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Abstract

In many applied problems it is required to construct a mathematical model
of the dependence of output variables on input variables of the stochastic object.
To solve this problem, both parametric and nonparametric approaches are used.
Each of these approaches has advantages and disadvantages. In the paper, we
consider combined algorithms for the identi�cation of stochastic objects using
jointly nonparametric and parametric estimates of regression.
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Introduction

Suppose that a stochastic object is described by a regression function

r(~x) = M(Y | ~X = ~x) =

∫
yp(y|~x)dy =

∫
yp(~x, y)dy

p(~x)
, (1)

where
(
~X, Y

)
=
(
X(1), ..., X(p), Y

)
is a (p+1)-dimensional vector of p object's inputs

and output, p(~x, y) is their joint distribution density, p(~x) is a distribution density of
inputs, and p(y|~x) is the conditional distribution density.

Let there be independent observations
(
~Xi, Yi

)
=
(
X

(1)
i , ..., X

(p)
i , Yi

)
, i = 1, ..., n,

of the random vector
(
~X, Y

)
. Let us consider the nonparametric Nadaraya�Watson

[2, 11] estimate of the regression function (1)

r̂(~x) = r̂(~x; ~X1, ..., ~Xn) =

n∑
i=1

YiK

(
~x− ~Xi

~hn

)
n∑
t=1

K

(
~x− ~Xi

~hn

) , (2)

where K

(
~x− ~Xi

~hn

)
= K

(
x(1) −X(1)

i

h
(1)
n

)
· · ·K

(
x(p) −X(p)

i

h
(p)
n

)
is a p-dimensional ker-

nel (the product of p one-dimensional kernels), ~hn = (h
(1)
n , . . . , h

(p)
n ) is a p-dimensional

vector of bandwidth parameters.
Usually the researcher has some information about the nature of the dependence of

the output of the object from the inputs. Suppose that he can express this knowledge
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in the form of a given function ϕ(~x, ~θ), where ~θ = (θ(1), . . . , θ(s)) is the vector of the
known parameters. This type of information we call as a prior guess.

Consider the task of sharing the nonparametric estimation of regression and a
prior guess. The approach using combinations of di�erent estimates was studied, for
example, in [1]�[3],[9].

1 Combined estimators

1.1 Static model

As a combined regression estimate, we take [2, 9]

R̂λ(~x) = (1− λ)r̂(~x) + λϕ(~x, ~θ), (3)

where λ is the weight coe�cient determined from minimum of the criterion

M{R̂λ(~x)− r(~x)}2. (4)

So, from (4) we obtain the optimal λ:

λ(~x) =
M{(r̂(~x)− r(~x))(r̂(~x)− ϕ(~x, ~θ))}

M{r̂(~x)− ϕ(~x, ~θ)}2
. (5)

Substituting (5) into (4) and making the transformations, we get:

M{R̂λ(~x)− r(~x)}2 = M{r̂(~x)− r(~x)}2 − [M{(r̂(~x)− r(~x))(r̂(~x)− ϕ(~x, ~θ))}]2

M{r̂(~x)− ϕ(~x, ~θ)}2
. (6)

The second term in (6) shows how much the MSE of the combined estimate
R̂λ(~x), taking into account the prior guess ϕ(~x, ~θ), decreases compared to r̂(~x) for
each ~x ∈ Rp. Since the optimal λ(~x) (5) is usually unknown, it becomes necessary to
construct an estimate λ̂(~x) of this coe�cient, which leads to an adaptive combined
estimate

R̂λ̂(~x) = (1− λ̂(~x))r̂(~x) + λ̂(~x)ϕ(~x, ~θ). (7)

Let us consider an estimate of a weight coe�cient by a bootstrap method. We
write (5) in the form:

λ(~x) =
Mψ1(~x)

Mψ2(~x)
, (8)

where

Mψ1(~x) = M [(r̂(~x)− r(~x))(r̂(~x)− ϕ(~x, ~θ))], Mψ2(~x) = M{r̂(~x)− ϕ(~x, ~θ)}2.

Generate a bootstrap sample
(
~X∗j , Y

∗
j

)
, ~X∗j = ( ~X∗1,j, ..., ~X

∗
n,j), j = 1, . . . , B, for the

numerator and denominator in (8). Then we have:

Mψ1(~x) ' 1

B

B∑
j=1

[(r̂(~x; ~X∗j )− r̂(~x))(r̂(~x; ~X∗j )− ϕ(~x, ~θ))],
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Mψ2(~x) ' 1

B

B∑
j=1

[r̂(~x; ~X∗j )− ϕ(~x, ~θ)]2.

As a result, we obtain the following estimate of the weight coe�cient (5):

λ̂B(~x) =

B∑
j=1

(r̂(~x; ~X∗j )− r̂(~x))(r̂(~x; ~X∗j )− ϕ(~x, ~θ))

B∑
j=1

[r̂(~x; ~X∗j )− ϕ(~x, ~θ)]2

. (9)

The usage of (9) in (7) leads to an adaptive combined estimate

R̂λ̂B
(~x) = (1− λ̂B(~x))r̂(~x) + λ̂B(~x)ϕ(~x, ~θ). (10)

If θ is evaluated by a sample, then the estimate (10) we will denote as R̃λ̂B
(~x).

The properties of these estimates are illustrated below in section 3 by simulation.

1.2 Dynamic model

Consider the dynamic model (cf. [4]�[7],[10])

Yt = f( ~Xt) + ξt, (11)

where Yt is the output of the object at the time moment t, ~Xt =
(
X

(1)
t , . . . , X

(p)
t

)
is

the p-dimensional vector of the inputs at the time moment t, f is an unknown func-
tion, ξt is the sequence of the i.i.d. random variables with a nonnegative distribution
density, Mξt = 0, Mξ2

t <∞,Mξ3
t = 0, and Mξ4

t <∞.
Assume that f is bounded and its form does not change in the time interval under

study. As an prior guess about the form of f , take the function ϕ(~x, ~θ) and consider
the following combined adaptive estimate:

R̂λ̂B
(~xt) = (1− λ̂B(~xt))r̂(~xt) + λ̂B(~xt)ϕ(~xt, ~θ), (12)

where

λ̂B(~xt) =

B∑
j=1

(r̂(~xt; ~X
∗
j )− r̂(~xt))(r̂(~xt; ~X∗j )− ϕ(~xt, ~θ))

B∑
j=1

[r̂(~xt; ~X
∗
j )− ϕ(~xt, ~θ)]

2

.

The estimate (12) is applied in section 4 for the analysis of stock prices on real data.
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2 Modeling

Consider an illustrative example. Let

Y (x) = 10 + 1.8x2 + ξ, ϕ(~x; ~θ) = θ(1) + θ(2)x, θ(1) = 8, θ(2) = 10.8,

where ξ is normally distributed random variable with Mξ = 0 and Dξ = σ2.
For di�erent noise variances and samples sizes n, we investigate the behavior of the

combined regression estimate for this model. The qualities of models identi�cation
and forecasting will be characterized using average relative errors:

δ(r̂) =
1

n

n∑
i=1

|Yi − r̂(Xi)|
|Yi|

100%.

For n = 10 and σ = 1, the plots of realizations Y (x), ϕ(x; θ(1), θ(2)), r(x) and
combined estimate for di�erent x ∈ [0, 1] are shown in Fig. 1. The behavior of the
estimate of the weight coe�cient (9) is shown in Fig. 2.

Figure 1: Plots of realizations Y (x), ϕ(x; θ(1), θ(2)), r(x) and combined estimate for
n = 10 and σ = 1

Let ϕ(x; θ̂(1), θ̂(2)) = θ̂(1) + θ̂(2)x, where θ̂(1), θ̂(2) are the least mean square (LMS)
estimates. For this case, Table 1 gives average relative identi�cation errors for various
variances and samples sizes.

Table 1: Average relative identi�cation errors δ(r̂), δ(R̂), and δ(R̃)

σ2 1 3 5
n 10 50 100 10 50 100 10 50 100
δ(r̂) 4.99 3.87 2.33 23.88 15.43 8.96 56.14 30.20 17.44
δ(R̂) 4.53 2.99 2.12 22.86 14.99 8.78 49.90 29.60 16.98
δ(R̃) 4.18 2.69 2.15 19.72 14.07 8.68 48.72 30.11 17.22
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Figure 2: Plot of the dependence of the estimate of the weight coe�cient (9) on x

In practice, from Table 1 it follows preferable applying a combined estimate in
comparison with a nonparametric estimate in the case of small sample sizes and/or
large noise variances.

3 Analysis of real data

The analysis of the prices of Gazprom's stocks for 2016 is carried out on the basis
of the �rst-order autoregression. In this case, it is natural to take as the model the
following modi�cation of (11):

Yt = f(Yt−1) + ξt, (13)

where t = 2, ..., n, Yt is the stock price at the time moment t. We take the parametric
function in the form ϕ(Yt−1; θ(1), θ(2)) = θ(1) + θ(2)Yt−1, where for simplicity we set
θ(1) = 0, θ(2) = 1, i.e. ϕ(Yt−1; 0, 1) = Yt−1.

As the nonparametric estimate of the interpolation forecast for Yt, we take the
following modi�cation of estimate (2):

Ŷt = r̂(Yt−1) =

∑
j≥2,j 6=t

YtK

(
Yt−1 − Yj−1

hn

)
∑

j≥2,j 6=t

K

(
Yt−1 − Yj−1

hn

) . (14)

The combined estimate, for which ϕ(Yt−1; 0, 1) = Yt−1, takes the form

Ȳt = R̂λ̂B
(Yt−1) = (1− λ̂B(Yt−1))r̂(Yt−1) + λ̂B(Yt−1)Yt−1, (15)

where

λ̂B(Yt−1) =
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=

B∑
j=1

(r̂(Yt−1;Y ∗j,1, ..., Y
∗
j,n−1)− r̂(Yt−1))(r̂(Yt−1;Y ∗j,1, ..., Y

∗
j,n−1)− Yt−1)

B∑
j=1

[r̂(Yt−1;Y ∗j,1, ..., Y
∗
j,n−1)− Yt−1, )]

2

. (16)

Based on the prices of stocks Y1, ..., Yn, formulas (14) and (15), the estimates of
forecasts by one step for price Yn+1 are de�ned as follows:

Ŷn+1 = r̂(Yn;Y1, ..., Yn−1) =

n∑
i=2

YiK

(
Yn − Yi−1

hn

)
n∑
i=2

K

(
Yn − Yi−1

hn

) . (17)

Ȳn+1 = R̂λ̂B
(Yn) = (1− λ̂B(Yn))r̂(Yn) + λ̂B(Yn)Yn, (18)

where
λ̂B(Yn) =

=

B∑
j=1

(r̂(Yn;Y ∗j,1, ..., Y
∗
j,n−1)− r̂(Yn;Y1, ..., Yn−1)(r̂(Yn;Y ∗j,1, ..., Y

∗
j,n−1)− Yn)

B∑
j=1

[r̂(Yn;Y ∗j,1, ..., Y
∗
j,n−1)− Yn−1, )]

2

. (19)

Let there be n+L stock prices. Estimates of forecasts Ŷn+2 and Ȳn+2 will be con-
structed at n prices Y3, ..., Yn+1 by formulas (17) and (18). Similarly, at n prices, shift-
ing by the required number of steps, make forecasts Ŷn+3, ..., Ŷn+L and Ȳn+3, ..., Ȳn+L.

The quality of identi�cation and forecasting will be characterized by means of the
average relative errors δreal(r̂) and ηreal(r̂):

δreal(r̂) =
1

n− 1

n∑
i=2

|Yi − r̂(Yi−1)|
Yi

100%, ηreal(r̂) =
1

L

n+L∑
i=n+1

|Yi − r̂(Yi−1)|
Yi

100%.

Consider the case n = 100. In Fig. 3 there are presented the results of identi�-
cation and prediction for the combined model using estimates (15) and (18), and the
behavior of the weight coe�cients (16) and (19) are shown in Fig. 4.
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Figure 3: Identi�cation and forecasting using combined estimates (15) and (18)

Figure 4: Plot of the dependence of the estimates of the weight coe�cients (16)
(identi�cation) and (19) (forecasting)

For di�erent volumes of observations, Table 2 gives the average relative errors of
identi�cation and prediction.

Table 2: Average relative errors of identi�cation and prediction

n 10 50 100
δreal(r̂) 1.87 1.40 1.34
δreal(R̂) 1.67 1.29 1.31
ηreal(r̂) 1.90 2.80 1.16
ηreal(R̂) 1.41 1.20 1.01

From the results obtained, in practice it is preferable using the combined evalua-
tion in comparison with the nonparametric estimate, especially in the case of small
sample sizes.
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Conclusions

In this paper, the problem of identi�cation of a stochastic object by means of a com-
bined estimate is considered, which is a weighted sum of the nonparametric estimate
of the regression and some function given by the researcher. Adaptive combined es-
timates are constructed on the basis of which algorithms for predicting static and
dynamic objects are proposed.

Based on the results of numerical simulation, the advantage of adaptive combined
estimates is shown in comparison with nonparametric regression estimates for small
samples sizes and a large noise level. The expediency of applying the proposed
approach in practice is illustrated in the analysis of the prices of Gazprom's stocks
for 2016.
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