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ABSTRACT

We have performed the in vitro terahertz (THz) spectroscopy of human brain tumors. In order to fix tissues
for the THz measurements, we have applied the gelatin embedding. It allows for preserving tissues from hydra-
tion/dehydration and sustaining their THz response similar to that of the freshly-excised tissues for a long time
after resection. We have assembled an experimental setup for the reflection-mode measurements of human brain
tissues based on the THz pulsed spectrometer. We have used this setup to study in vitro the refractive index
and the amplitude absorption coefficient of 2 samples of malignant glioma (grade IV), 1 sample of meningioma
(grade I), and samples of intact tissues. We have observed significant differences between the THz responses
of normal and pathological tissues of the brain. The results of this paper highlight the potential of the THz
technology in the intraoperative neurodiagnosis of tumors relying on the endogenous labels of tumorous tissues.

Keywords: terahertz radiation, terahertz pulsed spectroscopy, human brain tumor, malignant glioma, menin-
gioma, intraoperative diagnosis, gelatin embedding.

1. INTRODUCTION

During the past decades, a considerable progress in the terahertz (THz) science and technology has been ob-
served.1,2 Methods of THz spectroscopy and imaging have been applied for solving numerous fundamental
and applied problems in condensed matter physics,3–6 gas sensing,7 chemical and pharmaceutical sciences,8,9

non-destructive testing,10,11 security tasks,10,12,13 etc. Among all these applications, the use of THz technol-
ogy in medical diagnosis of malignancies attracts a special attention14,15 due to both non-invasiveness of the
low-power THz radiation16 and intrinsic character of contrast, which is primarily due to the increased water
content in malignant tissues as a result of their abnormal vascularity and edema.17–19 In particular, these dif-
ferences yield the non-invasive diagnosis of skin cancers,20–24 the least-invasive diagnosis of oral, liver, gastric
and colon cancers,25–31 and the intraoperative monitoring of breast tumor resection.32–36 Rapid progress in
biomedical applications of THz science and technologies pushes further research in the area of THz medical
diagnosis into the realm of studying malignancies in various localizations of human body, analyzing the origins
of differences observed between the normal and malignant tissues, and, finally, developing novel instruments of
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the THz spectroscopy and imaging, which are portable, ergonomic, fast, and, thus, reliable for use in a clinical
practice.37,38

Recently, a remarkable results in the area of the THz medical diagnosis has been reported – i.e. an ability
for discriminating malignant brain gliomas from healthy (intact) tissues has been demonstrated highlighting
the prospectives of the THz technology in the intraoperative neurodiagnosis.39–42 The in vitro THz dielectric
spectroscopy of paraffin-embedded brain glioma of mouse model has shown significant contrast between the
THz responses of healthy and abnormal tissues – the paraffin-embedded glioma possesses higher refractive index
and absorption coefficient.39 Furthermore, the reflection-mode imaging of brain gliomas of the rat models in
vitro and in vivo and human brain in vitro at the frequency of 0.5 THz demonstrates an ability for accurate
detection of the tumor margins.42 Nevertheless, the development of novel instruments for the THz intraoperative
diagnosis of brain tumors still remains challenging owing to the absence of verified database of the THz dielectric
characteristics of normal and pathological tissues, which needs large amount of samples to be measured either in
vivo or ex vivo and allows to estimate sensitivity and specificity of the THz diagnosis, as well as to the absence
of the THz instruments reliable for use in a clinical environment.

In this paper, we perform the in vitro terahertz (THz) spectroscopy of human brain tumors – 2 samples of
malignant glioma (grade IV), 1 sample of meningioma (grade I), and samples of healthy (intact) tissues. To
preserve brain tissues for the THz measurements, we use gelatin embedding,43 which allows for minimizing
hydration/dehydration of tissues during transportation and measurements, and sustaining the response of tissues
at THz frequencies similar to that of the freshly-excised ones. We assemble an experimental setup for the
reflection-mode measurements of human brain tissues based on the THz pulsed spectrometer. We apply it for
studying in vitro the refractive index and the amplitude absorption coefficient of tissues in the frequency range
from 0.05 to 1.1 THz. We demonstrate the increased THz refractive index and absorption coefficient of the
gelatin-embedded tumor tissues compared to the intact ones, which originates owing to the endogenous features
of tissues.44–47 The observed differences between the THz characteristics of normal and pathological tissues
highlight the potential of the THz spectroscopy and imaging in the intraoperative neurodiagnosis – i.e. they
could be applied for the intraoperative detection of the tumor margins in order to guarantee the gross total
resection of the tumor.

2. MATERIALS AND METHODS

2.1 Gelatin-embedded human brain tissues

As shown in Tab. 1, in this work, we measured in vitro healthy (intact) tissues and tumors of the brain – i.e. 2
samples of malignant glioma (grade IV) and 1 sample of meningioma (grade I). These samples were investigated
no later than 4 hours after the surgical resection performed according to the medical recommendations in Bur-
denko Neurosurgery Institute (Moscow, Russia). The neurosurgery of tumors was assisted by the intraoperative
exogenous fluorescence imaging, relying on the fluorescence of protoporphyrin IX (PpIX), which is induced by
5-aminolevulinic acid (5-ALA) and yields determining the tumor margins.48–51 We should notice that only one
of the two measured gliomas effectively accumulated the PpIX during the neurosurgery providing an ability for
the intraoperative fluorescence diagnosis. Thus, a comparison of the THz responses of these two different gliomas
is of particular importance from the viewpoint of examining the THz spectroscopy as a prospective tool for the
intraoperative neurodiagnosis of tumors.

Table 1. Sample of human brain tissues measured in vitro

# Tissue type Intraoperative fluorescence diagnosis

1 Intact tissues –

2 Meningioma, grade I 5-ALA-induced fluorescence of PpIX was observed

3 Glioma, grade IV 5-ALA-induced fluorescence of PpIX was observed

4 Glioma, grade IV no 5-ALA-induced fluorescence of PpIX was observed
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In order to preserve tissues for the THz measurements, we applied the gelatin-embedding.43 In contrast to
other well-known approaches for tissue fixation (paraffin embedding,39,52 formalin fixation,53 freezing,26,54 and
dehydration55) the gelatin embedding allows for preventing hydration/dehydration of tissues and, thus, sustaining
the water content in tissues and their THz response close to that of freshly-excised ones for a long time after
the surgical resection. The gelatin embedding makes the THz measurement in vitro similar to that in vivo,
which is of high importance for analysis of the ability for the intraoperative THz neurodiagnosis. During the
transportation and the THz measurements of tissues, they were placed on a reference window and covered with
a gelatin slab. After the THz measurements, the tissue specimens were fixed in the formalin and sent to the
histological examination, which confirmed the initial diagnosis.

2.2 Experimental setup

For the THz measurements of tissues, we used an experimental setup based on the THz pulsed spectrometer (see
Fig. 1 (a)). As an emitter and a detector of the THz pulses, it employs the LT-GaAs photoconductive antennas
(PCAs). The antenna emitter is pumped, and the antenna-detector is probed, with the femtosecond laser pulses
of the Toptica FErb780 laser. The experimental setup features the maximal spectral operation range of about
0.05 to 4.0 THz and the maximal spectral resolution of about 0.002 THz. It is equipped with the reflection-
mode-measurement unit (see Fig. 1 (b)), which is comprised of two off-axis parabolic mirrors for focusing the
incident THz beam on the sample surface and collimating the reflected THz beam to the detector, and a reference
quartz window for handling the gelatin-embedded tissues sample at the focal point. The THz beam irradiating
the sample of interest is s-polarized (an electric field is perpendicular to the plane of incidence). During the
measurements, the experimental setup was covered by the plastic housing and purged with the nitrogen gas,
which allows for decreasing the humidity along the THz beam path and suppressing an impact of water vapors
on the results of the THz measurements. The reference quartz window serves as a part of the housing – it is in
contact with the nitrogen atmosphere from the bottom side, and with the air, or the gelatin-embedded tissue
sample, from the top side.
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Figure 1. Experimental setup for the in vitro THz spectroscopy of the gelatin-embedded human brain tissues: (a) a top
view of the experimental setup based on the THz pulsed spectrometer (here, M stands for the flat gold mirror, BS stands
for the optical beam splitter); (b) a side view of the reflection-mode-measurement unit, which is comprised of two off-axis
parabolic mirrors for the THz beam focusing to, and collimating from, the gelatin-embedded brain tissues placed at the
focal point behind a reference quartz window. The plastic housing of the experimental setup and the system of the THz
beam path purging with the nitrogen gas are not shown for simplicity.
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2.3 The inverse problem solution of the THz pulsed spectroscopy

In order to compare the THz responses of healthy and pathological brain tissues, from the THz measurements,
we reconstructed the frequency-dependent refractive index n (ν) and the amplitude absorption coefficient α (ν)
of biotissues, which are related to the complex refractive index of the sample ñ (ν) as

ñ = n− i c

2πν
α (1)

(here, c ' 3× 108 m/s is the speed of light in a free space), do not depend on the method of measurements, and
fully describe the THz wave – tissue interactions in the framework of classical electrodynamics.17

To reconstruct the refractive index and the amplitude absorption coefficient of tissues, we used the method
described in papers.23,56,57 As shown in Fig. 2, it implies resolving the inverse problem of the THz pulsed
spectroscopy relying on processing of the 3 waveforms – i.e. (i) a reference one Er (t) reflected from the empty
window, (ii) a reference one Em (t) reflected from the window, behind which the flat gold mirror is placed, and
(iii) a sample one Es (t) reflected from the window, behind which the sample of interest is handled. The complex
refractive index of the sample (ñ = ñ2) is reconstructed via the minimization of the error functional

ñ = argminñ [Φ] , (2)

Φ =
∣∣H̃exp − H̃th

∣∣2 +
∣∣φ[H̃exp]− φ[H̃th]

∣∣2, (3)

where |...| and φ[...] stand for the modulus and the phase of the complex number, H̃exp (ν) and H̃th (ν, ñ) are the
experimental and theoretical transfer functions.

We defined the experimental transfer function based on the measured waveform

H̃exp =
Ẽs − Ẽr

Ẽm − Ẽr

, (4)

where Ẽr (ν), Ẽm (ν) and Ẽs (ν) stand for the Fourier spectra of the waveforms. The theoretical transfer function
assumes interference of all THz pulses presented in the reference and sample waveforms, including the THz pulse
reflected from the front surface of the window (see marker I in Fig. 2 (b) and (c)), the THz pulse reflected from
the interfaces between the window and the air, the mirror, and the sample (see marker II in Fig. 2 (b) and (c)),
and N satellite THz pulses originating from the multiple THz wave reflections within the reference window (for
example, see marker III in Fig. 2 (b) and (c), which corresponds to the first satellite pulse)

H̃th =
R̃12 − R̃10 +

∑N
j=1

(
R̃j+1

12 − R̃
j+1
10

)
R̃j

10P̃
2j
1

R̃13 − R̃10 +
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j=1

(
R̃j+1

13 − R̃
j+1
10

)
R̃j

10P̃
2j
1

. (5)

R̃mk (ν, ñm, ñk, θ1, θ2) stands for the Fresnel coefficient of the amplitude reflection from interface between the
mth and kth media defined for the s-polarized wave

R̃mk =
ñm cos θm − ñk cos θk
ñm cos θm + ñk cos θk

. (6)

Here, the indices m, k = 0, 1, 2, 3 correspond to the air, quartz, tissue and gold mirror, respectively, θm and θk
stand for the angles of incidence and reflection, which are quite close to the normal incidence. The complex
refractive indices of the air ñ0 and the quartz ñ1, the effective complex refractive index of the gold ñ3, and
the thickness of the reference window l1 are known a priori. The operator P̃1 (ν, ñ1, l1) describes the THz wave
propagation along the distance l′1 = l1/ cos θ2 in the reference quartz window and is defined by the Bouguer-
Lambert-Beer law

P̃1 = exp

(
−i2πν

c
ñ1l

′
1

)
. (7)
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Figure 2. Detection of the reference and sample waveforms using the experimental setup and the reflection-mode-
measurement unit: (a) a scheme of the THz beam focusing to, and collimation from, the sample of interest, which
is placed behind the reference window; (b) a scheme of the THz wave reflection from the empty reference window, or
the reference window with the gold mirror placed behind it, during the detection of the reference waveforms Er and Em,
respectively; (c) a scheme of the THz wave reflection from the reference window with the sample of interest handled behind
it during the detection of the sample waveform Es. In panels (b) and (c), the characters I, II, and III stand for the separate
components of the THz waveforms – i.e. the first THz pulse reflected from the front surface of the reference window, the
second THz pulse reflected from the interface between the window and the air, the gold mirror, and the sample, and the
third THz pulse (the satellite pulse) originating from the multiple THz wave reflection within the reference window.

3. RESULTS

Figure 3 shows the results of the THz measurements of the gelatin-embedded human brain tissues using the
described experimental setup and the method for resolving the inverse problem of the THz pulsed spectroscopy.
We reconstructed (a) the refractive index and (b) the amplitude absorption coefficient of 2 malignant gliomas
(grade IV), 1 meningioma (grade I), and intact tissue (see Tab. 1) in the frequency range of 0.1 to 1.1 THz. Each
tissue sample features a lateral dimensions of about 1.5× 1.5 cm2, which is much larger compared to the size of
the THz beam spot. We examined the reproducibility of the experimental data and the fluctuations of the THz
response for each tissue specimen by considering different points of its surface – these factors are accounted in
the error bars of experimental curves (see Fig. 3).

The observed results demonstrate good reproducibility – i.e. the frequency-dependent curves of the refractive in-
dex and the amplitude absorption coefficient are characterized by rather small error bars. In complete agreement
with the previous works,39–42 we observed statistical differences between the THz response of intact tissues and
tumors, which might result from the increased water content and the structural changes in tumor tissues. Both
meningioma and gliomas possess increased THz refractive index and amplitude absorption coefficient compared
to the intact tissues, while the highest statistical differences between the normal and pathological tissues are
observed in the frequency range of 0.3 to 0.7 THz. We should particularly notice a contrast between the THz
characteristics of the intact tissues and the glioma, for which no 5-ALA-induced fluorescence of PpIX was ob-
served during the intraoperative fluorescence diagnosis (see Tab. 1). This contrast might highlight the potential
advantage of the THz diagnosis over the standard methods for the intraoperative diagnosis of brain tumors, the
majority of which uses endogenous labels of tumor and features limited sensitivity and specificity.

4. DISCUSSIONS

The use of the gelatin embedding for preserving the tissues makes the THz measurement in vitro similar to that
in vivo, which is important for analysing the ability of the intraoperative THz neurodiagnosis. The results of
this preliminary study yield feasibility test, which aims to objectively uncover strengths and weaknesses of the
THz spectroscopy from the viewpoint of its use for differentiation between the normal (intact) tissues and the
tumors of the brain. They allow us for demonstrating the prospective of the THz technology in the intraoperative
neurodiagnosis.
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Figure 3. Results of the in vitro THz spectroscopy of the gelatin-embedded brain tissues – healthy (intact) tissue, 1
meningioma and 2 gliomas, (one of which fluorescent and non-fluorescent in the presence of 5-ALA): (a) refractive index;
(b) amplitude absorption coefficient.

Despite the promising results of the previous39–42 studies and the recent work, the intraoperative THz neurodiag-
nosis of brain tumors is still far from practical realization. In order to develop the methods of THz neurodiagnosis
and to bring them to a clinical practice, in our future work, we would focus our research efforts on

• Accumulating the verified database of the THz dielectric responses of normal tissues and tumors of the
brain;

• Analyzing this database to study an ability for the differentiation between normal and pathological tissues
of the brain;

• Selecting the optimal THz frequencies and principal components for the differentiation of healthy tissues
and tumors of the brain;

• Estimating the sensitivity and specificity of the THz neurodiagnosis of tumors and comparing the THz
methods with other modern modalities of the intraoperative neurodiagnosis;

• Developing the novel THz instruments reliable for use in a clinical environment.

5. CONCLUSIONS

In this paper, we have demonstrated the results of in vitro THz spectroscopy of the gelatin-embedded human
brain tumors – 2 samples of malignant glioma (grade IV), 1 sample of meningioma (grade I), and samples of
intact tissue. By applying the gelatin embedding, we have preserved tissues from hydration/dehydration and
sustained their THz response unaltered compared to the freshly-excised tissues for a long time after resection. We
have experimentally demonstrated increased refractive index and absorption coefficient of the gelatin-embedded
human brain tumors compared to the intact tissues in the THz range of electromagnetic spectrum. The results
of this study justify the potential of the THz technology in the intraoperative neurodiagnosis of tumors.
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