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Abstract. Numerical modeling of spalling brittle fracture along the (0001) plane in a zinc single crystal under shock 
loading by an aluminum projectile was performed in the work. Numerical modeling was carried out by the finite element 
method in a three-dimensional statement. The mathematical model allows to take into account the anisotropy of bulk 
compressibility in a single crystal of zinc, auxeticity, anisotropy of the propagation velocities of elastic longitudinal and 
volume waves. Stresses are determined on the basis of a comparison of velocity profiles of the rear surfaces of targets 
from zinc single crystal in mutually perpendicular directions when it is destroyed along the (0001) plane in natural 
experiments and numerical simulation. 

INTRODUCTION 

Now, the main method for studying the propagation of elastoplastic waves in materials characterized by 
transversally isotropic elastic, plastic and strength properties is the natural experiment [1–12]. In this case in 
processing the results of natural experiments various mathematical models can be used. For example, mathematical 
model which is used in processing of natural experiments can have the hypothesis about the compliance of volume 
strain to hydrostatic stress or about the compliance to anisotropic pressure. In one-dimensional experiments in the 
direction of shock loading a one-dimensional deformation processes realized, therefore in mathematical models only 
one value of the Poisson coefficient is used in processing the results of natural experiments. In transversely isotropic 
materials, there are always three different Poisson’s ratios, including those that sometimes have negative values. 
Investigations of deformation processes using numerical modeling make it possible to distinguish the contribution of 
anisotropy of elastic, plastic and strength properties to the final picture of the destruction of such materials. The 
analysis of the propagation of elastoplastic waves was carried out using numerical modeling in transversally 
isotropic materials using a mathematical model within the framework of the hypothesis of bulk anisotropy of 
deformation processes in the proposed work. Numerical modeling of spall destruction of targets from transversally 
isotropic materials using the example of zinc single crystal was carried out by the finite element method in a three-
dimensional statement. The results of numerical modeling are compared with the experimental data [13] on the 
shock load of a zinc single crystal in the [0001] direction. The velocities of propagation of elastic longitudinal and 
volume waves in this direction in a target from a single crystal of zinc have close values, and therefore it is 
impossible to fix the branches of the elastic precursor from the plastic compression wave when they exit the rear 
surface of the target in natural experiments. In numerical calculations, it is also impossible to isolate the yield of an 
elastic precursor on the rear surface of the target in the [0001] direction, but obtaining an analogous profile of the 
velocity of the rear surface of the target makes it possible to determine the values of the dynamic yield strength and 
spalling strength of the target material. 
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MATHEMATICAL MODEL OF BRITTLE FRACTURE OF A MATERIAL WITH A 
TRANSVERSELY ISOTROPIC SYMMETRY OF PROPERTIES 

The system of equations describing the non-stationary adiabatic motions of the compressible anisotropic medium 
includes [14] equation of continuity: 
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where —medium density, v—velocity vector, Fk—components of the body force vector, ij—components of 
symmetric stress tensor, E—specific internal energy, eij—components of symmetric strain velocity tensor: 
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vi—components of velocity vector, i, j = 1, 2, 3. 
The total stress tensor is decomposed into deviatoric stress and anisotropic hydrostatic stress [15]: 

 ,ij ij e ijS P     (5) 

where Sij are the components of the total stress deviator, λij is the generalized Kronecker delta, Pe is the spherical 
part of the total stress tensor. In the elastic range 
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where Ka is the generalized bulk modulus, δkl is the Kronecker-delta, kl  are the strain deviator components, Cijkl are 

elastic constants, εV is the volume strain for an anisotropic medium. 
In the elastic range, the decomposition of total stress tensor (5) is equivalent to calculations in terms of total 

stress. 
In the plastic range, the pressure Pe for an anisotropic material is estimated by the Mie–Grüneisen equation as a 

function of specific internal energy E and current density: 
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where K0, K1, K2, K3 are material constants, V, V0 are the current and initial volumes. 
The total stress in the plastic range is also estimated by formula (5). The components of the total stress deviator 

are calculated according to the flow theory. The plastic strain is estimated using the non-associated flow rule: 
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with dλ being zero in the elastic range and always positive in the plastic range (yield criterion), εp
ij are the plastic 

strain components; and F is the yield function.  
The von Mises–Hill criterion (1948) in terms of stress deviators for transversally isotropic materials with regard 

to isotropic hardening has the form  

 
2 2 22 2 2

233 31 2311 22 12
2 2 2 2 2 2

1 2 3 4 5 6

( , ) 0,ij
S S SS S S

F S R R
r r r r r r

         (8) 

where ri is determined in terms of tensile and shear yield strengths for a transversally isotropic material, R is the 
isotropic hardening function. As has been shown [16], the function R is the invariant with respect to stress state. It is 
defined for a simple form of loading and depends linearly on the accumulated plastic strain εp: 
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FIGURE 1. Initial configuration of projectile and target 
 

 p p( ) 1 ,R      (9) 

where p pd , , 1, ..., 3.kl k l     

The elastoplastic deformation of an isotropic material (impactor) is described using the Prandtl–Reuss model. 
Brittle fracture of the target is modeled by the Hoffman failure criterion, which allows for anisotropy of the tensile 
and shear strength characteristics [17] 
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The stresses in an element rigidly rotated in space are reduced through the Jaumann derivative to the coordinate 
system  
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PROBLEM STATEMENTS FOR SHOCK-LOADED TARGET OF SINGLE 
CRYSTALS OF ZINC 

The problem statement for our 3D finite element simulation of impacted single crystals of zinc was the same as 
in experiments [13]. The elastic constants of the transversally isotropic zinc target were the following [13] (see 
table). 

The modeling was performed using original software. Figure 1 shows the initial configuration of the projectile 
(25 920 tetrahedrons) and target (227 430 tetrahedrons). The initial velocity of Al projectile V0 = 650 m/s, thickness 
of the projectiles are in first case 0.85 mm, in second 0.4 mm, thickness of the target 1.7 mm. 

The profiles of the speed of the surface of sample of zinc single crystal under loading in the [0001] direction 
obtained in [13] are shown in Fig. 2. The lower curve corresponds to the thickness of the projectile 0.4 mm, the 
upper one 0.85 mm. The curves were compared with the velocity profiles of the free surfaces of samples of single 
crystals of zinc obtained in numerical simulations (Fig. 3). If we compare the profiles of the curves, we can see that 
for both thicknesses of the projectiles the maximum and minimum values of the speeds of rear surfaces of zinc 
single crystal coincide. The values of the reflection times from the rear surface of the targets of the compression 
waves coincide as well. 

TABLE 1 

С11, MPa С33, MPa С12, MPa С23, MPa С44, MPa 

61041.7 161018.1 49987.7 45126.2 63445.9 
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FIGURE 2. The velocity profiles of free surfaces of samples 
of single crystals of zinc under loading in the [0001] 

direction by shock of aluminum plates with thicknesses of 
0.4 mm and 0.85 mm at a velocity of 650–700 m/s [13] 

FIGURE 3. Calculated velocity profiles of free surfaces of 
samples of zinc single crystals under loading in the [0001] 

direction by shock of aluminum plates 0.4 mm thick (1) and 
0.85 mm (2) at a velocity of 650 m/s 

 
The following plastic and strength properties were calculated on the basis of the coincidence of the velocity 

profiles of the free surface of samples of zinc single crystals under loading in the [0001] direction: in the direction of 

[0001] the dynamic yield strength is (0001)
d = 3500 MPa, the spall strength is (0001)

* = 9000 MPa, in the 

perpendicular direction: 10 10
d = 1800 MPa, 10 10

* = 15 000 MPa. Dynamic yield stresses in mutually perpendicular 

directions are common for a zinc single crystal and do not depend on the type of the fracture. The calculated strength 
characteristics in mutually perpendicular directions are realized only when the zinc single crystal is spalled along the 
[0001] direction. The strength properties of a zinc single crystal will be different, since another mechanism of spall 
destruction is realized when shock loading along the [1010]  direction. 

In the work within the framework of a mathematical model that allows to take into account the dependence of 
different propagation velocities of elastic longitudinal and plastic waves on the direction, velocity profiles of the rear 
surface of the target are obtained, which coincide with the profiles obtained in natural experiments [13]. As well as 
in natural experiments, there is no decomposition of the compression shock wave into an elastic precursor and a 
plastic compression wave. In the calculations, the elastic properties of a zinc single crystal were used from [13], the 
dynamic yield stresses and the strength limits for brittle spall fracture in the [0001] direction were obtained on the 
basis of the coincidence of the velocity profiles of the rear obstacle surfaces in calculations and natural experiments 
[13]. It is necessary to know the plastic properties in a direction perpendicular to the [0001] direction, to simulate 
spall fracture of the target in the [0001] direction. The dynamic yield strengths in the [1010]  direction were 

determined on the basis of the coincidence of the velocity profiles of the rear surfaces of the target from the zinc 
single crystal under shock loading in the [1010]  direction, as well as in [1], and in numerical calculations of the 

authors. 

CONCLUSION 

For the case of close values of the propagation velocities of longitudinal and volume waves and the separation of 
a shock wave into an elastic precursor and a plastic compression wave for this reason, the plastic and strength 
properties of a zinc single crystal with its brittle spall fracture in the (0001) plane are determined with the help of 
numerical modeling. 
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