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Abstract. We explore methods of signal filtering using solutions of diffusion-type nonlinear and nonlocal model 
equations as filter kernels. Basic feature of the considered filtering is replacement of commonly used Gaussian filter by a 
filter based on solutions of diffusion-type equations. 

INTRODUCTION 

Data filtering belongs to one of important theoretical and practical problems in signal processing and data 
mining. One of the promising application is connected with chemometric analysis of spectral profile of breath air [1-
3]. The well-known example provides the Gaussian filter (GF) which is the convolution of an input signal with the 
Gaussian kernel (filter). The normalized Gaussian kernel reads: 

  (1) 

and the convolution of the input signal  and the kernel  is the output signal , 
  (2) 

The Gaussian filters are widely used in image processing and in 1D signal processing because of their simplicity 
and some useful properties, e.g. their support in the time domain is equal to their support in the frequency domain. 
This comes about from the Gaussian being its own Fourier Transform. On the other hand, GFs have some essential 
disadvantages. One of them is that the GF does not have a sharp cutoff at some pass band frequency beyond which 
all higher frequencies are removed. It means that if a signal has edges or peaks as high frequency components, the 
GF will remove them, and this manifests itself as the edges/peaks becoming more 'smudged' together with noise 
component in the signal.  

To overcome such disadvantages, a number of different modifications and generalizations of the GFs have been 
developed based on the idea that the Gaussian kernel is the Green function of the diffusion (heat) equation 
  (3) 

with the diffusion coefficient D. 
In this paper we discuss possible future perspectives for diffusion filtering using results of [4, 5] for exact and 

approximate integration of nonlocal and nonlinear diffusion type equations. 
The diffusion-induced filtering methods considered here are of interest in a variety of medical applications 

including analysis of MRI data (see the review paper [6]). Digital signal processing can involve linear or nonlinear 
operations. Nonlinear signal processing is closely related to nonlinear system identification and can be implemented 
in the time, frequency, and spatial-temporal domains. 

New Operational Technologies (NewOT’2015)
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In recent paper [7] a novel method of non-local filtering has been proposed whose average weights are related to 
both the image FBP (filtered back projection) reconstructed from restored sinogram data and the image directly FBP 
reconstructed from noisy sinogram data. 

THE ORNSTEIN-UHLENBECK PROCESS 

Consider a generalization of the Gaussian filter using solutions of the Fokker-Planck equation for the Ornstein-
Uhlenbeck process (FPOU equation). An input signal obtained experimentally, as a rule, does not have any specific 
properties convenient to extract the significant information contained in the signal. This information is usually 
represented as a feature vector of the object. The GF endows the input signal with the properties which have the 
kernel of the filter, in particular, the scale invariance [8]. 

Note that the Gaussian kernel (1), being the solution of the diffusion equation (3), inherits some of the 
symmetries of the equation. To study symmetry properties, effective analytic methods have been developed such as 
the group analysis [9-10]. This allows to construct filters starting from a modification of the diffusion equation (3) 
endowed with the appropriate symmetry properties and using then solutions of the modified equation as the filter 
kernels.  

The Ornstein–Uhlenbeck process is described by the Fokker-Planck equation which in the 1D case is 
  (4) 

where  is the additional parameter compared to the diffusion equation (3). The Green function of (4) reads: 

  (5) 

In [4] we explored the linear filter (2) with the kernel (5) as a component of the SIFT algorithm and stability of 
the SIFT algorithm was shown to increase with a special choice of the parameters. 

Dependence of the Green function (5) on the parameters t and  is more complex compared with the usual 
Gaussian function (1). We call the filter with the kernel (5) the Ornstein–Uhlenbeck filter (OU-filter). Applications 
of the GF and the OU-filter to different input signals show that results of filtering are similar. But, if we do the 
parameters in (5) dependent on the spatial coordinates, we get a new filter.  

Note that since the variance indicates the degree of blur, a change in the scale parameter t in the Gaussian (1) can 
vary the amount of blur. To compare properties of (1) and (5) in more details, we present dependence of the variance 
of the kernels (1) and (5) on the parameter t for the Gaussian kernel (1) and on t and  for the kernel (5) provided 
that ; ; ;  (see Fig. 1). 

If  then variance of a function  can be calculated by the formula 

 .  (6) 
As an illustration, consider the OU-filter with the kernel (5) in which the parameter  depends on the spatial 

coordinates. To do this, we put  
,  (7) 

where ; ; ; . The kernel (5), (7) takes the form shown in Fig. 2. 
It can be seen that in the convolution of an input function with the kernel shown in Fig. 2, the filtered signal at a 

given point involves the values of the input signal not only in the neighbourhood of this point but also at more 
distant points. We illustrate kernels on Fig. 3: the Gaussian function (1) and the Green's function (5) (7) for 

, , , . 
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FIGURE 1. Dependence of the variance (6) of the Green function (5) on the parameters  and  

 
FIGURE 2. The function (5), (7) for  
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FIGURE 3. The Green function (5), (7) and the Gaussian function (1) for , , , t = 0.25 

 
To compare the GF and the OU-filter with the kernel given by (5) and (7), we apply these filters to an input 

signal which is a model profile of an absorption spectrum of breath air for healthy people and for patients with 
chronic obstructive pulmonary disease (COPD). The spectrum profile had been obtained on the basis of HITRAN-
2008 database data for the following conditions. Water vapor concentration in mixtures was 0.9 и 1 % regardless 
from disease presence. Carbon dioxide concentration was 4–6 % for healthy patients’ probes and 2–4 % for patients 
with COPD probes. Methane concentration in all probes matches it’s concentration in ambient air 1.7 ppm. NO was 
not include in gas probes because it’s expected concentration is not more than 0.1ppm10, that matches contribution 
of 2 – 3% of summary contribution, caused by water vapor presence in whole studied spectral range (900 cm–1–
4000 cm–1). СО and N2O concentrations match medians, maximal and minimal values for adult healthy patient and 
COPD ones in acute stage11. Besides, when calculating absorption spectrum of two probes of COPD patients an 
absorption was added, caused by ethane and hydrogen peroxide presence (20 ppm for both gases). 

Results of filtering are shown in Fig. 4. 
 

 
FIGURE 4. Filtering of the model profile of an absorption spectrum using GF and the OU-filter under the condition (7) 

030016-4 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

37.21.145.246 On: Thu, 26 Nov 2015 17:05:07



An input signal, the model profile of an absorption spectrum, is plotted in Fig. 4a. The input signal processed by 
the Gaussian filter is given in Fig. 4b; the input signal processed by the OU-filter with the condition (7) is plotted in 
Fig. 4c.  

This example shows that even a small change in the Gaussian kernel can significantly affect the outcome. One 
example of such a filter can be the bilateral filter [11] the convolution of the input signal  and is the output 
signal : 
  (8) 

where  is an input signal,  – gaussian,  – function depends on input signal. This filter has more complex 
structure as the kernel (8) depends on the input data. 

 

 
FIGURE 5. The input and filtered signal using a bilateral filter 

 
Figure 5 depicts filtered signal and the original signal. This example shows that the bilateral filter allows 

identifying peaks, but filtering out unnecessary emissions. 

SUMMARY 

In this paper we consider possible methods of signal filtering based on diffusion-type equations, the Fokker-
Plank equation for the Ornstein-Uhlenbeck process.  

The Green function of the FPOU equation contains an additional parameter and it is more general then the Green 
function of the diffusion equation (the kernel of the GF). Therefore, the filter with the Green function of the FPOU 
as a kernel (the OU-filter) is the generalization of the GF. On the other hand, the OU-filter has small differences 
from the GF, respectively, filtering outputs obtained with the OU-filter and with the GF are similar. To get a new 
filter from the OU-filter, we can assume that the additional parameter in the Green function of the FPOU equation 
depends on the spatial variables. The example considered shows that such a modification of the OU-filter has some 
prospects. In particular, the diffusion filtering facilitates the transition to the bilateral filtering and other nonlinear 
and nonlocal filtering. Note also, that the FPOU equation possesses symmetries and the Green function inherits 
some symmetries of the equation. This feature allows endowing the output signal by certain symmetry properties. 
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