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In this paper we present simple yet efficient parallel program implementation of grid-difference

method for solving nonlinear parabolic equations, which satisfies both fully conservative property

and second order of approximation on non-uniform spatial grid according to geometrical sanity

of a task. The proposed algorithm was tested on Perona–Malik method for image noise filtering

task based on differential equations. Also in this work we propose generalization of the Perona–

Malik equation, which is a one of diffusion in complex-valued region type. This corresponds to the

conversion to such types of nonlinear equations like Leontovich–Fock equation with a dependent

on the gradient field according to the nonlinear law coefficient of diffraction. This is a special case

of generalization of the Perona–Malik equation to the multicomponent case. This approach makes

noise removal process more flexible by increasing its capabilities, which allows achieving better

results for the task of image denoising.
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Introduction

In recent years applications of mathematical physics methods in image processing have been

of great interest. One of such state-of-the-art approaches is Perona–Malik method used for image

denoising as numerical solution of partial differential equations (PDEs) [1]. This method was

further developed in many works, e.g. [2–4]. The idea of this method is relatively simple: authors

suggest to numerically solve PDE (for instance stationary diffusion equation) with image being

denoised as initial conditions. This is equivalent to image blurring with Gaussian filter and

has deep connection with other methods of denoising filters constructions based on application

of Green function for PDEs [5]. For example, Gaussian filter is a Green function for diffusion

equation. Thus, we can say that usage of diffusion equation in Perona–Malik approach for given

image is equivalent to convolution of this image with Gaussian filter. It should be mentioned

that application field of PDEs in image processing is not only denoising, but also broken image

restoration, known as inpainting process [6]. Development of denoising methods based on solution

of PDEs is troublesome because of heavy computational load. But usage of clusters and graphical

processor units (GPUs) can overcome this shortage. That is why parallel implementation of

algorithms based on Perona–Malik approach is very promising. In this paper we propose an

algorithm for image denoising based on non-linear diffusion equation. Parallel implementation

was done on FORTRAN 90 with MPI (Message Passing Interface) and Intel Fortran compiler.

The solution of the given equation is based on implicit finite difference scheme of the second

order.
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1. Generalized Perona–Malik Approach

Let us consider the following PDE of the given form:

∂tψ +∇D(∇ψ)∇ψ = 0. (1)

Here ψ(x, y) is a field (generally speaking - complex numbered) corresponding to processed

image being denoised. Parameter t is evolutional one. In general case coefficient D(∇ψ) is com-

plex numbered function [7]. Let as analyze specific form of D(∇ψ):

D = exp(−iϕ) exp(−(∇ψ/q)2). (2)

Here varph is a phase, tunable parameter whose inference on efficiency of generalized

Perona–Malik approach is a subject of interest. With ϕ = 0 we get ordinal case of non-linear

diffusion equation. With ϕ = π/2 we get non-linear Schrödinger equation (in generalized sense,

because non-linear Schrödinger equation assumes non-linearity of third order of field).

2. Numerical Scheme

According to the given initial conditions we construct non-uniform grid with symmetry to

the origin: xI = −xN+1−I = xI−1 + hI where hI = hI−1ε(I), I = N/2 + 1..N , N is the number

of grid nodes. In the case of axially symmetric xN/2+1 = h0/2 and hN/2+1 = h0. The symbol is

entered here ε ≤ 1 mesh heterogeneity parameter of the grid.

Similarly, we perform a partition of the orthogonal coordinate: yI . For the simplicity let us

assume, that there are equal number of points on each computational node.

We solve this task with alternative directions method [8], which allows to solve one-

dimensional diffusion task on each half-step:

∂

∂t
ψ =

∂

∂x
(D(ψ,

∂

∂x
ψ, x)

∂

∂x
ψ) + F (x). (3)

The given equation is a non-linear one, and we solve it by Newton–Raphson method [8].

This leads to the necessity of solving a linear system of differential equations on each step.

Condition of second order approximation of diffusion operator for scheme on non-uniform grid

can be deduced from the condition of the following equations coherence:

∂

∂x
(D(x))

∂

∂x
ψ)j = αjψj−1 + βjψj + γjψj+1 +O(h3). (4)

Again, for simplicity, let each processor have the same number of points ml = N/M , where

M is the number of processors.

Global index J relates to local index j on processor with number q as follows: J = (q − 1) ∗
ml + j. The numerical implementation of the diffraction step will be implemented on a three-

point “cross” scheme with a vory order of accuracy of approximation of the Laplace operator

on a non-uniform grid. Numerical implementation of diffraction step will be performed by three

point “cross” scheme with second order approximation of Laplace operator on non-uniform grid.

In this case we need to solve a system of equation of the kind:

aJψ
l+1
J−1 − cJψ

l+1
J bJψ

l+1
J+1 = −f lJ . (5)
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To solve this system of algebraic equations, we will use generalized method of fast paral-

lelization in complex case [9].

3. Results of Numerical Calculations

The following are examples (Fig. 1) of the original image of a noisy image and an example

of the result of a partially noise-free image:

(a) Initial image (b) Noisy image (c) Denoised image

Figure 1. Examples of images

We propose to measure the quality of denoising by RMS error of difference between initial

and noised image: m2(t) = (|ψ(t)| − |ψiso|)2. Bellow, graphics m2(t) (Fig. 2) acquired from

the solution of equations with Perona–Malik method 1 for different phase values in diffusion

equation 2 are presented:
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Figure 2. Dependance m2(t) of time for different values k, ϕ = kπ/6, where: k=1,2..11

From the presented pictures it can be seen, that efficiency of image denoising significantly

depends on parameter ϕ, and for the case under study value ϕ = 2π/3 is optimal.
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Conclusion

In this paper we present fully conservative numerical scheme (in a weak sense), which allows

to control correctness of the equation solution by tracing motion integrals and using this to

correct evolution variable step. This numerical scheme was parallely implemented for complex

generalization of Perona–Malik equation. It was shown, that this approach extends denoising

abilities of the method, which allows to achieve better results for the image noise removal task.

Thus, in particular, in the present study we show that complex parameter equals one is optimal

for image denoising task when phase is equal ϕ = 2π/3.
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