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ABSTRACT  

An algorithm for atmospheric correction of satellite images combining the consideration of the main factors influencing 
imaging and a number of techniques allowing the computational time to be decreased considerably is analyzed. On the 
example of a series of images of the South of the Tomsk Region recorded from 7/13/2013 to 7/17/2013 with the low 
atmospheric turbidity, a comparison of the results of atmospheric correction using the suggested algorithm with the 
results obtained using the NASA MOD09 algorithm is performed. The correction error is estimated under assumption of 
a linear change of the reflection coefficient from image to image. Our comparison demonstrates that the results of 
correction differ within the correction error.  
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1. INTRODUCTION  
Information on the reflection coefficient of the Earth surface in the visible and near-IR ranges has a wide application 
when solving such problems as estimation of the state of forests and farmlands, extraction of mineral resources, climatic 
problems, etc. [1–4]. At present the application of passive satellite systems is one of the main methods of obtaining this 
information. However, their application has specificity. The atmosphere being the turbid medium influences on the solar 
radiation, and hence the received signal comprised not only light fluxes reflected from the observed regions of the Earth 
surface, but also background scattered radiation. For high atmospheric turbidity (fogs, aerosol smokes, etc.), the 
contribution of background radiation can be considerable or even exceed the useful signal. Elimination of this 
component from the received signal is called atmospheric correction. Without atmospheric correction, the reconstructed 
Earth surface reflection coefficient can have considerable error. 

The problem of atmospheric correction of satellite images has been solved for several decades. At present there are 
several approaches to the solution of this problem, for example [5–10]. However, each of the existing approaches has 
restrictions. To take into account all factors influencing on imaging in the visible and UV ranges, the atmospheric 
correction algorithm was developed described in [11–13]. In the present work, the errors in reconstruction of the 
reflection coefficient by the suggested algorithm and by the standard NASA MOD09 algorithm [6] are considered. A 
comparison is performed for images of the test region of the South of the Tomsk Region 100 × 100 km for the period 
from 7/13/2013 to 7/17/2013. 

Problem formulation and sources of initial data 

The problem of reconstruction of distribution of the Earth surface reflection coefficients is formulated as follows 
(Fig. 1). The spherical atmosphere – Earth surface system is considered. The model of the stratified atmosphere is 
assigned by a set of spherical homogeneous layers. The Earth surface represents the Lambertian surface with unknown 
distribution of the reflection coefficient. The passive satellite system oriented in the direction ωd is situated at the altitude 
hd from the surface. Observations of the Earth surface within the preset field-of-view angle are performed. Let the spatial 
resolution of the optical receiver forming the image be constant in the observation region. A parallel flux of sunlight is 
incident on the upper atmospheric boundary in the direction ωsun. It is required, knowing the optical atmospheric 
parameters and the signal intensity measured by the satellite system, to reconstruct the distribution of the reflection 
coefficient over the observed Earth surface region. 
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As the initial intensities measured by the satellite system, the data of the MODIS device with spatial resolution of 500 m 
in the nadir were taken [14]. The aerosol optical thickness (АОТ) of the atmosphere measured by the AERONET system 
[15] and the satellite data on the temperature and pressure profiles [14] obtained using the MODIS device were taken as 
the initial optical model of the atmosphere. The atmospheric correction was carried out only for cloudless fragments. The 
cloud fragments were eliminated from calculations using the cloud mask [14] obtained using the MODIS device. 

 
Figure 1 – Geometry of the problem being solved.  

Knowing the АОТ of the Earth surface fragment for which the atmospheric correction was performed at the moment of 
satellite measurements, among the LOWTRAN-7 models [16] we took the model that had the closest АОТ value. The 
aerosol parameters of the atmosphere were assigned according to this model. The vertical profile of the molecular 
scattering coefficient was calculated from the formula [17] 
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where ms ,σ  is the molecular scattering coefficient at altitude z, in km–1, ( )0
,msσ  is the molecular scattering coefficient at 

the wavelength λ, temperature T0 = 288.15 K, and pressure P0 = 1013.25 mb; P and T are the air temperature and 
pressure at the given altitude retrieved from the satellite data. 

The vertical profile of the molecular absorption coefficient was chosen from the LOWTRAN-7 models. 

Atmospheric correction algorithm 

The algorithm for the atmospheric correction and the program complex developed on its basis were considered in [11–
13]. The algorithm was based on the radiative transfer equation. The signal received by the satellite system (Fig.  1) 
comprised solar haze radiation Isun – solar radiation scattered in the atmosphere and non-interacted with the Earth 
surface, unscattered radiation I0 reflected from the observed region of the Earth surface, and surface light haze radiation 
Isurf – scattered radiation reflected from the Earth surface. Thus, for each observation point on the surface we can write 
[11] 
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Here rsurf  specifies the distribution of the reflection coefficient over the Earth surface, sumE  is the distribution of the 
total irradiance over the Earth surface, τ is the optical length of the path from the point on the surface to the satellite 
system, ( )ww yx ,  are surface coordinates of a certain observation point, h(•) is the point spread function (PSF) of the 

channel of forming the adjacency effect, S denotes the entire spherical Earth surface, ( )ww yx ′′ ,  are the surface 
coordinates of the points over which integration is conducted, μ is the cosine of the angle between the direction to the 
receiver and the vertical at the observation point. 

Based on the analysis performed in [11], the total irradiance of the Earth surface is formed mainly by directly transmitted 
and diffuse solar radiation components as well as by singly scattered radiation. Therefore, the total irradiance under 
assumption that the directly transmitted and diffuse solar radiation change slightly is approximately equal to 

                                     ( ) ( ) ( ) ww
S

wwwwwwsurfwwsum ydxdyyxxhyxrEEyxE ′′−′−′′′+≈ ∫∫ ,,, 100 ,                              (5) 

where E0 is the Earth irradiance by direct and diffuse solar radiation and h1(•) is the PSF of the channel of forming the 
additional irradiance of the Earth surface due to re-reflection. 

Then under assumption that the reflection coefficient does not change within the pixel, from Eqs. (2)–(5) we derive the 
system of linear equations for sumsurf ErQ =  [11]: 
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where Hk,i  is the integral PSF of forming the adjacency effect over the area of the k-th pixel during observation of the i-
th pixel. 

Knowing Q, the reflection coefficient surfr~  with allowance for the first order re-reflection is determined by the nonlinear 
system of the form [11]: 
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where Pl is the integral PSF of the channel of forming additional irradiance of the l-th pixel surface. 

The other multiplicities of re-reflection can be taken into account using the formula [11]: 
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where surfr  is the reflection coefficient reconstructed with allowance for all multiplicities of re-reflection, 1γ  describes 
the contribution of singly re-reflected radiation to the Earth surface irradiance in the homogeneous case. 
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To obtain the solution, it is necessary to calculate sunI , 0E , H , P , and 1γ . These quantities were calculated by the 
Monte Carlo method [18–20]. The above-described algorithms were tested in [11, 20]. In [11–13], a number of 
techniques were suggested that accelerated obtaining of results. 

The first of them is the use of the approximation formulas for the solar haze intensity [11–13]. This formula allows 
calculation to be performed only for a set of central points rather than for each pixel and to reconstruct the results at all 
intermediate points.  

The second technique consists in the construction of isoplanarity zones [11–13]. The matter is that the function h(•) 
changes from one pixel to another, but it is possible to select the isoplanarity zones where the PSF of the channel of 
forming the adjacency effect can be considered approximately constant; then it is possible to consider that the function 
h1(•) is independent of the arrangement of the pixel relative to the receiving system.  

The third technique is the introduction of radii of the adjacency effect and re-reflection formation [11–13]. The radius of 
the adjacency effect is the radius of the area on the Earth surface within which Isurf is mainly formed. The boundary of 
this area was chosen so that the error in determining Q with allowance for the surface haze did not exceed the preset 
level (in calculations, it was 5 %). The expression for Q is given, for example, in [11]. The radius of forming the regions 
with additional irradiance E1 caused by the process of re-reflection is determined analogously. The boundary of this area 
was chosen so that the error in determining the reflection coefficient with allowance for the additional irradiance did not 
exceed the preset value (in calculations it was 5 %). The expression for this radius is given, for example, in [11]. 

Closed calculation performed in [11] demonstrated that the use of the suggested techniques decreased the computational 
time 6 folds. Test comparisons also demonstrated that the adjacency effect and re-reflections in the visible range must be 
taken into account, especially for the highly turbid atmosphere. 

Algorithm MOD09  

The algorithm MOD09, according to [6], consists of several stages. In the beginning, the concentration of water vapor 
and the vertical profiles of the temperature and pressure are determined from the data of satellite AOT measurements as 
well as the model of the atmosphere is chosen based on measurements of the light intensity in several spectral ranges 
among the previously constructed models whose parameters are closest to the conditions of imaging. For this optical 
model, the problem of atmospheric correction is solved for each observed pixel separately under assumption that the 
surface is homogeneous. Then for each observed pixel the average reflection coefficient is calculated based on its values 
in the neighboring pixels. After that the correction procedure is performed considering the inhomogeneity of the 
reflection coefficient on the Earth surface. This correction is performed under assumption of isoplanarity of the entire 
image and a number of other assumptions which are not fulfilled for the highly turbid atmosphere. Results of 
atmospheric correction by the algorithm MOD09 in the electronic form can be found, for example, in [14]. 

Technique of estimating the error in atmospheric correction 

In [12–13, 21] the reflection coefficients were reconstructed using the developed program complex. The estimation of 
the error in atmospheric correction is complicated by the fact that the true average value of the reflection coefficient for 
the observed fragment is not known. To bypass this problem, the error was estimated in [21] under assumption that the 
reflection coefficient for the considered time interval changes slightly, and it is possible to set it constant. In [7] a more 
successful approach was used. It was assumed that between measurements no considerable change of the reflection 
coefficient was observed, and it could be considered approximately linear. Then, having reflection coefficients for the 
(i – 1)-th and (i + 1)-th measurements, the reflection coefficient for the i-th measurement can be estimated from the 
formula [7]: 
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where ti is the time of the i-th measurement, *
,isurfr  is the approximate estimate of the reflection coefficient from its 

values the day before and the day later, isurfr ,  is the reflection coefficient of the Earth surface reconstructed using the 
correction algorithm for the i-th day. 

Then σ  determined from the formula [7] 

Proc. of SPIE Vol. 9680  96801Q-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/23/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 

              
( )

∑

∑
−

= −+

−

= −+

−

−
−

= 1

2 11

1

2

2
,

*
,

11

1

1

N

i ii

N

i
isurfisurf

ii

tt

rr
ttσ ,                                                    (10) 

where N is the number of the examined images, can be considered as an estimate of the error in reconstructing the 
reflection coefficient for the given fragment of the Earth surface. It should be noted that satellite images at different 
times differed by spatial resolutions. To compare them, statistical data were averaged over the grid 1 km in latitude and 
longitude. 

Estimation of the error in atmospheric correction 

Let us consider the estimated error in atmospheric correction using the suggested algorithm and the algorithm MOD09. 
For an example, the fragment to the south of the Tomsk Region with coordinates 55.95–56.85° N and 84.05–84.95° E 
(100 × 100 km) was chosen for the period from 7/13/2013 to 7/17/2013 registered at wavelengths of 0.422, 0.469, 0.555, 
0.645, and 1.24 μm. These days were chosen because the cloud cover index for them was less than 20 % and the data on 
the aerosol optical thickness (АОТ) were available from the Station Tomsk-22 (56° N  and 84° E) of the Aeronet 
System. The average error estimated by formula (10) for the examined fragment and the reflection coefficients for 5 
MODIS channels retrieved by two algorithms are presented in Table 1. Figure 2 shows the average reflection coefficients 
for the examined images with allowance for averσ . Here averσ  and aversurfr ,  at λ = 0.412 μm were not calculated by the 

algorithm MOD09, because for several images this algorithm gave non-physical results ( surfr  > 1). As a whole, the 
comparison of the average values and the errors in estimating the reflection coefficients by the two algorithms 
demonstrated that the error of the algorithm MOD09 was slightly smaller. The differences in the average values were 
within the limits of the average variances. The results obtained by the suggested algorithm were slightly greater. This 
was most likely due to different atmospheric models. The variance for channel 5 was much smaller than the average. For 
channels 1, 3, and 4 the variance was only 2–3 times smaller than the average value of the reflection coefficient. For 
channel 8, the variance exceeded the average value of the reflection coefficient. Hence, the correction algorithm for this 
channel yielded unreliable results. The sources of high errors are the simplified model of the medium and the non-
Lambertian reflecting surface [22].  

 

 Table 1. Average reflection coefficients aversurfr ,  and error averσ  estimated by the suggested algorithm and the algorithm MOD09. 

Calculations were performed for 5 MODIS channels and 6 images of the test region. 

Serial number 

of the channel 

Wavelength, μm Suggested algorithm Algorithm MOD09 

aversurfr ,  averσ  aversurfr ,  averσ  

1 0.645 3.32E-02 1.40E-02 2.65E-02 1.32E-02 

3 0.469 2.36E-02 1.00E-02 1.43E-02 7.11E-03 

4 0.555 5.04E-02 2.19E-02 4.55E-02 2.12E-02 

5 1.24 0.309 7.62E-02 0.272 6.48E-02 

8 0.412 0.055491 8.03E-02 – – 
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Fig. 2 – Comparison of the reflection coefficients averaged over the entire test region for the period from 7/13/2013 to 7/17/2013 
calculated by two algorithms taking into account the average variance averσ . 

Conclusions 

The comparison of the suggested algorithm with the algorithm MOD09 demonstrated that the algorithm MOD09 was 
slightly better for low atmospheric turbidity. However, the difference between the results of algorithmic implementation 
was within the computational error. In future we plan to compare results of application of these two algorithms to images 
of the highly turbid atmosphere where the processes not considered by the algorithm MOD09 will give considerable 
contribution to the results. We also plan to improve the models of the medium used for correction in our future work and 
to consider the non-Lambertian surface. 
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