High-temperature spectral dependences of ¹⁴N¹⁶O₂ in the range of pure rotational and vibrational-rotational transitions

O.K. Voitsekhovskaya^a, O.V. Egorov^{ab*}, D.E. Kashirskii^{ab}

^aDepartment of Quantum Electronics & Photonics, Radiophysics faculty, National Research Tomsk State University, Tomsk, Russia

^bAcademician V.D. Kuznetsov's Siberian Physical-Technical R&D Institute, Tomsk, Russia

ABSTRACT

The modelled absorption coefficients of ${}^{14}N^{16}O_2$ are performed in the range of pure rotational and vibrational-rotational transitions at T = 300 K and T = 1000 K temperatures. The calculations were carried out on the basis of the developed by authors high-temperature database of NO₂ spectral line parameters and database HITRAN2012. The dipole moment function parameters of NO₂ up to the second order inclusive were also determined.

Nitrogen dioxide, spin-rotation interaction, dipole moment, high-temperature spectrum

1. INTRODUCTION

Among asymmetric rotor molecules, there is a specific type with uncompensated electron spin (for example, NO_2 , CIO_2 , and NH_2). The dioxides of the nitrogen and chlorine effect on the Earth's ozone layer formation and on a quality of city air. On the other hand, the determination of the concentration and temperature of the exhausts is needed for a distant sounding of the jet engine operation. As the NO_2 spectrum is the part of the spectral signature of the aircraft exhaust emission [1], the calculation of the NO_2 spectral line parameters at high temperatures is the prospective task.

The spin-rotational interaction lead to appearance of doublet lines in NO₂ spectra, corresponding to positive and negative projections of the electron spin. The value of energy splitting decreases with increasing of the total rotational momentum (*N*). Moreover, the hyperfine structure is observed due to interaction between the magnetic fields of the nuclear and moving electron. At present, many theoretical and experimental works deal with NO₂ spectra at room temperature have been included in the database HITRAN2012 [2]. In this work, the spectral line parameters of NO₂ at temperature of 1000 K were calculated and the high temperature database in HITRAN's format for spectral interval of 0-4000 cm⁻¹ was created. The generated high-temperature database includes the following line parameters: line position (cm⁻¹), line intensity (cm⁻¹/(molecule·cm⁻²)), Einstein *A*-coefficient (s⁻¹), air-broadening coefficient (cm⁻¹·atm⁻¹), self- broadening coefficient (cm⁻¹·atm⁻¹), lower state energy (cm⁻¹), temperature coefficient, identification, and statistical weights of upper and lower states. The spectral dependencies of NO₂ at *T* = 300 K and *T* = 1000 K in infrared and microwave ranges were modelled on the basis of the developed database and HITRAN2012.

2. CALCULATION OF SPECTRAL LINE PARAMETERS

The conducted calculations were based on the empirical parameters of the effective spin-rotational Hamiltonian and resonance operators of the 21 vibrational states (Table 1). As the sources of the parameters, the more recent experimental works were used, where the full diagonalization method were applied. To validate the calculated energies the comparison with HITRAN's line positions was carried out. Since the hyperfine structure is not examined here, the spin-rotational line positions of the ground, (010)-(010), and v_2 bands were obtained from the line positions and low state energies, included in HITRAN. Generally, the good agreement between the two results is observed (average deviation ~ 0.01 cm⁻¹). The maximum deviations (~0.5 cm⁻¹) occur for line positions with high K_a values, exceeding the corresponding maximum quantum numbers of the measuring line positions (Table 1). Thus, for such line positions there are only theoretical results, which differ when different sets of the parameters are used.

*egorovolegv@mail.ru

21st International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, edited by G. G. Matvienko, O. A. Romanovskii, Proc. of SPIE Vol. 9680, 968008 © 2015 SPIE · CCC code: 0277-786X/15/\$18 · doi: 10.1117/12.2205508

$v_1v_2v_3$	J ^{max}	K _a ^{max}	Ref.	Range (cm ⁻¹)*	$v_1v_2v_3$	J ^{max}	K _a ^{max}	Ref.	Range (cm ⁻¹)*
000	54	14	[3]	8-200	040	60	5		
010	53	11	[4]	570-960	021	60	6	[10]	3000-3400
100	56	15			002	60	8		
020	62	6	[5]	1200-1850	210	**	**		
001	81	15			130	**	**	[11]	2500-3800
110	61	10	[6]	1900-2300	111	55	12		
030	**	**	[7]	2270-2400	220	**	**		
011	63	9	[/]		201	55	11	[12]	4130-4200
200	57	10	[8]	2520-2795	022	**	**	[12]	4690-4780
120	**	**	[0]	2630-3510	003	57	10		
101	55	10	[9]						

Table 1. The sources of the spin-rotational parameters of NO₂ used in this work.

*the boundaries of spectral range correspond to experimental conditions of the referenced work;

**no experimental data were observed. The set of parameters was extrapolated from the constants of other states (see details in the referenced work).

Table 2. The integrated intensities (S_v) and vibrational transition moments (${}^{\alpha}\tilde{\mu}^{VV'}$) of NO₂ (T = 296 K).

Band	$S_v, \mathrm{cm}^{-1}/(\mathrm{molecule}\cdot\mathrm{cm}^{-2})$	$^{\alpha} \tilde{\mu}^{VV'} \times 10^2$, Debye		
ν_1	$0.705 \cdot 10^{-19}$ [13]	-0.6735 ± 0.0041 [13]; -0.6652 ± 0.0098 [14]		
v ₂	$0.542 \cdot 10^{-18}$ [15]	-4.272 ± 0.26 [15]		
V ₃	0.5688 10-16 [13]	29.561 ± 0.021 [13]; -29.57 ± 0.60 [16]		
$2v_1$	-	-		
$2v_2^*$	$0.652 \cdot 10^{-19}$ [13]	0.0 [13]		
$2v_3$	$0.38 \cdot 10^{-20}$ [10]	0.1145 ± 0.0026 [10]		
$v_1 + v_2$	0.164 10 ⁻¹⁹ [6]	0.4035(25) [6]		
$v_1 + v_3$	$0.29 \cdot 10^{-17}$ [9]	4.9689 ± 0.0028 [9]		
$v_2 + v_3$	0.853 10 ⁻²⁰ [7]	0.3219 ± 0.0015 [7]		

*band intensity was obtained from intensities of $K_a = 0 - 2$ and $K_a = 5 \leftarrow 6$ series in Ref [13].

Table 3. The parameters of the NO₂ dipole moment function.

	Value×10 ² , Debye					
Parameter	Other works	This work				
	Other works	Set I	Set II			
$^{x}\mu_{1}$	-0.940 ± 0.014 [14]	-0.9525	-0.9408			
$^{x}\mu_{2}$	-6.04 ± 0.37 [15]	-6.0415	-6.0415			
$^{z}\mu_{3}$	-41.82 ± 0.85 [16]	41.8055	-41.8183			
$^{x}\mu_{11}$	-	-	-			
$^{x}\mu_{12}$	-	0.8732	0.8739			
$^{x}\mu_{22}$	-	-	-			
$^{z}\mu_{13}$	-	18.6463	1.2266			
^z µ ₂₃	-	0.7790	0.5085			
^x µ ₃₃	-	0.0426	0.0440			

The line positions and intensities were calculated, taking into account spin-rotational and resonance interactions. Besides of the doublet lines, the spectral lines, produced by intercombination transitions were considered. The dipole moment function parameters up to the second order inclusive were determined to obtain the probability of the vibrational–rotational transitions. The inverse problem was solved on the basis of the vibrational transition moments, taken from the literature (Table 2). As there are two variants of the sing for v_3 band vibrational transition moment (${}^{z}\tilde{\mu}^{000,001}$ in Table 2),

the two sets of the parameters are determined (Set I and Set II in Table 3). In this work, the calculations were carried out with the Set I parameters for which the vibrational transition moments from the latest work were applied.

Finally, the spectral line parameters of NO₂ were calculated at T = 1000 K with the cutoff of 10^{-35} cm⁻¹/(molecule·cm⁻²). The high-temperature database was formed in the HITRAN's format. The developed database includes the vibrational-rotational transitions of the 100 bands, from which the 11 bands are presented in the HITRAN2012 database. The absorption coefficients, modelled by line-by-line method, using the "TRAVA" software [17], demonstrate a considerable increasing of the absorption in the wings at T = 1000 K, if the created in this work database is applied (Fig. 1).

Since there are no experimental data for NO₂ spectra at high-temperatures, the comparisons with measuring results at room conditions are carried out. In Ref. [18] the measured absorption spectra of some engine exhausts, including NO₂, are shown. On the Fig.2 the absorption coefficient, measured at pressure of 0.93758 atm (95 kPa) and T = 295 K, is compared with the theoretical dependences. A good agreement between this work results and the absorption coefficient, calculated using the HITRAN2012 database is observed.

Figure 1. The absorption coefficient of NO₂ ($\Delta v = 1 \text{ cm}^{-1}$, resolution = 1 cm⁻¹), calculated at T = 1000 K in the range of (a) - pure rotational transitions, (b) – v_2 , (c) – v_3 , and (d) – v_1+v_3 bands: I – HITRAN2012; 2 – this work; 3 – HITRAN2012 at T = 300 K (all curves in a logarithmic scale).

Figure 2. The absorption coefficient of NO₂, modelled in the range of 1550-1660 cm⁻¹ at T = 295 K: 1 - this work 2 - HITRAN2012, and 3 - the measured result from Ref. [18].

In Ref. [19] the NO₂ absorption coefficients were measured by means of ${}^{12}C^{16}O$ and ${}^{13}C^{16}O$ lasers at room temperature (T = 300 K). The examples of the calculated absorption coefficients in comparison with experimental values in Table 4 are shown. This work results agree well with HITRAN data. Due to poor accuracy of the theoretical laser line, presented in Ref. [19], the discrepancies between experimental and theoretical values only in some cases fall into experimental uncertainty, estimated of 10 %. Therefore, a small changing the line position value (column *b* in Table 4) results in the absorption coefficient, satisfying experimental uncertainty. However, for some lasing lines, for example, 1637.142 cm⁻¹ ($P_{19-18}(12)$) and 1655.761 cm⁻¹ ($P_{17-16}(13)$), the measured values are not founded on the theoretical curves.

L	asing line (cn	n ⁻¹)	Absorption coefficient, cm ⁻¹ .atm ⁻¹			
$^{12}C^{16}O$	a	b	[19]	This work	HITRAN2012	
$P_{20-19}(12)$	1612.486	1612.335	13	16.973^a 13.066^b	17.246^a 13.202^b	
$P_{19-18}(18)$	1614.912		15	14.855 ^{<i>a</i>}	14.913 ^{<i>a</i>}	
$P_{19-18}(17)$	1618.700	1618.960	18	12.861^a 18.014^b	12.655^a 17.539^b	
$P_{19-18}(12)$	1637.142	-	10	11.303 ^{<i>a</i>}	11.376 ^{<i>a</i>}	
$P_{18-17}(17)$	1643.265	1643.030	11	3.419^a 10.971 ^b	3.494^a 11.108 ^b	
$P_{18-17}(16)$	1647.054		1.5	1.405^{a}	1.532^{a}	
$P_{18-17}(15)$	1650.811	1650.782	1.5	1.184^a 1.506^b	1.236^a 1.526^b	
¹³ C ¹⁶ O						
$P_{18-17}(18)$	1614.052		10	10.138 ^{<i>a</i>}	10.263 ^{<i>a</i>}	
$P_{17-16}(19)$	1633.910	1633.944	26	20.823^a 26.046^b	20.937^a 26.050^b	
$P_{17-16}(18)$	1637.625	-	51	37.881 ^a	37.763 ^{<i>a</i>}	
$P_{17-16}(17)$	1641.313	1641.352	27	19.584^a 24.458^b	19.608^a 24.260^b	
$P_{17-16}(15)$	1648.601		4	4.019^{a}	3.823^{a}	
$P_{17-16}(14)$	1652.192	1652.012	1	1.524^a 1.002^b	1.522^a 1.031^b	
$P_{17-16}(13)$	1655.761	_	1.5	0.174^{a}	0.172^{a}	

Table 4. The examples of the NO₂ calculated absorption coefficients in comparison with experimental values from Ref. [19]

a – the lasing lines, taken from Ref. [19];

b – the lasing lines, obtained in this work, from the analysis of the theoretical spectral dependences of NO₂ absorption coefficient.

3. CONCLUSION

The line positions and intensities of ¹⁴N¹⁶O₂ were calculated at T = 1000 K with the cutoff of 10⁻³⁵ cm⁻¹/(molecule cm⁻²) on the basis of the empirical parameters of the effective spin-rotational Hamiltonian and resonance operators, taken from the literature. The dipole moment function parameters up to the second order inclusive were determined to obtain the probability of the vibrational–rotational transitions. The modelled NO₂ absorption coefficients, performed in the range of pure rotational and vibrational–rotational transitions, demonstrate a considerable increasing the wing absorption at T = 1000 K, if the created in this work database is applied.

4. ACKNOWLEDGMENTS

This study (research grant No 8.2.10.2015) was supported by The Tomsk State University Academic D.I. Mendeleev Fund Program in 2015, the Russian Foundation for Basic Research (Grant numbers 15-01-03176 and 13-07-98027), grant of the President of the Russian Federation (CII-1766.2015.5), and by the nonprofit "Dynasty" Foundation.

REFERENCES

- Heland, J., Schäfer, K., "Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy," Applied Optics 36(21), 4922-4931 (1997).
- [2] Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., et al., "The HITRAN2012 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 130, 4-50 (2013).
- [3] Semmoud-Monnanteuil, N., Colmont, J. M., Perrin, A., Flaud, J. M., Camy-Peyret, C., "New Measurements in the Millimeter-Wave Spectrum of ¹⁴N¹⁶O₂," J. Mol. Spectrosc. 134, 176-182 (1989).
- [4] Perrin, A., Camy-Peyret, C., Flaud, J. M., Kauppinen, J., "The v₂ Band of ¹⁴N¹⁶O₂ Spin-Rotation Perturbations in the (010) State," J. Mol. Spectrosc. 130, 168-182 (1988).
- [5] Perrin, A., Flaud, J. M., Camy-Peyret, C., Goldman, A., Murcray, F. J., Blatherwick, R. D., Rinsland, C. P., "The v₂ and 2v₂-v₂ bands of ¹⁴N¹⁶O₂: Electron Spin-Rotation and Hyperfine Contact Resonances in the (010) vibrational state," J. Mol. Spectrosc. 160, 456-463 (1993).
- [6] Perrin, A., Flaud, J. M., Camy-Peyret, C., N'Gom, A., M'Biake, R. M., Gbaguidi, H., et al., "The v₁+v₂ band of ¹⁴N¹⁶O₂," J. Mol. Spectrosc. 171, 354-357 (1995).
- [7] Perrin, A., Flaud, J. M., Camy-Peyret, C., Hurtmans, D., Herman, M., Guelachvili, G., "The v₂+v₃ and v₂+v₃-v₂ Bands of ¹⁴N¹⁶O₂: Line Positions and Intensities," J. Mol. Spectrosc. 168, 54-66 (1994).
- [8] Cabana, A., Laurin, M., Lafferty, W. J., Sams, R. L. "High resolution Infrared Spectra of the v₂ and 2v₁ Bands of ¹⁴N¹⁶O₂," Can. J. Phys. 53, 1902-1926 (1975).
- [9] Mandin, J.Y., Dana, V., Perrin, A., Flaud, J.M., Camy-Peyret, C., Regalia, L., et al., "The {v₁+2v₂, v₁+v₃} Bands of ¹⁴N¹⁶O₂: Line Positions and Intensities; Line Intensities in the v₁+v₂+v₃-v₂ Hot Band," J. Mol. Spectrosc. 181, 379-388 (1997).
- [10] Perrin, A., Flaud, J. M., Camy-Peyret, C., Hurtmans, D., Herman, M., "The {2v₃, 4v₂, 2v₂+v₃} and 2v₃-v₃ Bands of ¹⁴N¹⁶O₂: Line Positions and Intensities," J. Mol. Spectrosc. 177, 58-65 (1996).
- [11] Gueye, F., Kwabia Tchana, F., Landsheere, X., Perrin, A., "New line positions analysis of the v₁+v₂+v₃ band of NO₂ at 3637.848 cm⁻¹," J. Quant. Spectrosc. Radiat. Transfer 138, 60-69 (2014).
- [12] Stephen, T. M., Goldman, A., Perrin, A., Flaud, J. M., Keller, F., Rinsland, C. P., "New High-Resolution Analysis of the 3v₃ and 2v₁+v₃ Bands of Nitrogen Dioxide (NO₂) by Fourier Transform Spectroscopy," J. Mol. Spectrosc. 201, 134-142 (2000).
- [13] Perrin, A., Flaud, J. M., Camy-Peyret, C., Vasserot, A. M., Guelachvili, G., Goldman, A., et al., "The v₁, 2v₂, and v₃ Interacting Bands of ¹⁴N¹⁶O₂: Line Positions and Intensities," J. Mol. Spectrosc. 154, 391-406 (1992).
- [14] Perrin, A., Mandin, J. Y., Camy-Peyret, C., Flaud, J. M., Chevillard, J. P., Guelachvili, G., "The v₁ Band of ¹⁴N¹⁶O₂: Line Positions and Intensities," J. Mol. Spectrosc. 103, 417-435 (1984).
- [15] Malathy Devi, V., Das, P. P., Bano, A., Narahari Rao, K., Flaud, J. M., Camy-Peyret, C., et al., "Diode Laser Measurements of Intensities, N₂-Broadening, and Self-Broadening Coefficient of Lines of the v₂ Bands of ¹⁴N¹⁶O₂," J. Mol. Spectrosc. 88, 251-258 (1981).
- [16] Camy-Peyret, C., Flaud, J. M., Perrin, A., Narahari Rao, K., "Improved Line Parameters for the v₃ and v₂+v₃-v₂ Bands of ¹⁴N¹⁶O₂," J. Mol. Spectrosc. 95, 72-79 (1982).

- [17] Voitsekhovskaya, O. K., Voitsekhovskii, A. V., Egorov, O. V., Kashirskii, D. E., "Optical-physical methods of remote diagnostics of high-temperature gas media," Proc. SPIE 9292, 929211 (2014).
- [18] Bernegger, S., Sigrist, M.W., "CO-laser photoacoustic spectroscopy of gases and vapors for trace gas analysis," Final Report SNF/NFP 14, Project No 4.684.0.83.14, 156 p. (1988).
- [19] Gerasimchuk, A., Kornilov, S., Osreikovskij, I., Protsenko, E., Tymper, S., "Selective Optothermal Detection of NO₂ and H₂O with Frequency-Tuned CO Waveguide Laser," Appl. Phys. B. 55, 503-508 (1992).