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Abstract. Review of tomographic probability representation of quantum states is presented
both for oscillator systems with continious variables and spin–systems with discrete variables.
New entropy–information inequalities are obtained for Franck–Condon factors. Density matrices
of qudit states are expressed in terms of probabilities of artificial qubits as well as the quantum
suprematism approach to geometry of these states using the triadas of Malevich squares is
developed. Examples of qubits, qutrits and ququarts are considered.
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1. Introduction
In quantum mechanics the system states are associated either with vectors |ψ〉 in Hilbert
spaces [1] as well as with wave functions (of position) ψ(q) [2] (for pure states) or with density
matrices [3,4] (for mixed states). The physical observables are described by Hermitian operators
acting in the Hilbert space.

This formalism is radically different from the formalism of classical mechanics where the states
of a particle are associated with its position q and momentum p (if there is no fluctuations of
these classical observables) or with probability distributions f(q, p) (if there present fluctuations
of these observables). We wish to create equivalent quantum formalism which is closer to
classical formalism yielding the result obtained by Wigner [5] who introduced the Wigner
function W (q, p). This function is similar to classical probability distribution f(q, p) but
the function can take negative values and in view of this it is not probability distribution.
Analogous functions on phase–space are Glauber–Sudarshan P -function [6–8], Husimi–Kano Q–
function [9, 10] connected with the Wigner function by integral transform. These functions are

http://creativecommons.org/licenses/by/3.0
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called quasidistributions. For electron spin the pure state is associated either with vector |ψ〉 in
two–dimensional Hilbert space (spinor) or for mixed state with 2× 2 - density matrix (density
operator ρ̂) acting in this Hilbert space. In the work of Stratonovich [11] the formalism of
analog of the quasidistributions for spin-1/2 particle was introduced. But in classical mechanics
or classical statistical mechanics namely probability distributions are used to describe the
system states. The probability representation for states of quantum systems with continious
variables was introduced in [12,13] and discussed in [14]. This representation called tomographic
probability representation is based on the known tool to reconstruct the state Wigner function in
quantum–optical experiments [15] using relation [16,17] of this function with measurable optical
tomogram w(X|θ), which is fair conditional probability distribution [18] of variable X called
in quantum optics homodyne quadrature, depending on local oscillator phase θ, by means of
integral Radon transform [19]. It turned out that the spin states also can be associated with
fair probability distributions called spin–tomograms [20–25]. Since the quantum states in the
probability representation are identified with probability distributions all the instruments and
results of the classical probability theory were applied to get new results in quantum mechanics,
quantum optics and quantum information (see e.g. reviews [26–28]). The aim of this work is
to review the probability representation for quantum states on example of parametric oscillator
and spin–states. Using the known physical meaning of Frank–Condon factors in molecular
spectroscopy as probability distributions we describe some new entropy–information inequalities
studied in quantum mechanics [29] for these factors. These inequalities can be useful in study
of vibronic spectra of polyatomic molecules discussed e.g. in [30–33]. Also for spin–states
we present new formulas for the density matrices expressed in terms only of probabilities of
spin projections [34–37] and provide the quantum suprematism picture of the spin–states where
triangle geometry of the states is associated with triadas of Malevich’s squares [35–37]. The
review of suprematism approach in art is given in [38].

The paper is organised as follows.
In Sec. 2 we review the optical and symplectic tomographic probability distributions on

examples of oscillator states including parametric oscillator states. In Sec. 3 we discuss
new entropy–information inequalities for Franc–Condon factors of diatomic and polyatomic
molecules. In Sec. 4 we review the spin–tomography for qudit states. In Sec. 5 we present
explicit expressions of spin–state density matrices for qubit and qutrit states in terms of
probabilities of spin–1/2 projections on perpendicular directions and discuss the expressions of
such density matrices for states of arbitrary spins. In Sec. 6 we review the quantum suprematism
representation of qudit states. The conclusions and prospectives are given in Sec. 7.

2. Tomographic probability distributions of states with continious variables
We consider the systems like oscillator with wave function ψ(x),−∞ ≤ x ≤ ∞. The Wigner
function of the system is given by relation (~ = m = 1)

W (q, p) =

∫
ψ(q + u/2)ψ∗(q − u/2)e−ipudu. (1)

The Wigner function is real function and for normalized states, i.e.
∫
|ψ(x)|2dx = 1, it is

normalized
1

2π

∫
W (q, p)dqdp = 1. (2)

The density matrix of the state ρψ(x, x′) = ψ(x)ψ∗(x′) is given by the transform

ρψ(x, x′) =
1

2π

∫
W (

x+ x′

2
, p)eip(x−x

′)dp. (3)
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The tomographic probability distribution called symplectic tomogram w(X|µ, ν) where −∞ ≤
X,µ, ν ≤ ∞ is defined by the Radon transform of the Wigner function [39]

w(X|µ, ν) =

∫
W (q, p)δ(X − µq − νp)dqdq

2π
. (4)

The function is nonnegative and normalized for arbitrary parameters µ and ν, i.e.∫
w(X|µ, ν)dX = 1. (5)

It can be easily checked using (1) that the symplectic tomogram of pure state with wave function
ψ(y) is given by the fractional Fourier transform of the wave function [40]

w(X|µ, ν) =
1

2π|ν|
|
∫
ψ(y)exp

(
iµy2

2ν
− iXy

ν

)
dy|2. (6)

For the parameters µ = cos θ, ν = sin θ the symplectic tomogram coincides with probability
distribution called optical tomogram w(X|θ) which reads

w(X|θ) =

∫
W (q, p)δ(X − q cos θ − p sin θ)

dqdp

2π
. (7)

For pure state the optical tomogram has the following form

w(X|θ) = |
∫
ψ(y)

exp
(
i cot θ

2 (X2 + y2)− iXy
sin θ

)
√

2πi sin θ
dy|2. (8)

The symplectic tomogram determines the Wigner function

W (q, p) =
1

2π

∫
w(X|µ, ν) exp(i(X − µq − νp))dXdµdν (9)

and also the density operator ρ̂ of the state with the Wigner function, namely [13]

ρ̂ =
1

2π

∫
w(X|µ, ν) exp(i(X 1̂− µq̂ − νp̂))dXdµdν. (10)

Here q̂ and p̂ are position and momentum operators.

3. Frank-Condon factors on example of parametric oscillator
For oscillator with varying frequency ω(t) and the Hamiltonian

Ĥ =
p̂2

2
+
ω2(t)q̂2

2
, ω(0) = 1 (11)

the solutions of Schrödinger equation can be obtained using the integrals of motion Â(t), Â†(t)
found in [41], namely

Â(t) =
i√
2

(ε(t)p̂− ε̇(t)q̂) , (12)

where
ε̈(t) + ω2(t)ε(t) = 0 (13)
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and ε(0) = 1, ε̇(0) = i, Â(0) = q̂+ip̂√
2

. The product of the invariants Â†(t)Â(t) equals to Ermakov

invariant [42]. Commutation relations of the integrals of motion (12) are [Â(t), Â†(t)] = 1. The

ground–like state ψ0(x, t) of the parametric oscillator satisfying the condition Â(t)ψ0(x, t) = 0
reads

ψ0(x, t) = π−1/4(ε(t))−1/2 exp

[
iε̇(t)x2

2ε(t)

]
. (14)

Fock states ψn(x, t), n = 0, 1, 2, . . . , solutions of Schrödinger equation are expressed in terms of
the integrals of motion and ground–like state as

ψn(x, t) =
(Â†(t))n√

n!
ψ0(x, t), n = 0, 1, 2, . . . (15)

They are expressed in terms of Hermite polynomials (see,e.g. [43]). The Frank-Condon factors
are probabilities given by the scalar–product

Pm(n, t) = |〈m, 0|n, t〉|2 (16)

where |m, 0〉 is the state at time t = 0. The Frank–Condon factor is related to vibronic structure
of electronic line of two–atomic molecules [30,31,44–46].

The tomographic probability distribution (6) of the ground-like state (14) has the form of
normal distribution

w0(X|µ, ν) =
1√

2πσ2
exp

(
− 1

2σ2
(X − X̄)2

)
, (17)

where X̄ = 0 and

σ2 =
|ε|2

2
µ2 +

|ε̇|2

2
ν2 + µν(|ε̇ε∗|2 − 1)1/2.

One can obtain a new result characterising the properties of the Franck–Condon factors (16).
These factors provide the probability distribution. In view of this the general properties of
the probability distributions are present in Franck–Condon factors. For example, Shannon
entropy associated with the probability distribution and the inequalities known for this entropy
are valid for the factors. If the probability distribution is a joint probability distribution
of two random variables P (a, b) there exists inequality for Shannon entropy of the system
H(1, 2) = −

∑
a

∑
b P (a, b) lnP (a, b) and two entropies corresponding to marginal distributions

H(1) = −
∑

b (
∑

a P (a, b)) ln (
∑

a P (a, b)) and H(2) = −
∑

a (
∑

b P (a, b)) ln (
∑

b P (a, b)) which
means the nonnegativity of the Shannon information

I = H(1) +H(2)−H(1, 2) ≥ 0.

If the random variables are not correlated, i.e. P (a, b) = Π(a)P(b) the information I = 0. The
stronger are correlations the larger is the Shannon information. Using the partition tool [48,49]
to present the probability distribution (16) as the joint probability distribution we can apply
the properties of Shannon information to the Franck–Condon factors.

We present new entropic inequality for the Franck–Condon factors (16) of the form

−
∞∑
n=0

|〈m, 0|n, t〉|2 ln |〈m, 0|n, t〉|2 ≤ −
∞∑
k=0

 1∑
j=0

|〈m, 0|2k + j, t〉|2
 ln

 1∑
j=0

|〈m, 0|2k + j, t〉|2


−
1∑
j=0

[( ∞∑
k=0

|〈m, 0|2k + j, t〉|2
)

ln

( ∞∑
k=0

|〈m, 0|2k + j, t〉|2
)]

.

(18)
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The difference of the right–hand side and left–hand side (18) is Shannon [47] information. It is
nonnegative. The entropic inequality is characterizing the correlations in the vibronic structure
of the electronic line in diatomic molecules. This inequality can be checked experimentally.
It is worthy to note that the relation and analogies of the molecular spectroscopy method
and quantum information technique were studied in [44–46]. One can obtain other entropy–
information inequalities for the Franck–Condon factors of diatomic and polyatomic molecules
using the tool of mapping the integers s = 1, 2, 3, . . . , N =

∏M
k=1 nk onto sets of of integers

j1, j2, . . . , jM where j1 = 1, 2, , . . . , n1, j2 = 1, 2, . . . , n2, . . . , jn = 1, 2, . . . , nM [48, 49]. This
tool provides possibility to consider Franck-Condon factors as joint probability distributions.
These distributions can be mapped onto the joint probability distributions of system with M
artificial subsystems. Then the known in probability theory entropy–information inequalities are
obviously valid for Franck–Condon factors. The correlations of Franck–Condon factors reflect
the correlations of line intensities in vibronic structure of the electronic lines in the molecular
spectra. The Franck–Condon factors can be also related to tomographic–probability distribution
of quantum states of molecules [33]. In this case the known probability properties of the quantum
tomograms provide possibility to obtain new relations for the Franck–Condon factors. It is
worthy to note that oscillator with time–dependent parameters describing the dissipation in
framework of using Ermakov quadratic invariant [42,53] was studied in [54–57].

4. Spin–tomography
In [20–22] the tomographic probability distribution w(m|ñ) was introduced for spin j-states and
expressed in terms of density matrix ρ and its unitary transform u as diagonal element of the
product of three matrices, i.e.

w(m|~n) =
(
u(~n)ρu†(~n)

)
mm

. (19)

Here m = −j,−j + 1, . . . , j − 1, j is spin–projection on the direction determined by unit
vector ~n = (sin θ cosφ, sin θ sinφ, cos θ). The unitary matrix u(~n) is the matrix of irreducible
representation of rotation group corresponding to spin j. It depends of three Euler angles
(ψ, θ, φ) where ψ = 0. The probability distribution w(m|~n) called spin–tomogram determines
the density matrix ρ. It is normalized

j∑
m=−j

w(m|~n) = 1 (20)

for arbitrary direction ~n. The density matrix of spin state ρ = ρ†, Trρ = 1, ρ ≥ 0 depends on
(2j + 1)2 − 1 real parameters. In view of this the minimal number of different unit vectors ~n
which is sufficient to express the density matrix in terms of the tomographic probabilities equals
also to (2j + 1)2 − 1. For j = 1/2 it is sufficient to use three such vectors, e.g. to take vectors
coinciding with ~x, ~y, ~z axes, respectively. Let us introduce the notation w(m = +1

2 |~x) = p1,

w(m = +1
2 |~y) = p2, w(m = +1

2 |~z) = p3. As it was pointed out [34–37] the density 2× 2-matrix

ρ is expressed in terms of these three probabilities p1, p2, p3 to have positive spin projection +1
2

on the axes ~x, ~y, ~z, respectively in the form

ρ =

(
p3 p1 − ip2 − 1−i

2
p1 + ip2 − 1+i

2 1− p3

)
. (21)

The tomogram (19) of the spin-1/2 state w(+1
2 |~n) is expressed in terms of the probabilities

p1, p2, p3 described by the vector ~p = (p1, p2, p3) and vector ~n0 = (1/2, 1/2, 1/2) as the scalar
product

w(m|~n) = ~n(~p− ~p0) + 1/2. (22)
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Thus the state of the spin-1/2 is identified with three probability distributions determined by

three probability vectors ~P1 = (p1, 1−p1), ~P2 = (p2, 1−p2) and ~P3 = (p3, 1−p3), 1−pk, k = 1, 2, 3
are the probabilities to have spin projection m = −1/2 on the axes ~x, ~y, ~z, respectively. The
probabilities must satisfy the quantum relation corresponding to nonnegativity of the density
matrix (21) [34]

3∑
k=1

(pk −
1

2
)2 ≤ 1

4
. (23)

One can measure in any spin–1/2 state the probabilities of spin–projection m = +1/2 onto three
perpendicular directions. These probabilities must satisfy the above inequality. It was pointed
out in [34] that this inequality can be checked in experiments with superconducting circuits
where analogs of spin states are realized in Josephson junction devices. Different aspects of
statistical properties of Josephson junction were discussed in [50–52].

5. Probability representation of arbitrary qudit states
In [36] the matrix elements of density matrix of qutrit state (spin–1 system) were expressed in
terms of probabilities of positive spin–1/2 projections for three artificial qubits. We rederive this
result in the form which can be used to generalize the expression for the density matrix of qutrit
and obtain the expression of density matrix of arbitrary qudit state in terms of probabilities
associated with the artificial qubits (spin–1/2 projections). Let us consider the 3 × 3-density
matrix of a qutrit state and construct two density 4×4 matrices of the qudit states with specific
zero columns and rows. The tool we use is to start from qutrit density matrix ρ

ρ =

 ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

 . (24)

and construct the 4× 4-matrices

ρ(1) =


ρ11 ρ12 ρ13 0
ρ21 ρ22 ρ23 0
ρ31 ρ32 ρ33 0
0 0 0 0

 , ρ(2) =


0 0 0 0
0 ρ11 ρ12 ρ13

0 ρ21 ρ22 ρ23

0 ρ31 ρ32 ρ33

 . (25)

Interpretating these matrices as the density matrices of two qubit states we construct using the
partial tracing procedure four density matrices of the artificial qubit states related to matrix
ρ(1), i.e.

R(1) =

(
ρ11 + ρ22 ρ13

ρ31 ρ33

)
, R(2) =

(
ρ11 + ρ33 ρ12

ρ21 ρ22

)
, (26)

and matrix ρ(2)

R(3) =

(
ρ11 ρ13

ρ31 ρ33 + ρ22

)
, R(4) =

(
ρ22 ρ23

ρ32 ρ11 + ρ33

)
, (27)

Since these matrices are the density matrices of qubit states one can present these matrices using
the probabilities of positive spin–1/2 projections, namely

R(k) =

(
p

(k)
3 (p

(k)
1 − 1

2)− i(p(k)
2 − 1

2)

(p
(k)
1 − 1

2) + i(p
(k)
2 − 1

2) 1− p(k)
3

)
, k = 1, 2, 3, 4 (28)
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where p
(k)
1 , p

(k)
2 , p

(k)
3 are probabilities of spin-1/2 projections equal to +1/2 on axes ~x, ~y, ~z,

respectively for all four artificial qubits. Comparing matrix elements of matrices (26) and (27)
with matrix elements of the same matrices given in the form (28) we obtain the following relations
for diagonal matrix elements

ρ33 = 1− p(1)
3 ,

ρ22 = 1− p(2)
3 = p

(4)
3 , (29)

ρ11 = p
(1)
3 + p

(2)
3 − 1

and for offdiagonal matrix elements

ρ21 = (p
(2)
1 −

1

2
) + i(p

(2)
2 −

1

2
),

ρ31 = (p
(1)
1 −

1

2
) + i(p

(1)
2 −

1

2
), (30)

ρ32 = (p
(4)
1 −

1

2
) + i(p

(4)
2 −

1

2
).

One has the equalities

p
(1)
1 = p

(3)
1 , p

(1)
2 = p

(3)
2 , p

(4)
3 = 1− p(2)

3 , p
(1)
3 = p

(3)
3 + p

(4)
3 . (31)

For four qubits we have 12 parameters but the given equalities mean that 8 probabilities
determine the state (24). Thus the density 3× 3-matrix ρ (24) can be written in the form

ρ =

 p
(1)
3 + p

(2)
3 − 1 (p

(2)
1 − 1

2)− i(p(2)
2 − 1

2) (p
(1)
1 − 1

2)− i(p(1)
2 − 1

2)

(p
(2)
1 − 1

2) + i(p
(2)
2 − 1

2) 1− p(2)
3 (p

(4)
1 − 1

2)− i(p(4)
2 − 1

2)

(p
(1)
1 − 1

2) + i(p
(1)
2 − 1

2) (p
(4)
1 − 1

2) + i(p
(4)
2 − 1

2) 1− p(1)
3

 (32)

Here the probabilities p
(k)
j , j = 1, 2, 3, k = 1, 2, 3, 4 satisfy the inequalities (23). Thus the

inequality for one qubit state density matrix (23) is valid for all artificial qubit states density
matrices associated with qutrit state (32). Also the inequality det ρ ≥ 0 provides the relation

where cubic polynomial constructed from the probabilities p
(k)
j must take nonnegative values.

In order to generalise the result obtained for the qutrit state we introduce the following
notations

p
(1)
3 = p

(33)
3 , p

(2)
3 = p

(22)
3 , p

(1)
1 = p

(31)
1 , p

(1)
2 = p

(31)
2 ,

p
(2)
1 = p

(21)
1 , p

(2)
2 = p

(21)
2 , p

(4)
1 = p

(32)
1 , p

(4)
2 = p

(32)
2 .

Using the introduced notations we can rewrite the matrix elements of density matrix (32) in the
form

ρjk = (p
(jk)
1 − 1

2
) + i(p

(jk)
2 − 1

2
), j > k

ρjj = 1− p(j j)
3 , j ≥ 2,

ρ11 = 1−
3∑
j=2

ρjj . (33)



8

1234567890 ‘’“”

Symmetries in Science XVII IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1071 (2018) 012008  doi :10.1088/1742-6596/1071/1/012008

This form is preserved if we consider arbitrary qudit density N×N -matrix ρjk, j, k = 1, 2, . . . , N.

In this case we have the artificial qubit probabilities p
(jk)
1,2 , j > k; p

(j j)
3 , j ≥ 2. For example,

qutrit density matrix reads

ρ =

 p
(33)
3 + p

(22)
3 − 1 (p

(21)
1 − 1

2)− i(p(21)
2 − 1

2) (p
(31)
1 − 1

2)− i(p(31)
2 − 1

2)

(p
(21)
1 − 1

2) + i(p
(21)
2 − 1

2) 1− p(22)
3 (p

(32)
1 − 1

2)− i(p(32)
2 − 1

2)

(p
(31)
1 − 1

2) + i(p
(31)
2 − 1

2) (p
(32)
1 − 1

2) + i(p
(32)
2 − 1

2) 1− p(33)
3


(34)

It is worthy to note that in [35] the qutrit density matrix was expressed in terms of probabilities
but there was used different artificial qubit state.

The proof of the expression of the arbitrary density N ×N - matrix in terms of probabilities

p
(jk)
1,2 , p

(j,j)
3 where j > k describing spin-1/2 projections on axes ~x, ~y, ~z, respectively can be done

using the induction method. We illustrate this statement considering the case of N = 4. The
density matrix ρjk, j.k = 1, 2, 3, 4 can be embedded into 6× 6-density matrices,

ρ(1) =

(
ρ 0
0 0

)
, ρ(2) =

(
0 0
0 ρ

)
. (35)

Considering these matrices as density matrices of qutrit–qubit systems and applying the partial
tracing procedure we get four density matrices R(1), R(2), R(3), R(4) of the form

R(1) =

(
ρ11 + ρ22 + ρ33 ρ14

ρ41 ρ44

)
, R(2) =

 ρ11 + ρ44 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ34

 ,

(36)

R(3) =

(
ρ11 ρ14

ρ41 ρ22 + ρ33 + ρ44

)
, R(4) =

 ρ22 ρ23 ρ24

ρ32 ρ33 ρ34

ρ42 ρ43 ρ44 + ρ11

 .

Since we know the expressions for the qubit states R(1), R(3) and qutrit states R(2), R(4) in
terms of probabilities we can express the density matrix ρjk, j, k = 1, 2, 3, 4 in terms of these
probabilities. We have shown that the transition from qubit density matrix (21) to qutrit density
matrix (24) gives the expression of the qutrit density matrix in the form (34). The analogous
procedure is used to consider the 4 × 4-matrix and it repeats all the steps of the procedure to
consider the 3×3-matrix and only adds extra matrix elements. Thus we have the density matrix
of the ququart state in the form

ρ =
p
(44)
3 + p

(22)
3 + p

(33)
3 − 2 p

(21)
1 − 1

2 − i(p
(21)
2 − 1

2 ) p
(31)
1 − 1

2 − i(p
(31)
2 − 1

2 ) p
(41)
1 − 1

2 − i(p
(41)
2 − 1

2 )

p
(21)
1 − 1

2 + i(p
(21)
2 − 1

2 ) 1− p(22)3 p
(32)
1 − 1

2 − i(p
(32)
2 − 1

2 ) p
(42)
1 − 1

2 − i(p
(42)
2 − 1

2 )

p
(31)
1 − 1

2 + i(p
(31)
2 − 1

2 ) p
(32)
1 − 1

2 + i(p
(32)
2 − 1

2 ) 1− p(33)3 p
(43)
1 − 1

2 − i(p
(43)
2 − 1

2 )

p
(41)
1 − 1

2 + i(p
(41)
2 − 1

2 ) p
(42)
1 − 1

2 + i(p
(42)
2 − 1

2 ) p
(43)
1 − 1

2 + i(p
(43)
2 − 1

2 ) 1− p(44)3

 .

(37)

Since the numbers p
(jk)
1,2,3 are probabilities the inequalities for all density matrices hold

Re ρjk +
1

2
≥ 0, Im ρjk ≤

1

2
. (38)
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Also for arbitrary qudit density N ×N -matrix one has new entropic inequality(
1

2
− Im ρjk

)
ln

[ (
1
2 − Im ρjk

)(
1
2 − Im ρj′k′

)]+

(
1

2
+ Im ρjk

)
ln

[ (
1
2 + Im ρjk

)(
1
2 + Im ρj′k′

)] ≥ 0 (39)

Here j 6= k, j′ 6= k′, i, k, j′, k′ = 1, 2, . . . , N . Another new entropic inequality for arbitrary qudit
state reads

ρjj ln

[
ρjj(

1
2 ∓ Im ρj′k

)]+ (1− ρjj) ln

[
(1− ρjj)(

1
2 ± Im ρj′k

)] ≥ 0. (40)

The entropic inequality of the form

ln 2 ≥ −
(

1

2
∓ Imρjk

)
ln

(
1

2
∓ Imρjk

)
−
(

1

2
± Imρjk

)
ln

(
1

2
± Imρjk

)
≥ 0 (41)

holds for arbitrary density matrix of qudit state.

6. Triada of Malevich’s squares and quantum suprematism picture of qudit states
The discussed probability representation of qudit states can be pictorially illustrated [35–37] by
using Malevich’s squares known in suprematism direction in art [38]. It means that for arbitrary

probabilities p
(jk)
1 , p

(jk)
2 , p

(jk)
3 determined by matrix elements ρjk of density N × N - matrix ρ

one can introduce the triangles with three sides

l
(s)
jk = (2 + 2(p(jk)

s )2 − 4p(jk)
s − 2p

(jk)
s+1 + 2(p

(jk)
s+1)2 + 2p(jk)

s p
(jk)
s+1)1/2, s = 1, 2, 3.

Three squares (red, black and white) called ”triada of Malevich’s squares” have the areas

S
(s)
jk =

[
l
(s)
jk

]2
, s = 1, 2, 3.

There is the bijective map of the density matrix of the qudit states with the matrix elements
ρjk and the set of the triadas of Malevich’s squares. Due to nonnegativity condition for
density matrix ρjk the areas of the Malevich’s squares satisfy the inequalities described by

the inequalities for polynomials expressed in terms of the probabilities p
(jk)
s , s = 1, 2, 3. The

number of parameters determining the density matrix ρjk, j, k = 1, 2, . . . , N equals N2 − 1.
This number provides the number of triadas of Malevich’s squares describing the qudit states.
For example N = 3 (qutrit) considered in [37] one has three triadas of Malevich’s squares with
extra constraints for the sides of the squares. In Fig.1 we give a pictorial description of qudit
state with N=4 (spin 3/2 state) using a mosaic constructed from five triadas of Malevich’s
squares. The ququart density matrix is mapped onto this ”quantum suprematism” picture
on the plane. Each square in five triadas has the area determined by the matrix elements

of the spin 3/2 density matrix (37) expressed in terms of the probabilities p
(jk)
s . Thus five

triadas of Malevich’s squares illlustrate a new parametrization of the density matrix by the
15 independent probabilities. There are quantum correlations in the geometric picture of the
squares corresponding to nonnegativity condition of the density matrix. These conditions are
expressed as nonnegativity conditions for eigenvalues of the matrix (37).

One can also map the probabilities p
(jk)
s onto the parameters X

(s)
jk of Bloch ball describing the

artificial qubits in view of the relation 2p
(jk)
s −1 = X

(s)
jk . These parameters satisfy the inequalities∑3

s=1

(
X

(s)
jk

)2
≤ 1 as well as other quantum constraints associated with nonnegativity of the
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Figure 1. ”Quantum suprematism” picture on the plane: five triadas of Malevich’s squares
associated with density matrix of ququart state.

density matrix. One can introduce the entropic characteristic of the qudit state as the sum of
entropies of small artificial qubits. For example, for qubit (N=2) the entropy reads

H = −p1 ln p1 − (1− p1) ln(1− p1)− p2 ln p2 − (1− p2) ln(1− p2)− p3 ln p3 − (1− p3) ln(1− p3).

The relation of this entropy with von–Neumann entropy S can be clarified if one takes into
account the expression of entropy S with the probabilities p1, p2, p3, i.e.

S = −

1

2
+

√√√√ 3∑
k=1

(pk − 1/2)2

 ln

1

2
+

√√√√ 3∑
k=1

(pk − 1/2)2


−

1

2
−

√√√√ 3∑
k=1

(pk − 1/2)2

 ln

1

2
−

√√√√ 3∑
k=1

(pk − 1/2)2

 .

Another entropic characteristics of the qudit state is connected with areas of Malevich’s squares.
The sum Σ of the areas of all the Malevich’s squares determining the qudit state provides the
probability characteristic of the state

P(s)
jk =

∑(s)
jk

Σ
,
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where
∑(s)

jk is the area of one square. The Shannon entropy

HΣ = −
∑
jk

∑
(s)

P(s)
jk lnP(s)

jk

gives the characteristics associated with the properties of the qudit state.

7. Conclusion
To resume we point out the main results of our work. We show that an arbitrary state of the
qudit (spin-j state, N -level atom state) can be described by N2 − 1 probability distributions
of artificial classical variables. These variables can be identified with variables associated with
classical coins. It means that arbitrary N × N - density matrix of N -level system contains

offdiagonal matrix elements of the form p
(jk)
1 − 1

2 − i
(
p

(jk)
2 − 1

2

)
, j < k, where the nonnegative

numbers p
(jk)
1 , 1− p(jk)

1 and p
(jk)
2 , 1− p(jk)

2 are probability distributions describing the classical
coin position ”up” and ”down”. These probabilities correspond to j k-th spin-projection +1/2
on direction x and direction y, respectively. The diagonal matrix elements ρjj , where 1 < j ≤ N
have the form 1−p(jj)

3 . Thus the density matrix is mapped (see Eq.(33)) onto N2−1 probabilities
which can be interpreted as probabilities from distributions associated with random positions of
N2−1 classical coins. It is the main result of our work. The density matrix can be demonstrated
on the plane pictorially as the set of triadas of Malevich’s squares which have been introduced
in the framework of quantum suprematism picture of the qubit and qutrit states in [35]- [37].
New entropy–information inequalities are obtained for matrix elements of the density matrix
using the relation of the matrix elements with probability distributions. Another result of our
work is considering the parametric oscillator in probability representation. We obtain the new
entropic relations for Frank–Condon factors. The vibronic structure of the electronic lines in
polyatomic molecules is measured experimentally. Since this structure is determined by the
Franck-Condon factors the correlations in the factors correspond to the correlations in the line
intensities. Consequently the values of Shannon information given, e.g. by Eq.(18) reflect
the correlations in vibronic structure of electronic lines in polyatomic spectra. The deeper
clarification of the relation of the dependence of Shannon information value to the correlations
in the polyatomic molecule spectra will be considered in future publication. It is worthy to
note that the results known in molecular spectroscopy can be related to properties of systems
used in quantum optics and information (see, e.g. [44, 46]). These relations (inequalities) can
be checked in experiments with superconducting circuits. In [36] it was found for qubit state
that the quantum observables (arbitrary Hermitian matrices) are mapped onto sets of classical
random variables. This map can be constructed for arbitrary qudit observables.

Thus the quantum statistics formalism for arbitrary system can be mapped onto classical
statistics formalism of the sets of classical coins and corresponding random variables. This
problem will be considered in future publication.
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