Biomedical applications of sapphire shaped crystals

Vladimir N. Kurlov^{1,2}, Irina A. Shikunova¹, Gleb M. Katyba^{1,3}, Kirill I. Zaytsev^{2,3,4}, Nikita V. Chernomyrdin^{2,3,4}, Irina N. Dolganova^{1,2,3}, Valery V. Tuchin^{5,6,7}, Igor V. Reshetov²

¹Institute of Solid State Physics of RAS, Chernogolovka 142432, Russia

²Sechenov First Moscow State Medical University, Moscow 119991, Russia

³Bauman Moscow State Technical University, Moscow 105005, Russia

⁴Prokhorov General Physics Institute of RAS, Moscow 119991, Russia

⁵Saratov State University, Saratov 410012, Russia

⁶Institute of Precision Mechanics and Control of RAS, Saratov 410028, Russia

⁷Tomsk State University, Tomsk 634050, Russia

E-mails: VNK, kurlov@issp.ac.ru; IAS, yardy@mail.ru

Abstract—We have proposed novel medical instruments based on sapphire shaped crystals fabricated using the edgedefined film-fed growth (EFG) or related techniques. Due to the favorable combination of the unique properties of sapphire (high thermal strength and mechanical hardness, impressive melting point and chemical resistance, transparency in a wide spectral range) the developed instruments could help to solve numerous important problems of medical diagnosis, therapy, and surgery.

Keywords—sapphire shaped crystals, Stepanov method, edgedefined film-fed (EFG) technique, medical diagnosis, therapy and surgery.

I. INTRODUCTION

For a wide range of crystals, it is rather difficult to shape the crystalline media using conventional techniques of mechanical processing, such as drilling or polishing, owing to its high hardness and anisotropy of physical properties. Therefore, various methods to grow shaped crystals directly from the melt have been proposed [1]. Among them is edgedefined film-fed growth (EFG) technique, which relies on Stepanov's concept and allows for manufacturing the sapphire shaped crystals of almost any predetermined cross-section [2-7]. Due to the favorable combination of the unique properties of sapphire (high thermal strength and mechanical hardness, impressive melting point and chemical resistance, inertness to the human blood and body fluids, transparency in a wide range of electromagnetic spectrum) [1] the sapphire shaped crystals allow for solution numerous important issues of medical diagnosis, therapy, and surgery [8].

II. RESULTS

We developed novel medical instruments based on sapphire shaped crystals, fabricated by the EFG or related techniques. Among these instruments we would particularly present:

- sapphire needles, which allow for delivery laser radiation into a tumor in the course of interstitial photodynamic therapy, thermotherapy, and tissue coagulation [9];
- sapphire scalpels, which allow for combination the • intraoperative optical diagnosis and resection of tissues with the concurrent laser coagulation of nearby blood

vessels [10];

- sapphire neuroprobes, which allow for combination the aspiration of malignant brain tissues with the intraoperative optical diagnosis and laser coagulation of nearby blood vessels [11,12];
- sapphire cryoapplicators, which allow for performing the tumor cryosurgery with the laser control of the temperature regimes and the optical diagnosis of the ice ball formation [13,14].

We performed numerical simulations and experimental studies using either the tissue phantoms or the tissues ex vivo in order to demonstrate the promising sapphire instruments for medical diagnosis, therapy, and surgery.

References

- V.N. Kurlov et al., "Chapter 5. Shaped crystal growth" in Crystal [1] Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques. London, U.K.: Wiley, 2010.
- B. Chalmers et al., J Cryst. Growth 106(5), 84-87 (1972). [2]
- [3] A. Stepanov, The Future of Metalworking, Lenizdat, Russia, 1963.
- [4] V.N. Kurlov et al., J Cryst. Growth 173(3-4), 417 (1997).
- [5] P.I. Antonov et al., Prog. Cryst. Growth Char. Mat. 44(2), 63 (2002).
- [6] N.V. Abrosimov et al., Prog. Cryst. Growth Char. Mat. 46(1-2), 1-57 (2003).
- [7] P.I. Antonov et al., Crystallography Rep. 47(1), S43 (2002).
- [8] I.A. Shikunova et al., J Phys. Conf. Ser. 672(1), 012018 (2016).
- I.A. Shikunova et al., "Sapphire capillary interstitial irradiators for laser [9] medicine," Proc. SPIE (2018, in press).
- [10] I.A. Shikunova et al., "Sapphire shaped crystals for waveguiding, sensing, and exposure applications," Progress in Crystal Growth and Characterization of Materials (2018, in press).
- [11] I.A. Shikunova et al., J Cryst. Growth 457, 265 (2017).
- [12] I.A. Shikunova et al., Proc. SPIE 10411, 1041100 (2017).
- [13] I.A. Shikunova et al., International Conference Laser Optics 2016 (LO2016), 2016 International Conference Laser Optics (LO), St. Petersburg, pp. S2-7 (2016), doi: 10.1109/LO.2016.7549974
- [14] I.A. Shikunova et al., "Sapphire shaped crystals for laser-assisted cryodestruction of biological tissues," Proc. SPIE (2018, in press).

This work is supported by the Russian Foundation for Basic Research (Projects # 17-08-00803, 17-38-80057, and 18-08-01230) and the Ministry of Education and Science of the Russian Federation (Grant # 17.1223.2017/AP).