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Abstract

Two of the most prominent challenges of Modern Cosmology are the recent
late-time accelerated expansion of the Universe and Dark Matter (DM).

DM is of fundamental importance in the process of structure formation at
galactic, extragalactic and cosmic scales. It seems to dominate down to small
galactocentric radii, as highlighted by the galaxies rotation curves and on cosmic
scale, it is well known that the spatial distribution of galaxies is biased with
respect to the underlying DM distribution. This relation is called “bias”. Part
of this thesis is devoted to the investigation of the DM issue. In particular,
we study the DM density profile in the Orion dwarf galaxy. This galaxy is a
good candidate to understand the physics of DM as in general, the kinematics
of dwarf galaxies is dominated by this dark component. Moreover, due to the
availability of high precision data, it becomes crucial to understand accurately
the bias relation, so we elaborate on the Lagrangian bias, when the initial mass
fluctuation field is considered Gaussian and the bias is local.

It is well known that the ΛCDM has been very successful in accounting for
current cosmological data, although it suffers from some outstanding problems,
such as the small value of Λ, DM problems on small scales, early Universe
shortcomings and the lack of a correct scheme to quantize General Relativity.
These lead people to propose and investigate alternative models, which are based
on deviations from General Relativity at cosmic scales. The bulk of the present
thesis is devoted to the study of gravity theories, which consider an extra scalar
degree of freedom (DoF), in order to modify the gravitational interaction at large
scales and account for the late time acceleration. In particular, we develop the
gradient expansion formalism in order to explore the phenomenology associated
with the non-linear derivative interactions of the most general scalar tensor
theories that lead to second order field equations. This approach is very useful
to probe on super horizon scale the Inflation scenario. Finally, in the quest
of a model independent parametrization for gravity theories, the effective field
theory formalism has been applied to the phenomenon of cosmic acceleration. It
is developed using a perturbative approach in which an extra scalar DoF appears
only at the level of perturbations. We investigate the viability of background
functions by means of a thorough dynamical analysis. In conclusion, we present
the implementation of this framework into CAMB/CosmoMC creating, what
we dubbed, EFTCAMB/EFTCosmoMC. These codes will allow to test gravity
theories with the most recent data releases.

v



vi ABSTRACT



Collaborations

This thesis is the result of the research done during my four years of Ph.D.
and of collaborations with T. P. Sotiriou, R. K. Sheth, P. Salucci, A. Silvestri,
J. M. Cannon, E. C. Elson, B. Hu, S.Y. Zhou, M. Raveri and D. Vernieri. The
bulk of the present work is based on the following papers published in refereed
Journals:

1. Marco Raveri, Bin Hu, Noemi Frusciante, Alessandra Silvestri,
“Effective Field Theory of Cosmic Acceleration: constraining dark energy
with CMB data”,
PRD 90 (2014) 043513 [arXiv:1405.1022 [astro-ph.CO]].

2. Bin Hu, Marco Raveri, Noemi Frusciante, Alessandra Silvestri,
“Effective Field Theory of Cosmic Acceleration: an implementation in
CAMB”,
PRD 89 (2014) 103530 [arXiv:1312.5742 [astro-ph.CO]].

3. Noemi Frusciante, Marco Raveri, Alessandra Silvestri,
“Effective Field Theory of Dark Energy: a Dynamical Analysis”,
JCAP 1402, 026 (2014) [arXiv:1310.6026 [astro-ph.CO]].

4. Noemi Frusciante, Shuang-Yong Zhou, Thomas P. Sotiriou,
“Gradient expansion of superhorizon perturbations in G-inflation”,
JCAP 07, 020, (2013) [arXiv:1303.6628 [astro-ph.CO]].

5. Noemi Frusciante & Ravi K. Sheth,
“Lagrangian bias in the local bias model”,
JCAP 1211 (2012) 016, [arXiv:1208.0229v1 [astro-ph.CO]].

6. Noemi Frusciante, Paolo Salucci, Daniele Vernieri, Jhon. M. Cannon, Ed
C. Elson,
“The Distribution of Mass in the Orion Dwarf Galaxy”,
MNRAS 426, 1, 751-757 (2012) [arXiv:1206.0314v1 [astro-ph.CO]].

Supplementary material includes:

• EFTCAMB/EFTCosmoMC package available at http://www.lorentz.

leidenuniv.nl/~hu/codes/

• Bin Hu, Marco Raveri, Noemi Frusciante, Alessandra Silvestri
“EFTCAMB/EFTCosmoMC: Numerical Notes v1.0”,
arXiv:1405.3590 [astro-ph.IM], (2014).

vii

http://www.lorentz.leidenuniv.nl/~hu/codes/
http://www.lorentz.leidenuniv.nl/~hu/codes/


viii COLLABORATIONS



Notation

Here, we provide a brief guide to the notation and a list of acronyms.

c = 1 the speed of light is set to be equal to one;
G Newtonian Gravitational Constant;
m0 Planck mass;
(−,+,+,+) metric signature;
i, j, k... 3D spatial indices in vectors and tensors;
µ, ν, γ... 4D indices in vectors and tensors;
gµν metric tensor;
g determinant of the metric tensor gµν
τ conformal time;
t cosmic time;
H Hubble parameter in conformal time;
H Hubble parameter in cosmic time H = H/a;
Rµν , R Ricci tensor and its trace;
Tµν , T Stress energy tensor and its trace;
Gµν Einstein Tensor (Gµν = Rµν − 1/2gµνR);
φ Scalar field;
χm Matter fields;
Sm Matter action of all matter fields, χm;
∇µ Covariant derivative;
∇̄ Spatial covariant derivative;
Λ Cosmological Constant;
δ Perturbative density field (δ = ρ/ρ− 1).
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Acronyms

ΛCDM Λ Cold Dark Matter;
CC Cosmological Constant Λ;
DM Dark Matter;
GR General Relativity;

FLRW Friedmann-Lemâitre-Robertson-Walker metric;
DE Dark Energy;
MG Modified Gravitational Theory;
LSS Large Scale structure;
WMAP Wilkinson Microwave Anisotropy Probe;
SDSS Sloan Digital Sky Survey;
2dF Two-degree-Field Galaxy Redshift Survey;
C.L. Confidence Limits;
CMB Cosmic Microwaves Background radiation;
BBN Big Bang Nucleosynthesis;
EFT Effective Field Theory for cosmic acceleration;
CAMB Code for Anisotropies in the Microwave Background;
CosmoMC Cosmological Monte Carlo code;
MGCAMB Modification of Growth with CAMB;
WP WMAP low-` polarization spectra;
RC Rotation Curve;
DoF Degree of Freedom;
l.h.s Left hand side;
r.h.s. Right hand side;
w.r.t. With respect to.
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Chapter 1

General Relativity

In 1915, Albert Einstein published the Theory of General Relativity (hereafter
GR) in the Annalen der Physik, proposing to the academic world a new way
to look at gravity: the gravitational field has to be thought of as geometrically
related to the structure of space-time. The effect of the presence of a gravita-
tional field directly translates into a curvature of the latter, which is dynamical
described by a single geometrical quantity, the metric tensor gµν . The mathe-
matical language used to formulate the theory is that of differential geometry,
a novelty in the field of physics. The resulting equations, known as Einstein’s
Equations are a set of partial differential equations, and are still the current
description of gravity.

The first observational verification of the theory came only in 1919 by Ed-
dington [1], who observed the bending of starlight by the Sun during a total
solar eclipse. According to GR, the light of stars, passing near the Sun would
be deflected by its gravitational field, and as a result the stars would occupy
a position in the sky different than the actual one. This phenomenon can be
verified only during a solar eclipse, as one can take pictures of the stars when
the Sun is obscured. Eddington confirmed the GR expected value of 1.75 arcsec,
which is twice the value predicted by the newtonian theory.

GR was soon proved to be the best mathematical description of physical
phenomena involving the gravitational field. It has been tested on Solar System
scales, where it describes the planetary orbits, including the anomaly in the or-
bit of Mercury. Further support to GR came from observations of distant binary
millisecond pulsars [2]. First solutions to Einstein’s Equations were found de-
scribing objects such as stars and black holes [3, 4, 5, 6] and, more generally, the
collapse of spherical objects [7]. On cosmic scales, the theory allows to describe
the Universe as a whole. This began what we know as Modern Cosmology, with
several cosmological models proposed and tested.

This Chapter will provide a short introduction to the framework of GR. In
Section 1.1, we briefly review the steps that led to the formulation of Einstein’s
Equations and the action from which they can be derived. Finally in Section 1.2,
we shall comment on the uniqueness of the field equations and the action of GR.

3



4 CHAPTER 1. GENERAL RELATIVITY

1.1 Einstein−Hilbert Action and Field Equations

The equations of the gravitational field have been postulated by Einstein follow-
ing some requirements in order to be considered viable. Locally a free-falling ob-
server and an inertial observer are indistinguishable. This practically translates
into the equivalence between the gravitational and the inertial mass (Equiva-
lence Principle); a preferred system of reference does not exist, so the equations
describing a physical phenomenon have the same form in all reference frames
(Principle of Relativity); hence, the field equations should transform covariantly
according to the Principle of General Covariance; they have to be of second or-
der in the metric to avoid the Ostrogradski’s instabilities 1 [8]; finally, in the
weak field limit they have to recover the well known newtonian results. From an
observational point of view the equations predictions must fit the observations.
In the following we will illustrate how all these criteria come into play.

GR is constructed on a 4-dimensional manifold, called pseudo-Riemanian
manifold, where the Levi-Civita connection Γλµν is used to define the covari-
ant derivative ∇µ. The connection can be seen as describing the presence of
gravitational forces or in absence of gravitational interactions, moving from an
inertial frame to a non-inertial one, it provides the pseudo-forces. This shows
the perfect equivalence between the inertial forces and the gravitational ones,
accounting for the Equivalence Principle.
One important property of the Riemanian manifold is the contracted Bianchi
identity, i.e.

∇µGµν = 0, (1.1)

where Gµν is the Einstein Tensor. It is defined as

Gµν = Rµν −
1

2
gµνR, (1.2)

where gµν is the metric tensor, Rµν is the Ricci tensor and R is its trace. Then
the relation (1.1) translates into four constraints on Rµν .

After some unsuccessful proposals, finally Einstein postulated that the equa-
tions of the gravitational field, known as Einstein’s Equations, should be

Gµν =
κ

2
Tµν , (1.3)

where κ = 1/16πG, G is Newtonian’s constant and Tµν is the stress-energy
tensor, which accounts for the matter content. The contracted Bianchi identity
implies a conservation equation for the stress-energy tensor, so one gets

∇µTµν = 0. (1.4)

Einstein’s Equations (1.3) are a set of 10 second order PDEs for the 10 com-
ponents of the metric, which split into 4 constraints and 6 evolution equations.

1 Let us consider a Lagrangian constructed with higher than one order derivatives, in such
a way it is non degenerate, i.e. higher order derivatives can not be eliminated by subse-
quent integrations by part. Then, the corresponding field equations will be of higher order.
Ostrogradski showed that such a Lagrangian leads to an Hamiltonian which is linear in the
canonical momenta. Therefore, the system can not be stable.
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They translate in mathematical form the relation between the geometrical de-
scription of space-time in the left hand side (l.h.s.) and the gravitational matter
sector in the right hand side (r.h.s.).

Finally, it can be shown that they reproduce the weak field limit results. In
fact, assuming a metric of the form

gµν = diag(−1 + h00, 1, 1, 1), h00 << 1 (1.5)

where h00 is a small perturbation on a flat background, we find

∇2h00 = −κ
2
T00, (1.6)

which is a generalization of the Poisson Equation, as h00 can be identified with
the Newtonian potential φN .

Einstein’s Equations can be rigorously derived from a variational principle.
Hilbert and Einstein derived separately the equations for the gravitational field
by varying the following action with respect to the metric

S =
1

κ

∫
d4x
√
−gR+ Sm[gµν , χm], (1.7)

where g is the determinant of the metric tensor gµν . The first term in the r.h.s.
is the Einstein-Hilbert action, while Sm is the action of all the matter fields, χm.
The matter sector is minimally coupled to gravity to account for the Equivalence
Principle. The variation of the action with respect to (w.r.t.) the metric leads
to the field Eqs. (1.3), where the stress-energy tensor has been defined as

Tµν = − 2√
−g

δSm
δgµν

. (1.8)

By construction it can be inferred that Tµν is a symmetric tensor. Moreover,
because of the validity of the Equivalence Principle, the stress energy tensor is
conserved, ensuring that test particles follow geodesics.

1.2 On the Uniqueness of General Relativity Ac-
tion

In the previous Section, we have historically traced back the steps that led to
the formulation of the gravitational field equations and the derivation of the
equations from a variational principle. A simple question now arises: Are the
Einstein field equations and the Einstein-Hilbert action unique and under which
assumptions?

In order to construct the Einstein’s Equations, which are of the form

Bµν =
κ

2
Tµν , (1.9)

the following criteria on the tensor Bµν need to be verified

1. constructed only with the metric tensor and its derivatives up to second
order, i.e.

Bµν(gµν , gµν,ρ, gµν,ρλ) ; (1.10)
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2. divergence free: ∇νBµν ;

3. symmetric: Bµν = Bνµ;

4. linear in gµν,ρλ.

Let us note that the 2nd and 3rd assumptions are requested because the l.h.s.
of the field equations has to be consistent with the r.h.s., and we know the stress
energy tensor satisfies these conditions.

In Refs. [9, 10, 11], it has been proved that the only tensor satisfying the
above requirements in 4-dimensions is

Bµν = ηGµν − λgµν , (1.11)

where η and λ are two constants. The above tensor gives rise to be the Einstein’s
Equations (1.3) with a zero matter tensor, plus eventually a constant term.
Actually, this additional term plays is an important role in the cosmological
framework to account for observational data.

Generalization of Bµν came by Lovelock in 1971 [12, 13]. He relaxed the last
assumption, including also non-linear terms in the second derivative of the met-
ric. Moreover, he showed explicitly that the form of Bµν could be generalized in
n-dimensions. In particular, in Ref. [12], Lovelock proved that in 4-dimensions
the general expression reduces to (1.11) and that the 3rd and 4th assumptions
were redundant as implied by the first two. The corresponding general La-
grangian density L(gµν ; gµν,α; gµν,α,β) constructed only with the metric tensor
and its derivatives (up to second order) is of the form

L =
√
−g (ηR− 2λ)+γεµναβRρσµνRρσαβ+ξ

√
−g(R2−4RµνR

ν
µ+RαβµνR

µν
αβ),

(1.12)
where γ, ξ are other two constants and εµναβ is the Levi Civita tensor. Let us
note that the 3rd and 4th terms in the above expression do not contribute to
the field equations as they are boundary terms.

In Conclusion, according to the criteria (1)-(2), as they are the only necessary
assumptions in 4-dimensions, the Einstein’s Equations and the Einstein-Hilbert
action are respectively the most general equations and action in 4-dimensions
for the gravitational field.

The Lovelock’s results are of fundamental importance when constructing
theories of gravity which differ in the field equations from those of General Rel-
ativity (see Refs. [14, 15] for a general review). In order to include modifications
in the gravity sector one has to consider one of the following options:

• include more fields beyond or rather than the metric tensor;

• allow for higher order field equations;

• allow for higher then 4-dimensions;

• break diffeomorphism invariance.
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In this thesis, we will focus on modifications of GR which come from the
first two points. In particular, we will consider theories which include one extra
scalar field in the action and models described by dynamical 4th order field
equations. The reason for not considering the other two points is the following.
Higher dimensional theories have an effective description in 4-dimensions that is
sufficient to describe low energy phenomena. Usually, diffeomorphism invariance
can be restored via the Stückelberg technique [16], which actually introduces an
extra field, bringing us back to the first point. In Part III, we will extensively
comment on that points.
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Chapter 2

The Cosmological Standard
Model

Over the centuries, the description of the Universe was purely philosophical,
related to religious and political ideas or pure speculations. The first attempt
in constructing a “cosmological” model has to be traced back in ancient Greece.
Ptolemy (II century) proposed the geocentric model for the Solar System, which
assigns a central position to the Earth while assuming that planets and the Sun
orbit around it. This model was purely based on observations of the apparent
motion of stars in the sky and on the assumption that stars were at the same
distance from the Earth. Ptolemy was also the first to make a star catalog that
included 1022 stars, grouped into 48 constellations. The geocentric model was
already present in many cultures, due to Aristotle’s speculations, although no
one before Ptolemy, had formalized the details of it.

It was in the early XVI, that the scientific approach began to make his
way. In those years, the geocentric model has been questioned by Nicolaus
Copernicus, who described in his “De revolutionibus orbium coelestium” an
heliocentric model, in which the Sun occupies the central position. Subsequently,
this idea was verified by Galileo Galilei, through astronomical observations.
Finally in the XVII century, the present conception of the Solar System was
pointed out by Johannes Kepler, who described in a mathematical language
the physical properties of bodies (plantes) orbiting around a central star (the
Sun). Kepler’s work laid the foundations for Isaac Newton’s intuition on the
gravitation law that regulates the force between massive bodies.

It is in the early XX, that GR changed radically the way to approach the
study of the Universe, the system par excellence dominated by gravitational in-
teraction, and its substructures as clusters, galaxies, compact objects and stars.
The whole Universe had started to be considered as a physical-mathematical
system described through a set of equations, whose solutions provide us with
important information about the geometry and the evolution of the Universe
and its matter content. Thanks to the availability of more advanced surveys
over the years, it has been possible to test the predictions of a theory using
cosmological observations to ensure that “real world” behaves as predicted by
a model. In this sense, the 1915 can be considered as the year of the birth of

9
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the Modern Cosmology.

Since the publication of Einstein’s theory, there were many solutions pro-
posed to describe the evolution of the Universe. Let us recall the solution of a
static Universe proposed by Einstein in 1917, the one describing an expanding
empty Universe by de Sitter and that of an empty flat Universe by Minkowski.
After the discovery of the recession of galaxies by Hubble (1929) [17], cosmol-
ogists have proposed models of an expanding Universe, whose matter content
was not negligible. Over the years, the model that has been most successful is
the result of the works by Friedmann, Lemâitre, Robertson and Walker. They
have proposed cosmological solutions based on the assumption that the Uni-
verse is homogeneous and isotropic on a large enough scale. This axiom, known
as the Cosmological Principle, at that time was a real gamble, since there are
no observational data to confirm these assumptions. In 1965, Penzias and Wil-
son discovered the Cosmic Microwaves Background radiation (CMB) giving an
experimental confirmation of the Cosmological Principle.

A viable cosmological model has to account for the observational evidence.
In particular, recent cosmological observations confirm that the Universe is un-
dergoing a phase of accelerated expansion [18, 19]. The CMB together with
the measurement of the abundance of the primordial elements produced dur-
ing the Big Bang Nucleosynthesis (BBN), suggest the existence of a unknown
component of non-baryonic matter, called Dark Matter (DM). Although DM
particles are still far from being directly detected, they represent the 26.8%
of the total energy content in the Universe, being only 4.9% the contribute of
ordinary (baryonic) matter [20, 21]. Finally, every model has to make clear pre-
dictions to account for the distribution of large-scale structure which has been
mapped by sky surveys, such as the Sloan Digital Sky Survey (SDSS) [22] and
the Two-degree-Field Galaxy Redshift Survey (2dF) [23].

The Standard Cosmological Model or Λ Cold Dark Matter (ΛCDM) model,
is the most widely used model to describe the dynamics and evolution of the
Universe and that best fits the observational data. It is based on the Theory of
General Relativity and the Cosmological Principle to describe on cosmic scales
the gravitational field. It accounts for the cosmological observations related to
the cosmic acceleration and DM. In fact, the ΛCDM model includes in the Ein-
stein’s Equations a cosmological constant term (CC called Λ) which behaves like
a dark fluid with negative pressure that at late times gives rise to the observed
accelerated expansion; it also includes a DM component with negligible pressure
which moves slowly compared to the speed of light, hence the name cold. This
particle is necessary to account for the required matter density component in
the total energy-density budget of the Universe and for the observed large scale
structure distribution.

This Chapter is organized as follows. In Section 2.1 we discuss the Cosmo-
logical Principle and in Section 2.1.1 we present the homogeneous and isotopic
metric. In Section 2.2 we discuss the tensorial form of the stress energy ten-
sor and in Section 2.3, we discuss the cosmological solutions to the Einstein’s
Equations, including also the CC term. In Section 2.4, we present in detail the
observational evidence in support of the ΛCDM model and we provide the best
fit parameter estimations for that model. Finally, in Section 2.5 we recap the
historical introduction of the CC.
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2.1 The Cosmological Principle

The Cosmological Principle extends on a cosmic scale the Copernican Principle,
assuming that the Universe is homogeneous and isotropic on a large enough
scale. The isotropy states that looking at the Universe from a position, such
as the Earth, there are no preferred directions. The homogeneity ensures that
on average over large distances, the Universe will look like the same for any
observer at any point. These two conditions translate in saying that on cosmic
scale the force governing the physical phenomena acts in a uniform manner.
This clearly implies that inhomogeneity appears only on small distances.

The Cosmological Principle has been implicitly considered since 1915 in order
to find cosmological solutions to the Einstein equations. It was in 1932 that
Edward Milne [24] formulated the principle as we know it under the name
“the extended principle of relativity”, although in his work, he was very careful
in defining it as an axiom, being a concept related more to a philosophical
idea and to the perception (or extrapolation of local results) that the scientific
community had about Universe rather than on observational evidence. In 1915,
the idea of large-scale matter distribution was limited to the distribution of
stars in the Milky Way and the assumption of isotropy was very risky and hasty
at that time because of the missing data on galaxy redshifts in the Southern
Hemisphere. However, the lack of real observational data, did not stop physicists
from adopting the Cosmological Principle and attempting to find solutions that
satisfy it.

Between the 20s and 30s, Friedmann, Lemâitre, Robertson and Walker inde-
pendently proposed an ansätz for the metric gµν in agreement with the Cosmo-
logical Principle to be used in the Einstein’s Equations. This metric is still used
today and remains the best way to parametrize the evolution of the Universe.
Since then, many cosmological models have been proposed, based on that met-
ric. In Section (2.3) we will present in detail cosmological solutions that are of
interest for the standard cosmological model.

Nowadays, sky surveys provide maps of structures in the Universe, showing
they are organized in galaxy groups, galaxy clusters, superclusters, walls and
filament, separated by large voids, creating a sponge-like structure called the
“Cosmic Web”. These structures are clearly visible in the maps obtained with
data by the SDSS [22] and the 2dF [23]. On large scales ≈ 100 Mpc, the
maps show that the matter in the Universe can be considered homogeneously
distributed. Inhomogeneities appear only when considering portions of Universe
of size smaller then that. The CMB, which fills the entire Universe with a present
day temperature of 2.725K, offered the first real evidence for isotropy, which
implies also the homogeneity. It has been observed that the CMB is isotropic to
roughly one part in 100.000. In Conclusion, the large scale matter distribution
and CMB data are strong observational evidence in support of the Cosmological
Principle.

2.1.1 The Friedmann-Lemâitre-Robertson-Walker metric

As stated in the first Chapter, the Universe can be described through a ge-
ometrical quantity, the metric gµν(t, xi) as function of the time t and spatial
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coordinates xi. Making use of purely geometric considerations, it is possible to
derive an appropriate form for the metric that describes an homogeneous and
isotropic Universe, according to the Cosmological Principle.

Let us write the general form for the line element

ds2 = gµνdx
µdxν = −g̃00dt

2 + 2g0idtdx
i + gijdx

idxj , (2.1)

where g̃00 is the time-time component of the metric, g0i is the off-diagonal time-
space component, while gij is the space-space component and it is positively
defined. In 4-dimensions i runs on the three spatial indices. Without loss of
generality, we can choose a frame comoving with the observer. In this comoving
frame, the time coordinate can be fixed such that g̃00 = 1, as clocks are carried
by the observer. Moreover, in order to avoid preferred directions in space,
introduced by the time-space components of the metric, we require that g0i = 0.
Then, we are left with

ds2 = −dt2 + gijd
idxj = −dt2 + dl2, (2.2)

where dl2 is the 3-metric line element. Isotropy implies the spherical sym-
metry for gij , resulting in dl2 = a(t)2(f(r)dr2 + dΩ2), where dΩ2 = r2dθ2 +
r2sin2(θ)dϕ2 is the solid angle and r is the comoving radial coordinate; while
the homogeneity assumption fixes the function f(r) = (1 − kr2)−1/2, as the
3-space Ricci scalar for the above metric is a constant. Finally, we get the well
known Friedmann-Lemâitre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2dθ2 + r2sin2(θ)dϕ2

]
, (2.3)

where k is a constant representing the curvature of the space, it can assume the
values {−1, 0, 1} (after a suitable rescaling of the radial coordinate) correspond-
ing to an Universe respectively hyperspherical, spatially flat and hyperbolic.
The function a(t) is called the scale factor.

Before concluding, a remarkable consequence of the Cosmological Principle
and of the FLRW metric is the following. Considering two galaxies, their dis-
tances can be written as l12 = a(t)x12, where x12 is constant in time, while
it depends on the comoving distance between two galaxies. The same is true
for another couple of galaxies, then l34 = a(t)x34 and so forth. Assuming that
the distance l12 changes by a small amount in a finite time interval, also the
distance between the others galaxies will change by the same amount. There-
fore, the geometry of the Universe is fully specified only through the unknown
function a(t). Moreover, if v is the recession velocity of two galaxies, we have

l̇ ≡ v = l

(
ȧ

a

)
= l H(t), (2.4)

where overdot stands for derivatives w.r.t. the time coordinate and

H(t) ≡ ȧ(t)

a(t)
(2.5)

is the Hubble parameter. Evaluating the above relation at present time, we
have

v = lH0, (2.6)
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where H0 is usually known as the Hubble constant and is the value of the Hubble
parameter today. A recent estimate of this parameter was made by the Planck
team, whose best fit value is H0 = 67.3±1.2 km/s/Mpc at 68% confidence limits
(hereafter C.L.). It is obtained combining the Planck temperature data with
the WMAP 1 polarization at low multipoles [21]. The relation (2.6) is known
as the Hubble law. It states that any given galaxy should recede from us at a
speed proportional to its distance. This would mean that the recession velocity
is increasing over time as the galaxy moves to greater and greater distances.
Observational evidence of the recession of the galaxies has been obtained mea-
suring the distance as function of the redshift of standard indicators, such as
the Supernovae Ia and the Chepheids [26, 27]. The Hubble law gives rise also
to implications in the past. According to it, the galaxies at a certain time t in
the early Universe, would have been very close to one another, supporting the
Big Bang theory.

2.2 The Stress Energy Tensor

In order to solve the Einstein’s Equations, we need to define an appropriate form
for the stress energy tensor Tµν . The stress energy tensor is a symmetric tensor
(Tµν = Tνµ) by definition as it is constructed by varying the matter action w.r.t.
a symmetric tensor gµν ; it is a covariant tensor according to the Principle of
General Covariance and from the validity of the Equivalence Principle follows

∇µTµν = 0. (2.7)

Let us note that the conservation equation is also implied by the diffeomorphism
invariance of Sm with the assumption that the matter fields satisfy their field
equations. The relation (2.7) provides a sets of conserved equations which holds
separately for all the matter species (if they are not coupled).

Usually, the stress-energy tensor is assumed to be described by a perfect
fluid

Tµν = (ρi + pi)uµuν + pigµν , (2.8)

where pi and ρi are the pressure and density of the i-th matter fluid components
and uµ is the four-velocity.

According to the Cosmological Principle, the structures that make up the
Universe can be considered statistically homogeneous distributed on large scale
(∼ 100 Mpc). Then as first approximation, the distribution of matter, can be
considered homogeneous as well, meaning that the pressure and the density of
the fluids are only time dependent. Observed inhomogeneities are treated as
small deviations from an homogeneous background and can be studied with
a perturbative approach (see Ref. [28] and references therein). Then, let us
consider an inertial frame, comoving with the fluid, and the FLRW metric
(Eq. (2.3)), we have

gµνu
µuν = −1, (2.9)

with uk = 0 for the spatial coordinates. Then the four velocity has components

uµ = (1, 0, 0, 0) . (2.10)

1Wilkinson Microwave Anisotropy Probe (WMAP) [25].
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It is straightforward to calculate the stress energy tensor components, which
result in

Tµν =


−ρi(t) 0 0 0

0 pi(t) 0 0
0 0 pi(t) 0
0 0 0 pi(t)

 ,

and for the trace we get
T = 3pi(t)− ρi(t). (2.11)

We can now easily compute the conservation equation for the stress energy
tensor (Eq. (2.7)), which holds separately for all the matter fluids (if they are
not interacting) and it gives

ρ̇i(t) + 3H(t) [ρi(t) + pi(t)] = 0. (2.12)

2.3 Cosmological solutions to the ΛCDM model

The ΛCDM model is based on the theory of General Relativity and on the
following field equations:

Gµν + Λgµν =
κ

2
Tµν , (2.13)

where Λ is a constant, called Cosmological Constant (hereafter CC).
These equations differ from the ones of GR because of the additional CC term.
Actually this term is expected in the general formulation of the gravitational
field equations as shown by Lovelock (see Section 1.2).

Cosmological solutions can be obtained considering the FLRW metric (Eq.
(2.3)) and for the stress energy tensor a perfect fluid form (Eq. (2.8)). Then,
we get the well known Friedmann equations(

ȧ

a

)2

+
k

a2
− Λ

3
=

8πG

3
ρ, (2.14)

ä

a
− Λ

3
= −4πG

3
(ρ+ 3p), (2.15)

where ρ(t) =
∑
ρi(t) and p(t) =

∑
pi(t), the sum is over all the matter species.

Note that we suppressed the time dependence for a(t), ρ(t) and p(t) to simplify
the notation. The system of Eqs. (2.12)-(2.14)-(2.15) is not enough to describe
the evolution of the Universe since Eq. (2.14) and Eq. (2.15) are not independent
equations. Then, we are left with two independent equations and three unknown
functions a(t), p(t) and ρ(t). In order to close the system we can specify an
equation of state for the fluid components in order to relate the density and the
pressure of the fluids. A further assumption is to consider a barotropic equation
of state of the following form

pi(t) = wi(t)ρi(t), (2.16)

where wi is the adiabatic index (=c2s/c
2, where cs is the sound speed of the

fluid) and it depends on the matter species i. The Eq. (2.12) reads

ρ̇i = −3H(1 + wi)ρi. (2.17)
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If wi is a constant the above equation can be integrated and we get

ρi
ρi,0

=

(
a

a0

)3(1+wi)

, (2.18)

where a0 and ρi,0 are respectively the values of the scale factor and the density
of the i-th fluid component at present time. The normalization is chosen such
that a0 = 1. Eq. (2.18) clearly shows that depending on the matter species, the
density and hence the pressure will have a different scaling behavior with the
scale factor, a(t).

Before moving on, we want to show that moving the CC to the r.h.s. of
Eqs. (2.14)-(2.15), it can be read as a “matter” component and then recast in
a fluid form. The density for the CC is

ρΛ =
Λ

8πG
, (2.19)

then its pressure obeys an equation of state defined by wΛ = −1, resulting in
pΛ(t) = −ρΛ(t). Hence, the CC has a non-dynamical equation of state, with
a constant energy density, Eq. (2.19) and a negative pressure which acts as a
repulsive force.

Now, let us define the density parameter of the i-th component, as follows

Ωi(t) ≡
ρi(t)

ρc(t)
=

8πGρi(t)

3H(t)2
, (2.20)

where ρc(t) is the critical density defined via Eq. (2.14), neglecting Λ and the
spatial curvature (k). The value of the critical density at present time is

ρc,0 =
3H2

0

8πG
= 1.88h2 10−29 g cm−3, (2.21)

where h = H0/100 kms−1Mpc−1.
Following the same line, we can also define a quantity to parametrizes the de-
viations from spatial flatness, such as

Ωk ≡ −
k

ρc(t)
. (2.22)

Then the Eq. (2.14) can be written as

Ωm(t) + ΩΛ(t) + Ωk(t) = 1, (2.23)

where Ωm(t), ΩΛ(t) are respectively the density of the matter component (bary-
onic and DM, including massive neutrinos) and the CC. As they are time de-
pendent functions, it is clear that their values change over the eras, so we do
not expect their relative abundances to be fixed. Best fit values of the density
parameters, evaluated at present time, were recently determined by the Planck
Collaboration [21]

ΩΛ,0 = 0.685+0.018
−0.016 (68%C.L.), Ωm,0 = 0.315+0.016

−0.018 (68%C.L.),

(2.24)
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Ωk,0 = −0.037+0.043
−0.049 (95%C.L.). (2.25)

They are obtained combining the Planck temperature data with WMAP polar-
ization at low multipoles. In what follows we will consider Ωk,0 = 0. That is a
good assumption as Ωk,0 ∼ 0 with an accuracy better than a percent [21].

Finally, we want to present the main solutions to the Friedman Eqs. (2.14)-
(2.15) for the main transition eras, each of them characterized by a different
behavior of the scale factor. In particular we will analyze three eras:

• Radiation dominated era (RDE): At early time the Universe has been
dominated by relativistic particles whose barotropic coefficient is wr =
1/3. The solution to the Friedmann equations is

a

a0
=

(
t

t0

) 1
2

, ρr = ρr,0a
−4, H =

1

2t
, (2.26)

where ρr,0 is the present value of the radiation energy density. In the
ΛCDM models there are two relativistic particles: neutrinos and photons.

• Matter dominated era (MDE): Matter components are pressureless fluids
with a corresponding equation of state with wm = 0. The solution to the
Friedmann equations is

a

a0
=

(
t

t0

) 2
3

, ρm = ρm,0a
−3, H =

2

3t
, (2.27)

where as before ρm,0 is the matter density today. In the ΛCDM scenario
two matter components are considered: the baryons (b) and the cold dark
matter particles (cdm), respectively with density parameters

Ωb,0h
2 = 0.02205± 0.00028 (68%C.L.),

Ωcdm,0h
2 = 0.1199± 0.0027 (68%C.L.). (2.28)

They have been obtained considering both Planck temperature data and
WMAP polarization at low multipoles [21].

Due to the scaling solutions of the matter and radiation densities, we
can infer that when the radiation component began to be negligible the
matter component started to dominate the evolution of the Universe. It is
possible to get an estimate of the time in which the two densities coincide,
the so called Equivalence Era. It is useful to introduce at this point the
redshift parameter, defined as

z =
a0

a(t)
− 1, (2.29)

and in terms of z, the two densities read

ρm = ρm,0(1 + z)3, ρr = ρr,0(1 + z)4. (2.30)

Equating the densities we get

1 + zeq =
ρm,0
ρr,0

≈ 3000. (2.31)
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This redshift defines the era at which the RDE ended and the MDE
started.

• Accelerating era: The Friedmann Eqs. (2.14)-(2.15) describe the acceler-
ated expansion of the Universe through a dark fluid with a CC, which has
a constant equation of state defined by wΛ = −1. In this case the solution
to the equations is

a(t) = a0e
√

Λ
3 t, ρΛ =

3H2
0

8πG
, H =

√
Λ

3
. (2.32)

We can estimate the redshift at which the switch between matter domi-
nation and the recent acceleration took place. Equating the densities we
get

(1 + zacc)
3 =

ΩΛ,0

Ωm,0
, (2.33)

then zacc ∼ 0.4 confirming the very recent acceleration.

Ultimately, the overall evolution of the scale factor can be determined solving
the following equation

H2

H2
0

= Ωr,0a
−4 + (Ωb,0 + Ωcdm,0)a−3 + ΩΛ,0, (2.34)

which account for the evolution of all the three components.

2.4 Observational evidence for ΛCDM

Last decade is referred to as the era of Precision Cosmology, because of the large
amount of high quality data. Sky surveys cover different scales and epochs,
providing a detailed mapping of the galaxies distribution up to large scales
as well as observations of active galactic nuclei, stars in our own Galaxy and
planets. These data are of cosmological interest as from them we can infer
important information about the early Universe, the origin of cosmic structure
and the present day Universe. Moreover, they are used as test for theoretical
predictions of a cosmological model.

The ΛCDM model is strongly supported by observational evidence, which
make this model the best description of the observed Universe. We will discuss
the evidence for the standard cosmological model and present the most recent
best fit parameter estimations in support of it.

• Baryonic matter component: Today we have a precise estimation of the
baryonic component in the Universe mainly due to the accuracy on mea-
surements of light element abundance produced during the BBN. BBN
is the process that leads to the production of the light elements in the
very early stage of the Universe. It took place ∼ 100 sec up to ∼ 200 sec
after the Big Bang, at temperature below 109 K. It lasted few minutes,
after which the density and the temperature went down and no other pro-
cesses occurred. The elements produced are hydrogen (about 75% in mass
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abundance), helium-4 (25% by mass), deuterium (0.01% by mass), finally,
litium-7 and beryllium-7 in trace. The origin of heavy elements can be
traced back in the nucleosynthesis that happen in the cores of stars during
their evolution.

Measurements of the light elements abundances can be obtained by look-
ing at astronomical objects where the stellar nucleosynthesis is at early
stages, such as high-z objects like quasars, or it is less efficient. An-
other independent observable is the CMB which also provide estimation
of the light elements. The mass abundance for helium is expressed as
Y BBNP = 4nHe/nb and the deuterium one as Y BBNDP = 105nD/nH , where
ni is the number density. The best fit for the helium abundance is provided
in Ref. [29] using spectroscopic observations of the chemical abundances
in metal-poor HII regions and it is

Y BBNP = 0.2534± 0.0083(68%C.L.). (2.35)

For the deuterium abundance, the value is

Y BBNP = 0.2534± 0.0083(68%C.L.), (2.36)

which is obtained analyzing the metal-poor damped Lymanα system at
z = 3.04984 in the QSO SDSSJ1419 +0829 [30].
According to the BBN abundances, it is possible to determine the baryon
abundance in the Universe

Ωbh
2 = 0.0223± 0.0009 , (2.37)

as estimated in Ref. [30].
An independent estimation of the helium mass fraction came from the
CMB

YP = 0.266± 0.021 (Planck +WP + highL), (2.38)

at 68% C.L. [21]. Due to the helium binding energy, YP differs from Y BBNP

by 0.5%. The baryonic mass component is then estimated to be

Ωbh
2 = 0.02207± 0.00033 (Planck),

Ωbh
2 = 0.02217± 0.00033 (Planck + lensing),

Ωbh
2 = 0.02205± 0.00028 (Planck +WP ), (2.39)

at 68% C.L. [21]. They are obtained using the Planck temperature power
spectrum data alone and in combination with Planck lensing and WMAP
polarization at low multipoles in turns.
Current observations are in agreement with the theoretical predictions [31]

Ωb,0h
2 = 0.021, YP = 0.248. (2.40)

• Cold Dark Matter: Closely related to the estimation of the baryonic com-
ponent, it is the DM observational evidence. Planck Collaboration [21]
found that the total matter density parameter is Ωm = 0.315+0.016

−0.018 (68%
C.L.) (which include also massive neutrinos), meaning that most of the
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matter in the Universe is in form of a dark component. The best fit
parameter estimation for the DM component at 68% C.L. [21] is

Ωcdm,0h
2 = 0.1196± 0.0031 (Planck),

Ωcdm,0h
2 = 0.1186± 0.0031 (Planck + lensing),

Ωcdm,0h
2 = 0.1199± 0.0027 (Planck +WP ). (2.41)

Because of the above measurements on the baryonic component, we can
infer that the DM nature is non-baryonic. Moreover, the demand of a
DM component in the form of non-baryonic cold particle is necessary in
order to make the predictions of structures formation, carried with N-body
simulations, comparable to the observed structures in the Universe [32].

• Accelerating Universe: The recent accelerated expansion of the Universe
is now strongly confirmed by different surveys (among others WMAP [25],
SCP Union2.1 [33], SDSS [22], Planck [34]). A recent paper by the
Planck Collaboration [21], shows the best fit values on w = p/ρ, which
parametrizes the equation of state of a dark fluid. They are obtained com-
bining the CMB data with lower redshift distance measurements, such as
the Baryonic Acoustic Oscillations (BAO) [35, 36, 37, 38] and the Su-
pernovae data: Union2.1 [26], in order to break the degeneracy in the
parameter space and better constraint w. The results are

w = −1.13+0.24
−0.25 (95%; Planck +WP +BAO),

w = −1.09± 0.17 (95%; Planck +WP + Union2.1),

(2.42)

showing an overall agreement with the CC value wΛ = −1, in particular
the combination with the Union2.1 dataset is very consistent with a CC2.
The CC density parameter for the ΛCDM model is estimated to be

ΩΛ = 0.686± 0.020 (Planck),

ΩΛ = 0.693± 0.019 (Planck + lensing),

ΩΛ = 0.685+0.018
−0.016 (Planck +WP ), (2.43)

at 68% C.L. [21].

2.5 Is the Cosmological Constant the Einstein’s
“greatest blunder”?

Before concluding this Chapter, we briefly discuss Einstein’s primary idea on
the Cosmological Constant.

In 1915, it was believed that the Universe did not change over time on large
scales. Therefore, it was natural to look for static solutions to the Einstein’s

2In the same work, combinations of the Planck data with cosmological data in Refs. [39, 40]
show tension with wΛ = −1 in some cases at more than 2σ. A dynamical parametrization
for the dark fluid equation of state has been also analyzed. We will illustrate and comment
on these results in the next Chapter. However, they conclude confirming that no significant
evidences for deviations from a CC have been found.
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Equations (1.3) with a nonzero matter content. When it was clear that such
a solution was not admissible by the field equations, Einstein decided to add a
new term to achieve the desired result. A non trivial but simple choice was to
include a constant term to the action (1.7)

S =
1

κ

∫
d4x
√
−g [R− 2Λ] + Sm[χm, gµν ], (2.44)

which still provide second order equations (Eq. (2.13)). Einstein’s idea was to
balance the gravitational force with the CC, thus avoiding the collapse of the
Universe due to the sole action of the gravity. The resulting field equations (2.13)
indeed admit a static solution, although it is unstable to small perturbations.
This model of Universe is known as the Einstein Universe.

Assuming a static spherical metric,

ds2 = eα(r)dt2 − e−β(t)dr2 − r2dθ2 − r2sin2θd2ϕ, (2.45)

from the Eqs. (2.13), we can obtain a first rough estimate of the magnitude of
the CC. The conservation equation (2.7) for a perfect fluid (Eq. (2.8)) reads

(ρ+ p)
dα

dr
= 0, (2.46)

which allows for three conditions: 1) ρ + p = 0 , 2) ρ + p = 0 ∪ dα
dr = 0 and

3) dα
dr = 0. The first two describe, once included in the Einstein’s Equations,

respectively the de Sitter Universe and the Minkowski Universe, giving in both
cases solutions in absence of a matter component. While the last condition is
what we are looking for, because the equations describe an Universe filled with
matter. Then the Eqs. (2.13) give the relation

Λ = 4πG(ρ+ 3p) ≈ 4πG

c2
ρ0 ≈ 10−57cm−2 , (2.47)

where ρ0 is the density of the Universe at present time. We have assumed an
Universe filled only with dust for which p = 0.

In 1929, Edwin P. Hubble demonstrated that the Universe is expanding at
an increasing rate [17], therefore a static model for the Universe was no longer
considered. As a consequence, Einstein rejected the CC term, referring to it
as his “greatest blunder”. However as explained in the previous Sections, the
CC was not entirely abandoned, indeed it is still the most viable alternative to
account for the phenomenon of the recent acceleration of the Universe.



Chapter 3

Beyond the Cosmological
Standard Model

Last Planck 2013 results support the ΛCDM model as the best description of
the observed Universe. Nevertheless, the model fails in explaining observed phe-
nomena such as homogeneity, isotropy and flatness of the Universe. Moreover,
there are DM and Cosmological Constant problems. DM particle candidates
have not yet been detected and some shortcomings arise when looking at small
scales. The Cosmological Constant problems are due to the discrepancy between
the predicted theoretical value of Λ and the observed one and to the coincidence
problem at late time. Furthermore, an ultimate problem arises when one at-
tempts to create a consistent quantum gravity description of General Relativity.

This Chapter will focus on the limitations of the standard cosmological
model. In Section 3.1 we present the fine-tuning problems in the early Uni-
verse and in Section 3.1.1 we discuss a possible solution in the Inflationary
framework. In Section 3.2 we explain the CC issues and we consider a different
model for the dark fluid. Finally in Section 3.3 we discuss the DM problems.

Let us note that an alternative approach to the problems of ΛCDM relies
in the modification of General Relativity at large scales. We will extensively
discuss about this proposal in Part III.

3.1 Fine-tuning problems in the early Universe:
flatness, homogeneity and isotropy

In this Section we are going to illustrate the cosmological fine-tuning problems
affecting the ΛCDM model. These are the flatness, homogeneity and isotropy
problems. The last two are usually know under the name of horizon problem.
They concern the special initial conditions needed in order to have the observed
late time Universe. Small departures from these conditions would lead to big
changes in the present day Universe.

• Flatness problem: The present value of the total density of the Universe
(ρtot,0) is measured to be very close to the critical density ρc and no

21
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significant deviation from flatness has been found. Recent results by the
Planck Collaboration [21] fix the value of the curvature density parameter
at 95% C.L. to be very close to zero

Ωk = −0.037+0.043
−0.049 (Planck +WP ), (3.1)

Ωk = 0.0000+0.0066
−0.0067 (Planck +WP +BAO), (3.2)

Ωk = −0.042+0.043
−0.048 (Planck +WP + highL), (3.3)

Ωk = −0.0005+0.0065
−0.0066 (Planck +WP + highL+BAO), (3.4)

which imply that Ωtot,0 = 1 − Ωk ≈ 1. Previous results, consistent with
the above values, have been also found in Refs. [41, 42, 27].

The problem occurs because, the condition Ωtot ∼ 1 is an unstable config-
uration, then a small deviation from it would lead to a different evolution.
Using the Friedmann Equations it is possible to show that the present
equality between the total density and the critical density implies in the
early Universe that the total density parameter has been even closer to one.
This point can be illustrated as follows. The Friedmann Equation (2.14)
can be written as (

Ω−1
tot − 1

)
ρa2 = − 3k

8πG
= const . (3.5)

We can evaluate the above relation at different epochs. Let us consider a
redshift higher than zeq ∼ 3000, then from the above relation follows that

(
Ω−1
tot − 1

)
=
(
Ω−1
tot,0 − 1

) 1

(1 + z)2
, (3.6)

where we have used the radiation density profile (2.26) and the redshift
definition Eq. (2.29). In particular, the predicted total density parameter
at early time (z = 1011, about 1 sec after the Big Bang) can be computed
using the deduced limits 0.994 < Ωtot,0 < 1.086, from Planck. Then, we
get

0.99999 < Ωtot(z = 1011) < 1.00000, (3.7)

which is actually very close to 1. This situation to be realized seems
to indicate that k = 0. However, this condition requires fine-tuning in
the initial conditions because Ωtot = 1 (k=0) is an unstable stationary
point for the system and small deviations from Ωtot ≈ 1 would lead to
a collapsing (k=-1) or expanding (k=1) Universe. Moreover, in scenarios
for which Ωtot 6= 1, structures would have no time to form.

• Horizon problem: why is Universe homogeneous and isotropic, if distant
regions are not causally connected?
Homogeneity and isotropy are the basic assumptions of the ΛCDM model
and are observationally confirmed by large scale structure (LSS) sky sur-
veys [22, 23] and CMB measurements [43, 25, 34]. Therefore, different
regions (even the more distant) in the Universe are in equilibrium as they
show the same physical properties, such as homogeneity, isotropy and tem-
perature. In the ΛCDM model, it can be shown that if we observe two
widely-separated regions in the Universe, their horizons will not overlap.
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Hence, these regions can not reach the equilibrium as they are not causally
connected. Therefore, homogeneity and isotropy are not theoretically ex-
plained in the ΛCDM scenario [44].

3.1.1 The Inflation Paradigm

Inflation is a short period after the Big Bang (10−36 to 10−33) characterized
by an accelerated expansion. A phase of acceleration (ä > 0) can be obtained
assuming the existence of a fluid with

ρ+ 3p < 0. (3.8)

As the density is positively defined, Inflation can occur only if the fluid’s pres-
sure results to be negative. Ordinary matter fluids (e.g. dust, radiation, perfect
fluids) can not violate the Strong Energy Condition. 1 Therefore, also for the
early accelerated expansion it seems we need an extra non-standard fluid com-
ponent. Actually, the CC can be considered a possible candidate as its equation
of state is pΛ = −ρΛ, but it is has been shown that an initial phase dominated by
this term would not end. In the context of GR another possibility is to consider
matter fields, which satisfies Eq. (3.8). Usually, it is assumed that Inflation is
driven by a scalar field φ, called Inflaton.

Several models have been proposed during the last years, spanning from
canonical to non-canonical kinetic models, including also multi-fields Inflation.
For a complete and comprehensive review see Refs. [45, 46]. Here, we will men-
tion the minimally coupled slow-roll Inflation model described by a canonical
kinetic term φ̇2/2 and a potential V (φ), as it is the simplest model and it is
consistent with the Planck data [47]. The field φ satisfies the Klein-Gordon and
Friedmann Equations

φ̈+ 3Hφ̇+ Vφ = 0, (3.10)

H2 =
1

3m2
0

(
1

2
φ̇2 + V (φ)

)
, (3.11)

where Vφ ≡ ∂V (φ)/∂φ. The Friedmann Equation is obtained neglecting the
matter and the spatial curvature. The first equation can be read as a con-
servation equation for the scalar field, for which we can define the pressure
pφ ≡ φ̇2/2 − V (φ) and the density ρφ ≡ φ̇2/2 + V (φ). Assuming φ̇2 < V (φ) in

order to have a negative pressure and requiring that the φ̈ term be negligible,
we get

3Hφ̇ ≈ −Vφ, (3.12)

H2 ≈ 1

3m2
0

V (φ). (3.13)

1The Strong Energy Condition states that for all future-pointing causal vectors V µ holds:(
Tµν −

1

2
T gµν

)
V µ V ν ≥ 0. (3.9)

For a perfect fluid the condition can be written as: ρ+ p ≥ 0 and ρ+ 3p ≥ 0.
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The above conditions are known as the slow-roll conditions. They can be for-
mally written in terms of two slow-roll parameters, defined as

ε(φ) = 4πG

(
Vφ
V

)2

, (3.14)

η(φ) = 8πG
Vφφ
V

, (3.15)

with ε << 1 and η << 1. These conditions allow for the potential to dominate
over the kinetic term, and together with the Eq. (3.12), they ensure that Infla-
tion ends and reheating can occur [48, 49, 50, 51, 52]. Moreover, the slow roll
conditions allow to restrict the form of the potential.

Inflation has been introduced in the early ’80s, we refer the reader to the liter-
ature for further information on Inflationary models [53, 54, 55, 56, 57, 58, 59].
The need for an Inflationary phase, immediately after the Big Bang, was re-
quired to explain the problem of magnetic monopoles (see Refs. [60, 61, 62,
63, 64] for early works). In the early stages of the Universe, according to the
Grand Unified Theory a large number of magnetic monopoles would have been
created, which relic density should be observable today. At present no exper-
imental evidence supports the existence of these magnetic monopoles. Before
the Universe reaches the formation temperature of the magnetic monopoles,
Inflation has the effect to decrease their production. Then their density today
results to be reduced by many orders of magnitude, explaining why the magnetic
monopoles have not been detected. Later, it became clear that this mechanism
could also explain the fine-tuning cosmological problems (Flatness and Horizon
Problems) [53] as well as the structure formation in the Universe. As postulated
by Guth the scale factor should increase as

a(t) ∼ eHt. (3.16)

The exponential phase is known as de Sitter or inflationary phase. Under this
condition the future light cone is strongly influenced, thus making possible
that distant regions show the same conditions of temperature, homogeneity
and isotropy. The rapid expansion would account for the right behavior for
|Ω−1
tot − 1|, resulting in a spatially flat Universe.

The initial Inflationary phase explains the origin of the large scale structure
of the Universe, as quantum fluctuations in the initial field constitute the seeds
for the growth and subsequent formation of the structures. Many observational
evidence coming from CMB and LSS data describe a flat FLRW Universe with
nearly Gaussian scale invariant spectrum for the perturbations. In the previous
Chapter we have already discussed about the observational evidence for a flat,
homogeneous an isotropic Universe. Let us now focus on perturbations. The
power spectrum is described by two parameters the amplitude As and its spec-
tral scalar index ns (ns = 1 corresponds to a scale invariant Harrison Zeldovich
(HZ) power spectrum [65, 66, 67]). Measuring ns not only give us information
about the shape of the primordial perturbations but allow us to select viable
Inflationary models. Planck best fit estimations are

ns = 0.9624± 0.0075 (Planck +WP ), (3.17)

ns = 0.9653± 0.0069 (Planck +WP + lensing), (3.18)
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ns = 0.9600± 0.0071 (Planck +WP + highL), (3.19)

ns = 0.9643± 0.0059 (Planck +WP +BAO), (3.20)

which show tension with the HZ-power spectrum at 5σ [47]. These results
rule out models such as the exponential potential [68] or the inverse power law
potential [69], while they constraint the power low potential ∼ φn, such that
n=2,4 are ruled out, while n=1 [70] is inside the 95% C.L. region.

Depending on the Inflationary models, non-Gaussianity (NG) can be gen-
erated and signatures of it can be used to rule out or significantly constraint
inflationary models. For example, large value of NG are expected to be gener-
ated in multi fields models [71, 72, 73, 74] or in models with additional light
fields (different from Inflaton) [75, 76, 77]. On the other hand, single field models
generically predict a Gaussian spectrum of primordial perturbations, although
if the slow-roll condition is temporarily violated, large non-Gaussianity can be
generated even in a single field model [78]. Both ns and NG measurements have
to be considered a way to better understand the physical mechanisms behind
the structures formation. If the primordial perturbations are NG, one can look
at the Bispectrum (the 3-point correlation function), which generically can be
written in Fourier space as

B(k1, k2, k3) = fNLF (k1, k2, k3), (3.21)

where fNL is the non-linearity parameter, while F (k1, k2, k3) describes the con-
figuration of the three wavevectors ki.

2 A recent Planck analysis [83] on the
angular Bispectrum of the CMB anisotropies constraints the value of the am-
plitude and shape of NG to

f localNL = 2.7± 5.8,

fequilNL = −42± 75,

forthoNL = −25± 39, (3.22)

which let us to conclude that no evidence for NG have been found. These results
favor the standard single-field, slow-roll inflationary models, while other models
result to be strongly constrained.

Finally, on 17th March 2014 the BICEP2 Collaboration [84, 85] claimed
the detection of inflationary gravitational waves in the B-mode of the CMB
polarization. They fix for the tensor to scalar ratio parameter the value r =
0.20+0.07

−0.05, which is in tension with r = 0 at 7.0σ. It has to be noted that this
best fit value is obtained without accounting for the foreground’s contribution,
which should lower the estimated value. Further investigations are therefore
required.

2The main configurations of triangles, which characterize the shape F (k1, k2, k3), are:
Local for k1 << k2

∼= k3 (squeezed triangles) in the case of multi-field models [71, 72, 73, 74],
equilateral for k1 ≈ k2 ≈ k3 in models as k-essence [79] or effective field theories [80], folded
or flattened for k1 + k2 ≈ k3 in model with higher derivatives [81] and orthogonal for which
a positive peak signal is generated for the equilateral configuration and a negative peak for
the folded one, in general for single field models with non canonical kinetic term [82] or with
higher derivatives [81].
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3.2 Cosmic Acceleration

The late-time acceleration is perhaps the biggest challenge of Modern Cosmol-
ogy. The observational data show that whatever causes the acceleration also
accounts for 68% of the energy-density in the Universe.

In the previous Chapter, we have extensively discussed about the ΛCDM
model, which theoretically is described by General Relativity with the addition
of a CC term. The CC is characterized by a density that remains constant
throughout the entire evolution of the Universe and an equation of state such
that wΛ = −1. As we will see in the next Section, the CC introduces some
problems that go under the names Cosmological Constant Problem and the
Coincidence Problem. Therefore, deviations from the ΛCDM model have been
considered. The resulting models assume the existence of a dark fluid that
permeates the Universe, the Dark Energy (DE), which is characterized by a
dynamical or constant (wDE 6= −1) equation of state.

Finally, a different approach is to consider the CC problems as an evidence of
the lack of validity of General Relativity at large scales. This is why extensions to
the theory of General Relativity have been taken into account as an alternative
to the DE description. This alternative approach will be the central topic of
Part III. Which is the best proposal in describing the acceleration, is not yet
clear. Very often, it happens that the two descriptions are not distinguishable
(e.g. Quintessence [86]), as in some cases modifications in the gravity sector
give rise to an extra fluid component.

3.2.1 The Cosmological Constant issue

The CC is probably the easiest way to account for the recent acceleration.
It naturally arises from the construction of a general action in 4-dimentions, as
discussed in Section 1.2. The advantages of considering a CC have been exhaus-
tively presented in the previous Chapter 2. In this Section, we will focus on two
problems that put in tension the theoretical predictions and the observational
evidences: the Cosmological Constant Problem and the Cosmic Coincidence
Problem.

The value of the CC inferred from observation is

Λobs ∼
(
10−3 eV

)4
, (3.23)

which in terms of the Planck mass (m0 = 1018GeV ) is Λobs ∼ 10−120m4
0. From

quantum field theory, we expect that particles in the Standard Model contribute
to the value of the CC in a non negligible amount. The expected theoretical
value is 3

Λth ∼ 10−60m4
0, (3.24)

which is roughly 60 order of magnitude (in mass scale) larger than the observed
value. The discrepancy between the theoretically predicted value and the one

3The stress energy tensor is of the form: < Tµν >= − < ρ > gµν . In order to evaluate the
energy density < ρ >, one can sum over the zero-point energies of a collection of independent
harmonic oscillators (which are the representation of Standard Model fields) up to a cutoff
ΛUV , then < ρ >∼ Λ4

UV . The cutoff is fixed to be ΛUV ∼ 1 Tev as Standard Model physics
is well tested at ultraviolet (UV) scale. See Refs. [88, 15].
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inferred by observations goes under the name Old Cosmological Constant Prob-
lem [87]. A New Cosmological Constant Problem also exists, which is why the
observed CC has a remarkably low value. In Refs. [88, 89], S. Weinberg explains
this small value with an anthropic argument: a larger value of the CC would
not allow for structure formation to take place.

The second problem concerns the coincidence of living in the precise era of
transition between the matter domination and the late time acceleration one,
hence the name Coincidence Problem. More precisely, we are in the epoch in
which the CC density has exceeded that of matter, being z ∼ 0.3 the time at
which ρΛ = ρm (see Section 2.3). Observational data show that the present day
cosmological density parameters of CC and matter component are of comparable
magnitude, being ΩΛ = 68% and Ωm = 31% [21].

In conclusion, although the cosmological constant is well suited to account for
the recent acceleration of the Universe, its introduction into the field equations
implies shortcoming in the theoretical sector, which need to be solved in order
to construct the right theory of gravity.

3.2.2 Dark Energy

Because of shortcoming in the ΛCDM model, Dark Energy (DE) models have
been proposed. In general, one refers to DE as a fluid, which does not interact
with the matter sector other than through gravity (as Λ), characterized by an
equation of state with wDE = pDE/ρDE < −1/3, in order to give rise to the
observed acceleration. The difference w.r.t. the CC resides in the equation of
state, hence the CC can be considered as a special case of DE models. General
DE models can allow for constant wDE , but different from −1, corresponding
to wCDM cosmologies, or dynamical wDE . In the last case, one can assume a
specific form as function of the scale factor, wDE(a) [90], such as the Chevallier-
Polarski-Linder (CPL) [91, 92] parametrization

wDE(a) = w0 + wa(1− a), (3.25)

where w0 and wa are constants, respectively the value of wDE and its derivative
evaluated at present time.

Deviations from the ΛCDM model have been investigated in the recent anal-
ysis by the Planck Collaboration [21], which shows some tensions with the
ΛCDM model when Supernova data SNLS [93, 39] and H0 measurements [40]
are considered,

wDE = −1.13+0.13
−0.14 (95%; Planck +WP + SNLS), (3.26)

wDE = −1.24+0.18
−0.19 (95%; Planck +WP +H0). (3.27)

In both cases the results are in favor of a phantom behavior, i.e. wDE < −1,
the first shows a 2σ tension with wΛ = −1, while the second at more than 2σ.
In the same paper a dynamical DE model has been considered, using the CPL
parametrization and combining Planck data with both the SNLS and H0 data
sets. The results favor a dynamical DE at about 2σ.

A dynamical wDE can be also the result of the parametrization of scalar
fields, as in the case of Quintessence [94, 95, 96, 97, 98, 99, 100, 101, 102, 103],
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k-essence [104, 105] and tachyons [106]. Usually, the field equation associated
to the scalar field can be recast in the form of a conservation equation, in this
sense the field is considered as a fluid component.

3.2.3 Quintessence model

A first hint, to solve problems related to the CC, was to extend the ΛCDM
model introducing a scalar field φ. The simplest and probably the most common
alternative model is the Quintessence. The name comes from latin “quinta
essentia” (fifth element), as it was thought that a fifth element should contribute
to the total energy budget of the Universe. We refer the reader to Ref. [86] for
a complete and recent review or to the literature [94, 95, 96, 97, 98, 99, 100,
101, 102, 103].

Let us introduce the action of the Quintessence model

S =

∫
d4x
√
−g
[

1

2
m2

0R−
1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm[gµν , χm] , (3.28)

which is described by a canonical scalar field φ minimally coupled to gravity.
Here, V (φ) is a potential while all the other quantities have been already defined
in the previous Chapters. Varying the action with respect to the scalar field
and assuming a spatially flat FLRW metric, one obtains

φ̈+ 3Hφ̇− 1

a2
∇2φ+

dV (φ)

dφ
= 0 . (3.29)

The field φ is usually written as the sum of an homogeneous part and a small
perturbation, φ(t, xi) = φ(t) + δφ(t, xi). As it is expected that the scalar field
mimics the CC on large scale, we can neglect the inhomogeneous part. Then,
the Eq. (3.29) can be recast in the form of a conservation equation as

ρ̇φ + 3H (ρφ + pφ) = 0, (3.30)

where

ρφ = φ̇2/2 + V (φ), (3.31)

pφ = φ̇2/2− V (φ), (3.32)

are respectively the density and pressure of the scalar field and the corresponding
equation of state reads

wφ ≡
pφ
ρφ

=
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
. (3.33)

The above relation makes manifest the dynamical nature of the Quintessence
field, highlighting the difference with the CC. Quintessence models can be clas-
sified according to the dynamical evolution of wφ. Caldwell and Linder [107]
proposed two main classes: thawing models and freezing models.
In order to give rise to the late time acceleration the field has to satisfy the
condition pφ < −1/3ρφ. Moreover, as observations fix w ≈ −1, the following
slow-roll condition has to be considered

φ̇2 << V (φ), (3.34)
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according to which the potential is dominant w.r.t. the kinetic term (φ̇2). This
condition allows to restrict the very general form of the potential V (φ). Both
early and late time accelerations can be described through a scalar field which
violates the Strong Energy Condition. However, let us note that the scalar field
responsible for the Inflation has a less restrictive condition, i.e. φ̇2 < V (φ), but
one has to assume that φ̈ be negligible.

Quintessence model has been introduced in order to solve the CC issues. In
that model as the role of the CC has been placed by the scalar field φ, we have
to make sure that the field has a counterpart in the particle physics sector. In
this regard, we can compute the mass of the field, which is defined as

m2
φ ≡

∂2V (φ)

∂φ2
. (3.35)

In the case of Quintessence, considering the slow-roll condition, one has from
Eq. (3.29), that H ∼

√
∂2V/∂φ2, then the mass is proportional to the Hubble

constant, setting the bound

|mφ| . H0 ≈ 10−33 eV . (3.36)

A scalar field with such a low mass gives rise to a long range fifth force. On
the other hand, having such a low mass for a scalar field does not seem to be
technically natural from a quantum field theory point of view [108, 109]. Scalar
field masses are quadratically divergent, as we already know from the Higgs
field and the hierarchy problem. The fact that the mass of the Quintessence
field is many orders of magnitudes smaller than that of the Higgs field make the
problem much more pronounced.

Attempts to solve the Coincidence Problem have been made with specific
models of Quintessence with a tracker behavior [101, 100, 103, 110]. In these
models the field closely tracks the radiation or matter density for a time suf-
ficiently long to eliminate the Coincidence Problem. However, tracker models
depend strictly on the parameters of the potential, which in turn are difficult
to constraint due to degeneracy in the parameter space [111].

3.3 The Dark Matter issue

The existence of a missing matter has been postulated since 1933 by Zwicky [112]
to explain the high dispersion velocity of galaxies in the Coma Cluster, which
required a bigger amount of non-luminous matter to justify the observations,
hence the name Dark Matter (DM). The “proof” of its presence has been shown
in many observations including rotation curves [112, 113, 114, 115, 116, 117],
gravitational lensing [118], LSS [22], BBN [21, 29, 30], CMB [21]. Constraints
on the nature of DM show that it is non-baryonic and it does not interact with
other matter components other than via gravitational interactions. Finally,
LSS simulations require a cold component to account for the observed matter
distribution [32]. The best particle candidate is the Weakly Interacting Massive
Particle (WIMP). Despite indirect observational evidence [119, 120], ground
based experiments have not detected any signature for a DM particle [121].

In this Section we will focus on DM’s shortcomings at a small scales. These
are mainly related to discrepancies between N-body simulations and observa-



30 CHAPTER 3. BEYOND THE COSMOLOGICAL STANDARD MODEL

tional data. This leads us to wonder whether the standard cosmological model,
on which simulations are based, can be reliable in its predictions. However, let
us say, that at small scales, the approximations, that usually are used when
studying the evolution of the Universe or perturbations, break down when one
deals with fundamental structures, such as galaxies or clusters.

The first problem is the so called Core-Cusp Problem. It concerns the in-
ner density profile of the DM halo in galaxies. Pure DM-simulations select a
Navarro-Frenk-White (NFW) profile [122]. Such a cuspy profile in the interior of
a galaxy is not favored by observations. One specific example is DDO 47, whose
velocity field is clearly best fitted if the DM halo is cored; moreover, its (small)
detected non-circular motions cannot account for the discrepancy between data
and the NFW predictions [123]. An empirical profile has been proposed by
Burkert [124], which at small radii reveals a core profile, which is more suitable
to fit observations (e.g. [125, 126, 127, 128, 129, 130, 131]), while at large radii
the profile is the same as for NFW. See also Section 4.1 for details about these
density profiles. A problem between the simulations and observational data can
be found in the assumptions used in running simulations. In fact, the baryonic
component is usually ignored, instead it has been shown that it is crucial to
solve the problem (e.g. Ref. [132]). In Ref. [133], it is shown that the inclusion
of supernovae feedback in the simulation allow to form cored profiles.

A second problem related to N-body simulations is the missing satellite
problem [134, 135]. A discrepancy between the predicted number of sub-halos
in DM-only simulations and the observed number of satellites in the Milky
Way has been found, casting doubt on the model used for the formation of
structures. However, it is questionable whether this discrepancy is due to very
faint satellites, that are difficult to detect or even to entire sub-halos which
remain dark. The availability of data coming from wide field resolved star
surveys has increased the discovery of faint satellites around the Milky Way (see
for examples Refs. [136, 137]), although their number is not sufficient to explain
such a difference. Moreover, as shown in Refs. [138, 139, 140] the inclusion
of baryonic matter in the simulations allows to consider mechanisms for the
suppression of the gas and star formation rate such as supernova feedback, stellar
winds or photoevaporation, which actually make halos unobservable. These
results are very encouraging as they reconcile the satellite population obtained
in simulations to the observed one.

Finally, a third problem is the Too Big Too Fail problem [141]. In numeri-
cal simulations the most massive sub-halos are too dense to host the observed
satellites. In fact, satellites in the Milky Way have circular velocities around 24
km/s, on the contrary simulated sub-halos reach velocities in the range 30-70
km/s. These results are obtained in DM-only simulations, in which the density
profile for the halo is chosen to be the NFW. Inclusion of supernovae feedbacks
in the simulations allow to flatten the central cusp, in that way the resulting
circular velocity profiles do not exceed 20 km/s (at least in the inner 1 kpc) [133].

We may conclude that a deep knowledge of the physical process of galaxy
formation at small scale is required as this seems to be the key to understand
which processes need to be considered when running simulations. On the other
hand, DM-only simulations are not enough to explain the physical processes of
galaxy formation at small scale. Then, N-body simulations have to be improved
in order to include the baryon’s feedbacks such as supernovae explosions and
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stellar wind.

Doubts about the validity of the standard cosmological model have given
space to new scenarios, such as the inclusion in the simulations of Warm Dark
Matter particles (WDM), which best candidates are sterile neutrinos and grav-
itinos. WDM particles might cure the shortcomings at small scales [142]. Mod-
ifications of the newtonian law have also been considered, such as Milgrom’s
proposal [143, 144], known as MOND (MOdified Newtonian Dynamics). In
this approach instead of assuming the existence of a DM component, Milgrom
postulates that newtonian force is modified at large radii, where the baryonic
component seems to be ineffective to account for the galaxy kinematics. The
details on the MOND paradigm will be discussed in the next Part II.
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Part II

Dark Matter at Small and
Large Scales
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Chapter 4

Dark Matter in Galaxies

The most direct evidence of the existence on a missing component, the Dark
Matter (DM), comes from observations of velocity profiles of galaxies [145].
Luminous matter in galaxies would show a velocity profile that is

V (r) ∝ r−1/2, (4.1)

according to the newtonian law. Measurements of the velocity profile using
doppler shift, show that the velocity instead of decreasing with the radius, ac-
tually remains constant. The resulting profile is known as flat Rotation Curve
(RC). This behavior persists well outside the galaxy core, where no luminous
matter is present. This would suggest an extra component which contributes to
the matter profile giving rise to a distribution of the form

M(r) ∝ r, (4.2)

implying that the mass would increase with distance.

This aspect is most evident in Spiral galaxies, where observational data show
that the mass in dark halos is about 10 times the stellar mass component. The
RC in Spirals is obtained by measuring the gas emission lines in the disk, e.g. the
neutral hydrogen (H i ), or using satellite galaxy kinematics and weak lensing,
providing a direct measurement of the radial distribution of the gravitational
mass. In the central region of a galaxy, it is difficult to disentangle the dark and
luminous component, as the mass model usually used to fit the inner region,
accounts for both the components. In some cases, the dark component seems
to dominates at all radii, as for the Low Surface Brightness galaxies (LSB) and
Dwarf galaxies [146]. In particular the latter are an excellent laboratory to test
models of mass, allowing to discriminate between different profiles, since about
90% of the total mass consists of a dark component.

DM in Elliptical galaxies contributes in the same amount as for Spirals
(about 10% of the luminous mass). Unfortunately, in that case the DM can not
be studied using RC as Ellipticals exhibit small or no rotational motions. How-
ever, excellent mass indicators are: the kinematics of globular clusters at 10-30
Kpc [147, 148], and at large radii (100-400 kpc) the one of Satellite galaxy [149],
weak lensing and X-ray emission measurements, as some Elliptical galaxies are
surrounded by X-ray emitting gas.

35
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Today, the DM component is a real challenge in Astrophysics. It is the galaxy
component less known, though perhaps the most studied. Many unknowns
remain, such as determining exactly the shape, the size and mass of the dark
halo. Furthermore, it is important to understand its composition from a particle
point of view.

4.1 Dark Matter halo density profiles

A galaxy is usually modeled with an halo composed by DM, which surrounds
the whole galaxy. In order to explain the flat RCs in galaxies, many density
profiles for the dark halo have been proposed. In particular, numerical N-body
simulations in the contest of ΛCDM were of fundamental importance in the
study and determination of the main characteristics of the DM distribution.
Their results show that the dark halo is well described by the NFW profile [122]

ρNFW (r) =
ρs

r
rs

(
1 + r

rs

)2 , (4.3)

where ρs and rs are respectively the density and radius parameters, which vary
depending on the halo. Usually rs is parametrized through rs = Rvir/c, where
Rvir is the virial radius and c is the concentration parameter which in turn
depends on the virial mass (Mvir) and redshift. The corresponding velocity
profile of the RC is given by

V 2
NFW (r) = V 2

vir

g(c)

xg(cx)
, (4.4)

where x = r/Rvir, g(c) = [ln(1 + c)− c/(1 + c)]
−1

. At redshift z = 0 the
concentration parameter can be approximated as [150]

c(Mvir) = 9.60
(
Mvir/1012h−1M�

)−0.075
. (4.5)

More complicated forms for the concentration parameter which depend on z are
also available [150]. This profile is in tension with the observational data, since
it provides a cuspy core, while for the outer regions, RC profile has been proven
successfully.

A phenomenological model has been proposed by Burkert [124], hence the
name Burkert profile, to explain the RCs of dwarf galaxies and it is the following

ρr =
ρ0r

3
0

(r + r0)(r2 + r2
0)
, (4.6)

where r0 and ρ0 are respectively the radius and the density of the core. This
model is well suited to explain the density profile in the inner regions as well
as at large radii, where the profile diverges as r, recovering the prediction of N-
body simulation. The cored halo parametrization for the velocity profile results
in the Halo Universal Rotation Curve (URCH) profile [151]:

V 2
URCH(r) = 6.4G

ρ0r
3
0

r

[
ln

(
1 +

r

r0

)
− arctan

(
r

r0

)
+

1

2
ln

(
1 +

r2

r2
0

)]
, (4.7)
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where the core radius r0 and the central halo density ρ0 are free parameters.

Another model is the one proposed by Einasto (1965) [152], which describes
the variation of the density with the semi-major axis of the isodensity ellipsoid
b

ρ(a) = ρ0 exp

[(
− b

b0

) 1
N

]
. (4.8)

where b0 is the effective radius and N characterizes the slope of the profile.
Two particular cases are for N = 4, for which the profile reduces to the de
Vaucouleurs density law for a spherical system, and for N = 1 it describes the
exponential disk profile.

4.2 MOND: Modifying the Newtonian Dynam-
ics

An alternative to Newtonian gravity was proposed by Milgrom [143, 144] in
order to explain the phenomenon of mass discrepancy in galaxies. It was sug-
gested that the true acceleration a of a test particle, at low accelerations, is
different from the standard Newtonian acceleration, aN :

a =
aN

µ(a/a0)
, (4.9)

where µ(a/a0) is an interpolation function which runs smoothly from µ = a/a0

at a << a0 to µ = 1 at a >> a0, with a0 being the critical acceleration at which
the transition, between the two regimes, occurs.

Different forms of the interpolation function are present in the literature.
The standard interpolation function, known also as the old interpolation func-
tion is

µ(a/a0) =
a/a0√

1 + (a/a0)2
. (4.10)

For this model, Begeman and collaborators (1991) [153] claim that the value
of the critical acceleration is a0 = 1.21 × 10−8 cm s−2. In this framework, the
circular velocity profile can be expressed as a function of a0 and of the standard
Newtonian contribution of the baryons to the RC, obtaining for it

V 2
MOND,old(r) = V 2

bar(r) + V 2
bar(r)

√1 + (2ra0/V 2
bar)

2

2
− 1

 , (4.11)

where Vbar=(V2
D+V2

gas)
1/2 includes the contribution of the disk (VD) and gas

(Vgas).

A new model was suggested by Famaey & Binney (2005) [154], known as
the new interpolation function

µ(a/a0) =
a/a0

1 + a/a0
. (4.12)

In that case a0 assumes the value 1.35 × 10−8cm s−2 [155]. In contrast with
the old interpolation function, the new form has the advantage of making
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MOND compatible [156] with its relativistic version, Tensor-Vector-Scalar grav-
ity (TeVeS) [157]. The corresponding velocity profile is [158]

V 2
MOND = V 2

bar(r)


√

1 + 4a0r
V 2
bar(r)

+ 1

2

 . (4.13)

Both Eqs.(4.11)-(4.13) show that in the MOND framework the resulting RC
is similar to the no-DM standard Newtonian one with an additional term that
works to mimic and substitute the DM component [159].

4.3 The Orion Dwarf Galaxy: a test for MOND

The measurement of the RCs of disk galaxies is a powerful tool to investigate
the nature of DM, including its content relative to the baryonic components and
their distributions. In particular, dwarf galaxies are good candidates to reach
this aim as their kinematics are generally dominated by the dark component,
down to small galactocentric radii [160, 129, 127, 131, 161]. This leads to a
reliable measurement of the dynamical contribution of the DM to the RC and
hence of its density profile.

In Ref. [162] with P. Salucci, D. Vernieri, J. M. Cannon and E. C. Elson, we
investigate the viability of some velocity profiles for the dark halo, using as test
the RC of the Orion dwarf galaxy. As we will show below, the Orion dwarf is
one of the few known galaxies whose kinematics unambiguously point towards
a cored profile. This system is thus critically important for investigating the
nature of the DM particle and of the evolution of DM halos. Moreover, this
nearby system harbors an extended H i disk, and thus provides us with an
important test of the MOND paradigm. Historically MOND has generally been
successful in reproducing the RCs of spiral galaxies with only the (observed)
luminous matter (e.g. Refs. [163, 164, 165]). However, cases of tension between
data and the MOND formalism do exist [129].

It is important to stress that in order to derive the DM density profile or to
test the MOND formalism, we must know the distribution of the ordinary bary-
onic components, as well as have reliable measurements of the gas kinematics.
For the Orion dwarf, 21-cm H i surface brightness and kinematics have been
published in Ref. [166]: their analysis provides a high quality, high resolution
RC, that, in addition, can be easily corrected for asymmetric drift and tested for
non-circular motions. This galaxy is a very useful laboratory in that a simple
inspection of the RC ensures us that it shows a large mass discrepancy at all
radii. Moreover, the baryonic components are efficiently modeled (i.e., no stellar
bulge is evident and the stellar disk shows a well-behaved exponential profile,
see Ref. [167]). The distance to the galaxy, which is critical for an unambiguous
test of MOND [159], is estimated to be 5.4±1.0 Mpc [167]. It is important to
stress that the distance of the Orion dwarf remains a significant source of uncer-
tainty. In Ref. [167], the distance is estimated using the brightest stars method.
The intrinsic uncertainty in this technique may allow a distance ambiguity much
larger than the formal errors estimated by Ref. [167], because in their work this
method yields a scatter as large as 50% in distance. Finally, the system’s in-
clination (47◦) is kinematically measured and is high enough to not affect the
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estimate of the circular velocity. The properties described above make the Orion
dwarf galaxy an attractive candidate to determine the underlying gravitational
potential of the galaxy.

The present investigation is organized as follows. In Section 4.3.1 we present
the stellar surface photometry. In Section 4.3.2, the H i surface density and
kinematics data are presented and discussed; we also provide the analysis of
possible non-circular motions of the neutral gas. In Section 4.3.4 we model the
RC in the stellar disk using a cored/cusped halo framework and test the Orion
kinematics against the NFW, URCH profiles and MOND formalism. A final
discussion is in Section 4.3.5.

4.3.1 Stellar Photometry

Following the discussion in Ref. [166], the underlying stellar mass in the Orion
dwarf is estimated using the near-infrared (IR) photometry (J and KS bands)
presented in Ref. [167]. Those authors find (J−KS) = +0.80 and a total KS

magnitude of +10.90. We assume that the color difference between K and
KS is negligible; further, we assume LK,� = +3.33 [168, 169]. Accounting
for extinction, the total K-band luminosity of the Orion dwarf is ∼3.5× 108

L�. The mass of the stellar component was estimated by Ref. [166] to be
(3.7± 1.5)× 108 M�. The stellar surface brightness profile is well fitted by an
exponential thin disk, with a scale length of RD= 25 ± 1 arcsec (equivalent to
1.33 ± 0.05 kpc at the adopted distance). Moreover, there are no departures
from an exponential profile that would be indicative of a prominent central
bulge.

4.3.2 HI surface density and kinematics

H i spectral line imaging was acquired with the Very Large Array and presented
in Ref. [166]. We refer the reader to that work for a full discussion of the data
handling, and we summarize salient details here. The final data cubes have a
circular beam size of 20 arcsec, with a 3σ H i column density sensitivity of
NHI= 1.5 ×1019 cm−2. The first three moment maps (i.e. the integrated H i
intensity, the velocity field, and the velocity dispersion) are shown in Fig. 4.1.
The neutral gas disk of the Orion dwarf shows rich morphological and kinematic

structure at this physical resolution. The outer disk contains tenuous H i gas,
but column densities rise above the 5× 1020 cm−2 level at intermediate radii.
There is plentiful high-column density (>1021 cm−2) H i throughout the disk.
The more or less parallel iso-velocity contours at inner radii are indicative of
linear rotation (although almost certainly not solid body) and the curving of
the outer contours suggests that the outer rotation curve has a fairly constant
velocity. The outer disk contours show no evidence for a decrease in rotational
velocity at large radii. In the central regions of the disk, however, some H i
“holes” or “depressions” manifest a pronounced kink in these contours (consider
the contours at 370± 20 km s−1). The intensity weighted velocity dispersion
averages to ∼7-8 km s−1 throughout the disk, although the innermost regions
show dispersions above 10 km s−1.

The total H i flux integral, proportional to the H i disk mass, was found to be
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Figure 4.1: Comparison of the H i column density distribution (a), the intensity-
weighted velocity field (b), and the intensity-weighted velocity dispersion (c); the
beam size is 20 arcsec. The contour in (a) is at the 1021 cm−2 level; the contours
in (b) show velocities between 320 and 420 km s−1, separated by 10 km s−1,
and the thick white line corresponds to the 400 km s−1contour; the contours in
(c) are at the 5, 10, 15 km s−1 levels.

50.3± 5.1 Jy km s−1, a value somewhat lower than the single-dish flux measure
of 80.6±7.72 Jy km s−1 by Ref. [170]; the difference may arise from the lack
of short interferometric spacings that provide sensitivity to diffuse structure.
The total H i mass is found to be MHI = (3.5±0.5)× 108M�. After applying
the usual 35% correction for Helium and molecular material, we adopt Mgas

= (4.7±0.7)× 108M� as the total gas mass. In Fig. 4.2 we plot the 10 arcsec
/20 arcsec resolution H i surface density, throughout the gas disk. A simple fit
(valid out to the last measured point and for the scope of this work) yields:

µHI(r) =
−0.263r3 + 1.195r2 + 3.094r + 18.549

0.154r3 − 1.437r + 6.703
M�/pc

2, (4.14)

where r is in kpc. The related fitting uncertainty on µHI(r) is about 20%.

Fig. 4.2 shows that the H i surface density rises from the center of the galaxy,
reaches a maximum, and then declines exponentially. At the last measured
point, i.e. out to ∼ 7 kpc, the profile has almost (though not completely)
reached the edge of the H i disk and rapidly converges to zero. Note that, in
Newtonian gravity, the outer gaseous disk contributes in a negligible way to the
galaxy total gravitational potential.

4.3.3 The Circular Velocity

The channel maps of the Orion dwarf provide evidence of well-ordered rotation
throughout the H i disk (see Ref. [166]). The intensity-weighted-mean velocity
field (Fig. 4.1b) exhibits symmetric structure in the outer disk. Twisted iso-
velocity contours at inner radii coincide with the H i holes near the center of the
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Figure 4.2: Radially averaged H i mass surface density profiles of the Orion
dwarf, created by averaging H i emission in concentric rings emanating from
the dynamical center found in our RC analysis. The solid/dotted lines were
created from the 10 arcsec /20 arcsec resolution images.
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Figure 4.3: Inclination best fit (thick Black line) for high resolution (10′′) data
(filled Blue points). Errorbars are plotted and in most cases are smaller than the
symbol size. The errors reported (by GIPSY/ROTCUR) include only errors on
the fits, while the systematic error considered (3◦) is shown as a Green errorbar.

disk. The disk is, therefore, dominated by circular motion. The RC of the galaxy
was derived by fitting a tilted ring model to the intensity-weighted-mean velocity
field using the gipsy task ROTCUR. The routine carries out a least-squares fit
to Vlos, the line of sight-velocity. To derive the best-fitting model, an iterative
approach was adopted in which the various combinations of the parameters were
fitted. The final RC was extract by fixing all other parameters. The receding
and approaching sides of the galaxy were fitted separately. The best fitting
parameters are i = (47 ± 3)◦, P.A. = (20 ± 2)◦, Vsys = 368.5 ± 1.0 km/s, and
(α2000,δ2000) = (05:45:01.66, 05:03:55.2) for the dynamical center. We have
realized that the inclination is not dependent on the radius, and the fit is shown
in Fig. 4.3. Its weighted value is (46.8± 0.14)◦. Notice that because the errors
reported by GIPSY/ROTCUR include only errors on the fits and systematics
are not included, the 3◦ error estimate comes from attempting the ROTCUR fits
in various orders (e.g., holding each variable fixed in turn). The resulting RC is
shown in Fig. 4.4. Notice that in this object the disk inclination is determined
kinematically and therefore it is quite accurate. No result of our work changes
by adopting different values of i, inside the quoted errorbar.

The second-order moment map for the galaxy is shown in Fig. 4.1c. Through-
out most of the disk, the velocity dispersion is roughly constant at σ ' 7± 2
km/s, with a more complex behavior near the galaxy center and at the outermost
radii. This velocity dispersion estimate allows us to derive the asymmetric drift
correction to the RC yielded by the tilted ring model. The observed rotation
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Figure 4.4: Rotation velocity corrected for asymmetric drift (filled black points),
raw velocity data with error bars (filled red boxes) and the asymmetric drift
correction (filled blue triangles).

velocity, Vrot, is related to the circular velocity Vc via

V 2
c (r) = V 2

rot(r)− σ2(r)

[
dlog µHI(r)

dlog r
+
dlog σ2(r)

dlog r

]
. (4.15)

From an examination of Fig. 4.4 it is clear that the Vrot and Vc profiles
differ by less than 1%. Throughout this work, we use the latter for the pur-
poses of mass modeling. We notice that in very small dwarfs this correction is
not negligible (Vrot ∼ σ) and it introduces an uncertainty in the analysis, e.g.
Ref. [171].

In summary, the Orion dwarf RC has a spatial resolution of 0.26 kpc (i.e.
0.2 RD), and extends out to 5.1 RD. The uncertainties on the RC are few km/s
and the error on the RC slope dlogV/dlogR < 0.1.

Is the circular velocity given by Eq. (4.15) a proper estimate of the gravita-
tional field? To further investigate the presence of non-circular motions within
the H i disk that jeopardize the kinematics, we carried out a harmonic decom-
position of the intensity-weighted velocity field to search for any significant
non-circular components. This test is necessary in that the undetected pres-
ence of non-circular motions can lead to incorrect parametrization of the total
mass distribution. Following Ref. [172], the line-of-sight velocities from the H i
velocity field are decomposed into harmonic components up to order N = 3
according to

Vlos = Vsys +

3∑
m=1

cm cosmθ + sm sinmθ, (4.16)
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where Vsys is the systemic velocity, cm and sm are the magnitudes of the har-
monic components, m the harmonic number, and θ the azimuthal angle in the
plane of the galaxy. The gipsy task RESWRI was used to carry out the de-
composition by fitting a purely circular model to the velocity field, subtracting
it from the data, and then determining from the residual the magnitudes of
the non-circular components. The tilted ring model fitted by RESWRI had its
kinematic center fixed to that of the purely circular tilted ring model used to
derive the RC above. The position angles and inclinations were fixed to constant
values of 20◦ and 47◦, respectively.

The parameters of the best-fitting model are shown in Fig. 4.5. Adjacent
points are separated by a beam width in order to ensure that they are largely
independent of one another. We argue that because the standard tilted ring
model has fewer free parameters than the model incorporating the higher order
Fourier components, it is not as essential to space the points on the rotation
curve by a full beam width. Then in this model only 16 points are considered
instead of the 26 points used in fitting the RC.

At inner radii the inferred non-circular motions are not negligible, but this is
almost certainly due to the fact that the H i distribution over this portion of the
disk is irregular, being dominated by the large central H i under-densities. The
harmonic components of the outer disk are, instead, reliable and demonstrate
the gas flow to be dominated by circular kinematics. The circular velocity so
obtained well matches that found by means of the tilted ring model presented
above. The amplitudes of c2 and s2 are too small to hide a cusp inside an
apparently solid body RC (as suggested by Ref. [173]). These results provide
further decisive support for the use of Vrot of the Orion dwarf as a tracer of its
mass distribution.

4.3.4 Mass Modeling and Results

We model the Orion dwarf as consisting of two “luminous” components, namely
the stellar and the gaseous disks, embedded in a dark halo. The stellar compo-
nent is modeled as an exponential thin disk [174] with a scale length of 1.33 kpc.
Any bulge component is assumed to be negligible in terms of mass. The dy-
namical contribution of the gas to the observed RC is derived from the H i total
intensity map. A scaling factor of 1.33 is incorporated to account for the pres-
ence of Helium and other elements. For the dark halo we consider two different
parametrizations of the mass distribution: a NFW profile Eq. (4.4) [175] and
the cored profile of the URCH [151] Eq. (4.7).

The RC is modeled as the quadrature sum of the RCs of the individual mass
components:

V 2
mod = V 2

D + V 2
DM + V 2

gas, (4.17)

where VD is the disk component, the VDM is the DM halo, which in turn is
parametrized by the NFW profile and the URCH one.

From Fig. 4.6 upper panel, it is evident that the URCH profile yields a
total RC that fits the data extremely well, with best-fitting parameters of r0 =
(3.14±0.32) kpc, MD = (3.5±1.8)×108 M� and ρ0 = (4.1±0.5)×10−24g/cm3.
More accurate statistics is not necessary; the mass model predicts all the V (r)
data points within their observational uncertainty.
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Figure 4.5: Non-circular velocity components as derived by carrying out a har-
monic decomposition of the intensity-weighted-mean velocity field. The c1 pro-
file corresponds to the circular RC. The RC derived by fitting tilted ring model
to the intensity-weighted-mean velocity field is shown as a solid blue curve.
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Figure 4.6: Upper panel: URC model of Orion dwarf. The circular velocity
(filled circles with error bars) is modeled (thick Red line) by a Freeman disk
(Magenta line), a URCH halo (Green line), and the H i circular velocity (Black
line). Lower panel: NFW model of Orion dwarf. The circular velocity data
(filled circles with error bars) is modeled (thick Blue line) including a Freeman
disk profile (Magenta line), a NFW halo profile (Orange line) and the H i circular
velocity (Black line). In both cases the values of the free parameters are reported
in the text.
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Figure 4.7: MOND model of Orion dwarf spiral. The circular velocity data (filled
circles with error bars) is modeled with the MOND profile (thick Cyan line).
Also shown are the (newtonian) Freeman disk contribution (Magenta line), the
H i contribution (Black line) and the total baryonic contribution (Orange line).

Notice that the derived value of the disk mass agrees with the photometric
estimate discussed above. The corresponding virial mass and radius of the
DM halo are Mvir = (5.2 ± 0.5) × 1010 M� (see Eq. (10) in Ref. [151]) and
Rvir = 95.5+5

−4 kpc [176], respectively. We note that the Orion dwarf has a mass
20 times smaller than that of the Milky Way, with the DM halo dominating
the gravitational potential at all galactocentric radii. The baryonic fraction is
fb = (MD+Mgas)/Mvir = 0.016, while the gas fraction is Mgas/Mvir = 9×10−3.

The second model we will investigate is the NFW velocity profile, Eq. (4.4).
We fitted the RC of the Orion dwarf by adjusting Mvir and MD. The resulting
best-fit values are Mvir = (2.5±0.5)×1011 M� and MD = (6.9±1.7)×108 M�,
but since χ2

red ' 3.3, i.e. the fit is unsuccessful, the best-fit values of the free
parameters and those of their fitting uncertainties do not have a clear physical
meaning. We plot the results in the lower panel of Fig. 4.6. The NFW model,
at galactocentric radii r<2 kpc, overestimates the observed circular velocity (see
Fig. 4.6 lower panel).

Finally, we will consider an alternative to Newtonian gravity, MOND, which
has been proposed in Refs. [143, 144] and presented in Section 4.2. In particular,
for this analysis we adopt the new form for the interpolation function, Eq. (4.12).
No results of this analysis would change by adopting the “standard” MOND
interpolation function, Eq. (4.10).

The best-fitting MOND mass model is shown in Fig. 4.7. The model total RC
(cyan line) completely fails to match the observations. We fix the stellar mass
MD at MD = 2.6×108M�. If we let the disk mass becomes higher, covering the
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Figure 4.8: MOND model of Orion dwarf spiral for a distance from the galaxy
of ∼10 Mpc, a factor 1.9 farther than the nominal distance. The legend to the
lines is the same of Fig. 4.7. The resulting disk mass is MD = 4.2× 108 M�.

mass range estimated in Ref. [166], the fit is not even able to reproduce the RC
at inner radii. Note that in the MOND formalism, the distance of the galaxy
and the amount of gaseous mass are both crucial in deriving the model RC.
To quantify the discrepancy of these observations with the MOND formalism,
note that only if the Orion dwarf were 1.9 times more distant than the current
estimate we would obtain a satisfactory fit to the RC (see Fig. 4.8).

4.3.5 Discussion

The Orion dwarf galaxy is representative of a population of dwarfs with a steep
inner RC that gently flattens at the edge of the gas disk. The observed kine-
matics imply the presence of large amounts of DM also in the central regions.
We have used new H i observations of the Orion dwarf to analyze its kinematics
and derive the mass model. The derived RC is very steep and it is dominated
by DM at nearly all galactocentric radii. Baryons are unable to account for the
observed kinematics and are only a minor mass component at all galactic radii.

We have used various mass modeling approaches in this work. Using the
NFW halo, we find that this model fails to match the observed kinematics (as
occurs in other similar dwarfs). We show that non-circular motions cannot
resolve this discrepancy. Then we modeled the galaxy by assuming the URCH
parametrization of the DM halo. We found that this cored distribution fits very
well the observed kinematics. Orion is a typical dwarf showing a cored profile
of the DM density and the well-known inability of DM halo cuspy profiles to
reproduce the observed kinematics. Finally, we find that the MOND model
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is discrepant with the data if we adopt the literature galaxy distance and gas
mass. The kinematic data can be reproduced in the MOND formalism if we
allow for significant adjustments of the distance and/or value of the gas mass.
Let us point out that the present interferometric observations may miss some
of the objects’s H i flux, although this may be limited in that the cubes do not
have significant negative bowls. Obviously, for bigger values of the H i mass,
the distance at which the baryon components would well fit the data will also
somewhat decrease. It is worth stressing that there is a galaxy distance (albeit
presently not-favored) for which MOND would strike an extraordinary success
in reproducing the observed kinematics of the Orion dwarf.

The Orion dwarf has a favorable inclination, very regular gas kinematics,
a small asymmetric drift correction, a well-understood baryonic matter distri-
bution, and a large discrepancy between luminous and dynamical mass. All
of these characteristics make this system a decisive benchmark for the MOND
formalism and a promising target for further detailed studies. Of particular
value would be a direct measurement of the distance (for example, infrared
observations with the Hubble Space Telescope would allow a direct distance
measurement via the magnitude of the tip of the red giant branch).
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Chapter 5

The Bias factor and its
implications in Cosmology

Observational data of the distribution of structures on large scales are one of the
most important sources for understanding the properties and the statistics of the
primordial density fluctuation field and the processes of structure formation. In
particular, observational evidence show that the initial fluctuation field is nearly
a Gaussian random field. Furthermore, these observations play a fundamental
role in testing theoretical predictions of a cosmological model. Nevertheless,
a main obstacle in comparing observations and theoretical predictions exists,
Biasing.

DM is estimated to be about 84% of the total matter content in the Universe
and luminous galaxies are considered biased tracers of the underlying distribu-
tion of this dark component [177, 178]. This relation is called bias. The real
bias is very complicated as it depends on galaxy formation, galaxy types and it
might be influenced by the redshift.

Let us define the (dark) matter density fluctuation field 1 and the number
density fluctuation field of the biased tracer δb, as

δm ≡
ρm − ρm
ρm

, δb ≡
nb − nb
nb

, (5.1)

where ρm is the matter mass density, ρm is the mean background mass density,
nb is the tracer number density and nb is the mean number of tracers. The rela-
tion between the spatial distribution of the biased tracer δb and the underlying
matter density field δm can be defined through the bias factor

b ≡ δb
δm

, (5.2)

where with tracer we refer to galaxies, halos (in the case of halo model [179, 180,
181, 182]) or peaks (in the case of peaks model [177, 183, 178, 184, 185, 186]),
depending on the model. As an example, in the current picture of structure for-
mation, the halo model [182] provides a good description of bias factor. Galaxies

1In the following we will refer to the underlying Dark Matter distribution/mass density as
matter distribution/mass density.

51



52 CHAPTER 5. THE BIAS FACTOR

are considered to form in dark halos, which distribution follows the underlying
matter one. A density profile for the DM in halos is obtained in N-body simu-
lations and it is found to follow the NFW profile (Eq. (4.3)). In this context, it
is clear that the physical properties of a galaxy are strongly determined by the
halo’s characteristics. Following this model, it is possible to define two types of
bias: one between galaxies and halos distributions, called galaxy bias, and one
between halos and the underlying matter distribution, the halo bias. The galaxy
bias results to be fully specified through the halo bias once the halo occupation
statistics is considered.

In general the bias factor can be deterministic or stochastic, linear or non-
linear, constant or scale dependent, local or non-local. The real bias is expected
to be a non-linear and stochastic function [187, 180, 188]. Nevertheless, on large
scales the assumption that the bias is linear and deterministic is reasonable
as for example, it arises in the peak model where the formation of non-linear
structures is associated with peaks in the initial density fluctuation field. It has
been shown that with this assumption the bias is scale independent on large
scales, allowing to write the bias as a constant [189].

Models of bias have been proposed in the last years. They can be roughly
divided in two groups, the Eulerian [190, 191, 192] and Lagrangian bias models.
Lagrangian models are more physical motivated than the Eulerian ones, indeed
the halo model [179, 180, 181, 182] and peaks model [177, 183, 178, 184, 185, 186]
belong to the Lagrangian models. Let us explain the main difference between
them. The Lagrangian model describes the bias of the initial number density
field of the tracer w.r.t. the initial mass distribution of the dark component.
On the other hand, the Eulerian bias describes the relation between these dis-
tributions after their evolution. At this point one might argue that the two bias
factors can be related to each other, as the Eulerian fields are the result of the
evolution of the initial Lagrangian ones. A full treatment of this point can be
found in Refs. [193, 194, 195, 196]. Here, we will briefly recap the arguments
therein. Initial fields evolve through non-linear processes. Then, the final mass
density field is the result of the non-linear evolution of the initial mass density
field as well as the final number density field arises from the non-linear process
of evolution and formation of structures of the initial number density field. As
the bias involves non-linear evolutions, which are non-local processes, this re-
sults is a non-local bias. In this regard, models of Lagrangian and Eulerian bias
can be related to each other only when the bias is non-local. However, when
considering sufficiently smoothed scales, local models have been considered for
both Lagrangian and Eulerian bias. In that case, the number density field can
be assumed to be locally determined by the matter density field, i.e. local bias.
Let us note that local Lagrangian bias can be expressed by Eulerian bias only
if that one is non-local.

Let us conclude the Section with a comment on the bias in theories which
deviate from General Relativity. We will refer to them as Modified Gravity
Theories (MG). A complete description of these theories is in Part III. Here, we
want to point out that the bias factor for such theories is scale dependent even
on large-linear scales, b(t, k) [197, 198, 199]. In Ref. [197], the authors pointed
out the following expression for a scale dependent bias in Fourier space

b(a, k) = 1 + (b0 − 1)
δm(ai, k)

δm(a, k)
, (5.3)
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where b0 is the initial bias at some early time ai, which is assumed to be scale
independent. The reasons of a scale dependent bias and a modification in the
clustering of galaxies are due to the scale dependence of the growth factor D(t, k)
and of a non-constant critical density δsc in the spherical collapse. In Gen-
eral Relativity, the growing solution for the density evolution equation can be
straightforwardly obtained from the linearized Poisson and Euler equations. It
is δm(t, k) = D(t)δm(k), then the linear growth factor is a scale-independent
function D(t) on large-linear scales. Therefore, from Eq. (5.3) an initially scale
independent bias, b0, will remain scale independent. This result is no longer
valid when considering deviations from GR. One of the effect of modifying GR
is that in the newtonian limit the Poisson equation is defined through an effec-
tive newtonian function that is scale dependent, Geff (t, k), and the equation of
evolution for the density perturbation in Fourier space results

δ̈m + 2H(t)δ̇m = Geff (k, t)δm, (5.4)

where dots stand for derivation w.r.t. time. This actually introduces a scale
dependence in the growth factor, δm = D(t, k)δim [198, 197, 200, 201, 202]. Fur-
thermore, structures form at the peak of the density fluctuation field, when the
initial overdensity is such that δ > δsc and the collapse can occurs, δsc is the
critical threshold for the spherical collapse. In GR, δsc does not depend on scale
and it is the same for all masses, hence it is said to be a flat barrier. Successful
MG should recover GR on small scales, where GR is well tested. Therefore, a
screening mechanism is necessary in order to hide the modification (see Part III
for details and examples). This practically introduces a scale beyond which GR
is modified. The screening scale, RS , depends on the particular theory consid-
ered. It is expected that if screening mechanisms are at play, they might change
the scale at which the spherical collapse occurs. Usually, for MG the barrier
depends on the mass of the density perturbation, which in turn depends on
RS [197, 202, 203, 204]. In Ref. [202], the authors investigated how the modifi-
cation to standard gravity due to a Yukawa-like potential affects the spherical
collapse. They found that patches which are smaller than RS are unaffected
by the modification, on the contrary those which are bigger than RS do. In
particular for that model, δsc is strongly mass dependent for masses larger than
∼ 1014 h−1 M�, where M� is the solar mass. Let us note that the mass at
RS = 5 h−1 Mpc is ∼ 5 1013 h−1 M�. Then, as expected δsc is a moving barrier
only for patches with r > RS , instead smaller halos are not affected by modi-
fication. In conclusion, modifications to the theory of General Relativity affect
the clustering of structure in a such a way the bias factor is scale dependent
even on linear scale.

5.1 Lagrangian bias in the local bias model

In the local bias model, the abundance of the biased tracers at a given position
is assumed to be related to the mass at the same position. The simplest version
of this model, in which the smoothed overdensity field of the biased tracers δb is
treated as though it were a deterministic function of the (similarly smoothed)
real-space mass overdensity field δm, has been the subject of much study [205,
190, 192]. Following Ref. [191], it has become common to write the local model



54 CHAPTER 5. THE BIAS FACTOR

as

δb = f(δm) =
∑
i>0

bi
i!

(δim − 〈δim〉), (5.5)

where bi is the bias coefficient of order i. Note that this model ensures 〈δb〉 = 0
by subtracting-off the 〈δim〉 terms. One of the points we make in what follows is
that one should, instead, normalize using a multiplicative factor which ensures
that 〈1 + δb〉 = 1. I.e., given an expansion of the form (5.5), one should always
work with

δB ≡
1 + δb − 〈1 + δb〉
〈1 + δb〉

. (5.6)

Although the model was invoked to describe the bias with respect to the
late-time nonlinear Eulerian field δEm, since it is only invoked on large scales,
it is often assumed, and sometimes explicitly used, to describe the bias with
respect to the initial Lagrangian field δLm (on large scales, these are expected to
be similar). However, the two best studied models of bias with respect to the
Lagrangian field – those associated with peaks, and patches which form halos,
in a Gaussian random field – behave rather differently from naive expectations
based on the local bias model. In particular, in the local bias model calculation
of the cross-correlation between the biased tracers and the initial field, 〈δbδm〉,
one proceeds by writing the bias function as a Taylor series, and then expanding
order by order in δm. This means that one expects higher-order terms to con-
tribute. However, for peaks and in Gaussian initial conditions, the exact answer
is 〈δbδm〉 = b1 〈δ2

m〉 [186]. Therefore, in the expansion referred to above, all the
higher-order terms must cancel out. We show below that this is also true for
another popular choice of the bias – a Lognormal mapping between the biased
field and δm – and then that this is generically true in models where the bias is
local and deterministic with respect to the initial Gaussian random field. I.e.,
the cross-correlation is always only linearly proportional to the auto-correlation
signal of the DM, although, in general, the linear bias factor need not equal b1 of
the Taylor series. We then show that the auto-correlation function of the biased
tracers can always be written as a Taylor series in the auto-correlation function
of the original (unbiased) mass fluctuation field; derivatives and convolutions do
not enter. Along the way, our analysis connects to recent work on renormalized
bias [206], showing, e.g., that this renormalization is required if the Lognormal
mapping is to make sensible predictions.

In the following, we present the results in Ref. [207]. The work is in collabo-
ration with R. K. Sheth and it is organized as follows. In Section 5.1.1 we discuss
the Lognormal mapping, since it turns out that all quantities of interest can be
computed exactly (no truncation of the sums is required). These exact expres-
sions exhibit some curious properties which are not obvious if one truncates the
sums. Then we show that how one normalizes such purely formal expansions
plays an important role, and why Eq. (5.6) is to be preferred over Eq. (5.5).
Section 5.1.1 explores a more complex example in which some of this simplicity
is lost, before showing the general result in Section 5.1.2. Section 5.1.3 shows
how to proceed if the full expansion is not available, so one is constrained to
work with a truncated series. Section 5.1.3 connects this analysis to some of
the earliest work on this subject (Ref. [205]), discussing how the coefficients of
the Taylor series expansion of δB in terms of δm are related to those obtained
from expanding ξBB in terms of ξmm. Section 5.1.4 discusses halo bias in the
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context of these results, and Section 5.1.4 revisits a technical point about halo
bias, first made by Ref. [208] but often overlooked, which complicates the use of
cross-correlations for testing the hypothesis that Lagrangian halo bias is indeed
local, a subject of much recent interest [209, 194, 195, 210]. Finally, we discuss
our results in Section 5.1.5.

5.1.1 The Lognormal model and the usual expansion

We begin with the usual model, Eq. (5.5), with δm = δL to emphasize the fact
that the mass field is for Lagrangian space, and recall that the 〈δkL〉 terms are
inserted to guarantee that 〈δb〉 = 0. As an explicit example, we will consider
the Lognormal transformation, which aims to map 1 + δb → exp(bδL). The
parameter b is the one free parameter of this transformation: large values of b
strongly enhance large values of δL.

Since the coefficients in the Taylor series are simply bk = bk, for a Gaussian
distribution of δL, the additive correction terms can be summed explicitly:∑

k>0

bk
k!
〈δkL〉 =

∑
k>0

bk

k!
〈δkL〉 = exp(b2〈δ2

L〉/2)− 1. (5.7)

This means that, in this expansion, the Lognormal model is really

δb = exp(bδL)− 1− [exp(b2 〈δ2
L〉/2)− 1] = exp(bδL)− exp(b2 〈δ2

L〉/2). (5.8)

Notice that, as a result of this additive normalization term, δb 6= 0 when δL = 0.

The cross-correlation between the biased field and the original one can also
be done analytically:

〈δbδL〉 =
∑
k>0

bk
k!
〈δk+1
L 〉 = b 〈δ2

L〉 exp

(
b2〈δ2

L〉
2

)
(5.9)

where the final expression shows the result of evaluating the sum for the Log-
normal coefficients. Finally, the auto-correlation, which can also be done ana-
lytically, yields:

〈δ2
b 〉 = 〈[exp(bδ)− exp(b2〈δ2

L〉/2)]2〉 = exp(b2 〈δ2
L〉)[exp(b2 〈δ2

L〉)− 1]. (5.10)

The treatment above ensures that 〈δb〉 = 0 by making an additive correction.
However, because this additive correction term has, in effect, shifted the mean
value of the transformation, one should really account for the fact that the
definition of the mean density, with respect to which one would like to define the
biased fluctuation field, has also been modified. This modification corresponds
to accounting for the fact that, prior to adding these terms, 〈1 + δb〉 6= 1.

If one enforces 〈1 + δb〉 = 1 by using a multiplicative factor rather than by
an additive one, then one would write the Lognormal transformation as

1 + δb = exp(bδL) exp(−b2〈δ2
L〉/2). (5.11)

The first term on the right hand side is the same deterministic transformation
of the variable as before, and the second, exp(−b2〈δ2

L〉/2), is the multiplicative
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factor that is required to ensure that 〈1+δb〉 = 1. Note that this factor depends
explicitly on the scale L on which the Lognormal transformation occurs, via
〈δ2
L〉. On large scales, 〈δ2

L〉 � 1, making the overall normalization factor → 1.
In this limit, the Taylor series expansion of Eq. (5.11) has coefficients bk = bk,
but otherwise, these coefficients generally pick up 〈δ2

L〉 dependent multiplicative
correction factors.

Integrating over the underlying Gaussian distribution of δL shows that the
cross-correlation between the biased field and the original one is

〈(1 + δb)(1 + δL)〉 = 1 + 〈δbδL〉 = 1 + b 〈δ2
L〉, (5.12)

whereas

〈(1 + δb)
2〉 = exp[b2 〈δ2

L〉]. (5.13)

These expressions differ from Eqs. (5.9) and (5.10) for 〈δbδL〉 and 〈δ2
b 〉 by one

and two powers, respectively, of the multiplicative normalization factor associ-
ated with the Lognormal transformation (see discussion following Eq. (5.11)).
Eq. (5.13) is the usual expression for the relation between the correlation func-
tion of the Lognormal field and that of the underlying Gaussian [211], suggest-
ing that the present analysis is correct, and that of the previous Section is not.
I.e., normalizing δb by subtracting a constant, rather than normalizing 1 + δb
by a multiplicative constant is ill-advised. Moreover, notice that now the cross-
correlation function is particularly simple: 〈δbδL〉 = b 〈δ2

L〉, with no higher-order
terms (Eq. (5.12)).

For what follows, it is useful to write out slightly more general expressions for
the cross- and auto-correlations. The cross-correlation between the Lognormally
biased field and the original Gaussian one smoothed on a different scale L′ than
that on which the bias was defined, and separated by a distance r, is

〈δbδL′ |r〉 = b 〈δLδL′ |r〉 = b ξLL′(r), (5.14)

where ξLL′(r) denotes the correlation between the initial field when smoothed
on scale L and when smoothed on scale L′ and displaced by r. We note again
that this expression is exact – it is remarkable that the cross-correlation function
is just a linearly biased version of that of the underlying field, despite the fact
that the transformation itself was highly nonlinear. Peaks in Gaussian fields
exhibit this same simplicity [186]. Note in particular that the linear bias factor
is the first term in the Taylor series of δb in the 〈δ2

L〉 → 0 limit. We show shortly
that, although 〈δbδL′ |r〉 ∝ 〈δLδL′ |r〉 is generic, the constant of proportionality
is not necessarily b1, the first term in the Taylor series of the mapping between
δb and δL.

The cross-correlation between two differently biased tracers b and b′, defined
using transformations on scales L and L′, and separated by r, can also be
computed exactly:

1 + ξbb′(r) ≡ 〈(1 + δb)(1 + δb′)〉 = exp[bb′ ξLL′(r)]. (5.15)

This can be expanded as a series in 〈δLδL′ |r〉 to yield:

ξbb′(r) ≈ bb′〈δLδL′ |r〉+ (bb′)2 〈δLδL′ |r〉2

2
+ . . . . (5.16)
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Therefore, if b = b′ and L = L′ then ξbb(r) ≈ b2ξLL(r), and

〈δbδL|r〉2

〈δbδb|r〉
≈ ξLL(r). (5.17)

It turns out that this is a generic feature of local Lagrangian bias; it holds even
when the constant of proportionality between 〈δbδL|r〉 and 〈δ2

L|r〉 differs from
b1 of the Taylor series.

Before moving on, we note that the ratio ρ2 ≡ 〈δbδL〉2/〈δ2
b 〉〈δ2

L〉 is some-
times used to quantify the ‘stochasticity’ of the bias, where ρ2 < 1 is taken to
imply stochasticity. For the Lognormal mapping above, ρ2 = x/(ex − 1) with
x ≡ b2〈δ2

L〉. This equals unity only when 〈δ2
L〉 = 0, despite the fact that the Log-

normal mapping is explicitly deterministic. Clearly, ρ2 is not a good indicator
of stochasticity.

Approximate transformation for peaks

Suppose one smoothes a Gaussian random field with a filter of scale Lp. When
the peak point process is smoothed with a filter of scale L� Lp, then Ref. [178]
argue that it is useful to think of the smoothed field as defining a peak fluctuation
field which is related to that of the initial Gaussian field by

1 + δp = exp(bδL − cδ2
L/2)

√
1 + c〈δ2

L〉 exp

(
− b

2〈δ2
L〉/2

1 + c〈δ2
L〉

)
. (5.18)

(Note that we are normalizing using a multiplicative rather than additive factor.)
The free parameters b and c are related to the properties of the peak (e.g., its
height and curvature); they determine a rather complex normalization factor
that, as before, depends on the smoothing scale via 〈δ2

L〉 and tends to unity
on large scales. In this limit, the first few bias coefficients associated with this
transformation are b1 = b, b2 = (b2−c), b3 = (b3−3bc), and b4 = (b4−6b2c+3c2).
(The structure of these terms means that bk is very similar to the Hermite
polynomial Hk(b); in fact bk = Hk(b) when c = 1. This happens because the
bias relation has the same form, exp(bt − t2/2), as the generating function of
the Hermites.) Note that the quantity b3 − b1b2 = −2bc 6= 0, in contrast to the
Lognormal studied earlier. This will be matter of discussion in Section 5.1.3.

For this relation, the cross-correlation between such peaks and the field at a
different position when smoothed on a different scale is

〈δpδL′ |r〉 =
b

1 + c〈δ2
L〉
ξLL′(r). (5.19)

As for the Lognormal transformation, this expression is exact for the peak ap-
proximated field we considered, and it is linearly proportional to ξLL′(r); there
are no higher order terms. However, in this case, the constant of proportionality
equals the first term in the Taylor series of δp only in the 〈δ2

L〉 → 0 limit; in
general, they are different.

When the two smoothing scales are the same, then

1 + 〈δpδp|r〉 =
[
1− C2 ξ2

LL(r)
]−1/2

exp

(
B2ξLL(r)

1 + C ξLL(r)

)
, (5.20)
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where

B ≡ b

1 + c〈δ2
L〉

and C ≡ c

1 + c〈δ2
L〉
. (5.21)

To leading order in ξLL, this reduces to

〈δpδp|r〉 ≈ B2ξLL(r) +
(B2 − C)2

2
ξ2
LL(r) +

(B3 − 3BC)2

3!
ξ3
LL(r) + . . . (5.22)

I.e., to leading order this transformation also satisfies Eq. (5.17) even though
this bias factor is not the same as the leading order term in the Taylor expansion.
On the other hand, if we view this final expression as the Taylor series expansion
of the correlation function, then the coefficients of this expansion have the same
structure as the σL → 0 limit of δp. We will return to this shortly.

5.1.2 Normalizing density rather than overdensity: The
general case

It was shown in the previous Sections that, for Lognormal-like, local, determin-
istic, Lagrangian bias functions, one should normalize the density of the biased
field to unity (using a multiplicative factor), rather than the overdensity to zero
(by subtracting a constant). We now study the general case.

If one starts with an arbitrary bias function of the form given by Eq. (5.5),
then the correctly normalized bias field is simply defined by Eq. (5.6):

δB ≡
1 + δb − 〈1 + δb〉
〈1 + δb〉

=

∑∞
k=1(bk/k!)(δkL − 〈δkL〉)∑∞

k=0(bk/k!)〈δkL〉
. (5.23)

Note that this renders the coefficient b0 redundant, so we can set it equal to
unity (and redefine all other coefficients in units of b0). This expression only
differs from Eq. (5.5) because of the term in the denominator. In general, δB 6= 0
when δL = 0.

It is a simple matter to check that this works out correctly for a Lognormal.
Moreover, it is straightforward to see that

〈δL′δB |r〉 =

∑∞
k=1(bk/k!)〈δL′δkL|r〉∑∞
k=0(bk/k!)〈δkL〉

=

∑∞
k=1(bk/k!)〈δk+1

L 〉/〈δ2
L〉∑∞

k=0(bk/k!)〈δkL〉
ξLL′(r) ≡ BL ξLL′(r), (5.24)

where the second equality used the fact that

〈δL′ |δL〉 = δL
〈δL′δL|r〉
〈δ2
L〉

= δL
ξLL′(r)

σ2
LL

(5.25)

to write

〈δL′δkL|r〉 =

∫
dδLP (δL) δkL

∫
dδL′P (δL′ |δL) δL′ =

∫
dδLP (δL) δkL〈δL′ |δL〉

=

∫
dδL P(δL)δkL δL

ξLL′(r)

〈δ2
L〉

=
〈δ2
L〉

〈δk+1
L 〉

ξLL′(r). (5.26)
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Equation (5.24) shows that 〈δL′δB |r〉 is linearly proportional to ξLL′(r), where
the final equality defines the constant of proportionality BL. Note that this is
an exact statement, valid for any r, L or L′, and for any local deterministic
bias function. In particular, there is no requirement that r be large compared
to either L or L′, nor that L′ be larger than the scale L on which the local
transformation from the DM to the biased field is (assumed to be) monotonic
and deterministic. Furthermore, notice that, although BL 6= b1 in general, they
are indeed equal in the limit 〈δ2

L〉 → 0. (Our Eq. (5.24) is consistent with
Eq. (10) of Ref. [189], in the Lagrangian bias limit in which all their Cpq = 0;
but our formulation highlights the fact that, in their expansion, all the higher
order terms are proportional to powers of 〈δ2

L〉, whereas none are proportional
to powers of ξ.)

For similar reasons the auto-correlation function of the biased tracers will
reduce to a series of the form

〈δB′δB |r〉 = B2
L ξLL(r) +

CL
2

[ξLL(r)]2 + . . . (5.27)

This means that, to lowest order, Eq. (5.17) is satisfied even in the general
case. Note that the auto-correlation function of the biased tracers can always
be written as a series in ξ. E.g., terms involving derivatives or convolutions of ξ
do not appear. This means that the power spectrum of a locally biased tracer
will generically involve convolutions of the original P (k). In this sense, local
bias is simpler in real space than it is in Fourier space.

5.1.3 Renormalized bias

The analysis above highlighted the fact that it was important to include the
multiplicative normalization factor when enforcing 〈δb〉 = 0. We illustrated this
using the Lognormal, for which all the sums could be performed analytically.
The question now arises as to what to do when this cannot be done.

The analysis above suggests that one should redefine the mean density, and
hence all bias factors, order by order. This corresponds to truncating Eq. (5.6)
rather than Eq. (5.5):

δ
(j)
B =

1 + δb − 〈1 + δb〉j
〈1 + δb〉j

=

∑j
k=1(bk/k!)(δkL − 〈δkL〉)∑j

k=0(bk/k!)〈δkL〉
. (5.28)

Hence, the cross-correlation between the mass and biased fields is

〈δL′δ(j)
B |r〉 =

∑j
k=1(bk/k!)〈δkLδL′ |r〉∑j
k=0(bk/k!)〈δkL〉

. (5.29)

To 4th order in δL, this is

〈δL′δ(4)
B |r〉 =

b1 〈δL′δL|r〉+ (b3/3!) 〈δL′δ3
L|r〉

1 + (b2/2)〈δ2
L〉+ (b4/4!)〈δ4

L〉

=

[
b1 +

(
b3
2
− b1b2

2

)
〈δ2
L〉
]
ξLL′(r) ≡ b(4)

× ξLL′(r), (5.30)
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where the final equality defines b
(4)
× . This differs from truncating Eq. (5.5)

because of the term which is proportional to b1b2. For the Lognormal transfor-
mation (bk = bk1), b3 = b1b2 so the term that is higher order in σ is zeroed out in
this expansion, whereas it would survive if we had started from Eq. (5.5). Thus,

this approach correctly gets 〈δLδ(4)
B 〉 = b ξ(r). In fact, one can show that, for the

Lognormal, 〈δLδ(j)
B 〉 = b〈δ2

L〉 for any j. In this sense, this treatment is a signifi-
cant improvement on the usual truncation of Eq. (5.5). However, since b3 6= b1b2
in general, this approach would also lead one to conclude erroneously that the
cross-correlation includes higher order terms when it does not. For example, for
the approximate peaks-bias relation of Eq. (5.18), b3−b1b2 = −2bc 6= 0. On the

other hand, note that this expression returns b
(4)
× ≡ b−2bc〈δ2

L〉/2 = b(1−c〈δ2
L〉)

which is indeed the exact answer, b/(1 + c〈δ2
L〉), expanded to first order in 〈δ2

L〉.
That is to say, although the renormalization approach suggests more complexity
than is present in the exact answer, it is at least self-consistent.

A similar calculation for the auto-correlation yields

〈δ(4)
B δ

(4)
B |r〉 ≡ ξ

(4)
bb (r) = (b

(4)
× )2 ξLL(r) +

b22
2
ξLL(r)2. (5.31)

Note that although truncating Eq. (5.5) has the same form, in this case, the
coefficients are correct for a Lognormal, illustrating again that this is a better
approach.

We are not the first to advocate normalizing by a multiplicative factor.
Ref. [206] noted that this was advisable, especially in the context of truncated
expansions. However, that analysis did not highlight the fact that this makes
the Lagrangian bias so simple (our Eq. (5.24)). Rather, Ref. [206] went on to
consider the implications in Fourier space, arguing that the k = 0 limit of the
term which scales as b22/2 should be removed from the definition of the bias, and
instead absorbed into a shot-noise like term. This procedure has the virtue of
making the bias defined by the auto-correlation equal the square of that defined
by the cross-correlation by definition even in Fourier space, which is the scaling
satisfied by the exact answer. In Ref. [212], it has bee argued that this may not
be the best way to think on b22/2 (or the higher order bias coefficients).

Relation to Szalay (1988)

In all essential respects, the analysis above is simply a restatement of results
in Ref. [205]. For y ≡ δL/〈δ2

L〉1/2, Szalay assumed that the bias function G(y)
could have non-negative values only, and that

〈G(y)〉 =

∫
dy G(y)

e−y
2/2

√
2π

= 1. (5.32)

Because G ≥ 0, and 〈G〉 = 1, his G is, in effect, our 1 + δB of Eq. (5.23). He
then expanded G in terms of Hermite polynomials:

G(y) =

∞∑
k=0

Bk
k!

Hk(y) , (5.33)

where

Bk =

∫
dy

e−y
2/2

√
2π

G(y)Hk(y) ,= 〈G(y)Hk(y)〉 (5.34)
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and

Hk(y) = ey
2/2

(
− d

dy

)k
e−y

2/2, with 〈Hm(y)Hn(y)〉 = δnmm!. (5.35)

The orthogonality of the Hermite polynomials allowed him to show that

〈G(y1)G(y2)〉 =

∫
dy1

e−y
2
1/2

√
2π

∫
dy2

e−v√
2π(1− w2

12)

∞∑
k=0

Bk
k!
Hk(y1)

∞∑
i=0

Bi
i!
Hi(y2)

=

∞∑
k=0

B2
k

k!
wk12 , (5.36)

where v = (y2 − w12y1)2/2(1 − w2
12) and w12 ≡ 〈y1y2|r〉 ≡ ξLL(r)/σ2

L. Com-
parison with Eq. (5.27) shows that his Bk are our BL, CL, etc., so they are
complicated sums over the (renormalized) bias factors. This means they are, in
general, σL dependent combinations of the coefficients bk of the Taylor series
expansion of δh on scale L.

Szalay did not compute the cross-correlation function, but it is straightfor-
ward to see that〈

y2G(y1)
〉

=

∫
dy1

e−y
2
1/2

√
2π

w12 y1

∞∑
k=0

Bk
k!
Hk(y1)

= w12

〈 ∞∑
k=0

Bk
k!
Hk(y1)H1(y1)

〉
= w12

〈
B1H1(y1)2

〉
= B1 w12, (5.37)

where we have used the fact that H1(y) = y and the orthogonality of the
Hermite polynomials to simplify the expressions. Notice that the tracer-mass
cross-correlation is indeed just linearly proportional to the auto-correlation of
the mass, and the square of it is the leading order term of the auto-correlation
function, consistent with Eq. (5.17).

We remarked earlier that the Bk values depend on the scale on which the
transformation is applied. It is a simple matter to check that setting Bk =
(bσL)k yields the correctly normalized Lognormal mapping considered earlier
(Eq. (5.11)). Notice that in this case Bk is a separable function of a scale
dependent piece σkL, and a constant piece whose value is given by the large
scale σL → 0 limit of the Taylor series expansion of δh. That is to say, if
one expands the (Lagrangian space) halo auto-correlation function in powers
of the mass correlation ξLL, then the coefficient of the kth order term in the
expansion is simply B2

k, and this term is independent scale L, even though the
bias coefficients in the Taylor expansion of the field 1 + δh(δL) itself do depend
L. Therefore, the bias parameters estimated from a scatter plot of 1 + δh versus
δL ‘run’ with scale L, whereas those estimated from the correlation function do
not.

We will return to this in the next Section, but note that it is not generic.
E.g., for the peaks transformation of Eq. (5.18), B1 = B σL, B2 = (B2−C)σ2

L,
B3 = (B3 − 3BC)σ3

L etc., where B and C were defined in Eq. (5.21). I.e., the
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Bk satisfy the same relations between the rescaled values B and C that the bk
do for b and c, but B and C differ from the peak-background split values (i.e.
the large scale Taylor series coefficients of δh) b and c by a factor of 1 + cσ2

L.

5.1.4 Relation to halo bias from the excursion set ap-
proach

The analysis above made the point that the leading order bias factor for the
cross-correlation is the leading order term in the Taylor series expansion of δh
only in the (large-scale) σL � 1 limit. So it is somewhat surprising that the
differences between these two are sufficiently small as to have not attracted
significant attention. In part, this is because the large scale halo bias factors,
as determined from the excursion set approach, satisfy

bk = νk−1Hk+1(ν)/δkc , where ν ≡ δc/σh (5.38)

[213]. Here σh is related to the smoothing scale Rh which contains the halo
mass Mh (i.e. ρ̄ (4π/3)R3

h = Mh), and δc is the overdensity associated with
halo formation. Since these bias factors were determined from a physically
motivated model, rather than an arbitrary formal expansion, they are already
correctly normalized, in the sense that 〈1+δh〉 = 1. This makes the renormalized
δB of Eq. (5.23) equal to the original δh, so the renormalized large scale bias
factors are simply those in Eq. (5.38).

What is remarkable about the excursion set approach is that, for any smooth-
ing scale (larger than that on which the halos were defined) the associated Bk
satisfy

Bk = σkL bk (5.39)

[186, 210]. I.e., just as for the Lognormal mapping (for which bk = bk), the Bk
are separable functions of the scale independent piece bk and the scale dependent
piece σL. Note that this separability is not general; e.g., it does not apply
for the mapping in Eq. (5.18). When k = 1, this separability implies that
〈δhδL|r〉 = σLB1 w(r) = b1σ

2
Lw(r) = b1 ξ(r). I.e., for excursion set halos,

the cross-correlation measurement returns the large scale linear bias factor b1
whatever the smoothing scale L, and whatever the separation r.

Inserting Eq. (5.39) in Eq. (5.36) indicates that if one expanded the halo
auto-correlation function in powers of the mass correlation, then the coefficient
of the kth order term in the expansion is simply b2k. Note again that this
statement is not restricted to large scales. This simple prediction for halos in
Lagrangian space has not been noticed before.

In addition, the higher order correlations of the halos are given by Szalay’s
Eq. (11). Like the two-point function, these can be written as sums of products
of ξ. To order ξ3, the three point function is given by

ζ123 = b21b2 (ξ12ξ23 + ξ23ξ13 + ξ12ξ13) + b32 ξ12ξ23ξ13

+b1b2b3

[
ξ2
12

ξ23 + ξ13

2
+ ξ2

23

ξ12 + ξ13

2
+ ξ2

13

ξ12 + ξ23

2

]
, (5.40)

where ξij denotes the two-point correlation function of the mass, smoothed on
scale L at separation rij . For equilateral triangles, this simplifies to

ζeq(r) = 3 b21b2 ξ
2
LL(r) + b32 ξ

3
LL(r) + 3 b1b2b3 ξ

3
LL(r). (5.41)
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On the appropriate ensemble over which to average

The analysis above, like essentially all previous analyses in the literature to date,
makes a technical assumption about how to compute the ensemble averages in
Lagrangian space. Namely, it assumes that, for Gaussian initial conditions, this
average is over a Gaussian probability distribution function. However, although
averaging over the initial (Gaussian) pdf is technically correct for peaks, it is
known to be incorrect for patches which are destined to form halos [208]. This is
because, in the excursion set definition of halos, δL is required to be less than δc
on all scales L larger than that on which the halo was defined: this constraint on
all larger scales is, in effect, a nonlocal requirement. In practice, this means that
the use of a Gaussian distribution for δL is, formally, inappropriate. As shown
in Ref. [208] (see their Eq. (17)), a more careful treatment of this averaging,
with the appropriate replacement of the Gaussian pdf yields

δc
ξ̄×
σ2
L

= H2(ν) + (ν2
10 + 1) erfc(ν10/

√
2)−

√
2ν2

10/π e
−ν2

10/2, (5.42)

where ν2
10 = ν2 (σ2

h/σ
2
L − 1). When σL � σh, this expression asymptotes to

ξ̄× → b1 σ
2
L (recall that b1 = H2(ν)/δc), but in general the simple constant

linear bias of the cross-correlation function between halos and mass is spoilt.
E.g., as σL → σh, the cross-correlation ξ̄× tends to δc.

It is a simple matter to extend this analysis to see how averages over the
higher order Hermite polynomials associated with the higher order bias factors
are modified, but this is beyond the scope of the present work. Measurements
in simulations are needed to see if the range of scales over which the simple
Gaussian averaged estimate is accurate – and hence all the power of the Hermite
polynomials – is large enough to be interesting.

5.1.5 Discussion

In local bias models it is assumed that the biased field 1 + δb can be written
as a function of the underlying density field at the same position. We showed
that, if the underlying field is Gaussian, then the cross-correlation between the
biased field and the original one is linearly proportional to the auto-correlation
function of the original field. This is an exact result, valid on all scales, and is
not a consequence of truncating expansions, etc., as most previous treatments
assume. While this is implicit in some previous work (e.g. Ref. [189]), it has not
been highlighted before.

If one has been careful to ensure that 〈1 + δb〉 = 1 (by using Eq. (5.6) rather
than Eq. (5.5)), then the constant of proportionality is easily related to the first
coefficient of the Taylor series expansion of the biased field, although they are
not equal in general (Eq. (5.24)). In addition, we showed that, to leading order,
the ratio of the square of the cross-correlation to the auto-correlation of the
bias tracers equals the correlation function of the underlying field (Eqs. (5.27)
and (5.17)).

We also explored the consequences of truncating these expansions, demon-
strating that it is better to renormalize all truncated expansions (Eq. (5.28))
than to not. In this respect, our results agree with Ref. [206]. Indeed, although
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our work has concentrated on Lagrangian bias, the multiplicative normalization
(our Eq. (5.6)) also holds also for Eulerian mass field, although providing an
explicit expression when the mass field is not gaussian is more complicated (see
Ref. [206] for the implications in Fourier space).

Expanding the biased field using Hermite polynomials rather than powers
of the overdensity, as was done by Ref. [205], provided a easy way to see a
number of our results for local bias in the initial, Lagrangian, Gaussian field.
Although the coefficients Bk of this expansion are functions of the scale on which
the bias transformation is applied (Eq. (5.33)), for the Lognormal distribution,
as well as for excursion set halos, the scale dependence of these coefficients
is trivial: Bk = bkσ

k
L (Eq. (5.39)), where bk are the scale-independent peak-

background split bias factors. (The Lognormal has bk = bk, whereas excursion
set halos have bk given by Eq. (5.38).) Therefore, if one expands the (Lagrangian
space) halo auto-correlation function in powers of the mass correlation, then the
coefficient of the kth order term in the expansion is simply b2k (Eq. (5.36)). These
coefficients for the expansion of 1+ξhh in powers of ξLL are independent of scale
L, even though the bias coefficients in the Taylor expansion of the field 1+δh(δL)
itself do ‘run’ with L. This property of halo bias in Lagrangian space has not
been emphasized before.

The ‘running’ of the 1 + δh(δL) bias factors is most easily understood by
noting that the Hermite polynomials arise naturally if one phrases the question
of local bias in Fourier rather than real space [193], a connection made recently
in Ref. [210, in particular, their Appendix B]. Moreover, Ref. [193] notes that it
is better to work with ‘renormalized’ parameters cn rather than the original bias
parameters bn (but see Ref. [210] for how this renormalization should actually
be done). In effect, this corresponds to working with our Eq. (5.6) rather than
Eq. (5.5); our analysis shows why this is necessary. This connection to Fourier
space bias is rich, because we showed that the simple relation Bk = bkσ

k
L is not

generic. For the peaks transformation of Eq. (5.18), both bk and Bk ‘run’ with
L. Nevertheless, the Bk satisfy the same relations between the rescaled values
that the original bk (in the peak background split limit) do. Exploring whether
this is generic is the subject of ongoing work.

Unfortunately, although the analysis based on Hermite polynomials is for-
mally correct (and elegant), there are two reasons why, at least for describing
halos, it cannot be valid for all smoothing scales L and separations r. First,
halos do not overlap; this makes ξhh of the halo point process tend to −1 on
scales smaller than ∼ Rh [179]. As a result, this halo exclusion limits the range
in r over which the local model can be applied. The second is that, at least
in the excursion set definition of halos, there is a nonlocal requirement on the
density field: this was the subject of Section 5.1.4, which argued that this mod-
ifies the pdf over which one should compute ensemble averages. Accounting for
this makes the ratio of the halo-mass cross-correlation bias scale dependent (our
Eq. (5.42), which is Eq. (17) of Ref. [208]). The small scale limiting value of
this modified expression yields δc, which is the correct ‘one-halo’ contribution
to the Lagrangian space cross-correlation (the Lagrangian overdensity within a
region which is destined to form a halo equals δc by definition), a fact which has
not been emphasized before. This suggests that averaging over the more appro-
priate pdf not only leads to sensible results, but accounts for halo exclusion as
well, so it may be worth exploring further. This may be particularly interesting
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because, in the large separation limit, it leads to ξhh − b2× ξmm < 0 (Eq. (27) of
Ref. [208]).

There is a third reason why, at least for describing halos, the local bias model
is unlikely to be valid for all smoothing scales L and separations r. This is related
to the fact that the tidal field influences halo formation [214]. The correlation
with the tidal field leads, generically, to nonlocal bias even in Lagrangian space.
This is explored further in Ref. [215], where the nonlocal bias terms are shown
to matter most for massive halos, though the nonlocal effects are subdominant
on large scales.

If the gravitationally evolved nonlinear Eulerian mass field was a locally
biased version of the initial field (it is not), then expanding in Hermite poly-
nomials would also be the prefered way of describing halo bias (assuming the
initial conditions were Gaussian). This is because local Lagrangian bias, with
local nonlinear evolution, leads to local bias with respect to the Eulerian field.
Conversely local bias with respect to the Eulerian field could be mapped back
to local Lagrangian bias (with different bias factors, determined by the local
linear-nonlinear mapping). Some of the scalings which are characteristic of lo-
cal Lagrangian bias will survive in Eulerian bias as well. For example, the
Lognormal transformation has one free parameter b. If we use b′ to model the
nonlinear mass field, and another b to model the biased tracers (incidentally,
this means that one should think of the biased field 1+δb as being the nonlinear
field 1 + δb′ raised to the b/b′ power), then we may interpret our Eq. (5.15) as
the Eulerian space cross-correlation between the biased field and the nonlinear
mass field. Since 〈δbδL|r〉 and 〈δb′δL|r〉 equal b ξLL(r) and b′ ξLL(r) for all r, one
might naively have thought that 〈δbδb′ |r〉 would also be linearly proportional to
ξLL(r). Not only is this not true, Eq. (5.15) shows that it is not proportional
to ξb′b′(r) either. In particular, Eq. (5.15) shows that in this model of local Eu-
lerian bias, the cross-correlation is linearly proportional to the auto-correlation
of the mass only when ξLL � 1 (i.e., for sufficiently large r). See Ref. [192] for
more discussion of this limit of local Eulerian bias.

Recent work has emphasized the fact that because nonlinear evolution is
nonlocal, local Lagrangian bias will lead to nonlocal Eulerian bias, and vice
versa [193, 194, 195, 196]. The Hermite polynomials are the orthogonal poly-
nomials associated with a Gaussian field. Therefore, the usefulness of Szalay’s
work for local Lagrangian bias suggests that, if bias is local with respect to the
nonlinear, non-Gaussian field, then it would be natural to write Eulerian bias
using the orthogonal polynomials of this non-Gaussian field. This is the subject
of work in progress.

Finally, we note that our results depend only on the assumption that the
Lagrangian matter field is Gaussian, so one might have thought that they also
hold for modified gravity models. However, for such models, k-dependence of
the linear growth factor is generic, with the consequence that the assumption
that Lagrangian halo bias is local is no longer so attractive [204].
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Part III

Modifying General
Relativity
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Chapter 6

Alternative theories of
gravity with an extra scalar
degree of freedom

An outstanding problem faced by Modern Cosmology is the recent phase of
accelerated expansion of the Universe [18, 19]. In the context of General Rela-
tivity, it is possible to explain the cosmic acceleration adding an extra ingredient
in the energy budget of the Universe. As discussed in Section 3.2, one can in-
terpret the acceleration as the consequence of the negative pressure due to the
inclusion of an extra fluid component, Dark Energy, which could be dynamical
or constant (which includes Λ). In this case, Einstein’s Equations are modified
by adding an extra matter tensor accounting for the DE. The model which best
describes the physical phenomena and accounts for cosmological observations
is the ΛCDM (see Chapter 2). Despite its success, the need to go beyond the
standard cosmological model stems from some outstanding problems (see Chap-
ter 3). Moreover, GR description of space and time breaks down on scale around
the Planck scale, where the theory can not be reconciled with quantum gravity.

One option is to consider these problems as a signal of the first real lack
of our understanding of gravity and look for alternatives to General Relativity.
In the following, we will refer to them as Modified Gravity Theories (MG). In
this regard, several options can be taken into account. A good point to start is
Lovelock’s Theorem (Section 1.2) which gives us the following options,

1. include extra fields in the Lagrangian,

2. allow for higher order field equations,

3. break diffeomorphism invariance in the action,

4. assume higher than 4 dimensions for the space-time.

Considering one or more of these modifications, one can obtain field equations
which differ from those of General Relativity. A plethora of models which al-
low for modifications in the gravity sector have been proposed and analyzed

69
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in the past years. We refer the reader to the following reviews and references
therein [216, 217, 14, 218, 15]. Let us briefly comment on the above points.

Extra fields in the Lagrangian can be scalars, vectors or tensors. Variation
of the action w.r.t. the extra field(s) leads in general to an additional dynamical
equation for the corresponding field(s). It is important to stress that usually
modifications to GR involve only the gravitational action as matter fields are
strongly constrained to be minimally coupled to metric only, due to the Equiv-
alence Principle. Examples of MG theories with one extra scalar field are the
Brans-Dicke theory [219] and Galileons [220, 221]. We will discuss them in de-
tail respectively in Sections 6.1 and 6.2. Here, we want to note that although
they have an additional field, their field equations remain of second order in the
metric and the field. In particular the Galileon theory is the most general scalar
field theory with field equations at second order. Moreover, the Galileon theory
has been further generalized to include multi-scalar fields [222]. An example of
theory which include a scalar and a vector field is TeVeS [157]. This theory is
the relativistic generalization of the MOND paradigm, which modifies the New-
ton’s law of gravity on small scales (see Part II). Furthermore, we mention also
the Einstein-Æther theory [223] which includes in the action both a metric and
a unit timelike vector field named æther. The introduction of a dynamical unit
timelike vector breaks Lorentz symmetry. The resulting model allows to inves-
tigate the gravitational and cosmological effects of the æther. Finally, adding
tensor fields in the action allows to construct massive spin 2 gravity theories,
such as Massive Gravity [224].

The second option is to consider higher (than second) order field equations.
This choice includes more degrees of freedom (DoFs) in the theory as more prop-
agating modes appear. From a mathematical point of view higher order partial
differential equations are more complicated to deal with and shortcomings can
arise, e.g. Ostrogradski’s instability [8]. An example of theory with higher order
field equations is the f(R) theory [225]. It is a generalization of the Einstein-
Hilbert action with a general function of the Ricci scalar which has 4-th order
field equations in the metric tensor. However, let us note that f(R) theory can
be considered an exception as it can be recast in second order field equations
being a special case of the Brans-Dicke theory [226] (see Section 6.1.1). This
formulation makes explicit the extra dynamical DoF in the form of a scalar field
and avoids the Ostrogradski’s instability. Although very rarely, higher-order
equations do not always lead to ghost instabilities.

The third option is to break diffeomorphism invariance. On the other hand,
it is well known that diffeomorphism invariance can be restored by means of the
Stückelberg technique [16]. It introduces a new field usually called Stückelberg
field. This technique has been recently used in the formulation of the effective
field theory of Inflation [80, 227] and cosmic acceleration [228, 229].

Finally, we comment about theories constructed in higher dimensions. Some
examples are the Dvali-Gabadadze-Porrati (DGP) [230] and the Kaluza-Klein
[231, 232, 233] theories, which generalize the GR action up to 5-dimentions.
The Galileon theory has been also generalized to n-dimentions (and to multi-
scalar fields) [222]. However, only 4-dimentions have been detected and in order
to study low energy phenomena, the 4-dimentions effective description of such
theories is sufficient.
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Other modifications to General Relativity can be also considered. One can
think to add non-local term in the action [234, 235, 236] or to add non dynamical
field(s) in the action, as in the case of Auxiliary field(s) [237, 225, 238, 239,
240]. In this case an auxiliary field is algebraically determined by the field
equations. However, in this thesis we will focus exclusively on theories with an
extra (dynamical) scalar field in the actions or theories with higher order field
equations.

Let us note that the division between models of DE and MG is not very
stringent. When the modification in the gravitational action is induced by
a scalar field, the equation obtained varying the action w.r.t. the field can be
recast in a fluid form. The simplest example is the Quintessence model. Usually,
this model is included in the DE class as it can be described with a dynamical
equation of state. Actually, the pressure and the density of the fluid are due
to the inclusion of a scalar field in the action which modifies the dynamics
of the gravity (see Section 3.2.3). The same happens for Galileons where the
modification of the extra field can be written in terms of an imperfect fluid [241].

As discussed above, modifications of gravity introduce additional DoFs.
These extra DoFs need to be suppressed on Solar System scale where GR is
well tested and where no extra DoFs have been found [242, 243]. Therefore,
most viable MG models with extra scalar field(s) exhibit screening mechanisms
able to hide the modification on Solar System scales in order to be consistent
with local gravity experiments. There are different types of screening mech-
anisms [15], and they are classified depending on the nature of the physical
interaction of the DoF, they are:

• Chameleon mechanism [244, 245, 246, 247]: This mechanism works in an
environmental dependent way. The field’s mass depends on the local en-
ergy density and in high energy density local environments, such as the
Solar System, it is very large. As consequence, when the mass is high,
the fifth force is suppressed. Therefore, the field is hidden in high energy
density environments. On the contrary, in low energy density environ-
ments (as it is on cosmic scales) the field is very light and the fifth force
is at play. Example of theories with such a mechanism are Scalar-Tensor
theory [248, 249] and f(R) theory [250, 251].

• Vainshtein mechanism [252]: this mechanism is regulated by the non-linear
self interaction of second derivatives of the field, which become important
near a massive source. This results in hiding the modification to gravity in
high energy density environments. Examples are the Galileon models [220]
and Massive Gravity [224, 253, 254].

• k-mouflage mechanism [255]: It works as the Vainshtein mechanism with
the difference that the screening is due to the first derivative interaction
of the field.

• Symmetron mechanism [256, 257]: it depends on the vacuum expectation
value, which in turn depends on the mass density. In local environments
where the energy density is high this value is low and vice versa. As the
scalar field couples to matter via the vacuum expectation value, it results
to be decoupled from the matter in high energy density environment, hence
it is hidden.
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In theories that exhibit such mechanisms, modifications of the gravitational
interaction become important only at large scales. It has become increasingly
evident that the dynamics of perturbations can offer precious information to
discern among candidate models, breaking, at least partially, the degeneracy
that characterize them at the background level [258, 246, 259, 260, 261, 262,
263, 264, 265]. Ongoing and upcoming cosmological surveys will map matter
and metric perturbations through different eras with exquisite precision. Com-
bined with geometric probes, they will provide us with a set of independent
measurements of cosmological distances and growth of structure. In the cosmo-
logical standard model, the rate of linear clustering can be determined from the
expansion rate of the Universe; however this consistency relation is generically
broken in models of MG and DE, even when they predict the same expansion
history as ΛCDM. Therefore measurements of the growth of structure, such as
weak lensing and galaxy clustering, add complementary constraining power to
measurements of the expansion history via geometric probes. They can be used
to perform consistency tests of ΛCDM as well as to constrain the parameter
space of alternative approaches to the phenomenon of cosmic acceleration.

Over the past years there has been a lot of activity in the community to
construct frameworks that would allow model-independent tests of gravity [266,
200, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281,
282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298,
299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309] with cosmological surveys
like Planck [34], SDSS [22], DES [310], LSST [311], Euclid [312], WiggleZ Dark
Energy Survey [313, 314] and CFHTLenS [315, 316, 317]. These are generally
based on parametrizations of the dynamics of linear scalar perturbations, either
at the level of the equations of motion, e.g. Ref. [298], of solutions of the
equations, e.g. Refs. [270, 280, 295], or of the action, e.g. Refs. [318, 228, 229],
with the general aim of striking a delicate balance among theoretical consistency,
versatility and feasibility of the parametrization.

6.1 Scalar-Tensor Theory

A standard class of alternatives theories of gravity is represented by Scalar-
Tensor Theory [248, 249], whose action is given by

SST =
1

16πG

∫
d4x
√
−g
(
φR− ω(φ)

φ
∂µφ∂µφ− V (φ)

)
+ Sm[gµν , χm] (6.1)

where ω(φ) is a function of the scalar field φ and V (φ) is a potential. For scalar
tensor theories the modification of gravity is introduced by adding a scalar field
in the action, which also includes a non minimally coupling between the field
and the curvature. Variation of the action w.r.t. the metric led to the following
equations

Gµν =
8πG

φ
Tmµν +

ω(φ)

φ2

(
∂µφ∂νφ−

1

2
gµν∂λφ∂

λφ

)
+

1

φ
(∇µ∇νφ− gµν�φ)− V (φ)

2φ
gµν . (6.2)
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Combining the variation of the action w.r.t the scalar field with the trace of
Eq. (6.2) leads to

�φ =
1

3 + 2ω

(
8πGTm + φ

dV

dφ
− 2V − dω

dφ
∂σφ∂σφ

)
. (6.3)

The scalar field equation relates the scalar field to the matter tensor which actu-
ally acts as a source for φ. Eqs. (6.2) describe the dynamics of the gravitational
field. Action (6.1) and the Eqs. (6.2)-(6.3) are the generalization of the Brans
and Dicke’s theory (1961) [219], which can be obtained as the subclass of the-
ories for which ω(φ) = ωBD is a constant and V (φ) = 0. Furthermore, it has
been shown that ω(φ) = 0 corresponds to f(R) theory [226].

Constraints coming from Solar System can be imposed on the theory. Let
us consider as a working example the case ω = ω0 be a constant and a po-
tential of the form V (φ) = m2(φ − φ0)2, where m and φ0 are two constants.
A generalization to a general potential can be found in Ref. [319]. Performing
the newtonian approximation of this model, we can define the following post
newtonian parameter (PPN) [320]

γ =
2ω0 + 3− e−meffr

2ω0 + 3 + e−meffr
, (6.4)

where the effective mass is

meff ≡
∂2V

∂φ2
=

√
2φ0

2ω0 + 3
m. (6.5)

In GR the PPN parameter γ is equal to 1. From Eq. (6.4), γ approachs to 1
when ω0 →∞ or meff →∞. In these cases Einstein’s Equations are satisfied.
This parameter is strongly constrained by current observations in the Solar
System [242, 243]

γ − 1 = (2.1± 2.3)× 10−5. (6.6)

(6.7)

From this constraint, if we consider m = 0 it is possible to set a lower bound on
ω0

ω0 > 40000, (6.8)

which makes the theory indistinguishable from GR at all scales and hence un-
appealing for cosmological purposes. This bound is still applicable in the most
general case of V (φ) 6= 0 or even when ω is a general function. However in that
case the effective mass should be very light.

6.1.1 f(R) Theory

A simple modification to General Relativity is the inclusion of a general function
of the Ricci scalar f(R) in the action [225, 238]. Let us briefly review the most
important aspect of the f(R) theory.

We consider the following Lagrangian in Jordan frame

S =

∫
d4x
√
−g [R+ f(R)] + Sm[gµν , χm] , (6.9)
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where f(R) is a generic function of the Ricci scalar and the matter sector is
minimally coupled to gravity. Variation of the action w.r.t. the metric gives the
following equations

(1 + fR)Rµν −
1

2
[R+ f(R)]gµν − [∇µ∇ν − gµν�] fR =

κ

2
T (m)
µν , (6.10)

with trace equation given by

3�fR + fRR− 2f(R)−R =
κ

2
T (m) , (6.11)

where fR ≡ df(R)/dR. Let us note that we have used the metric formalism in
deriving the field equations. A different approach is the one of Palatini [321], in
which the metric tensor gµν and the Γαµν are considered independent from each
other. Then, the above equations differ from the ones obtained in the Platini
formalism. In what follows, we will focus on the metric approach.

The trace equation can be written as a second order equation with an effec-
tive potential Ueff

�fR =
1

3

{κ
2
T (m) − fRR+ 2 [R+ f(R)]

}
≡ ∂Ueff

∂fR
, (6.12)

where one can define the effective mass as

m̃2
eff =

∂2Ueff
∂f2

R

=
1

3

[
1 + fR
fRR

R

]
. (6.13)

The range of the fifth force, due to the modification of the action, is described
by the Compton wavelength

λC =
2π

m̃eff
, (6.14)

then when the mass is large the fifth force is suppressed as it acts at very small
distances, hiding the modifications. On the contrary, when the mass is light,
for examples at cosmic scales, λC is very large and the modification is at play.
This is how the Chameleon mechanism works.

The fifth force is the manifestation of the presence of an extra dynamical
DoF. A clear approach to figure out which is the dynamical DoF, is to consider
the following action

S =

∫
d4x
√
−g [ψ + f(ψ) + φ(R− ψ)] + Sm[gµν , χm] . (6.15)

Varying the action w.r.t. φ, we get R = ψ, then this action is dynamical
equivalent to action (6.9). The variation w.r.t. ψ yields φ = 1 + f ′(ψ) where
prime is the derivative w.r.t. ψ. Then, the action can be written as

S =

∫
d4x
√
−g [φR− V (φ)] + Sm[gµν , χm] . (6.16)

where V (φ) = f ′(ψ) − f(ψ). From this action we can infer that: 1) the extra
DoF is φ = 1 + fR, 2) it is equivalent to action (6.1) for ω = 0, 3) the field
equations now are of the second order then the theory avoids Ostrogradski’s
instability, as previous stated.
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In the last decades, f(R) theory has been extensively studied in cosmol-
ogy in order to explain the late time acceleration and as an alternative to the
quintessence model in the early inflationaly epoch. Starobinsky in 1980 [322]
proposed a model with f(R) = αR2 to describe the early expansion, for which
once the condition αR2 << R is satisfied, inflation can end. Moreover, it has
been shown that the Starobinsky model is consistent with the observed CMB
temperature anisotropies, confirming it as a viable alternative [47]. In the case of
the late time cosmic expansion, several models for the form of the f(R) function
have been proposed, some of them have been ruled out by both Solar System
and cosmological tests, such as f(R) = α/Rn with α > 0 and n > 0 [238].
Finally, it has been pointed out that the conditions for a viable f(R) models
are [264] 1) 1 + fR > 0 as Geff = G/(1 + fR), 2) fRR > 0 for fRR << R to
avoid tachyonic instabilities, 3) fR < 0 from BBN and CMB constraints and
finally 4) |fR| today should be less than 106.

6.2 Generalized Galileon Theory

Galileon models were originally introduced as an effective, infrared gravitational
modification which can lead to self-accellerating solutions [220]. The first for-
mulation has been obtained as the decoupling limit of the DGP model [230], for
which the 3+1-dimentions Minkowski space is embedded in a 4+1-dimentions
Minkowski space. The modification to General Relativity is obtained introduc-
ing the “Galileon”, a scalar field with a galilean(-like) symmetry φ→ φ+bµx

µ+c
(bµ, c being constant), hence the name of this new class of theories.

The Galileon Lagrangian contains more than two derivatives but nevertheless
leads to second order equations of motion, thus avoiding Ostrogradski ghosts [8].
The generic structure of the Galileon Lagrangian is

Ln ∼ ∂φ · ∂φ
(
∂2φ

)n−2
, (6.17)

up to n = 5, as higher order Lagrangians are total derivatives.

Coupling the Galileon covariantly to gravity and insisting on the requirement
that the scalar and the metric satisfy second order equations, forces one to
abandon galilean symmetry [221], ordinary shift symmetry φ → φ + c can be
retained [323] or abandoned as well. In the Covariant Galileon formulation,
extra terms non minimally coupled to the metric appear in the action. Finally,
a more general covariant action have been constructed in Ref. [324, 325], which
allows also to explore modifications to gravity coming from extra dimentions. It
is known as Generalized Galileon action. The 4-dimensional version of the action
given in Ref. [325] has been shown [326] to be equivalent to the most general
action for a scalar coupled to gravity that leads to second order equations of
motion, given by Horndeski in the 1970s [327]. The Galileon model has also
been generalized in various other directions, see e.g. Refs. [328, 329, 330, 331,
332, 333, 334, 335] and references therein.

The 4-dimentions action for Generalized Galileon is

S =

∫
d4x
√
−g

5∑
i=2

(Li) , (6.18)



76 CHAPTER 6. MODIFIED GRAVITY THEORIES

with

L2 = K(φ,X), (6.19)

L3 = −G3(φ,X)�φ, (6.20)

L4 = G4(φ,X)R+G4X

[
(�φ)

2 − (∇µ∇νφ)
2
]
, (6.21)

L5 = G5(φ,X)Gµν∇µ∇νφ−
G5X

6

[
(�φ)

3 − 3 (�φ) (∇µ∇νφ)
2

+ 2 (∇µ∇νφ)
3
]
,

(6.22)

where K(φ,X) and Gi(φ,X) are general functions of φ and X = −∂µφ∂µφ/2.
We will refer to them as galileon functions and a subscript φ or X denotes partial
differentiation respectively w.r.t. φ or X 1. Varying the action w.r.t. the metric
and the scalar field, one obtains the equations of motion for the metric, to which
we will refer to as Einstein’s Equations and the scalar field equation. For sake
of brevity, here we do not rewrite these equations, while we refer the reader to
Ref. [326].

The Generalized Galileon formulation allows a model independent analysis
of a large class of single field modified gravity models. In fact, particular choices
of the galilean functions correspond to well known models, such as

• For K 6= 0 and Gi = 0, we recover k-inflation [79]

• Generalized Brans-Dicke theories [336]

K = B(φ)X, G3 = ξ(φ)∂µφ∂µφ, G4 = F (φ), G5 = 0, (6.23)

where B(φ), ξ(φ) and F (φ) are functions of the scalar field.

• Covariant Galileon [221]

K = c2X, G3 = c3X, G4,X = c4X, G5,X = c5X, (6.24)

with ci = const. For c4 = c5 = 0 one has the Cubic Covariant Galileon [221].

The interest in these theories arises in the possibility to describe the early
time Inflation epoch [337, 323, 338, 339, 326, 340, 341, 342, 343, 344, 345] as
well as to account for the late time acceleration [346, 347, 348, 349, 350, 351].
There are some known novel features in such scenarios: to name a few, the
null energy condition can be drastically violated without developing instabili-
ties [337]; a large tensor-to-scalar power spectrum ratio is allowed [323]; there
are new shapes of the three-point function and potentially large four-point func-
tion [339]. Moreover, Galileon theories exhibit a screening mechanism on small
scale, the so called Vainshtein mechanism [252, 352]. The field φ decouples from
matter due to its non-linear derivative self-interactions which become important
in local high energy density environment. This mechanism allows these theo-
ries to recover GR on length scale smaller than the Vainshtein radius. Let us

1Let us explicitly define:

(∇µ∇νφ)2 = ∇µ∇νφ∇µ∇νφ ,
(∇µ∇νφ)3 = ∇µ∇νφ∇ν∇λφ∇λ∇µφ .
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explain it with an example [15, 353, 354]. We consider the Lagrangian of the
Cubic Galileon

Lφ = −3(∂φ)2 − 1

Λ̂3
(∂φ)2�φ+

β

m0
φT (m) (6.25)

where β parametrizes the gravitational coupling and Λ̂ is the strong-coupling
scale of the theory. We expect that the term (∂φ)2�φ/Λ̂3 becomes important
near a massive source in order to screen the Galileon field. The spherically-
symmetric profile for the scalar field, i.e. φ = φ(r) can be obtained analytically
from the field equations around a static point source of mass M with T (m) =
−Mδx̄ by solving

6φ′ +
4

Λ̂3

(φ′)2

r
=

βM

4πr2m0
, (6.26)

where prime is the derivative w.r.t. the radial coordinate. By computing the
solution far from and close to the source we can define the Vainshtein radius as
the radius at which the transition between this two regime occurs,

rV ≡
1

Λ̂

(
βM

m2
0

)1/3

. (6.27)

Let us also define a classical parameter which will allow to understand in which
regime non-linearities become important

αcl ≡
∂2φ

Λ̂3
. (6.28)

Far from the source we have

φ′(r >> rV ) ∼=
β

3

M

8πm0r2
, (6.29)

and the force due to the Galileon field w.r.t that of newtonian gravity is

Fφ
FN
∼ β2

3
(6.30)

where the force mediated by the scalar field has been defined as ~Fφ = β
m0

~∇φ.
The classical parameter is

αcl ∼
(rV
r

)3

<< 1, (6.31)

then non-linearities are unimportant. Near the source, we have

φ′(r << rV ) ∼ 1√
r
, (6.32)

and the ratio between the Galileon force and the newtonian one is

Fφ
FN
∼
(
r

rV

)3/2

<< 1, (6.33)

Than, the Galileon force is strongly suppressed on scales smaller than the Vain-
shtein radius, and

αcl ∼
(rV
r

)3/2

>> 1. (6.34)

Then ∂2φ >> Λ̂3 as it should be, near a massive source.
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6.3 Gradient expansion of superhorizon pertur-
bations

Inflation is a powerful paradigm that addresses various fine-tuning problems in
the early Universe and accounts for the nearly scale invariant primordial pertur-
bations that are needed for structure formation. As we extensively discussed in
Section 3.1.1, substantial non-Gaussianity can be generated in inflation models
with multiple scalar fields or with non-canonical kinetic terms. Furthermore,
if the slow-roll condition is temporarily violated, large non-Gaussianity can be
generated even in a single field model [78]. In this respect, non-Gaussianity can
be used to rule out or constraint different inflationary models. All Inflationary
models have to deal with the recently released results by Planck Collaboration
[83] that are consistent with a Gaussian spectrum of primordial perturbations.

To tackle non-Gaussianity from inflation models, traditional linear pertur-
bation theory is inadequate. A natural approach is to go beyond the linear
order and work with second order cosmological perturbation theory [355, 356,
357, 358, 359, 360, 361]. While this approach usually applies to primordial per-
turbations up to the horizon exit, an alternative approach naturally tackles the
superhorizon perturbations — gradient expansion [362, 363, 364, 365, 366, 367,
368, 369, 370, 371, 372, 373, 374]. In gradient expansion, physical quantities are
expanded in terms of their inverse wavelengths, as compared to a pivotal length
scale (ε ∼ Lp/Lphys), so every spatial derivative adds one perturbative order,
∂i ∼ ε, hence the name. This is different from usual cosmological perturbation
theory where the expansion is in terms of perturbative field amplitudes. In
the context of cosmology, particularly in the inflationary epoch when physical
modes are stretched well outside the quasi-constant Hubble horizon, the Hub-
ble length can be naturally chosen as the pivotal length scale. Therefore, this
approach can be used to evaluate and evolve non-Gaussiantites at superhorizon
scales, complementary to usual non-linear perturbation theory. The leading or-
der gradient expansion is often called the separate universe approach [375] or
δN formalism [376, 377], which is sufficient for many purposes. However, the
next-to-leading order gradient corrections can be as important, for example, in
some multi-field models or when the slow-roll condition is violated [378, 374].
A beyond-δN formalism scheme has recently been proposed [374].

In Ref. [379], with S. -Y. Zhou and T. P. Sotiriou, we developed the super-
horizon gradient expansion formalism for G-inflation [323], up to second order
in gradient expansion. We focus on the subclass of actions for which the scalar
enjoys shift symmetry (φ → φ + c), as they are closer to the original idea of
the Galileon and significantly simpler. Additionally, this will allow to explore
the phenomenology associated with the non-linear derivative interactions of the
scalar. Abandoning shift symmetry leads, amongst other terms, to allowing a
potential for the scalar, which can lead to similar phenomenology and, therefore,
obscures the role of the Galileon-type terms.

During the preparation of our paper [379], Ref. [373] appeared, which also
develops the superhorizon gradient expansion formalism for G-inflation without
assuming shift symmetry. However, there are major differences: On the techni-
cal side, we work in the synchronous gauge, while Ref. [373] prefers the uniform
expansion gauge; On the more substantial side in Ref. [373] it is assumed that
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∂thij(t, x) (see Eq. 6.64) is O(ε2), while we do not impose such condition. In
this respect our results are more general.

The work is organized as follows. In Section 6.3.1 we perform 3 + 1 decom-
position of the equations of motion. In Section 6.4 we present the model we use
to perform the analysis. In Section 6.4.1, we establish the gradient expansion
orders of relevant quantities. The equations of motion are solved up to O(ε2)
and the general solution is summarized in Section 6.4.2,. In Section 6.4.3, we
simplify the general solution in the de Sitter limit. Note that in Section 6.4.2,
Section 6.4.3 and Appendix B, we mostly suppress the background quantities’
order indication (0) to simplify the equations. We conclude and discuss some
future perspectives in Section 6.4.4.

6.3.1 ADM formalism

In order to perform the gradient expansion formalism, it is useful to decompose
the equations of motion according to the Arnowitt-Deser-Misner (ADM) pre-
scription [380, 381, 382, 383, 384]. The formalism supposes a 3+1 decomposition
of the space-time, then the metric can be written as

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt), (6.35)

where N and Ni are respectively the lapse and shift functions, and γij is the
three dimensional metric. To reduce redundant gauge degrees of freedom and
simplify equations, we make use of a gauge condition:

N = 1, N i = 0, (6.36)

which implies

gtt = −1, gti = 0, gij = γij , (6.37)

gtt = −1, gti = 0, gij = γij . (6.38)

Here latin indices (except for t) run from 1 to 3 and they are raised and lowered
with γij and γij respectively. This is called synchronous gauge, where the proper
time distance between two neighboring hypersurfaces along the normal vector
coincides with the coordinate time distance (N = 1, proper time slicing) and
the spatial coordinates are such that clocks are synchronized between different
hypersurfaces (N i = 0). In synchronous gauge, equations can be very much
simplified. Note, however, that there is residual gauge freedom, which will be
discussed in Section 6.4.2.

Now, the spatial γij can be considered as a fundamental dynamical variable.
Another fundamental variable after the 3 + 1 decomposition is the extrinsic
curvature, which in synchronous gauge is simply

Kij = −Γtij = −1

2
γ̇ij , (6.39)

and its trace is defined as K = γijKij . It is useful to decompose the spatial
metric and the extrinsic curvature as

γij = a2(t)e2ζ(t,x)hij(t,x), (6.40)

Kij =
1

3
K(t,x)δij +Aij(t,x), (6.41)
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where a(t) is the scale factor of the fiducial FLRW background, ζ(t,x) is related
to the curvature perturbation, hij(t,x) is defined to have a unit determinant
det[hij ] = 1, and Aij is the traceless part of Kij . These definitions lead to the
following relations

K = −3

[
ȧ

a
+ ζ̇

]
, (6.42)

ḣij = −2hikA
k
j . (6.43)

To decompose the equations of motion, we make use of some well-known
results which do not make reference to any specific gauge. Using the ADM
variables, the unit normal 1-form and vector can be written respectively as
nµ = (−N, 0, 0, 0) and nµ = (1/N,−N1/N,−N2/N,−N3/N). Making use of
the Gauss-Codazzi relations (see e.g. Ref. [385]), we can write the Ricci tensor
and Ricci scalar respectively as

Rµν = nµnν

(
1

N
LmK +

1

N
∇λ∇λN −KρσKσρ

)
− 2n(µ∇ν)K + 2n(µ|∇σKσ|ν)

− 1

N
LmKµν −

1

N
∇µ∇νN + [3]Rµν +KKµν − 2KσµKνσ, (6.44)

R = [3]R+K2 +KρσKσρ −
2

N
LmK −

2

N
∇σ∇σN, (6.45)

where mµ = Nnµ, Lm is the Lie derivative along mµ, [3]R the Ricci scalar, and
[3]Rµν the Ricci tensor of the spacelike hypersurfaces. In the next Section we
also make use of the Laplacian, which is decomposed as

�φ = −nρ∂ρ(nσ∂σφ) +Knσ∂σφ+∇σ lnN∂σφ+∇σ∇σφ, (6.46)

where φ is a scalar field.

6.4 G-Inflation with shift symmetric Galileon

Among the most general action for shift-symmetric generalized Galileon mod-
els, we consider the simplest one which includes the characteristic “Galileon
interactions”, i.e. terms that contain second order derivatives of φ

S =

∫
d4x
√
−g
(
m2

0

2
R+K(X)−G3(X)�φ

)
, (6.47)

without assuming any specific forms for the unspecified functions K(X) and
G3(X). Even though it is not the most general action, it is closer to the original
idea of Galileon and it allows to explore the phenomenology associated with the
non-linear derivative interactions of the scalar field, avoiding the presence of a
potential for the scalar that may mask or imitate the real field interaction. This
action was firstly considered in Ref. [350].

The equations of motion, to which we will refer to as the Einstein equations,
reduce to

m2
0Gµν = Tφµν , (6.48)
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with

Tφµν = (KX −G3X�φ)∂µφ∂νφ− 2∂(µG3∂ν)φ+ gµν(K + ∂σG3∂
σφ). (6.49)

Note that the energy momentum tensor takes the form of an imperfect fluid [241],
thus this model does not fall under the existing formalism for a perfect fluid.

Thanks to the shift symmetry, the equation of motion for φ can be given in
terms of the current

Jµ = (KX −G3X�φ)∂µφ−G3X∂
µX, (6.50)

as
∇µJµ = 0. (6.51)

It is worth mentioning that the scalar equation of motion is implied by the Ein-
stein equations, i.e., once the Einstein equations are satisfied, the scalar equa-
tion of motion is automatically satisfied. In fact, this applies to any covariant
scalar-tensor system, as we show in Appendix A.

In the synchronous gauge (N = 1, N i = 0), the Einstein equations are
greatly simplified:

m2
0Gtt = Tφtt, (6.52)

m2
0Gti = Tφti , (6.53)

m2
0G

i
j = Tφ|ij , (6.54)

with

Gtt =
1

2

(
[3]R+K2 −KijK

j
i

)
, (6.55)

Gti = −∇̄kKki + ∇̄iK, (6.56)

Gij = [3]Gij − K̇ij +KKij −
1

2
δij

(
−2K̇ +K2 +Kkl Klk

)
, (6.57)

Tφtt = KX φ̇
2 −K −G3X�φφ̇

2 −G3X φ̇Ẋ −G3X∂kX∂
kφ, (6.58)

Tφti = KX φ̇∂iφ−G3X�φφ̇∂iφ−G3XẊ∂iφ−G3X∂iXφ̇, (6.59)

Tφ|ij = KX∂
iφ∂jφ−G3X�φ∂

iφ∂jφ−G3X∂
iX∂jφ−G3X∂

iφ∂jX

+
(
G3X∂

kφ∂kX +K −G3XẊφ̇
)
δij , (6.60)

where �φ = −φ̈+Kφ̇+∇σ∇σφ. The scalar equation of motion is given by

∂µJ
µ +

1

2
∂µ ln γJµ = J̇ t + (3H + 3ζ̇)J t + 3∂iζJ

i + ∂iJ
i = 0, (6.61)

where γ = det[γij ] and H = ȧ/a is the usual Hubble parameter.

6.4.1 Gradient expansion method: order analysis

In standard cosmological perturbation theory one expands perturbatively in
the field amplitudes. To tackle non-Gaussianities in inflation models, second
order perturbation theory is often used within the Hubble horizon. However,
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for physics processes at superhorizon scales one usually resorts to the gradi-
ent expansion technique. Note that the separate universe approach or the δN
formalism is simply the leading order gradient expansion [386]. Assuming the
characteristic spatial length is Lphys, the dimensionless perturbative expansion
parameter is

ε ∼ H−1

Lphys
� 1. (6.62)

This means in particular that every spatial partial derivative carries an order of
ε

∂i ∼ O(ε), (6.63)

while the time derivative is considered O(ε0). The superhorizon gradient expan-
sion is complimentary to the usual non-linear cosmological perturbation analysis
and may capture fully nonlinear (in terms of the field amplitudes) physics at su-
perhorizon scales, while the equations are still tractable due to the perturbative
approach.

To perform the superhorizon perturbation analysis, we first need to deduce
the starting orders for various quantities of interest. First, note that the equa-
tions of motion at O(ε0) should simply determine the evolution of the scale
factor a(t) and the scalar, as the space-time is supposed to be described by an
FLRW line element. Given the definition (6.40), one can infer that hij should

start with h
(0)
ij (x); otherwise the O(ε0) equation would pick up terms involv-

ing ∂th
(0)
ij (t,x), which is non-FLRW. From the scalar’s equation of motion Eq.

(6.61), we can infer that at O(ε0) the scalar field should be spatially homoge-
neous, meaning that φ starts with φ(0)(t). Unlike previous work on this subject
(see e.g. Ref. [373]), we do not impose any conditions on the higher orders of
these quantities. Therefore, we have

starting order of ḣij = O(ε), (6.64)

starting order of ∂iφ = O(ε2). (6.65)

Expanding Eq. (6.43) perturbatively (for n ≥ 1)

ḣ
(n)
ij = −2

n−1∑
p=0

h
(p)
ik

(
A(n−p)

)k
j

(6.66)

and making use of Eq. (6.64), we can infer that

starting order of Akj = O(ε). (6.67)

Expanding Eq. (6.53), we infer that

∂iK(0) = 0. (6.68)

Therefore, K(0) is a function of t. From the definition (6.42), and given that one
can always redefine the scalar factor a(t) to absorb ζ(0)(t), it follows that

starting order of ζ̇ = O(ε), (6.69)

K(0) = −3
ȧ

a
= −3H(t), (6.70)

K(n) = −3ζ̇(n), n ≥ 1, (6.71)
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where H(t) is the usual Hubble parameter.

Using Eq. (6.65), we may expand X as

X = X(0)(t,x) +X(1)(t,x)ε+X(2)(t,x)ε2 +O(ε3), (6.72)

where

X(n) =
1

2

n∑
p=0

φ̇(p)φ̇(n−p) +O(ε4). (6.73)

We also need to perturbatively expand functions of X, such as K(X). To this
end, we should consider X = X(ε) according to Eq. (6.72) and Taylor-expand,
for example, K(X(ε)) around ε = 0 as

K(X) = K(X(0)) +KX(X(0))X(1)ε+
1

2

[
KXX(X(0))X(1)2 (6.74)

+ 2KX(X(0))X(2)
]
ε2 +O(ε3).

In summary, the various quantities of interest, to be determined in the next
section, are expanded as follows:

ζ = ζ(0)(x) + ζ(1)(t,x)ε+ ζ(2)(t,x)ε2 +O(ε3), (6.75)

φ = φ(0)(t) + φ(1)(t,x)ε+ φ(2)(t,x)ε2 +O(ε3) , (6.76)

Aij = A(1)i
j(t,x)ε+A(2)i

j(t,x)ε2 +O(ε3), (6.77)

hij = h
(0)
ij (x) + h

(1)
ij (t,x)ε+ h

(2)
ij (t,x)ε2 +O(ε3) , (6.78)

Kij = −H(t)δij +K(1)i
j(t,x)ε+K(2)i

j(t,x)ε2 +O(ε3), (6.79)

K = −3H(t) + ζ̇(1)(t,x)ε+ ζ̇(2)(t,x)ε2 +O(ε3). (6.80)

6.4.2 General solution

Now, we solve the equations of motion perturbatively, up to the O(ε2) order,
to obtain the general solutions. These solutions will be parametrized by a few
unspecified spatial functions, which describe the physical degrees of freedom
(modulo residual gauge freedom) that may evolve as the Universe expands.
The gradient expansions of Einstein’s equations up to order O(ε2) are listed in
Appendix B.

In the following, to simplify the equations, we will mostly suppress the back-
ground quantities’ order indication (0). For example, φ̇(0) is written as φ̇ if there
is no confusion.

• The O(ε0) order

For the O(ε0) order, all spatial derivatives are absent. As desired, the
equations of motion reduced to the conventional background FLRW case:

3m2
0H

2 = −K + 2KXX + 6Hφ̇G3XX, (6.81)

−m2
0

(
2Ḣ + 3H2

)
= K − 2G3XXφ̈, (6.82)

J̇ t(0) + 3HJ t(0) = 0, (6.83)
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where J t(0) = KX φ̇+6HG3XX. Note that only two of the three equations
are independent.

• The O(ε) order

The tt component of Einstein’s equation is given by(
1

2
φ̇KX + φ̇KXXX + 9HG3XX + 6HG3XXX

2
)
φ̇(1) =

=
(

3m2
0H − 3φ̇G3XX

)
ζ̇(1), (6.84)

which can be re-written as

φ̇(1) = A0ζ̇(1), (6.85)

where

A0(t) =
6m2

0H − 6φ̇G3XX

φ̇KX + 2φ̇KXXX + 18HG33XX + 12HG3XXX2
. (6.86)

The ij component of Einstein’s equation naturally splits into a trace part
and a traceless part. The trace part gives rise to another relation between
φ(1) and ζ(1):

−2G33XXφ̈(1) +
(
φ̇KX − 2Ẋ(G3X +G3XXX)

)
φ̇(1) (6.87)

+2m2
0

(
ζ̈(1) + 3Hζ̇(1)

)
= 0.

Combining Eq. (6.85) and Eq. (6.87), we get, after integration,

ζ(1)(t,x) = C
(1)
ζ (x)

∫ t dt′

ā(t′)3
, (6.88)

where

ā(t) = exp(

∫ t

dt′H0(t′)), (6.89)

H0(t) =

(
φ̇KX − 2Ẋ(G3X +G3XXX)

)
A0 − 2G3XXȦ0 + 6m2

0H

6M2
pl − 6G3XXA0

,

(6.90)

and C(1)
ζ (x) is an unspecified spatial function from the first integration.

There would be another unspecified spatial function from the second in-

tegration (C
′(1)
ζ (x)), which has been absorbed into ζ(0)(x). We will see in

the next section that H0 approaches the Hubble constant H for near de
Sitter expansion, in which case ζ̇(1) scales as 1/a3(t). Now, φ(1) is given
by

φ(1)(t,x) = C
(1)
ζ (x)

∫ t dt′A0(t′)

ā(t′)3
+ C

(1)
φ (x), (6.91)

where C
(1)
φ (x) is an integration spatial function. The traceless part of

Einstein’s equation’s ij component is simply

Ȧ(1)i
j + 3HA(1)i

j = 0, (6.92)
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whose solution is

A(1)i
j(t,x) =

C
(1)
A

i
j(x)

a3
, (6.93)

where the unspecified spatial function C
(1)
A

i
j(x) is symmetric and traceless.

From Eq. (6.43), we have

h
(1)
ij (t,x) = −2h

(0)
ik (x)C

(1)
A

k
j (x)

∫ t dt′

a(t′)3
, (6.94)

where the would-be integration spatial function C
(1)
h ij(x) has been ab-

sorbed into h
(0)
ik (x). As expected, the scalar equation of motion is solved

by the solution obtained above.

Before moving on to solve higher order equations, we note that defining a
curvature perturbation that is conserved in time is trivial in our formalism.
By virtue of the tt component of Einstein’s equation (6.85), one can define
a conserved curvature perturbation at O(ε)

R(1) = ζ(1) −
∫ t dt′

A0(t′)
φ̇(1)(t′). (6.95)

As we will see in Section 6.4.3, because of the shift symmetry, de Sitter
expansion is an attractor of the system. For quasi-de Sitter expansion,
i.e., for the late time of inflation, A0 ' constant and we can write R(1) as

R(1) ' ζ(1) − 1

A0
φ(1). (6.96)

• The O(ε2) order

The tt component of the Einstein equation gives

A0ζ̇(2) − φ̇(2) = C0
(
ζ̇(1)

)2

− C
0
3

2
[3]R(2) +

C0
3

2
A(1)k

jA
(1)j

k, (6.97)

where [3]R(2) is the 3D Ricci scalar for the O(ε0) order metric γij =

a(t)2e2ζ(0)(x)h
(0)
ij (x) and C0, C0

1 , C0
2 and C0

3 are again background quantities,
defined respectively as

C0(t) = C0
1(A0)2 + C0

2A0 − 3C0
3 , (6.98)

C0
1(t) =

1
2KX + 4KXXX + 2KXXXX

2 + 9Hφ̇G3X

φ̇KX + 2φ̇KXXX + 18HG3XX + 12HG3XXX2
(6.99)

+
21Hφ̇G3XXX + 6Hφ̇G3XXXX

2

φ̇KX + 2φ̇KXXX + 18HG3XX + 12HG3XXX2
,

C0
2(t) =

18G3XX + 12G3XXX
2

φ̇KX + 2φ̇KXXX + 18HG3XX + 12HG3XXX2
, (6.100)

C0
3(t) =

m2
0

φ̇KX + 2φ̇KXXX + 18HG3XX + 12HG3XXX2
. (6.101)
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Integrating this equation, we get the solution of φ(2) in terms of ζ(2):

φ(2)(t,x) =

∫ t

dt′A0(t′)ζ̇(2)(t′,x)−
(
C(1)
ζ (x)

)2
∫ t dt′C0(t′)

ā(t′)6

+
[3]R(2)(x)

2

∫ t dt′C0
3(t′)

a(t′)2
−
C

(1)
A

k
j (x)C

(1)
A

j
k(x)

2

∫ t dt′C0
3(t′)

a(t′)6
,

(6.102)

where an integration spatial function has been absorbed into C
(1)
φ (x),

and [3]R(2)(x) (the Ricci scalar of the metric e2ζ(0)(x)h
(0)
ij (x)) is related

to [3]R(2) (the Ricci scalar of the metric a(t)2e2ζ(0)(x)h
(0)
ij (x)) by

[3]R(2)(x) = a(t)2 [3]R(2). (6.103)

The trace part of Einstein’s equation’s ij component is given by

−m2
0

(
2ζ̈(2) + 6Hζ̇(2) + 3

(
ζ̇(1)

)2

+
1

2
A(1)k

l A
(1)l

k +
1

6
[3]R(2)

)
= −2G3XXφ̈

(2) +
(
φ̇KX − 2Ẋ(G3X +G3XXX)

)
φ̇(2) +D0

(
φ̇(1)

)2

,

(6.104)

where

D0(t) =
(1

2
KX +KXXX − φ̈G3X − 5φ̈G3XXX − 2φ̈G3XXXX

2

+ 2
(
3H0 − ∂t lnA0

)
φ̇(G3X +G3XXX)

)
. (6.105)

Combining with Eq. (6.97), we get

ζ(2)(t,x) =
(
C

(1)
ζ (x)

)2
∫ t dt′′

ā(t′′)3

∫ t′′ dt′E0
1 (t′)

ā(t′)3

+ [3]R(2)(x)

∫ t dt′′

ā(t′′)3

∫ t′′ dt′E0
3 (t′)ā(t′)3

a(t′)2

+ C
(1)
A

k
l (x)C

(1)
A

l
k(x)

∫ t dt′′

ā(t′′)3

∫ t′′ dt′E0
2 (t′)ā(t′)3

a(t′)6
, (6.106)

where two integration spatial functions have been absorbed into C
(1)
ζ (x)

and ζ(0)(x) respectively, and E0
1 , E0

2 and E0
3 are background quantities,

defined respectively as

E0
1 (t) =

(
φ̇KX − 2Ẋ(G3X +G3XXX)

)
C0 + 2G3XX(6H0C0 − Ċ0)

2m2
0 − 2G3XXA0

−
+D0

(
A0
)2

+ 3m2
0

2m2
0 − 2G3XXA0

, (6.107)

E0
2 (t) =

(
φ̇KX − 2Ẋ(G3X +G3XXX)

)
C0

3 + 2G3XX(6HC0
3 − Ċ0

3)−m2
0

4m2
0 − 4G3XXA0

,

(6.108)
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E0
3 (t) = −

(
φ̇KX − 2Ẋ(G3X +G3XXX)

)
C0

3 + 2G3XX(2HC0
3 − Ċ0

3) + 1
3m

2
o

4m2
0 − 4G3XXA0

.

(6.109)

The traceless part of Einstein’s equation’s ij component is given by

Ȧ(2)i
j + 3HA(2)i

j + 3ζ̇(1)A(1)i
j −

(
[3]R(2)i

j −
1

3
δij

[3]R(2)

)
= 0, (6.110)

which gives rise to the solution

A(2)i
j(t,x) = −

3C
(1)
ζ (x)C

(1)
A

i
j(x)

a3

∫ t dt′

ā(t′)3

+
[3]R(2)i

j(x)− 1
3δ
i
j
[3]R(2)(x)

a3

∫ t

dt′a(t′), (6.111)

where again an integration spatial function has been absorbed into C
(1)
A

k
j (x)

and [3]R(2)i
j(x) (the Ricci tensor of the metric e2ζ(0)(x)h

(0)
ij (x)) is related

to [3]R(2)i
j (the Ricci tensor of the metric a(t)2e2ζ(0)(x)h

(0)
ij (x)) by

[3]R(2)i
j(x) = a(t)2 [3]R(2)i

j . (6.112)

From Eq. (6.43), we can derive

h
(2)
ij (t,x) = 6h

(0)
ik (x)C

(1)
ζ (x)C

(1)
A

k
j (x)

∫ t dt′′

a(t′′)3

∫ t′′ dt′

ā(t′)3

+ 4h
(0)
il (x)C

(1)
A

l
k(x)C

(1)
A

k
j (x)

∫ t dt′′

a(t′′)3

∫ t′′ dt′

a(t′)3

− 2h
(0)
ik (x)

(
[3]R(2)k

j (x)− 1

3
δkj

[3]R(2)(x)

)∫ t dt′′

a(t′′)3

∫ t′′

dt′a(t′),

(6.113)

where an integration spatial function has been absorbed into h(0)
ij(x).

The ti component of Einstein’s equation at the O(ε2) order become con-
straints for the O(ε) order quantities

− 2m2
0∂iζ̇

(1) −m2
0∇̄

(1)
k A(1)k

i = (KX φ̇+ 6HG3XX)∂iφ
(1) − 2G3XX∂iφ̇

(1),
(6.114)

where ∇̄(1)
k , of order O(ε) itself, is the covariant derivative associated with

the O(ε0) order metric e2ζ(0)(x)h
(0)
ij (x). This gives rise to 3 constraints on

the unspecified integration functions C
(1)
A

i
j(x).

Summary

Here we summarize the solution obtained up to the O(ε2) order:

ζ(t,x) = ζ(0)(x) + C
(1)
ζ (x)

∫ t dt′

ā(t′)3
+
(
C

(1)
ζ (x)

)2
∫ t dt′′

ā(t′′)3

∫ t′′dt′E0
1 (t′)

ā(t′)3
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+ C
(1)
A

k
l (x)C

(1)
A

l
k(x)

∫ t dt′′

ā(t′′)3

∫ t′′ dt′E0
2 (t′)ā(t′)3

a(t′)6

+ [3]R(2)(x)

∫ t dt′′

ā(t′′)3

∫ t′′dt′E0
3 (t′)ā(t′)3

a(t′)2
+O(ε3), (6.115)

φ(t,x) = φ(0)(t) + C
(1)
φ (x) + C

(1)
ζ (x)

∫ t dt′A0(t′)

ā(t′)3
+

∫ t

dt′A0(t′)ζ̇(2)(t′,x)

−
(
C

(1)
ζ (x)

)2
∫ t dt′C0(t′)

ā(t′)6
+

[3]R(2)(x)

2

∫ t dt′C0
3(t′)

a(t′)2

−
C

(1)
A

k
j (x)C

(1)
A

j
k(x)

2

∫ t dt′C0
3(t′)

a(t′)6
+O(ε3), (6.116)

Aij(t,x) =
C

(1)
A

i
j(x)

a3
−

3C
(1)
ζ (x)C

(1)
A

i
j(x)

a3

∫ t dt′

ā(t′)3

+
[3]R(2)i

j(x)− 1
3δ
i
j
[3]R(2)(x)

a3

∫ t

dt′a(t′) +O(ε3), (6.117)

hij(t,x) = h
(0)
ij (x)− 2h

(0)
ik (x)C

(1)
A

k
j (x)

∫ t dt′

a(t′)3

+ 6h
(0)
ik (x)C

(1)
ζ (x)C

(1)
A

k
j (x)

∫ t dt′′

a(t′′)3

∫ t′′ dt′

ā(t′)3

+ 4h
(0)
il (x)C

(1)
A

l
k(x)C

(1)
A

k
j (x)

∫ t dt′′

a(t′′)3

∫ t′′ dt′

a(t′)3

− 2h
(0)
ik (x)

(
[3]R(2)k

j (x)− 1

3
δkj

[3]R(2)(x)

)∫ t dt′′

a(t′′)3

∫ t′′

dt′a(t′) +O(ε3),

(6.118)

where A0 is defined by Eq. (6.86), ā(t) is defined by Eq. (6.89), C0, C0
1 , C0

2

and C0
3 are defined by Eqs. (6.98-6.101) respectively, E0

1 , E0
2 and E0

3 are defined
by eqs. (6.107-6.109) respectively, [3]R(2)i

j(x) and [3]R(2)(x) are 3D curvature

tensors of the metric e2ζ(0)(x)h
(0)
ij (x).

There are several unspecified spatial functions in the general solution: ζ(0)(x),

h
(0)
ij (x), C

(1)
ζ (x), C

(1)
φ (x) and C

(1)
A

i
j(x) (all other unspecified spatial functions

have been absorbed into this set of functions). These functions play the role
of initial data for the dynamical degrees of freedom, so counting the pieces of
initial data and taking into account any constraints between them can be used
in order to determine the number of degrees of freedom. However, properly
counting the physical degrees of freedom requires determining whether there
are any degrees of freedom that can be removed using residual gauge freedom.

h
(0)
ij (x) is symmetric and has a unit determinant and C

(1)
A

i
j(x) is symmetric

and traceless, so they each have 5 degrees of freedom. 3 components of C
(1)
A

i
j(x)

are related to other unspecified spatial functions respectively by the constraint
equations (6.114). In order to determine how many of these degrees of freedom
are pure gauge we need to consider the residual gauge freedom. Performing the
infinitesimal coordinate transformation

xµ → x̄µ = xµ + ηµ (6.119)
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and requiring that the synchronous gauge condition on the lapse N and shift
N i are respected, one straighforwadly obtains that ηµ should be of the form

η0 = η0(x), (6.120)

ηi =

∫ t

dt′γij(t′,x)∂jη
0(x) + η̃i(x), (6.121)

(ηµ may be chosen as O(ε)). From this we infer that the residual gauge freedom
amounts to 4 functions of space. 3 of those can be chosen so as to eliminate 3

spatial functions in h
(0)
ij (x) and 1 chosen so as to eliminate C

(1)
φ (x). Therefore,

we may count the degrees of freedoms as follows:

ζ(0)(x) 1 scalar growing mode = 1 component, (6.122)

h
(0)
ij (x) 2 tensor growing modes = 5 components − 3 gauge DoFs,

(6.123)

C
(1)
ζ (x) 1 scalar decaying mode = 1 component, (6.124)

C
(1)
A

i
j(x) 2 tensor decaying modes = 5 components − 3 constraints.

(6.125)

In this scalar-tensor system, one expects three physical degrees of freedom, one
for the scalar mode and two for the tensor modes. As it is a second order system,
each physical degree of freedom contains two phase-space degrees of freedom, so
one should expect six free spatial functions. This is indeed what the counting
reveals.

6.4.3 Late time of inflation

At the end of the last section, we claimed that C
(1)
ζ (x) represents a decaying

mode. However, this is actually not obvious from the general solution given
above. After all, ā(t) is not the scale factor a(t) but is given by a rather com-
plicated expression in terms of background quantities. Additionally, C0

n and E0
n

also have time dependence. In this section, we would like to briefly re-derive
the solution for an important special case, the late time of inflation. This will

not only allows us to show explicitly that C
(1)
ζ (x) represents a decaying mode,

but it will demonstrate how one can eliminate the gauge mode C
(1)
φ (x) on in-

flationary backgrounds. Moreover, the assumption of quasi-de Sitter expansion
drastically simplifies the solution and allows an intuitive understanding of its
behavior. Physically, perturbations coming from the late time of inflation are
observationally most important, as it is these perturbations that seed the large
scale structure of the observable Universe. Note that, similar to the previous
section, we mostly suppress the background quantities’ order indication (0) to
simplify the equations.

Eq. (6.83) can be integrated to get

KX φ̇ + 6HG3XX ∝ a(t)−3, (6.126)

which is an attractor of the dynamical system. So for the later time of inflation
J t essentially vanishes. In this limit, the background equations of motion can
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be simplified to

K = −3m2
0H

2, (6.127)

KX = −3G3XHφ̇, (6.128)

and φ̇ and H become constant and a ∝ eHt [326]. Furthermore, we have

H0 → H, ā(t)→ a(t). (6.129)

The background quantities defined in the last section now all become constant
and can also be simplified:

A0 =
3M2

plH − 3φ̇G3XX

φ̇KXXX + 6HG3XX + 6HG3XXX2
, (6.130)

C0 = C0
1(A0)2 + C0

2A0 − 3C0
3 , (6.131)

C0
1 =
− 5

2KX + 4KXXX + 2KXXXX
2 + 21Hφ̇G3XXX + 6Hφ̇G3XXXX

2

2φ̇KXXX + 12HG3XX + 12HG3XXX2
,

(6.132)

C0
2 =

9G3XX + 6G3XXX
2

φ̇KXXX + 6HG3XX + 6HG3XXX2
, (6.133)

C0
3 =

M2
pl

2φ̇KXXX + 12HG3XX + 12HG3XXX2
, (6.134)

D0 = −3

2
KX +KXXX + 6Hφ̇G3XXX, (6.135)

E0
1 = −

φ̇KXC0 +D0
(
A0
)2

+ 3M2
pl

2M2
pl − 2G3XXA0

, (6.136)

E0
2 = −

φ̇KXC0
3 +M2

pl

4M2
pl − 4G3XXA0

, (6.137)

E0
3 =

1

3
E0

2 . (6.138)

Note that we have assumed φ̇KXXX + 6HG3XX + 6HG3XXX
2 6= 0 and

A0 + 6M2
plH/φ̇KX 6= 0, which, by using the background EoMs, is equivalent

to G3X(KX − KXXX) + KXG3XXX 6= 0 and K(G3XKX − 2G3XKXXX +
2KXG3XXX) + K2

XG3XX 6= 0. So the Covariant Cubic Galileon case is in-
cluded in our solution. We will not discuss the special cases where any of the
aforementioned quantities actually vanish, but it is easy to follow our formalism
in the last section to get the relevant results. The constraint Eq. (6.114) now
becomes

2(G3XXA0 −m2
0)∂iC

(1)
ζ (x) = m2

0∇̄
(1)
k C

(1)
A

k
i (x). (6.139)

Finally, the solution for the late time of inflation is given by

ζ(t,x) = ζ(0)(x)−
C

(1)
ζ (x)

3Ha3
+
E0

1

(
C

(1)
ζ (x)

)2

18H2a6
+
E0

2C
(1)
A

k
l (x)C

(1)
A

l
k(x)

18H2a6

− E
0
3

[3]R(2)(x)

2H2a2
+O(ε3), (6.140)
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φ(t,x) = φ(0)(t) + C
(1)
φ (x)−

A0C
(1)
ζ (x)

3Ha3
+A0ζ(2)(t,x) +

C0
(
C

(1)
ζ (x)

)2

6Ha6

− C
0
3

[3]R(2)(x)

4Ha2
+
C0

3C
(1)
A

k
j (x)C

(1)
A

j
k(x)

12Ha6
+O(ε3), (6.141)

Aij(t,x) =
C

(1)
A

i
j(x)

a3
+
C

(1)
ζ (x)C

(1)
A

i
j(x)

Ha6
+

[3]R(2)i
j(x)− 1

3δ
i
j
[3]R(2)(x)

Ha2
+O(ε3),

(6.142)

hij(t,x) = h
(0)
ij (x) +

2h
(0)
ik (x)C

(1)
A

k
j (x)

3Ha3
+

2h
(0)
ik (x)

(
[3]R(2)k

j (x)− 1
3δ
k
j

[3]R(2)(x)
)

3H2a2

+
3h

(0)
ik (x)C

(1)
ζ (x)C

(1)
A

k
j (x) + 2h

(0)
il (x)C

(1)
A

l
k(x)C

(1)
A

k
j (x)

9H2a6
+O(ε3).

(6.143)

Now, we want to explicitly do away with the gauge mode C
(1)
φ (x) in the case

of near de Sitter inflation by re-slicing. To this end, we choose

t̄ = t+ η0(x), (6.144)

x̄i = xi + ηi, (6.145)

with

η0(x) =
C

(1)
φ (x)

φ̇(0)
, (6.146)

ηi =

∫ t

dt′γij(t′,x)∂jη
0(x) = −

hij(0)(x)∂jC
(1)
φ (x)

2Hφ̇(0)e2ζ(0)(x)a(t̄)2
+O(ε3). (6.147)

Let us consider the effects of the temporal transformation on φ(0)(t): Taylor

expansion yields φ(0)(t) = φ(0)(t̄) − C(1)
φ (x) + O(ε3), which straightforwardly

removes the constant mode in Eq. (6.141). Though far less obvious, any other
effect of the temporal or the spatial part of he transformation leads to corrections

that are either O(ε3) or can be absorbed in redefinitions of C
(1)
ζ (x) and C

(1)
A

i
j(x).

The end result is that by re-slicing one can eliminate C
(1)
φ (x) with all the other

terms in the solution unchanged.

6.4.4 Discussion

In Ref. [379], we have developed the superhorizon gradient expansion for-
malism for G-Inflation, a novel inflation model characterized by its higher order
derivative interactions. We have solved the equations of motion of Galileon
inflation up to second order in gradient expansion in the synchronous gauge,
and obtained the general solution without imposing extra conditions on the
first order quantities. We have identified the physical degrees of freedom in the
solution, taking particular care in keeping track of the residual gauge freedom
left after imposing the synchronous gauge condition. We have also defined a
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curvature perturbation R(1) conserved up to first order. Finally, we have con-
sidered the special case of quasi-de Sitter expansion and we have showed that
the general solution is substantially simplified in this case.

Non-Gaussianity in primordial perturbations can be a powerful probe of dif-
ferent inflation models and the associated fundamental theory on which they are
based. The gradient expansion technique (valid outside the horizon) is comple-
mentary to usual second-order perturbative theory (applied inside the horizon),
rather than a complete alternative. In rough terms, one uses usual nonlinear
perturbative theory to calculate the generation of non-Gaussianties inside the
horizon and uses the gradient expansion to evolve the non-Gaussianities out-
side the horizon. Evolution of non-Gaussianities outside the horizon is often
tackled with the separate Universe approximation, which is just the leading
order gradient expansion. However, this approximation may be inadequate in
some multi-field models or when the slow-roll condition is temporally violated
[378, 374], in which case a gradient expansion to second order is needed.

With the formalism developed here, the natural next step is to calculate
non-Gaussianities in G-inflation at superhorizon scales. In combination with
the conventional non-linear perturbation analysis inside the horizon, one can
then use the existing data to constrain the model parameters (see Ref. [387] for
an attempt in this direction for k-inflation). Unfortunately, this is not some-
thing that can be done straightforwardly in our case. First of all, there is an
important difficulty one has to overcome: after expanding to second order in the
gradient expansion, the usual curvature perturbation is not conserved in time
and one has to find a new non-linear curvature perturbation. A new curvature
perturbation has actually been found in Ref. [373] (in uniform Hubble gauge),
but under the assumption that the starting order of γ̇ij is the second order in
the gradient expansion, which largely simplifies the whole calculation. But it is
unclear how restrictive this condition is and our results seem to indicate that it
is not generically justified. Without this assumption, identifying the conserved
curvature perturbation is a pending, quite non-trivial task. The development
of the gradient expansion formalism is only one of the necessary tools for cal-
culating the bispectrum. Some of the other tools already exist (e.g., the second
order perturbation analysis inside the horizon).

Another potential application of the formalism developed here can be to
gain general insight on the non-linear behavior of Galileon fields. A key feature
of Galileon gravity is that it is supposed to give rise to O(1) corrections to
general relativity at large distances and yet satisfies stringent constraints at
short distances, such as in the solar system where any modification is typically
constrained below O(10−5). This is achieved due to the high degree of non-
linearity of the Galileon derivative interactions and the phenomenon is called the
Vainshtein mechanism, originally discovered in massive gravity [252, 335]. This
mechanism is not easy to see in perturbation theory due to its non-linear nature,
and the full non-linear problem is difficult to solve. It would be interesting to use
the gradient expansion in order to get a deeper understanding of the behaviour
of these non-linear interactions, at least in the regime where it is applicable.

Finally, an interesting extension of this work would be to develop a super-
horizon gradient expansion for multi-Galileon inflationary scenarios. Having
multiple fields is a typical way to generate non-Gaussianity. Non-Gaussianity
in the multi-Galileon model has been discussed in Refs. [340, 341].



Chapter 7

Effective Field Theory for
Dark Energy and Modified
Gravity

A plethora of models addressing the phenomenon of cosmic acceleration have
been proposed and analyzed in the past fifteen years [216, 217, 14, 218], and it
has become increasingly evident that the dynamics of perturbations will offer
fundamental information to discriminate among proposed models [258, 246, 259,
260, 261, 262, 263, 264, 265].

Anticipating a wealth of high precision large scale structure data from ongo-
ing and upcoming surveys, such as Planck [34], SDSS [22], DES [310], LSST [311]
and Euclid [312], it is important to identify a model-independent way of testing
the theory of gravity against the evolution of linear cosmological perturbations.
To this extend, several proposals have been put forward [266, 200, 267, 268, 269,
271, 272, 273, 274, 275, 276, 278, 279, 280, 281, 282, 283, 284, 286, 287, 388,
288, 290, 291, 292, 293, 294, 296, 297, 298, 299].

In the quest for the optimal framework to perform cosmological tests of
gravity, some authors have recently proposed an ‘effective’ approach to unify
single field DE and MG modeling [228, 229, 389], inspired by effective field
theories of inflation [80, 390] and large scale structure [391, 392, 393]. We will
refer to it as the effective field theory of cosmic acceleration (hereafter EFT).
The aim of this approach is that of creating a model independent framework
that encompasses single-field DE/MG models with a well defined Jordan frame,
where all matter minimally couples to gravity, describing the evolution of the
background cosmology and of perturbations with a finite number of functions
of time introduced at the level of the action. The action is written in unitary
gauge, in terms of an expansion in the operators that are compatible with the
residual symmetries of unbroken spatial diffeomorphisms, organized in powers
of the number of perturbations and derivatives. There is a finite number of
such operators that enter the action multiplied by time-dependent coefficients
to which we will refer as EFT functions; in particular, the background dynamics
is determined solely by three EFT functions, that are the coefficients of the three
background operators; while the general dynamics of linear scalar perturbations

93
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is affected by a total of six operators, and can therefore be analyzed in terms of
six time-dependent functions.

Despite this model-independent construction, there is a precise mapping that
can be worked out between the EFT action and the action of a given single field
DE/MG model that introduces a single scalar field and has a well defined Jordan
frame [394, 395]. Therefore, the EFT formalism can be used in two ways: as
a general model-independent framework to test the theory of gravity on large
scales, studying the effects of the different operators and the constraints that can
be put by data on their coefficients; as a unifying language to analyze specific
single scalar field DE/MG models, once the chosen model is mapped into the
EFT framework. We refer the reader to Refs. [228, 394, 395] for a detailed
illustration of the mapping and a complete inventory of the models that can be
cast in the EFT language.

The advantage in using such a kind of approach is clear, but as for all
theories or parametrizations of a class of models, also the EFT formalism suffers
from some limitations as discussed in Refs. [228, 229]. As already mentioned,
one of the assumptions on which the EFT is built, is the validity of the weak
equivalence principle, which limits its range of applicability to models for which
a Jordan frame can be defined. Moreover, neither vector or tensor fields can
be included in this description. Modifications to gravity which include higher-
dimensional theories are not allowed. Finally, the EFT formalism describes only
low energy cosmological phenomena. Despite the inherent limitations, the EFT
framework includes most of the viable approaches to the phenomenon of cosmic
acceleration that will undergo scrutiny with upcoming cosmological surveys. We
shall mention, among others, the Horndeski class which includes quintessence, k-
essence, f(R), covariant Galileon, the effective 4-dimentions limit of DGP [220]
and more.

In this Chapter we will present three works: one in collaboration with
M. Raveri and A. Silvestri [396] and two in collaboration with B. Hu, M. Raveri
and A. Silvestri [397, 398]. In particular in Section 7.1, we briefly review the
EFT formulation. In Section 7.3 the viability of three background functions is
investigated by means of a thorough dynamical analysis. While in Section 7.4 we
introduce EFTCAMB and EFTCosmoMC, which implement the EFT formal-
ism into the public Einstein-Boltzmann solver Code for Anisotropies in the Mi-
crowave Background (CAMB) [399, 400] and Markov-Chain Monte-Carlo code
(CosmoMC) [401].

7.1 The effective field theory action and its for-
mulation

The action of the effective field theory for cosmic acceleration [228, 229] is
constructed in unitary gauge and Jordan frame, in conformal time it reads

S =

∫
d4x
√
−g
{
m2

0

2
[1 + Ω(τ)]R+ Λ(τ)− a2c(τ)δg00

+
M4

2 (τ)

2
(a2δg00)2 − M̄3

1 (τ)

2
a2δg00δKµµ −

M̄2
2 (τ)

2
(δKµµ)2
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− M̄2
3 (τ)

2
δKµνδKνµ +

a2M̂2(τ)

2
δg00δR(3)

+m2
2(τ)(gµν + nµnν)∂µ(a2g00)∂ν(a2g00) + . . .

}
+ Sm[χm, gµν ],

(7.1)

where m0 is the bare Planck mass, R is the Ricci scalar, δg00 = g00 + 1, δR(3),
δKνµ and δKµµ are the perturbations respectively to the upper time-time com-
ponent of the metric, the three dimensional spatial Ricci scalar, the extrinsic
curvature and its trace. The vector nµ is the normal to surfaces of constant
time. In this thesis, our notation follows more closely that one of Ref. [229],
however we work in conformal time and we multiply the Ricci scalar by 1 + Ω
instead of simply Ω for reasons of accuracy in the numerical calculations. The
functions Ω, Λ and c are free functions of the time coordinate τ and are the
only ones which affect the background dynamics, hence the name background
functions. In particular, the function 1 + Ω, in the Jordan frame parametrizes
the coupling to gravity, while in the Einstein frame the same function would
describe the coupling of the scalar DoF to matter. {M2, M̄1, M̄2, M̄3, M̂2, m2}
are functions of time with dimensions of mass. The operators multiplied by
these functions contribute only to the equations for perturbations, along with
the background ones. The ellipses in the action stand for higher order terms,
e.g. (δg00)3. Sm is the action for all matter fields, χm.

The EFT approach has one extra dynamical scalar DoF as one would expect
in both DE/MG models. In action (7.1) it is hidden inside the metric. While
the unitary gauge is particularly suited for the construction of the general ac-
tion (7.1), in order to study dynamical perturbations it is more convenient to
make manifest the scalar DoF via the Stückelberg technique [16]. Pratically, one
has to restore the time diffeomorphism invariance by mean of an infinitesimal
time coordinate transformation while spatial coordinates remain unchanged, i.e.

τ → τ + π(xµ). (7.2)

The transformation introduces a new scalar field π, known as the Stückelberg
field, that realizes the symmetry nonlinearly. In the context of the effective
field theory of Inflation [80], the Stückelberg field is associated to the Goldstone
boson, while in our case the time translation invariance is no longer realized by
the Goldstone scalar mode.

Making manifest the extra scalar DoF will modify all the EFT functions
which are typically Taylor expanded in π according to

f(τ)→ f(τ + π(xµ)) = f(τ) + ḟ(τ)π +
f̈(τ)

2
π2 + . . . , (7.3)

where dots stand for derivatives w.r.t. conformal time. Operators that are not
fully diffeomorphism invariant transform according to the tensor transformation
law, generating dynamical terms for π. For a complete description see Refs. [80,
228, 229].

Then the action with the Stückelberg field is
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S =

∫
d4x
√
−g
{
m2

0

2
[1 + Ω(τ + π)]R+ Λ(τ + π)− c(τ + π)a2

[
δg00 − 2

π̇

a2

+2Hπ
(
δg00 − 1

a2
− 2

π̇

a2

)
+ 2π̇δg00

+2g0i∂iπ −
π̇2

a2
+ gij∂iπ∂jπ −

(
2H2 + Ḣ

) π2

a2
+ ...

]
+
M4

2 (τ + π)

2
a4

(
δg00 − 2

π̇

a2
− 2
Hπ
a2

+ ...

)2

−M̄
3
1 (τ + π)

2
a2

(
δg00 − 2

π̇

a2
− 2
Hπ
a2

+ ...

)(
δKµµ + 3

Ḣ
a
π +
∇̄2π

a2
+ ...

)

−M̄
2
2 (τ + π)

2

(
δKµµ + 3

Ḣ
a
π +
∇̄2π

a2
+ ...

)2

−M̄
2
3 (τ + π)

2

(
δKij +

Ḣ
a
πδij +

1

a2
∇̄i∇̄jπ + ...

)(
δKji +

Ḣ
a
πδji

+
1

a2
∇̄j∇̄iπ + ...

)
+
M̂2(τ + π)

2
a2

(
δg00 − 2

π̇

a2
− 2
H
a2
π + ...

) (
δR(3) + 4

H
a
∇̄2π + ...

)
+m2

2(τ + π) (gµν + nµnν) ∂µ
(
a2g00 − 2π̇ − 2Hπ + ...

)
∂ν
(
a2g00 − 2π̇

−2Hπ + ...) + ...}+ Sm[χm, gµν ], (7.4)

where ∇̄ indicates three dimensional spatial derivatives. Note that the conformal
scale factor has been already Taylor expanded in π according to Eq. (7.3) and
that our Stückelberg field is defined w.r.t. to conformal time, therefore there is
a factor of a of difference w.r.t. the Stückelberg field of Refs. [228, 229].

7.1.1 The background equations

Varying the background part of the action (7.4), with respect to the metric and
assuming a flat FLRW metric, one obtains the modified Friedmann equations:

H2 =
a2

3m2
0(1 + Ω)

(ρm + 2c− Λ)−H Ω̇

1 + Ω
, (7.5)

Ḣ = − a2

6m2
0(1 + Ω)

(ρm + 3Pm)− a2(c+ Λ)

3m2
0(1 + Ω)

− Ω̈

2(1 + Ω)
, (7.6)

whereH = ȧ/a and ρm and Pm are, respectively, the energy density and pressure
of the matter components, for which we assume a perfect fluid form with the
standard continuity equation:

ρ̇m = −3H(ρm + Pm). (7.7)
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Eqs. (7.5)-(7.6) can be recast in the following, more conventional, form

H2 =
a2

3m2
0(1 + Ω)

(ρm + ρQ) , (7.8)

Ḣ = − a2

6m2
0(1 + Ω)

(ρm + 3Pm + ρQ + 3PQ) , (7.9)

if one defines

ρQ ≡ 2c− Λ− 3m2
0HΩ̇

a2
,

PQ ≡ Λ +
m2

0

a2

(
Ω̈ +HΩ̇

)
. (7.10)

The latter can be interpreted as, respectively, the energy density and pressure
of the effective dark fluid. Combining Eqs. (7.7), (7.8) and Eq. (7.9) one obtains
the following continuity equation for this dark component:

ρ̇Q = −3H (ρQ + PQ) +
3m2

0

a2
H2Ω̇, (7.11)

which tells us that the energy density ρQ is conserved only in the case of Ω =
const., i.e. a minimally coupled theory.

The covariant, background-independent approach that we adopt [228, 229],
aims at offering a general framework to study the evolution of cosmological per-
turbations in a model independent way. In the latter context, it is common to
fix the background history to the one of ΛCDM, or something close to that,
and to focus on the dynamics of perturbations. This is justified by the fact that
the cosmological concordance model is in very good agreement with current ob-
servables constraining the expansion history and that most alternative models
are highly degenerate with it at the level of background dynamics, while pre-
dicting modifications at the level of perturbations. In the EFT framework this
practice would translate into assuming that the background is given a priori,
i.e. typically it is chosen to be close to the ΛCDM one, and one focuses on the
coefficients of the second order operators. If we were to fix the expansion his-
tory, we could use Eqs. (7.5)-(7.6) to eliminate two of the three EFT functions,
typically Λ(t) and c(t), as

c = −m
2
0Ω̈

2a2
+
m2

0HΩ̇

a2
+
m2

0(1 + Ω)

a2
(H2 − Ḣ)− 1

2
(ρm + Pm), (7.12)

Λ = −m
2
0Ω̈

a2
− m2

0HΩ̇

a2
− m2

0(1 + Ω)

a2
(H2 + 2Ḣ)− Pm. (7.13)

This however would still leave us with one completely undetermined function
of time, Ω(τ) for which we should make some arbitrary choice. In Ref. [396]
with M. Raveri and A. Silvestri, we perform instead an investigation of viable
analytical forms of the three EFT background functions by means of a dynamical
analysis of the background cosmology. The analysis is shown in Section 7.3.

7.2 Quintessence and f(R) models mapping

The EFT framework allows to study a specic single field DE/MG model once the
mapping into the EFT language is known. We refer the reader to Refs. [228, 394,
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395] for a complete list of the theories that can be cast in the EFT framework
and for an exhaustive theoretical treatment of models already mapped into this
language. Here we will show two simple examples:

• As illustrated in Refs. [228, 229], the minimally coupled Quintessence map-
ping into EFT functions is very straightforward. The typical action for
such a model consists

Sφ =

∫
d4x
√
−g
[
m2

0

2
R− 1

2
∂νφ∂νφ− V (φ)

]
. (7.14)

The second term can be written as

− 1

2
gµν∂µφ∂νφ →

φ̇2

2
g00, (7.15)

substituting back into the action, we get

Sφ →
∫
d4x
√
−g

[
m2

0

2
R+

φ̇2

2
δg00 +

φ̇2

2
− V (φ)

]
. (7.16)

The EFT functions can be written as

Ω(t) = 0, c(t) =
φ̇2

2
, Λ(t) =

φ̇2

2
− V (φ). (7.17)

• The second example is the f(R) theory [228]. Let us start with the action

Sf =

∫
d4x

m2
0

2
[R+ f(R)], (7.18)

and Taylor expand around a background value of the Ricci scalar, R(0) up
to second order

Sf →
∫
d4x

m2
0

2

{[
1 + fR(R(0))

]
R+ f(R(0))−R(0)fR(R(0))

}
. (7.19)

It is easy to deduce that the corresponding EFT functions are

Ω(t) = fR(R(0)), Λ(t) =
m2

0

2
f(R(0))−R(0)fR(R(0)), c(t) = 0,

(7.20)
where fR ≡ df

dR .

7.3 A Background Dynamical Analysis

The effective field theory approach to cosmic acceleration has been conjectured
as a unified description of DE/MG to apply to tests involving data on linear
cosmological perturbations, therefore it is generally assumed that a background
evolution will be specified a priori; in other words, the background functions
will be chosen to closely mimic the evolution of the standard cosmological model
(ΛCDM), and one focuses on effects at the level of perturbations. However,



7.3. A BACKGROUND DYNAMICAL ANALYSIS 99

fixing the expansion history does not determine all the EFT functions, and
there remain one completely free function of time out of the original three.
Given this high degree of freedom, and given that the remaining function affects
also the evolution of perturbations, it is important to explore what general
viability/compatibility rules can be placed on the background EFT functions
by requiring that the corresponding model gives a viable expansion history,
rather than fixing the latter a priori.

In Ref. [396], with M. Raveri and A. Silvestri, we investigated the cosmo-
logical viability of the three EFT background functions by means of a thorough
dynamical analysis of the background evolution. The machinery that we set
up serves different purposes. It offers a general scheme for performing dynam-
ical analysis of DE/MG models within the model independent framework of
EFT; the general results, obtained with this technique, can be projected into
specific models. It also can be used to determine appropriate ansätze for the
three EFT background functions when studying the dynamics of cosmological
perturbations in the context of large scale structure tests of gravity.

In the last Section, we presented the background equations in conformal
time, while in Ref. [396] we work in cosmic time, i.e. dt = adτ . Before moving
to the central part of this work, let us briefly revisit the action using the cosmic
time

S =

∫
d4x
√
−g
[
m2

0

2
Ω(t)R+ Λ(t)− c(t)δg00

]
+ S

(2)
DE + Sm[gµν ], (7.21)

where all the quantities of interest have been already defined. We have not
written explicitly all the quadratic (and higher) order operators that describe
the dynamics of perturbations, as they are not of relevance for our analysis of

the background, rather collecting them into S
(2)
DE. In cosmic time the modified

Friedmann equations read

3m2
0ΩH2 + 3m2

0HΩ̇ =
∑
i

ρi − Λ + 2c, (7.22)

3m2
0H

2Ω + 2m2
0ḢΩ +m2

0Ω̈ + 2m2
0HΩ̇ = −

∑
i

pi − Λ, (7.23)

where in this case the dot indicates derivation w.r.t. cosmic time and ρi and pi
are, respectively, the background energy density and pressure of the i-th matter
component, for which we assume a perfect fluid form. We will consider two
distinct components, i.e. dust with zero pressure (that we will indicate with a
subscript ‘m’) and radiation with pr = 1/3 ρr. Their continuity equations in
cosmic time read:

ρ̇m = −3Hρm, (7.24)

ρ̇r = −4Hρr. (7.25)

Finally we rewrite the continuity equation for the effective DE component

2ċ− Λ̇ = 3m2
0ḢΩ̇− 6Hc+ 6m2

0H
2Ω̇ . (7.26)

Equations (7.22)-(7.26) are all the equations we have at our disposal to study
the dynamics of the background.
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The presentation is organized as follows. In Section (7.3.1) we set up the dy-
namical system, describe the strategy to make it autonomous and then proceed
with the dynamical analysis at different, increasing, orders in Section (7.3.2),
investigating the cosmology of selected trajectories. In Section (7.3.3) we ex-
ploit the recursive nature of our system of equations, as well as the results from
the previous analyses, to perform the dynamical analysis at a generic order N .
Finally we discuss our results and conclude in Section (7.3.4).

7.3.1 Dynamical System and Cosmological Viability

In this Section we will set up the necessary ingredients to perform a dynamical
analysis of the effective field theory of cosmic acceleration. We need to rewrite
the equations for the background into an autonomous system of first ODEs,
for which we can then study the stability around equilibrium points. To this
purpose, we introduce the following dimensionless variables:

x =
c

3m2
0H

2Ω
, y =

c− Λ

3m2
0H

2Ω
, u =

ρr
3m2

0H
2Ω
,

α0 = − Ω̇

H Ω
, . . . , αn = −Ω(n+1)

HΩ(n)
, λ0 = − ċ− Λ̇

H(c− Λ)
, . . . , λm = − (c− Λ)(m+1)

H (c− Λ)(m)
, . . .

(7.27)
where the indices n,m are unbounded from above. Using Eqs. (7.22)-(7.26), we
can write the following set of first order ODEs:

dx

d ln a
= λ0y − 6x− 2α0 + xα0 − (α0 + 2x)

Ḣ

H2
, (7.28a)

dy

d ln a
=

(
α0 − λ0 − 2

Ḣ

H2

)
y, (7.28b)

du

d ln a
=

(
α0 − 4− 2

Ḣ

H2

)
u, (7.28c)

dαn−1

d ln a
=

(
−αn + αn−1 −

Ḣ

H2

)
αn−1, (n ≥ 1) (7.28d)

dλm−1

d ln a
=

(
−λm + λm−1 −

Ḣ

H2

)
λm−1, (m ≥ 1) (7.28e)

where
Ḣ

H2
= −3

2
− 3

2
x+

3

2
y + α0 −

1

2
α1α0 −

1

2
u. (7.29)

This is a nonlinear, non-autonomous system that, however, displays a hierar-
chical structure in the equations for the α′s and λ′s. We will shortly describe
our strategy to approach it.

Eq. (7.22) can be read as a constraint equation

Ωm =
ρm

3m0
2ΩH2

= 1− x− y − u− α0, (7.30)
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with Ωm ≥ 0. When describing the cosmology of the different points, we will
consider also the following parameters:

ΩDE = x+y+α0, Ωr = u, weff ≡ −1−2

3

Ḣ

H2
= x−2

3
α0+

1

3
α1α0−y+

1

3
u,

(7.31)
respectively the DE and radiation fractional energy density and the effective
equation of state. Note that what we define the fractional density parameters,
are the standard ones rescaled by the function Ω(t), as it is common to do in
presence of a conformal coupling [402].

In order to solve system (7.28) we first need to make it autonomous. The
simplest option corresponds to setting α0, λ0 to constant and evolve only the
three core equations (7.28a)-(7.28c); we refer to this case as the zero-th order
one and analyze it sampling the space (α0, λ0) to find viable cosmologies. As we
discuss in detail in Section 7.3.2, this case corresponds to assuming that Ω and
c−Λ are power laws in the scale factor. To go beyond this zero-th order analysis,
we can start exploring the hierarchy of equations (7.28d) and (7.28e), by setting
αN and λM constant for given N,M ≥ 1. We are then left with a (3 +N +M)-
dimensional system formed by the three core equations for {x, y, u}, plus N
equations for α0, . . . , αN−1 and M equations for λ0, . . . , λN−1. We perform the
dynamical analysis of this system sampling the space (αN , λM ) and determining
the regions for which one can obtain viable expansion histories. What is the
corresponding form of the EFT functions that we explore at this order? Let us
develop the following argument in terms of Ω; it is then trivial to reproduce it
for c− Λ. From the definition of the α′s, we see that fixing αN = const gives

Ω(N)(t) = Ω(N)(t0)a−αN , (7.32)

where t0 is the present time. Now that we have an expression for the N th

derivative of Ω, we can use it to write

Ω(t) =

N−1∑
i=0

Ω(i)(t0)

i!
(t− t0)i + Ω(N)(t0)

∫ t

t0

(t− τ)N−1

(N − 1)!
a−αN (τ) dτ, (7.33)

that shows that the constant αN (N ≥ 1) parametrizes the remainder in a Taylor
expansion of order N − 1 around the present time for the function Ω(t). Notice
that in order for the above argument to hold one does not necessarily need
t0 to be the present time (with a0 = 1); the latter can be the desired choice
in view of constraining the form of the EFT functions at recent times [228],
where they are expected to have a non-trivial dynamics and where they are
more likely to be probed. However, one can in principle choose any other t0
that is suited to one’s purpose, as long as a is rescaled by a0 in Eqs. (7.32)
and (7.33). In the following Sections, we separately analyze the stability of the
system (7.28) at different orders. In particular, after analyzing the zero-th order
case in Section 7.3.2, we maintain λ0 constant and focus on the α channel of
the system, solving 3 + N equations for the variables {x, y, u, α0, . . . , αN}. In
other words, we focus on the class of models for which c− Λ is a power law in
the scale factor, while the conformal factor Ω can be increasingly general as we
go up with the order. Alternatively one could fix Ω to a constant and open the
λ channel, which would correspond to exploring all minimally coupled models
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of DE. Finally, one could work with both channels and, for instance, explore,
within this parametrized framework the full class of Horndeski theories [327].
While we leave the former, as well as the most general case, for future work, we
want to stress that the machinery set up in our work is quite general and easily
applicable to the other cases mentioned above.

Finally, let us point out that the structure of the system is such that the
planes y = 0, u = 0, αi = 0, λj = 0 are all invariant manifolds, which implies
that trajectories starting on one of these planes remain on it. This ensures that
viable trajectories identified at a given order, will exist at all higher orders. We
exploit this feature at the end of this Section, when we reconstruct the dynamics
at a generic order N ≥ 3.

7.3.2 Stability Analysis

The dynamics of system (7.28) can be studied analyzing the evolution around
fixed/critical points, i.e. points pi satisfying the equilibrium condition

dpi
d ln a

= 0. (7.34)

In the following we briefly summarize the general procedure; for an exhaus-
tive description of the technique, and for some applications to cosmological
models we refer the reader to [403, 404, 405, 406, 216, 407, 408]. After de-
termining its fixed points, one proceeds to calculate the eigenvalues µi of the
Jacobian matrix M of the system in order to linearize it around each critical
point. This determines the stability nature of the point, in other words it con-
trols how the system behaves when approaching the point. We are interested in
hyperbolic critical points, since around these the linearized dynamical system is
a good approximation of the full nonlinear system. By definition a critical point
is said to be hyperbolic if all eigenvalues of M have Re(µi) 6= 0. Hyperbolic
critical points are robust, in the sense that small perturbations do not change
qualitatively the phase portrait near the equilibrium. For an n-dimensional sys-
tem one has n eigenvalues for each point and the stability depends on the nature
of these eigenvalues, according to the following classification:

• All µi are real and have the same sign:

– Negative eigenvalues → Stable node/ Attractor;

– Positive eigenvalues → Unstable node;

• All µi are real and at least one positive and one negative → Saddle points;

• At least one eigenvalue is real and there are pairs of complex eigenvalues:

– All eigenvalues have negative real parts → Stable Focus-Node;

– All eigenvalues have positive real parts → Unstable Focus-Node;

– At least one positive real part and one negative → Saddle Focus.

A working cosmological model needs to first undergo a radiation dominated
era, followed by a matter era, and then enter a phase of accelerated expansion
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(DE) as indicated by observations [18, 19]. In terms of critical points we need
two saddle points for the radiation and the matter dominated eras, followed
by a late time accelerated attractor, i.e. a stable node with weff < − 1

3 . In
addition we impose the constraints that Ωm ≥ 0 and Ωr ≥ 0, given that matter
and radiation energy densities should be positively defined, and Ω(t) > 0 to
guarantee a stable gravity [409, 410]. On the other hand, we allow the effective
dark energy density to be negative since this quantity may not correspond to the
energy density of an actual fluid, and may indeed be negative in some models of
modified gravity [402]. Finally, in reconstructing viable trajectories, we require
that the matter era is long enough to allow for structure formation.

Zeroth order analysis

The simplest option to make the system (7.28) autonomous is setting α0 and
λ0 to constant and evolve only the core equations (7.28a)-(7.28c). The corre-
sponding behavior of the EFT functions is

Ω(t) = Ω0 a
−α0 , c(t)− Λ(t) = (c− Λ)0a

−λ0 , (7.35)

where the constants will depend on the initial conditions and their value does
not affect the stability analysis.

Unless α0 = 0, the system (7.28a)-(7.28c) is not closed due to the dependence
on α1 through Ḣ/H2. We can use (7.28d) for n = 1 to get

Ḣ

H2
=

1

2− α0

(
2α0 − α2

0 − 3 + 3y − 3x− u
)
. (7.36)

The resulting critical points of the system and the analysis of their stability are
shown in Tab. 7.1. We find that the same results are still valid if α0 = 0. In
what follows we present their eigenvalues and discuss the cosmological viability.

• P1: matter point
The eigenvalues and the relative eigenvectors of the linearized system around
the first critical point are:

µ1 = −1, µ2 = α0 − 3, µ3 = 3− λ0.

~u1 =

(
α0

6− 3α0
, 0 , 1

)
, ~u2 = (1 , 0 , 0) , ~u3 =

(
α0 − λ0

α0 + λ0 − 6
, 1 , 0

)
.

(7.37)

This point displays a scaling solution for which matter and DE coexists with
a constant ratio between their energy densities. We are primarily interested
in the matter configuration, since this is the only critical point of the zero-
th order system that can provide a matter dominated critical point. If we
require Ωm ≈ 1, then we have α0 ≈ 0, which combined with the requirements
of having a saddle, gives α0 = 0 ∧ λ0 < 3.

• P2: stiff matter point

µ1 = 2− α0, µ2 = 3− α0, µ3 = −α0 − λ0 + 6.

~u1 = (−1 , 0 , 1), ~u2 = (1 , 0 , 0), ~u3 = (−1 , 1 , 0). (7.38)
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This point is a DE dominated critical point; it is a stable node with accelerated
expansion only if α0 > 3 ∧ α0 + λ0 > 6. For α0 = 0, it has weff = 1, which
corresponds to a stiff matter behavior that could be of interest for modeling
early stages of the Universe [101].

• P3: DE point

µ1 = λ− 4, µ2 = λ0 − 3,

µ3 = α0 + λ0 − 6.

~u1 =

(
λ0 − 2α0

3(α0 − 2)
, −α0 + λ0 − 6

3(α0 − 2)
, 1

)
, ~u2 =

(
α0 − λ0

α0 + λ0 − 6
, 1 , 0

)
,

~u3 = (−1 , 1 , 0) . (7.39)

This is the second DE dominated critical point of the zero-th order system; it
exhibits a correct cosmological behavior, i.e. weff < − 1

3 , if (α0 ≥ 3∧α0 +λ0 <
6) ∨ (α0 < 1 ∧ λ0 < α0 + 2) ∨ (1 ≤ α0 < 3 ∧ λ0 < 3).

• P4: radiation point

µ1 = 1, µ2 = α0 − 2, µ3 = 4− λ0.

~u1 =

(
α0

6− 3α0
, 0 , 1

)
, ~u2 = (−1 , 0 , 1) ,

~u3 =

(
λ0 − 2α0

3(α0 − 2)
, −α0 + λ0 − 6

3(α0 − 2)
, 1

)
. (7.40)

This point is characterized by Ωm = 0 and a coexistence of radiation and DE
with a constant energy density ratio; in other words it is a scaling radiation
point. We will focus on its radiation dominated version, since it is the only
point that can supply a radiation era for the zero-th order trajectories. It
can be be easily seen that it corresponds to a saddle with weff = 1

3 if α0 =
0 ∧ λ0 6= 4.

Combining all the information above, we conclude that viable cosmological mod-
els for the zero-th order case, can be recovered setting α0 = 0 and λ0 < 3, and
they are characterized by the transitions P4 → P1 → P3 (radiation→ matter
→ DE attractor). One can actually further constrain the space (α0, λ0). In-
deed, a peculiar feature of the zero-th order system is the disposition of the
critical points. A careful analysis of the eigenvectors (7.37)-(7.40), shows that
for any pair of critical points the heteroclinic orbits, i.e. the lines connecting
the two points, are straight lines. This is valid for any choice of (α0, λ0) and
it allows us to put a stricter bound on λ0 by requiring a long enough matter
era for the trajectories of interest. Let us elucidate this point. The ΛCDM
model corresponds to α0 = λ0 = 0 and its trajectory is such that it starts very
close to the radiation saddle point P4, then it passes close to the matter saddle
P1 and finally it reaches the DE attractor P3, always moving very close to the
heteroclinic orbits that connect these three critical points. The time spent by
this trajectory in the last transition gives a handle on the proper duration of
the matter era for trajectories that aim to be cosmologically viable. Since after
we set α0 = 0 the coordinates of P1 and P4 are fixed (i.e. independent on λ0),
we can use the constraint on the position of P3 to put a stringent bound on λ0;
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Point [xc, yc, uc] Stability ΩDE weff

P1

[
− 1

6
α0(1 + α0), 0, 0

]
Stable node:
λ0 > 3 ∧ α0 ≤ 2
Saddle point:

(λ0 < 3∧α0 ≤ 2)∨
(α0 > 3 ∧ λ 6= 3)

− 1
6

(α0 − 5)α0 −α0
3

P2 [1− α0, 0, 0] Stable node:
α0 > 3∧

α0 + λ0 > 6.
Unstable node:

α0 < 2∧
α0 + λ0 < 6

Saddle point:
otherwise

1 1− 2α0
3

P3

[
1
12

(−α2
0 − α0(λ0 + 4) + 2λ0) ,

1
12

(α0 − 2)(α0 + λ0 − 6), 0
] Stable node:

(α0 ≥ 3∧
α0 + λ0 < 6)∨

(α0 < 3 ∧ λ0 < 3).
Unstable node:

(λ0 > 4∧α0 ≥ 2)∨
(α0 + λ0 > 6
∧α < 2).

Saddle point:
otherwise

1 1
3

(−α0+λ0−3)

P4

[
−α

2
0

4
, 0, 1

4
(α0 − 2)2

]
Unstable node:
α0 > 2 ∧ λ0 < 4
Saddle point:

(α0 > 2∧λ0 > 4)∨
(α0 < 2 ∧ λ0 6= 4)

− 1
4

(α0 − 4)α0
1−α0

3

Table 7.1: Hyperbolic critical points and stability analysis for the zero-th order
system. The additional constraints Ωm ≥ 0 and Ωr ≥ 0 have been imposed. We
have D ≡ {α0,λ0 ∈ R}.

indeed if we change the latter, and hence move P3, the duration of the matter
era will change significantly. In other words, we need P3 to be always close to
its ΛCDM position, and this forces λ0 ∼ 0.

In summary, viable cosmological models for the zero-th order case, can be
recovered setting α0 = 0 and λ0 ≈ 0, and they are characterized by the transitions
P4 → P1 → P3. Notice that α0 = 0 implies that the conformal factor Ω(t) is a
constant, which just rescales the Planck mass.

Reconstructing quintessence models

We shall now show how the results of this general dynamical analysis can be
used to constrain specific models of DE. As an example, we choose to interpret
the results of the zero-th order analysis within the context of quintessence by
using the matching in [228, 229]. Given that c and Λ for quintessence models
assume the following forms:

c =
φ̇2

2
, c− Λ = V (φ) = (c− Λ)0a

−λ0 , (7.41)

one immediately notices that the bound α0 = 0 for the zero-th order analysis,
translates into the constraint that any quintessence model with a potential which
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Figure 7.1: The slow roll parameter and the quintessence potential reconstructed
for several trajectories of the α0 = 0, λ0 = 0.1 model (blue lines). The red
dashed line represents the behavior of the Planck [21] best fit ΛCDM model.

is a power law in the scale factor, cannot have a power law behavior for the
conformal factor Ω, and therefore at this order is forced to be minimally coupled.

Among the models selected in this way, we will choose for our example those
corresponding to the value λ0 = 0.1. For simplicity we do not include radiation
in this numerical study since it will not alter much the reconstruction. We
choose initial conditions so that the present day matter density matches the
Planck ΛCDM best fit value [21] and we sample the trajectories that undergo
a P1 → P3 transition. Then using Eq. (7.41) we reconstruct the time evolution
of the quantities of interest, i.e. the slow-roll parameter and the the potential.
We show the outcome in Fig. 7.1, where one can notice that the late time
DE attractor corresponds to slow roll behavior which makes the field behave
approximately like a cosmological constant. On the other hand at early times
the field is rolling down the potential very fast as the DE component behaves like
stiff matter, as expected since the unstable stiff-matter point, P2, serves as the
starting point for the numerically reconstructed trajectories. The corresponding
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potential is monotonically decreasing and positively defined.

First order analysis

We now start exploring the hierarchy of equations for the α′s. The immediate
generalization of the previous model is the one obtained by letting α0 vary, while
fixing (α1, λ0) to constant. As discussed at the beginning of this Section, this
corresponds to setting

Ω̇(t) = Ω̇0a
−α1 , c(t)− Λ(t) = (c− Λ)0a

−λ0 , (7.42)

where again the constants will depend on the initial conditions and do not affect
the stability analysis. Our system of equations is now formed by Eqs. (7.28a)-
(7.28c) along with Eq. (7.28e) with n = 1 and the constraint (7.30). The system
has nonlinear quadratic terms and, for different values of the parameters (α1,
λ0), it can display a wide range of behaviors.

The critical points of the system and the stability properties according to
their eigenvalues are summarized in Tab. 7.2. In what follows we give a more
detailed overview of each point, reporting the corresponding eigenvalues.

• P1: matter point
The linearized system around the first critical point has the following eigen-
values:

µ1 = −3, µ2 =
3

2
− α1, µ3 = −1, µ4 = 3− λ0. (7.43)

It corresponds to a matter dominated solution (weff = 0) which is a saddle
point for λ0 6= 3 ∧ α1 <

3
2 ∨ λ0 < 3 ∧ α1 >

3
2 .

• P2: stiff matter point

µ1 = 3, µ2 = 3− α1, µ3 = 6− λ0, µ4 = 2. (7.44)

This point corresponds to unstable solutions with a stiff matter equation of
state, which could be relevant in the early stages of the Universe [101].

• P3: DE point

µ1 = −6 + λ0, µ2 = −3 + λ0, µ3 = −α1 +
λ0

2
, µ4 = −4 + λ0. (7.45)

It gives a DE dominated solution which is accelerated for λ0 < 2. For λ0 < 0
the point has a phantom equation of state. In particular we have a late time
accelerated attractor (i.e. a stable node), with a ∝ t2/λ0 , for (α1 > 1 ∧ λ0 <
2) ∨ (λ0 < 2α1 ∧ α1 ≤ 1).

• P4: phantom DE point

µ1 = −5+2α1, µ2 = −3+α1, µ3 = −2+2α1−λ0, µ4 = 2(α1−3). (7.46)

It has a DE dominated solution with an accelerated expansion for α1 < 3,
(with a phantom equation of state for α1 < 2). Furthermore, the point is a

saddle for α1 <
5
2 ∧ λ0 > −2 + 2α0 with a ∝ t

1
α1−2 .
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Point [xc, yc, uc, α0,c] Stability ΩDE weff

P1 [0, 0, 0, 0] Stable node:

λ0 > 3 ∧ α1 >
3
2

Saddle point:
otherwise

0 0

P2 [1, 0, 0, 0] Unstable node:

α1 < 3 ∧ λ0 < 6
Saddle point:

otherwise

1 1

P3

[
λ0
6
, 1− λ0

6
, 0, 0

]
See Fig. 7.2. 1 1

3
(λ− 3)

P4 [−1, 0, 0, 2] Stable node:

α1 <
5
2
∧2−2α1 +λ0 > 0,
Unstable node:

α1 >
3∧2−2α1 +λ0 < 0,

Saddle point:
otherwise

1 1
3

(−7 + 2α1)

P5

[
1
3

(−3 + 5α1 − 2α2
1),

, 0, 0,−3 + 2α1]
Stable node:

α1 <
3
2
∧ λ0 > 3

Saddle point:
α1 <

3
2
∧ λ0 <

3 ∨ α1 > 3∧λ0 > 3
∨α1 > 3∧λ0 < 3 ∨
λ0 6= 3 ∧ 3

2
< α1 <

5
2

−4 +
11α1

3
− 2α2

1
3

1− 2α1
3

P6

[
1
6

[−2α2
1 + α1(λ0 − 4) + 3λ0],

1
6

(−3 + α1)(−2 + 2α1 − λ0),
0, 2α1 − λ0]

See Fig. 7.2. 1 1
3

(−3− 2α1 + 2λ0)

P7 [0, 0, 1, 0] Saddle point:

λ0 6= 4 ∧ α1 6= 2

0 1
3

P8

[
−(−2 + α1)2, 0,

, (−3 + α1)2, 2(−2 + α1)
] Saddle point:

α1 6= 3 ∧ α1 6=
2 ∧ λ0 6= 4

−8 + 6α1 −
α2

1

1
3

(5− 2α1)

Table 7.2: Hyperbolic critical points of the first order analysis (α1, λ0 =
constant), for which we have imposed the additional constraints Ωm ≥ 0 and
Ωr ≥ 0. We have D ≡ {α1,λ0 ∈ R}.
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• P5: matter scaling point

µ1 =
1

4

(
−21 + 13α1 − 2α2

1 −
√

81− 42α1 + 29α2
1 − 20α3

1 + 4α4
1

)
,

µ2 =
1

4

(
−21 + 13α1 − 2α2

1 +
√

81− 42α1 + 29α2
1 − 20α3

1 + 4α4
1

)
,

µ3 = 3− λ0, µ4 = −1. (7.47)

For this critical point we have a matter scaling solution with Ωm = 5− 11
3 α1 +

2
3α

2
1 and ΩDE = −4 + 11α1

3 − 2α2
1

3 . The constraint on the positiveness of the
matter density gives α1 ≥ 3 ∨ α1 ≤ 5

2 . In our work we do not perform a full
analysis of scaling solutions, but we rather focus on the two extrema for which
either of the two components has fractional energy density equal to unity. We
leave the full analysis of the scaling regime for future work. For this specific
point it means that we consider only the case for which Ωm = 1 and the case
for which ΩDE = 1. Both points do not display the proper cosmology and
therefore we do not consider P5 any further.

• P6: DE point

µ1 = λ0 − 3, µ2 = λ0 − 4,

µ3 =
1

4

(
−12− 2α2

1 − 3λ0 + α1(10 + λ0)

−
√
−3 + α1W

)
,

µ4 =
1

4

(
−12− 2α2

1 − 3λ0 + α1(10 + λ0)

+
√
−3 + α1W

)
, (7.48)

where W =
√
−48 + 4α3

1 − 4α2
1(λ0 − 1)− 8λ0 + 5λ2

0 + α1(32− 12λ0 + λ2
0).

The point P6 gives a DE dominated solution, with a(t) ∝ t
1

λ0−α1 , which gives
an accelerated expansion for λ0 − α1 < 1 (phantom if α1 > λ0). The results
of the stability analysis around this critical point are summarized in Fig. 7.2;
one can identify regions in the space (α1, λ0) for which the point is a late time
attractor, as well as regions for which it is a stable focus-node. The latter
one is an asymptotically stable point and corresponds to the case in which
the system undergoes oscillations prior to reaching the equilibrium.

• P7: radiation point

µ1 = −2, µ2 = 1, µ3 = −α1 + 2, µ4 = 4− λ0. (7.49)

It corresponds to a standard radiation point with weff = 1
3 and can be a

saddle for α1 6= 2 and λ0 6= 4.

• P8: radiation scaling point

µ1 = 1, µ2 = 2(α1 − 3), µ3 = −6 + 5α1 − α2
1, µ4 = 4− λ0. (7.50)

This point exhibits a radiation scaling behavior since Ωm = 0 while Ωr and
ΩDE can be both non-vanishing. However one cannot in general find values
of (α1, λ0) that give either a proper DE or radiation dominated cosmology.
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As we already discussed, a working cosmological model needs to first undergo
a radiation dominated era, followed by a matter dominated era (that needs to
be long enough to allow for proper structure formation) and finally it has to
approach an accelerated phase. The only critical point which corresponds to a
proper radiation domination in the first order system is P7, which is a saddle
for α1 6= 2 and λ0 6= 4; a good critical point for a matter era is P1, which can be
a saddle with a ∝ t2/3. From this point the system can move to an accelerated
expansion phase by going toward the late time attractors P3, P4 or P6 (as well
as the stable-focus version of P6), depending on the values of α1, λ0. Therefore
we have three types of cosmologically viable trajectories, that can be identified
by the last transition that they undergo: P1 → P3, P1 → P4 and P1 → P6 (with
and without oscillations). In the next subsection we investigate numerically
each of these cases. Finally, we give a graphical representation of the regions in
(α1, λ0) for which the different transitions can take place in Fig. 7.2.

Numerical investigation of different transitions

We shall now investigate numerically the structure of the phase space for some
models that display the different types of possible transitions discussed above.
In order to facilitate the visualization of the phase space, we neglect radiation.

Let us briefly describe the procedure that we follow for this numerical inves-
tigation.

We set initial conditions in order to reproduce the ΛCDM matter density [21]
at some given initial redshift and we systematically sample trajectories that
cross the plane so defined. After the integration of the equations of motion
we notice that, even if nothing a priori suggests it, the trajectories that depart
from constant matter density planes remain quite close to them. It is then
possible to visualize the behavior of the three dimensional system by projecting
the trajectories on these planes, and compactifying the latter via

xP =
x√

1 + x2 + y2
, yP =

y√
1 + x2 + y2

. (7.51)

After this operation we obtain the phase space plots that are shown in Figs. 7.3-
7.4. In what follows we discuss the different types of transitions recovered with
the technique just described; in particular we choose four different combinations
of values for (α1, λ0), according to the previous analysis (e.g. Fig. 7.2), to focus
each time on a different type of trajectory among the cosmologically viable ones.

P1 → P3 transition. We start with the model corresponding to α1 = 0.1 and
λ0 = 0. This choice of values allows us to recover trajectories that mimic very
closely the ΛCDM trajectory, shown as a red line in Fig. 7.3a. Notice that for
this choice of α1, λ0, there is an alternative stable attractor, P4, which gives a
phantom DE. We set initial conditions to reproduce Ω0

m = 0.31 and evolve the
system to obtain the phase space plot shown in Fig. 7.3a. One can notice that
the phase space is dominated in the past by trajectories moving away from the
unstable point P2. These trajectories can be divided in several groups. The first
one is made by trajectories that leave P2 and reach infinity. Obviously these
correspond to unphysical solutions since the matter density and/or weff would
go to infinity as well. The second group is made of trajectories that leave P2 to
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Figure 7.2: The top right panel shows the results of the stability analysis of the
first order system around P3. The panel at the to left illustrates the stability
around P6. The bottom panel shows the combined results of the first order anal-
ysis: regions in the (α1, λ0) plane which allow the different transitions discussed
in Section 7.3.2 are shown in different colors.

go to P3 and exhibit a cosmological behavior that is very similar to the ΛCDM
one. The third family of trajectories leave P2 to go to P4 that is the phantom
DE attractor, while the fourth family of trajectories is made up by solutions
that leave infinity and go to P4 and P3. It is worth noticing that we find again
the P2 → P1 → P3 transition that we had found for the zero-th order system. In
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(a) The α1 = 0.1, λ0 = 0 model.

(b) The α1 = 2.4, λ0 = 1.3 model.

Figure 7.3: The phase space numerical investigation of different DE models for
the first order system. Initial conditions are evolved both in the past (blue lines)
and in the future (green line). The red line in (a) corresponds to the ΛCDM
trajectory.
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(a) The α1 = 0, λ0 = −1/2 model.

(b) The α1 = −2, λ0 = −2 model.

Figure 7.4: The phase space numerical investigation of different DE models for
the first order system. Initial conditions are evolved both in the past (blue
lines) and in the future (green line).
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fact, the eigenvector that corresponds to the positive eigenvalue of P1 is aligned
with the eigenvector that corresponds to the negative eigenvalue of P3 and the
same holds for P1 and P2. As we already discussed, this gives rise to a family of
cosmologically viable trajectories (noticeable in Fig. 7.3a) that move very close
to the heteroclinic orbits connecting these points.
P1 → P6 transition with oscillations. We now investigate numerically a model

which displays a P1 → P6 transition with oscillations (Fig. 7.3b). We obtain
this behavior by setting α1 = 2.4 and λ0 = 1.3. This time we impose initial
conditions such that Ωm = 1 at high redshift (i.e. z = 1000), to evolve the
system more into the future than in the past. Doing so, we avoid the dominance
of the unstable point P2 and are able to show a richer set of trajectories in the
phase space plot. The most interesting family of trajectories corresponds to
trajectories that either start at P2 or infinity at early times, then pass close to
P1 crossing the Ωm = 1 plane and then move close to P4, and start circling
toward P6. The background cosmology of one of such trajectories is shown in
Fig. 7.5.

P1 → P4 transition. In order to numerically recover a model which displays
a P1 → P4 transition, we choose α1 = −1/2 and λ0 = 0. The points P1 and
P2 exhibit basically the same behavior as in the previous models, however for
the chosen values of α1, λ0 both P3 and P4 play the role of a DE attractor,
with different weff . This time we impose initial conditions to match the matter
density today. In Fig. 7.4a we can see as a result that we obtain two different
types of trajectories that go from P1 to P4. The first set departs from P2 and,
after passing close to the matter saddle point P1, go to the DE attractor P4.
The second one starts at infinity, then passes close to P1 and eventually moves
towards P4. We plot the cosmological behavior of a trajectory that undergoes
this transition in Fig. 7.5.

P1 → P6 transition. The last transition we want to discuss is the P1 → P6. In
order to obtain trajectories with this behavior we set α1 = −2 and λ0 = −2 and
impose appropriate initial conditions in order to have equivalence between DM
and DE density at the same redshift as the Planck best fit ΛCDM model [21]. As
we can see from the resulting phase space plot in Fig. 7.4b, the system displays
a clear transition from P1 to P6 for the trajectories that start close to P2. In
Fig. 7.5 we show the cosmological behavior of one of these trajectories.
The selected values for α1, λ0, allow also different types of trajectories, as can
be read off Fig. 7.2. In particular we can recognize two sets of trajectories
that show a P1 to P4 transition. The first set of trajectories starts in P2 and
move toward P1, but are then deviated towards P4 instead of P6. The second
set of trajectories starts at infinity, approaches P1 and then moves towards P4.
Noticeably in the phase space plot in consideration (Fig. 7.4b), one ca observe
non-trivial heteroclinic orbits joining P1 and P4, P4 to P3 and P6 to P5.

In summary, from the numerical investigation of the different transitions,
we have learned that in general trajectories that undergo a P1 → P3 transition
are those that closely resemble the ΛCDM cosmology. Models involving other
transitions, such as P1 → P4 or P1 → P6, display trajectories that are quite
different from the ΛCDM one, but still can give viable cosmologies as can be
noticed in Fig. 7.5.
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Figure 7.5: The top 3 panels shows the behavior of the effective equation of state
for ΛCDM (red dashed line) and three different DE models (blue continuous
line) corresponding to different types of trajectories identified in the first order
system and described in Section 7.3.2. The bottom 3 panels shows the evolution
of matter and DE densities for the ΛCDM model (respectively the red and black
dashed lines) and the different DE models (respectively the blue and green solid
lines), for the same transitions in the top 3 panels. The yellow area represents
the region in which we expect a non-negligible contribution from radiation which
was not considered when constructing these numerical DE models.
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Second order analysis

We now proceed to the second order by allowing both α0 and α1 to vary, while
fixing α2 and λ0 to constant. The models under consideration will then be
characterized by

Ω̈(t) = Ω̈0a
−α2 , c(t)− Λ(t) = (c− Λ)0a

−λ0 . (7.52)

As it can be seen from (7.28), α2 is the first of the α′s that does not enter
the core equations (7.28a)-(7.28c); it is therefore from this order on, that we
start to observe some of the effects of the recursive nature of Eqs. (7.28d). As
we will shortly show, the majority of the critical points for the second order
system are just trivial extensions of the critical points of the first order case;
they replicate the values for the coordinates {xc, yc, uc, α0,c} and come in two
copies distinguished by the value of α1, being it equal or different from zero. The
latter difference reflects into a different dynamics for Ω(t), which can be richer
for the points with α1 6= 0 . To highlight this splitting of the points, we shall
label with the subscript a the duplicates of the first order critical points that
have α1 = 0, and with b the duplicates that have (α1 6= 0). This splitting trend
will become regular from the next order on and it will help us in Section 7.3.3
for the classification of the points at a generic order N .
The details of all the critical points and their stability are shown in Tabs. C.1-
C.2 in Appendix C.1. In what follows we briefly comment on the characteristics
of the cosmologically interesting points.

• Matter points
There are two critical points that are matter dominated with weff = 0 and
both of them represents the extension to one higher dimension of the P1

critical point found in the first order analysis. Their coordinates and the
eigenvalues of the linearized system are:

P1a ≡ (0, 0, 0, 0, 0) µ1 = −3, µ2 = −1, µ3 =
3

2
, µ4 =

3

2
− α2,

µ5 = 3− λ0. (7.53a)

P1b ≡
(

0, 0, 0, 0, α2 −
3

2

)
µ1 = −3, µ2 = −1, µ3 = 3− α2, µ4 = −3

2
+ α2,

µ5 = 3− λ0. (7.53b)

The first one, P1a, is a viable saddle point for λ0 6= 3∧α2 6= 3
2 while the second

one, P1b, is a saddle for λ0 6= 0∧α2 6= 3
2∧α2 6= 3. As we can notice the stability

requirements are quite mild if compared to the constraints that we found at
the previous orders. As a result the vast majority of second order models
will have two cosmologically viable matter configurations distinguished by
the behavior of Ω(t). When passing close to P1a models will be characterized
by Ω̈ � Ω̇ � Ω which means that the coupling to matter will be frozen at
a certain value until the model moves toward DE domination. On the other
hand the second configuration corresponds to a matter era in which Ω(t) has
a non-trivial dynamics.

• Stiff-matter points
There are two P2-like critical points with a stiff matter equation of state,
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Figure 7.6: The top left panel shows the results of the stability analysis of the
second order system around P9 (see Appendix C.1). The top right panel at
the center illustrates the stability of the system around P6. The bottom panel
shows the combined results of the second order analysis. Regions in the (α2, λ0)
plane which allow the different transitions discussed in Section 7.3.2 are shown
in different colors.
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weff = 1:

P2a ≡ (1, 0, 0, 0, 0) µ1 = 2, µ2 = 3, µ3 = 3, µ4 = 3− α2,

µ5 = 6− λ0. (7.54a)

P2b ≡ (1, 0, 0, 0,−3 + α2) µ1 = 2, µ2 = 3, µ3 = 6− α2, µ4 = α2 − 3,

µ5 = 6− λ0. (7.54b)

Their unstable configuration, which might be relevant for the early stages of
the Universe, can be obtained for α2 < 3 ∧ λ0 < 6 in the case of P2a, and for
P2b is 3 < α2 < 6 ∧ λ0 < 6 in the case of P1. Again the two realizations of
this point correspond to different behaviors of the conformal coupling Ω(t).

• Dark energy points
We have also two DE dominated points from the splitting of the first order
P3 point:

P3a ≡
(
λ0

6
, 1− λ0

6
, 0, 0, 0

)
µ1 = λ0 − 6, µ2 = λ0 − 4, µ3 = λ0 − 3,

µ4 =
λ0

2
, µ5 =

1

2
(λ0 − 2α2). (7.55a)

P3b ≡
(
λ0

6
, 1− λ0

6
, 0, 0, α2 −

λ0

2

)
µ1 = α2 −

λ0

2
, µ2 = λ0 − 6, µ3 = λ0 − 3,

µ4 = λ0 − 4, µ5 = λ0 − α2. (7.55b)

They both have weff = −1 +λ0/3 and are cosmologically viable late time DE
attractors respectively for (α2 ≥ 0 ∧ λ0 < 0) ∨ (α2 < 0 ∧ λ0 < 2α2) and for
α2 < 0 ∧ λ0 > 2α2 ∧ λ0 < α2.
The other viable DE attractor is the second order equivalent of the DE dom-
inated P6 (7.48):

P6 ≡
(
λ0

2
, 1 +

λ0

2
, 0,−λ0, 0

)
µ1 = λ0 − 4, µ2 = λ0 − α2,

µ3 = −3− 3

4
λ0 +

1

4

√
3
√

48 + 8λ0 − 5λ2
0,

µ4 = λ0 − 3, µ5 = −3− 3

4
λ0 −

1

4

√
3
√

48 + 8λ0 − 5λ2
0, (7.56)

which is an accelerated attractor with a viable equation of state for (α2 >
1 ∧ 0 < λ0 < 1) ∨ (0 < α2 ≤ 1 ∧ 0 < λ0 < α2). From the full stability
graphical analysis, reported in Fig. 7.6, we can notice that this point can be an
accelerated attractor for a wider range of (α2, λ0), however for some intervals
it would have weff < −2, which is a value already excluded by experiments,
e.g. Refs. [21, 411], and hence we have considered a more conservative region.

• Radiation points
Two radiation dominated critical points are provided by the splitting of the
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first order point P7:

P7a ≡ (0, 0, 1, 0, 0) µ1 = −2, µ2 = 1, µ3 = 2, µ4 =
3

2
− α2, µ5 = 4− λ0.

(7.57a)

P7b ≡
(

0, 0, 1, 0,−3

2
+ α2

)
µ1 = −2, µ2 = 1, µ3 =

7

2
− α2, µ4 = α2 −

3

2
,

µ5 = 4− λ0. (7.57b)

They are a saddle respectively for λ0 6= 4 ∧ α2 6= 3
2 and λ0 6= 4 ∧ α2 6=

7
2 ∧α2 6= 3

2 . A viable radiation era can also be provided by P10 (see Tab. C.2)
which is a radiation-DE scaling critical point. The stability analysis of this
critical point is too complicated to be shown because of the complexity of
its eigenvalues; nevertheless we can deduce the stability conditions for the
configurations of cosmological interest. For instance for α2 = 7

2 this point
supplies a good radiation dominated point which is a saddle if λ0 6= 4. We
cannot instead identify a region of (α2, λ0) where this point would provide a
viable DE candidate.

Combining the above results, we can see that for the second order system there is
a wide variety of possible transitions between viable critical points that will give
rise to a working cosmological model. This is somewhat expected given that we
are moving up the α channel and allowing more and more general behaviors of
the function Ω(t). The combined results of the second order dynamical analysis
are shown in Fig. 7.6. In general the stability requirements for a viable radiation
and matter era are much less stringent than those for the first order system.
Indeed, except for a discrete set of values of α2, λ0, generally there are two points
that can give a radiation era, i.e. P7a or P7b, as well as two points that can
provide a matter era, i.e. P1a or P1b. The values of α2 that do not allow either
a viable matter or radiation critical point are shown in Fig. 7.6 as, respectively,
straight blue and purple lines. A stronger selection of viable regions in the
(α2, λ0) plane is imposed by requiring that the possible DE points, P3a, P3b, P6,
have a proper cosmology and stability.

7.3.3 Nth order analysis: exploiting the recursive nature
of the system

In the previous Sections we performed a dynamical analysis of the system (7.28)
cutting the hierarchy of equations (7.28d) at increasingly higher orders, up to
the second, while keeping λ0 constant. At each order we determined the crit-
ical points, their stability and cosmological features. The reason for treating
separately the zero, first and second order is twofold. First, it allows us to
study gradually more and more general models, recognizing at each order some
characteristic features and cosmological viability conditions. Second, since α2

is the first of the α′s not to enter the core equations (7.28a)-(7.28c), we ex-
pect that from the third order up the system will display a regular pattern in
the critical points that reflects the recursive structure of the equations (7.28d).
We saw glimpses of this pattern already in the second order system in Sec-
tion 7.3.2, but it is not until we have N ≥ 3 that it displays fully. We will
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now exploit this feature to reconstruct the dynamical properties of the system
at any given order N ≥ 3, building on the findings of the lower order analy-
ses. We neglect radiation for simplicity (our results can be easily extended to
include it), so we are left with an N + 2 dimensional system for the variables
{x, y, α0, α1, . . . , αN−1}. When writing the coordinates of the critical points we
use the general structure (xc, yc, α0,c, α1,c, αn,c), with n = 2, .., N − 1, which
allows us to treat separately α0, α1 from αn with n ≥ 2, given that the former
enter the core equations (7.28a)-(7.28c) and do not obey the general rules that
we are about to derive.

By looking at system (7.28), one notices that the set of variables {x, y, α0}
depends on the αn, n ≥ 2, only through α1. We can therefore use α1 as
a pivot variable and split the original system into two blocks: the block of
equations (7.28a), (7.28b), (7.28d) with n = 1 and the block of equations (7.28d)
with n ≥ 2. We start by solving the equations of the first block, and determine
solutions for (xc, yc, α0,c) as functions of α1. We then turn to the second block
and notice that one can generally distinguish two cases: those characterized
by α1,c = 0 and those with α1,c 6= 0. In the former case, the two blocks are
independent, while in the latter all the coordinates of the critical points will
be affected by the equations of the second block. The general structure of the
points for which α1 = 0 can then be recovered as follows. One starts solving the
first block of equations, which can be done quite straightforwardly, to determine
{xc, yc, α0,c}. Then one turns the attention to the second block, with n ≥ 3 since
α1,c = 0, and finds that there are three types of general solutions for this block:
one in which all αn,c = 0, the second where all αn,c 6= 0 and the last case in
which there will be different combinations of α′s equal or not to zero (hence
the name combinations in what follows). A combination is specified by the
location of all the zero terms; once these are given, the values of the α′s 6= 0
are uniquely determined and can be reconstructed, after some lengthy algebra,
solving the corresponding equations. Let us illustrate the general rules for the
specific expressions of the non-zero α′s, by using the following representative
combination:

αn,c ≡ ( ∅ , αq,c, . . . αj,c . . . , αs,c︸ ︷︷ ︸
block 6= 0, j=q,...s

, ∅ , . . . αj,c . . .︸ ︷︷ ︸
block 6= 0

, ∅ , αk,c, ...αl,c..., αN−1,c︸ ︷︷ ︸
block 6= 0, l=k,...,N−1

),

(7.58)
where ∅ ≡ (0, . . . , 0).
The elements in the non-zero blocks which are followed by a zero block have:

αj,c = (s+ 1− j) Ḣ
H2

, (7.59)

where q ≤ j ≤ s, with αq being the first non-zero term in the block and αs
the last one. The particular combination shown in (7.58) ends with a non-zero
block; the elements of such a block obeys the following specific rule:

αl,c = αN + (N − l) Ḣ
H2

, (7.60)

where k ≤ l ≤ N − 1, with αk being the first non-zero term in the block. Every
time we substitute into (7.59) and (7.60) the specific value of Ḣ/H2(xc, yc, α0,c,
α1,c) that corresponds to the point in consideration.



7.3. A BACKGROUND DYNAMICAL ANALYSIS 121

The solutions for which the variable α1 assumes a non-zero value are a little
trickier to treat as the components (xc, yc, α0,c) of the critical points will be
affected by the equations of the second block, we find that also in this case the
critical points can generally be separated in the three above cases based on the
structure of the αn, n ≥ 2, block for which the general rules (7.59)-(7.60) still
apply.

Using the above technique we are able to reconstruct all the critical points
of system (7.28) at a given order N . In particular, we find that they can be
organized in families characterized by the same cosmological behavior. These
families, in most of the cases, can be directly connected to the critical points
that we have analyzed in the previous Sections, as expected because of the
structure of our system and its invariant manifolds (as mentioned at the end
of the introductory part of Section 7.3.1). Therefore one can identify the main
critical points of cosmological interest, or in other words get a good sense of the
cosmologies encoded in the EFT formalism, already at the lower orders. Going
to higher orders allows to analyze more and more general models.

In what follows we describe only the families of critical points that allow
for a viable cosmology, leaving the discussion of the remaining critical points
for Appendix C.2. We generally indicate with s the position of the last term
in a non-zero block within the combination, and with k the position of the
first non-zero term in the last non-zero block that, for some cases, closes the
combination.

• Matter points:

This family includes 2N−1, P1-like, critical points characterized by a well
defined cosmology (Ωm = 1):

P1a ≡ (0, 0, 0, 0, αn,c = 0), (7.61a)

P1b ≡
(

0, 0, 0, αN −
3

2
(N − 1) , αn,c = αN −

3

2
(N − n)

)
, (7.61b)

P1c ≡ (0, 0, 0, combinations). (7.61c)

The latter point includes all (2N−1 − 2) possible combinations constructed
via Eqs. (7.59) and (7.60) with Ḣ/H2 = −1. All critical points correspond to
matter domination, therefore, instead of performing the full stability analysis,
we simply determine the intervals for which they are saddle points. The
eigenvalues of the linearized system around P1a and P1b are:

P1a : µ1 = −3, µ2 =
3

2
− αN , µ3 = 3− λ0, µ4 = · · · = µN−1 =

3

2
, (7.62a)

P1b : µ1 = −3, µ2 =
3

2
N − αN , µ3 = 3− λ0,

µ4 = · · · = µN−1 = αN −
3

2
(N − h), (7.62b)

where h = 1, .., N − 1. As we can see these points have only one possible
stability configuration having two eigenvalues of opposite sign, therefore as
long as they are hyperbolic they are saddles. The first one is hyperbolic
if λ0 6= 3 and αN 6= 3/2 while for the second one we should have αN 6=
3
2 (N − h), αN 6= 3

2N and λ0 6= 3. As for the last sub-family of critical points,
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P1c, the analysis of the eigenvalues reveals that this is a set of saddle points
regardless of the particular combination as for each combination at least two
eigenvalues have opposite sign. Despite the complexity of the structure of
the combinations, we are able to determine that all of them are hyperbolic if:
λ0 6= 3 and αN 6= 3

2 (N − h) with h = 1, . . . , N − 1.

• Stiff-matter points:

P2a ≡ (1, 0, 0, 0, αn,c = 0), (7.63a)

P2b ≡ (1, 0, 0, αN − 3(N − 1), αn,c = αN − 3(N − n)) , (7.63b)

P2c ≡ (1, 0, 0, combinations), αj,c = −3(s+ 1− j) ,
αl,c = αN − 3(N − l). (7.63c)

The points in this family have ΩDE = 1 and weff = 1, therefore representing
a set of 2N−1 stiff-matter critical points. The structure and the cosmology of
these critical points suggest a similarity with the P2 critical point we analyzed
in the previous Sections. These critical points could be of interest in the early
stages of the Universe as unstable critical points [101], which is the only
configuration we analyze in what follows. The first two critical points have
eigenvalues:

P2a : µ1 = 3− αN , µ2 = 6− λ0, µ3 = µ4 = · · · = µN−1 = 3, (7.64a)

P2b : µ1 = 3, µ2 = 3N − αN , µ3 = 6− λ0,

µ4 = · · · = µN−1 = αN −
3

2
(N − 1− h) , (7.64b)

where h = 1, .., N − 1. The first critical point is unstable for αN < 3∧λ0 < 6
while the unstable configuration of the second one is obtained if 3/2 (N − 2) <
αN < 3N∧λ0 < 6. For the last sub-family, P2c, there is only one combination
which shows an unstable configuration and it is the one with α1 = 0 and
αn,c 6= 0 for n = 2, . . . , N−1 which is unstable if λ0 < 6∧3 < αN < 3(N−1).
Most of the other combinations are saddle points.

• Dark Energy points:

P3a ≡
(
λ0

6
, 1− λ0

6
, 0, αn,c = 0

)
, (7.65a)

P3b ≡
(
λ0

6
, 1− λ0

6
, 0, αN −

λ0

2
(N − 1) , αn,c = αN −

λ0

2
(N − n)

)
,(7.65b)

P3c ≡
(
λ0

6
, 1− λ0

6
, 0, combinations

)
, αj,c = −(s+ 1− j)λ0

2
,

αl,c = αN −
λ0

2
(N − l). (7.65c)

This family corresponds to a set of 2N−1 DE dominated critical points with
ΩDE = 1 and weff = λ0

3 − 1. From the structure of these points we can
immediately recognize a similarity with the P3 critical point analyzed in the
previous Sections. We are interested in the stable configuration for this family.
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The eigenvalues of the system around the first two points are:

P3a : µ1 = λ0 − 6, µ2 = λ0 − 3, µ3 =
λ0

2
− αN , µ4 = · · · = µN−1 =

λ0

2
,

(7.66a)

P3b : µ1 = λ0 − 6, µ2 = λ0 − 3, µ3 =
λ0

2
,

µ4 = · · · = µN−1 =
λ0

2
+ αN −

3

2
(N − h+ 1), (7.66b)

where h = 1, . . . , N − 1. The stability analysis reveals that P3a is a stable
accelerated attractor if (αN > 0 ∧ λ0 < 0) ∨ (λ0 < 2αN ∧ αN ≤ 0) while P3b

displays this cosmological behavior if (λ0 < 0 ∧ αN ≤ 3) ∨ (αN > 3 ∧ λ0 <
6− 2αN ). The last sub-family P3c does not contain any stable solution, and
as a consequence will be not further considered.

The points discussed above represent all the hyperbolic, cosmologically viable,
critical points of the system (7.28) at a given order N ≥ 3 (with λ0 = constant).
Since we neglected radiation, the families of critical points which are of cosmo-
logical interest and that can be used to construct transitions from a matter
era to a DE one are, respectively, the P1-like and P3-like family. Each family
contains several critical points, therefore there are many possible specific tran-
sitions; in particular at a given order N , there are 2N−1 matter points and 2
DE points. Analogously to what happens in the second order case, the intervals
of cosmological viability for (αN , λ0) are strongly influenced by the stability re-
quirements of the DE points, while the requirements for a good matter era are
significantly easier to satisfy, and only exclude some values. Once one selects
the values of (αN , λ0) according to the intervals reported above, the trajectories
of the dynamical system will generally start at early times in the neighborhood
of a P2-like unstable node then approach a P1-like matter point, finally moving
away from it heading towards a P3-like de-Sitter attractor. Different trajectories
will correspond to different behaviors of the EFT functions Ω(t) and c(t). Let
us conclude pointing out that viable transitions have λ0 < 0, which implies that
c(t) − Λ(t) will be a growing function of time for all viable trajectories at the
N th order.

7.3.4 Discussion

In Ref. [396], we performed a thorough dynamical analysis of the background
cosmology within the effective field theory for cosmic acceleration [228, 229].
In particular we investigated general conditions of cosmological compatibility
for the three functions of time that describe the background dynamics in this
formalism (EFT functions). While the system of equations is undetermined,
we identified a set of variables that allows one to transform it into an infinite-
dimensional system characterized by an important recursive structure. We then
studied several autonomous cases of increasingly higher dimension correspond-
ing to more and more general models of dark energy and modified gravity within
the EFT framework. Furthermore, exploiting the recursive nature of the full
system of equations, as well as our findings at the lower orders, we drew some
general conclusions on its dynamics and cosmological behavior.
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Our set of dynamical variables contains two infinite series of variables αn
and λm, defined as ratios of subsequent derivatives of, respectively, the EFT
functions Ω and c−Λ, (7.27). These variables are such that their corresponding
equations assume a hierarchical structure. One can truncate these series at any
desired order, and study the corresponding autonomous system. We focused
on the α channel, keeping always λ0 constant. In other words, we focused on
the class of models for which c − Λ is a power law in the scale factor, while
the conformal factor Ω can be increasingly general as we go up with the order.
Alternatively one could fix Ω to a constant and open the λ channel, which would
correspond to exploring all minimally coupled models of DE. Finally, one could
work with both channels and, for instance, explore, within this parametrized
framework the full class of Horndeski theories [327]. While we leave the former
for future work, we want to stress that the machinery set up here is general and
easily applicable to the other cases mentioned above.

As we showed in Eq. (7.33), our set up allows us to find a general expression
for Ω consisting, at a given order N , of a Taylor expansion of order N − 1 in
time and the corresponding remainder that is parametrized in terms of αN .
Since we include the remainder, increasing the order of the analysis is not a
matter of increasing the precision of the Taylor expansion but rather it allows
the investigation of a wider class of models of DE/MG with the most diverse
coupling. An analogous argument could be repeated for c− Λ.

Focusing on the α variables, while keeping λ0 constant, we analyzed the
system at increasingly higher order. At each order we found the critical points
and analyzed their stability and cosmological nature, determining regions in the
plane (αN , λ0) which allow for viable cosmological trajectories. The simplest
case we analyzed was the zero-th order one, obtained setting α0 to constant. It
corresponds to a power law behavior for the EFT functions. After finding the
critical points, we performed a stability analysis and determined the cosmology
of each point as function of α0, λ0. The general result of the zero-th order
analysis is that viable cosmological models can be recovered setting α0 = 0 and
λ0 ≈ 0 and there is really only one viable transition between cosmologically
interesting critical points. Given that α0 = 0, the corresponding models will
be characterized by a constant conformal factor Ω, which is just a rescaling of
the Planck mass. In Section 7.3.2 we showed how these findings, projected onto
models of quintessence, imply that a quintessence model with a potential which
is a power law in the scale factor, cannot have a power law behavior for Ω and
therefore, at this order is forced to be minimally coupled. We then proceeded
with the analysis of the first and second order systems, finding, as expected, a
richer set of cosmologies. We identified respectively the (α1, λ0) and (α2, λ0)
regions which result in cosmologically compatible EFT functions.

At the second order we started to notice some reflections of the recursive
nature of the equations for the α′s . In particular, we found that the majority
of the critical points for the second order system are just trivial extensions of
the critical points of the first order case, that come in two copies with similar
cosmology but a different dynamics of the conformal factor Ω(t). The recursive
nature of the dynamical system fully displays when N ≥ 3, which is part of
the reason why we treated separately the zero, first and second order cases. In
Section 7.3.3 we showed how to exploit this recursive feature to reconstruct the
critical points, their stability and their corresponding cosmological dynamics
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at any given order N ≥ 3. We identified regions in (αN , λ0, N) space that
allow compatible forms of the EFT functions; in particular, all viable models
correspond to a function c− Λ that grows in time.

Our methodology offers a general tool to perform the dynamical analysis of
DE/MG models within the EFT language. We have used it to explore models
with an increasingly more general conformal coupling; we leave the analysis of
other realizations for future work. Finally, let us point out that here we have
chosen not to perform a full analysis of the scaling configurations, but rather
focused on the two extreme cases for which either of the two components in
the configuration has fractional energy density equal to unity. While we leave a
thorough investigation of the scaling regime for future work, we expect that the
scaling points that we found, especially at the order N ≥ 3, will display a rich
phenomenology of late-time scaling cosmologies that could provide a dynamical
solution to the coincidence problem.

Our results can be applied to the numerical investigations of the dynamics
of linear perturbations within the model-independent framework of EFT. Given
the generality of the formalism, there is a high degree of freedom so that even
after fixing the expansion history one is left with a completely undetermined
function of time out of the three original EFT functions. As such, a designer
approach that fixes the background cosmology (typically to ΛCDM) and uses
the Friedmann equations to reconstruct the corresponding behavior of the EFT
functions, may not be the optimal way to proceed. With our technique we are
able to explore the cosmological dynamics of several forms of the EFT functions
and determine general conditions of cosmological compatibilty at different or-
der. This will help us in choosing appropriate ansätze for the EFT background
functions to input in our Einstein-Boltzmann code, EFTCAMB [397], to study
the evolution of linear perturbations.

7.4 Effective field theory for CAMB

In this Section we focus on the implementation of the EFT approach to cosmic
acceleration in CAMB/CosmoMC [399, 400, 401], creating what we will refer
to as EFTCAMB/EFTCosmoMC [397, 398]. These works are in collaboration
with B. Hu, M. Raveri and A. Silvestri.

EFTCAMB, is a powerful and versatile tool that can be used for several
objectives [397]. It can be employed to evolve the full dynamics of linear scalar
perturbations of a broad range of single field DE/MG models, once the model of
interest is mapped into the EFT formalism. It offers a numerical implementa-
tion of EFT as a model-independent framework to test gravity on cosmological
scales. To interface EFTCAMB with cosmological data sets, we equipped it
with a modified version of CosmoMC, namely EFTCosmoMC [398], creating a
bridge between the EFT parametrization of the dynamics of perturbations and
observations. EFTCAMB/EFTCosmoMC will be of great use for upcoming cos-
mological surveys, such as Euclid [312, 412], that aim at testing the underlying
theory of gravity on large scales.

One of the virtue of the code is that it does not rely on any quasi-static
(QS) approximation. When fitting to data or performing forecasts for upcom-
ing surveys, one generally focuses on sub-horizon scales and neglects the time
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derivatives of the gravitational potentials and scalar fields w.r.t. their spatial
gradients, i.e. one assumes the QS regime. In Fourier space, this brings the Ein-
stein and scalar field equations to an algebraic form and simplifies significantly
both the theoretical and the numerical setup. A widely used parametrization
of modified gravity that relies on the QS approximation is the one introduced
in Refs. [270] and commonly referred to as the BZ parametrization. While the
QS description of the growth of structure generally gives a good representa-
tion of the evolution on sub-horizon scales (see e.g. Ref. [413] for an analy-
sis in f(R) gravity), and significantly reduces the computing time, it might
loose out on some dynamics at redshifts and scales that would leave an imprint
within the reach of some ongoing and upcoming surveys [414, 415]. At the
level of model-independent tests of gravity, implementations that do not em-
ploy the QS approximation are the Parametrized Post-Friedmann (PPF) mod-
ules of Refs. [269, 416] as well as MGCAMB [417, 418]. The former uses a
full set of equations for all linear scales, obtained by the interpolation between
the super-horizon and the QS regime and it relies on three free functions and
one parameter; however, in order to study specific models, one needs to work
out interpolations and fits to the these functions and parameters for each case.
The latter relies on a generic parametrization of the Poisson and anisotropy
equation to form a complete and general set of equations for all linear scales,
allowing for model-independent analysis of modified growth such as those of
Refs. [287, 276, 297]; however, one has to restrict to the QS regime in order to
study a specific model. We shall mention also ISiTGR [285, 289], which is an
integrated set of modified modules for use in testing whether observational data
are consistent with general relativity on cosmological scales. EFTCAMB is a
full Einstein-Boltzmann code which does not rely on any QS approximation and
is very general in terms of models and parametrizations that it can handle. We
will illustrate the importance of allowing for full dynamics in view of upcoming
data in Section 7.4.6, by showing how, for some models, the time dependence
of the scalar DoF can have a non-negligible effect on the lensing of the Cosmic
Microwave Background (CMB) detected by Planck [419].

Our code solves the full Klein-Gordon equation for the Stückelberg field,
which in the EFT formalism encodes the departures from the standard cosmo-
logical model, as opposed to macroscopic hydrodynamic/fluid treatments [291,
420, 421]. This allows us to maintain an approach which is closer to the true
nature of the theory as well as to have a direct control and easier interpretation
of the possible instabilities related to this DoF as we discuss in Section 7.4.3.
Furthermore, with our method we can easily evolve perturbations in models
that cross the phantom-divide, as we will illustrate in Section 7.4.7.

We focus on cosmological observables of interest for ongoing and upcoming
surveys, in particular showing outputs of our code for the CMB temperature-
temperature auto-correlation, the CMB lensing potential auto-correlation, the
cross-correlation between temperature and lensing potential for the CMB and
the matter power spectrum. We consider several models. To start with, we
focus on f(R) models that reproduce a ΛCDM expansion history and we com-
pare our outputs to those of the common implementation of these theories in
MGCAMB [417, 418, 413]. This allows us to perform a consistency check of
our code as well as to identify some peculiar features in the power spectra con-
tributed by the sub-horizon dynamics of the scalaron, which is neglected by the
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QS implementation of f(R) in MGCAMB. We then extend to designer f(R)
models with more general expansion histories, considering both a constant but
different than −1 and a time-varying DE equation of state. We analyze in
details all the imprints of these models on the different observables. Finally,
we switch gears and instead of adopting a known model of modified gravity, we
study some ghost-free power law parametrizations of the EFT background func-
tions that display a phantom-divide crossing background. The examples that
we present should highlight the versatility of our EFTCAMB code: it can be
used to evolve the full dynamics of linear perturbations for any given DE/MG
model that can be cast into the EFT language, without the need to resort to
the QS approximation; it provides a powerful and versatile tool to implement
the EFT formalism as a model-independent parametrization to test gravity with
large scale structure; it allows us to investigate some poorly understood models
which are permitted by the symmetries and stability conditions of EFT, such
as the phantom-divide crossing ones.

In combination with the check for stability of the theory embedded in EFT-
CAMB, EFTCosmoMC allows to explore the parameter space of models of
cosmic acceleration under general viability criteria that are well motivated from
the theoretical point of view. It comes with built-in likelihoods for several cos-
mological data sets. We illustrate the use of these patches obtaining constraints
on different models within the EFT framework using data from Planck temper-
ature and lensing potential spectra, WMAP low-` polarization (WP) spectra as
well as baryon acoustic oscillations (BAO). In particular we consider designer
f(R) models and an EFT linear parametrization involving only background
operators, on both a ΛCDM and wCDM background.

Let us note that while our setup takes into account all contributions from
operators that are at most quadratic in the perturbations, for the numerical
analysis presented in Refs. [397, 398], we focus on models that involve only
background operators, leaving the analysis with second order terms for future
work. For a previous investigation of cosmological implications on a subset of
models within the framework of effective field theory of cosmic acceleration see
Ref. [422].

Finally, we publicly released the EFTCAMB and EFTCosmoMC patches at
http://www.lorentz.leidenuniv.nl/~hu/codes/ with a set of detailed notes
that will guide the reader through the structure of the codes [423].

The work is organized as follows. In Section 7.4.1 we describe how EFT-
CAMB deals with the background cosmology. In Section 7.4.2, we present the
equations for scalar linear perturbations, we discuss some general theoretical
requirements for the stability of the theory in Section 7.4.3 and review the cos-
mological observables of interest in Section 7.4.4. In Section 7.4.5 we present
numerical results, including an in depth comparison of our outputs to those of
MGCAMB for f(R) models, new results for designer f(R) with time-varying
DE equation of state and some EFT parametrizations with a phantom-divide
crossing. In Section 7.4.8 we introduce EFTCosmoMC describing its main fea-
tures and in Section 7.4.9 we present the data sets and the results obtained for
some selected models. We finally discuss our results in Section 7.4.10.

http://www.lorentz.leidenuniv.nl/~hu/codes/
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7.4.1 Code implementation of the background cosmology

We envisage our code to serve two purposes: One being the application of the
EFT framework in a model-independent way, to study the effect of the different
operators in action (7.1) on the dynamics of linear perturbations; and eventually
constrain the time-dependent coefficients multiplying these operators. And the
second one, having a versatile full Boltzmann code to study the evolution of
perturbations in virtually any single field DE/MG model for which a mapping
to the EFT formalism can be worked out. The twofold nature of the code
translates into the following two different procedures for the implementation of
the background:

• pure EFT: in this case one works with a given subset of the operators in
action (7.1), possibly all, treating their coefficients as free functions. The
background is treated via the EFT designer approach, i.e. a given expansion
history is fixed, a viable form for Ω [396] is chosen and then use the EFT
designer approach discussed in Section (7.1.1) to get c,Λ and either Eqs. (7.10)
or the prescription described below (see Eq. (7.69)) to get the Q quantities.
The code allows for ΛCDM and wCDM expansion histories, as well as for the
Chevallier-Polarski-Linder (CPL) [91, 92] parametrization of the DE equation
of state. In addition it offers a selection of functional forms for Ω(a): the
minimal coupling, corresponding to Ω = 0; the linear model, that can be
thought of as a first order approximation of a Taylor expansion; power law,
inspired by f(R), and exponential ones. There is also the possibility for
the user to choose an arbitrary form of Ω according to any ansätz the user
wants to investigate. At the level of perturbations, more operators come
into play, each with a free function of time in front of it, and one needs to
choose some ansätze in order to fix their functional form. To this extent, we
adopted the same scheme as for the background function Ω, still providing the
possibility to define and use other forms that might be of interest. Of course
the possibility to set all/some second order EFT functions to zero is included.
The code evolves the full perturbed equations consistently implemented to
account for the inclusion of more than one second order operator per time,
ensuring that even more and more complicated models can be studied.

• mapping EFT: in this case a particular DE/MG model is chosen, the cor-
responding background equations are solved and then everything is mapped
into the EFT formalism [228, 229, 394, 395] to reconstruct the corresponding
EFT functions and Eqs. (7.10) to obtain the Q quantities. Finally, we can
evolve the full EFT perturbed equations. Built-in to the first code release
there are f(R) models for which a designer approach is used for the ΛCDM,
wCDM and CPL backgrounds following Refs. [260, 264]. In the future other
theories will be added to gradually cover the wide range of models included
in the EFT framework.

Let us comment on a fundamental difference between the pure and mapping EFT
cases. In the former, the designer approach serves solely the purpose of fixing
the background, and therefore only the EFT functions {Ω,Λ, c}; when studying
the dynamics of linear perturbations one needs to independently choose a form
for the EFT functions multiplying second order operators, (which of course
includes the case in which all those coefficients are set to zero). In the mapping
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case instead, once the model is chosen and the corresponding background is
solved, one can reconstruct all the time-dependent coefficients in the EFT action
through the matching procedure, including the higher order ones if the model
under consideration involve them. Therefore in the mapping case, once the
model is specified one has all the necessary ingredients to study the dynamics
of cosmological perturbations. We will give explicit examples of the two cases
above in Section 7.4.5, when we present numerical results of our code.

For the actual implementation of the pure EFT cases, we fix the expansion
history to

H2 =
8πG

3
a2(ρm + ρDE), (7.67)

with

ρDE = 3H2
0M

2
PΩ0

DE exp

[
−3

∫ a

1

(1 + wDE(a′)) d ln a′
]
, (7.68)

where wDE represents the equation of state of the effective DE component and
can be set accordingly to the model that one wants to study. In particular we
will consider the following three cases:

- wDE = −1, corresponding to a ΛCDM expansion history;

- wDE = const 6= −1, we will refer to this case as wCDM;

- wDE(a) = w0 + wa(1− a), i.e. the CPL parametrization [91, 92], where
w0 and wa are constant, respectively the value and the derivative of wDE

today.

From a comparison of (7.8), (7.9) with (7.67), (7.68), one obtains the following
correspondence:

ρQ = (1 + Ω) ρDE + Ωρm ,

PQ = (1 + Ω)PDE + ΩPm . (7.69)

After fixing wDE, we use Eqs. (7.69) to determine the Q quantities; we then
choose an Ω(τ) and use Eq. (7.12) and Eq. (7.13) to get c and Λ. Let us note that
the quantity ρDE represents one possible way of modeling the contribution of the
dark component, alternative to the quantity ρQ introduced above. The Q and
DE quantities coincide in the case Ω = 0, i.e. when the dark sector is minimally
coupled to gravity. However, when Ω 6= 0, Eq. (7.10) gives a more proper
representation of the effective scalar DoF of the dark sector, taking into account
the coupling to matter and the corresponding exchange of energy between the
dark and the matter sectors. In fact, the continuity equation (7.11) and that
one for Eq. (7.68) coincide when Ω̇ = 0, while for Ω̇ 6= 0 the density ρQ receives
an extra contribution from the coupling to matter. We choose to formulate
the designer approach for our code in terms of (ρDE, wDE), which allows for a
more direct implementation of the background cosmology in CAMB. However,
we express the equations for linear perturbations in terms of the Q quantities,
as it is usually done in the EFT framework, since those better represent the
contributions to the evolution of perturbations from the EFT dark component.

While in the linearly perturbed equations of next Section we keep c and
the Q quantities, we implicitly assume that once the background is fixed, those
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will be expressed in terms of the expansion history and Ω via a combination of
Eqs. (7.12)-(7.13)-(7.69) for the pure EFT cases, and via the matching recipe
and Eq. (7.10) in the mapping EFT cases.

7.4.2 Scalar linear perturbations

We shall now derive the linearly perturbed Einstein equations that are needed in
order to evolve scalar perturbations in CAMB. We work in synchronous gauge
with the line element given by

ds2 = a(τ)2
[
−dτ2 +

(
δij + hijdx

idxj
)]
, (7.70)

where the scalar mode of hij in Fourier space can be decomposed into

hij =

∫
dk3eik·x

[
k̂ik̂jh(k, τ) +

(
k̂ik̂j − 2δijη(k, τ)

)]
, (7.71)

with h denoting the trace of hij . Unless explicitly stated otherwise, we work
with Fourier transforms of all cosmological perturbations.

While the functions {Ω,Λ, c} are the only ones affecting the background
dynamics in the EFT formalism, when we move to linear perturbations, more
operators come into play; indeed, all the remaining functions in action (7.1),
or equivalently (7.4), that multiply second order operators, will also affect the
dynamics of linear perturbations. For the sake of brevity, here we focus on the
terms contributed by background operators and we list the contributions from
second order operators in Appendix D.

Starting from the action in terms of the Stückelberg field (7.4), and simpli-
fying the background terms, to linear order in scalar perturbations we have:

time-time Einstein equation:

k2η =− a2

2m2
0(1 + Ω)

[δρm + ρ̇Qπ + 2c (π̇ +Hπ)] +

(
H+

Ω̇

2(1 + Ω)

)
kZ

+
Ω̇

2(1 + Ω)

[
3(3H2 − Ḣ)π + 3Hπ̇ + k2π

]
,

(7.72)

momentum Einstein equation:

2

3
k2 (σ∗ −Z) =

a2

m2
0(1 + Ω)

[(ρm + Pm)vm + (ρQ + PQ)kπ]+k
Ω̇

(1 + Ω)
(π̇ +Hπ) ,

(7.73)
space-space off-diagonal Einstein equation:

kσ̇∗ + 2kHσ∗ − k2η = − a2PΠm

m2
0(1 + Ω)

− Ω̇

(1 + Ω)

(
kσ∗ + k2π

)
, (7.74)
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space-space trace Einstein equation:

ḧ =− 3a2

m2
0(1 + Ω)

[
δPm + ṖQπ + (ρQ + PQ) (π̇ +Hπ)

]
− 2

(
Ω̇

1 + Ω
+ 2H

)
kZ

+ 2k2η − 3
Ω̇

(1 + Ω)

[
π̈ +

(
Ω̈

Ω̇
+ 3H

)
π̇ +

(
H Ω̈

Ω̇
+ 5H2 + Ḣ+

2

3
k2

)
π

]
,

(7.75)

π field equation:

cπ̈ + (ċ+ 4Hc)π̇ +

[
3

2

m2
0Ω̇

a2
(Ḧ − 2H3)− 2Ḣc+Hċ+ 6H2c+ k2c

]
π + ckZ

−m
2
0Ω̇

4a2

[
ḧ− 4k2η + 6kHZ

]
= 0, (7.76)

where 2kZ ≡ ḣ and 2kσ∗ ≡ ḣ+ 6η̇ are the standard CAMB variables [399]. As
we will discuss shortly in Section 7.4.3, it is important to demix the degrees of
freedom in order to perform the appropriate stability analysis of perturbations
in the dark sector [228]. Namely, one shall substitute for η and ḧ using Eq. (7.72)
and Eq. (7.75), respectively, in order to obtain the following equation:

(
c+

3m2
0

4a2

Ω̇2

(1 + Ω)

)
π̈ +

[
3m2

0

4a2

Ω̇

(1 + Ω)

(
Ω̈ + 4HΩ̇ +

(ρQ + PQ)a2

m2
0

)

+ċ+ 4Hc− Ω̇

2(1 + Ω)
c

]
π̇ +
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3

4

m2
0

a2

Ω̇

(1 + Ω)

(
(3ṖQ − ρ̇Q)a2

3m2
0

+
3H(ρQ + PQ)a2

3m2
0

+HΩ̈ + 8H2Ω̇ + 2(1 + Ω)(Ḧ − 2H3)
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−2Ḣc+
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ċ− Ω̇

2(1 + Ω)
c

)
H+ 6H2c+

(
c+

3m2
0
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(1 + Ω)

)
k2

]
π

+

[
c+

3

4

m2
0

a2

Ω̇2

(1 + Ω)

]
kZ +

1

4

Ω̇

(1 + Ω)
(3δPm − δρm) = 0. (7.77)

In our numerical code, we set the standard initial conditions for matter com-
ponents and curvature perturbations in the radiation dominated epoch, at a
time when the corresponding momentum mode re-enter the horizon. For the
Stückelberg field instead, we set initial conditions at a later time, corresponding
to aπ = 0.01. The reasons for this choice are several. First of all, we are in-
terested in the late time accelerating universe and we typically want our theory
to reproduce standard GR at early times (a < aπ). In other words, we expect
the Stückelberg field not to be excited at early times.1 This fact also makes

1We impose initial conditions in order to have our model to be very close to GR at early
times. At that time there is an attractor for the system and we set initial conditions such
that the π field does not oscillate around the attractor solution but instead it assumes this
exact value. A cutoff decides if a model is close to GR or not at early times and it depends
on the data one is using. Initial conditions for models that are not GR-like at early times are
subject of current investigation.
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initial conditions for this scalar field less motivated at deep redshift, when the
other matter components initial conditions are instead well defined. Finally,
from the numerical point of view, the system is more easily controlled since, not
evolving the π equation at early times, we avoid some potential high frequency
dynamics that would make the integration time longer, while keeping track of
the underlying mode of evolution of the scalar field. Indeed, since the equation
of motion for the Stückelberg field, Eq. (7.77), is coupled to metric and matter
perturbations, which behaves as an external driving source, we set the π field
to trace the dynamics of the source at times earlier than aπ. In this way we can
get regular and proper initial conditions for the π field at aπ, while avoiding
potential high frequency dynamics around the underlying growing mode which
anyhow are not expected to leave imprints on physical observables.

7.4.3 Stability of perturbations in the dark sector

In this subsection we shall focus on some requirements for theoretical stabil-
ity that can be enforced on the EFT functions to ensure that the underlying
gravitational theory is acceptable. To this purpose we implement in our code a
consistency check for the fulfillment of such stability conditions. For the follow-
ing discussion it is more convenient to write the π field equation as follows:

A(τ) π̈ +B(τ) π̇ + C(τ)π + k2D(τ)π + E(τ, k) = 0 (7.78)

where the coefficients {A, . . . , E} can be easily read from Eq. (7.77) (and the
results of Appendix D if second order operators are at play. In that case also A,
B and D may display k−dependence). Relying on the discussion of Ref. [227],
we place the following theoretical constraints:

• 1+Ω > 0: this condition on the non-minimal coupling function is required
in order to ensure that the effective Newtonian constant does not change
sign. Violating this condition, classically, would imply a Universe quickly
becoming inhomogeneous and anisotropic [409, 410], while at the quantum
level it will correspond to the graviton turning into a ghost [424];

• A > 0: this second condition follows from requiring that our effective
scalar DoF should not be a ghost, i.e. the corresponding kinetic energy
term should be positive. At the classical level there is no serious danger in
this situation while at the quantum level the underlying physical theory
can show instability of the vacuum [425];

• c2s ≡ D/A ≤ 1: the third condition ensures that the sound speed of π does
not exceed the speed of light to prevent scalar perturbations from propa-
gating super-luminary. This condition is no longer true when treating, for
example, Lorentz violating theories [426];

• m2
π ≡ C/A ≥ 0: last, we enforce the mass of the scalar DoF to be real [427],

to avoid tachyonic instabilities. In f(R) gravity, that we consider in Sec-
tion 7.4.6, this condition is necessary to guarantee a stable high-curvature
regime [264].

The above conditions could be relaxed in certain cases depending on the specific
theory of gravity one is interested in and, of course, our code can be easily edited
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to check different stability requirements. Let us briefly comment on this. The
first two conditions are quite general and can be relaxed just in elaborated
models that can associate a physical meaning to the negative branch of A and
1 + Ω. Furthermore, their positive and negative branches are disconnected so
that no theory can allow these two quantities to cross zero as this will violate the
mathematical consistency of the initial value problem for Eqs. (7.8) and (7.77).
The last two conditions are milder and more strictly related to the particular
theory one wants to test. Therefore, they can be relaxed in many ways if the
EFT formalism is used to test some peculiar model that naturally permits their
violation. In this regards, we recall, among others, cosmological models which
allow for viable DE models in Lorentz violating theories [428, 429] and rolling
tachyon condensates [430, 106, 431, 432, 216].

As pointed out in Ref. [227], there are other types of instabilities that can
be studied efficiently within the EFT framework. We leave their thorough in-
vestigation for future work.

7.4.4 Observables

In view of using our code to test gravity with upcoming and future cosmolog-
ical surveys, the observables of interest are all the two-point auto- and cross-
correlations between Weak Lensing (WL), Galaxy Clustering (GC) and Cosmic
Microwave Background (CMB) temperature and polarization anisotropy. We
refer the reader to Ref. [417] for a thorough discussion of these observables and
the corresponding angular power spectra. In our work we show outputs of our
code for the temperature-temperature auto-correlation, the CMB lensing po-
tential auto-correlation, the cross-correlation between temperature and lensing
potential for the CMB and the matter power spectrum.

It is expected that the dynamics of the Stückelberg field will mainly affect
the time evolution of the metric potentials and matter perturbations at late
times. Therefore we expect to see the more noticeable effects in observables
such as the Integrated Sachs-Wolfe (ISW) effect of the CMB and WL. The
former is a secondary anisotropy induced by the time evolution of the Weyl
potential (ψ ≡ (Φ + Ψ)/2 in Newtonian gauge 2) at late times. The latter
involves the distortion of light rays when they pass close to clustering objects,
such as galaxies and clusters; it is sourced by the spatial gradients of the Weyl
potential. During the accelerated epoch, no significant polarization modes of
the CMB photon are generated, therefore we will not consider them here.

The CMB temperature angular spectrum can be computed via the line of
sight integration method [433]

CTT` = (4π)2

∫
dk

k
P(k)

∣∣∣∆T
` (k)

∣∣∣2, (7.79)

where P(k) = ∆2
R(k) is the primordial power spectrum and the radiation trans-

fer function

∆T
` (k) =

∫ τ0

0

dτ eikµ(τ−τ0)ST(k, τ)j`[k(τ0 − τ)] (7.80)

2where we assume the following convention for the Newtonian gauge: ds2 = a2(τ)[−(1 +
2Ψ)dτ2 + (1 − 2Φ)dx2]. The gauge transformations between Newtonian and synchronous
gauges are given by: Ψ = σ̇∗/k +Hσ∗/k, Φ = η −Hσ∗/k.
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is sourced by

ST(k, τ) =e−κ
(
η̇ +

σ̈∗
k

)
+ g

(
∆T,0 + 2

σ̇∗
k

+
v̇B

k
+

Π

4
+

3Π̈

4k2

)

+ ġ

(
σ∗
k

+
vB
k

+
3Π̇

4k2

)
+

3

4k2
g̈Π , (7.81)

where τ0, µ, κ, g, ∆T,0, vB and Π are, respectively, the present conformal
time, angular separation, optical depth, visibility function, intrinsic CMB den-
sity perturbations at the last scattering surface, velocity of baryonic matter
and total anisotropic stress of normal matter (which includes CMB photons,
massless/massive neutrino). Since the recombination of electrons and protons
happens very fast, the visibility function g peaks sharply at that early moment,
so we do not expect the Stückelberg field to affect the terms proportional to the
visibility function and its derivatives. As already discussed, the only relevant
term of (7.81) for our analysis is the ISW one, which can be expressed as follows:

σ̈∗ + kη̇ =− 2Hσ̇∗ − 2Ḣσ∗ +
vm

1 + Ω

a2(ρm + Pm)

m2
0

− 1

k(1 + Ω)

d

dτ

(
a2P

m2
0

Π

)
+

kπ

1 + Ω

a2(ρQ + PQ)

m2
0

+
Ω̇

1 + Ω

[
kHπ − σ̇∗ +

1

k(1 + Ω)

a2P

m2
0

Π

]
.

(7.82)

As for WL, we calculate its angular power spectrum following the convention
of [399, 434]:

Cψψ` = 4π

∫
dk

k
P(k)

[∫ χ∗

0

dχ Sψ(k; τ0 − χ)j`(kχ)

]2

, (7.83)

where the source Sψ is given in terms of the transfer function of the Weyl
potential ψ, i.e.:

Sψ(k; τ0 − χ) = 2Tψ(k; τ0 − χ)

(
χ∗ − χ
χ∗χ

)
, (7.84)

Tψ(k, τ) =
σ̇∗ + kη

2
=

1

2

[
−2Hσ∗ + 2kη − 1

k(1 + Ω)

a2P

m2
0

Π

− Ω̇

1 + Ω
(σ∗ + kπ)

]
. (7.85)

Conventionally, the line of sight integral in the lensing source is expressed in
terms of comoving distance χ. Here χ∗ is the comoving distance of the source
objects. Here we will focus on CMB lensing, for which the source object is a
single distant plane (since the electron-proton recombination is approximately
instantaneous), i.e. χ∗ corresponds to the comoving distance to last scattering
surface. At leading order, the relationship between comoving distance and con-
formal time reads χ = τ0 − τ . Since ISW and WL are sourced by the same
potential, one being sensitive to time derivatives and the other to spatial gra-
dients of the Weyl potential, it is expected that the two effects are strongly
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correlated and this correlation produces a non-zero cross-spectrum CTψ
` [435]:

CTψ
` = 4π

∫
dk

k
P(k)

{∫ τ0

0

dτ eikµ(τ−τ0)e−κ(Φ̇ + Ψ̇)j`

[
k(τ0 − τ)

]
×
∫ τ0

τ∗

dτSψ(k; τ)j`

[
k(τ0 − τ)

]}
, (7.86)

with τ∗ denoting for the conformal time at recombination.

Finally, the matter power spectrum can be computed via

P (k) =
2π2

k3
P(k)∆T(k)2, (7.87)

with the matter transfer function defined as [436]

∆T(k) =
δm(k, z = 0)δm(0, z =∞)

δm(k, z =∞)δm(0, z = 0)
, (7.88)

which describes the evolution of matter density perturbations through the epochs
of horizon crossing and radiation/matter transition. A proper calculation of
∆T(k) requires that in our code we take all types of non-relativistic matter into
account, and follow the growth of each mode outside and inside the horizon.

7.4.5 Numerical Results

In this Section we showcase the reliability and scope of EFTCAMB by compar-
ing it with an existing code, as well as producing some interesting new results.
While we have all the necessary ingredients to consider models which involve
also second order operators in action (7.1), for the numerical analysis we focus
on the cases that involve only the background operators. The examples that we
present should convey the wide range of applicability of our code.

We will first focus on f(R) models and compare our code to the common
implementation of these theories in MGCAMB [417, 418, 413], restricting to
a ΛCDM expansion history. Then, we extend to designer f(R) models with
generic constant and time-varying DE equation of state in the part of this Sec-
tion devoted to new results. As we will illustrate with an example in the f(R)
case, given the accuracy of ongoing and upcoming surveys, as well as the range
of scales that they cover, in order to extract predictions about observables such
as CMB lensing, it is important to employ a code that evolves the full dynamics
of the system on linear scales, without employing the QS approximation. This
is one of the qualities of our code which allows for an implementation of the full
dynamics of a given model, without the need of reducing to the QS regime.

EFTCAMB of course can be used also to fulfill the true purpose the EFT for-
malism has been envisaged for, i.e. a framework for model-independent tests of
gravity on cosmological scales. To this extent, presumably one fixes the expan-
sion history as discussed in Refs. [228, 229] and briefly reviewed in Section 7.4.1,
and then focuses on the dynamics of cosmological perturbations studying the
effects of the different operators in action (7.1). In this case it is necessary to
select some parametrization for the functions of time multiplying the operators
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under consideration. Restricting to the background operators, we show the out-
puts for power law parametrizations of the remaining EFT free function Ω(a)
on a phantom-divide crossing background.

For the present work we will always use the following cosmological parame-
ters: H0 = 70 Km/s/Mpc, Ωb = 0.05, Ωcdm = 0.22, TCMB = 2.7255 K.

7.4.6 f(R) gravity: comparison and new results

As an illustration of how EFTCAMB can be used in its mapping mode, we
shall perform a thorough analysis of f(R) models (See Section 6.1.1). For a
detailed discussion of the cosmology in f(R) theories we refer the reader to
Refs. [260, 261, 264, 238]. Here we will briefly review the main features that are
of interest for our analysis. The higher order nature of the theory translates into
having an extra scalar DoF which can be identified with the field fR ≡ df/dR,
commonly dubbed the scalaron [437]. Implementing the matching to EFT, we
have that Stückelberg field for f(R) theories is given by π = δR/Ṙ(0) [228],
which can be easily related to the perturbation of the scalaron, δfR.

Viable f(R) models need to satisfy certain conditions of stability and consis-
tency with local tests of gravity [264], which can be inferred from the conditions
in Section 7.4.3 once the matching is implemented, as shown in Section 7.2. Fi-
nally, given the higher order of the theory, it is possible to reproduce any given
expansion history by an appropriate choice of the f(R) function [260, 264]. In
other words, f(R) models can be treated with the so called designer approach
which consists in fixing the expansion history and then using the Friedmann
equation as a second order differential equation for f [R(a)]. As we will recap
shortly, generically one finds a family of viable models that reproduce this ex-
pansion and that are commonly labeled by the boundary condition at present
time, f0

R. Equivalently, they can be parametrized by the present day value of
the function:

B =
fRR

1 + fR

HṘ
Ḣ − H2

. (7.89)

Let us recall that the heavier the scalaron the smaller B0 and |f0
R|.

Comparison with MGCAMB in a ΛCDM background

We shall start comparing our results for f(R) theories with those of the publicly
available MGCAMB code [417, 418]. Since we construct our code on the CAMB
version of March 2013, in order to make a senseful comparison we use an updated
version of MGCAMB based on the same version of CAMB and developed by
the authors of Ref. [305].

MGCAMB relies on two functions of time and scale to parametrize deviations
in the Poisson and anisotropy equations, closing the system of equations for
matter in conformal Newtonian gauge with the two following equations:

k2Ψ ≡ − a2

2M2
P

µ(a, k)ρm∆m,
Φ

Ψ
≡ γ(a, k) . (7.90)

In order to evolve perturbations in f(R) models one has to specify the cor-
responding forms for µ(a, k) and γ(a, k), and this can be achieved by taking
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the QS limit of the linearly perturbed equations, which corresponds to neglect-
ing time-derivatives of the metric potentials and of the scalar field, as well as
focusing on sub-horizon scales k � H. In this limit we have:

k2Ψ = − 1

1 + fR

1 + 4fRR/(1 + fR)k2/a2

1 + 3fRR/(1 + fR)k2/a2

a2ρm∆m

2M2
P

,

Φ

Ψ
=

1 + 2fRR/(1 + fR)k2/a2

1 + 4fRR/(1 + fR)k2/a2
. (7.91)

On sub-horizon scales the dynamics of linear perturbations in f(R) is generally
described sufficiently well by this QS approximation [413]. Eqs. (7.91) have
inspired the following parametrization [270, 438, 413, 418]:

µBZ(a, k) =
1

1−B0Ωmas−1/2

1 + 2/3B0 (k/H0)
2
as

1 + 1
2B0 (k/H0)

2
as

,

γBZ(a, k) =
1 + 1/3B0 (k/H0)

2
as

1 + 2/3B0 (k/H0)
2
as
, (7.92)

to which we will refer as the BZ parametrization that consists in assuming

fRR

1 + fR
≡ B0

6H2
0

as+2. (7.93)

A standard way of extracting predictions for cosmological observables and
comparing f(R) models to data is the one of modeling the late time universe
by inserting Eq. (7.92) into MGCAMB, leaving B0 as a free parameter and
fixing s = 4 [417]. Let us recall that a f(R) model defined by Eq. (7.92) with a
constant value for s will not in general be capable of reproducing the full ΛCDM
expansion history. However, it works as a good approximation for each epoch
alone [282], as can be inferred from Eq. (7.93). Indeed a reasonable value of s
is given by s ≈ 5 during radiation domination, s ≥ 4 during matter domination
and s < 4 during the late time phase of accelerated expansion. For small values
of B0, it is customary to fix s = 4 as discussed in Ref. [413], however here we will
re-examine this choice in view of the precision and extent of upcoming surveys.

In order to compute observables for these theories with MGCAMB it suffices
to fix the expansion history to that of ΛCDM, s = 4 and input (7.92) for µ and
γ for several choices of B0. EFTCAMB, on the contrary, does not rely on the
quasi-static BZ parametrization, but rather solves the full equations; therefore
even after fixing the expansion history to ΛCDM we need to feed the code a
form for the EFT functions. We consider two cases:

• BZ case: from Eq. (7.93) we read off the implications of the BZ parametriza-
tions for f(R) and then we reconstruct the corresponding Ω and Λ to input
in the full equations for linear perturbations. We again stress that our code
does not rely on any QS approximation;

• Designer case: we implement in our code the f(R) designer approach to
reconstruct viable f(R) models that mimic the ΛCDM expansion history and
determine the corresponding Ω,Λ via the matching, Eq. (7.20).
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Figure 7.7: Upper panel : comparison between the temperature anisotropy
angular power spectra of EFTCAMB and MGCAMB for f(R) models with
a ΛCDM expansion history but different values of B0 and modeled via the BZ
approach described in Section 7.4.6. Lower panel : same comparison for the case
of a designer f(R) model with ΛCDM background. For a detailed interpretation
of the plots see Section 7.4.6.

The BZ case allows us to make a check of reliability of our code with minimal
changes with respect to the way f(R) theories are treated in MGCAMB. The
designer case corresponds to a proper full treatment of f(R) models and there-
fore let us fully exploit the potential of our code, avoiding spurious effects due
to the BZ approximation; this will allow us to check the accuracy of the QS
approximation in f(R) models to a new extent. The latter case corresponds to
the proper treatment of the background operators in the mapping EFT cases.

Let us start with the BZ case. Using the matching formulae (7.20) we see
that the BZ ansätz (7.93) can be mapped into the EFT formalism as follows:

Ω = −1 + e−
3B0Ωma

s−1

2(s−1) = −3

2

B0Ωma
s−1

s− 1
+O(B2

0),

Λ

m2
0

= −ρDE

m2
0

+B0H
2
0

27a4Ω2
m − 9Ωma

s
(
4a3(s− 4)ΩΛ + (s− 1)Ωm

)
4a4(s− 4)(s− 1)

+O(B2
0).

(7.94)

As in MGCAMB, we fix s = 4 and we use different values of B0 ranging from
very large ones (B0 = 2) to small ones (B0 = 10−3). The comparison of the
temperature spectra from the two codes is shown in the upper panel of Fig. 7.7.
As we can clearly see the agreement on small scales is very good (. 0.01%) and
remains under control (. 0.1%) even on very large scales for small values of
B0 (. 0.01). We get some tension between the two codes, (relative difference
> 1%), at low multipoles for large values of B0 (& 0.1). This is partially due
to the way we treat the background in this case; first of all when B0 & 1 the
correction term in Eq. (7.94) cannot be neglected anymore. For example, for
B0 = 2 this introduces an order of magnitude approximation error in Ω and Λ.
Secondly, there is some fictitious dynamics of the scalar DoF, excited by the
fact that the BZ parametrization (7.93) does not give an exact representation
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of the background dynamics. We also expect this discrepancy to be partially
due to the fact that the QS approximation inherent in the treatment of f(R) in
MGCAMB does not give a full account of the ISW effect. However, in order to
make meaningful statements about the latter, we need to make a comparison
between the output of MGCAMB and the output of EFTCAMB with the full
treatment of the background, i.e. consider the designer case mentioned above.

Let us then abandon the BZ parametrization for our background cosmology,
and rather adopt the designer approach that allows us to reconstruct all the
viable f(R) models that reproduce a ΛCDM expansion history. As mentioned
earlier, f(R) models are able to reproduce any given expansion history by means
of a designer approach firstly discussed in Ref. [260] and later generalized to
include radiation and a time varying DE equation of state in Ref. [264]. The
Friedmann equation for f(R) theories can indeed be written as a second order
differential equation for f [R(a)], namely:

f ′′ −
(

1 +
H ′

H
+
R′′

R′

)
f ′ +

R′

6H2
f = − R′

3M2
PH

2
ρDE, (7.95)

where primes denote differentiation w.r.t. ln a and ρDE is the energy density
of the effective DE component. The procedure consists then in fixing the ex-
pansion history by choosing an equation of state of DE wDE(a), determining
the corresponding energy density like in Eq. (7.68) and solving Eq. (7.95) for
f . For any given expansion history the solution will consist of a family of f(R)
models labeled by B0. We implement this procedure in EFTCAMB and show
the output in Fig. 7.8; for the ΛCDM and wCDM cases one can notice that the
reconstructed f(R) are in agreement with those of Ref. [260]. We show also the
results for the case of a CPL background.

We start with a ΛCDM expansion history, consider different values of B0 and
compare our results with those of MGCAMB in the lower panel of Fig. 7.7. The
overall agreement for values of B0 < 0.1 is within 0.1% in the high multipoles
regime and within 1% in the low multipoles regime. For larger values, i.e. B0 & 1
(which are in tension with constraints from current data [439, 305, 440, 441]) we
notice that at large scales there is a better agreement, while on smaller scales we
get some systematic offset. In what follows we analyze this discrepancy using
B0 = 2 which emphasizes the offset of the codes and facilitates the investigation.

We choose to investigate the source of the above mentioned discrepancy by
comparing the functions µ(z, k) and γ(z, k) in the BZ parametrization (7.92) to
those inferred from our code. The latter are obtained evolving the full dynamics
for the designer f(R) model in EFTCAMB and then substituting the pertur-
bations into Eqs. (7.90), therefore we indicate them with a subscript ‘des’. In
Fig. 7.9 we plot all these quantities in the (z, k) space, as well as the fractional
difference between the BZ and designer quantities both for µ and for γ. Overall
we get good agreement between the BZ quantities and our designer ones, re-
producing the known pattern of recovery of the standard GR behavior at early
times on large scales, and having some significant deviations from the standard
behavior on small scales at late times. After a more careful look, we see that on
super-horizon scales the differences between µBZ(γBZ) and µdes (γdes) are rela-
tively small and are simply due to the fact that our full-Boltzmann code catches
some well known dynamics of the scalaron at those scales, and the return to GR
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Figure 7.8: We show designer f(R) models that mimic different expansion
histories as reconstructed with our code: ΛCDM in the top panel, a constant
wDE = −0.9 in the middle panel and a time-varying wDE in the bottom panel.
For each case we plot four curves corresponding to four different values of the
boundary condition B0. The values of wDE in the first two panels are chosen
to facilitate the comparison with Ref. [260]. See Section 7.4.6 for a detailed
explanation.

is not as exact as in the quasi-static BZ where it is imposed a priori. On smaller
scales, in particular on scales around the Compton wavelength of the scalaron,
the fractional difference plot shows some non-trivial differences between the BZ
and designer quantities. In other words, at late times and on scales around the
Compton one, EFTCAMB is able to catch some dynamics of the scalaron which
is not entirely negligible and perhaps is the source of the discrepancies that we
noticed in the CMB lensing spectrum on small scales. The latter appears espe-
cially in models for which the Compton wavelength of the scalaron is close to
the horizon scale and the sub-horizon and sub-Compton regimes are not clearly
distinguished.

To investigate the non-trivial sub-horizon dynamics further, we introduce
the following indicator:

ξ ≡ π̇

Hπ
, (7.96)

which quantifies deviations from quasi-staticity for the scalar degree of freedom.
In this context with quasi-staticity we mean the fact that time derivatives of the
quantities of interest can be neglected. We plot ξ in the left panel of Fig. 7.10;
from that contour plot one can notice that the scalaron has some dynamics
on super-horizon scales, it then slows on scales of the order of its Compton
wavelength and finally resumes evolving in time below the latter scale, especially
at low redshift. Let us stress that ξ is a good indicator of whether one can neglect
the time derivatives of the scalar field, but does not necessarily carry information
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Figure 7.9: We compare the functions µ(z, k) and γ(z, k) in Eq. (7.92), with
B0 = 2 and s = 4, to those computed in EFTCAMB evolving the full set of
Einstein-Boltzmann equations for f(R) models that reproduce a ΛCDM ex-
pansion history and have B0 = 2. In all plots, the solid line represents the
physical horizon while the dashed line represents the Compton wavelength
of the scalaron (7.89). Upper panel : respectively |µBZ − 1|, |µdes − 1| and
|µBZ−µdes|/|µBZ−1|. Lower panel : |γBZ−1|, |γdes−1| and |γBZ−γdes|/|γBZ−1|.
See Section 7.4.6 for a detailed explanation.

on the dynamics of the metric potentials and therefore on the overall validity of
the QS approximation. The latter will depend on how the scalar field couples
with gravity and the matter sector. In the right panel of Fig. 7.10 we plot
the behavior of π as a function of redshift for four different scales, comparing it
with the evolution of the source term in Eq. (7.78). The curves confirm what we
inferred about the dynamics of π from the behavior of the indicator ξ; on very
large scales the scalaron evolves slowly, following the source term at early times
and then almost stops evolving at extremely late times. On the other hand, on
smaller scales, the field evolves slowly at early times, tracking the source and
continues to evolve even at later times eventually crossing zero at some point.
At this point the QS approximation for the dark sector breaks down because
the field becomes very small while its derivatives remains finite.

To summarize, we see that the strongest deviations from the BZ parametriza-
tion of f(R) gravity are found close to the Compton wavelength of the scalaron
(k2
c = 6H2

0/B0 is roughly the Compton scale today). Below this scale, depend-
ing on the value of B0, the dynamics of the scalar field might be non-negligible
even if we are on sub-horizon scales; and depending on the coupling of π to
gravity and DM, this might generate a non-standard dynamics of matter per-
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tity we introduce as an indicator of the applicability of the QS approximation.
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panels we use an f(R) model with a ΛCDM expansion history and B0 = 2. See
Section 7.4.6 for a detailed explanation.

turbations. For what concerns the CMB, this effect will show up, for very large
values of B0, both on very large scales due to the differences induced on the ISW
effect and on small scales due to the modified evolution of perturbations that
will influence the lensing of the CMB. As the value of B0 decreases the Comp-
ton wavelength will move to scales that just contribute to the lensing, but the
magnitude of the effect will decrease as well. In the end, for small values of B0,
this will just introduce some very small, negligible, discrepancies that we can see
in Fig. 7.7. We however stress that ongoing experiments, such as Planck, and
forthcoming ones, like Euclid, are expected to be much more sensitive to these
effects which will have to be properly accounted for when extracting predictions
for the observables of interest.

Designer f(R) models on non-ΛCDM background

In this section we shall use EFTCAMB to compute the power spectra of different
cosmological observables for f(R) models that mimic more general expansion
histories. As above, after choosing an expansion history, we reconstruct viable
models via an implementation in our code of the f(R) designer approach and
the matching formulae (7.20). We consider a wCDM expansion history with
w0 = −0.7, a CPL model with w0 = −0.7, wa = −0.3 and we compare the
results with those of the ΛCDM models analyzed in 7.4.6. In all cases we fix
B0 = 1 in order to make the various effects clearly visible. In particular we
choose the parameters of the CPL model in order to resemble a cosmological
constant at high redshift while evolving toward the wCDM case at late times.

We show the power-spectra observables calculated with our code in Fig. 7.11
and in what follows we give a detailed overview of each result. The first, top
left panel shows the ISW part of the CMB temperature power spectrum. On
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Figure 7.11: Power spectra of several cosmological observables for f(R) models
mimicking both ΛCDM and non-ΛCDM expansion histories. The red solid line
represents predictions for the ΛCDM model while the black solid one stands
for a wCDM with w0 = −0.7 (shown only in the bottom right panel). Dashed
lines portray designer f(R) models with different expansion histories but same
boundary condition B0 = 1: the long-dashed dark blue line corresponds to mod-
els with a ΛCDM background, the short-dashed blue to models with a wCDM
background with w0 = −0.7 and the dashed-dotted light blue to models with a
CPL background with w0 = −0.7 and wa = −0.3. Upper panels: CMB temper-
ature power spectra; central panels: lensing-temperature cross-correlation (left)
and the lensing potential power spectra (right); lower panels: total matter (left)
and CMB temperature power spectra (right) for ΛCDM / wCDM and the cor-
responding designer f(R) models. See Section 7.4.6 for a detailed explanation.

these angular scales we notice the effects of a modified time evolution of the
gravitational potentials at late times, that results in an overall suppression of
power at low multipoles. This effect will, however, be shaded by cosmic variance
which lowers the statistical significance of these deviations. In fact, we expect
differences from the ΛCDM behavior at small scale to acquire a primary role
in testing alternative models with ongoing and upcoming surveys [442]. We
zoom in on the modifications to CTT` at small scales in the top right panel,
where we can more clearly see the part of the temperature power spectrum
which is influenced by gravitational lensing. As expected, we notice that the
change in the expansion history shifts the position of the peaks and reduces their
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amplitudes, while the modification of gravity could further smear the acoustic
peaks in the lensing part. This can be clearly seen in the lower right figure
which compares explicitly the resulting temperature spectra from CAMB and
our designer EFTCAMB on ΛCDM and wCDM background. The impact of
modifications of gravity on the CMB lensing potential is shown in the center
right figure where we plot Cψψ` ; one can appreciate that the different expansion
histories change the angular size of the lenses slightly shifting the position of the
peak, while the different dynamics of perturbations greatly impact the amplitude
of the spectrum. Ongoing CMB experiments like Planck, ACT and SPT [419,
443, 42] have directly measured this observable, and in the upcoming future they
will measure it with even greater accuracy, so to this extent codes like ours, that
evolve the full dynamics and capture interesting features at those scales of the
CMB spectrum, will be very useful.

Another quantity which is greatly influenced by modification of gravity is
the power spectrum of the cross-correlation between temperature and lensing
potential, i.e. CψT` . As we already commented, the evolution of the Weyl
potential sources both the ISW and weak lensing effect inducing a correlation
between these two. From the center left panel of Fig. 7.11 one can notice
that for the ΛCDM model the cross-correlation is large and positive, while for
f(R) models with a ΛCDM expansion history but B0 = 1, the cross-correlation
oscillates around zero. Interestingly, the signal can be increased by changing
the expansion history while keeping B0 = 1; in this case the cross-correlation
will become large and negative.

Finally, we shall comment on the effects that appear in the total matter
power spectrum. In the bottom left panel of Fig. 7.11 we can appreciate that as
soon as B0 is different from zero the spectrum is shifted, both in amplitude and
in scale, with respect to the ΛCDM one. In addition a non-standard expansion
history changes the amplitude of the spectrum at the peak and also the slope
at smaller, but still linear, scales as we can see comparing the light blue lines
to the dark blue ones. Interestingly, we can clearly see that the CPL model
lies between the ΛCDM and the wCDM one; the amplitude of the peak, which
is influenced by the early time expansion history, lies close to the ΛCDM one
while the slope at smaller scales, which is affected by the late time evolution
of matter perturbations, stays close to the wCDM model as w is approaching
w0 = −0.7.

7.4.7 Pure EFT parametrizations with phantom-divide
crossing

In this subsection we shall use our code to explore deviations from ΛCDM
cosmology parametrized with the EFT language. We will focus on models that
contain only background operators. On the lines of Section 7.4.1 for the pure
EFT cases, we fix the desired expansion history and we make a choice for Ω(a),
deriving the remaining quantities from the EFT designer procedure.

For the present analysis, we consider power laws for Ω, leaving the analysis
of the perturbations for other viable choices [396] for future work. Specifically
we set:

Ω(a) = Ω0a
n , (7.97)
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Figure 7.12: Power spectra of several cosmological observables for parametrized
EFT models with a phantom-divide crossing background. The red solid line
represents predictions for the ΛCDM model. Dashed lines portray models cor-
responding to several choices of parameters defining the function Ω. Upper
panels: CMB temperature power spectra; central panels: lensing-temperature
cross-correlation (left) and the lensing potential power spectra (right); lower
panels: total matter power spectra (left). See Section 7.4.7 for a detailed expla-
nation.

which gives an Ω analogous to the one of the BZ parametrization of f(R) models
when Ω0 = −B0Ωm/2 and n = 3. We fix the expansion history to be the
one of a DE model displaying an extreme phantom-divide crossing which is a
phenomenological feature that is naturally and consistently accounted for by
the EFT approach. Let us stress that with our code we have checked that these
models satisfy the stability constraints listed in Section 7.4.3. In this case,
given that we are not choosing a specific model of DE/MG, but rather a form
for Ω, these stability requirements acquire the meaning of a validity check on
the time dependence of the EFT functions in view of the corresponding behavior
of the perturbations. In particular, the stability conditions will constrain the
parameter space describing the expansion history, (w0, wa), and Ω, in this case
n, offering a complementary constraining power.

We plot the resulting power spectra in Fig. 7.12 for two ghost-free phantom
model: n = 1, 4 and Ω0 = −0.3 in two different background specified by (w0 =
−1.2, wa = 0.3) and (w0 = −1.5, wa = 0.5). Aside from the wide array of
phenomenological changes that we commented on in the previous Section we
shall outline here some interesting features. We can notice that the CMB power
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spectrum at small scales is mostly influenced by the change in the expansion
history while all the other observables are more sensitive to the change in the
power law exponent. Between the linear (n = 1) and the non-linear (n =
4) models we can see a pronounced qualitative difference while the different
expansion histories induce just quantitative changes. This is particularly clear in
the ISW part of the CMB temperature power spectrum, in the lensing potential
and in the lensing-temperature cross correlation. Interestingly enough we see
that the effects on the total matter power spectrum are limited even if the
models that we considered are chosen to be rather extreme. At last we notice
that no pathological feature arises in these spectra associated to the crossing of
the phantom-divide.

7.4.8 EFTCosmoMC: sampling of the parameter space
under stability conditions

To fully exploit the power of EFTCAMB we equipped it with a modified ver-
sion of the standard Markov-Chain Monte-Carlo code CosmoMC [401] that we
dubbed EFTCosmoMC [398]. The complete code now allows to explore the pa-
rameter space performing comparisons with several cosmological data sets, and
it does so with a built-in stability check that we shall discuss in the following.

In the EFT framework, the stability of perturbations in the dark sector can
be determined from the equation for the perturbation π Eq. (7.78), which is
an inhomogeneous Klein-Gordon equation with coefficients that depend both
on the background expansion history and the EFT functions. Following the
arguments of Ref. [227], in Section 7.4.3 we listed general viability requirements
in the form of conditions to impose on the coefficients of the equation for π.

When exploring the parameter space one needs to check the stability of the
theory at every sampling point. While this feature at first might seem a draw-
back, however, it is one of the main advantages of the EFT framework and
a virtue of EFTCAMB/EFTCosmoMC. Indeed, as we outlined in Ref. [397],
checking the stability of the theory ensures not only that the dynamical equa-
tions are mathematically consistent and can be reliably numerically solved, but
also, perhaps more importantly, that the underlying physical theory is accept-
able. This of course is desired when considering specific DE/MG models and,
even more, when adopting the pure EFT approach. In the latter case indeed, one
makes a somewhat arbitrary choice for the functional form of the EFT functions
and satisfying the stability conditions will ensure that there is an underlying,
theoretically consistent model of gravity corresponding to that given choice.

Imposing stability conditions generally results in a partition of the param-
eter space into a stable region and an unstable one. In order not to alter the
statistical properties of the MCMC sampler [444], like the convergence to the
target distribution, when dealing with a partitioned parameter space we imple-
ment the stability conditions as priors so that the Monte Carlo step is rejected
whenever it would fall in the unstable region. We call these constraints viabil-
ity priors as they represent the degree of belief in a viable underlying single
scalar field DE/MG theory encoded in the EFT framework. We would like
to stress that they correspond to specific conditions that are theoretically well
motivated and, hence, they represent the natural requirements to impose on a
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model/parametrization. One of the virtues of the EFT framework, and con-
sequently of EFTCAMB/EFTCosmoMC, is to allow their implementation in a
straightforward way. We shall emphasize that our EFTCosmoMC code auto-
matically enforces the viability priors for every model considered, both in the
pure and mapping EFT approach.

7.4.9 Data sets and Results

In this Section we shall briefly review the data sets we used and discuss the
resulting constraints obtained for some selected pure and mapping EFT models
on both ΛCDM and wCDM backgrounds. While we will work with models
that involve only background operators, EFTCAMB/EFTCosmoMC are fully
equipped to handle also second order operators; the same procedure that we
shall outline here can be followed when the latter are at play.

Data sets

We adopt Planck temperature-temperature power spectra considering the 9 fre-
quency channels ranging from 30 ∼ 353 GHz for low-` modes (2 ≤ ` < 50) and
the 100, 143, and 217 GHz frequency channels for high-` modes (50 ≤ ` ≤ 2500)
3 [445, 21]. In addition we include the Planck collaboration 2013 data release
of the full-sky lensing potential map [419], by using the 100, 143, and 217 GHz
frequency bands with an overall significance greater than 25σ. The lensing po-
tential distribution is an indicator of the underlying large-scale structure, and
as such it is sensitive to the modified growth of perturbations contributing sig-
nificant constraining power for DE/MG models.

In order to break the well-known degeneracy between the re-ionization opti-
cal depth and the amplitude of CMB temperature anisotropy, we include WMAP
low-` polarization spectra (2 ≤ ` ≤ 32) [27]. Finally, we consider the external
baryon acoustic oscillations measurements from the 6dFGS (z = 0.1) [446],
SDSS DR7 (at effective redshift zeff = 0.35) [35, 37], and BOSS DR9 (zeff = 0.2
and zeff = 0.35) [38] surveys to get complementary constraining power on cos-
mological distances.

To explicitly show the effect of individual data sets on the different param-
eters that we consider, we adopt three different combinations of data, namely:
Planck+WP; Planck+WP+BAO; Planck+WP+BAO+lensing, where with lens-
ing we mean the CMB lensing potential distributions as measured by Planck.
In all cases we assume standard flat priors from CMB on cosmological param-
eters while we impose the viability priors discussed in Section 7.4.8 on model
parameters.

Linear EFT model

We start our exploration of CMB constraints on DE/MG theories in the pure
EFT mode. We adopt the designer approach choosing two different models for
the expansion history, the ΛCDM one and the wCDM one (corresponding to a
constant DE equation of state). As we reviewed in Section 7.4.1, after fixing the

3http://pla.esac.esa.int/pla/aio/planckProducts.html

http://pla.esac.esa.int/pla/aio/planckProducts.html
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Figure 7.13: Top panel : stability regions of linear EFT and designer f(R) mod-
els on a wCDM background. The cosmological parameters defining the ex-
pansion history are set to their CAMB default values: H0 = 70 Km/s/Mpc,
Ωb = 0.05, Ωc = 0.22, TCMB = 2.7255 K. Bottom panel : marginalized con-
straints on Log10(B0) describing designer f(R) models on ΛCDM background
for two data sets differing by CMB lensing and BAO. For each data set we
compare the results obtained with EFTCAMB with those obtained by MG-
CAMB [417, 418] for the same designer f(R) models.

background expansion history, one can use the Friedmann equations to solve
for two of the three EFT background functions in terms of the third one; as
it is common, we use this to eliminate Λ and c. We are then left with Ω as
a free background function that will leave an imprint only on the behavior of
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perturbations. We assume the following functional form:

Ω(a) = ΩEFT
0 a , (7.98)

which can be thought of as a first order approximation of a Taylor expansion
in the scale factor. We set to zero the coefficients of all the second order EFT
operators. In the remaining we refer to this model as the linear EFT model.

Before proceeding with parameter estimation, it is instructive to study the
shape of the viable region in the parameter space of the model. As we discussed
in Section 7.4.8, the check on the stability of any given model is a built-in feature
of EFTCAMB/EFTCosmoMC, so that the user does not need to separately
perform such an investigation prior to implementing the model in the code.
Nevertheless, in some cases it might be useful to look at the outcome of such
analysis as one can learn interesting things about the model/parametrization
under consideration. Let us briefly discuss the stability of the linear EFT model.

In the case of a ΛCDM expansion history, it is easy to show that all the
stability requirements that we listed in Ref. [397], and reviewed in Section 7.4.8,
imply the following viability prior :

ΩEFT
0 ≥ 0 . (7.99)

On the other hand, the case of a wCDM expansion history can not be treated
analytically so we used our EFTCAMB code along with a simple sampling
algorithm, included in the code release, to explore the stability of the model
in the parameter space. We varied the parameters describing the dark sector
physics while keeping fixed all the other cosmological parameters. The result is
shown in Fig. 7.13 and includes interesting information on the behavior of this
model. First of all, also in this case the stable region correspond to ΩEFT

0 >
0; furthermore it is possible to have a viable gravity model with w0 < −1,
although in this case ΩEFT

0 needs to acquire a bigger and bigger value to stabilize
perturbations in the dark sector. Finally, we see that if ΩEFT

0 = 0 we recover
the result, found in the context of quintessence models [103], that w0 > −1.
This case corresponds, in fact, to minimally coupled quintessence models with
a potential that is crafted so that the resulting expansion history mimics that
of a wCDM model.

For the ΛCDM background case, the 1D marginalized posterior distributions,
obtained with the three different data compilations discussed above, are shown
in Fig. 7.14 (a). The corresponding marginalized statistics are summarized in
Tab. 7.3. We find that the three different data compilations produce similar
results, with Planck+WP+BAO+lensing giving:

ΩEFT
0 < 0.061 (95%C.L.) . (7.100)

Next we consider a wCDM expansion history, characterized by an equation
of state for DE constant in time, w0, but different from −1. Upon inspecting
Fig. 7.14 (b) one can notice that the marginalized posterior distributions of
(Ωm,ΩΛ, H0, w0) obtained from Planck+WP data are significantly skewed, i.e.
their right tail goes to zero much more sharply than the left one. The situation
changes significantly when one adds BAO data. This is due to the combination
of two effects. On one hand, when BAO data are not included, the constraints
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on (Ωm,ΩΛ, H0, w0) are relatively loose since one is lacking the complemen-
tary high precision information on the expansion history. In other words, the
gain/loss of likelihood value in the vicinity of best-fit points is not very signifi-
cant, so the sampling points of cosmological parameters broadly spread around
their central values. In this case, the stability requirements on ΩEFT

0 and w0

dominate over the data constraining power. On the other hand, as shown in the
top panel of Fig. 7.13, the viable region in the space (ΩEFT

0 , w0) for the linear
EFT model on a wCDM background covers mostly w0 > −1, i.e. it is highly
asymmetric in the range around w0 = −1. This explains the asymmetry in
the posterior distribution of w0 since the marginalized posterior distribution in
Monte-Carlo integration algorithms follows the number of projected sampling
points in the given volume. Furthermore, from the top panel of Fig. 7.15 (green
curve), one can see that (Ωm,Ω

EFT
0 , H0) are degenerate, as expected, with w0

and this explains while their posterior distributions are skewed as well. As
soon as complementary measurements of cosmological distances, such as BAO,
are added to the data sets, the constraining power is strong enough and the
posterior distributions become more symmetric; indeed BAO data significantly
helps to localize the confidence regions close to w0 ∼ −1, making the posterior
distribution less affected by the global profile of viability priors.

Finally, from the top panel of Fig. 7.15 we can see that the degeneracy of
ΩEFT

0 with the other parameters is not very significant after adding BAO data
(blue and red curves). As a result the bounds on ΩEFT

0 remain at the same level
of those obtained for a ΛCDM background. With Planck+WP+BAO+lensing
data we obtain:

ΩEFT
0 < 0.058 (95%C.L.) . (7.101)

One can notice that the addition of lensing data does not significantly improve
the constraint on ΩEFT

0 in neither the ΛCDM nor the wCDM case.

f(R) gravity

The f(R) theory of gravity has already been introduced in Section (6.1.1) and
its implementation in the EFTCAMB solver has been presented and discussed
in Section (7.4.6).

As described at length in Section (7.4.1), EFTCAMB treats the background
of f(R) gravity with a built-in designer routine that is specific to these models
and can handle ΛCDM, wCDM and CPL backgrounds. Furthermore, the via-
bility of the reconstructed model is automatically checked by the code via the
procedure described in Section 7.4.8.

Like in the pure EFT case, it proves very instructive to investigate the shape
of the parameter space as dictated by the stability conditions of Section 7.4.8.
For the designer f(R) model on ΛCDM background it is easy to show that
the latter reproduce the known result that in order to have a positive mass
of the scalaron B0 should be greater than zero. It is much more interesting
to investigate the shape of the parameter space for f(R) models mimicking
a wCDM background expansion history. We do it numerically, through the
built-in routine of EFTCAMB, and we show the results in Fig. 7.13. The first
noticeable feature is that for wCDM models the value of the equation of state of
DE can not go below −1, which is consistent with what was found in Ref. [264].
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Linear EFT+ΛCDM

Planck+WP Planck+WP+BAO Planck+WP+BAO+lensing
Parameters mean ± 68% C.L. mean ± 68% C.L. mean ± 68% C.L.
100Ωbh

2 2.201±0.028 2.205±0.025 2.211±0.025
Ωch2 0.1199±0.0026 0.1193±0.0017 0.1188±0.0016
100θMC 1.04121±0.00063 1.04133±0.00058 1.04132±0.00055
τ 0.089±0.013 0.090±0.013 0.088±0.012
ns 0.9596±0.0073 0.9608±0.0057 0.9619±0.0059
log(1010As) 3.086±0.024 3.088±0.025 3.084±0.022
ΩEFT

0 < 0.066 (95%CL) < 0.072 (95%CL) < 0.061 (95%CL)
Ωm 0.310±0.016 0.306±0.010 0.3028±0.0096
H0[km/s/Mpc] 67.71±1.20 67.99±0.79 68.22±0.75

χ2
min/2 4902.799 4904.074 4908.849

Linear EFT+wCDM

Planck+WP Planck+WP+BAO Planck+WP+BAO+lensing
Parameters mean ± 68% C.L. mean ± 68% C.L. mean ± 68% C.L.
100Ωbh

2 2.198±0.028 2.209±0.026 2.216±0.026
Ωch2 0.1201±0.0026 0.1185±0.0019 0.1180±0.0018
100θMC 1.04119±0.00062 1.04141±0.00058 1.04142±0.00058
τ 0.088±0.013 0.091±0.013 0.091±0.012
ns 0.9588±0.0071 0.9625±0.0060 0.9637±0.0060
log(1010As) 3.086±0.025 3.088±0.025 3.088±0.023
ΩEFT

0 < 0.065 (95%CL) < 0.076 (95%CL) < 0.058 (95%CL)

wEFT
0 −0.88+0.21

−0.14 (95%CL) −0.96+0.09
−0.06 (95%CL) −0.95+0.08

−0.07 (95%CL)

Ωm 0.349±0.041 0.314±0.013 0.312±0.013
H0[km/s/Mpc] 64.10±3.26 66.99±1.22 67.08±1.21

χ2
min/2 4902.921 4903.957 4908.846

Table 7.3: Constraints on cosmological parameters, using different combinations
of CMB data sets, of linear pure EFT on both ΛCDM (up) and wCDM (down)
background.

The second one is that the parameter B0 controls the limit to GR of the theory
i.e. when B0 gets smaller the expansion history is forced to go back to that
of the ΛCDM model in order to preserve a positive mass of the scalaron. The
converse is not true and this same feature do not appear in pure EFT models
where the ΩEFT

0 = 0 branch contains viable theories and corresponds to the
wide class of minimally coupled quintessence models.

In what follows, we shall first investigate the constraints on B0 in models
reproducing ΛCDM background, performing also a comparison with analogous
results obtained using MGCAMB [417, 418]. We will then move to study con-
straints on designer models on a wCDM background, which is a novel aspect of
our work.

In the bottom panel of Fig. 7.13, we compare the 1D marginalized posterior
distributions of Log10B0 from our EFTCAMB to those from MGCAMB. Overall
there is good agreement between the two results. Moreover, one can notice that
generally the constraints obtained with EFTCAMB are a little bit tighter than
those obtained with MGCAMB. This is because in the latter code f(R) models
are treated with the quasi-static approximation which loses out on some of
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f(R)+ΛCDM

Planck+WP Planck+WP+BAO Planck+WP+BAO+lensing
Parameters mean ± 68% C.L. mean ± 68% C.L. mean ± 68% C.L.
100Ωbh

2 2.224±0.033 2.220±0.027 2.214±0.025
Ωch2 0.1185±0.0027 0.1187±0.0017 0.1184±0.0016
100θMC 1.04149±0.00067 1.04142±0.00057 1.04136±0.00056
τ 0.088±0.013 0.087±0.013 0.087±0.012
ns 0.9634±0.0076 0.9624±0.0058 0.9625±0.0057
log(1010As) 3.083±0.025 3.082±0.025 3.080±0.022
log10B0 < 0.0∗ < 0.0 (95%CL) < −2.37 (95%CL)
Ωm 0.300±0.017 0.302±0.010 0.3005±0.0092
H0[km/s/Mpc] 68.51±1.30 68.35±0.81 68.41±0.72

χ2
min/2 4900.765 4901.399 4907.901

f(R)+wCDM

Planck+WP Planck+WP+BAO Planck+WP+BAO+lensing
Parameters mean ± 68% C.L. mean ± 68% C.L. mean ± 68% C.L.
100Ωbh

2 2.255±0.033 2.246±0.029 2.226±0.026
Ωch2 0.1162±0.0027 0.1174±0.0019 0.1174±0.0016
100θMC 1.04186±0.00066 1.04166±0.00060 1.04149±0.00056
τ 0.086±0.013 0.084±0.012 0.082±0.012
ns 0.9695±0.0078 0.9665±0.0062 0.9647±0.0057
log(1010As) 3.075±0.025 3.072±0.024 3.067±0.024

log10B0 −1.97+1.61
−1.52 (95%CL) −2.01+1.60

−1.51 (95%CL) −3.35+1.79
−1.77 (95%CL)

wEFT
0 (−1,−0.94) (95%CL) (−1,−0.94) (95%CL) (−1,−0.9997) (95%CL)

Ωm 0.291±0.015 0.2982±0.0099 0.2944±0.0093
H0[km/s/Mpc] 69.04±1.18 68.50±0.80 68.89±0.75

χ2
min/2 4900.656 4901.140 4908.286

Table 7.4: Constraints on cosmological parameters, using different combina-
tions of CMB data sets, of the designer f(R) model, on both ΛCDM (up) and
wCDM (down) background. (*) No significant upper bound found in the pa-
rameter range we investigated.

the dynamics of the scalaron [413], which is instead fully captured by our full
Einstein-Boltzmann solver, as discussed already in Ref. [397].

The detailed 1D posterior distributions and corresponding marginalized statis-
tics are summarized in Fig. 7.16 (c) and Tab. 7.4 and they are consistent with
previous studies employing the quasi-static approximations [447]. The bottom
panel of Fig. 7.13 and Fig. 7.16 (c) show that lensing data add a significant
constraining power on B0. This is because Planck lensing data are helpful in
breaking the degeneracy between Ωm and B0 which affect the lensing spectrum
in different ways. Indeed, in f(R) gravity the growth rate of linear structure
is enhanced by the modifications, hence the amplitude of the lensing potential
spectrum is amplified whenever B0 is different than zero (see our work [397]);
however, the background angular diameter distance is not affected by B0, so
the position of the lensing potential spectrum is not shifted horizontally. On
the other hand, Ωm affects both the background and linear perturbation so
that both the amplitude and position of the peaks of the lensing potential are
sensitive to it.
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Figure 7.16: 1D Marginalized posterior distributions of cosmological and model
parameters for f(R) models both on a ΛCDM (top) and wCDM (bottom) back-
ground. Different colors represent different combinations of cosmological data
sets.
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Similarly to what happens in the linear EFT model, f(R) gravity shows
some novel features in the case of a wCDM background. Once again we find
a non-trivial likelihood profile of Log10B0 (see Fig. 7.16 (d)) for all the three
data compilations, with the shape of the marginalized posterior distribution of
Log10B0 being dominated by the shape of the stable region. In the top right
panel of Fig. 7.13 one can see indeed that when B0 tends to smaller values,
i.e. the theory tends to GR, the stable regions becomes narrower and narrower,
with a tiny tip pointing to the GR limit. Since the width of this tip is so narrow
compared with the current capability of parameter estimation from Planck data,
the gains of likelihood of the sampling points inside this parameter throat are not
significant, i.e. they are uniformly sampled in the throat. Hence, even though
the full data set has a very good sensitivity to B0, the marginalized distribution
of Log10B0 is dominated by the volume of the stable region in the parameter
space. A complementary consequence of the shape of the stable region in the
(B0, w0) space is the fact that when B0 tends to zero, w0 is driven to −1. In
other words the stability conditions induce a strong correlation between B0 and
w0 and, as a consequence, in f(R) models, no matter in the ΛCDM or wCDM
background case, the GR limit is effectively controlled by a single parameter,
i.e. B0.

Finally one can notice that the bound on w0 with Planck lensing data is
quite stringent compared to those without lensing, namely:

w0 ∈ (−1,−0.94) (95%C.L.) without lensing,

w0 ∈ (−1,−0.9997) (95%C.L.) with lensing. (7.102)

We argue that this stringent constraint actually is a consequence of the combina-
tion of the strong correlation between B0 and w0 induced by the viability prior,
as discussed above, and the sensitivity of lensing data to B0, that we capture well
with our code. As shown in Ref. [305] Planck lensing data is very sensitive to MG
parameters such as B0; indeed, in our analysis with Planck+WP+BAO+lensing
data we get

Log10B0 = −3.35+1.79
−1.77 (95%C.L.) . (7.103)

Furthermore, from Fig. 7.15 (b), one can see that the ellipse in the (Log10B0, w0)
space corresponding to Planck+WP+BAO+lensing data (blue) is orthogonal to
those without lensing (red and green). In other words, when lensing data is
included, Log10B0 and w0 display a degeneracy which propagates the stringent
constraint on the scalar Compton wavelength from CMB lensing data to w0.
Besides this, we do not find other remarkable degeneracies between B0 and
standard cosmological parameters.

7.4.10 Discussion

Solving the puzzle of cosmic acceleration is one of the major challenges of modern
cosmology. In this respect, cosmological surveys will provide a large amount of
high quality data allowing to test gravity on large scales with unprecedented
accuracy. The effective field theory framework for cosmic acceleration will prove
useful in performing model independent tests of gravity as well as in testing
specific theories since, while being a parametrization of the quadratic action, it
preserves a direct link to a wide range of DE/MG models. Indeed, any single
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scalar field DE/MG models with a well defined Jordan frame can be cast into
the EFT language and most of the cosmological models of interest fall into this
class.

In Ref. [397], we presented the implementation of the EFT formalism into the
Einstein-Boltzmann solver CAMB [399], resulting into EFTCAMB. The latter
code has several virtues. It allows for the implementation of the parametrized
EFT framework in what we dub the pure EFT approach, and for the implemen-
tation of specific DE/MG models in the mapping mode, we gave an example of
the latter case by studying the dynamics of perturbations in viable f(R) models
with different expansion histories. EFTCAMB does not rely on any quasi-static
approximation, but rather it implements the full perturbative equations on all
linear scale for both the pure and the mapping case ensuring that no potentially
interesting physics is lost. To this extent, we presented an example of signature
on the small scales of the CMB lensing potential angular power spectrum from
the sub-horizon dynamics of the scalaron in f(R) models. Effects like the latter
will be measured at increasing accuracy in the next years, and our code offers
a way to exploit these data as complementary tests of gravity. It has a built-in
check of the stability conditions of perturbations in the dark sector in order to
guarantee that the underlying gravitational theory is viable. In particular we
require: a positive Newtonian constant, absence of ghost instabilities, absence
of super-luminary propagating perturbations and, finally, a positive mass of
the extra scalar degree of freedom. Finally, our code can handle very different
expansion histories, namely ΛCDM, wCDM and CPL backgrounds, naturally
allowing phantom-divide crossing, as we have shown with some results.

Let us briefly recap the main results we obtained with EFTCAMB. We
started comparing our code with the outputs of MGCAMB for f(R) theories
on a ΛCDM background. To this extent, we focused on the CMB tempera-
ture angular spectrum and showed an agreement of the two code within 0.1%
for values of the scalaron Compton wavelength consistent with existing bounds
from Planck. For larger values of B0 we found some tension both at the low
and high multipoles; the former is due to the fact that not relying on any QS
approximation, EFTCAMB gives a more accurate account of the ISW effect. To
investigate the latter discrepancy instead, we considered the functions µ(z, k)
and γ(z, k), Eqs. (7.90), commonly used to parametrize deviations from GR and
implemented in MGCAMB. We compared their shape in (z, k)-space as recon-
structed from the full evolution of the perturbations in our code, to their form
under the BZ approximation (7.92) employed to study f(R) in MGCAMB. This
comparison showed that EFTCAMB catches the mild dynamics of the scalaron
at early times and on large scales, as well as some non-trivial dynamics on scales
around and below the Compton wavelength. We confirmed this by analyzing
the time- and scale-dependence of a quantity that we propose as an indicator
of quasi-staticity in the dark sector, ξ Eq. (7.96). After this thorough check of
consistency with MGCAMB, we moved on to fully exploit the flexibility of the
EFT framework applying our code to two different DE scenarios. First, as an
example of what we called the mapping EFT approach, we extended the imple-
mentation of the f(R) designer approach to more general expansion histories
like the wCDM and CPL one, examining the effects of the combined change
in the background dynamics and in the growth of structure on cosmological
observables like the CMB temperature and lensing power spectra (auto- and
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cross-correlation), and matter power spectrum. Second, we used the pure EFT
approach, i.e. we chose an expansion history and a parametrized form for the
EFT function Ω and again explored signatures on power-spectra observables.
In this case we focused on backgrounds with a phantom-divide crossing demon-
strating how, within the EFT framework, there is no special pathology arising
when wDE = −1is crossed.

In Ref. [398], we equipped EFTCAMB with a modified version of Cos-
moMC, that we dubbed EFTCosmoMC, creating a bridge between the EFT
parametrization of the dynamics of perturbations and observations. EFTCos-
moMC allows to practically perform tests of gravity and get constraints ana-
lyzing the cosmological parameter space with, in its current version, data sets,
such as Planck, WP, BAO and Planck lensing. Further data sets, mainly from
large-scale structure surveys, will be included in the near future.

As discussed in Section 7.4.8, exploring the parameter space requires a step
by step check of the stability of the theory. We implemented the resulting sta-
bility conditions as viability priors that makes the Monte Carlo step be rejected
whenever it would fall in the unstable region of the parameter space. The latter
procedure, in our view, represents a clean and natural way to impose priors on
parameters describing the dark sector.

To illustrate the use of the EFTCAMB/EFTCosmoMC package, we have
derived constraints on two different classes of models, namely a pure linear EFT
model and a mapping designer f(R). We used three different combinations of
Planck, WP, BAO and CMB lensing data sets to show their different effects
on constraining the parameter space. For both models we have adopted the
designer approach built-in in EFTCAMB and have considered the case of a
ΛCDM as well as of a wCDM background.

For the linear EFT model, we have derived bounds on the only model pa-
rameter, i.e the present value of the conformal coupling functions ΩEFT

0 , as
described in Section 7.4.9. In the case of a ΛCDM background, we have found
that the latter needs to satisfy ΩEFT

0 ≥ 0 as a viability condition and with
Planck+WP+BAO+lensing data we get a bound of ΩEFT

0 < 0.061 (95%C.L.)
(the three different data compilations give similar results). For the wCDM
expansion history, the outcome of the stability analysis is shown in Fig. 7.13;
specifically, there is a stable region in parameter space where the DE equa-
tion of state can be smaller than −1 as long as the corresponding value of
ΩEFT

0 is high enough to stabilize perturbations in the dark sector; finally, the
value ΩEFT

0 = 0 corresponds to a minimally coupled model and requires w0 >
−1, like in the case of quintessence. The combined bound on ΩEFT

0 with
Planck+WP+BAO+lensing data gives ΩEFT

0 < 0.058 (95%C.L.).

Finally, we have investigated designer f(R) models on ΛCDM/wCDM back-
grounds, in terms of constraints on the model parameter B0, as described in
Section (7.4.9). For the ΛCDM case we also compared our results to those
that we obtained with the quasi-static treatment of these models via MG-
CAMB [417, 418]. The two treatments give results that are in good agreement,
with bounds from EFTCAMB/EFTCosmoMC being a little tighter thanks to
the full treatment of the dynamics of perturbations. On wCDM background
we have found a non-trivial likelihood profile of Log10B0 (see Fig. 7.16 (d))
for all the three data compilations and the shape of the marginalized posterior
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distribution in this case strongly reflects that of the viable region in parameter
space. In the wCDM background, with Planck+WP+BAO+lensing data we get
Log10B0 = −3.35+1.79

−1.77 (95% C.L.). The bounds on w0 with Planck lensing data
(w0 ∈ (−1,−0.9997) (95% C.L.)) are quite stringent compared to those without
this data set (w0 ∈ (−1,−0.94) (95% C.L.)) due to the high constraining power
of lensing measurements on B0 and the strong correlation between w0 and B0

via the viability prior.

Within the pure EFT approach, the code we released contains already all
operators relevant for the dynamics of linear perturbations. In particular, while
in Refs. [397, 398] we showed results for a model involving only background
operators, we shall stress that the code is fully functional for second order
operators too. As for the mapping mode, the code currently allows for a full
treatment of f(R) models via a specific designer approach that can handle both
ΛCDM, wCDM and CPL backgrounds.

In conclusion, we will gradually implement the mapping procedure for many
other single scalar field DE/MG models which are of relevance for cosmological
tests. More data sets will be added into EFTCosmoMC allowing to test gravity
with the most recent data releases with a particular emphasis toward large scale
structure observations in view of surveys such as Euclid [312].

The complete EFTCAMB/EFTCosmoMC bundle is now publicly available
at http://www.lorentz.leidenuniv.nl/~hu/codes/.

http://www.lorentz.leidenuniv.nl/~hu/codes/
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Chapter 8

Conclusions

In the first part of this thesis we have presented the state of the art of Modern
Cosmology. The observational data reveal the emergence of a dark Universe, in
which the Dark Energy, commonly used to parameterize the recent acceleration
of the Universe, and Dark Matter, constitute about 95% of the energy content
of the Universe. We presented the most widely used and accepted cosmological
model to describe Universe’s evolution, the ΛCDM model, and we discussed its
merits and limitations in the light of the theoretical predictions and observa-
tional data. The lack of a fully satisfactory model gives rise to alternatives to the
cosmological standard model. In Part II and Part III, we presented the results
published in Refs. [162, 207, 379, 396, 397, 398]. These papers are the result
of my collaboration with T. P. Sotiriou, R. K. Sheth, P. Salucci, A. Silvestri,
J. M. Cannon, E. C. Elson, B. Hu, S. Y. Zhou, M. Raveri and D. Vernieri. In
these works we investigated some outstanding problems in cosmology, such as
DM, the early and late acceleration of the Universe. Let us briefly recap our
main findings and highlight possible future development of them.

At small scales, dwarf galaxies are good candidates to investigate the nature
of DM, because their kinematics are dominated by this component down to the
center. In Chapter 4, we presented the results of detailed kinematic analysis and
mass modeling of the Orion dwarf galaxy, for which we derived a high quality
and high resolution RC that contains negligible non-circular motions and we
corrected it for the asymmetric drift. Moreover, we exploited the proximity (D
= 5.4 Mpc) and convenient inclination (47◦) to produce reliable mass models for
the galaxy. We found that the URCH mass model (Freeman disk + Burkert halo
+ gas disk) fits the observational data accurately. In contrast, the NFW halo
+ Freeman disk + gas disk mass model is unable to reproduce the observed
RC as the Orion dwarf reveals a cored DM density distribution. Finally, we
modeled the velocity profile using the MOND proposal. With the present data
and with the present assumptions on distance, stellar mass, constant inclination
and reliability of the gaseous mass, the MOND “amplification” of the baryonic
component appears to be too small to mimic the required “dark component”.
On the other hand, allowing for adjustments of the distance and/or value of the
gas mass, the kinematic data can be reproduced in the MOND formalism. In
particular, we found that adopting a distance ∼ 10 Mpc, i.e. 1.9 farther than
the nominal distance the RC is well fitted. A direct measurement of the distance
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would be a crucial test for the MOND paradigm. More in general, at galactic
scales, the study of DM through RCs is a field still opened. The extension, to a
larger sample of dwarf galaxies, of the analysis we proposed for the Orion dwarf,
might help in testing different mass models and in particular to investigate the
validity of modifications to the newtonian law, such as MOND.

Most of the matter in the Universe is dark and it was initially rather smoothly
distributed. The luminous galaxies are biased tracers of the DM distribution,
meaning that galaxies mass distribution does not trace the mass in the Uni-
verse. This is an obstacle to the comparison between perturbation theories and
observations. The exact relation between the spatial distribution of galaxies and
DM is called bias and it depends on the complex, nonlinear process of galaxy
formation. In order to do precision cosmology an important step is to under-
stand how to model the bias. The simplest version for bias was proposed by Fry
& Gaztañaga (1993) [191] and it is based on the assumptions that the bias is
non-linear, local and deterministic. Then, the biased tracers can be written as
a Taylor expansion in terms of the mass field. In this model one expects that
the cross correlation between the biased tracers and the initial field involves the
higher order terms present in the Taylor expansion while this does not happen
for example in peaks, and patches which form halos, in a Gaussian random field.
In Chapter 5, we showed that if this Lagrangian bias is local, and the initial
conditions are Gaussian, then the two-point cross-correlation between halos and
mass should be linearly proportional to the mass-mass auto-correlation function.
This statement is exact and valid on all scales; there are no higher order con-
tributions, which one might have thought would appear upon truncating the
Taylor series of the halo bias function. The constant of proportionality is easily
related to the first coefficient of the Taylor series expansion of the biased field, al-
though they are not equal in general. In addition, the auto-correlation function
of locally biased tracers can be written as a Taylor series in the auto-correlation
function of the mass. We also explored the consequences of truncating these
expansions, demonstrating that it is better to renormalize all truncated expan-
sions than to not. Finally, it could be of interest to investigate how the bias
factor changes in presence of modification of gravity, as it is expected that the
scale of the screening mechanism affects the growth of structures and their for-
mation. Our findings could in principle hold for MG models, however, for these
models the bias factor shows a scale dependence even on large scale with the
consequence that the assumption that Lagrangian halo bias is local is no longer
so attractive.

In Part III, we have illustrated some approach to modify the theory of Gen-
eral Relativity. In particular, we focused on the modifications that come from
the introduction of a scalar field in the action. These theories can be used to de-
scribe the recent acceleration of the Universe, as well as the Inflationary phase.
A possible way to discriminate among different inflationary models is to look
for non-Gaussianity. NG should be investigated using non-linear perturbation
theory and standard perturbation theory can be used up to the horizon exists.
A complementary method is the gradient expansion technique, which provides
a fully non linear analysis and naturally tackles the superhorizon perturbations.
In this approach physical quantities are expanded in terms of their inverse wave-
lengths, as compared to a pivotal length scale which in the inflationary epoch is
the Hubble length. Hence, every spatial derivative adds one perturbative order.
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In Sections 6.3 - 6.4, we develop the gradient expansion formalism for shift-
symmetric Galileon-type actions up to second order. This method allowed us to
have a glimpse into the phenomenology associated with the non-linear deriva-
tive interactions of the scalar field. We focused on backgrounds that undergo
inflation, worked in the synchronous gauge, and finally we obtained a general
solution up to second order without imposing extra conditions at first order.
We also showed that the general solution simplifies during the late stages of
inflation, where the background becomes de Sitter space-time. Moreover physi-
cally, perturbations coming from the late time inflation are observationally most
important as it is these perturbations that seed the large scale structure of the
observable Universe. It would be of interest to continue this work and get the
Bispectrum. Then combining our results with the conventional non-linear per-
turbation analysis inside the horizon, one can use the existing data to constrain
the model parameters. As already discussed, in our case some complications
arises. We are able to define a curvature perturbation conserved at first order,
while at second order is not something that can be done straightforwardly, as
one should define a new non-linear curvature perturbation. In light of the re-
sults in Ref. [373], it seems that the complications can be traced back in one
assumption, i.e. γ̇ij = ε2. In our work we did not impose such a condition as it
is unclear how restrictive it is, hence, more investigation is needed.

Finally, in Chapter 7 we consider a recent proposal to parametrize in a
model-independent way single field DE/MG models, the EFT approach to cos-
mic acceleration. The EFT relies on three functions of time to describe the dy-
namics of background cosmology. In Section 7.3, we investigated the viability of
these functions by means of a thorough dynamical analysis of the background
cosmology. We identified a set of variables that allowed us to transform the
non-autonomous system of background equations into an infinite-dimensional
one characterized by a significant recursive structure. We analyzed several
autonomous sub-systems, obtained truncating the original one at increasingly
higher dimension, that correspond to increasingly general DE/MG models. Fur-
thermore, we exploit the recursive nature of the system to draw some general
conclusions on the different cosmologies that can be recovered within the EFT
formalism and the corresponding compatibility requirements for the EFT func-
tions. The machinery that we set up serves different purposes. The general
results, obtained with this technique, can be projected into specific models,
as we showed in the Quintessence case. It also can be used to determine ap-
propriate ansätze for the three EFT background functions when studying the
dynamics of cosmological perturbations in the context of large scale structure
tests of gravity. The approach that we used leaves open several fronts for new
investigation. In this analysis we explored models with an increasingly more
general conformal coupling, however, it would be of interest to investigate also
other realizations of the system. Finally, we did not analyze the scaling configu-
rations of some critical points, that instead could provide a dynamical solution
to the coincidence problem.

In Section 7.4, we showed the implementation of the EFT framework in the
public Einstein-Boltzmann solver CAMB. The resulting code, which we dubbed
EFTCAMB, is a powerful and versatile tool that can be used for several ob-
jectives. It can be employed to evolve the full dynamics of linear scalar per-
turbations of a broad range of single field DE/MG model, once the model of
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interest is mapped into the EFT formalism. It offers a numerical implementa-
tion of EFT as a model-independent framework to test gravity on cosmological
scales. EFTCAMB has a built-in check for the fulfillment of general stability
conditions such as the absence of ghost and superluminal propagation of per-
turbations. It handles phantom-divide crossing models and does not contain
any quasi-static approximation, but rather evolves the full dynamics of per-
turbations on linear scales. As we showed, the latter is an important feature
in view of the accuracy and scale range of upcoming surveys. We showed the
reliability and applicability of our code by evolving the dynamics of linear per-
turbations and extracting predictions for power spectra in several models. In
particular we performed a thorough analysis of f(R) theories, comparing our
outputs with those of an existing code for ΛCDM backgrounds, and finding an
agreement that can reach 0.1% for models with a Compton wavelength consis-
tent with current cosmological data. We then studied two different scenarios.
First we produced new results for designer f(R) models with a time-varying
DE equation of state. Second, we extracted predictions for linear observables
in some parametrized EFT models with a phantom-divide crossing equation of
state for DE. In order to interface EFTCAMB with data we equipped it with
EFTCosmoMC, the code implementation of EFT formalism in the CosmoMC
code. Let us point out that the stability conditions required for a viable grav-
ity theory, now become viability priors. To illustrate the use of these patches,
we obtained constraints on parametrized pure EFT and designer f(R) mod-
els, both on ΛCDM and wCDM background expansion histories, using data
from Planck temperature and lensing potential spectra, WMAP low-` polariza-
tion spectra, and BAO. Upon inspecting theoretical stability of the models on
the given background, we find non-trivial parameter spaces that we translate
into viability priors. We used different combinations of data sets to show their
individual effects on cosmological and model parameters. Our data analysis
results show that, depending on the adopted data sets, in the wCDM back-
ground case these viability priors could dominate the marginalized posterior dis-
tributions. Interestingly, with Planck+WP+BAO+lensing data, in f(R) gravity
models, we get very strong constraints on the constant DE equation of state,
w0 ∈ (−1,−0.9997) (95%C.L.). Let us conclude with some remarks about fu-
ture directions. We will gradually implement the mapping procedure for many
other single scalar field DE/MG models which are of relevance for cosmological
tests and perform parameter space exploration on some of these models. We
will perform an analysis of viable parametrized EFT models based also on the
findings of our dynamical analysis [396], as well as a thorough investigation of
the validity of the QS approximation on sub-horizon scales for general mod-
els of DE/MG. Furthermore, more data sets will be added into EFTCosmoMC
allowing to test gravity with the most recent data releases with a particular
emphasis toward large scale structure observations in view of surveys such as
Euclid [312]. Finally, an interesting development will be also to add some third
order operators to study mildly non-linear scales.



Appendix A

Dependence of equations of
motion in general covariant
scalar-tensor theory

Consider a general covariant scalar-tensor theory of φ and gµν , given by the
action S(φ, gµν). The equations of motion for this system are

E =
1√
−g

δS

δφ
= 0, Eµν =

1√
−g

δS

δgµν
= 0, (A.1)

with the variation of the action (modulo boundary terms) is given by

δS =

∫
dxD
√
−g (Eδφ+ Eµνδgµν) . (A.2)

Now, we assume this action is covariant, which means it is invariant under the
following transformation (δξx

µ = −ξµ)

δξφ = Lξφ = ξµ∇µφ, δξg
µν = Lξgµν = 2∇(µξν). (A.3)

That is, we have

δξS =

∫
dDx
√
−g (E · ξν∇νφ+ Eµν · 2∇µξν) = 0. (A.4)

After integration by parts, we get
∫

dDx
√
−gξν (E∇νφ+ 2∇µEµν) = 0. Since

ξν is arbitrary, we have
E∇νφ = 2∇µEµν . (A.5)

So if the Einstein equations are satisfied (Eµν = 0), the scalar equation of motion
is automatically satisfied (E = 0).
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Appendix B

Gradient expansion of the
equations of motion in
synchronous gauge

Here we list the Einstein tensor, the effective energy momentum tensor and the
scalar current (the t component) up to order O(ε2) in the superhorizon gradient
expansion. As in the main text, we suppress the background quantities’ order
indication (0). For example, φ̇(0) is written as φ̇

The quantities at the O(ε0) order:

G
(0)
tt = 3H2, (B.1)

G
(0)
ti = 0, (B.2)

G(0)i
j = −δij

(
2Ḣ + 3H2

)
, (B.3)

T
(0)
φ tt = −K + 2KXX + 6Hφ̇GXX, (B.4)

T
(0)
φ ti = 0, (B.5)

T
(0)
φ

i
j = K − 2GXXφ̈, (B.6)

J t(0) = KX φ̇+ 6HGXX. (B.7)

The quantities at the O(ε) order:

G
(1)
tt = 6Hζ̇(1), (B.8)

G
(1)
ti =

2

3
∇iK(0) = 0, (B.9)

G(1)i
j = −2

(
ζ̈(1) + 3Hζ̇(1)

)
δij −

(
3HA(1)i

j + Ȧ(1)i
j

)
, (B.10)

T
(1)
φ tt =

(
φ̇KX + 2φ̇KXXX + 18HGXX + 12HGXXX

2
)
φ̇(1) + 6φ̇GXXζ̇

(1),

(B.11)

T
(1)
φ ti = 0, (B.12)

T
(1)
φ

i
j =

[(
φ̇KX − 2Ẋ(GX +GXXX)

)
φ̇(1) − 2GXXφ̈

(1)
]
δij , (B.13)
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J t(1) =
(
KX + 2KXXX + 6Hφ̇(GX +GXXX)

)
φ̇(1) + 6GXXζ̇

(1). (B.14)

The quantities at the O(ε2) order:

G
(2)
tt =

1

2

(
[3]R(2) + 6

(
ζ̇(1)

)2

+ 12Hζ̇(2) −A(1)k
l A

(1)l
k

)
, (B.15)

G
(2)
ti = −2∇̄iζ̇(1) − ∇̄kA(1)k

i , (B.16)

G(2)i
j = [3]G(2)i

j − Ȧ(2)i
j − 3HA(2)i

j − 3ζ̇(1)A(1)i
j

−
(

2ζ̈(2) + 6Hζ̇(2) + 3
(
ζ̇(1)

)2

+
1

2
A(1)k

l A
(1)l

k

)
δij , (B.17)

T
(2)
φ tt = (φ̇KX + 2φ̇KXXX + 18HGXX + 12HGXXX

2)φ̇(2) + 6φ̇GXXζ̇
(2)

+

(
1

2
KX+4KXXX+2KXXXX

2+9Hφ̇GX+21Hφ̇GXXX

+6Hφ̇GXXXX
2
)(
φ̇(1)

)2

+ (18GXX + 12GXXX
2)ζ̇(1)φ̇(1), (B.18)

T
(2)
φ ti = (φ̇KX + 6HGXX)∂iφ

(1) − 2GXX∂iφ̇
(1), (B.19)

T
(2)
φ

i
j = δij

[
−2GXXφ̈

(2) +
(
φ̇KX − 2Ẋ(GX +GXXX)

)
φ̇(2)

−2φ̇(GX +GXXX)φ̇(1)φ̈(1)

+

(
1

2
KX +KXXX − φ̈GX − 5φ̈GXXX − 2φ̈GXXXX

2

)(
φ̇(1)

)2
]
,

(B.20)

J t(2) = 6GXXζ̇
(2) +

(
KX + 2KXXX + 6Hφ̇GX + 6Hφ̇GXXX

)
φ̇(2)

+

(
3

2
φ̇KXX + φ̇KXXXX + 3HGX + 15HGXXX

+6HGXXXX
2
) (
φ̇(1)

)2

+
(

6φ̇GX + 6φ̇GXXX
)
ζ̇(1)φ̇(1). (B.21)



Appendix C

EFT background Dynamical
analysis

C.1 A complete second order analysis

In this Appendix we complete the analysis of the critical points of the second
order system. In particular, all critical points (including those already discussed
in Section 7.3.2) and their stability analysis are reported in Tabs. C.1-C.2; while
in the following we present the eigenvalues and discuss the cosmology of the
points that were not considered in Section 7.3.2.

• Phantom DE points
From the splitting of the first order point P4, we have two critical points
characterized by a phantom effective equation of state:

P4a : µ1 = −6, µ2 = −5, µ3 = −3, µ4 = −2− α2, µ5 = −2− λ0. (C.1a)

P4b : µ1 =
1

2
(α2 − 4), µ2 = α2 − 4, µ3 = α2 − 3, µ4 = α2 + 2, µ5 = α2 − λ0.

(C.1b)

The first one has weff = − 7
3 and is a stable attractor for α2 > −2∧λ0 > −2,

while the second one is an accelerated stable node for α2 < λ0 ∧ α2 < −2
with weff < − 7

3 . We do not consider these points viable as such values of weff

have been already excluded by experiments (e.g. Refs. [21, 411]).

• φ-MDE and φ-RDE points
There are two critical points characterized by, respectively, matter and radi-
ation domination with a non-negligible DE density:

P5 : µ1 = −15

2
, µ2 = −3, µ3 = −1, µ4 = 3− α2, µ5 = 3− λ0. (C.2)

P8 : µ1 = −6, µ2 = −6, µ3 = 1, µ4 = −1

2
− α2, µ5 = 4− λ0. (C.3)

The first point has Ωm = 5, ΩDE = −4 and a stiff matter equation of state,
while the second one has Ωr = 9 and ΩDE = −8 with weff = 5

3 . Both these
points are not considered cosmologically relevant.
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Point [xc, yc, uc, α0,c, α1,c] Stability ΩDE weff

P1a [0, 0, 0, 0, 0] Saddle point:

λ0 6= 3 ∧ α2 6= 3
2

0 0

P1b

[
0, 0, 0, 0, α2 − 3

2

]
Saddle point:

λ0 6= 3 ∧ α2 6= 3
2
∧ α2 6= 3

0 0

P2a [1, 0, 0, 0, 0] Unstable node:

α2 < 3 ∧ λ0 < 6
Saddle point:

otherwise

1 1

P2b [1, 0, 0, 0,−3 + α2] Unstable node:

3 < α2 < 6 ∧ λ0 < 6
Saddle point:

otherwise

1 1

P3a

[
λ0
6
, 1− λ0

6
, 0, 0, 0

]
Stable node:

(α2 ≥ 0 ∧ λ0 < 0)∨
(α2 < 0 ∧ λ0 < 2α2),
Unstable node:

(λ0 > 6 ∧ α2 < 3)∨
(λ0 > 2α2 ∧ α2 ≥ 3),

Saddle point:
otherwise

1 1
3

(λ0 − 3)

P3b

[
λ0
6
, 1− λ0

6
, 0, 0, α2 − λ0

2

]
Stable node:

α2 < 0 ∧ 2α2 < λ0 ∧ λ0 < α2,
Unstable node:

(α2 ≥ 6 ∧ α2 < λ0 ∧ λ0 < 2α2)∨
(α2 > 3∧λ0 > 6∧α2 < 6∧λ0 < 2α2),

Saddle point:
otherwise

1 1
3

(λ0 − 3)

P4a [−1, 0, 0, 2, 0] Stable node:

α2 > 2 ∧ λ0 > −2
Saddle point:

otherwise

1 − 7
3

P4b

[
−1, 0, 0, 2, 1 + α2

2

]
Stable node:

α2 < −2 ∧ λ0 > α2,
Unstable node:
α2 > 4 ∧ λ0 < α2

Saddle point:
otherwise

1 1
3

(−5 + α2)

Table C.1: Hyperbolic critical points for the second order system with α2, λ0 =
constant. Taking into account also the additional constraints Ωm ≥ 0 and
Ωr ≥ 0, the domain for last two critical points is D ≡ {α2 < 4,λ0 ∈ R}, while
all other points have D ≡ {α2,λ0 ∈ R}.

• P9: unstable DE point

µ1 = α2 − 4, µ2 = α2 − 3, µ3 = α2 − λ0,

µ4 = 6− 3

4
α2 −

1

4

√
3
√
−α2(−32 + 5α2), µ5 = 6− 3

4
α2 +

1

4

√
3
√
−α2(−32 + 5α2).

(C.4)
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Point [xc, yc, uc, α0,c, α1,c] Stability ΩDE weff

P5 [−1, 0, 0,−3, 0] Stable node:

α2 > 3 ∧ λ0 > 3,
Saddle point:

otherwise

−4 1

P6

[
λ0
2
, 1 + λ0

2
, 0,−λ0, 0

]
See Fig. 7.6 1 −1 + 2λ0

3

P7a [0, 0, 1, 0, 0] Saddle point:

λ0 6= 4 ∧ α2 6= 3
2

0 1
3

P7b

[
0, 0, 1, 0,− 3

2
+ α21

]
Saddle point:

λ0 6= 4 ∧ α2 6= 7
2
∧ α2 6= 3

2

0 1
3

P8 [−4, 0, 9,−4, 0] Saddle point:

λ0 6= 4 ∧ α2 6= − 1
2

-8 5
3

P9 [α2 − 5, 0, 0, 6− α2, 3] See Fig. 7.6 1 −3 + 2α2
3

P10

[
−9 + 2

√
8− 2α2 + 2α2, 0,

8− 2α2, 2− 2
√

8− 2α2,
3−
√

8− 2α2

] See Sec. 7.3.2 −7 + 2α2
1
3

(
−1 + 2

√
8− 2α2

)

P11

[
−9− 2

√
8− 2α2 + 2α2, 0,

8− 2α2, 2 + 2
√

8− 2α2,
3 +
√

8− 2α2

] See Appendix C.1 −7 + 2α2
1
3

(
−1− 2

√
8− 2α2

)

Table C.2: Hyperbolic critical points for the second order system with α2, λ0 =
constant. Taking into account also the additional constraints Ωm ≥ 0 and
Ωr ≥ 0, the domain for last two critical points is D ≡ {α2 < 4,λ0 ∈ R}, while
all other points have D ≡ {α2,λ0 ∈ R}.

This point corresponds to a DE dominated configuration, albeit one that is
always unstable.

• P11: radiation scaling point
The stability analysis of this point is too complicated to be reported, nev-
ertheless we are able to deduce something about its cosmological behavior.
From Tab. C.2 one can see that the point corresponds to a scaling solution
for radiation and DE with ΩDE = 2α2 − 7. However, the constraint Ωr ≥ 0
imposes α2 < 4, and for this range of values the point cannot be neither a
proper DE or radiation dominated point.

C.2 Nth order analysis

In this Appendix we continue with the analysis of the critical points for the
N th order system giving an overview of the points that were not presented in
Section 7.3.3 since they either did not have the desired cosmological character-
istics or stability. The general structure of the critical points for the N th order
system was explained in detail in Section 7.3.3, however here we will give a
brief review. Critical points belonging to the same family can be of three types:
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(xc, yc, α0,c, α1,c, αn,c = 0) with n ≥ 2, (xc, yc, α0,c, α1,c, αn,c 6= 0) with n ≥ 2
or (xc, yc, α0,c, α1,c, combinations), where ‘combinations’ correspond to all the
different combinations of {α2,c, . . . , αN−1,c} for which a different A thorough
description of how to build all the combinations is given in Section 7.3.3. Here
we simply remind the reader that we use the index j for the αn,c in non-zero
blocks that are followed by a zero-block (rule (7.59)); while we use the index
l for the αn,c of the non-zero block that closes the combination, when it ex-
ists (rule (7.60)). Every time we substitute into Eq. (7.59) and Eq. (7.60) the
specific value of Ḣ/H2 that corresponds to the point in consideration.

• Phantom DE points:
There are different families of critical points which are DE dominated but give
rise to cosmological behaviors which are in tension with current observations
(i.e. weff . −2). However, their stable node configuration gives an attractor
that, in principle, could be reached in the far future, provided that the du-
ration of the matter era would remain long enough to allow for structure to
form ([216] and references therein). The first family that we shall consider is
P4a-like, which is a set of DE dominated critical points with weff = − 7

3 .

P4a,1 ≡ (−1, 0, 2, 0, αn,c = 0), (C.5a)

P4a,2 ≡ (−1, 0, 2, 0, αn,c = αN + 2(N − n)), (C.5b)

P4a,c ≡ (−1, 0, 2, 0, combinations),

αj,c = 2(s+ 1− j), αl,c = αN + 2(N − l). (C.5c)

From an investigation of the eigenvalues, one finds that the first point is
a stable node for λ0 > −2 while the second one exhibits this behavior for
λ0 > −2 ∧ αN < −2 (N − 2) ∧ αN > 3N − 8. The last sub-family of critical
points P4a,c also displays stable configurations for some combinations. In that
case we have λ0 > −2∧αN < −2 and λ0 > −2∧αN > −2. The second family
that we shall consider does not have a unique cosmological behavior, though
in all the cases the critical points are DE dominated and resemble the P4b

point of the second order analysis.

P4b,1 ≡ (−1, 0, 2, 1, αn,c = 0), (C.6a)

P4b,2 ≡
(
−1, 0, 2,

2N − 2 + αN
N + 1

,
−2n+ 2N + nαN

N

)
, (C.6b)

P4b,c ≡
(
−1, 0, 2,

2s1

1 + s1
, combinations

)
,

αj,c =
2(s+ 1− j)

s+ 1
, αl,c =

αN + 2(N − l) + sαN
s+ 1

, (C.6c)

where s1 is the value of s for the first non-zero block. The first critical
point P4b,1 has a well defined cosmology. It is a DE dominated point with a
phantom equation of state, weff = − 5

3 , and it resembles the point P4b of the
second order with α2 = 0. We can infer its stability from Tab. C.1, which
shows that it is a saddle, therefore it does not have the desired nature for a
DE point and we do not analyze it further. The second critical point P4b,2

can be written as (
−1, 0, 2, 1 +

α2,c

2
, αn,c =

4− 2n+ nα2,c

2

)
, (C.7)

where we have used the solution of α2 to substitute for αN in terms of α2,c;
comparing it with Tab. C.1 we can see a clear connection with the P4b critical
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point. As expected the equation of state for the effective fluid equation can
be written as

weff =
−3N − 4 + 2αN

3N
= −5− α2,c

3
, (C.8)

which is equivalent to the one found at second order for the point P4b, and
shows an accelerated behavior for α2,c < 4. For this critical point is very
difficult to calculate explicitly the eigenvalues but looking at Tab. C.1 we
can infer that for α2 < 4 it will be a saddle, therefore we do not consider it
cosmologically viable. In the latter case the critical points P4b,c has weff =
− 7+3s

3(s+1) , which for all the combinations is ≈ −1. The stability analysis,

however, reveals that this is a set of saddle points, thus preventing them from
being viable accelerated attractors.

The third family of DE dominated critical points is P6-like with weff = 2
3λ0−1:

P6a ≡
(
λ0

2
, 1 +

λ0

2
,−λ0, 0, αn,c = 0

)
, (C.9a)

P6b ≡
(
λ0

2
, 1 +

λ0

2
,−λ0, 0, αn,c = αN − λ0 (N − n)

)
, (C.9b)

P6c ≡
(
λ0

2
, 1 +

λ0

2
,−λ0, 0, combinations

)
,

αj,c = −(s+ 1− j)(3 + λ0), αl,c = αN − (N − l)(3 + λ0). (C.9c)

The eigenvalues of the linearized system around these critical points are too
complicated to be reported. However it can be shown that the first one is
an accelerated attractor for (− 12

5 < αN ≤ −2 ∧ − 12
5 ≤ λ0 < αN ) ∨ (αN >

−2 ∧ − 12
5 ≤ λ0 < −2) while the second one displays the same cosmological

behavior for (αN < 1
5 (24− 12N) ∧ − 12

5 ≤ λ0 < −2) ∨ (αN = 1
5 (24− 12N) ∧

− 12
5 < λ0 < −2) ∨ ( 1

5 (24− 12N) < αN < 4− 2N ∧ αN
−2+N < λ0 < −2). Both

these points, as well as P6c have weff < −2.3, therefore we do not consider
them cosmologically viable.

The last family of, P9-like, DE dominated critical points contains configura-
tions which all have a different effective equation of state.

P9a ≡(−5, 0, 6, 3, αn,c = 0), (C.10a)

P9b ≡
(
−1− 2N + αN

(N − 1)
, 0,

3N − αN
(N − 1)

, 3,
3N + n(αN − 3)− αN

(N − 1)

)
= (α2 − 5, 0, 6− α2, 3, αn,c = 6 + n(α2 − 3)− α2) , (C.10b)

P9c ≡
(
−2− 3

s1
, 0, 3 +

3

s1
, 3, combinations

)
,

αj,c =
3(s+ 1− j)

s
, αl,c =

3(N − l) + sαN
s

, (C.10c)

where s1 is the value of s for the first non-zero block. The equation of state
parameter in these three configurations is, respectively:

weff(P9a) = −3, weff(P9b) = −3 + 3N − 2αN
3 (N − 1)

= −3 +
2

3
α2, weff(P9c) = −2 + s1

s1
.

(C.11)

The stability analysis reveals that all the points of this family are saddles in
the range for which they are accelerated and therefore we do not investigate
them further.
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• Scaling solutions:
This family of critical points is characterized by a scaling between matter and
DE:

Psc1 ≡
(
−3− 6 (N − 1)2 + 5αN − 2α2

N + (N − 1) (−9 + 7αN )

3(N − 2)2
, 0,

3N − 2αN
N − 2

,

3 (N − 1)− αN
N − 2

, αn,c =
3N + n(−3 + αN )− 2αN

N − 2

)
, (C.12a)

Psc2 ≡
(
− (s1 + 1)(2s1 + 1)

(s1 − 1)2
, 0,

3(s1 + 1)

s1 − 1
,

3s1

s1 − 1
, combinations

)
,

αj,c =
3(s+ 1− j)

s− 1
, αl,c =

−αN + 3(N − l) + sαN
s− 1

, (C.12b)

where s1 is the value of s for the first non-zero block. These configurations
correspond to a matter density and equation of state parameter:

Ωm(Psc1) = − (4 +N − 2αN )(−3 + αN )

3(N − 2)2
, weff(Psc1) =

3N − 2αN
6− 3N

, (C.13)

Ωm(Psc2) =
5 + s1

(s1 − 1)2
, weff(Psc2) =

s1 + 1

1− s1
. (C.14)

The study of the stability for these critical points is very complicated due
to the unknown value of N. It is, however, simple to determine that, for
both points, neither of the two configurations in which they are, respectively,
matter (Ωm = 1) and DE dominated (ΩDE = 1) is cosmologically viable.

In this work we choose not to perform a full analysis of the scaling config-
urations, but rather focus on the two extrema for which either of the two
components has fractional energy density equal to unity. While we leave
a thorough investigation of the scaling regime for future work, we want to
stress that this family of critical points is expected to display all the late-time
scaling cosmologies that can offer a dynamical solution to the coincidence
problem [101, 448, 449].

• DE points:
The last family of critical points is made of DE dominated configurations

Pd1 ≡
(
−2α2

N − λ0(−3 + (N − 1)2 (λ0 + 1) + (N − 1) (λ0 + 2))

6(N − 2)2
+

+
αN (−4 + λ0 + (N − 1) (4 + 3λ0))

6(N − 2)2
,

(αN − 3)(−2 + 2αN − λ0)

6(N − 2)2
+

+ (N − 1)2 (6− 5λ0 + λ2
0) + (N − 1) (−12 + αN (8− 3λ0) + 2λ0 + λ2

0)

6(N − 2)2
,

,
λ0 + (N − 1)λ0 − 2αN

N − 2
,

(N − 1)λ0 − αN
N − 2

,

αn,c =
(n− 2)αN + (N − n)λ0

N − 2

)
, (C.15a)

Pd2 ≡
(
− λ0(−3 + s2

1(λ0 + 1) + s1(λ0 + 2))

6(s1 − 1)2
,

,
3(2 + λ0) + s2

1(6− 5λ0 + λ2
0) + s1(−12 + 2λ0 + λ2

0)

6(s1 − 1)2
,

,
λ0(s1 + 1)

s1 − 1
,
s1λ0

s1 − 1
, combinations

)
,



C.2. NTH ORDER ANALYSIS 175

αj,c =
(s+ 1− j)λ0

s− 1
, αl,c =

αN (s− 1) + (N − l)λ0

s− 1
, (C.15b)

with different values of the equation of state, respectively

weff(Pd1) =
6− 3N + 2αN − 2λ0

3(N − 2)
, weff(Pd2) =

3− 3s1 − 2λ0

3(s1 − 1)
, (C.16)

where s1 is the value of s for the first non-zero block. The first point has a
viable cosmological behavior for αN < N − 2 + λ0 and would have weff = −1
if λ0 = αN ; however we are not able to analyze its stability. The second
point gives a viable cosmological behavior for s1 + λ0 > 1; however requiring
weff = −1 gives λ0 = 0 and the stability analysis reveals that the point is
non-hyperbolic for such a value.

• φ-MDE:
This family contains the following P5-like:

P5a ≡ (−1, 0,−3, 0, αn,c = 0), (C.17a)

P5b ≡ (−1, 0,−3, 0, αn,c = αN − 3(N − n)), (C.17b)

P5c ≡ (−1, 0,−3, 0, combinations), αj,c = −3(s+ 1− j), αl,c = αN − 3(N − l),
(C.17c)

which are characterized by Ωm = 5, ΩDE = −4 and weff = 1, therefore we
do not consider them further.
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Appendix D

EFT: Contributions to the
perturbative equations from
second order operators

In what follows we list the contributions to the linearly perturbed equations of
Section 7.4.2 from the second order operators in (7.4). Let us make an itemized
list where for each operator we list its contributions to the r.h.s. of Eq. (7.72) by
∆00, to the r.h.s. of Eq. (7.73) by ∆0i, to the r.h.s. of Eq. (7.74) by ∆ij,i 6=j , to
the r.h.s of Eq. (7.75) by ∆ii and to the l.h.s. of Eq. (7.76) by ∆π. Notice that in
order to perform a correct stability analysis on the equation for π, along the lines
of Section 7.4.3, it is important to demix the degrees of freedom; specifically,
once the contributions from all operators have been taken into account, one needs
to use the Einstein equations to substitute for any ḧ, η, σ∗ appearing in the final
form of the equation for π.

(δg00)2:

∆00 = − 2M4
2 a

2

m2
0(1 + Ω)

(π̇ +Hπ) ,

∆0i = 0 ,

∆ij,i 6=j = 0 ,

∆ii = 0 ,

∆π = 2M4
2

[
π̈ + 4

(
H+

Ṁ2

M2

)
π̇ +

(
3H2 + Ḣ+ 4

HṀ2

M2

)
π

]
. (D.1)

δg00δKµµ:

∆00 =
aM̄3

1

2m2
0(1 + Ω)

[
kZ − 3

(
Ḣ − 2H2 − k2

3

)
π + 3Hπ̇

]
,

∆0i =
aM̄3

1 k

m2
0(1 + Ω)

(π̇ +Hπ) ,
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∆ij,i 6=j = 0 ,

∆ii = − 3aM̄3
1

m2
0(1 + Ω)

[
π̈ +

(
4H+ 3

˙̄M1

M̄1

)
π̇ +

(
3H2 + Ḣ+ 3

H ˙̄M1

M̄1

)
π

]
,

∆π =
M̄3

1

2a

[(
3H+ 3

˙̄M1

M̄1

)(
−kZ + 3(Ḣ − H2)π − k2π

)
− ḧ

2

+ HkZ + 2Hk2π + 3(Ḧ − 4HḢ+ 2H3)π
]
. (D.2)

(δK)2:

∆00 =
3HM̄2

2

2m2
0(1 + Ω)

[
kZ − 3(Ḣ − H2)π + k2π

]
,

∆0i =
M̄2

2 k

m2
0(1 + Ω)

[
kZ − 3(Ḣ − H2)π + k2π

]
,

∆ij,i 6=j = 0 ,

∆ii = − 3M̄2
2

m2
0(1 + Ω)

(
2H+ ∂τ + 2

˙̄M2

M̄2

)[
kZ − 3(Ḣ − H2)π + k2π

]
,

∆π =
M̄2

2

2a2

(
3(Ḣ − H2)− k2

) [
−kZ + 3(Ḣ − H2)π − k2π

]
. (D.3)

δKµν δKνµ:

∆00 =
HM̄2

3

m2
0(1 + Ω)

[
kZ − 3

(
Ḣ − H2 − k2

3

)
π

]
,

∆0i =
M̄2

3 k

m2
0(1 + Ω)

[
kZ
3

+
2

3
kσ∗ − (Ḣ − H2 − k2)π

]
,

∆ij,i 6=j =
M̄2

3

m2
0(1 + Ω)

(
2H+ 2

˙̄M3

M̄3
+ ∂τ

)(
kσ∗ + k2π

)
,

∆ii =
M̄2

3

m2
0(1 + Ω)

(
2H+ 2

˙̄M3

M̄3
+ ∂τ

)[
−kZ + 3

(
Ḣ − H2 − 1

3
k2

)
π

]
,

∆π =
M̄2

3

a2

[(
k4

2
− k2(Ḣ − H2)

+
3

2
(Ḣ − H2)2

)
π +

(
k2

2
− Ḣ −H

2

2

)
kZ +

k3

3
(σ∗ −Z)

]
. (D.4)

δg00δR(3):

∆00 = − 2M̂2

m2
0(1 + Ω)

k2 (η +Hπ) ,

∆0i = 0 ,

∆ij,i 6=j = 2
M̂2

m2
0(1 + Ω)

k2 (π̇ +Hπ) ,

∆ii =
4M̂2

m2
0(1 + Ω)

k2 (π̇ +Hπ) , (D.5)

∆π =
2k2

a2

[
M̂2 k

3
(σ∗ −Z) +

(
HM̂2 + 2M̂

˙̂
M
)
η +

(
2HM̂ ˙̂

M + ḢM̂2
)
π

]
.



179

(gµν + nµnν)∂µδg
00∂νδg

00:

∆00 = − 4m2
2

m2
0(1 + Ω)

k2 (π̇ +Hπ) ,

∆0i = 0 ,

∆ij,i 6=j = 0 ,

∆ii = 0 ,

∆π = 4m2
2

(
2H+

ṁ2

m2
+ ∂τ

)
k2 (π̇ +Hπ) . (D.6)
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