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A combined analysis of data on the isoscalar S-wave processes ππ → ππ, KK̄, ηη and on decays
J=ψ → ϕππ, ϕKK̄ from the DM2, Mark III, and BES II Collaborations is performed to study f0 mesons.
The method of analysis is based on analyticity and unitarity and uses an uniformization procedure. In the
analysis limited only to the multichannel ππ-scattering data, two possible sets of parameters of the f0ð500Þ
were found: In both cases the mass was about 700 MeV but the total width was either about 680 or
1040 MeV. The extension of the analysis using only the DM2 and Mark III data on the J=ψ decays does not
allow us to choose between these sets. However, the data from BES II on the di-pion mass distribution in
the decay J=ψ → ϕπþπ− clearly prefer the wider f0ð500Þ state. Spectroscopic implications from the results
of the analysis are also discussed.
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I. INTRODUCTION

A comprehension of the nature of the scalar mesons is
very important for some major topics in particle physics
such as the QCD vacuum. However, both parameters of the
scalar mesons, obtained from experimental data in various
analyses, and even the status of some of them, are still quite
ambiguous [1,2]. As for the meson parameters, let us
mention the widely discussed f0ð500Þ=σ meson [formerly
f0ð600Þ], f0ð980Þ, and f0ð1500Þ. A doubtful meson
existence can be demonstrated on the case of the
f0ð1370Þ state which is apparently required by a bulk of
data [3], but in some analyses of only the ππ scattering no
evidence for its existence was found [4]. We have shown
that the existence of the f0ð1370Þ does not contradict the
data on ππ → ππ, KK̄, ηη, ηη0 [2]. In the hidden gauge
unitary approach, the f0ð1370Þ appears dynamically gen-
erated as a ρρ state [5] and the f0ð1710Þ as generated from
the K�K̄� interaction.
Note also a situation with scalar states in the 1500-MeV

region. In our previous model-independent analyses of
ππ → ππ; KK̄, ηηðηη0Þ, we observed a wide state f0ð1500Þ
whereas in some other analyses, which included mainly
meson production and decay processes and which are cited
in the PDG tables [1], a rather narrow f0ð1500Þ was
obtained. We have suggested that the wide f0ð1500Þ,
observed in the multichannel ππ scattering, is effectively
a superposition of two states, the wide and narrow state. The
latter is observed only in decays and productions of mesons.
This suggestion was verified in the model-independent

two-channel analysis of data on ππ → ππ, KK̄ [6]. In the
presented article, we confirm this assumption in the three-
channel analysis of data on ππ → ππ, KK̄, ηη and decays
J=ψ → ϕππ, ϕKK̄ from the DM2, Mark III, and BES II
Collaborations [7–9]. This is necessary, especially as the
wide states provoke many questions which should be
answered.
In view of this situation related to parameters and the

status of the scalar mesons, there are still many unsolved
problems as to determining a QCD nature of the mesons
and their assignment to the quark-model configurations in
spite of a big amount of work devoted to these problems
(see, e.g., [10] and references therein).
In this article, we describe the multichannel ππ scattering

(ππ → ππ, KK̄, ηη) using the method based only on the first
principles, analyticity and unitarity [11], which allows us to
avoid any theoretical prejudice in extracting the resonance
parameters. This we call “the model independence”
[2,6,12]. The method is applied to the analysis of exper-
imental data on the multichannel ππ scattering and decays
J=ψ → ϕππ, ϕKK̄. The J=ψ decays are described using a
formalism from Refs. [13,14], where certain reasonable
assumptions about the final-state interactions are made.
Considering the obtained arrangement of resonance poles
on the Riemann-surface sheets, the constants of resonance
couplings with the channels, and the resonance masses, we
can draw definite conclusions about the nature of the
investigated states.
The article is organized as follows. A basic formalism for

the three-channel model-independent method was already

PHYSICAL REVIEW D 89, 036010 (2014)

1550-7998=2014=89(3)=036010(9) 036010-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.036010
http://dx.doi.org/10.1103/PhysRevD.89.036010
http://dx.doi.org/10.1103/PhysRevD.89.036010
http://dx.doi.org/10.1103/PhysRevD.89.036010


given in our previous paper [2]; therefore, in Sec. II we give
only formulas introducing parameters determined in the
analysis. Results of the combined coupled-channel analysis
of data on isoscalar S-wave processes ππ → ππ, KK̄, ηη
and on decays J=ψ → ϕππ, ϕKK̄ are presented in Sec. III.
Discussion of the results and conclusions are given
in Sec. IV.

II. THE THREE-COUPLED-CHANNEL
FORMALISM IN MODEL-INDEPENDENT

APPROACH WITH UNIFORMIZING VARIABLE

The multichannel S matrix can be described in our
model-independent method, which essentially utilizes a
uniformizing variable, without any approximations only in
the two-channel case. In the three-channel case, a four-
sheeted model of the eight-sheeted Riemann surface has to
be constructed to obtain a simple symmetric (easily
interpreted) picture of the resonance poles and zeros of
the S matrix on the uniformization plane. The matrix
elements Sij, where i, j ¼ 1, 2, 3 denote the channel
numbers, have the right-hand cuts along the real axis of the
s complex plane (s is the invariant total energy squared)
starting with the channel thresholds si and the left-hand
cuts related to crossed channels. An influence of the
lowest branch point s1 (ππ) is neglected but unitarity on
the ππ cut is kept. Sheets of the Riemann surface are
numbered according to the signs of analytic contin-
uations of the square roots

ffiffiffiffiffiffiffiffiffiffiffiffi
s − si

p
as follows:

signsðIm ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s1

p
; Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s2

p
; Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s3

p Þ ¼ þ þ þ;
− þ þ; − − þ; þ − þ; þ − −, − − −;−þ −;þþ −
correspond to sheets I, II,…, VIII, respectively.
Resonances are described on the Riemann surface using

the formulas for analytic continuations of the S-matrix
elements to all sheets. The formulas allow us to express the
matrix elements on the unphysical sheets by means of
the matrix elements on the physical sheet that have only the
resonance zeros (aside the real axis), at least, around the
physical region [2,11]. Assuming the resonance zeros on
sheet I, we can obtain an arrangement of poles and zeros of
the resonance on the whole Riemann surface which we
denote as a resonance cluster. In the three-channel case, we
obtain seven types of the resonance clusters corresponding
to possible situations when there are resonance zeros on
sheet I only in S11–ðaÞ; S22–ðbÞ; S33–ðcÞ; S11 and S22–ðdÞ;
S22 and S33–ðeÞ; S11 and S33–ðfÞ; S11, S22, and S33–ðgÞ. A
three-channel resonance has to be described by one of the
seven types of the resonance clusters which is the necessary
and sufficient condition for its existence. The resonances of
types (a), (b), and (c) can be related to the resonances
represented by Breit-Wigner forms, but the types (d), (e),
(f), and (g) do not have their equivalents in the Breit-
Wigner description.
The cluster type is related to the nature of state.

Considering the ππ, KK̄ and ηη channels, e.g., a resonance
coupled relatively more strongly to the ππ channel than to

the KK̄ and ηη channels is described by the cluster of
type (a) but in the opposite case, the resonance is repre-
sented by the cluster of type (e) (e.g., the state with the
dominant ss̄ component). The glueball must be represented
by the cluster of type (g) as a necessary condition for the
ideal case.
It is also possible to distinguish, in a model-independent

way [11,13], a bound state of colorless particles (e.g., KK̄
molecule) from a qq̄ bound state. Alike in the one-channel
case, the existence of the particle bound state means
presence of a pole on the real axis below the threshold
on the physical sheet. In the two-channel case, therefore,
the existence of the bound state in channel 2 (e.g., KK̄
molecule) that can decay into channel 1 (ππ decay) implies
the presence of the pair of complex conjugate poles on
sheet II below the second-channel threshold without the
corresponding shifted pair of poles on sheet III. In the
three-channel case, the bound state in channel 3 (ηη) that
can decay into the channels 1 (ππ decay) and 2 (KK̄ decay)
is represented by the pair of complex conjugate poles
on sheet II and by the pair of shifted poles on sheet III
below the ηη threshold without the corresponding poles on
sheets VI and VII.
The formulas of the analytic continuations [2,11] pre-

scribe that the resonance parameters (mass, total width, and
coupling constants with the channels) must be calculated
using the pole positions on sheets II, IV, and VIII because
only on these sheets do the analytic continuations have the
forms: ∝ 1=SI11, ∝ 1=SI22 and ∝ 1=SI33, respectively, i.e., the
positions of poles on these sheets are at the same points of
the complex-energy plane as the resonance zeros on the
physical sheet. The other pole positions are shifted due to
the coupling of channels.
The S-matrix elements of all coupled processes are

expressed in terms of the Jost matrix determinant
dð ffiffiffiffiffiffiffiffiffiffiffiffi

s − s1
p

;…;
ffiffiffiffiffiffiffiffiffiffiffiffi
s − sn

p Þ using the Le Couteur-Newton
relations [15]. The Jost determinant is a real analytic
function with the only square-root branch points atffiffiffiffiffiffiffiffiffiffiffiffi
s − si

p ¼ 0. The important branch points, which corre-
spond to the thresholds of the coupled and crossed
channels, are taken into account in the uniformizing
variable. In the uniformizing variable used here we neglect
the lowest ππ-threshold branch point but take into account
the threshold branch points related to the two remaining
channels, and the left-hand branch point at s ¼ 0 [2],

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs − s2Þs3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs − s3Þs2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs3 − s2Þ

p ; (1)

here s2 ¼ 4m2
K, s3 ¼ 4m2

η. This variable maps our model of
the eight-sheeted Riemann surface onto the uniformization
w plane divided into two parts by a unit circle centered at
the origin. The semisheets I (III), II (IV), V (VII), and VI
(VIII) are mapped onto the exterior (interior) of the unit disk
in the first, second, third, and fourth quadrants, respectively.
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The physical region extends from the ππ threshold

iðmη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

p
þmK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

η −m2
π

q
Þ=mπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

η −m2
K

q
on the

imaginary axis along this axis down to the point i on the
unit circle (KK̄ threshold). Then it goes along the unit
circle clockwise in the first quadrant to point 1 on the
real axis (ηη threshold) and then along the real axis to
the point b ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mη þmK
p Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimη −mK

p which is an
image of s ¼ ∞. The intervals ð−∞;−b�, ½−b−1; b−1�,
½b;∞Þ are the images of the corresponding edges of the
left-hand cut of the ππ-scattering amplitude. Each reso-
nance is represented in S11 by the poles and zeros that
are symmetric to each other with respect to the imaginary
axis. The representations of all possible types of reso-
nances in S11 on the w plane can be found in Ref. [2].
The main model-independent effect of multichannel

resonances is given by the pole clusters. Assuming that
possible small remaining (model-dependent) contributions
of resonances can be included via the background, the
S-matrix elements are taken as the products

S ¼ SBSres; (2)

where SB describes the background and Sres the resonance
contributions.
On the w plane, the Le Couteur-Newton relations are

somewhat modified taking account of the used model of the
initial eight-sheeted Riemann surface

S11¼
d�ð−w�Þ
dðwÞ ; S22¼

dð−w−1Þ
dðwÞ ;

S33¼
dðw−1Þ
dðwÞ ; S11S22−S212¼

d�ðw�−1Þ
dðwÞ ;

S11S33−S213¼
d�ð−w�−1Þ

dðwÞ ; S22S33−S223¼
dð−wÞ
dðwÞ ; (3)

where the subscripts in the matrix elements Sij denote the
channels: i; j ¼ 1–ππ, 2–KK̄, 3–ηη. The dðwÞ function for
the resonance part in these relations is

dresðwÞ ¼ w−M
2

YM
r¼1

ðwþ w�
rÞ (4)

with M a number of resonance zeros. For the background
part SB, the d function has the form

dB ¼ exp

�
−iX3

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
s − sn

p
2mn

ðαn þ iβnÞ
�
; (5)

where

αn ¼ an1þanσ
s− sσ
sσ

θðs− sσÞþanv
s− sv
sv

θðs− svÞ;

βn ¼ bn1þbnσ
s− sσ
sσ

θðs− sσÞþbnv
s− sv
sv

θðs− svÞ; (6)

with sσ the σσ threshold and sv the effective threshold due
to the opening of many channels in the energy region
around 1.5 GeV (e.g., ηη0; ρρ;ωω). These thresholds are
determined in the analysis.
The expressions (3) and (4) provide the simplest

possible parametrization of the resonance part of the S
matrix for a given number and type of resonances on the
uniformization w plane keeping unitarity and analyticity.
The free parameters (the zeros wr) of the Sres with a
particular number and type of resonances, are fixed by
fitting to the experimental data. The scenario with the
smallest χ2 is chosen as the most probable hypothesis on
the condition of the given data set. Note that this is an
opposite approach to that, e.g., in Refs. [16,17] where the
Smatrix is constructed in the physical region and then it is
analytically continued to the Riemann surface to find
poles, for example, the σ-meson pole. In our approach,
positions of the poles are obtained directly from the
fitting. An optimal number of poles is the minimal number
which guarantees a satisfactory description of the data and
which contains only the poles significantly improving the
fit. The poles are introduced according to the formulas for
analytic continuations of the S-matrix elements to all
sheets [2,11].
The background part Sbgr is constructed in the physical

region to mimic an influence of the other singularities not
included explicitly in the resonance part Sres. The simple
form in Eq. (5) includes a response to the opening of the
channels whose threshold branch points are not taken into
account explicitly in the uniformizing variable. Values of
the fitted parameters in Eq. (5) (a and b) indicate a relative
importance of these branch points; e.g., a negative or large
value of some background parameter could suggests that
the corresponding branch point should be explicitly
allowed for in the uniformizing variable. Therefore, in
choosing the best variant we also require that the back-
ground contribution is negligible, i.e., the background
parameters are small.
In our previous analysis of data on ππ → ππ; KK̄, we

took into account the left-hand branch point at s ¼ 0 in the
uniformizing variable in addition to the ππ- and KK̄-
threshold branch points [6]. In the analysis of ππ →
ππ; KK̄; ηη we allowed rather for the ηη-threshold
branch point [2]. In the presented more elaborate three-
channel analysis, unlike in Ref. [2], we follow more
consistently the spirit of the model-independent descrip-
tion obtaining practically zero background of the ππ
scattering.
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III. ANALYSIS OF THE DATA ON ISOSCALAR
S-WAVE PROCESSES ππ → ππ;KK̄;ηη AND ON

DECAYS J=ψ → ϕππ;ϕKK̄

In the combined analysis of data on the isoscalar Swaves
of processes ππ → ππ; KK̄; ηη [18–23] we added data on
decays J=ψ → ϕππ;ϕKK̄ from the Mark III [7], DM2 [8],
and BES II [9] Collaborations. Formalism for calculating
the di-meson mass distributions of these decays can be
found in Refs. [13,14]. In this approach, the pairs of the
pseudoscalar mesons in the final states are assumed to have
I ¼ J ¼ 0 and they undergo strong interactions whereas
the ϕ meson behaves as a spectator. The amplitudes for
J=ψ → ϕππ;ϕKK̄ decays are related with the scattering
amplitudes Tij i; j ¼ 1 − ππ; 2 − KK̄ as follows:

FðJ=ψ → ϕππÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
½c1ðsÞT11 þ c2ðsÞT21�; (7)

FðJ=ψ → ϕKK̄Þ ¼
ffiffiffiffiffiffiffiffi
1=2

p
½c1ðsÞT12 þ c2ðsÞT22�; (8)

where c1 ¼ γ10 þ γ11s and c2 ¼ κ2=ðs − λ2Þ þ γ20 þ γ21s
are functions of the couplings of the J=ψ to channels 1 and
2; κ2, λ2, γi0 and γi1 are free parameters. The pole term in c2
approximates possible ϕK states which are not forbidden
by the Okubo-Zweig-Iizuka rule considering quark dia-
grams of these processes. Obviously this pole should be
situated on the real s axis below the ππ threshold. This is an
effective inclusion of the effect of so-called “crossed
channel final-state interactions” in J=ψ → ϕKK̄, which
was studied largely, e.g., in Ref. [24]. The di-meson mass
distributions are given as

NjFj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − siÞðm2

ψ − ð ffiffiffi
s

p −mϕÞ2Þðm2
ψ − ð ffiffiffi

s
p þmϕÞ2Þ

q
;

(9)

where N is a normalization constant to data of the experi-
ments determined in the analysis: 0.7512, 0.2783, and
5.699 for the Mark III, DM2, and BES II data, respectively.
Parameters of the ci functions, obtained in the analysis,
are κ2 ¼ 0.0843� 0.0298, λ2 ¼ 0.0385� 0.0251, γ10 ¼
1.1826� 0.1430, γ11 ¼ 1.2798� 0.1633, γ20 ¼−1.9393� 0.1703, and γ21 ¼ −0.9808� 0.1532. The
scattering amplitudes Tij are related to the S matrix as

Sij ¼ δij þ 2i
ffiffiffiffiffiffiffiffi
ρiρj

p
Tij; (10)

where ρj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

j=s
q

.

In the analysis we supposed that in the 1500-MeV region
there are two resonances: the narrow f0ð1500Þ and wide
f00ð1500Þ. The f0ð500Þ state is described by the cluster of
type (a), f0ð1500Þ by type (c), and f00ð1500Þ by type (g).
The f0ð980Þ is represented only by the pole on sheet II and
shifted pole on sheet III. However, the representation of the
f0ð1370Þ and f0ð1710Þ states is not unique. These states

can be described by clusters either of type (b) or type (c).
Analyzing only the processes ππ → ππ; KK̄; ηηðηη0Þ, sim-
ilarly as it was done in [2], it is impossible to prefer any of
four indicated possibilities. Moreover, it was found that the
data admit two sets of parameters of f0ð500Þ with a mass
relatively near to the ρ-meson mass, and with the total
widths either ≈600 or ≈930 MeV, solutions A and B,
respectively, like in Ref. [2].
In the extended combined analysis, adding the data on

decays J=ψ → ϕππ;ϕKK̄, one can prefer the scenarios
when the f0ð1370Þ is described by the cluster of type (b)
and f0ð1710Þ by the cluster of type either (b) or (c). To be
specific, in the following we shall discuss the case when the
f0ð1710Þ is represented by the cluster of type (c).
It is interesting that the di-pion mass distribution of the

J=ψ → ϕππ decay of the BES II data from the threshold to
≈0.85 GeV clearly prefers the solution with the wider
f0ð500Þ (solution B). A satisfactory description of all
analyzed processes is obtained with the total χ2=NDF ¼
407.402=ð389 − 51Þ ≈ 1.21 where for the ππ scattering,
χ2=NDF ≈ 1.15, for ππ → KK̄, χ2=NDF ≈ 1.65, for
ππ → ηη, χ2=ndp ≈ 0.87, and for decays J=ψ →
ϕðππ; KK̄Þ, χ2=ndp ≈ 1.21.
The combined description (χ2) of processes ππ →

ππ; KK̄; ηη with adding the data on decays J=ψ →
ϕðππ; KK̄Þ is practically the same as in Ref. [2], performed
without considering decays of the J=ψ mesons. A com-
parison of the description with the experimental data is
shown in Figs. 1–6.
In Table I we show the obtained pole clusters for the

resonances on the complex-energy plane
ffiffiffi
s

p
. The poles on

sheets III, V, and VII and VI, corresponding to the
f00ð1500Þ, are of the second and third order, respectively
(this is an approximation).
The pole positions of the f0ð500Þ, f0ð1370Þ, and

f0ð1710Þ have changed with respect to Ref. [2], especially
the first one. The pole cluster of f0ð980Þ practically did not
change.
The obtained background parameters are a11 ¼ 0.0,

a1σ ¼ 0.0199� 0.0052, a1v ¼ 0.0, b11 ¼ b1σ ¼ 0.0,
b1v ¼ 0.0338� 0.0099, a21 ¼ −2.4649� 0.0231, a2σ ¼−2.3222� 0.1587, a2v ¼ −6.611� 0.5518, b21 ¼ b2σ ¼
0.0, b2v ¼ 7.073� 1.287, b31 ¼ 0.6421� 0.0452,
b3σ ¼ 0.4851� 0.1011, b3v ¼ 0; sσ ¼ 1.6338 GeV2,
sv ¼ 2.08571 GeV2. The very simple description of the
ππ-scattering background confirms well our assumption in
Eq. (2). It is important that we have obtained practically
zero background of the ππ scattering in the scalar-isoscalar
channel because a reasonable and simple description of the
background should be a criterion of correctness of the
approach. Furthermore, this shows that the consideration of
the left-hand branch point at s ¼ 0 in the uniformizing
variable solves partly the problem of some approaches (see,
e.g., [26]) that the wide-resonance parameters are strongly
controlled by the nonresonant background. Note also that
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the zero background of the ππ scattering, in addition to the
fact that f0ð500Þ is described by the cluster, indicates this
state to be the resonance (not a dynamically generated
state). The point is that after the account of the left-hand
branch point at s ¼ 0, the remaining contributions of the
crossed u and t channels are meson exchanges. The elastic
background of the ππ scattering is related mainly to
contributions of the crossed channels. Its zero value means
that the exchange by the nearest ρ meson is obliterated by
the exchange by a particle of near mass contributing with
the opposite sign [the scalar f0ð500Þ] [27].
Generally, the wide multichannel states are most

adequately represented by pole clusters located in a specific
way on the Rieman surface because these clusters give the
main model-independent contribution of the resonances
[27]. Positions of the poles are rather stable characteristics
for various models, whereas masses and widths are very
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FIG. 1. The phase shift (a) and module (b) of the ππ-scattering S-wave matrix element. The data are from Ref. [18] (Hya73), [20]
(Pro73), [19] (other), and [25] (NA48).

1000 1200 1400 1600

 s
1/2

  [MeV]

100

150

200

250

300

 φ
12

 [
de

gr
ee

s]

Coh80
Cos80
Est79
Pol79
Wet76
Etk82

π + π −−> K + K(a)

1000 1200 1400 1600

s
1/2

  [MeV]

0

0.1

0.2

0.3

0.4
0.

5 
|S

12
|

Coh80
Mar79

(b)π + π −−> K + K

FIG. 2. The phase shift (a) and module (b) of the ππ → KK̄ S-wave matrix element. The data are from Ref. [22] (Coh80, Cos80, Pol79,
Wet76, Etk82, and Mar79) and [21] (Est79).

1200 1400 1600 1800

s
1/2

  [MeV]

0

0.02

0.04

0.06

0.
25

 |S
13

|2

π + π −−> η + η

FIG. 3. The squared modules of the ππ → ηη S-wave matrix
element. The data are from [23].

PARAMETERS OF SCALAR RESONANCES FROM THE … PHYSICAL REVIEW D 89, 036010 (2014)

036010-5



model dependent for the wide resonances. However, values
of masses are needed, e.g., in the mass relations for
multiplets. In accordance with the discussion in Sec. II,
we emphasize that the masses should be calculated using
the poles on sheets II, IV, and VIII in dependence on the
resonance classification. Here we use the formulas

Tres ¼ ffiffiffi
s

p
Γel=ðm2

res − s − i
ffiffiffi
s

p
ΓtotÞ; (11)

mres ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
r þ ðΓr=2Þ2

q
and Γtot ¼ Γr; (12)

where Er and Γr=2 are given in Table I. The calculated
masses and widths for the f0 states are shown in Table II.
Let us note again that the mass of very broad resonances,
f0ð500Þ, strongly depends on the used formula.
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FIG. 4. The πþπ− invariant mass distributions in the J=ψ → ϕππ decay. Panel (a) shows the fit to the data of Mark III and (b) to DM2.
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IV. DISCUSSION OF THE RESULTS
AND CONCLUSIONS

In the combined model-independent analysis of data on
ππ → ππ; KK̄; ηη in the IGJPC ¼ 0þ0þþ channel and on
J=ψ → ϕππ;ϕKK̄ from the Mark III, DM2, and BES II
Collaborations, an additional confirmation of the f0ð500Þ
with the pole at 514.5� 12.4 − ið465.6� 5.9Þ MeV on
sheet II is obtained, which can be related with the mass
694� 10 MeV and width 931� 12 MeV via Eq. (12). The
real part of the pole is in a good agreement with the results
of other analyses cited in the PDG tables of 2012: The
PDG estimation for the f0ð500Þ pole is ð400–550Þ − i
ð200–350Þ MeV. The obtained imaginary part is, however,
larger than the PDG estimation. As large values of the
imaginary part of the f0ð500Þ pole appear to be inherent in
our method of analysis [2,28], the origin of this interesting
result should be understood. In Ref. [28] we showed that a
relatively narrow σ meson consistent with PDG can be
obtained in the analysis of one-channel ππ scattering data
but the inclusion of the KK̄ data into the analysis makes the
width significantly larger. Therefore it seems that the large
width is tightly connected with the multichannel analysis of
data. The value of the mass, which gets a significant
contribution from the large width, Eq. (12), agrees well
with the prediction by Weinberg in Ref. [29]. In this work it
was shown that even where the chiral symmetry is
spontaneously broken it can still be used to classify hadron
states. Such mended symmetry leads to a quartet of
particles with definite mass relations and C parity, giving

the prediction mσ ≈mρ. This prediction is also in agree-
ment with a refined analysis using the large-Nc consistency
conditions between the unitarization and resonance
saturation which suggests mρ −mσ ¼ OðN−1

c Þ [30]. In
addition, in the soft-wall anti–de Sitter/QCD approach
[31]—the approach based on gauge/gravity duality—the
predicted mass of the lowest f0 meson, 721 MeV, practi-
cally coincides with the value obtained in our work. The
above discussion concerns solution B, which is preferred
by the analysis presented in this paper. The imaginary part
of the f0ð500Þ pole in solution A (343 MeV) [2] is still in
agreement with the PDG estimation. However, solution A
is inconsistent with data on the J=ψ → ϕππ decay from the
BES II Collaboration: The corresponding curve in Fig. 6
lies considerably below the data from the threshold to about
850 MeV. Therefore, solution A is not considered in this
paper. Anyway, the question of too large width of
the f0ð500Þ desires a further investigation, estimating
the theoretical uncertainties of our approach.
The obtained results for f0ð980Þ, mres ¼

1008� 3 MeV and Γtot ¼ 64� 3 MeV, indicate that the
f0ð980Þ is a non-qq̄ state, e.g., the ηη bound state because it
lies slightly above the KK̄ threshold and is described by the
pole on sheet II and by the shifted pole on sheet III without
the corresponding (for standard clusters) poles on sheets VI
and VII. In the PDG tables of 2010 its mass is
980� 10 MeV. We found in all combined analyses of
the multichannel ππ scattering the f0ð980Þ is slightly above
1 GeV, as in the dispersion-relations analysis only of the ππ
scattering [32]. In the PDG tables of 2012, for the mass of

TABLE I. The pole clusters for resonances on the
ffiffiffi
s

p
plane.

ffiffiffiffi
sr

p ¼ Er − iΓr=2 in MeV.

Sheet f0ð500Þ f0ð980Þ f0ð1370Þ f0ð1500Þ f00ð1500Þ f0ð1710Þ
II Er 514.5� 12.4 1008.1� 3.1 1512.7� 4.9

Γr=2 465.6� 5.9 32.0� 1.5 285.8� 12.9
III Er 544.8� 17.7 976.2� 5.8 1387.6� 24.4 1506.2� 9.0

Γr=2 465.6� 5.9 53.0� 2.6 166.9� 41.8 127.9� 10.6
IV Er 1387.6� 24.4 1512.7� 4.9

Γr=2 178.5� 37.2 216.0� 17.6
V Er 1387.6� 24.4 1493.9� 3.1 1498.9� 7.2 1732.8� 43.2

Γr=2 260.9� 73.7 72.8� 3.9 142.2� 6.0 114.8� 61.5
VI Er 566.5� 29.1 1387.6� 24.4 1493.9� 5.6 1511.4� 4.3 1732.8� 43.2

Γr=2 465.6� 5.9 249.3� 83.1 58.4� 2.8 179.1� 4.0 111.2� 8.8
VII Er 536.2� 25.5 1493.9� 5.0 1500.5� 9.3 1732.8� 43.2

Γr=2 465.6� 5.9 47.8� 9.3 99.7� 18.0 55.2� 38.0
VIII Er 1493.9� 3.2 1493.9� 3.2 1732.8� 43.2

Γr=2 62.2� 9.2 299.6� 14.5 58.8� 16.4

TABLE II. Masses and total widths of the f0 states.

f0ð500Þ f0ð980Þ f0ð1370Þ f0ð1500Þ f00ð1500Þ f0ð1710Þ
mres [MeV] 693.9� 10.0 1008.1� 3.1 1399.0� 24.7 1495.2� 3.2 1539.5� 5.4 1733.8� 43.2
Γtot [MeV] 931.2� 11.8 64.0� 3.0 357.0� 74.4 124.4� 18.4 571.6� 25.8 117.6� 32.8
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f0ð980Þ an important alteration appeared: Now there is
given the estimation 990� 20 MeV.
We conclude that the f0ð1370Þ and f0ð1710Þ states are

dominated by the ss̄ component in the wave function. The
conclusion about the f0ð1370Þ agrees with results of
the work of the Crystal Barrel Collaboration [33] where
the f0ð1370Þ is identified as the ηη resonance in the π0ηη
final state of the p̄p annihilation at rest. This also explains
well why one did not find this state considering only the ππ
scattering process [4]. The conclusion about the f0ð1710Þ
is consistent with the experimental fact that this state is
observed in γγ → KSKS [34] but it is not observed in
γγ → πþπ− [35].
In the 1500-MeV region, indeed, there are two states:

the f0ð1500Þ (mres ≈ 1495 MeV, Γtot ≈ 124 MeV) and
the f00ð1500Þ (mres ≈ 1539 MeV, Γtot ≈ 574 MeV). The
f00ð1500Þ is interpreted as a glueball taking into account
its biggest width among the enclosing states [36]. As to the
large width of the glueball, it is worth indicating Ref. [37].
There an effective QCD Lagrangian with the broken scale
and chiral symmetry is used, where a glueball is introduced
to theory as a dilaton and its existence is related to the
breaking of scale symmetry in QCD. The ππ decay width of
the glueball, estimated using low-energy theorems, is
ΓðG → ππÞ ≈ 0.6 GeV × ðmG=1 GeVÞ5 where mG is the
glueball mass. That is, if the glueball with the mass of about
1 GeV exists, then its width would be near 600 MeV. Of
course, the use of the above formula is doubtful above
1 GeV; however, a trend for the glueball to be wide is
apparently seen. On the other hand, in a two-flavor linear
sigma model with global chiral symmetry and (axial-)
vector mesons as well as an additional glueball degree of
freedom where the glueball is also introduced as a dilaton
[38], there arises the rather narrow resonance in the
1500-MeV region as predominantly a glueball with a
subdominant qq component. On second thoughts, this
result can be considered as preliminary due to using a quite
rough flavor-symmetry SUðNf ¼ 3Þ in the calculations or,
e.g., evaluating the 4π decay, the intermediate state

consisting of two f0ð500Þ mesons is not included. In
Ref. [39], where the two-pseudoscalar and two-photon
decays of the scalars between 1–2 GeV were analyzed in
the framework of a chiral Lagrangian and the glueball was
included as a flavor-blind composite mesonic field, the
glueball was found to be rather narrow.
Taking into account the discovery of isodoublet K�

0ð800Þ
[1] (see also [40]), two lower nonets should correspond to
two existing isodoublets K�

0. We propose the following sets
of the SU(3) partners for these states excluding the f0ð980Þ
as the non-qq̄ state [2]: The lowest nonet consists of the
isovector a0ð980Þ, the isodoublet K�

0ð800Þ, and f0ð500Þ
and f0ð1370Þ as mixtures of the eighth component of the
octet and the SU(3) singlet. The next nonet could consist of
the isovector a0ð1450Þ, the isodoublet K�

0ð1450Þ, and two
isoscalars f0ð1500Þ and f0ð1710Þ. Since this assignment
removes a number of questions that stood earlier when
placing the scalar mesons to nonets and does not put forth
any new ones, we think this is the right direction. An
adequate mixing scheme is needed, the search for which is
complicated by the fact that, in this case, there is also a
remainder of chiral symmetry which, however, makes it
possible to predict correctly, e.g., the σ-meson mass [29].
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