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ABSTRACT  

For atmospheric correction of satellite images, the problem is formulated to estimate the distance from a cloud at which 
its influence on the satellite image of the Earth surface can be neglected. The Monte Carlo method of conjugate 
trajectories is used. The gap radius in the field of continuous cloudiness at which the influence of the cloudy medium on 
the received signal intensity does not exceed 10 % is obtained. It is revealed that for the Lambert law of radiation 
reflection from the Earth surface, the curve of the dependence of the received signal intensity on the gap radius has a 
maximum caused by the opposite influence of light scattering by the cloudy medium and radiation reflection by the 
surface (adjacency effect). To further generalize the examined problem to a stochastic cloud field, the method of direct 
simulation of photon trajectories in a stochastic medium is compared with G. A. Titov’s method of closed equations in 
the gap vicinity. A comparison is carried out with the model of the stochastic medium in the form of a cloud field of 
constant geometric thickness consisting of rectangular clouds whose boundaries are determined by the stationary 
Poisson flow of points. It is demonstrated that results of calculations can differ at most by 20‒30 %; however, in some 
cases (for some sets of initial data), the difference for the entire region of cloud cover indices is within 7 %. 
Keywords: remote sensing, Monte Carlo method, atmospheric correction, cloud field, statistical averaging of the 
radiative transfer equation, G.A.Titov’s method of closed equations 

1. INTRODUCTION  
Observation of the Earth surface from space is an important part of monitoring of the state of agricultural vegetation and 
pastures, investigation of humidity and pollution of soils, control over landslide processes and deformations of the 
landscape, forest and peat fires, detection of ecological changes (including those in the atmosphere), etc. [1‒9]. 
In all these cases without exception it should be born in mind that observations are carried out through the atmosphere 
that distorts the initial signal, often in the presence of considerable aerosol pollution or cloudiness. Therefore, the 
estimation of the influence of the atmosphere, in particular, of the presence of cloudiness, on the received light fluxes 
acquires great significance. 
In this case, the problem of atmospheric correction of satellite images is the procedure necessary for reliable 
interpretation of satellite data. In the presence of optically dense cloud fields, the problem of atmospheric correction 
consists in elimination of these regions from the consideration, that is, construction of a cloud mask [10]. In the 
presence of translucent or broken cloudiness, the problem of atmospheric correction consists in taking into account the 
influence of these optical-geometrical conditions of observation. During observation of cloudless regions near cloud 
fields and in gaps between clouds, the cloud field influences the image, for example, of the Earth surface underlying the 
cloudless region. The present work is devoted to a solution of the last problem; moreover, we here focus on the problem 
of determining the distance from the cloud at which its influence on the satellite image can be neglected. 

2. OBSERVATION THROUGH A GAP IN A HOMOGENEOUS CLOUD FIELD 
The following problem formulation is suggested (Figs. 1 and 2). A homogeneous cloud layer is located over the flat 
Earth surface at altitudes in the range from hmin to hmax. In the cloud layer, there is a cylindrical gap. A satellite system 
operating at the wavelength λ observes through the gap at the zenith angle θrec to the vertical an element of the Earth 
surface situated under the center of the gap. The parallel flux of sun rays is incident on the upper atmospheric boundary 
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The Earth surface was considered absolutely absorbing. All cloud parameters and observation geometry (except for the 
geometry of the cloud field) remained the same as in Section 1. The cloudless atmosphere was considered absolutely 
transparent (the method of the closed equations was developed only for this case). 

To directly simulate the free path length, the method of the maximum cross section was used (see Section 2.3 of [11]). 
It is the most efficient method for complex media, and from each collision point, the local estimate to the receiver was 
carried out. The computation of this local estimate was complicated by the fact that some part of the distance from the 
scattering point to the receiver light propagated within the cloud, and another part it propagated out of the cloud; 
moreover, multiple crossing of cloud boundaries by light was also possible. For each photon trajectory, the intensity of 
radiation arriving at the receiver was calculated; then averaging over all trajectories was performed (in our 
computations we considered from 150 000 to 1 500 000 photon trajectories for each set of the input parameters in 
different cases). Similar procedures were described in [13‒15]. 

For simulation by G. A. Titov’s method, the stochastic cloud field was replaced by a fictitious homogeneous medium. 
In this case, the Markov chain was determined by the initial probability density Ψ(࢞) = ∑ ௜ଶ௜ୀଵܥ ࣓)ߜ|ಹ࢘ି࢘|௜݁ିఒ೔ߣ − ࣓௦௨௡)                                                       (1) 
and by the transition probability density ݇(࢞ᇱ, ,ᇱ࢞)݇ where ,ߣ/(࢞  is the substochastic kernel (see pp. 155 and 156 of (࢞
,ᇱ࢞)݇ :([,16] (࢞ = ఒ௚(ఓ)∑ ஽೔ఒ೔௘షഊ೔|࢘ష࢘ᇲ|మ೔సభଶగ|࢘ି࢘ᇱ|మ ߜ ቀ |ᇱ࢘ି࢘|ᇱ࢘ି࢘ − ࣓ቁ,                                              (2) 

where ࢞ = ,ݔ) ,ݕ ,ݖ ܽ, ܾ, ܿ) is the 6-vector of coordinates and directions, ࣓ = (ܽ, ܾ, ܿ)  specifies the direction of 
radiation propagation, ࣓sun  is the direction of incidence of solar rays, 

ଵܥ                                         = ఒమିఙ௣ఒమିఒభ , ଶܥ			 = 1 − ଵܦ				,ଵܥ = ఒమିఙఒమିఒభ ଶܦ				, = ఙିఒభఒమିఒభ,                                                 (3) 

ଵ,ଶߣ               = ఙା஺(࣓)ଶ ∓ ඥሾఙା஺(࣓)ሿమିସ஺(࣓)௣ఙଶ (࣓)ܣ				, = (|ܽ| + |ܾ|)ሾ1,65(݌ − 0,5)ଶ + 1,04ሿ/݌ (4)                   ,ܦ	is the cloud cover index (0 ≤ ݌ ≤  is the quantum survival ߣ ,is the light extinction coefficient in the cloud ߪ ,(1
probability in collision, ࢘ு is a point belonging to the plane ݖ = ܦ is the average cloud size (we considered ܦ ,ܪ = 1	km), ݃(ߤ) is the scattering phase function, and ߤ is the cosine of the scattering angle. Then the local estimate 
of radiation received by the satellite system was calculated with allowance for the fact that the optical path length in the 
fictitious homogeneous medium was ߬ = ଶߣ− ቚ ுି௭ୡ୭ୱఏres

ቚ (ݖ is the altitude of the scattering point). 

We considered 1 500 000 trajectories for each set of the input parameters in the case of simulation by this method (as 
well as for the homogeneous atmosphere). 

We start our analysis of the result obtained from the fact that for continuous cloudiness, the results of computations by 
all three methods coincided (they differed within the statistical error). Figure 4 shows the results of simulation by the 
competing methods of the intensity of radiation transmitted through the broken cloudiness at the observation point.  
From the results shown in Fig. 4 it can be seen that differences can reach 20‒30 %, and for small cloud cover index they 
can reach 50 % (the computational error did not exceed 3 %).  

At the same time, there were cases when differences were not so significant: in Fig. 1, d they do not exceed 20 %, and 
in Fig. 1, c they do not exceed 6 %. Unfortunately, we failed to establish a law that would allow us to predict the 
accuracy of approximate solutions for a given set of optical-geometrical conditions of observation. 

The exponential approximation of the conditional probability of the cloud presence at a certain point given that the 
cloud was present at the given point applied in (p. 144 of [16]) to derive formulas (1)‒(4) could be the reason of the 
given difference. At the same time, though there are some restrictions on the applicability of G. A. Titov’s method of 
closed equations, it allows one to obtain the results close in values to the true data with saving of the computational  
time (of the order of several hundred times). 
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