
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ
РОССИЙСКОЙ ФЕДЕРАЦИИ

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

МАТЕРИАЛЫ
VI Международной молодежной

научной конференции

«МАТЕМАТИЧЕСКОЕ
И ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

ИНФОРМАЦИОННЫХ,
ТЕХНИЧЕСКИХ

И ЭКОНОМИЧЕСКИХ СИСТЕМ»

Томск, 24–26 мая 2018 г.

Под общей редакцией
кандидата технических наук И.С. Шмырина

Томск
Издательский Дом Томского государственного университета

2018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tomsk State University Repository

https://core.ac.uk/display/287407575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 357

8. Krenzler R., Daduna H. Loss systems in a random environment // Probability. – 2013. 9. Paz N. Markovian Queues in Random Environment with System Failures // Oper. Res. Lett. – 2007. – 35. – P. 805–812. 10. Jiang T., Liu L., Li J. Analysis of the M/G/1 queue in multi-phase random environment with disasters // J. Appl. Prob. – 2015. – 18. – 236–244. 11. BoxmaO.J. The M/M/1 queue in a heavy-tailed random environment // Statistica Neerlandica. – 2000. – 54. – P. 221–236. 12. Sophia1 S., Praba B. The M/M/1 queue in a heavy-tailed random environment // International Journal of Pure and Applied Mathematics. – 2015. – P. 267-279. 13. Zaiming Liu 1, Senlin Yu. The M/M/C queueing system in a random environment // Journal of Mathematical Analysis and Applications. – 2016. – 436. – P. 556–567. 14. Jianjun Li, Liwei Liu. Performance analysis of a complexqueueing system with vacations in random environ-ment // Advances in Mechanical Engineering. – 2017. – 9(8). – P. 1–9. SIMPLE MODEL – A WAY TO INTEGRATE SOFTWARE DEVELOPMENT PROCESSES AND PROJECT MANAGEMENT SOFTWARE D.O. Zmeev, D. Sokolov, O.A. Zmeev Tomsk State University denis.zmeev@accounts.tsu.ru, danila.sokolov@accounts.tsu.ru, ozmeyev@gmail.com Introduction In the present condition of the industrial software development project managers have a special role. The manager’s role consists in managing a project, which implies monitoring its progress, risk analysis and identifying the key stages of development, building and managing a team, documentation and other activities. To make the work of the manager easier there are many manuals, reference books, know-ledge bases, that describe the project activities in quite different ways. The manager can ap-proach studying those sources more competently to solve problems more efficiently. Many of the difficulties that project managers face are not exclusive to their subject area. For example, a skyscraper architect, a head of a department developing an operating system or even a stu-dent studying project management can face similar problems of motivating the team mem-bers [6]. But, naturally, there is a great influence of the subject area on project management. In software development this influence resulted in so-called software development process (SDP). An SDP is effectively a set of instructions that should help organize teamwork in the most efficient way to reach the goals of a project. These instructions can range from a set of abstract principles describing the main work stages and correlation with the tasks to strict rules that specify the order of artefacts that should be added at each step of the working process of the project team. Practical application of the SDP has shown that there is no ideal and universal process. Every one of them has its advantages and disadvantages and is applica-ble for a certain group of projects. A project manager in software development uses either an existing SDP (it can be adapted for a certain project team) or tries to manage work relying on personal experience (but usually his experience is based on methods from different SDPs). There are different project management software solutions (PM) created to aid managers. Such systems allow managers and their teams to formalize the work on the projects. At present there are many examples of software solutions the most popular of which are Micro-soft Project [4], Team Foundation Server [5], Redmine [2] and Jira [3]. Some of the PM are targeted for specific development processes which means that their features focus on the spe-cific aspects of a certain development process (for example, digital Kanban board for marking the progress of tasks). Nonetheless it is evident that regardless of the system (even if it is created for specific purposes) the observance of the development process in the software de-velopment project is the professional responsibility of the manager. That leads to the follow-ing problems:

 358

1. Following the rules of an SDP in a PM leads to indirect costs (Which can be expressed as price for a processes-based PM or time to configure the PM according to the SDP rules). The more formalized process is the higher the costs. 2. Accordance of the SDP and the real process used by the team depends on the people involved. Often it is the case that the manager believes that he follows a certain method of an SDP when in fact he does not. This work consists of the follows parts: first, we describe the main idea of the simple model of the SDP in the Section 1. The example of using the simple model of the SDP for the Feature Driven Development [1] software process and its implementation to Redmine project management software is discussed in the Sections 2 and 3. Finally, in the Conclusin the con-clusions and plans for the future work are presented. 1. Simple model of SDP We develop a simple model (not a meta-model) of an SDP for designing the solution which allow to integrate an SDP and PM. Such model allows to formalize basic interaction between different entities in an SDP. Additional advantage of this simplified approach is the possibility to avoid using specific terms and usual tools for different SDPs. A simple model of SDP is shown in terms of a UML class diagram in the Fig. 1. The suggested model does not represent the full description of the development process because its main purpose is to struc-ture the main working entities which compose the SDP. Using the simple structure allows to transform the SDP into a sequence of tasks implemented in the PM and makes possible to develop automatic tools for such kind of implementation. This feature distinguishes this mod-el from other ways of describing an SDP.
 Fig. 1. Simple model of SDP This model is based on the composite pattern, which allows creating hierarchical struc-tures from elements. These elements are the entities: unit of work, process and activities. In this case the basic element (leaf for composite pattern) is the unit of work that in the imple-mentation of the development process transforms into a task. The aggregating entity (compo-site pattern) [9] is the process that depending on the difficulty of the SDP structure can be the whole project (if it has no complicated hierarchical structure of actions) or can be an iteration, sprint, phase, etc. (if the SDP implies the using of such entities). Characteristically for the composite pattern while creating the aggregation of entities the order of their addition should be noted (in most developing processes the tasks follow each other in a certain sequence and it is impossible to run test-case before building the system). Other important entities are artifacts and roles. An artifact denotes an activity in any SDP that is aimed at creation and modifying the output set of artifacts (code, project approval doc-uments, terms of reference, working artifacts for the system design, etc.) from the input set of artifacts (which can be empty, especially at the early stages of the project, for example, col-lecting the primary requirements for the project). A role denotes a set of responsibilities in a certain activity in the SDP (architect, test engineer, developer, etc.), by assigning a task the project manager assigns a certain role to the team member. In case of the structured develop-ment process the roles are defined precisely and in detail, but nonetheless at different points in time any one team member can perform different roles. And if there is no role-based structure there are two default roles in the SDP: the manager and the team member.

 359

Finally, to establish the interaction between the theoretical SDP and the actual implemen-tation of the SDP to the project object-oriented programming dichotomy can be used. If this approach is applied to the development process the abstract activities, iterations, phases de-scribed in the development process (classes) implement in real projects into specific tasks, categories and labor costs that are characteristic for projects (objects). Due to this notion it is sufficient to describe the development process with only fundamentally different entities (the concept of a sprint in general), which in practice will be used to describe specific elements of the PM within which the project is implemented. 2. FDD expression using simple model of SDP To implement the idea of integrating a simple model of an SDP and a PM firstly you need to design the structure of the selected software development process. In this article we use the Feature Driven Development (FDD). The FDD process is based on the main entity – feature and organizes all the work of a team to form, analyze, design, implement and promote features to the software. It is one of the Agile-based development processes, so it is also has the sprint entity to formalize the time-management part of the software project management. The structure of the FDD in terms of the simple model of SDP is as follows (Fig. 2 shows a UML class diagram describing the main entities related to the feature used at FDD for task management). There are two entities that are used for task management at FDD: a top-level activity and a specific task. As for the roles which are not presented at Fig. 2, the FDD does not formalize the strict model of roles, one of the main ideas is to separate the whole team into small mixed groups (team members with different competencies) and distribute features between them. As for the artifacts we do not show them for clarity (they make the diagram overloaded) and de-spite each task has a certain type of artifacts in the FDD, we do not use them for implementa-tion into the PM because each team has their own template for different artifacts. The main part of the FDD is to divide the whole sprint into 5 main activities and determine the default task for executing for each activity. Usually, this task transforms to task related to a specific feature which is determined in the first (Develop Overall Model) activity.

 Fig. 2. Simple development process model of FDD

 360

3. Integration between Simple model of FDD and Redmine At the next step the software development process is integrated with the project man-agement software. To do this, it is necessary to create correspondence between the elements of the development process expressed in the simple model hierarchy and the specific elements of the real project management system (Redmine in this work). The result is shown in Fig. 3. Let us analyze this correspondence: Project is the same entity both in the SDP and the PM. Sprint is the entity which can be determined as the best time management practice for the Agile-based development processes correspond to versions mechanism in Redmine which allows the manager to determine time, amount of work, and tasks for each version. Activities is the general description for different stages of the sprint, there are two possible solution for it in Redmine, one of them uses specific trackers for each activity and the other is the parent issue feature. Given that the specific trackers make Redmine more limited to a determined implementation of the FDD we choose parent issue feature to express this hierarchy which allows to use other modifications of the FDD and other practices of different SDPs. And final-ly, the leaf element is task for the simple model of the SDP and issue for the Redmine sys-tem.

 Fig. 3. Implementing the model into Redmine At the last stage, the Redmine is filled with an empty FDD-prototype project, which al-lows to create new project based on the FDD development process by copying the prototype instead of repeated filling of projects by the same settings, default initial tasks and usual con-figuration. The example of the prototype filled “Develop Overall Model” activity as the par-ent issue is shown in Fig. 4

 361

 Fig. 4. Example of "Develop Overall Model" activity It should be noted that the fact that to integrate software development processes and the project management software were used only the native features of Redmine. It makes possi-ble to migrate created prototype development process projects between different teams, com-panies, Redmine, which allows to apply reusability [8] to the software project management practices. Conclusion The simple model allows to express different development processes in understandable way which can be used as hierarchical structure for implementing to different project man-agement software. At the current state of research this model allows to create pre-configured prototype project that allows different teams to use the same implementation of the SDP without spending additional time or financial resources. Future plans include integration of the simple model with the SEMAT [7] initiative which will allow to configure different soft-ware development processes as the cooperation of used practices in software engineering. REFERENCES 1 En.wikipedia.org. (2017). Feature-driven development. [online] Available at: https://en.wikipedia.org/wiki/Feature-driven_development [Accessed 29 Nov. 2017]. 2 Redmine.org. (2017). Overview – Redmine. [online] Available at: http://www.redmine.org [Accessed 29 Nov. 2017]. 3 Atlassian. (2017). Jira | Issue & Project Tracking Software | Atlassian. [online] Available at: https://www.atlassian.com/software/jira [Accessed 29 Nov. 2017]. 4 Products.office.com. (2017). Project Management Software | Microsoft Project. [online] Available at: https://products.office.com/en/project/project-and-portfolio-management-software [Accessed 29 Nov. 2017]. 5 Webster, L. (2017). Agile, Git, CI with TFS | Team Foundation Server. [online] Visual Studio. Available at: http://www.visualstudio.com/ru/tfs/ [Accessed 29 Nov. 2017]. 6 Pmi.org. (2017). PMBOK Guide and Standards | Project Management Institute. [online] Available at: https://www.pmi.org/pmbok-guide-standards [Accessed 29 Nov. 2017]. 7 Semat.org. (2017). Welcome - SEMAT. [online] Available at: http://semat.org/home [Accessed 29 Nov. 2017]. 8 En.wikipedia.org. (2017). Reusability. [online] Available at: https://en.wikipedia.org/wiki/Reusability [Accessed 29 Nov. 2017]. 9 En.wikipedia.org. (2017). Composite pattern. [online] Available at: https://en.wikipedia.org/wiki/Composite_pattern [Accessed 29 Nov. 2017].

