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ABSTRACT 
In this work, a numerical study of the transmission function, extinction coefficient, scattering coefficient, and absorption 
coefficient of the aerosol generated by the jet engine emissions was performed. Analyzing the calculation results of the 
IR optical characteristics of anthropogenic emissions containing the dialuminum trioxide was carried out. The spectral 
features of the optical characteristics of the medium caused by the average size, concentration and complex refractive 
index of the particles were illustrated. 
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1. INTRODUCTION 
The rocket and aircraft engines are the principal anthropogenic emission sources into the upper and middle atmosphere. 
The engine quality could affect the in-flight safety and the ecological state of the atmosphere.  

As a rule, the engine protection system uses the sensors mounted into the engine to monitor its status. This complicates 
the engine tests. The optical methods provide remote monitoring of the aircraft engine state [1]. These methods do not 
require any modifications of engines, and this is a major advantage of this technique. Due to low inertia, optical methods 
allow to obtain information in real time and if necessary to give a warning. The optical monitoring method reveals the 
engine parts corrosion by using the spectral lines of metals. Other methods can not reveal these failures. The optical 
methods of the engine monitoring analyze the absorption or emission spectra of the engine exhaust. These methods 
provide information on the concentration of particles of the constructional materials and estimate the engine cycle life in 
real time. This helps the engineers prevent the accidents. New types of the solid propellants contain the ultradisperse 
aluminum powder and an ammonium perchlorate oxidizer [2] that requires an analysis of the solid rocket motor exhaust. 
The effective optical monitoring requires a reliable data on the absorption spectra of metallic aerosols, such as the 
dialuminum trioxide (Al2O3). 

 

2. METHOD OF CALCULATION 
For numerical simulations of effects caused by the transformation of the radiation beam passing through a polydisperse 
medium, it is necessary to consider a model for a single particle. This model allows to determine a dependence of the 
light scattering characteristics on parameters of the incident radiation and the particle properties. To calculate the optical 
properties of the aerosol, the Mie theory [2] was used. The Mie solution for the plane wave scattering by a sphere is a 
multipurpose approach used in the light scattering theory. This approach can be used to model a medium that contains 
both small and large particles of various forms (both spherical and nonspherical particles).  

                                                            
* shefer-ol@mail.ru 

21st International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 
edited by G. G. Matvienko, O. A. Romanovskii, Proc. of SPIE Vol. 9680, 96803A  

© 2015 SPIE · CCC code: 0277-786X/15/$18 · doi: 10.1117/12.2205295

Proc. of SPIE Vol. 9680  96803A-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/20/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tomsk State University Repository

https://core.ac.uk/display/287410506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

When modeling the radiation extinction by a disperse medium, it is necessary to consider the extinction coefficient. The 
extinction coefficient of an ensemble of particles is expressed in terms of the extinction cross section of an individual 
particle in the following way:  
 

ext extC S= ⋅ 〈α 〉 .                                                                          (1) 
 
Нere extS〈 〉  is average extinction cross section, and  С is the concentration of particles in the volume element. To test a 
model for calculating the extinction coefficient, resulted from the energy conservation law (extinction = scattering + 
absorption) expression was used: 
 

ext abs sca= +α α α ,                                                                        (2) 
 
where αext is the extinction coefficient,  αabs  is the absorption coefficient, and  αsca is the scattering coefficient. 
When radiation energy flux passes through a disperse medium, this results in the light scattering by particles in all 
directions and conversion of the absorbed energy to heat energy. The attenuation of the radiation beam transmitted 
through a layer of the polydisperse medium is described by the expression: 
 

transI I Ti= ⋅ ,                                                                            (3) 
 
where Itrans is the intensity of the transmitted radiation, Ii is the intensity of the incident radiation, and T is the 
transmission function (TF). 
The transmission function of the aerosol medium with thickness h is defined as 
 

T = exp(-αext·h).                                                                          (4) 
 
Optical properties of the polydisperse medium including the dialuminum trioxide particles are studied in this work. We 
considered various average sizes and concentrations of particles in the volume element.  

 

3. RESULTS AND DISCUSSION  
The transmission function, scattering coefficient, absorption coefficient, and extinction coefficient in IR range for a 
radiation beam passing through an ensemble of spherical particles were investigated numerically. The calculations were 
based on the following input parameters: the particle sizes (the radius R), the complex refractive index ( n n i= + ⋅χ% , 
where n describes the refraction, and χ is the absorption coefficient), the volume concentration of particles (C), and 
wavelength of the incident radiation (λ).  

We specified the microphysical and optical properties of the disperse medium using the following a priori data: the 
particle sizes vary from 0.01 μm to 20 μm; the particle concentration varies from 105 to 107 l -1

 [3]; the optical properties 
of the Al2O3 were taken from [4].  

Fig. 1 shows the wavelength dependence of the refraction index n=n(λ) and the absorption index χ=χ(λ) according to data 
from the paper [4]. The refraction index n=n(λ) has the minimum value (n≈0.66) at λ≈10.97 μm. This resulted from a 
resonant interaction of optical radiation with the Al2O3 lattice. In the near-infrared range n >> χ. If the radiation 
wavelength λ<10 μm, the radiation attenuation is determined mostly by the light scattering. The real and imaginary parts 
of the Al2O3 complex refractive index are of the same order in the mid-infrared range. Thus, if the radiation wavelength 
λ>10 μm, the contributions of the absorption and scattering to the radiation attenuation are comparable values.  
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absorption index χ has high values at λ>10 μm, the wavelength dependence of the extinction coefficient remains
prominent due to the scattering.

These studies provide the most promising spectral ranges to get the Al2O3 concentration at sensing of jet engine exhaust 
by quasi monochromatic radiation. The maximum extinction of the radiation by aluminum trioxide takes place in the 
mid-infrared range. In this spectral range, also it is necessary to take into account the molecular absorption [5–7]. At
present, the accuracy of the estimation of extinction by molecular components is significantly improved since the 
algorithm for calculation of the molecular environments transparency was enhanced and also the known databases on 
parameters of spectral absorption lines of various gases (including the high temperature databases up to 1000 K) were 
enhanced [8, 9].  
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