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Abstract. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, random 
force, and dissipation effects on dynamics local conformational perturbations (kink) propagating along the DNA 
molecule is investigated. Such waves have an important role in the regulation of important biological processes in living 
systems at the molecular level. As a dynamic model of DNA was used a modified sine-Gordon equation, simulating the 
rotational oscillations of bases in one of the chains DNA. The equation of evolution of the kink momentum is obtained in 
the form of the stochastic differential equation in the Stratonovich sense within the framework of the well-known 
McLaughlin and Scott energy approach. The corresponding Fokker–Planck equation for the momentum distribution 
function coincides with the equation describing the Ornstein–Uhlenbek process with a regular nonstationary external 
force. The influence of the nonlinear stochastic effects on the kink dynamics is considered with the help of the Fokker–
Planck nonlinear equation with the shift coefficient dependent on the first moment of the kink momentum distribution 
function. Expressions are derived for average value and variance of the momentum. Examples are considered which 
demonstrate the influence of the external regular and random forces on the evolution of the average value and variance of 
the kink momentum. Within the formalism of the Fokker–Planck equation, the influence of nonstationary external force, 
random force, and dissipation effects on the kink dynamics is investigated in the sine–Gordon model. The equation of 
evolution of the kink momentum is obtained in the form of the stochastic differential equation in the Stratonovich sense 
within the framework of the well-known McLaughlin and Scott energy approach. The corresponding Fokker–Planck 
equation for the momentum distribution function coincides with the equation describing the Ornstein–Uhlenbek process 
with a regular nonstationary external force. The influence of the nonlinear stochastic effects on the kink dynamics is 
considered with the help of the Fokker–Planck nonlinear equation with the shift coefficient dependent on the first 
moment of the kink momentum distribution function. Expressions are derived for average value and variance of the 
momentum. Examples are considered which demonstrate the influence of the external regular and random forces on the 
evolution of the average value and variance of the kink momentum. 

INTRODUCTION 

The sine–Gordon equation with random parameters is used to construct models of propagation of ultrashort 
optical pulses [1], in physics of condensed state [2], and also in a number of other areas of nonlinear physics [3, 4]. 
The influence of weak fluctuations on the kink dynamics (one-soliton solutions of the sine–Gordon equation) with 
dissipation was first investigated in [5, 6]. Nonlinear Waves (kink) propagating along a DNA molecule, considered 
as one of the elements of the transmission mechanism of structural changes and information material in the 
functioning of the molecule. Within the McLaughlin and Scott energy approach [7], the stochastic dynamic 
equations for the kink momentum, velocity, and center of mass were derived with allowance for the influence of 
weak random perturbations and dissipation effects. The evolution of the average values and variances was 
investigated with the help of the distribution functions of these values obtained by solving the Fokker–Planck 
equation. The investigations started in [5, 6] were then continued in [8], and the influence of large-scale random 
perturbations on the kink dynamics was modeled numerically. The results obtained were used to investigate the 
statistical properties of quasi–one-dimensional magnetic components. The equations describing the kink dynamic 
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characteristics in a random medium were obtained in [9] by the inverse scattering transform method [10]. The kink 
acceleration was investigated in [11] under the influence of random nonlinear perturbations (the nonlinearity 
coefficient in the sine–Gordon equation was set to be a random function of time) in the context of the theory of 
soliton perturbations. The influence of stochastic processes on the kink dynamics was investigated in [12] in the 
approximation of dominant dissipation. The contributions of the first and second orders to the diffusion coefficient 
were calculated, and the kink dynamics was modeled numerically with the use of the method of perturbation theory. 
The joint influence of the nonstationary external force, random force, and dissipation effects on the kink velocity in 
the sine–Gordon model is studied in the present work following [5–7] within the formalism of the Fokker–Planck 
equation. In the present work, the influence of the nonlinear random effects (processes with a stochastic feedback) 
on the kink dynamics is investigated on the basis of the Fokker–Planck nonlinear equation. The evolution of the 
average momentum and its variance is analyzed. 

FOKKER–PLANCK EQUATION FOR THE KINK MOMENTUM DISTRIBUTION 
FUNCTION 

Let us write down the sine–Gordon equation with additional terms in the dimensionless form: 

 )(~)(~sin tDtftzztt . (1) 

Here  is the dissipation coefficient, )(~ tf  is the nonstationary regular external force, D~  is the diffusion 
coefficient, and the random force ( )t  is chosen in the form of the Gaussian white noise with average value 

( ) 0t  and correlation )()()( tttt . 

For 0~)(~ Dtf , Eq. (1) has the one-soliton solution (kink) of the following form: 

 
2

0
)(

1
exparctan4),( ztztzk . (2) 

Here  is the kink velocity, and the coordinate 0z  characterizes the initial position of the kink.  

Let us write down Eq. (1) for ),( t  at 0~)(~ Dtf  in the Hamiltonian form. The Hamiltonian of the 

sine–Gordon equation )(SGH  is the functional [7, 10, 13] 

 dzH zt
SG )cos1(

2
1

2
1)( 22 .  (3) 

Substituting Eq. (3) into Eq. (2), we obtain the expression for the kink energy [14]: 
 2/12

)( )1(8)( k
SGH . (4) 

Following the energy analysis algorithm [7], we obtain the well-known equation of evolution of the kink velocity for 

Eq. (1). Let  be an arbitrary solution of Eq. (1) for 0~,)(~, Dtf  then from Eqs. (1) and (3), we have 

 dztDtf
td

Hd
tt

SG

))(~)(~()( 2 . (5) 

Substitution of Eq. (2) into Eq. (5) yields 

))(~)(~(2
1

8))(~)(~()(
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2
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)( tDtfdztDtf
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tktk
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SG
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On the other hand, assuming that the kink velocity  depends on time )(t , we differentiate Eq. (4) with 
respect to time t; as a result, we obtain  

 
td
tdtt

td
Hd k

SG )()()(18
)( 2/32)( . (7) 
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From Eqs. (6) and (7), we find the sought-after equation for the kink velocity )(t  in the following form: 

 2/322 )(1)()()(1)()( ttDtftt
dt

td
. (8) 

where )(~
4

)( tftf , DD ~
16

2

. 

Replacing the variable according to the formula 

 
21 x

x
. (9) 

we reduce Eq. (8) to the form 

 )()( tDtfx
dt
dx

. (10) 

The variable x  is related to the kink momentum P  as follows: 8/Px , 
21

8P . 

We consider Eq. (10) with random force ( )D t  to be the stochastic differential equation in the Stratonovich 
sense [5, 6], for which the Fokker–Planck equation for the probability density function ),( txW  in designations 
[15] is written in the form  

 ),(
2

),()(),( txWDtxWtfx
t

txW
xxx . (11)

Following [16], we replace the sought-after function in Eq. (12) 
 )),((),( ttxUtxW , (12)

where we determine the function )(t  below. Substituting Eq. (12) into Eq. (14), we obtain  

 ),(
2

),()())((),()(),( tyUDtyUtftytyUttyU yyyyt . (13) 

where )(txy . Assuming that the function )(t  satisfies the condition 
 0)()()( tftt  (14) 

we reduce Eq. (14) to the form 

 ),(
2

),()(),( tyUDtyUytyU yyyt  (15) 

Equation (16) describes the well-known Ornstein–Uhlenbek process [17]. From condition (15), we obtain 

 
t

t

dtftttt
0

))(exp()()())(exp()( 000  (16) 

here )( 0t  is an integration constant. 
The Fourier transform 

 dytyUisytsU ),()exp(),(~
 (17)

reduces Eq. (16) to the form 

 UsDUsU st

~
2
1~~ 2  (18) 

Using the method of characteristics, we write down the general solution of Eq. (18) in the form 

 )))(exp((
4

exp),,(~
0

2

0 ttsgDsttsU  (19) 
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Here, )(ug  denotes an arbitrary function of the variable u . 
We now find the distribution function specified by Eq. (15) from the condition 

 )(),,( 0000 yytytyU  (20) 
Its Fourier transform is 

 )exp(),(~
00 siytsU  (21) 

From Eqs. (21) and Eq. (19), we obtain 

 siyDssg 0

2

4
exp)(  (22) 

Correspondingly, 

 )0(

0

)0(2
2

00 )1(
4

exp),,,(~ tttt eisyeDsttysU  (23) 

The inverse Fourier transform of identity (24), dsttysUetytyU isy ),,,(~
2
1),,( 0000  yields 

 2)0(

0)0(2)0(200 )(
)1(

exp
)1(

),,( tt

tttt
eyy

eDeD
tytyU  (24) 

Returning to the variable )(tyx  in identity (24), we derive the solution of Eq. (11) in the form 

 2)(
00)(2)(200 )))(()((

)1(
exp

)1(
),,( 0

00

tt
tttt

etxtx
eDeD

txtxW . (25)

We note that )(),,( 0000 xxtxtxW . Expression (25) has the meaning of the probability density function for 

x  at the moment of time t , given that 0xx  at 0tt . 

For the kink momentum xP 8  , from Eq. (25) it follows that 
2

)(
0

0
)(2)(200

0

00
)(

8
)(

8)1(
exp

)1(8
),,( tt

tttt
etPtP

eDeD
tPtPW  (26) 

The average value of the kink momentum for distribution function (26) is found in the following form: 

 
t

t

dtfttPdPtPtPPWttP
0

))(exp()(8))(exp(),,(),( 00000  (27)

The variance ),( 0tt  is given by the expression  

 )1(~4),(),(),( )(2
2

0
2

0
2

0
0tteDttPttPtt  (28)

where dPtPtPWPttP ),,(),( 00
2

0
2  Equation (27) demonstrates that 0P  has the meaning of the 

average value of the kink momentum for 0tt . 
It can be easily seen that the average value of the kink momentum given by Eq. (27) coincides with the solution 

of Eq. (11) without random force 0)(t . This is in agreement with the results obtained in [14], where the kink 

dynamics under the action of external regular force )(tf  was considered. The variance ),( 0tt  given by Eq. (28) 

depends on the diffusion coefficient D~  and is independent of the regular external force )(tf . Fig. 1 shows the 

time dependence of the kink momentum variance; from the figure, it can be seen that 0),( 00 tt . This 
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corresponds to a certain value of the momentum 0P  at 0tt . The variance increases with time asymptotically 

approaching to /~4 2D . Dependence (28) coincides with the results of numerical calculations presented in [5]. 
For the kink rootmean square velocity in the nonrelativistic case ( 1, 8P ) we obtain 

)1(~
16

),( )(2
2

0
2 0tteDtt  from formula (26) for 00  and 0)(tf  This is also in agreement 

with the results presented in [5]. 
 

 

FIGURE 1. Root-mean-square value of the kink momentum for =0.1, D~ =0.01, t0=0 

CONCLUSIONS 

The joint influence of the nonstationary external force, random δ-correlated force, and dissipation effects on the 
evolution the kink momentum in the sine–Gordon model within the formalism of the Fokker–Planck equation has 
been investigated in this work. The equation of evolution for the kink momentum was derived with the help of the 
wellknown McLaughlin and Scott energy approach; it has the form of the stochastic differential equation in the 
Stratonovich sense. The corresponding Fokker–Planck equation for the probability density function of the kink 
momentum has the form of the equation describing the Ornstein–Uhlenbek process whose evolution operator is 
written with the help of the Green’s function. The obtained expressions for the kink average momentum (27) and 
variance (28) demonstrated that the average value of the kink momentum depends on the external regular force and 
is independent of the diffusion coefficient D~ , whereas the variance is determined by this coefficient and 
monotonically increases with time, asymptotically approaching /~4 2D . 

This peculiarity of the kink dynamics under the action of the nonlinear random force with stochastic feedback 
can be used to control the kink motion, successively switching on and off the random force. The above-indicated 
peculiarities of the kink dynamics are important from the viewpoint of the study of general laws of interaction 
between the stochasticity and nonlinearity. 
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