
a |∆βφ

(+)
b 〉〈φb|vH + vx|φa〉 − 〈∆αφ

(−)
a |vH + vx|∆βφ

(+)
b 〉 (A.17)

The term deriving from the 2-body contribution (W) to the perturbation δV is instead

〈∆̃αΦ(−)
0 |W|∆̃βΦ(+)

0 〉 = ∑
atbsklmn

〈a|∆V|t〉
εat + iu

〈kl|W|mn〉
2

〈s|∆V|b〉
εbs + iu

〈c†
actc†

k c†
l cmcnc†

s cb〉

=− ∑
abst

〈a|∆αV∗|t〉
εat + iu

〈bt|W|sa〉 〈s|∆
βV|b〉

εbs + iu
+ ∑

abst

〈a|∆αV∗|t〉
εat + iu

〈bt|W|as〉 〈s|∆
βV|b〉

εbs + iu

− ∑
abtk

〈a|∆αV∗|t〉
εat + iu

〈bk|W|ka〉 〈t|∆
βV|b〉

εbt + iu
+ ∑

abtk

〈a|∆αV∗|t〉
εat + iu

〈bk|W|ak〉 〈t|∆
βV|b〉

εbt + iu

− ∑
astk

〈a|∆αV∗|t〉
εat + iu

〈tk|W|sk〉 〈s|∆
βV|a〉

εas + iu
+ ∑

astk

〈a|∆αV∗|t〉
εat + iu

〈tk|W|ks〉 〈s|∆
βV|a〉

εas + iu

− ∑
atkl

〈a|∆αV∗|t〉
εat + iu

〈kl|W|kl〉
2

〈t|∆βV|a〉
εat + iu

+ ∑
atkl

〈a|∆αV∗|t〉
εat + iu

〈kl|W|lk〉
2

〈t|∆βV|a〉
εat + iu

=−∑
ab
〈φb∆αφ

(−)
a |W|∆βφ

(+)
b φa〉+ ∑

ab
〈φb∆αφ

(−)
a |W|φa∆βφ

(+)
b 〉

−∑
ab
〈∆αφ

(−)
a |∆βφ

(+)
b 〉〈φb|vH + Vx|φa〉+ ∑

a
〈∆αφ

(−)
a |vH + Vx|∆βφ

(+)
a 〉

+ ∑
a
〈∆αφ

(−)
a |∆βφ

(+)
a 〉(EH + Ex).

〈∆̃αΦ(−)
0 |∆̃βΦ(+)

0 〉 = ∑
atbs

〈a|∆αV∗|t〉
εat + iu

〈s|∆βV|b〉
εbs + iu

〈c†
actc†

s cb〉 = ∑
a
〈∆αφ

(−)
a |∆βφ

(+)
a 〉.

〈Φ0|W|Φ0〉 = ∑
klmn

〈kl|W|mn〉
2

〈c†
k c†

l cmcn〉 = −∑
kl

〈kl|W|kl〉
2

+ ∑
kl

〈kl|W|lk〉
2

= EH + Ex.

(A.18)

Summing up all the three terms we get for the 2-body contribution

2-Body =−∑
ab
〈φb∆αφ

(−)
a |W|∆βφ

(+)
b φa〉+ ∑

ab
〈φb∆αφ

(−)
a |W|φa∆βφ

(+)
b 〉

−∑
ab
〈∆αφ

(−)
a |∆βφ

(+)
b 〉〈φb|vH + Vx|φa〉+ ∑

a
〈∆αφ

(−)
a |vH + Vx|∆βφ

(+)
a 〉. (A.19)
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A. EXX-kernel

After summing the 1- and 2-body contribution we get the final result:

〈∆̃αΦ(−)
0 |δV|∆̃βΦ(+)

0 〉 − 〈∆̃αΦ(−)
0 |∆̃βΦ(+)

0 〉〈Φ0|δV|Φ0〉 =

= ∑
ab
〈φb∆αφ

(−)
a |W|φa∆βφ

(+)
b 〉 −∑

ab
〈φb∆αφ

(−)
a |W|∆βφ

(+)
b φa〉

∑
a
〈∆αφ

(−)
a |Vx − vx|∆βφ

(+)
a 〉.−∑

ab
〈∆αφ

(−)
a |∆βφ

(+)
b 〉〈φb|Vx − vx|φa〉. (A.20)

the expression for 〈∆̃αΦ(+)
0 |δV|∆̃βΦ(−)

0 〉 − 〈∆̃αΦ(+)
0 |∆̃βΦ(−)

0 〉〈Φ0|δV|Φ0〉 is obtained from the

equation above just changing + ↔ −.

Evaluation of
[
〈δΦ0|∆αV∗|∆̃βΦ(+)

0 〉 − 〈Φ0|∆αV∗|Φ0〉〈δΦ0|∆̃βΦ(+)
0 〉

]
.

For convenience and better understanding |δΦ0〉 is splitted into its single and double-exitations

contributions |δΦS
0〉 and |δΦD

0 〉:

〈δΦD
0 |∆αV∗|∆̃βΦ(+)

0 〉 = ∑
abstcukl

〈ba|W|ts〉 − 〈ab|W|ts〉
4(εat + εbs)

〈k|∆αV∗|l〉 〈u|∆
βV|c〉

εcu + iu
〈c†

ac†
bcsctc†

k clc†
ucc〉

=− ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉
4(εat + εbs)

〈s|∆αV∗|a〉 〈t|∆
βV|b〉

εbt + iu

+ ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉
4(εat + εbs)

〈t|∆αV∗|a〉 〈s|∆
βV|b〉

εbs + iu

+ ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉
4(εat + εbs)

〈s|∆αV∗|b〉 〈t|∆
βV|a〉

εat + iu

− ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉
4(εat + εbs)

〈t|∆αV∗|b〉 〈s|∆
βV|a〉

εas + iu

= + ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉
εat + εbs

〈t|∆αV∗|a〉 〈s|∆
βV|b〉

εbs + iu

〈δΦS
0 |∆αV∗|∆̃βΦ(+)

0 〉 = ∑
atbskl

〈a|Vx − vx|t〉
εat

〈k|∆αV∗|l〉 〈s|∆
βV|b〉

εbs + iu
〈c†

actc†
k clc†

s cb〉

= + ∑
ats

〈a|Vx − vx|t〉
εat

〈t|∆αV∗|s〉 〈s|∆
βV|a〉

εas + iu

−∑
abt

〈a|Vx − vx|t〉
εat

〈t|∆βV|b〉
εbt + iu

〈b|∆αV∗|a〉

+ ∑
atk

〈a|Vx − vx|t〉
εat

〈k|∆αV∗|k〉 〈t|∆
βV|a〉

εat + iu

〈δΦD
0 |∆̃βΦ(+)

0 〉 = ∑
abstcu

〈ba|W|ts〉 − 〈ab|W|ts〉
4(εat + εbs)

〈u|∆βV|c〉
εcu + iu

〈c†
ac†

bcsctc†
ucc〉 = 0
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〈δΦS
0 |∆̃βΦ(+)

0 〉 = ∑
atbs

〈a|Vx − vx|t〉
εat

〈s|∆βV|b〉
εbs + iu

〈c†
actc†

s cb〉 = ∑
at

〈a|Vx − vx|t〉
εat

〈t|∆βV|a〉
εat + iu

〈Φ0|∆αV∗|Φ0〉 = ∑
kl
〈k|∆αV∗|l〉〈c†

k cl〉 = ∑
k
〈k|∆αV∗|k〉

where in the first term in the last identity we have exchanged the index as needed. Summing

up all the contributions and introducing the conduction-band-projected variation |δφa〉 of the

occupied single particle state

|δφa〉 = ∑
t
|t〉 〈t|Vx − vx|a〉

εat ± iu
⇔ [HKS + γPυ − εa]|δφa〉 = −(1− Pυ)[Vx − vx]|φa〉 (A.21)

beside the variations already introduced in Eq. (A.16), we find the final result

〈δΦ0|∆αV∗|∆̃βΦ(+)
0 〉−〈Φ0|∆αV∗|Φ0〉〈δΦ0|∆̃βΦ(+)

0 〉

= + ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉
εat + εbs

〈t|∆αV∗|a〉 〈s|∆
βV|b〉

εbs + iu

+ ∑
a
〈δφa|∆αV∗|∆βφ

(+)
a 〉 −∑

ab
〈δφa|∆βφ

(+)
b 〉〈φb|∆αV∗|φa〉. (A.22)

For all the other terms like the one above similar expression can be found in the same way.

Final expression for hαβ
Hx.

Form Eq. (A.20) and Eq. (A.22) all the terms appearing in Eq. (A.6) can be derived carefully

playing with the frequency signs ± and with the indeces α and β of the perturbing potentials.
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Summing all the contribution lead to

hαβ
Hx = +

occ

∑
ab
〈∆αφ

(−)
a φb|W|∆βφ

(+)
b φa〉+

occ

∑
ab
〈∆αφ

(+)
a φb|W|∆βφ

(−)
b φa〉

−
occ

∑
ab
〈∆αφ

(−)
a φb|W|φa∆βφ

(+)
b 〉 −

occ

∑
ab
〈∆αφ

(+)
a φb|W|φa∆βφ

(−)
b 〉

+ ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉
εat + εbs

〈t|∆αV∗|a〉 〈s|∆
βV|b〉

εbs + iu

+ ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉
εat + εbs

〈t|∆αV∗|a〉 〈s|∆
βV|b〉

εbs − iu

+ ∑
abst

〈st|W|ab〉 − 〈st|W|ba〉
εat + εbs

〈a|∆βV|t〉 〈b|∆
αV∗|s〉

εbs − iu

+ ∑
abst

〈st|W|ab〉 − 〈st|W|ba〉
εat + εbs

〈a|∆βV|t〉 〈b|∆
αV∗|s〉

εbs + iu

+
occ

∑
a
〈∆αφ

(−)
a |Vx − vx|∆βφ

(+)
a 〉+

occ

∑
a
〈∆αφ

(+)
a |Vx − vx|∆βφ

(−)
a 〉

−
occ

∑
ab

[
〈∆αφ

(−)
a |∆βφ

(+)
b 〉+ 〈∆αφ

(+)
a |∆βφ

(−)
b 〉

]
〈φb|Vx − vx|φa〉

+
occ

∑
a
〈δφa|∆αV∗|∆βφ

(+)
a + ∆βφ

(−)
a 〉+

occ

∑
a
〈∆αφ

(+)
a + ∆αφ

(−)
a |∆βV|δφa〉

−
occ

∑
ab
〈δφa|∆βφ

(+)
b + ∆βφ

(−)
b 〉〈φb|∆αV∗|φa〉 −

occ

∑
ab
〈∆αφ

(−)
a + ∆αφ

(+)
a |δφb〉〈φb|∆βV|φa〉

(A.23)

Changing a ↔ b and t ↔ s in the 5th and 6th lines and exploiting the fact that for a real

Hamiltonian one can send (φa, φ∗t ) → (φ∗a , φt) and similarly (φb, φ∗s ) → (φ∗b , φs) as needed, we

find for the sum of 3th and 5th lines and for the 4th and 6th lines

3th + 5th = ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉 〈t|∆
αV∗|a〉

εat − iu
〈s|∆βV|b〉

εbs + iu

= ∑
ab
〈φb∆αφ

(+)
a |W|φa∆βφ

(+)
b 〉 −

occ

∑
ab
〈φbφa|W|∆βφ

(+)
b ∆α∗φ

(−)
a 〉

4th + 6th = ∑
abst

〈ba|W|ts〉 − 〈ab|W|ts〉 〈t|∆
αV∗|a〉

εat + iu
〈s|∆βV|b〉

εbs − iu

= ∑
ab
〈φb∆αφ

(−)
a |W|φa∆βφ

(−)
b 〉 −

occ

∑
ab
〈φbφa|W|∆βφ

(−)
b ∆α∗φ

(+)
a 〉.

(A.24)
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where we have introduced the variation |∆∗φ
(±)
a 〉 which is given by

|∆∗φ
(±)
a 〉 = ∑

t
|t〉 〈t|∆V∗|a〉

εat ± iu
⇔ [HKS + γPυ − (εa ± iu)]|∆∗φ

(±)
a 〉 = −(1− Pυ)∆V∗|φa〉

(A.25)

Replacing in the privious expression, changing the index a and b in the sums and exploiting

the simmetry of the Coulomb integral when r ↔ r′ as needed, we get the final result of the

derivation

hαβ
Hx = +

occ

∑
ab
〈∆αφ

(−)
a φb|W|∆βφ

(+)
b φa〉+

occ

∑
ab
〈∆αφ

(+)
a φb|W|∆βφ

(−)
b φa〉

+
occ

∑
ab
〈∆αφ

(−)
a φb|W|∆βφ

(−)
b φa〉+

occ

∑
ab
〈∆αφ

(+)
a φb|W|∆βφ

(+)
b φa〉

−
occ

∑
ab
〈∆αφ

(−)
a φb|W|φa∆βφ

(+)
b 〉 −

occ

∑
ab
〈∆αφ

(+)
a φb|W|φa∆βφ

(−)
b 〉

−
occ

∑
ab
〈φbφa|W|∆βφ

(+)
b ∆∗αφ

(−)
a 〉 −

occ

∑
ab
〈φbφa|W|∆βφ

(−)
b ∆∗αφ

(+)
a 〉

+
occ

∑
a
〈∆αφ

(−)
a |Vx − vx|∆βφ

(+)
a 〉+

occ

∑
a
〈∆αφ

(+)
a |Vx − vx|∆βφ

(−)
a 〉

−
occ

∑
ab

[
〈∆αφ

(−)
a |∆βφ

(+)
b 〉+ 〈∆αφ

(+)
a |∆βφ

(−)
b 〉

]
〈φb|Vx − vx|φa〉

+
occ

∑
a
〈δφa|∆αV∗|∆βφ

(+)
a + ∆βφ

(−)
a 〉+

occ

∑
a
〈∆αφ

(+)
a + ∆αφ

(−)
a |∆βV|δφa〉

−
occ

∑
ab
〈δφa|∆βφ

(+)
b + ∆βφ

(−)
b 〉〈φb|∆αV∗|φa〉 −

occ

∑
ab
〈∆αφ

(−)
a + ∆αφ

(+)
a |δφb〉〈φb|∆βV|φa〉.

(A.26)
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Appendix B
Iterative Diagonalization

Having in mind to use an efficient iterative technique for solving the eigenvalue problem in

Eq. (3.9), the matrix elements of hHx alone are not sufficient and we need also the action of the

operator on a generic vector, i.e. hHx|∆V〉, in order to compute correction vectors needed in

any iterative diagonalization technique. This implies we should be able to remove the poten-

tial ∆αV∗ everywhere in Eq. (3.25) so that we are left with the desidered quantity hHx|∆βV〉.
This can be easily done for the Hartree term (first two lines of Eq. (3.25)) and for some of

the exchange terms (first contributions in line 7 and 8 of Eq. (3.25)) which are already in the

appropriate form explicitely exposing the dependence on ∆αV∗. For all the other terms the de-

pendence ∆αV∗ is hidden inside the vectors |∆αφ
(±)
a 〉 and further manipulations are needed

to expose this dependence. To this end we can replace |∆αφ
(±)
a 〉 with its formal solution

|∆αφ
(±)
a 〉 =

vir

∑
t
|φt〉

〈φt|∆αV|φa〉
εat ± iu

(B.1)

easily derived form Eq. (3.26), where the sum runs over unoccupied states only because of

the presence of the projector over the unoccupied states manifold (1− Pv). This definition for

|∆αφ
(±)
a 〉 has to be inserted in every terms of Eq. (3.25) in which it appears. We show how the

derivation continues just for one of these terms, say the two contributions in line 3 of Eq. (3.25),

being essentially the same for all the other. Denoting these two particular contributions with
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B. Iterative Diagonalization

h̃αβ
x we have

h̃αβ
x = −

occ

∑
ab
〈∆αφ

(−)
a φb|W|φa∆βφ

(+)
b 〉 −

occ

∑
ab
〈∆αφ

(+)
a φb|W|φa∆βφ

(−)
b 〉

= + ∑
σ=±1

{
+ ∑

a
〈φa|∆αV∗|∑

t

|φt〉〈φt|
(εat + σiu)

[
−∑

b

∫
dr′φ∗b (r′)

e2

|r− r′|φa(r′)∆βφ
(σ)
b (r)

]
〉
}

= +
occ

∑
a
〈φa|∆αV∗|ψ(+)

β,a + ψ
(−)
β,a 〉 (B.2)

where the auxiliary vectors |ψ(±)
β,a 〉 solutions of the linear problem

[H0 + γPv − (εa ± iu)]|ψ(±)
β,a 〉 = −(1− Pv)|t(±)

β,a 〉

t(±)
β,a (r) = −∑

b

∫
dr′φ∗b (r′)

e2

|r− r′|φa(r′)∆βφ
(±)
b (r) (B.3)

have been introduced. The potential ∆αV∗ now appears expicitely in Eq. (B.2) and can be

removed leading to the desidered expression for the action of the operator h̃x on a generic

potential |∆βV〉:

h̃x|∆βV〉 =
occ

∑
a

φ∗a (r)[ψ(−)
β,a (r) + ψ

(+)
β,a (r)]. (B.4)

with ψ
(±)
β,a (r) difined by Eq. (B.3). Applying the same precedure to all the terms in Eq. (3.25)

that require it, leads to the final expression

δ∆βnx(r) = hx|∆βV〉 = +
occ

∑
a

φ∗a (r)[ψ(−)
β,a (r) + ψ

(+)
β,a (r)] +

occ

∑
a

[ψ̃(−)
β,a (r) + ψ̃

(+)
β,a (r)]∗φa(r)

+
occ

∑
a

δφ∗a (r)[∆βφ
(+)
a (r) + ∆βφ

(−)
a (r)]

−
occ

∑
ab
〈δφa|∆βφ

(+)
a + ∆βφ

(−)
a 〉φ∗b (r)φa(r) (B.5)

with ∆βφ
(±)
a (r), δφa(r), ψ

(±)
β,a (r) and ψ̃

(±)
β,a (r) solutions of the linear systems

[HKS + γPv − (εa ± iu)]|∆βφ
(±)
a 〉 = −(1− Pv)∆βV|φa〉

[HKS + γPv − εa]|δφa〉 = −(1− Pv)[Vx − υx]φa〉

[HKS + γPv − (εa ± iu)]|ψ(±)
β,a 〉 = −(1− Pv)|t(±)

β,a 〉

[HKS + γPv − (εa ± iu)]|ψ̃(±)
β,a 〉 = −(1− Pv)|t̃(±)

β,a 〉 (B.6)
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where the constant terms t(±)
β,a (r) and t̃(±)

β,a (r) in the linear sistem for ψ
(±)
β,a (r) and ψ̃

(±)
β,a (r) are

given by

t(±)
β,a (r) =−

occ

∑
b

∫
dr′φ∗b (r′)

e2

|r− r′|φa(r′)∆βφ
(±)
b (r)

−
occ

∑
b

∆βφ
(±)
b (r)〈φb|Vx − vx|φa〉 −

occ

∑
b

δφb(r)〈φb|∆βV|φa〉

+ [Vx − vx] |∆βφ
(±)
a (r)〉+ ∆βV(r)δφa(r);

t̃(±)
β,a (r) =−

occ

∑
b

∫
dr′
[
∆βφ

(±)
b (r′)

]∗ e2

|r− r′|φa(r′)φb(r). (B.7)

Finally the matrix elements of hx follows from Eq. (B.5) and are simply given by

hαβ
x = 〈∆αV|χ0 fxχ0|∆βV〉 =

∫
dr∆αV∗(r)δ∆βnx(r). (B.8)

Although a bit involved this approach clearly shows that matrix elements of hHx and its action

on a trial potential are simply given in terms of KS single particle wavefunctions φa(r) and its

variations ∆φ
(±)
a (r), δφa(r), ψ

(±)
a (r) and ψ̃

(±)
a (r), which can be efficiently computed resorting

to linear response technique of DFPT (Eq. (B.6)).

All the formula above are valid for a generic system. In the specific case of a periodic

system we can replace a → (k, v) and similarly b → (p, v′) and taking into account that

the perturbation ∆V has a wave-vector q and that the wavefunctions at different k-point are

orthogonal, Eq. (B.5) becomes

δ∆nq
x (r) = hq

x (iu)|∆V〉 = +
occ

∑
k,v

φ∗k,v(r)[ψ(−)
k+q,v(r) + ψ

(+)
k+q,v(r)]

+
occ

∑
k,v

[ψ̃(−)
k−q,v(r) + ψ̃

(+)
k−q,v(r)]∗φk,v(r)

+
occ

∑
k,v

δφ∗k,v(r)[∆φ
(+)
k+q(r) + ∆φ

(−)
k+q(r)]

−
occ

∑
k,v,v′

〈δφk+q,v|∆φ
(+)
k+q,v′ + ∆φ

(−)
k+q,v′〉φ

∗
k,v′(r)φk+q,v(r). (B.9)

In the second line the variations ψ̃(±)(r) have a wave-vector k− q and are the solution of the

linear problem

[HKS(r) + γPk−q
v − (εk,v ± iu)]|ψ̃(±)

k−q,v〉 = −(1− Pk−q
v )|t̃(±)

k−q,v〉 (B.10)

which require, in principle, the knowledge of the projector and hence of the unperturbed

wavefunctions at wave-vector k − q. However one can change the index in the sum in the
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B. Iterative Diagonalization

second line of Eq. (B.9) sending k → k + q, and then rename it as k under the assumption

of an infinite dense grid of k and q points, leading to an equivalent expression for the second

line
occ

∑
k,v

[ψ̃(−)
k−q,v(r) + ψ̃

(+)
k−q,v(r)]∗φk,v(r) =

occ

∑
k,v

[ψ̃(−)
k,v (r) + ψ̃

(+)
k,v (r)]∗φk+q,v(r) (B.11)

where now the linear problems for ψ̃
(±)
k,v (r)

[HKS(r) + γPk
v − (εk+q,v ± iu)]|ψ̃(±)

k,v 〉 = −(1− Pk
v )|t̃(±)

k,v 〉, (B.12)

do not contain anymore the unknown unperturbed wavefunctions φk−q,v(r).

Compared to the RPA implementation based on the dielectric function diagonalization,

where the basic operation is the calculation of the non-interacting response to a trial potential,

i.e. the density variation ∆n(r) = χ0|∆V〉 = ∑a φ∗a (r)[∆φ
(−)
a (r) + ∆φ

(+)
a (r)], the additional

operations required in our implemetation are the solutions of the linear sistems for δφa(r),

ψ
(±)
a (r) and ψ̃

(±)
a (r). While the former does not depend on trial perturbing potentials, the lat-

ters have to be solved for each ∆V and its computational cost is comparable to the one needed

for computing ∆φ
(±)
a (r). We therefore expect that the workload increase passing from RPA to

RPAx correlation energy calculation should be restrained and accounted for by a multiplica-

tive prefactor in front of the RPA computational cost estimated to be 4− 5.
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