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Abstract: It is shown that light backscattering by hexagonal ice crystals of 
cirrus clouds is formed within the physical-optics approximation by both 
diffraction and interference phenomena. Diffraction determines the angular 
width of the backscattering peak and interference produces the interference 
rings inside the peak. By use of a simple model for distortion of the pristine 
hexagonal shape, we show that the shape distortion leads to both 
oscillations of the scattering (Mueller) matrix within the backscattering 
peak and to a strong increase of the depolarization, color, and lidar ratios 
needed for interpretation of lidar signals. 
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1. Introduction 

Optical and microphysical properties of cirrus clouds are needed for incorporation in up-to-
date numerical models of the earth's radiance balance and, consequently, weather forecasting. 
At present, these properties are poorly known. Therefore considerable efforts are undertaken 
by both experimentalists and theorists to quantify these values. The main obstacle for 
theoretical calculations of optical properties of the crystals is that their sizes range from a few 
to hundreds micrometers. Here the standard numerical methods solving the problem of light 
scattering by nonspherical particles [1] are not useful since they are effective if the size 
parameter a, where a = (particle size)/wavelength, is less than, say, 20. Though, at present, 
some new methods expanding the limit of 20a ≤  are actively developed [2,3], the results 
obtained are far from practical applications yet. In the case of large 20a >  particles, the 
geometric-optics approximation is reasonable. However, this approximation leads sometimes 
to physically inconsistent results. For example, the backscattering cross section for randomly 
oriented hexagonal ice crystals proves to be singular [4]. Therefore only the physical-optics 
approximation [5,6] is most expedient for calculating the optical properties of cirrus clouds. 

While great variance of sizes, shapes, and kind of spatial orientations of the ice crystals 
constituting cirrus clouds make a solution of the light scattering problem to be rather 
complicated, a new item becomes recently a challenge for the scientific community dealing 
with optics of cirrus. Namely, it is suggested that ice crystal surfaces are not pristine [7–10] 
where imperfectness of the ice crystals is assumed to be double-natured. First, the dihedral 
angles inherent to the regular or pristine crystals can be slightly distorted. This case is called 
the shape distortion. Second, every smooth face can be imagined as a sheet of rough surface 
whose spatial irregularities are less than the face size. This case is called the roughened 
crystals. A simplest numerical method taking into account the both kinds of imperfectness 
was proposed by Macke within his geometric-optics or ray-tracing code [11]. Here every ray 
reflected or refracted by a smooth face is artificially deviated from its geometric-optics 
propagation direction that is just associated with the ice crystal imperfectness. A drawback of 
this procedure is that this approximation concerns only the light scattering process while the 
ice crystal surface is not explicitly determined. The ice crystal surface should be determined 
explicitly in any exact method based on numerical solutions of the Maxwell equations. In this 
way, Liu et al. [12] recently applied the PSTD (pseudo-spectral time domain) method to a 
roughened hexagonal column where every roughened face was simulated explicitly. 
However, this algorithm demands considerable computer resources and therefore it is 
restricted by crystals of moderate sizes. Later these authors compared the ice crystal optical 
properties obtained for the both models of the irregular crystals, i.e. the roughened and shape-
distorted crystals, and concluded that the both models gave often similar results [13]. 
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Among all scattering directions, the backward direction is of special importance since it is 
only backscattering that is detected by lidars. In spite of a long history of studying cirrus 
clouds by means of lidars, the problem of backscattering by ice cloud crystals has not been 
clarified neither experimentally nor theoretically until now [14–23]. Here the experimental 
data obtained from both ground-based and space-borne lidars can essentially deviate from 
each other because of great variance of sizes, shapes and spatial orientations of the ice 
crystals in the atmosphere. 

In particular, in the literature there is a discussion whether there is a sharp angular peak 
around the backward scattering direction in cirrus clouds. To answer the question, two 
methods, PSTD and invariant imbedding T-matrix method (II-TM) were recently applied by 
Zhou and Yang to a case of a randomly oriented hexagonal column of the size parameter of 

20a ≈  [24]. They concluded that, for this crystal, the backscattering peak appeared always 
independently of the crystal was regular, roughened or shape-distorted. As for the regular 
hexagonal crystals, we showed within the geometric-optics approximation a long time ago 
[25] that the backscattering peak for the regular hexagonal columns and plates always 
appeared owing to the corner-reflector effect. Here the dihedral angle of 90° operates as a 2D 
corner-reflector. Later, within the framework of the physical-optics approximation, we 
showed [5] that the plane-parallel beams leaving a crystal in the backward direction are 
scattered owing to the Fraunhofer diffraction that just results in this backscattering peak of the 
angular width of about 1/ a . 

Meanwhile, the angular width of the backscattering peak formed by cirrus clouds is too 
wide to be detected by common monostatic lidars. The scattering matrix only in the center of 
the peak, i.e. at exactly backward direction, is needed for interpretation of lidar signals. Here 
such three characteristics of lidar signals as depolarization, lidar and color ratios are of 
practical use. These characteristics were recently calculated by the authors for the regular 
crystals in the cases of both random [26] and arbitrary [27] orientations. Owing to these 
calculations [26, 27], we were able to ascertain that the ratios calculated for the regular 
crystals did not match well with the available experimental data. For example, the 
depolarization ratio calculated for the randomly oriented hexagonal columns was equal to 
about 0.2 while the typical experimental data were of about 0.3 - 0.5 [14–18, 22]. 

In this paper, we consider the backscatter by both regular and shape-distorted hexagonal 
ice columns within the framework of the physical-optics approximation for the case of 
random orientation. Here the model for shape distortion is chosen only as a simplest 
geometrical one. Such a model is far from its either experimental or theoretical justifications 
similarly to the shape distortion model assumed in [13]. Therefore the aim of this paper is to 
reveal some qualitative but not quantitative regularities of the optical properties of cirrus 
caused by the crystal imperfectness. In particular, we emphasize that the backscatter from a 
regular hexagonal ice crystal is formed by both diffraction and interference phenomena where 
diffraction determines the angular width of the backscattering peak and interference creates 
the interference rings inside the peak. We show that a small distortion of the regular crystal 
shape damaging slightly the dihedral angle of 90° results in oscillations of the interference 
rings. These oscillations are largest in the center of the backscattering peak that essentially 
increase the depolarization ratio approaching its magnitude to the experimental values. 
However, a rather large shape distortion eliminates the backscattering peak. 

2. Hexagonal ice columns of regular and irregular shapes 

The purpose of this paper is to clarify the main physical regularities appearing in optical 
properties of cirrus clouds because of small deviations of crystal surfaces from their regular or 
pristine shapes. We choose the hexagonal column as the basic shape since it is the typical 
shape of the crystals in cirrus clouds. Besides, it is the hexagonal column that is used in 
majority of the papers dealing with any test calculations of the optical properties. In this 
paper, we consider the hexagonal column of the typical diameter of 30μmD = . Heights of 
the columns h in cirrus clouds are not statistically independent of the diameters. The height is 
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taken from the model of [28] as 73.64μmh = . The refractive index is taken as 1.3116 and 
1.3004 for 0.532μmλ =  and 1.064μmλ = , respectively. The main axis is assumed to pass 
through centers of the hexagonal faces. 

 

Fig. 1. Geometry of the irregular hexagonal column. 

The shape distortion of the column is defined by a simultaneous tilt of the both hexagonal 
faces relative to the main column axis. The tilt is chosen along the dashed line depicted in 
Fig. 1(a). Such distortion destroys all dihedral angles of 90° inside the crystal and excludes 
any plane of symmetry of the particle. The angle of the tilt ξ  characterizes the surface 
distortion and it is called the distortion angle. 

Orientation of a column is determined by three Euler angles α , β , and γ  shown in Fig. 

1(b) where α  defines rotation of the crystal about the incident direction; β  is the crystal tilt, 
i.e. the angle between the incident direction and the main axis; and γ  describes crystal 
rotation about the main axis. 

This model of the irregular crystal shape is taken because it is the simplest scheme 
distorting the dihedral angle of 90° responsible for appearance of the backscattering peak. Of 
course, this model has neither experimental base nor any justification within the crystal 
physics. This model is designed only to study qualitatively the tendencies appeared in the 
backscattering properties when the dihedral angle of 90° is violated. Nevertheless, defending 
this model, we mention that the similar geometrical models are used in other papers dealing 
with light scattering by crystals with shape distortion (e.g [13].). 

3. Scattering matrices and backscatter ratios 

In general, light scattering by an arbitrary particle is completely determined by the 4 4×  
scattering or Mueller matrix [1]. If a particle of arbitrary shape is randomly oriented, there are 
pairs of the so-called reciprocal particle orientations that reduce the number of independent 
elements of the Mueller matrix from 16 to 10 as follows 
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14 24 34 44

1 ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) .

( ) ( ) ( ) ( )
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m m m m

m m m m

θ θ θ
θ θ θ θ

θ σ θ
θ θ θ θ

θ θ θ θ

 
 
 =
 − −
 

− 

M  (1) 

The zenith scattering angle θ is counted, for convenience, from the backward scattering 
direction 0θ = . In Eq. (1), the first element of the matrix 11( ) ( )M θ σ θ=  has a simple 
physical meaning of the differential scattering cross section in the case of unpolarized 
incident light. Other dimensionless elements of the matrix ( )ijm θ  are responsible for light 
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polarization. If the particle has a plane of symmetry like the regular hexagonal column, four 
elements 13m , 14m , 23m , and 24m  become zero. 

Lidars detect only light scattered in the backward direction. For the backward direction 
0θ = , the matrix is simplified as 

 

14

22

22

14 22

1 0 0 (0)

0 (0) 0 0
(0) (0) .

0 0 (0) 0

(0) 0 0 1 2 (0)

m

m

m

m m

σ

 
 
 =
 −
 

− 

M  (2) 

Here we get only three independent values σ , 22m , and 14m . Moreover, the element 14 (0)m  

is nonzero only for the irregular columns. For the regular column, we have 14 0m =  since 
there is a plane of symmetry. It is worthwhile to note that the backscattering cross section of 
the randomly oriented particles (0)σ  is the same for both unpolarized and linearly polarized 
incident light according to Eq. (2). 

However, lidar detectors are of finite fields of view, and the light scattered near the 
backward direction contributes to the lidar signals as well. Consequently, we need to know 
the total matrix of Eq. (1) in the vicinity of the backward direction. If the detector is circular, 
it can be mentally divided into ring detectors collecting the light over all azimuth angles ϕ  at 

a fixed zenith angle θ . The Mueller matrix for the ring detector ( )r θM  has the same 
symmetry as Eq. (2). It is obtained from Eq. (1) as 
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where ( )ϕL  is the well-known rotation matrix for the Stokes parameters and 

22 22 33( ) [ ( ) ( )] / 2m mμ θ θ θ= − . In this case, four quantities σ , 22μ , 44m , and 14m  are 

independent. For the regular column, one of them disappears: 14 ( ) 0m θ = . 
In lidar studies, three dimensionless ratios are often used instead of the Mueller matrix. 

They are 

 1

|| 2

(0) (0, )
, , .

(0) (0) (0, )
e

l L
σσ σ λδ χ

σ σ σ λ
⊥= = =  (4) 

The quantity lδ  is the linear depolarization ratio. It is obtained when the incident light is 
linearly polarized and the backscattering cross section is detected with the polarizer which is 
either perpendicular (0)σ ⊥  or parallel || (0)σ  to the incident light. The quantity L is called 

either the extinction-to-backscatter or lidar ratio. Here eσ  is the extinction cross section for 
the randomly oriented crystals that is calculated separately. The quantity χ  is the color ratio 
which is detected by a two-wavelength lidar. 

The linear depolarization ratio is expressed through the elements of the Mueller matrix (2) 
as 

#243212 Received 17 Jun 2015; revised 30 Jul 2015; accepted 12 Aug 2015; published 10 Sep 2015 
(C) 2015 OSA 21 Sep 2015 | Vol. 23, No. 19 | DOI:10.1364/OE.23.024557 | OPTICS EXPRESS 24561 



 22

22

1 (0)
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m
δ −

=
+

 (5) 

If the linear depolarization ratio was measured in the vicinity of the backward direction 
0θ ≠ , this quantity would be dependent on orientation of the polarizer used by detector. To 

avoid this dependence, we use the Mueller matrix of the ring detector of Eq. (3) where 
orientation of a polarizer in a lidar detector is indifferent. In this case, the depolarization ratio 
is described by the similar equation 

 22

22

1 ( )
( ) .

1 ( )l

μ θδ θ
μ θ

−
=

+
 (6) 

Equations (5) and (6) coincide in the backward direction 0θ = . 

4. The straight and skew corner-reflection beams at backscattering 

We calculate three Mueller matrixes of Eqs. (1)-(3) numerically by use of our both geometric-
optics and physical-optics codes. For the beginning, let us shortly describe the geometric-
optics and physical-optics approximations. In the geometric-optics approximation [4], every 
illuminated crystal face splits the incident light into two plane-parallel beams. The first beam 
corresponds to the specular reflection by the illuminated face and the second one is the 
refracted beam. Then the refracted beam propagates inside the crystal until it meets one or 
several intersecting faces. Every new face, in its turn, splits the beam into two beams, and so 
on. So the scattered light leaving a crystal surface consists of a lot of plane-parallel beams 
propagating in different directions. Every beam is characterized by its trajectory defined by a 
sequence of the faces passed by the beam. Also any beam is characterized by its location on 
the exit face and polygonal transversal shape, as well as by intensity, phase and polarization 
of light. 

By definition, the physical-optics approximation assumes [6] that the scattered light on 
particle surface is found in the geometric-optics approximation. The geometric-optics and 
physical-optics approximations treat differently only propagation of scattered light from the 
particle surface to an observation point. Usually the observation point is localized in the far or 
wave zone where the scattered light is determined on the scattering direction sphere as several 
functions of the zenith θ  and azimuth ϕ  scattering angles. In the geometric-optics 
approximation, every plane-parallel beam leaving a crystal is mapped to a dot on the 
scattering direction sphere where the dot corresponds to the propagation direction of the beam 
near the particle surface. Mathematically, this dot is described by the Dirac delta-function on 
the scattering direction sphere. In the physical-optics approximation, this dot is replaced by a 
spot around the geometric-optics dot that corresponds to the Fraunhofer diffraction of the 
beam. As known, the diffraction spot has the angular radius of / Aλ  where A is the 
transversal size of the beam. 

Our previous numerical calculations performed for randomly oriented regular columns 
[4,5,26] proved that predominant contribution to both the backward direction 0θ =  and its 
vicinity 0θ ≠  is obtained from only eight beams shown in Fig. 2. The beams are marked by 
numbers in Fig. 2(a). These beams are associated with the corner-reflection effect produced 
by the dihedral angle of 90° between crystal faces [25]. The beams 1-4 leaving the skew 
rectangular faces are called the skew ones while the other beams 5-8 are called the straight 
ones. Here 0γ = °  denotes one of possible six angles γ  where a rib at 0β ≠  becomes 
perpendicular to the incident direction. It is important that all the beams reveal a sharp 
maximum of their contributions to the backscatter if a column is orientated as ( 32β ≈ ° , 

0γ = ° ). 
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Fig. 2. Skew (1-4) and straight (5-8) plane-parallel beams giving predominant contributions to 
backscatter. Their ray trajectories are shown in Fig. 2(b) and Figs. 2(c) and 2(d), respectively. 

In the physical-optics approximation, if several plane-parallel beams emitted from a finite 
domain propagate in the backward direction 0θ = , in the wave zone of this domain they 
produce the diffraction or backscattering peak of the angular radius 

 / ,dif Aθ λ≈  (7) 

where A is the typical transversal size of the beams. The phase shifts among these beams can 
be either chaotic or regular. In the case of chaotic phases, the beams can be summarized 
incoherently, i.e. these are their Mueller matrixes including the differential scattering cross 
sections that should be added. If the phase shift among the beams is regular, such beams 
should be added coherently by summation of their 2 2×  scattering or Jones matrixes. Then 
the Mueller matrix of the total field is found by use of the well-known transformation 
equations. For the coherent addition, the backscattering peak of Eq. (7) should be cut up by 
interference spots. The angular scale of the interference spots is equal to 

 / ,int Bθ λ≈  (8) 

where int difθ θ<  and B is a typical distance between the centers of the coherent beams. The 

diffraction difθ  and interference intθ  angles are the main parameters characterizing the 

backscatter in this paper. 
For the beginning, consider the skew beams at the fixed column orientation of 

( 32.22β = ° , 0γ = ° ) where their contributions to the backscatter is maximal. Here phases of 
the beams are the same because of similarity of their ray trajectories. Therefore contributions 
of the beams to the backscatter should be summarized coherently, i.e. by summation of their 
2 2×  Jones matrixes. The Jones matrixes of the beams 1-4 at this column orientation though 
approximately but with high accuracy of about 5% [5] are equal to 

 1 2 3 4

0 1
,

1 0
q
 

= − = − = =  − 
J J J J  (9) 

where | | 0.8q ≈ . The matrix of Eq. (9) means that if incident light is linearly polarized, the 
scattered light is linearly polarized, too, but its polarization direction turns out to be 
perpendicular. This phenomenon is caused by two total internal reflections of the ray 
trajectory of Fig. 2(b) inside the crystal. 

Also, in Eq. (9) we see that the mirror-symmetric beams 1-3 and 2-4 are in antiphase. It 
follows from the summation of the corresponding pairs of the Jones matrixes 

1 3 2 4 0+ = + =J J J J . Thus, we obtain that the energy delivered to the backward direction 
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from, say, the beams 1 and 3 is eliminated because of interference between them. If energy of 
two beams is eliminated in the point 0θ =  because of interference, this interference should 

 

Fig. 3. The differential scattering cross section of the skew beams 1-4 within the cone of 5° for 
the regular and irregular columns at 0.532 μmλ = . The left patterns correspond to the 
columns with the distortion angles: ξ = 0° (a); ξ = 0.2°(c); and ξ = 0.5°(e) at the fixed 
orientation ( 32.22β = ° , 0γ = ° ) while the patterns averaged over the rotation angle γ are 
shown to the right. 
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increase the backscattered light in some neighbor points 0θ ≠ where the beams become in 
phase. 

These regularities are shown in Fig. 3(a) where the differential scattering cross section of 
these four beams ( , )σ θ ϕ  is calculated within the angular radius of 5° around the backward 

direction 0θ =  for the given column orientation and wavelength of 0.532 μmλ = . 

Assuming the typical size of the beams as / 3 10 μmA D≈ ≈ we obtain that the diffraction 

angle is 3difθ ≈ °  at 0.5 μmλ ≈ . Figure 3(a) illustrates that the main energy of the scattered 

light is concentrated roughly within the cone of 3θ < ° . In the backward direction 0θ = , 
intensity of the scattered light reveals a deep minimum that is explained above by the 
destructive interference. 

As for the interference angle defined by Eq. (8), we assume B D≈  that results in 
1intθ ≈ ° . In Fig. 3(a) the bright spots near the backward direction of the angular size of about 

1° are just the interference spots where all four beams are in phase producing the constructive 
interference. Let us remind that in these spots linear polarization is turned perpendicularly 
relative to linearly polarized incident light that leads to large depolarization ratios. 

The interference spots created by the skew beams have also the following remarkable 
property. These spots prove to be rather steady to crystal rotation about the angle γ. Figure 
3(b) shows the value ( , )σ θ ϕ  averaged over such rotation. We see that Figs. 3(a) and 3(b) 
have the same angular structure. This steadiness of the interference spots is explained by 
relatively small change of distance B between the beams on the particle surface during 
rotation taking into account that the contribution of the scattered beams to the backscatter is 
essential only for rather small rotation angles γ. 

The backscatter properties caused by the straight beams, say, 5-6 are more trivial. Indeed, 
at the given orientation of ( 32.22β = ° , 0γ = ° ) these beams have the same phase and they 
are in contact with each other forming one more large beam. The differential scattering cross 
section of the beams 5-6 is reduced to the diffraction pattern of their combined rectangular 
beam that is shown in Fig. 4(a). We note that Fig. 4(a) could be also obtained by summation 
of two separate diffraction patterns of the beams 5 and 6 plus the interference term between 
them. Since the ray trajectories of the straight beams at the given particle orientation are 
planar, their Jones matrix is diagonal resulting in very small magnitudes of the depolarization 
ratio in the backward direction. An averaging over the rotation angle γ shown in Fig. 4(b) 
only smooth the angular structure of Fig. 4(a) unlike the case of the skew beams. 

5. Backscattering peak for the randomly oriented irregular columns 

Taking into account the physical regularities discussed in the previous section, in this section 
we study the desired impact of the shape distortion of the columns on their backscattering 
properties at random particle orientation. It is obvious that the phase shifts among three 
groups of the beams 1-4, 5-6 and 7-8 are chaotic because of the condition D λ<< . Therefore 
we can add these beam groups incoherently by summation of their Mueller matrixes 

 (5,6) (7,8) .skw str str= + +M M M M  (10) 
It is worthwhile to note that anyone could solve the strict problem of light scattering by a 

column of the given diameter 30μmD =  at any particle orientation by use of the Maxwell 
equations. Such a strict solution includes automatically all interference terms. However, 
consider, for example, the interference term between a skew and straight beams. For a fixed 
particle orientation, this term is a quickly oscillating quantity depending on small deviations 
of particle sizes. Indeed, if the diameter D is mentally changed to, say, / 2D λ+ , this 
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Fig. 4. The same as Fig. 3 for the straight beams 5-6 where Figs. 4(a,b) and 4(c,d) correspond 
to the regular (ξ = 0°) and irregular (ξ = 0.5°) columns, respectively. 

procedure changes the phase shift between the beams on the quantity comparable to π that 
results in the opposite sign of the interference term. Consequently, such interference terms 
have no physical meaning; these terms are eliminated during any averaging over particle 
sizes. The approximation defined by Eq. (10), on the contrary, is justified from the physical 
point of view since it excludes such quickly oscillating interference terms in advance. 

Figure 5 shows the differential scattering cross section ( )σ θ  for the randomly oriented 
regular and irregular columns calculated in both the geometric-optics and physical-optics 
approximations. Let us begin with the geometric-optics values. We see that the regular 
column creates the singularity like 1/θ  because of the corner-reflection effect as it was 
described in details earlier [4]. As for the irregular columns, it is obvious that at the fixed 
column orientation ( 32β ≈ ° , 0γ = ° ) any shape distortion violating the dihedral angle of 90° 

shifts the scattering directions of all 8 beams from the backward direction 0θ =  to its 
vicinity 0θ ≠ . Moreover, we proved that it was impossible to return the beams to the 
backward direction by a change of particle orientations. Therefore we watch in Fig. 5 that the 
shape distortion has replaced the singular peak of the backward direction by some regular 
functions ( )σ θ  which have a gap at the backward direction, the angular radius of this gap 
being about the distortion angle ξ. 
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In the physical-optics approximation, the geometric-optics gap and peaks have been 
smoothed as it is presented by the solid curves. We obtain that these curves distinctly reveal 
the backscattering or diffraction peak which outspreads roughly until the diffraction angle dθ . 

Beyong the diffraction peak dθ θ> , the geometric-optics and physical-optics functions ( )σ θ  
practically approach each other. Thus, the backscattering peak of the angular radius of about 

dθ  exists for the shape-distorted crystals as well. However, the amplitude of this 
backscattering peak strongly decreases with the distortion angle ξ as seen in Fig. 5. As a 
result, we conclude that the backscattering peak practically disappears if the distortion angle 
exceeds the diffraction angle: difξ θ> . 

 

Fig. 5. The differential scattering cross sections for the randomly oriented regular and irregular 
columns calculated in the geometric-optics (dashed) and physical-optics (solid) 
approximations. 

Also, the physical-optics values ( )σ θ  in Fig. 5 reveal strong oscillations relative to the 

scattering angle θ with the scale of about intθ . These oscillations are the interference rings 
caused by interference among the skew beams 1-4. A proof of this statement follows from 
Fig. 6 presenting the differential scattering cross section ( )skwσ θ  for only the skew beams. 
We see in Fig. 6 that this is the destructive interference of the beams 1-4 taking place for the 
regular column that produces a deep valley in the cone of intθ θ< . An increase of the 

distortion angle from 0ξ = °  to 0.6ξ ≈ °  replaces this interference dark spot around the 

backward direction by the bright interference spot. Then, at difξ θ→ , the bright interference 

spot is decreased accompanying the dissipation of the diffraction peak. 

#243212 Received 17 Jun 2015; revised 30 Jul 2015; accepted 12 Aug 2015; published 10 Sep 2015 
(C) 2015 OSA 21 Sep 2015 | Vol. 23, No. 19 | DOI:10.1364/OE.23.024557 | OPTICS EXPRESS 24567 



 

Fig. 6. The same as Fig. 5 for the skew beams 1-4 only. 

These conclusions can be also visualized by use of Figs. 3(b), 3(d), and 3(f). Indeed, our 
numerical calculations show that the patterns of Figs. 3 and 4 are not qualitatively changed 
for those magnitudes of the tilt angle β which give essential contributions to the backscatter. 
Therefore a mental rotation of the patterns of Figs. 3(b), 3(d), and 3(f) around their centers 
corresponds approximately to the desired averaging over random orientation. Such mental 
rotation of the figures gives approximately the functions ( )skwσ θ . It is seen from Fig. 3(b) 
that the dark interference ring appears around the backward direction because of the 
destructive interference explained above. Then, at 0.2ξ = °  and 0.5ξ = ° , the dark 
interference ring is replaced by the bright interference rings according to Figs. 3(d) and 3(f). 

The same rotation of the patterns of Figs. 4(b) and 4(d) shows that the differential 
scattering cross sections for straight beams ( )strσ θ  are monotonically decreasing functions of 

the scattering angle. Thus, the total differential scattering cross section ( )σ θ  of Fig. 5 

oscillates slower than Fig. 6 because of the addition of these functions ( )strσ θ . 
Several polarization elements of the Mueller matrix of Eq. (1) calculated for the irregular 

crystals in the physical-optics approximation are shown in Fig. 7. Here we watch the same 
strong impact of the shape distortion on the polarization elements of the Mueller matrix. 
These elements oscillate relative to the scattering angle with the scale of about intθ  like the 

first element 11( ) ( )θ σ θ=M . Instead of the element 33 ( )m θ , Fig. 7(d) shows the 
depolarization ratio defined by Eq. (6). The other elements are small and they are not 
presented here. 

6. Backscatter ratios for the randomly oriented irregular columns 

The angular structure of the backscattering peak of the width of several degrees can be of 
interest only for passive remote sensing of cirrus clouds by means of radiometers measuring 
the Mueller matrix in wide angular interval. However, such a wide peak has no practical 
applications to lidar signals. Indeed, a lidar with the receiver of the diameter, say, 1 m detects 
the light that is backscattered by a crystal in the cone of the angle 41 m /10 km =10 0.006− ≈ °  
if the crystal is localized at the height of 10 km. Consequently, only the Mueller matrix of 
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Fig. 7. Polarization elements of the Mueller matrix (a-c) and the linear depolarization ratio (d) 
for the regular and irregular columns. In Fig. 7(d), the dotted line corresponds to the 
geometric-optics approximation. 

Equation (2) including the backscattering cross section (0)σ  are important for interpretation 
of lidar data. 

The backscattering cross section (0)σ for two wavelengths of 0.532 µm and 1.064 µm is 
shown in Fig. 8(a). We see that there are the distortion angles where the backscattering peak 
is dissipated at the shorter wavelength and it is not dissipated at the longer wavelength. As a 
result, the color ratio increases as it is presented in Fig. 8(b). The linear depolarization ratio 
presented in Fig. 8(c) also increases with the distortion angle. This increase is explained by 
the enlargement of the ratio (0) / (0)skw strσ σ caused by the replacement of the dark 
interference spot by the bright one. Such change of the depolarization ratio is also 
demonstrated in Fig. 7(d) at 0θ = . The increasing lidar ratio in Fig. 8(d) results directly from 
Fig. 8(a). 

As was emphasized above, the model of crystal shape distortion used in this paper is 
justified neither experimentally nor theoretically. Consequently, the data obtained in this 
paper are not directly applicable to experimental data. Moreover, we restricted ourselves by 
the hexagonal column of the fixed diameter of 30μmD = . Consequently, only the tendencies 
in the optical properties of cirrus caused by crystal shape distortions, which are obtained in 
the paper, can be compared with the experimental data. In its turn, the available experimental 
data reveal great variability caused by large diversity of sizes, shapes and spatial orientations 
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of ice crystals occurring in the atmosphere. Moreover, multiple scattering of light in cirrus 
should be taken into account to retrieve the backscatter ratios. 

Taking into account these stipulations, it is interesting to compare the data presented in 
Fig. 8 with the experimental data that can be roughly taken as 0.4lδ ≈  [15–18], 30L ≈  

[15,18], and 0.8χ ≈  [19]. We see that these experimental data are best suited to our 
backscatter ratios of Fig. 8 if the ice hexagonal column is assumed to be irregular with the 
distortion angle of 1ξ ≈ ° . 

 

Fig. 8. Backscattering cross sections (a) and the backscatter ratios (c-d) for the randomly 
oriented column versus its distortion angle calculated in the physical-optics approximation for 
two wavelengths of 0.532 µm (dashed) and 1.064 µm (solid). 

As for numerical calculations of the backscatter in cirrus, we have to distinguish the 
recent paper by Zhou and Ping [24] which is close to our paper. In [24], the authors simulated 
the phase function ( )P θ corresponding to our differential scattering cross section of Eq. (1) 
by use of their IGOM (improved geometric-optics method) algorithm. Their simulation did 
not find the backscattering peak unlike our physical-optics algorithm which predicts this peak 
for arbitrary large magnitudes of the size parameter /D λ  [26, 27]. Nevertheless, Zhou and 
Ping proposed to add a backscattering peak to the IGOM phase function. This additional term 
was obtained from their simulations of the phase functions by use of the PSDT and II-TM 
algorithms for randomly oriented regular, shape-distorted, and roughened hexagonal ice 
columns of the moderate size parameter of, say, / 20D λ < . Then these numerical data 
revealing the backscattering peak were empirically adjusted by their Eq. (1) for the 
amplification factor ( ) ( ) / (5 )P Pζ θ θ= °  as ( ) 1 0.7[sin(2 / ) / (2 / )]D Dζ θ πθ λ πθ λ≈ + . We 
note that the authors of [24] concluded that the phase function at the backward 
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direction 0θ = °  does not depend of the column size while our physical-optics code predicts 
such dependence. This disagreement between the qualitative conclusions can be explained by 
the different averaging procedures used. In this paper, we average the scattered light only 
over particle orientation at the fixed crystal shape while the additional averaging over crystal 
shapes for the shape-distorted crystals is taken in [24]. As for the regular columns, a 
comparison between the data fails since Fig. 1(b) in [24] shows only the normalized quantity. 
So, the further calculations could clarify this discrepancy. Nevertheless, some qualitative 
conclusions coincide in [24] and the present paper. Namely, the angular width of the 
backscattering peak is inversely proportional to the size parameter. It is also interesting to 
note that the amplification factor at the exact backward direction (0 ) 1.7ζ ° ≈ of the paper [24] 

corresponds to our irregular crystal with the distortion angle of 1ξ ≈ ° according to Fig. 5. 

7. Conclusions 

The physical-optics approximation was previously applied to study the backscattering 
properties of the pristine hexagonal ice columns and plates of cirrus clouds [26, 27]. We were 
able to ascertain that the backscatter ratios calculated for the randomly oriented hexagonal 
columns did not match well with the available experimental data. 

Therefore, in this paper, we have studied the impact of shape distortions of a hexagonal 
ice column on its backscattering properties at random particle orientation by use of the 
simplest geometrical model of the shape distortion. It is obtained that the backscattering peak 
around the backward direction previously known for the regular crystal shapes exists for the 
shape-distorted crystals as well. It spreads from the backward direction until the so-called 
diffraction angle 3 /d Dθ λ≈ . However, this peak is dissipated for large shape distortions 

under the condition difξ θ>  where ξ is the distortion angle. 

Within the backscattering peak, all elements of the Mueller matrix including the 
differential scattering cross section, as functions of the zenith scattering angle, undergo 
oscillations with the angular scale of about the interference angle / 3int difθ θ≈ . It is proved 

that these oscillations are caused by interference of four skew beams. At the exact 
backscattering direction 0θ = ° , this interference is destructive for the regular crystal 0ξ = ° . 

Then it becomes constructive for the irregular crystals at / 2intξ θ>  . 
The backscatter ratios needed for interpretation of lidar signals are firstly calculated as 

functions of the distortion angles. These results can explain the inconsistencies between the 
theoretical and experimental data. 
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