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ABSTRACT 

Atmospheric chemistry dynamics is studied with convection-diffusion-reaction model. The numerical Data Assimilation 

algorithm presented is based on the additive-averaged splitting schemes. It carries out ''fine-grained'' variational data 

assimilation on the separate splitting stages with respect to spatial dimensions and processes i.e. the same measurement 

data is assimilated to different parts of the split model. This design has efficient implementation due to the direct data 

assimilation algorithms of the transport process along coordinate lines. Results of numerical experiments with chemical

data assimilation algorithm of in situ concentration measurements on real data scenario have been presented. In order to 

construct the scenario, meteorological data has been taken from EnviroHIRLAM model output, initial conditions from 

MOZART model output and measurements from Airbase database. 

Chemical data assimilation, variational approach, advection-diffusion-reaction model, fine-grained data assimilation, 

splitting method, discrete-analytical schemes 

1. INTRODUCTION

We consider the following classes of problems associated to the inverse modeling:

 Direct problems: System’s behavior has to be forecasted and studied with a mathematical model and 

Direct variational assimilation algorithm for atmospheric chemistry data with 
transport and transformation model

prescribed parameters.  
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 Inverse problems: Model parameters must be adjusted to fit model forecasts to the corresponding 

measurement data. It may take to solve series of direct problems with various model parameters.  

 Data assimilation (DA) problems: A forecast has to be improved (on-line) by adjusting model 

parameters with incoming measurement data. It may take to solve series of inverse problems with various 

measurement data.  

In the work, we present data assimilation algorithm for advection-diffusion-reaction atmospheric chemistry model. To 

construct a data assimilation algorithm, the following features should be taken into account:  

 Atmospheric composition is being changed rapidly, therefore current and future system state is of 

interest.

 Stiff chemical kinetics equations (different time scales), various chemical mechanisms and their 

nonlinear behavior. 

 Uncertainties are not only in initial conditions but also in model coefficients (reaction rates) and in 

emission rates.

 High dimensionality (≈ 107) of modern atmospheric chemistry transport models due to high number

of spatial variables and different species, imposes requirements to the computational performance. 

 Relatively small number of chemical species in a small number of spatial points can be measured. 

 Data assimilation algorithms must be embedded in existing models.

 Multidisciplinary study.  

A review and examples of chemical data assimilation algorithms can be found in[1,2,3]. Summarizing them, we would like 

to emphasize that unlike data assimilation in meteorology initial states in the chemical data assimilation are to be

”forgotten” due to diffusion process. Meanwhile the emission rates and model coefficients play a significant role as the 

sources of uncertainty in the chemical data assimilation. In our work we use source-term uncertainty to perform data 

assimilation. 

In order to apply a Data Assimilation algorithm to real data, one has to prepare a consistent set of parameters: 

- Meteorological conditions for transport and transformation of model parameters. 

- Chemical background for initial and boundary conditions.  

- Measurement data have to be reduced to a common form and divided into assimilated and 

reference sets.  

The data assimilation algorithm has to be applied to the assimilated set and compared to a reference one. 

2. DATA ASSIMILATION ALGORITHM

2.1. Transport and transformation model 

Let us consider a spatial-temporal domain: 

𝑥 =  𝑥1 , 𝑥2 , 𝑥3 ∈ Ω =  0, 𝑙1 ×  0, 𝑙2 ×  0, 𝑙3 ,  𝑡 ∈  0, 𝑇 ,  Ω𝑇 : = Ω ×  0, 𝑇 ,

bounded by 𝛿Ω𝑇 = 𝛿Ω × [0, 𝑇]. In the domain we consider atmospheric chemistry transport and transformation model

for different substances like contaminants, heat,  moisture, radiation, etc.  

𝐿𝜙 ≡
𝜕𝜙 (𝑥 , 𝑡)

𝜕𝑡
+ div ( 𝑢   𝜙 (𝑥 , 𝑡) − 𝜇(𝑥 , 𝑡) grad 𝜙 (𝑥 , 𝑡)) = 

= 𝑆(𝜙 (𝑥 , 𝑡)) + 𝑓 (𝑥 , 𝑡) + 𝑟 (𝑥 , 𝑡),  (𝑥 , 𝑡) ∈ Ω𝑇 , (1) 
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 𝜇(𝑥 , 𝑡)
𝜕𝜙 (𝑥 , 𝑡)

𝜕𝑛  
+ 𝛽(𝑥 , 𝑡)𝜙 (𝑥 , 𝑡) = 𝑔 (𝑥 , 𝑡),  (𝑥 , 𝑡) ∈ 𝜕Ω𝑇 , (2) 

 𝜙 (𝑥 , 0) = 𝜙 0(𝑥 ),  𝑥 ∈ Ω. (3) 

Here 𝜙 (𝑥 , 𝑡) is a state function that has physical meaning of concentrations fields at point (𝑥 , 𝑡) ∈ Ω𝑇 , e.g. 𝜙𝑙(𝑥 , 𝑡) 

corresponds to the concentration of 𝑙𝑡𝑕  substance at point (𝑥 , 𝑡). Here 𝑙 = 1, . . . , 𝑁𝑐 , 𝑁𝑐  is the number of considered 

substances. Vector 𝑢  (𝑥 , 𝑡) = (𝑢1(𝑥 , 𝑡), 𝑢2(𝑥 , 𝑡), 𝑢3(𝑥 , 𝑡)) denotes ”wind speed”, 

𝜇(𝑥 , 𝑡) = 𝑑𝑖𝑎𝑔(𝜇1(𝑥 , 𝑡), 𝜇2(𝑥 , 𝑡), 𝜇3(𝑥 , 𝑡)) is a diagonal diffusion tensor, 𝑆:ℝ𝑁𝑐 → ℝ𝑁𝑐  is a transformation operator, 𝑛   
is the boundary outer normal direction, 𝑓 (𝑥 , 𝑡), 𝑔 (𝑥 , 𝑡), 𝜙 0(𝑥 ) - a priori data for the sources and initial data, 𝑟 (𝑥 , 𝑡) is a 

control function (uncertainty), that is introduced in the perfect model structure to assimilate data. As it is for 𝜙 (𝑥 , 𝑡), 

each entry of 𝑓 (𝑥 , 𝑡), 𝑔 (𝑥 , 𝑡), 𝑟 (𝑥 , 𝑡), 𝜙 0(𝑥 ) vectors corresponds to a quantity attributed to l-th substance at point (𝑥 , 𝑡).  

Transformation operator 𝑆 is defined by the chemical kinetics system of 22 reacting species from[4,5]  augmented with the 

𝑆𝑂2 reaction taken from the CMAQ model[6]: 

hv + NO2 → NO + O3P hv + O3 → O1D + O2
HCHO + hv → CO + 2. HO2 HCHO + hv → CO + H2

O2 + O3P → O3 N2 + O1D → N2 + O3P
O1D + O2 → O2 + O3P H2O + O1D → 2. OH
HO2 + NO → NO2 + OH NO + O3 → NO2 + O2

NO + RO2 → HCHO + HO2 + NO2 CO + OH → CO2 + HO2
HC + OH → H2O + RO2 HCHO + OH → CO + H2O + HO2

NO2 + OH → HNO3 2. HO2 → H2O2 + O2
H2O + 2. HO2 → H2O + H2O2 + O2 HO2 + RO2 → O2 + ROOH

2. RO2 → Prod OH + SO2 → HO2 + Sulf

 

Reaction rates have been taken from[5] and depend on time, i.e, photochemistry is considered.  

This kinetics system can be presented in the production-destruction operator form:  

 𝑆𝑙(𝜙  (𝑥 , 𝑡)) = −𝑃𝑙(𝜙  (𝑥 , 𝑡))𝜙𝑙(𝑥 , 𝑡) + Π𝑙(𝜙  (𝑥 , 𝑡)), 𝑙 = 1, . . . , 𝑁𝑐 , (4) 

 𝑃𝑙 , Π𝑙 : ℝ+
𝑁𝑐 → ℝ+. (5) 

Direct problem: With given 𝑓 , 𝑔 , 𝜙  0, 𝑟  determine 𝜙   from (1)-(3). Exact solution 𝜙  ∗ is a solution of direct problem 

corresponding to ”unknown” emissions 𝑟 ∗.  

We consider all the functions and model parameters to be smooth enough for the solutions to exist and further 

transformations to make sense.  

For the numerical solution let us introduce uniform temporal grid 𝜔𝑡 =  𝑡𝑗  𝑗=1
𝑁𝑡  on  0, 𝑇  with step size 𝜏 and 𝑁𝑡  points 

and uniform spatial grids 𝜔𝛽  with 𝑁𝛽 ,  𝛽 = 1,2,3 grid points on Ω, 𝜔 = 𝜔1 × 𝜔2 × 𝜔3. Let 𝑄(𝜔) be the space of real 

grid functions on 𝜔. Direct problem can be efficiently solved with splitting method. Let us consider additive-averaged 

splitting scheme (analogous to8) on the intervals 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1. The splitting is done with respect to physical process 

(advection-diffusion and transformation processes) and advection-diffusion part is further split with respect to spatial 

dimensions. Finally we have 4 parallel stages for the step partition  𝛾𝛽
4
𝛽=1 = 1 and sources partition𝑓 =  𝑓 𝛽

4
𝛽=1 .  

 Convection-diffusion processes (𝛽 = 1,2,3)  

𝛾𝛽
𝜕𝜙  𝛽(𝑥 , 𝑡)

𝜕𝑡
+

𝜕

𝜕𝑥𝛽
 𝑢𝛽(𝑥 , 𝑡)𝜙  𝛽(𝑥 , 𝑡) −

𝜕

𝜕𝑥𝛽
 𝜇𝛽(𝑥 , 𝑡)

𝜕

𝜕𝑥𝛽
𝜙  𝛽(𝑥 , 𝑡)  

= 𝑓𝛽    (𝑥 , 𝑡) + 𝑟 𝛽 (𝑥 , 𝑡),  (𝑥 , 𝑡) ∈ Ω ×  𝑡𝑗−1, 𝑡𝑗  , 
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𝜇(𝑥 , 𝑡)
𝜕𝜙 𝛽(𝑥 , 𝑡)

𝜕𝑛  
+ 𝛽(𝑥 , 𝑡)𝜙 𝛽(𝑥 , 𝑡) = 𝑔 𝑎(𝑥 , 𝑡),  (𝑥 , 𝑡) ∈ 𝜕Ω𝛽 ×  𝑡

𝑗−1, 𝑡𝑗  , 

𝜙  𝛽 𝑥 , 𝑡
𝑗−1 = 𝜙   𝑥 , 𝑡𝑗−1 ,  𝑥 ∈ Ω, 

where 𝜕Ω𝛽 =  𝑥 ∈ 𝜕Ω| 𝑥𝛽 = 0||𝑥𝛽 = 𝑙𝛽  . This initial value problem can be approximated with implicit matrix 

form: 

 𝛾𝛽
𝜙  𝛽
𝑗
− 𝜙  𝑗−1

𝜏
+ 𝐿𝛽𝜙  𝛽

𝑗
= 𝑟 𝛽

𝑗
+ 𝑓 𝛽

𝑗
, (6) 

 𝐿𝛽 𝜙   : =  𝐿𝛽 𝜙  𝑙  𝑙=1

𝑁𝑐
. (7) 

Here 𝜙  𝑗 ∈ 𝑄(𝜔)𝑁𝑐  stands for the solution on the 𝑗-th time layer, 𝑟 𝑗  ∈ 𝑄(𝜔)𝑁𝑐  is the uncertainty on the j-th time 

layer and 𝐿𝛽 : 𝑄(𝜔) → 𝑄(𝜔)  are approximated advection-diffusion operators from (1) corresponding to spatial 

dimensions.  

 Chemical reaction processes (𝛽 = 4)  

𝛾𝛽
𝜕𝜙  𝛽(𝑥 , 𝑡)

𝜕𝑡
+ 𝑑𝑖𝑎𝑔(𝑃  (𝜙  𝛽(𝑥 , 𝑡)))𝜙  𝛽(𝑥 , 𝑡) 

= Π   (𝜙  𝛽(𝑥 , 𝑡)) + 𝑓𝛽    (𝑥 , 𝑡) + 𝑟 𝛽(𝑥 , 𝑡),   

(𝑥 , 𝑡) ∈ Ω ×  𝑡𝑗−1, 𝑡𝑗  , 

 𝜙  𝛽 𝑥 , 𝑡
𝑗  = 𝜙   𝑥 , 𝑡𝑗  ,  𝑥 ∈ Ω, 

or in the entry-wise form  

𝛾𝛽
𝜕𝜙𝛽𝑙 (𝑥 , 𝑡)

𝜕𝑡
+ 𝑃𝑙(𝜙  𝛽(𝑥 , 𝑡))𝜙𝛽𝑙 (𝑥 , 𝑡) 

= Π𝑙(𝜙  𝛽(𝑥 , 𝑡)) + 𝑓𝛽𝑙 (𝑥 , 𝑡) + 𝑟𝛽𝑙 (𝑥 , 𝑡), 

 (𝑥 , 𝑡) ∈ Ω ×  𝑡𝑗−1, 𝑡𝑗  ,  𝑙 = 1, . . . , 𝑁𝑐 . 

where 𝑃𝑙  is the destruction rate functional and Π𝑙  is the production functional. In[8,9,10] a family of 

unconditionally monotonic schemes have been built, from the first to fourth order of accuracy. One of the 

single stage schemes is equivalent to the known QSSR scheme[11]: 

𝜙𝛽𝑙
𝑗

(𝑝 ) = 𝐴𝑙(𝜙  
𝑗−1(𝑝 )) + 𝐵𝑙(𝜙  

𝑗−1(𝑝 ))𝑟𝛽𝑙
𝑗

(𝑝 ),  𝑙 = 1, . . . , 𝑁𝑐 ,  𝑝 ∈ 𝜔, 

𝐴𝑙(𝜙  
𝑗−1(𝑝 )) = 𝜙𝑙

𝑗−1
(𝑝 )𝑒−𝑃𝑙(𝜙

    𝑗−1(𝑝 ))𝜏  

+
1 − 𝑒−𝑃𝑙(𝜙

    𝑗−1(𝑝 ))𝜏

𝑃𝑙(𝜙  
𝑗−1(𝑝 ))𝜏

(Π𝑙(𝜙  
𝑗−1(𝑝 )) + 𝑓𝛽𝑙

𝑗
(𝑝 ))𝜏, 

𝐵𝑙(𝜙  
𝑗−1(𝑝 )) =

1 − 𝑒−𝑃𝑙(𝜙
    𝑗−1(𝑝 ))𝜏

𝑃𝑙(𝜙  
𝑗−1(𝑝 ))𝛥𝑡

𝜏. 

In vector form  

 𝜙  𝛽
𝑗

= 𝐴 (𝜙  𝑗−1) + 𝑑𝑖𝑎𝑔 𝐵  (𝜙  𝑗−1) 𝑟 𝛽
𝑗
. (8) 

 

 Next step approximation  
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 𝜙  𝑗 =  𝛾𝛽

4

𝛽=1

𝜙  𝛽 . (9) 

Advantage of the scheme is that individual processes for each dimension are evaluated independently (in parallel).  

2.2 Fine-grained data assimilation to the model 

 

In order to assimilate measurement data, we have to connect measured quantities with the model variables. This is 

formally done with the measurement operator 𝐻:  

 𝐼(𝑡) = 𝐻(𝑡, 𝜙  ∗(. , 𝑡)) + 𝜂 (𝑡),  𝑡 ∈  0, 𝑇 , (10) 

where 𝐼(𝑡) are measurement data, 𝜙  ∗(. , 𝑡) is ”true” (or exact) solution, 𝜂 (𝑡) is measurement data uncertainty.  

Data assimilation problem: Determine 𝜙(. , 𝑡) for 𝑡 > 𝑡∗ with (1)-(3), (10) and functions𝑓𝑎 , 𝑔𝑎 , 𝜙𝑎
0,  𝐼 defined on 

0 < 𝑡 ≤ 𝑡∗.  

In the work we consider 𝑁𝑀  in situ measurements at the domain grid points  (𝑥 𝑀
𝑚 , 𝑡𝑀

𝑚) 𝑚=1
𝑁𝑀 ⊂ 𝜔 × 𝜔𝑡 . Hence the m-th 

measurement is defined by the vector  

𝜉𝑚 =   𝑥 𝑀
𝑚 , 𝑡𝑀

𝑚 , 𝑙𝑀
𝑚 , 𝐼𝑚 , 𝜎𝑀

𝑚  ,  𝑚 = 1, . . . , 𝑁𝑀 . 

where 𝑥 𝑀
𝑚  is the spatial coordinate of the measurement, 𝑡𝑀

𝑚  is the moment of measurement, 𝑙𝑀
𝑚  is the number of 

substance measured, 𝐼𝑚  is the resulting concentration and 𝜎𝑀
𝑚  is the standard variation of the measurement. According to 

the data assimilation problem statement in a time-step 𝑡𝑗  we can use only measurements with 𝑡𝑀
𝑚 ≤ 𝑡𝑗 . Let us define the 

set of indices  

𝜃𝑗 =  1 ≤ 𝑚 ≤ 𝑁𝑀|𝑡𝑀
𝑚 = 𝑡𝑗  . 

The corresponding measurement operator 

𝐻𝑗𝜙  =  𝜙𝑙𝑀
𝑚 (𝑥 𝑀

𝑚 , 𝑡𝑀
𝑚) 

𝑚∈𝜃 𝑗
, 

𝐼𝑗 =  𝐼𝑚  𝑚∈𝜃 𝑗 ,  𝜎𝑗 =  𝜎𝑀
𝑚 

𝑚∈𝜃 𝑗 . 

A function 𝜂 (𝑡) is from a set of admissible values that describe error estimate for measurement data. The error 𝜂  is 

considered to be bounded in (weighted) Euclidean norm in the measurements space 

 𝜂 (𝑡) 𝜎 𝑗 =    
𝜂𝑚
𝜎𝑀
𝑚 

2

𝑚∈𝜃 𝑗

≤ 𝛿𝜂   . 

Variational data assimilation provides the solution to a data assimilation problem as the minimum of the functional with 

the constraints imposed by the model. The functional usually combines measurement data misfit with a norm of a 

control variable: 

𝐽𝑗 (𝜙  , 𝑟) =  𝐻𝑗𝜙  −𝐼𝑗 
𝜎 𝑗

2
+ 𝛼 𝑟  2, 

where  .   is the norm of a Hilbert space over 𝑄(𝜔)𝑁𝑐  and  . , .   is the corresponding inner product, 𝛼 is the 

regularization (assimilation parameter), which selects whether the solution will be closer to the direct model solution or 

will reproduce measurements better. In the paper on the time step 𝑡𝑗  we update only the control variable 𝑟 𝑗  for this time 

step. In the context of assimilating data to the split model we distinguish between the two approaches:  
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 In conventional approach[12,13]  one takes minimum of 𝐽𝑗 (𝜙  𝑗 , 𝑟 𝑗 ) as the solution with constraints (6), 

(8), (9) and 𝑟 𝛽 = 𝛾𝛽𝑟 , i.e., control functions of different splitting stages are connected.  

 In the fine-grained approach[14,15,16] the same data are assimilated to different parts of model and the 

results are coupled afterwards. We seek for the minimum of the functional 

𝐽𝑓
𝑗
  𝜙  𝛽

𝑗
, 𝑟 𝛽
𝑗
 
𝛽=1

4

 =  𝐽𝑗
4

𝛽=1

(𝜙  𝛽
𝑗
, 𝑟 𝛽
𝑗
) 

on constraints (6), (8) with the independent 𝑟 𝛽 .  

Using the method of Lagrange multipliers to solve minimization problem with equality constraints, we can construct 

augmented functional:  

𝐽 𝑓( 𝜙  𝛽
𝑗
, 𝑟 𝛽
𝑗
 
𝛽=1

4

) =  𝐽𝑗
4

𝛽=1

(𝜙  𝛽
𝑗
, 𝑟 𝛽
𝑗
) +   𝛾𝛽

𝜙  𝛽
𝑗
− 𝜙  𝑗−1

𝜏
− 𝐿𝛽𝜙  

𝑗 − 𝑟 𝛽
𝑗
− 𝑓 𝛽

𝑗
, 𝜓  𝛽

𝑗
 

3

𝛽=1

+ 

 𝜙  4
𝑗
− 𝐴 (𝜙  𝑗−1) − 𝑑𝑖𝑎𝑔 𝐵  (𝜙  𝑗−1) 𝑟 4

𝑗
, 𝜓  4

𝑗
  

We can see that components of 𝐽 𝑓( 𝜙  𝛽
𝑗
, 𝑟 𝛽
𝑗
 
𝛽=1

4

) corresponding to different 𝛽 are independent hence stationary point 

coordinates can be found independently.  

In order to present an algorithm of finding a stable point for the convection-diffusion part, we need further elaboration of 

operator 𝐿. Because of splitting, we can consider equations (6) independent for each coordinate line in both dimensions. 

The algorithm is the same for any coordinate line and here we will describe the algorithm applied to a grid line along X 

axis for a fixed Y and Z indices 1 ≤ 𝑞 ≤ 𝑁2, 1 ≤ 𝑝 ≤ 𝑁3 and l-th substance field. Let 𝜙𝑖
𝑗

=   𝜙𝛽 𝑙
 
𝑖𝑞𝑝

𝑗

, 𝑓𝑖
𝑗

=

  𝑓𝛽 𝑙
 
𝑖𝑞𝑝

𝑗

, 𝑟𝑖
𝑗

=   𝑟𝛽 𝑙
 
𝑖𝑞𝑝

𝑗

, 1 ≤ 𝑖 ≤ 𝑁𝛽 =:𝑁. For the sake of computational efficiency, we use approximations of (1) 

that produce tridiagonal matrix systems:  

 −𝑎𝑖𝜙𝑖+1
𝑗

+ 𝑏𝑖𝜙𝑖
𝑗

= 𝜙𝑖
𝑗−1

+ 𝜏𝑟𝑖
𝑗

+ 𝜏𝑓𝑖
𝑗
, 𝑖 = 0, (11) 

 −𝑎𝑖𝜙𝑖+1
𝑗

+ 𝑏𝑖𝜙𝑖
𝑗
− 𝑐𝑖𝜙𝑖−1

𝑗
= 𝜙𝑖

𝑗−1
+ 𝜏𝑟𝑖

𝑗
+ 𝜏𝑓𝑖

𝑗
,  𝑖 = 1,… , 𝑁 − 1, (12) 

 𝑏𝑖𝜙𝑖
𝑗
− 𝑐𝑖𝜙𝑖−1

𝑗
= 𝜙𝑖

𝑗−1
+ 𝜏𝑟𝑖

𝑗
+ 𝜏𝑓𝑖

𝑗
,  𝑖 = 𝑁. (13) 

   

In this term the assimilated state is the solution of the minimization problem  

𝐽(𝜙𝑗 , 𝑟𝑗 )𝜏 =    
𝜙𝑖
𝑗
− 𝐼𝑖

𝑗

𝜎𝑖
 

2𝑁

𝑖=0

𝑀𝑖
𝑗

+ 𝛼  𝑟𝑖
𝑗
 

2
𝑁

𝑖=0

 𝜏, 

WRT (11)-(13) where 𝑀𝑖
𝑗
 is the spatial-temporal measurement mask (i.e. 𝑀𝑖

𝑗
 equals 1 if 𝑥 𝑖𝑞 ∈ 𝑋𝑀

𝑗
 and 0 otherwise, in 

other words, it is equal to 1 if there is a measurement data at point 𝑥 𝑖𝑞 ), 𝐼𝑖
𝑗
 is measurement data at point 𝑥 𝑖𝑞  (if there is a 

measurement) and 𝜎𝑖  is measurement device standard deviation of the measurement in point 𝑥 𝑖𝑞  (if there is a 

measurement). Introducing Lagrange multipliers, we obtain augmented functional:  

𝐽 𝑓(𝜙𝑗 , 𝑟𝑗 , 𝜓𝑗 )𝜏 = 𝐽(𝜙𝑗 , 𝑟𝑗 )𝜏 +   −𝑎𝑖𝜙𝑖+1
𝑗

+ 𝑏𝑖𝜙𝑖
𝑗
− 𝑐𝑖𝜙𝑖−1

𝑗
− 𝜙𝑖

𝑗−1
− 𝜏𝑟𝑖

𝑗
− 𝜏𝑓𝑖

𝑗
 

𝑁

𝑖=0

𝜓𝑖
𝑗
. 

Taking the first variations of the augmented functional equal to zero, we obtain the following equations:  
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𝛻
𝜓𝑖
𝑗 𝐽 𝑓(𝜙𝑗 , 𝑟𝑗 , 𝜓𝑗 ) = 0, 

which is equivalent to (11)-(13).  

𝛻
𝜙𝑖
𝑗 𝐽 𝑓(𝜙𝑗 , 𝑟𝑗 , 𝜓𝑗 ) = 0 

is equivalent to  

−𝑐𝑖+1𝜓𝑖+1
𝑗

+ 𝑏𝑖𝜓𝑖
𝑗

= −
2𝑀𝑖

𝑗

𝜎𝑖
2  𝜙𝑖

𝑗
− 𝐼𝑖

𝑗
 𝜏,  𝑖 = 0, 

−𝑐𝑖+1𝜓𝑖+1
𝑗

+ 𝑏𝑖𝜓𝑖
𝑗
− 𝑎𝑖−1𝜓𝑖−1

𝑗
= −

2𝑀𝑖
𝑗

𝜎𝑖
2  𝜙𝑖

𝑗
− 𝐼𝑖

𝑗
 𝜏,  𝑖 = 1,… , 𝑁 − 1, 

𝑏𝑖𝜓𝑖
𝑗
− 𝑎𝑖−1𝜓𝑖−1

𝑗
= −

2𝑀𝑖
𝑗

𝜎𝑖
2  𝜙𝑖

𝑗
− 𝐼𝑖

𝑗
 𝜏,  𝑖 = 𝑁. 

and  

𝛻
𝑟𝑖
𝑗 𝐽 𝑓(𝜙𝑗 , 𝑟𝑗 , 𝜓𝑗 ) = 0 

is equivalent to  

2𝛼𝑟𝑖
𝑗
− 𝜓𝑖

𝑗
= 0,  𝑖 = 0,… , 𝑁. 

The systems obtained can be merged into tridiagonal matrix equation[14,15,16]  

−𝐴𝑖Φ𝑖+1
𝑗

+ 𝐵𝑖Φ𝑖
𝑗

= 𝐹𝑖
𝑗
, 𝑖 = 0, 

−𝐴𝑖Φ𝑖+1
𝑗

+ 𝐵𝑖Φ𝑖
𝑗
− 𝐶𝑖Φ𝑖−1

𝑗
= 𝐹𝑖

𝑗
, 𝑖 = 1, . . . , 𝑁 − 1, 

𝐵𝑖Φ𝑖
𝑗
− 𝐶𝑖Φ𝑖−1

𝑗
= 𝐹𝑖

𝑗
, 𝑖 = 𝑁, 

𝐴𝑖 =  
𝑎𝑖 0
0 𝑐𝑖+1

 ,  𝐵𝑖 =  

𝑏𝑖 −
𝜏

2𝛼
2𝑀𝑖𝜏

𝜎𝑖
2 𝑏𝑖

 ,  𝐶𝑖 =  
𝑐𝑖 0
0 𝑎𝑖−1

 , 

Φ𝑖
𝑗

=  
𝜙𝑖
𝑗

𝜓𝑖
𝑗
 ,  𝐹𝑖

𝑗+1
=  

𝜙𝑖
𝑗−1

+ 𝜏𝑓𝑖
𝑗

2𝑀𝑖𝜏

𝜎𝑖
2 𝐼𝑖

𝑗  , 

which is solved by the direct matrix sweep method.  

For the transformation step data assimilation the algorithm is the same for any grid point 𝑝 ∈ 𝜔. For brevity let 𝜙  𝑗 =

𝜙  4
𝑗
(𝑝 ) ∈  ℝ𝑁𝑐 , 𝑟 𝑗 = 𝑟 4

𝑗
(𝑝 ) ∈  ℝ𝑁𝑐 , 𝜓  𝑗 = 𝜓  4

𝑗
(𝑝 ) ∈  ℝ𝑁𝑐  and the result is sought as the stationary point of the augmented 

functional  

𝐽 (𝜙  𝑗 , 𝑟 𝑗 ) =   
𝜙𝑙
𝑗
− 𝐼𝑙

𝑗

𝜎𝑙
 

2𝑁𝑐

𝑙=1

𝑀𝑙
𝑗

+ 𝛼 (

𝑁𝑐

𝑙=1

𝑟𝑙
𝑗
)2 + 

  𝜙𝑙
𝑗
− 𝜙𝑙

𝑗−1
𝑒−𝑃𝑙(𝜙

    𝑗−1)Δ𝑡 −
1 − 𝑒−𝑃𝑙(𝜙

    𝑗−1)𝛥𝑡

𝑃𝑙(𝜙  
𝑗−1)𝛥𝑡

(Π𝑙(𝜙  
𝑗−1) + 𝑟𝑙

𝑗
)𝜏 

𝑁𝑐

𝑙=1

𝜓𝑙
𝑗
. 

Here 𝑀𝑙
𝑗
 is equal to 1 if l-th substance is measured at point 𝑝  at moment 𝑡𝑗  and zero otherwise. This minimum is given 

by the formula:  
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𝜙𝑙
𝑗

=
1

1 + 𝑍
𝜙𝑙
𝑗−1
𝑒−𝑃𝑙 𝜙

    𝑗−1 𝜏 +
1 − 𝑒−𝑃𝑙 𝜙

    𝑗−1 𝜏

𝑃𝑙 𝜙  
𝑗−1 𝜏

Π𝑙 𝜙  
𝑗−1 𝜏 +

𝑍

1 + 𝑍
𝐼𝑙
𝑗
,

𝑍 =
𝑀𝑙
𝑗

𝛼 𝜎𝑙 
2

1 − 𝑒−𝑃𝑙 𝜙
    𝑗−1 𝜏

𝑃𝑙 𝜙  
𝑗−1 𝜏

 

2

. 

As we can see, the resulting algorithm can be implemented without iterations. 

3. CHEMICAL DATA ASSIMILATION

3.1. Data assimilation scenario
In our numerical experiments we have done the following simplifications with respect to the data assimilation 

problem statement:  

 The model used is a 2D model. 

 Zero Neumann boundary conditions are used   

 Simple transformation mechanism (22 chemical reactions).  

 Transformation rates depend only on time of a day (important to account for pressure and 

temperature). 

 Available emission databases are needed (annual update is desirable for operational use). 

 A simplified diffusion coefficient is used.  

In the data assimilation, we have used the domain, which is defined by temporal and spatial grids: 

 Temporal grids: 

- Physical Time span: 1 July 2010 - 1 August 2010. 

- Temporal grid for transport processes  

𝐿𝑡 = 3720(𝑔𝑟𝑖𝑑𝑠) ∗ 720(𝑠) = 31𝑑𝑎𝑦. 

- Nested temporal grid for transformation processes is 100 times finer:

𝐿𝑡 = 372000(𝑔𝑟𝑖𝑑𝑠) ∗ 7.2(𝑠) = 31𝑑𝑎𝑦. 

 Spatial grids: (5 times coarser than Enviro-HIRLAM grid in each dimension):

𝐿𝑥 = 61(𝑔𝑟𝑖𝑑𝑠) ∗ 83(𝑘𝑚) = 5086𝑘𝑚, 
𝐿𝑦 = 61(𝑔𝑟𝑖𝑑𝑠) ∗ 81(𝑘𝑚) = 4962𝑘𝑚. 

Transport model parameters have been taken from the Enviro-HIRLAM[17] meteorological output. We have used 

wind speeds at 10m (U10,V10). Diffusion coefficient is evaluated from the wind speeds. Initial conditions have been 

taken from the MOZART[18] model output. 

Measurement data have been taken from AirBase - the European Air quality database[19]. We have used 64001 

𝑆𝑂2,𝑂3,𝑁𝑂2,𝐶𝑂,𝑁𝑂 measurements in total from 22 Scandinavian (DK, SE, FI, NO) mea

 

surement sites (Fig.1).

To study impact of both transformation and data assimilation processes, we have considered four configurations encoded 

by: 

 

 

 

 

DATrspT(rns): Transformations with data assimilation to transport processes. 

TrspTrns: Transformations with transport processes without data assimilation. 

DATrsp: Data assimilation to transport processes without transformation.  

Trsp: Transport processes (with neither transformation nor data assimilation).  
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To compare configurations, some part of measurements are assimilated the rest is used as reference. The choice 

of division criteria defines a numerical experiment. Results are compared with respect to correlation coefficient and 

RMSE.  

Figure 1. Computation domain and measurement sites locations (red dots). 

3.2 Temporal difference 

Data division criteria in the experiment: Assimilate data for t<T/2 and compare the model output to measurement data

for t>T/2.  

Figure 2. Correlation decrease with time after the last assimilated measurement. 
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Figure 3. RMSE increase with time after the last assimilated measurement. 

In Fig. 2 we presented results of comparison to time extending subsets of data from the reference set. From Fig. 2 we can 

conclude that the models with data assimilation (red and blue curves) provide better performance as the forecast tool 

compared to the direct models (Green and Magenta curves) for all the species except for . Based on this we can 

draw a general conclusion on the advantage of data assimilation in this case.  

As we can see from the figures, the model with chemistry provides slower degradation of the correlation coefficient for 

, while it is reverse for . For the rest of substances correlation degradation rate is almost identical.  

Looking at RMSE degradation in Fig. 3 we can confirm the conclusion of Data assimilation benefits. Comparing 

DATrsp and DATrspT, we can state that RMSE degradation rate (its increase) for DATrspT for all species is higher than 

for DATrsp. Probably it is because of more uncertain and nonlinear nature of DATrspT with chemical transformations.  

3.3 Species exclusion experiment 

 
Data division criteria in the experiment: Assimilate all the data except for data of the selected substance.  

Specie  Meas  DATrspTrns  Trsp  DATrsp  TrspTrns  

  1.  0.0420364  0.0417183  0.0417183  0.0420361  

  1.  0.370355  -0.068419  -0.068419  -0.0351235  

  1.  0.458236  0.0633213  0.0633213  -0.019848  

  1.  -0.0141014  -0.0160411  -0.0160411  -0.0141014  

  1.  0.119529  -0.058031  -0.058031  -0.0296002  

Table 1. Comparison of results for different excluded species 
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As we can see from Table 1, the best performance for DA with chemical transformations has been obtained for 

and . This can be explained by a strong link between the two species. In case the concentration of one of them is 

known, the other can be reconstructed. Less improvement has been obtained for  (below significant correlation level 

of 0.3). For  and  the results of all configurations have been almost the same. 

4. CONCLUSION

Combination of splitting and data assimilation schemes let us construct computationally effective algorithms for data 

assimilation of in situ measurements to convection-diffusion models.  

A complete data assimilation scenario has been compiled with meteorological data from Enviro-HIRLAM model, initial

concentration data from MOZART model and in situ measurement data from Airbase.  

We carried out series of numerical experiments in which we tested DA algorithms on different divisions of measurement 

data into assimilated and reference datasets. Data assimilation was able to improve modeling results with imperfect

(approximate) models and model parameters. The advantage of DA algorithm that includes chemical transformations 

was identified for 𝑂3 concentrations modeling. The experiments have shown a link between  and

concentrations with respect to data assimilation (concentrations of one of these substances can be reconstructed by 

assimilated concentrations of the other).  

Among the future steps to improve data assimilation results we can identify:

 Inclusion of more realistic boundary conditions is required.  

 Additional tuning is essential for coefficients of chemical reactions.  

 Quality control of chemical data measurements at stations is recommended for excluding of ”extreme” 

data. 

 Revision of implementation procedure/steps for chemical model is required. 

 Additional evaluation of monthly and seasonal variability is needed.  
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