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REACTION SINTERING OF POROUS SHAPE-MEMORY 

TITANIUMNICKELIDE-BASED ALLOYS 

N. V. Artyukhova,1 Yu. F. Yasenchuk,1 Kim Ji-Soon,2 and V. É. Gunther1 UDC 621.762  

The problems of reaction sintering of porous shape-memory TiNi-based alloys are examined. An analysis of 
the structure and parameters of shape-memory materials produced with the use of different reaction sintering 
modes is performed. The temperature and time intervals are determined over which liquid-phase sintering 
points responsible for a qualitative change in the TiNi phase of the reaction-sintered TiNi system are 
observed. The morphological structure and properties of the porous materials are investigated. Models for 
interactions between phases and phase transformations in the sintered alloys are built. It has been found that 
changes in the deformation parameters of the porous titanium nickelide-based alloys correlate with an increase 
in the volume fraction of the TiNi phase and with its wholeness as the sintering time is increased. 

Keywords: porous titanium nickelide alloy, TiNi system, reaction sintering, liquid-phase sintering, shape 
memory, TiNi phase, scanning electron microscopy, x-ray spectral microanalysis. 

 
 
Porous titanium nickelide produced by reaction sintering is known to have extremely inhomogeneous structure 

and chemical composition, which is characteristic of this powder metallurgy technique [1]. A major fraction of 
the inhomogeneities is related to the incompleteness of transformation during reactive synthesis. The structural-phase 
inhomogeneity of the sintered alloy is particularly high in the solid-phase sintering stage. A rise in sintering temperature 
changes the sintered system from the solid- to the liquid-phase stage, improving the homogeneity of the product. 
However, the increase in temperature is limited by a concurrent growth of pores and shrinkage of the sample. This 
effect appears to be undesirable. The problem of producing a high-porosity titanium nickelide alloy by reaction 
sintering boils down to finding an optimum combination of temperature, exposure time, pore size, and phase 
homogeneity of the alloy. The major generalized sintering quality indices include the retention of the shape of primary 
powder particles and the degree of reflow of the porous alloy surface on sintering. With an optimum combination of 
the above-mentioned parameters, the emergence of the melt causes a dramatic acceleration of mass transfer processes 
thus increasing the strength of the sample. Notably, to minimize the shrinkage of the sample, growth of pores, and 
intragranular liquation of the alloy, the amount of the melt must be at a minimum.  

In reaction sintering of the Ti–Ni system, the lowest-melting component is the Ti2Ni phase whose melting 
stimulates the development of the liquid-phase sintering stage triggering the reaction-diffusion interactions. This gives 
rise to large pores [2, 3]. In addition to the TiNi phase envelopes formed at the solid-phase stage, there appears another 
TiNi phase of spongy form at the liquid-phase stage. The latter phase may have a significant effect on the physical-
mechanical properties of the sintered alloy. 

The object of this work is to study the structure of and the mechanisms involved in the formation of the TiNi 
phase in reaction sintering of the TiNi system as functions of the exposure time (1.53 hrs) and of the extent to which 
the exposure affects the physical-mechanical characteristics of the high-porosity sintered alloy. The shape-memory 
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effect and the superelastic behavior of titanium nickelide-based alloys are of the greatest interest in this study. Also 
investigated here is the influence of the structural features of the TiNi phase of the porous alloys under consideration on 
the repeated shape-memory effect. Finally, a comparative analysis is performed between the measurement results for 
the specific electrical resistance and the literature data about monolithic shape-memory alloys. 

TEST MATERIALS AND INVESTIGATION TECHNIQUES 

Three groups of cylindrical samples of a porous titanium nickelide alloy measuring 8  52 mm were produced 
in quartz moulds in an electric vacuum furnace, using the reaction sintering technique. The mixture components were 
PTEM titanium and PNKOT4 nickel powders (Russian classification). An obligatory sintering condition was 
preparation of high-porosity samples. The sintering temperature found experimentally was <950С. In view of the need 
to retain high porosity of the samples, only the Ti2Ni phase was allowed to melt, in order to produce melt and initiate 
liquid-phase interaction without shrinkage of the specimen [4]. In sintering the samples of the first group, the alloys 
were heated to a maximum temperature and then cooled down to room temperature. The samples of the second and 
third groups were held at maximum temperatures for 90 and 180 min, respectively. The structure of the porous samples 
was examined with the use of microsection metallographic specimens prepared by standard metallographic techniques 
[5]: light microscopy (Axiovert 40 Mat} and scanning electron microscopy (PHILIPS SEM 515). The phase 
composition was determined by means of an EDAX ECON IV microanalyzer. 

The sintered porous cylindrical samples were cut into 35 × 7 × 1 mm plates, using the electrical erosion 
technique. The repeated shape-memory effect was investigated by a stress-strain test in the bending mode which 
provided reliable recording of changes in the residual and irreversible deformations of the samples, allowing for 
estimation of the parameters of the repeated shape-memory effect and changes in the structure of the reaction sintering 
product. A major portion of the curve for the temperature dependence of the entire multiphase specimen accounts for 
the complex deformation of a narrow alloy component  the TiNi phase undergoing a reversible phase transformation 
under the action of temperature and loading.  

AN ANALYSIS OF THE RESULTS 

An analysis of the structure of the porous samples subjected to sintering for different exposure times enabled us 
to reveal some general features of the process. The latter was divided into solid-phase and liquid-phase stages. 

The Solid-Phase Sintering Stage 

On sintering at a maximum temperature of 950°С and for zero exposure time, the porous alloys are extremely 
structured, which makes it possible to represent the structure as repetitive reaction cells and identify five structural 
components of the cells (Fig. 1a), where the reaction cell core is formed by Ti-base solid solution (1), a continuous 
core envelope is formed by the Ti2Ni phase whose thickness is ≤20µm (2), a continuous envelope is formed by the TiNi 
phase (3), the islets on the outer surface of the TiNi envelope are formed by the TiNi3 phase (4), and the outer spongy 
reaction cell envelope formed by Nγ solid solution exhibits certain features (5, see Table 1 below). Every so often the 
titanium core (Fig. 1b) consists of several parts (1) separated by dendrites (6) and envelope (2). The core may also be 
formed by the Ti + Ti2Ni eutectoid or by the Ti2Ni intermetallic compound alone. Open asymmetric cells are observed 
(Fig. 1a) along with enclosed symmetric cells. 

It may be concluded on the basis of currently available concepts of reaction sintering [2, 6] and our 
experimental data that even with a minimum exposure , reaction cells consisting of three intermetallic envelopes (Ti2Ni, 
TiNi, and TiNi3 ) and two solid solutions (Ti and Nγ) are formed as the result of the interdiffusion of the titanium 
particle into surrounding nickel particles. The solid Ti solution that forms a monolithic reaction cell core and contains 
up to 10 аt.% Ni suffers an isothermal decay followed by transformation into the Ti2Ni +Ti eutectoid or stays in 
a metastable state. In the solid Nγ solution that forms the porous periphery of the reaction cell, the titanium content 
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that in the porous alloy of interest, the amount of the R-phase decreases late in the forward transformation, whereas 
the growth of the B19 phase slows down and its amount gets much smaller than in the cast alloy. 

The temperature hysteresis TRB19 determined graphically from the temperature dependence of the repeated 
shape-memory effect for the sample subjected to sintering with a 1.5-hour exposure is 120−150C, whereas for 
the Ti50Ni48Fe alloy, it is 30С. For the B2R transition, the temperatures are between 42 and 130C, and for 
the RB19 transition, the temperature range is152–182C (see Table 2). 

Accumulation of strain during the forward B2→R→B19 transformation occurs slower than it takes the sample 
to recover its shape (Fig. 5) during the reverse B19→R→B2.transformation. This enables us to assign the forward 
transformation kinetics to the athermic type characteristic of the class II phase transitions according to Tong and 
Wayman, while the reverse transformation kinetics is classed with the explosive type inherent in the class I transitions 
[15]. In the sample subjected to sintering with a 3-hour exposure, the branch of the forward transformation in 
the temperature dependence of the repeated shape-memory effect comes to correspond to the athermic transformation 
kinetics even to a greater degree. We failed to identify portions of the temperature curves characteristic both of 
the B2R and of the R→B19transformations in the segment of the sample undergoing the forward b3–d3 
transformation because high-temperature and low-temperature phases are present in the porous alloy in the entire 
temperature range –196 – +200С wherein the phase transformations take place [4]. Summarizing the foregoing 
discussion, it can be said that the transformation temperature ranges get wider for the porous alloys because of 
the inhomogeneous concentration and phase of the sintering product. The structural inhomogeneity is amplified by 
the extremely nonuniform loading of highly porous samples. In this case, quite a few segments of the sample are found 
in a tensile or a compressive, or else in a bending states simultaneously. 

It is evident from maximum and residual strain distributions as a function of sintering time (Table 2) that 
the lowest degree of accumulated strain (6.3 rel. units) is observed in the sample subjected to sintering using a zero 
exposure. This is related to the highest degree of isolation of the TiNi phase between the Ti2Ni phase envelopes and 
the spongy Ni array within each of the reaction cells (Fig. 5). An increase in the maximum accumulated strain from 7.8 
to 13.8 rel. units with increase in the exposure time from 1.5 to 3 hours is connected with formation of the additional 
spongy component of the TiNi phase due to interaction of spongy nickel with the Ti2Ni phase melt. 

The variation in the temperature hysteresis of the B2R and RB19 transitions exhibits a different pattern, 
decreasing with increase in the exposure time, which is particularly noticeable for the RB19 transition (see Table 2). 
Temperature hysteresis is characteristic of the nondiffusion RB19 transition, whereas the B2R transition has no 
temperature hysteresis [4]. This is readily demonstrated by the Ti50Ni48Fe2 alloy. In the porous alloy, the dependence has 
a different form (see Fig. 5), which is attributable to the mixed type of the transition for which the B2→R and R→B19 
transformations do not occur consecutively for a small number of growth centers; rather they develop simultaneously 
for a large number of growth centers, interacting with each other. This is why it is difficult to identify portions of the 
curve for the temperature dependence in the B2→R- and R→B19 transitions. Notably, these portions are well 
discernible in the cast alloy (see Fig. 5). The reverse B19→R→B2 transformation in all the samples occurs 
approximately in the same temperature range. However, because of increased exposure time and TiNi phase increment 
owing to the spongy component, the temperature range for the forward B2→R transformation is shifted, decreasing 
temperature hysteresis. As a result, the temperature hysteresis at the first and second stages of the familiar dependence 
for the Ti50Ni48Fe2 alloy [4] is 5–25C, whereas in the porous samples obtained in this work, the temperature 
hysteresis is 50–130C. 

TABLE 2. The Shape-Memory Effect Parameters for Porous Samples Produced with Different Exposure Times 

Shape-memory effect parameters 
Exposure, h 

No exposure 1.5-hour exposure 3-hour exposure 
Temperature hysteresis TB2R, С 130 66 42 
Temperature hysteresis TRB19, °С 182 167 152 

Accumulated strain, rel. units 6.3 7.8 13.8 
Residual strain, rel. units 0.81 0.74 0.52 
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CONCLUSIONS 

We have investigated the problems of reaction sintering of titanium-nickelide-based alloys exhibiting 
the shape-memory effect and arrived at the following conclusions. 

1. For reaction sintering of PNK-OT4 Ni and PTEM Ti powders (Russian classification), the maximum 
sintering temperature and exposure time are found to be 950°С and 3 hrs, respectively. Under these conditions, 
an optimum combination of the porosity and structural-phase composition of the alloy as well as of the repeated shape-
memory effect involved in the material was obtained. 

2. As a result of melting the Ti2Ni phase at a temperature of 950°С and a change of the sintering process from 
the solid-phase stage to the that of the liquid-phase, large pores are formed in the reaction cell core. Solid-liquid 
interaction of melt and spongy nickel array gives rise to an additional TiNi phase in which a transition zone with 
dendritic structure arises. 

3. An increase in the sintering time causes the volume fraction of the secondary TiNi phase to increase. Owing 
to this, the maximum accumulated strain of the samples increases, whereas thermal hysteresis of the dependence of 
the shape-memory effect decreases.  
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