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Abstract In this paper we obtain lower estimates for the first non-trivial eigenvalue of the
p-Laplace Neumann operator in bounded simply connected planar domains Ω ⊂ R

2. This
study is based on a quasiconformal version of the universal two-weight Poincaré–Sobolev
inequalities obtained in our previous papers for conformal weights and its non weighted
version for so-called K -quasiconformal α-regular domains. The main technical tool is the
geometric theory of composition operators in relation with the Brennan’s conjecture for
(quasi)conformal mappings.
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1 Introduction

In this paper we obtain lower estimates for the first non-trivial eigenvalue of the p-Laplace
operator with the Neumann boundary condition
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{
−div(|∇u|p−2∇u) = μp|u|p−2u in Ω
∂u
∂n = 0 on ∂Ω,

in bounded simply connected planar domains Ω ⊂ R
2. The weak statement of this spectral

problem is as follows: a function u solves the previous problem iff u ∈ W 1
p(Ω) and∫

Ω

(|∇u(x)|p−2∇u(x) · ∇v(x)) dx = μp

∫
Ω

|u(x)|p−2u(x)v(x) dx

for all v ∈ W 1
p(Ω).

We demonstrate that integrability of Jacobians of quasiconformalmappingswith the expo-
nent greater than one permit us to obtain lower estimates of the first non-trivial eigenvalue
μ

(1)
p (Ω) in terms of Sobolev norms of quasiconformal mappings of the unit disc D onto Ω .

So, we can conclude that μ(1)
p (Ω) depends on the quasiconformal geometry of Ω only:

Theorem A Let Ω ⊂ R
2 be a K -quasiconformal α-regular domain and ϕ : Ω → D be

a corresponding K -quasiconformal mapping. Suppose that the Brennan’s conjecture holds.
Then for every

p ∈
(
max

{
4K

2K + 1
,
α(2K − 1) + 2

αK

}
, 2

)
the following estimate

1

μ
(1)
p (Ω)

≤ K‖Jϕ−1 | L α
2
(D)‖ inf

q∈I

{
B p

αp
α−2 ,q

(D)‖|Dϕ−1|p−2 | L q
p−q

(D)‖
}

holds, where I = [1, 2p/(4K − (2K − 1)p)).

Here Br,q(D) is the best constant in the (r, q)-Poincaré–Sobolev inequality in the unit disc
D for r = αp/(α − 2) which satisfies [11,18]:

Br,q(D) ≤ 2

πν

(
1 − ν

1/2 − ν

)1−ν

, ν = 1/q − 1/r.

Remark 1 In TheoremA the unit discD can be replaced by any quasiisometrical image ofD.

As an example consider lower estimates of the first non-trivial eigenvalue of p-Laplace
operator in non-convex star-shaped domains Ω∗

ε(k) (Example C), where Ω∗
ε(k) is the image

of the square

Q :=
{

(x, y) ∈ R
2 : −

√
2

2
< x <

√
2

2
, −

√
2

2
< y <

√
2

2

}

under the (k + 1)-quasiconformal mapping

w = |z|k z, z = x + iy, k > 0.

If p = 3/2 (this operator arises in study of porous media flows [35]), then

1

μ
(1)
3/2(Ω

∗
ε(k))

≤ 16

√
(k + 1)3

2 − k
, 0 ≤ k < 2.

More examples of lower estimates of first-non-trivial eigenvalues of the p-Laplace oper-
ator will be given in Sect. 5.

Let us give few detailed comments to the theorem:
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Spectral estimates of the p-Laplace Neumann operator… 247

1.1 K -quasiconformal α-regular domains

Recall that a homeomorphism ϕ : Ω → Ω̃ between planar domains is called K -
quasiconformal if it preserves orientation, belongs to the Sobolev class W 1

2,loc(Ω) and its
directional derivatives ∂ξ satisfy the distortion inequality

max
ξ

|∂ξϕ| ≤ K min
ξ

|∂ξϕ| a.e. in Ω.

The notion of conformal regular domains was introduced in [8] and was used for the study
of conformal spectral stability of the Laplace operator. In the present work we introduce a
more general notion of quasiconformal regular domains.

Definition 1 A simply connected planar domain Ω ⊂ R
2 is called a K -quasiconformal

α-regular domain if there exists a K -quasiconformal mapping ϕ : Ω → D such that∫
D

|J (y, ϕ−1)| α
2 dy < ∞ for some α > 2.

The domainΩ ⊂ R
2 is called a K -quasiconformal regular domain if it is a K -quasiconformal

α-regular domain for some α > 2.

Note that the class of quasiconformal regular domains includes the class of Gehring
domains [1] and can be described in terms of quasihyperbolic geometry [23].

Remark 2 The notion of quasiconformal α-regular domain is more general then the notion
of conformal α-regular domain. Consider, for example, the unit squareQ ⊂ R

2. ThenQ is a
conformal α-regular domain for 2 < α ≤ 4 [18] and is a quasiconformal α-regular domain
for all 2 < α ≤ ∞ because the unit square Q is quasiisometrically equivalent to the unit
disc D. It implies, in particular, that in Theorem A (its more detailed version is Theorem 8)
the unit ball D can be replaced by the square Q (or by another domain quasiisometrically
equivalent to the unit disc D).

Remark 3 Because ϕ : Ω → D is a quasiconformal mapping, then integrability of the
derivative is equivalent to integrability of the Jacobian:∫

D

|J (y, ϕ−1)| α
2 dy ≤

∫
D

|Dϕ−1(y)|α dy ≤ K
α
2

∫
D

|J (y, ϕ−1)| α
2 dy.

1.2 Brennan’s conjecture

We can conclude from Theorem A that Brennan’s conjecture leads to the spectral estimates
of the p-Laplace operator in quasiconformal α-regular domains Ω ⊂ R

2.

Generalized Brennan’s conjecture for quasiconformal mappings [22] states that∫
Ω

|Dϕ(x)|β dx < +∞, for all
4K

2K + 1
< β <

2Kβ0

(K − 1)β0 + 2
. (1)

If K = 1 we have Brennan’s conjecture for conformal mappings [7] which is proved for
β ∈ (4/3, β0), where β0 = 3.752 [20], and conjectured for β0 = 4 [7].
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248 Vladimir Gol’dshtein et al.

1.3 Historical sketch

In 1961 Pólya [27] obtained upper estimates for eigenvalues of Neumann–Laplace operator
in so-called plane-covering domains. Namely, for the first eigenvalue:

μ
(1)
2 (Ω) ≤ 4π |Ω|−1.

The lower estimates for theμ
(1)
p (Ω)were originally established only for convex domains.

In the classical work [26] it was proved that if Ω is convex with diameter d(Ω) (see, also
[9,10,29]), then

μ
(1)
2 (Ω) ≥ π2

d(Ω)2
. (2)

In [9] it was proved that if Ω ⊂ R
n is a bounded convex domain having diameter d then

for p ≥ 2

μ(1)
p (Ω) ≥

(
πp

d(Ω)

)p

where

πp = 2

(p−1)
1
p∫

0

dt

(1 − t p/(p − 1))
1
p

= 2π
(p − 1)

1
p

p sin(π/p)
.

In the case of non-convex domains in [19] it was proved that if Ω ⊂ R
2 is a conformal

α-regular domain then for every p ∈ (max{4/3, (α + 2)/α}, 2) the following inequality
holds

1

μ
(1)
p (Ω)

≤ inf
q∈[1,2p/(4−p))

{
B p

αp
α−2 ,q

(D) · ‖Dϕ−1|p−2 | L q
p−q

(D)‖
}

‖Dϕ−1| | Lα(D)‖2,

where ϕ : Ω → D is a conformal mapping.
The lower estimates in terms of isoperimetric constants relative to Ω were obtained in

[5,6].
The first non-trivial eigenvalue of the Neumann boundary problem for the p-Laplace

operator μ
(1)
p (Ω)

− 1
p is equal to the best constant Bp,p(Ω) (see, for example, [25]) in the

p-Poincaré–Sobolev inequality

inf
c∈R ‖ f − c | L p(Ω)‖ ≤ Bp,p(Ω)‖∇ f | L p(Ω)‖, f ∈ W 1

p(Ω).

1.4 Methods

The suggested method is based on the geometric theory of composition operators in relation
with Brennan’s conjecture that allows us to obtain universal two-weight Poincaré–Sobolev
inequalities in any simply connected domain Ω �= R

2

inf
c∈R

⎛
⎝∫

Ω

| f (x) − c|r h(x)dx

⎞
⎠

1
r

≤ Br,p(Ω, h)

⎛
⎝∫

Ω

|∇ f (x)|pdx

⎞
⎠

1
p

, f ∈ W 1
p(Ω),
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Spectral estimates of the p-Laplace Neumann operator… 249

where quasiconformal measures h(x)dx := |J (x, ϕ)|dx are generated by quasiconformal
homeomorphisms ϕ : Ω → D and dx is the Lebesgue measure (Theorem 5). In quasicon-
formal regular domains these two-weight inequalities imply non-weight Poincaré–Sobolev
inequalities. This method is also based on the theory of composition operators [28,33] and
its applications to the Sobolev type embedding theorems [13,14].

The following diagram illustrates the main idea:

W 1
p(Ω)

(ϕ−1)∗−→ W 1
q (D)

↓ ↓
Ls(Ω)

ϕ∗
←− Lr (D).

Here the operator (ϕ−1)∗ defined by the composition rule (ϕ−1)∗( f ) = f ◦ ϕ−1 is a
bounded composition operator on Sobolev spaces induced by a homeomorphism ϕ of Ω

onto D and the operator ϕ∗ defined by the composition rule ϕ∗( f ) = f ◦ ϕ. This operator is
a bounded composition operator on Lebesgue spaces. This combination of methods allows
us to transfer Poincaré–Sobolev inequalities from regular domains (for example, from the
unit disc D) to Ω .

Theorem B Let Ω ⊂ R
2 be a K -quasiconformal α-regular domain and ϕ : Ω → D be

a corresponding K -quasiconformal mapping. Suppose that the Brennan’s conjecture holds.
Then for every

p ∈
(
max

{
4K

2K + 1
,
α(2K − 1) + 2

αK

}
, 2

)

the p-Poincaré–Sobolev inequality

inf
c∈R ‖ f − c | L p(Ω)‖ ≤ Bp,p(Ω)‖∇ f | L p(Ω)‖, f ∈ W 1

p(Ω),

holds with the constant

B p
p,p(Ω) ≤ inf

q∈I

{
B p

αp
α−2 ,q

(D) · K
∥∥|Dϕ−1|p−2 | L q

p−q
(D)

∥∥ · ∥∥Jϕ−1 | L α
2
(D)

∥∥},

where I = [1, 2p/(4K − (2K − 1)p)).

Remark 4 In Sect. 1 we formulated the main result under the assumptions that the Brennanś
conjecture holds true i.e. 4K/(2K + 1) < β < 4K/(2K − 1). In the main part of the paper
we will prove main results for 4K/(2K + 1) < β < 2Kβ0/(β0(K − 1) + 2) for β0 that is a
recent known value for which the Brennanś conjecture is correct.

The next main theorem establish a connection between Brennan’s conjecture and compo-
sition operators on Sobolev spaces:

Theorem C Let Ω ⊂ R
2 be a simply connected domain. Generalized Brennan’s conjecture

holds for a number β ∈ (4K/(2K +1), 4K/(2K −1)) if and only if any K -quasiconformal
homeomorphism ϕ : Ω → D induces a bounded composition operator

ϕ∗ : L1
p(D) → L1

q(Ω)

for any p ∈ (2,+∞) and q = pβ/(p + β − 2).

Remark 5 Theorem C states equivalence of the integrability of Jacobians of quasiconformal
mappings and boundedness of compositions operators on Sobolev spaces. The proof of the
necessity is based on the work [28] (see, also [33]).
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250 Vladimir Gol’dshtein et al.

In the recent works we studied composition operators on Sobolev spaces defined on
simply connected planar domains in connection with the conformal mappings theory [15].
This connection leads to two-weight Sobolev embeddings [16,17] with universal conformal
weights. Another application of conformal composition operators to spectral stability in
conformal regular domains was given in [8].

2 Composition operators and quasiconformal mappings

In this section we recall basic facts about composition operators on Lebesgue and Sobolev
spaces and the quasiconformal mapping theory. Let Ω ⊂ R

n , n ≥ 2, be a n-dimensional
Euclidean domain. For any 1 ≤ p < ∞ we consider the Lebesgue space L p(Ω) of measur-
able functions f : Ω → R equipped with the following norm:

‖ f | L p(Ω)‖ =
⎛
⎝∫

Ω

| f (x)|p dx

⎞
⎠

1
p

< ∞.

The following theorem about composition operators on Lebesgue spaces is well known
(see, for example [33]):

Theorem 1 Let ϕ : Ω → Ω̃ be a weakly differentiable homeomorphism between two
domains Ω and Ω̃ . Then the composition operator

ϕ∗ : Lr (Ω̃) → Ls(Ω), 1 ≤ s ≤ r < ∞,

is bounded, if and only if ϕ−1 possesses the Luzin N-property and

⎛
⎜⎝∫

Ω̃

∣∣J (y, ϕ−1)
∣∣ r

r−s dy

⎞
⎟⎠

r−s
rs

= K < ∞, 1 ≤ s < r < ∞,

ess sup
y∈Ω̃

∣∣J (y, ϕ−1)
∣∣ 1s = K < ∞, 1 ≤ s = r < ∞.

The norm of the composition operator ‖ϕ∗‖ = K .

We consider the Sobolev space W 1
p(Ω), 1 ≤ p < ∞, as a Banach space of locally

integrable weakly differentiable functions f : Ω → R equipped with the following norm:

‖ f | W 1
p(Ω)‖ =

⎛
⎝∫

Ω

| f (x)|p dx

⎞
⎠

1
p

+
⎛
⎝∫

Ω

|∇ f (x)|p dx

⎞
⎠

1
p

.

Recall that the Sobolev space W 1
p(Ω) coincides with the closure of the space of smooth

functions C∞(Ω) in the norm of W 1
p(Ω).

We consider also the homogeneous seminormed Sobolev space L1
p(Ω), 1 ≤ p < ∞, of

locally integrable weakly differentiable functions f : Ω → R equipped with the following
seminorm:
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‖ f | L1
p(Ω)‖ =

⎛
⎝∫

Ω

|∇ f (x)|p dx

⎞
⎠

1
p

.

Recall that the embedding operator i : L1
p(Ω) → L1,loc(Ω) is bounded.

By the standard definition functions of L1
p(Ω) are defined only up to a set of measure zero,

but they can be redefined quasieverywhere i.e. up to a set of p-capacity zero. Indeed, every
function u ∈ L1

p(Ω) has a unique quasicontinuous representation ũ ∈ L1
p(Ω). A function ũ

is termed quasicontinuous if for any ε > 0 there is an open set Uε such that the p-capacity of
Uε is less then ε and on the setΩ\Uε the function ũ is continuous (see, for example [21,25]).

Let Ω and Ω̃ be domains in R
n . We say that a homeomorphism ϕ : Ω → Ω̃ induces a

bounded composition operator

ϕ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q ≤ p ≤ ∞,

by the composition rule ϕ∗( f ) = f ◦ ϕ, if the composition ϕ∗( f ) ∈ L1
q(Ω) is defined

quasi-everywhere in Ω and there exists a constant K p,q(Ω) < ∞ such that

‖ϕ∗( f ) | L1
q(Ω)‖ ≤ K p,q(Ω)‖ f | L1

p(Ω̃)‖
for any function f ∈ L1

p(Ω̃) [34].

Let Ω ⊂ R
n be an open set. A mapping ϕ : Ω → R

n belongs to L1
p,loc(Ω), 1 ≤ p ≤ ∞,

if its coordinate functions ϕ j belong to L1
p,loc(Ω), j = 1, . . . , n. In this case the formal

Jacobi matrix Dϕ(x) = (
∂ϕi
∂x j

(x)), i, j = 1, . . . , n, and its determinant (Jacobian) J (x, ϕ) =
det Dϕ(x) are well defined at almost all points x ∈ Ω . The norm |Dϕ(x)| of the matrix
Dϕ(x) is the norm of the corresponding linear operator Dϕ(x) : Rn → R

n defined by the
matrix Dϕ(x).

Let ϕ : Ω → Ω̃ be weakly differentiable in Ω . The mapping ϕ is the mapping of finite
distortion if |Dϕ(z)| = 0 for almost all x ∈ Z = {z ∈ Ω : J (x, ϕ) = 0}.

A mapping ϕ : Ω → R
n possesses the Luzin N -property if a image of any set of measure

zero has measure zero. Mote that any Lipschitz mapping possesses the Luzin N -property.
The following theorem gives an analytic description of composition operators on Sobolev

spaces:

Theorem 2 [28,33]A homeomorphism ϕ : Ω → Ω̃ between two domains Ω and Ω̃ induces
a bounded composition operator

ϕ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ≤ q < p < ∞,

if and only if ϕ ∈ W 1
1,loc(Ω), has finite distortion, and

K p,q(Ω) =
⎛
⎝∫

Ω

( |Dϕ(x)|p

|J (x, ϕ)|
) q

p−q

dx

⎞
⎠

p−q
pq

< ∞.

Recall that a homeomorphism ϕ : Ω → Ω̃ is called a K -quasiconformal mapping if
ϕ ∈ W 1

n,loc(Ω) and there exists a constant 1 ≤ K < ∞ such that

|Dϕ(x)|n ≤ K |J (x, ϕ)| for almost all x ∈ Ω.

Quasiconformal mappings have a finite distortion, i.e. Dϕ(x) = 0 for almost all points
x that belongs to set Z = {x ∈ Ω : J (x, ϕ) = 0} and any quasiconformal mapping
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252 Vladimir Gol’dshtein et al.

possesses Luzin N -property. A mapping which is inverse to a quasiconformal mapping is
also quasiconformal.

If ϕ : Ω → Ω̃ is a K -quasiconformal mapping then ϕ is differentiable almost everywhere
in Ω and

|J (x, ϕ)| = Jϕ(x) := lim
r→0

|ϕ(B(x, r))|
|B(x, r)| for almost all x ∈ Ω.

Note, that a homeomorphism ϕ : Ω → Ω̃ is a K -quasiconformal mapping if and only
if ϕ generates by the composition rule ϕ∗( f ) = f ◦ ϕ an isomorphism of Sobolev spaces
L1

n(Ω) and L1
n(Ω̃):

K − 1
n ‖ f | L1

n(Ω̃)‖ ≤ ‖ϕ∗ f | L1
n(Ω)‖ ≤ K

1
n ‖ f | L1

n(Ω̃)‖
for any f ∈ L1

n(Ω̃) [30].
Boundedness of composition operators generated by quasiconformal mappings in the case

p �= n was considered also in [24].
For any planar K -quasiconformal homeomorphism ϕ : Ω → Ω̃ , the following sharp

results is known: J (x, ϕ) ∈ Lα∗,loc(Ω̃) for any α∗ < K/(K − 1) [2,12].
If K ≡ 1 then 1-quasiconformal homeomorphisms are conformal mappings and in the

space Rn , n ≥ 3, are exhausted by Möbius transformations.

3 Composition operators and Brennan’s conjecture

Brennan’s conjecture [7] is that if ϕ : Ω → D is a conformal mappings of a simply connected
planar domain Ω , Ω �= R

2, onto the unit disc D then∫
Ω

|ϕ′(x)|β dx < +∞, for all
4

3
< β < 4. (3)

For 4/3 < s < 3, it is a comparatively easy consequence of the Koebe distortion theorem
(see, for example, [4]). Brennan [7] (1978) extended this range to 4/3 < s < 3 + δ, where
δ > 0, and conjectured it to hold for 4/3 < s < 4. The example of Ω = C\(−∞,−1/4]
shows that this range of s cannot be extended.

Brennan’s conjecture has been established for β ∈ (4/3, β0), where β0 = 3.752 [20].
Brennan’s conjecture for quasiconformal mappings was considered in [22]. In [22] it was
proved that, if ϕ : Ω → D be a K -quasiconformal mapping, then∫

Ω

|Dϕ(x)|β dx < +∞, for all
4K

2K + 1
< β <

2Kβ0

(K − 1)β0 + 2
. (4)

Here β0 is the proved upper bound for Brennan’s conjecture.
Nowweprove thatGeneralizedBrennan’s conjecture leads to boundedness of composition

operators on Sobolev spaces generates by quasiconformal mappings.

Theorem C Let Ω ⊂ R
2 be a simply connected domain. Generalized Brennan’s conjecture

holds for a number β ∈ (4K/(2K + 1), 2Kβ0/(β0(K − 1) + 2)) if and only if any K -
quasiconformal homeomorphism ϕ : Ω → D induces a bounded composition operator
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ϕ∗ : L1
p(D) → L1

q(Ω)

for any p ∈ (2,+∞) and q = pβ/(p + β − 2).

Proof By the composition theorem [28,33] a homeomorphism ϕ : Ω → D induces a
bounded composition operator

ϕ∗ : L1
p(D) → L1

q(Ω), 1 ≤ q < p < ∞.

if and only if ϕ ∈ W 1
1,loc(Ω), has finite distortion and

K p,q(Ω) =
⎛
⎝∫

Ω

( |Dϕ(x)|p

|J (x, ϕ)|
) q

p−q

dx

⎞
⎠

p−q
pq

< ∞.

Because ϕ is a quasiconformal mapping, then ϕ ∈ W 1
n,loc(Ω) and Jacobian J (x, ϕ) �= 0 for

almost all x ∈ Ω . Hence the p-dilatation

K p(x) = |Dϕ(x)|p

|J (x, ϕ)|
is well defined for almost all x ∈ Ω and so ϕ is a mapping of finite distortion. By Brennan’s
conjecture ∫

Ω

|Dϕ(x)|β dx < +∞, for all
4K

2K + 1
< β <

2Kβ0

(K − 1)β0 + 2
.

Then

K
pq

p−q
p,q (Ω) =

∫
Ω

( |Dϕ(x)|p

|J (x, ϕ)|
) q

p−q

dx =
∫
Ω

( |Dϕ(x)|2
|J (x, ϕ)| |Dϕ(x)|p−2

) q
p−q

dx

≤ K
q

p−q

∫
Ω

(|Dϕ(x)|p−2) q
p−q dx = K

q
p−q

∫
Ω

|Dϕ(x)|β dx < ∞,

for β = (p − 2)q/(p − q). Hence we have a bounded composition operator

ϕ∗ : L1
p(D) → L1

q(Ω)

for any p ∈ (2,+∞) and q = pβ/(p + β − 2).
Let us check that q < p. Because p > 2 we have that p + β − 2 > β > 0 and so

β/(p + β − 2) < 1. Hence we obtain q < p.
Now, let the composition operator

ϕ∗ : L1
p(D) → L1

q(Ω), q < p,

is bounded for any p ∈ (2,+∞) and q = pβ/(p + β − 2). Then, using the Hadamard
inequality:

|J (x, ϕ)| ≤ |Dϕ(x)|2 for almost all x ∈ Ω,

and Theorem 2, we have∫
Ω

|Dϕ(x)|β dx =
∫
Ω

|Dϕ(x)| (p−2)q
p−q dx ≤

∫
Ω

( |Dϕ(x)|p

|J (x, ϕ)|
) q

p−q

dx < +∞.
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254 Vladimir Gol’dshtein et al.

The suggested approach to the Poincaré–Sobolev type inequalities in bounded planar
domains Ω ⊂ R

2 is based on translation of these inequalities from the unit disc D to Ω . On
this way we use the following duality [32]:

Theorem 3 If a homeomorphism ϕ : Ω → Ω ′, Ω,Ω ′ ⊂ R
2, generates by the composition

rule ϕ∗( f ) = f ◦ ϕ a bounded composition operator

ϕ∗ : L1
p(Ω

′) → L1
q(Ω), 1 < q ≤ p < ∞,

then the inverse mapping ϕ−1 : Ω ′ → Ω generates by the composition rule (ϕ−1)∗(g) =
g ◦ ϕ−1 a bounded composition operator

(ϕ−1)∗ : L1
q ′(Ω) → L1

p′(Ω ′), 1

q
+ 1

q ′ = 1,
1

p
+ 1

p′ = 1.

From Theorem C and Theorem 3 we immediately obtain Theorem 4:

Theorem 4 Let Ω ⊂ R
2 be a simply connected domain and ϕ : Ω → D be a K -

quasiconformal homeomorphism. Suppose that p ∈ (2Kβ0/((K + 1)β0 − 2), 2).
Then the inverse mapping ϕ−1 induces a bounded composition operator

(ϕ−1)∗ : L1
p(Ω) → L1

q(D)

for any q such that

1 ≤ q ≤ (2β0 − 4)p

2Kβ0 − ((K − 1)β0 + 2)p
<

2p

4K − (2K − 1)p
.

The inequality

‖(ϕ−1)∗ f | L1
q(D)‖ ≤ K

1
p

⎛
⎝∫

D

|Dϕ−1(y)| (p−2)q
p−q dy

⎞
⎠

p−q
pq

‖ f | L1
p(Ω)‖ (5)

holds for any function f ∈ L1
p(Ω).

Proof By Theorem C we have a bounded composition operator

ϕ∗ : L1
q ′(D) → L1

p′(Ω)

for q ′ ∈ (2,+∞) and p′ = q ′β/(q ′ + β − 2).
Then, by Brennan’s conjecture, p′ ∈ (2, 2Kβ0/((K − 1)β0 + 2)). Now using Theorem 3

we have

p = p′

p′ − 1
∈
(

2Kβ0

(K + 1)β0 − 2
, 2

)
.

Since

p = p′

p′ − 1
= q ′β

q ′β − (q ′ + β + 2)
,

we obtain by direct calculations that

q ′ = (4 − 2β0)p

2Kβ0 − ((K + 1)β0 − 2)p
.
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By Theorem 3 q = q ′/(q ′ − 1) and q ≤ p. By elementary calculations

1 ≤ q ≤ (2β0 − 4)p

2Kβ0 − ((K − 1)β0 + 2)p
<

2p

4K − (2K − 1)p
.

Now we prove the inequality (5). Let f ∈ L1
p(Ω) ∩ C∞(Ω). Then the composition

g = (ϕ−1)∗( f ) ∈ L1
1,loc(D) [31]. Hence, using Theorem 2 we obtain

‖g | L1
q(D)‖ ≤

⎛
⎝∫

D

( |Dϕ−1(y)|p

|J (y, ϕ−1)|
) q

p−q

dy

⎞
⎠

p−q
pq

‖ f | L1
p(Ω)‖

=
⎛
⎝∫

D

( |Dϕ−1(y)|2 · |Dϕ−1(y)|p−2

|J (y, ϕ−1)|
) q

p−q

dy

⎞
⎠

p−q
pq

‖ f | L1
p(Ω)‖

≤ K
1
p

⎛
⎝∫

D

|Dϕ−1(y)| (p−2)q
p−q dy

⎞
⎠

p−q
pq

‖ f | L1
p(Ω)‖.

Approximating an arbitrary function f ∈ L1
p(Ω) by smooth functions [32,33], we obtain

the required inequality.

4 Poincaré–Sobolev inequalities

Two-weight Poincaré–Sobolev inequalities Let Ω ⊂ R
2 be a planar domain and let v : Ω →

R be a real valued function, v > 0 a.e. in Ω . We consider the weighted Lebesgue space
L p(Ω, v), 1 ≤ p < ∞, of measurable functions f : Ω → R with the finite norm

‖ f | L p(Ω, v)‖ :=
⎛
⎝∫

Ω

| f (x)|pv(x)dx

⎞
⎠

1
p

< ∞.

It is a Banach space for the norm ‖ f | L p(Ω, v)‖.
In the monograph [21] one-weight Poincaré–Sobolev inequalities with weights generates

by Jacobians of quasiconformalmappingswere studied. Using Theorem 4we prove existence
of universal two-weight Poincaré–Sobolev inequalities in any simply connected bounded
domain Ω ⊂ R

2.

Theorem 5 Suppose that Ω ⊂ R
2 is a simply connected domain and h(x) = |J (x, ϕ)| is the

quasiconformal weight defined by a K -quasiconformal homeomorphism ϕ : Ω → D. Then
for every p ∈ (2Kβ0/((K + 1)β0 − 2), 2) and every function f ∈ W 1

p(Ω), the inequality

inf
c∈R

⎛
⎝∫

Ω

| f (x) − c|r h(x)dx

⎞
⎠

1
r

≤ Br,p(Ω, h)

⎛
⎝∫

Ω

|∇ f (x)|pdx

⎞
⎠

1
p

holds for any r such that

1 ≤ r <
p

2 − p
· 2β0 − 4

Kβ0
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with the constant

Br,p(Ω, h) ≤ inf
q∈[1,2p/(4K−(2K−1)p))

{K̃ p,q(D) · Br,q(D)}.

Here Br,q(D) is the best constant in the (unweighted) Poincaré–Sobolev inequality in the
unit disc D ⊂ R

2 and

K̃ p,q(D) = K
1
p

⎛
⎝∫

D

|Dϕ−1(y)| (p−2)q
p−q dy

⎞
⎠

p−q
pq

.

Proof By conditions of the theorem for a K -quasiconformal mapping ϕ : Ω → D∫
Ω

|Dϕ(x)|β dx < +∞, for all
4K

2K + 1
< β <

2Kβ0

(K − 1)β0 + 2
.

By Theorem 4, if

1 ≤ q ≤ (2β0 − 4)p

2Kβ0 − ((K − 1)β0 + 2)p
<

2p

4K − (2K − 1)p
(6)

then the inequality

‖∇( f ◦ ϕ−1) | Lq(D)‖ ≤ K̃ p,q(D)‖∇ f | L p(Ω)‖ (7)

holds for every function f ∈ L1
p(Ω).

Let f ∈ L1
p(Ω)∩C1(Ω). Then the function g = f ◦ϕ−1 is defined almost everywhere in

D and belongs to the Sobolev space L1
q(D) [31]. Hence, by the Sobolev embedding theorem

g = f ◦ ϕ−1 ∈ W 1,q(D) [25] and the classical Poincaré–Sobolev inequality,

inf
c∈R ‖ f ◦ ϕ−1 − c | Lr (D)‖ ≤ Br,q(D)‖∇( f ◦ ϕ−1) | Lq(D)‖ (8)

holds for any r such that

1 ≤ r ≤ 2q

2 − q
. (9)

By elementary calculations from the inequality (6), it follows that

2q

2 − q
≤ β0 − 2

Kβ0
· 2p

2 − p
<

1

K
· p

2 − p
. (10)

Combining inequalities (9) and (10) we conclude that the inequality (8) holds for any r
such that

1 ≤ r ≤ β0 − 2

Kβ0
· 2p

2 − p
<

1

K
· p

2 − p
.

Using the change of variable formula for quasiconformal mappings [31], the classical
Poincaré–Sobolev inequality for the unit disc

inf
c∈R

⎛
⎝∫

D

|g(y) − c|r dy

⎞
⎠

1
r

≤ Br,q(D)

⎛
⎝∫

D

|∇g(y)|qdy

⎞
⎠

1
q
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and inequality (7), we finally infer

inf
c∈R

⎛
⎝∫

Ω

| f (x) − c|r h(x)dx

⎞
⎠

1
r

= inf
c∈R

⎛
⎝∫

Ω

| f (x) − c|r |J (x, ϕ)|dx

⎞
⎠

1
r

= inf
c∈R

⎛
⎝∫

D

|g(y) − c|r dy

⎞
⎠

1
r

≤ Br,q(D)

⎛
⎝∫

D

|∇g(y)|qdy

⎞
⎠

1
q

≤ K̃ p,q(D)Br,q(D)

⎛
⎝∫

Ω

|∇ f (x)|pdx

⎞
⎠

1
p

.

Approximating an arbitrary function f ∈ W 1
p(Ω) by smooth functions we have

inf
c∈R

⎛
⎝∫

Ω

| f (x) − c|r h(x)dx

⎞
⎠

1
r

≤ Br,p(Ω, h)

⎛
⎝∫

Ω

|∇ f (x)|pdx

⎞
⎠

1
p

with the constant

Br,p(Ω, h) ≤ inf
q∈[1,2p/(4K−(2K−1)p))

{K̃ p,q(D) · Br,q(D)}.

The property of the K -quasiconformal α-regularity implies the integrability of a Jacobian
of quasiconformal mappings and therefore for any K -quasiconformal α-regular domain we
have the embedding ofweightedLebesgue spaces Lr (Ω, h) into non-weight Lebesgue spaces
Ls(Ω) for s = α−2

α
r :

Lemma 1 Let Ω be a K -quasiconformal α-regular domain. Then for any function f ∈
Lr (Ω, h), α/(α − 2) ≤ r < ∞, the inequality

‖ f | Ls(Ω)‖ ≤
⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy

⎞
⎠

2
α
· 1s

‖ f | Lr (Ω, h)‖

holds for s = α−2
α

r.

Proof By the assumptions of the lemma these exists a K -quasiconformal mapping ϕ : Ω →
D such that ∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy < +∞.

Let s = α−2
α

r . Then using the change of variable formula for quasiconformal mappings [31],
Hölder’s inequality with exponents (r, rs/(r − s)) and equality |J (x, ϕ)| = h(x), we obtain
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‖ f | Ls(Ω)‖ =
⎛
⎝∫

Ω

| f (x)|sdx

⎞
⎠

1
s

=
⎛
⎝∫

Ω

| f (x)|s ∣∣J (x, ϕ)
∣∣ s

r
∣∣J (x, ϕ)

∣∣− s
r dx

⎞
⎠

1
s

≤
⎛
⎝∫

Ω

| f (x)|r |J (x, ϕ)|dx

⎞
⎠

1
r
⎛
⎝∫

Ω

∣∣J (x, ϕ)
∣∣− s

r−s dx

⎞
⎠

r−s
rs

=
⎛
⎝∫

Ω

| f (x)|r h(x) dx

⎞
⎠

1
r
⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ r

r−s dy

⎞
⎠

r−s
rs

=
⎛
⎝∫

Ω

| f (x)|r h(x) dx

⎞
⎠

1
r
⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy

⎞
⎠

2
α
· 1s

.

The following theorem gives an upper estimate of the Poincaré constant and follows from
Theorem 5 and Lemma 1:

Theorem 6 Suppose that Ω ⊂ C is a K-quasiconformal α-regular domain. Then for every

p ∈
(
max

{
4K

2K + 1
,

2Kαβ0

(K + 2)αβ0 − 4(α + β0 − 2)

}
, 2

)
,

every

s ∈
[
1,

(α − 2)(β0 − 2)

Kαβ0
· 2p

2 − p

]

and every function f ∈ W 1
p(Ω), the inequality

inf
c∈R

⎛
⎝∫

Ω

| f (x) − c|sdx

⎞
⎠

1
s

≤ Bs,p(Ω)

⎛
⎝∫

Ω

|∇ f (x)|pdx

⎞
⎠

1
p

holds with the constant

Bs,p(Ω) ≤
⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy

⎞
⎠

2
α
· 1s

Br,p(Ω, h)

≤ inf
q∈I

⎧⎪⎨
⎪⎩B αs

α−2 ,q(D) · K̃ p,q(D) ·
⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy

⎞
⎠

2
α
· 1s
⎫⎪⎬
⎪⎭ ,

where I = [1, 2p/(4K − (2K − 1)p)).
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Proof Let f ∈ W 1
p(Ω). Then by Theorem 5 and Lemma 1 we obtain

inf
c∈R

⎛
⎝∫

Ω

| f (x) − c|sdx

⎞
⎠

1
s

≤
⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy

⎞
⎠

2
α
· 1s

inf
c∈R

⎛
⎝∫

Ω

| f (x) − c|r h(x)dx

⎞
⎠

1
r

≤ Br,p(Ω, h)

⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy

⎞
⎠

2
α
· 1s ⎛⎝∫

Ω

|∇ f (x)|pdx

⎞
⎠

1
p

for s ≥ 1.
Because by Lemma 1 s = α−2

α
r and by Theorem 5

1 ≤ r ≤ β0 − 2

Kβ0
· 2p

2 − p
<

1

K
· p

2 − p
,

then

1 ≤ s ≤ (α − 2)(β0 − 2)

Kαβ0
· 2p

2 − p
<

α − 2

Kα
· p

2 − p
.

Hence, by direct calculations, we obtain that

p ≥ 2Kαβ0

(K + 2)αβ0 − 4(α + β0 − 2)
.

If Brennan’s conjecture holds, i.e. β0 = 4 then we can take that

p >
2Kα

(K + 1)α − 2
.

In the case of (p, p)-Poincaré–Sobolev inequalities we have:

Theorem 7 Let Ω ⊂ R
2 be a K -quasiconformal α-regular domain and ϕ : Ω → D be a

K -quasiconformal mapping. Then for every

p ∈
(
max

{
4K

2K + 1
,
2(K − 1)αβ0 + 4(α + β0 − 2)

Kαβ0

}
, 2

)

the p-Poincaré–Sobolev inequality

inf
c∈R ‖ f − c | L p(Ω)‖ ≤ Bp,p(Ω)‖∇ f | L p(Ω)‖, f ∈ W 1

p(Ω),

holds with the constant

B p
p,p(Ω) ≤ inf

q∈I

⎧⎪⎨
⎪⎩B p

αp
α−2 ,q

(D) · K̃ p
p,q(D) ·

⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy

⎞
⎠

2
α

⎫⎪⎬
⎪⎭ ,

where I = [1, 2p/(4K − (2K − 1)p)).

Proof By Lemma 1 p = α−2
α

r and by Theorem 5

1 ≤ r ≤ β0 − 2

Kβ0
· 2p

2 − p
<

1

K
· p

2 − p
.
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Hence

α

α − 2
≤ β0 − 2

Kβ0
· 2

2 − p
<

1

K
· 1

2 − p
.

By elementary calculations

p ≥ 2(K − 1)αβ0 + 4(α + β0 − 2)

Kαβ0
.

If Brennan’s conjecture holds, i.e. β0 = 4 then we can take that

p >
(2K − 1)α + 2

Kα
.

Theorem 7 implies the lower estimates of the first non-trivial eigenvalue μ
(1)
p (Ω):

Theorem 8 Let ϕ : Ω → D be a K -quasiconformal homeomorphism from a K -
quasiconformal α-regular domain Ω to the unit disc D. Then for every

p ∈
(
max

{
4K

2K + 1
,
2(K − 1)αβ0 + 4(α + β0 − 2)

Kαβ0

}
, 2

)

the following inequality holds

1

μ
(1)
p (Ω)

≤ inf
q∈I

⎧⎪⎨
⎪⎩B p

αp
α−2 ,q

(D) · K̃ p
p,q(D) ·

⎛
⎝∫

D

∣∣J (y, ϕ−1)
∣∣ α
2 dy

⎞
⎠

2
α

⎫⎪⎬
⎪⎭ ,

where I = [1, 2p/(4K − (2K − 1)p)).

In the case α = ∞ we have the following assertion:

Corollary 1 Let ϕ : Ω → D be a K -quasiconformal homeomorphism from a K -
quasiconformal ∞-regular domain Ω to the unit disc D. Then for every

p ∈
(
max

{
4K

2K + 1
,
2(K − 1)β0 + 4

Kβ0

}
, 2

)

the following inequality holds

1

μ
(1)
p (Ω)

≤ inf
q∈I

{
B p

p,q(D) · K̃ p
p,q(D)

} · ‖Jϕ−1 | L∞(D)‖,

where I = [1, 2p/(4K − (2K − 1)p)).

5 Examples

Example A The homeomorphism

w = Az + Bz, z = x + iy, A > B ≥ 0,

is K -quasiconformal with K = A+B
A−B and maps the unit discD onto the interior of the ellipse

Ωe =
{
(x, y) ∈ R

2 : x2

(A + B)2
+ y2

(A − B)2
= 1

}
.
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We calculate the norm of the derivative of mapping w by the formula [3]

|Dw| = |wz | + |wz |
and the Jacobian of mapping w by the formula [3]

J (z, w) = |wz |2 − |wz |2.
Here

wz = 1

2

(
∂w

∂x
− i

∂w

∂y

)
and wz = 1

2

(
∂w

∂x
+ i

∂w

∂y

)
.

By elementary calculations

wz = A and wz = B.

Hence

|Dw| = A + B and J (z, w) = A2 − B2.

Then by Theorem 8 we have

1

μ
(1)
p (Ωe)

≤ inf
q∈I

(
2

πν

(
1 − ν

1/2 − ν

)1−ν
)p

× A + B

A − B

⎛
⎝∫

D

(A2 − B2)
α
2 dy

⎞
⎠

2
α
⎛
⎝∫

D

(A + B)
(p−2)q

p−q dy

⎞
⎠

p−q
q

= (A + B)p inf
q∈I

(
2

πν

(
1 − ν

1/2 − ν

)1−ν
)p

π
2q+α(p−q)

αq ,

where I = [1, 2p/(4K − (2K − 1)p)) and ν = 1/q − (α − 2)/αp.
Let p = 3/2. Then, taking q = 1 and α = ∞, we get

1

μ
(1)
3/2(Ωe)

≤ 8
√
2(A + B)

3
2 .

Example B The homeomorphism

w = (|z|k−1z + 1)2, z = x + iy, k ≥ 1,

is k-quasiconformal and maps the unit disc D onto the interior of the cardioid

Ωc = {
(x, y) ∈ R

2 : (x2 + y2 − 2x)2 − 4(x2 + y2) = 0
}
.

We calculate the partial derivatives of the mapping w

wz = (k + 1)|z|k−1(|z|k−1z + 1) and wz = (k − 1)|z|k−3z2(|z|k−1z + 1).

Hence

|Dw| = 2k|z|k−1
√

|z|2k + |z|k−1(z + z) + 1

and

J (z, w) = 4k|z|2k−2(|z|2k + |z|k−1(z + z) + 1).
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Then by Corollary 1 we have

1

μ
(1)
p (Ωc)

≤ 4(2k)p inf
q∈I

(
2

πν

(
1 − ν

1/2 − ν

)1−ν
)p

×
⎛
⎝ 2π∫

0

⎛
⎝ 1∫

0

(
ρk−1

√
ρ2k + 2ρk cosψ + 1

) (p−2)q
p−q

ρ dρ

⎞
⎠ dψ

⎞
⎠

p−q
q

. (11)

Here I = [1, 2p/(4k − (2k − 1)p)) and ν = 1/q − 1/p.
Let us consider the case of porous media flows (p = 3/2). Then, taking q = 1 and

k = 3/2 we obtain,

1

μ
(1)
3/2(Ωc)

≤ 96
√
30√

π
≈ 297.

In the case when p = 8/5 we use the following estimate of the integral (11):

1

μ
(1)
p (Ωc)

≤ 4(2k)p inf
q∈I

(
2

πν

(
1 − ν

1/2 − ν

)1−ν
)p

×
⎛
⎝2π

1∫
0

(
ρk−1

(
ρk − 1

)) (p−2)q
p−q

ρ dρ

⎞
⎠

p−q
q

.

Taking q = 1 and k = 2 we obtain

1

μ
(1)
8/5(Ωc)

≤ 20 · 2 27
5

⎛
⎝ 1∫

0

ρ
1
3

(1 − ρ2)
2
3

dρ

⎞
⎠

3
5

= 20 · 2 27
5

(
π√
3

) 3
5 ≈ 1268.

Example C The homeomorphism

w = |z|k z, z = x + iy, k ≥ 0,

is (k + 1)-quasiconformal and maps the square

Q :=
{

(x, y) ∈ R
2 : −

√
2

2
< x <

√
2

2
, −

√
2

2
< y <

√
2

2

}

onto k-star-shaped domains Ω∗
ε(k) with vertices (±√

2/2, ±√
2/2), (±ε, 0) and (0, ±ε),

where ε(k) = (
√
2/2)k+1 (Fig. 1).

We calculate the partial derivatives of the mapping w

wz =
(

k

2
+ 1

)
|z|k and wz = k

2
|z|k−2z2.

Thus

|Dw| = (k + 1)|z|k and J (z, w) = (k + 1)|z|2k .
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Fig. 1 Domains Ω∗
ε(k)

under ε = 1
2
√
2
and ε = 1

32

Then by Corollary 1 we have

1

μ
(1)
p (Ω∗

ε(k))
≤ (k + 1)p inf

q∈I

(
2

πν

(
1 − ν

1/2 − ν

)1−ν
)p

×

⎛
⎜⎜⎝

√
2
2∫

−
√
2
2

⎛
⎜⎜⎝

√
2
2∫

−
√
2
2

(
x2 + y2

) (p−2)kq
2(p−q) dy

⎞
⎟⎟⎠ dx

⎞
⎟⎟⎠

p−q
q

≤ (k + 1)p inf
q∈I

(
2

πν

(
1 − ν

1/2 − ν

)1−ν
)p

×
(

2π(p − q)

(p − 2)kq + 2(p − q)

) p−q
q

,

where I = [1, 2p/(4K − (2K − 1)p)) and ν = 1/q − 1/p.
In the case of porous media flows ( p = 3/2 ), taking q = 1, we have

1

μ
(1)
3/2(Ω

∗
ε(k))

≤ 16

√
(k + 1)3

2 − k
, 0 ≤ k < 2.
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