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Abstract. The paper is devoted to the numerical investigation of inelastic deformation and 
fracture of porous alumina ceramics. A structural model of the mesovolume is developed with 
the use of an experimental scanning electron microscopic image. The mechanical behavior of 
the matrix is described by two constitutive models from plasticity theory and continuum 
damage mechanics. Uniaxial tension and compression of the mesovolume are numerically 
simulated in a two-dimensional formulation. The features of fracture patterns in the cases of 
the two constitutive models adopted are analysed. Effective mechanical characteristics of the 
studied ceramics are determined from the performed calculations. The results obtained can be 
used to specify the characteristics of the Drucker–Prager material for macroscopic modeling. 

1. Introduction 
Currently, porous ceramic products are used in various fields. Compared with porous metals and 
plastic materials, porous ceramics have several advantages, namely, good resistance to high 
temperatures and aggressive media, refractory properties, wear resistance as well as low thermal 
conductivity and low density. Ceramic products have areas of application where their inherent porosity 
characterized by the size and morphology of pores, their connectivity, permeability, etc. is very 
important. Pores in the material have both positive and negative effects. For example, on the one hand, 
they provide the necessary functional properties; on the other hand, they reduce the strength of the 
material. Therefore, in modeling deformation and fracture of porous materials, account should be 
taken not only of the porous structure but also of its influence on the mechanical behavior of the 
material. To do this requires various approaches, one of which is physical mesomechanics of materials 
[1–7]. 

Numerical modeling is the most important and actively developed method of investigation of 
deformation processes in porous media. In contrast to laboratory experiments, numerical modeling is 
much less resource-consuming and repeatable in different variations. 

There exist numerous models to describe the behavior of brittle materials, among which are 
concrete, rocks, and ceramics. Example models are the Holmquist–Johnson–Cook model [8], Riedel–
Hiermaier–Thoma model [9], continuous surface cap model [10], etc. However, the above models 
were developed and tested in order to describe high strain rates and/or shock loading [11–14]. A 
classical limit-state criterion for describing fracture or inelastic deformation of brittle and quasi-brittle 
materials that resist differently under compression and tension is the Drucker–Prager criterion [2, 15]. 
Not the mere fact of fracture but the process of its development in the material can be effectively 
described with the concept of continuum damage mechanics where the evolution of damage 
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accumulation is taken into account: local volumes of the material become fractured with damage 
accumulation. Moreover, these processes are understudied for porous ceramics. 

Therefore, the aim of this paper is to numerically investigate the mechanical behavior of porous 
alumina ceramics at the mesolevel using two models. One is based on the elastic-plastic approach, and 
the other is on the ideology of damage accumulation. This modeling results in the effective mechanical 
characteristics of the porous material: shear and bulk moduli, ultimate compressive and tensile 
stresses. The latter are used to calculate the parameters of the Drucker–Prager plasticity model, which 
are further helpful in macroscopic modeling to set effective strength properties of the porous material. 

2. Model description 
Our task is to determine effective elastic and strength characteristics for the macrolevel, i.e. a 
homogeneous porous material, by modeling the mechanical behavior of a mesovolume with explicit 
consideration for pores using the homogenization method. Another task is based on the analysis of 
fracture patterns to determine features of each of the models in relation to the description of 
mesoscopic fracture and macro–response in the form of averaged loading diagrams under uniaxial 
compression and tension. 

To predict mechanical characteristics of the material, we study mesovolumes with explicit 
consideration for pores under uniaxial tension and compression. Based on the previous experimental 
data [16], scanning electron microscopic (hereinafter, SEM) images of porous aluminum oxide 
ceramics were chosen. Computer geometric models of the mesovolume structure were constructed 
using SEM images of pores. An example of the SEM image and the obtained structural model are 
shown in Fig. 1. Here the mesovolume dimensions are 100 × 100 µm2; the mesovolume porosity is 
17%. The structural model shown in Fig. 1 is the object of investigation in this paper. 

For the matrix, we take physical and mechanical characteristics corresponding to nonporous Al2O3 
(Table 1). Characteristics of the elastic medium are set for the pores, with the elastic moduli three 
orders of magnitude lower than in the matrix. 

 

 

 

 
(a)  (b) 

Figure 1. Scanning electron microscopy of the etched surface of Аl2O3 specimen 
(a). A computer model of the ceramic structure with the porosity 17 % (b). 

 
Table 1. Mechanical and physical properties of Аl2O3-based ceramics. 

Density ρ, 
g/cm3 

Cohesion Y, 
GPa 

Bulk modulus 
G, GPa 

Shear modulus К, 
GPa 

Coefficient of 
internal friction α 

3.98 6.65 251 163 0.4 
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As the structural models were two-dimensional, the problem of modeling the mechanical behavior 
was solved in the two-dimensional statement for the plane-strain conditions. Deformation and fracture 
processes in the studied specimens are computed with the use of the finite-difference method for 
numerical solution of differential equations of the solid mechanics within the Lagrangian description 
of a continuum. To perform modeling an original computer code was developed. The mechanical 
behavior of the material is described by the system of continuum mechanics equations that includes 
the fundamental conservation laws (1), geometrical relations (2), and constitutive equations 

 ,V 00V jijiv ,  (1) 

 ijjiij vv ,,2   ijjiij vv ,,2   (2) 

The elastic response is described by the relations of the hypoelastic material model (3) 

   K=P , ikkjkjikijijij s+sεG=s 



  

3
12  (3) 

Here ρ0, ρ, V0, V are the initial and current values of the material density and elementary volume, 
respectively, vi are the velocity vector components, σij and sij are the stress and the deviatoric stress 
tensor components, εij are the strain tensor components, P is the pressure, θ=εii is the bulk strain, G and 
K are the shear modulus and bulk modulus, respectively, δij is the Kronecker symbol, ikkjkjik s+s    is 
the rotation correction that occurs when using the corotational Jaumann derivative to the stress tensor. 

Inelastic deformation and fracture are modeled using two constitutive models: a model of the 
elastic-brittle material and a model of the elastic-plastic material. In the elastic-brittle model, we use 
the governing equations taking account of damage accumulation that is responsible for degradation of 
elastic properties: 

 )1(0 DG=G  , )1(0 DK=K   (4) 
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Here G0 and K0 are the initial shear modulus and bulk modulus, respectively, D(t) is the function of the 
material degradation (damage), H(μσ) is the Heaviside function,  +P=  is the Drucker–Prager 
stress, α is the coefficient of internal friction, τ = (½sijsij)½ is the stress tensor intensity, с

0  and t
0  are 

the initial and current stress values at the elastic stage after which the material begins to accumulate 
damages in the compression and tension regions, respectively, with the constraint ct

00 <<  , tс t,t  are 
the characteristic fracture time in compression and tension, respectively, and 2

0* )01.1(   =  is the 
model parameter defining the damage accumulation rate. 

Finally, we take, as the fracture criterion, the condition when the local damage value equals unity. 
With the elastic-plastic model, the strain rates in formula (3) present the difference of the total 

strain rate and plastic strain rate θ = θт − θp, ε = εт − εp. 
The components of the plastic strain rate tensor are determined by the flow rule as 

 









 ij

ijp
ij J

S

22
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with the proviso that 0)( ijf , where 

 YPJf ij  2)(  (7) 
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Here β is the dilatation coefficient, Y is the cohesion, J2 is the second invariant of the deviatoric 
stress tensor, and   is the nonnegative plastic consistency parameter (multiplier). 

In the model of the elastic-plastic material, we take, as the fracture criterion, the ultimate 
accumulated inelastic strain. 

3. Modeling results and discussion 
Mesoscopic modeling of deformation and fracture gives effective mechanical characteristics of the 
porous material, i.e. elastic shear and bulk moduli, ultimate compressive and tensile stresses. The latter 
data are used to calculate the parameters of the Drucker–Prager plasticity model to set macroscopic 
properties of the material. As modeling is performed under uniaxial loading in the plane-strain 
conditions, the formulae for cohesion and the coefficient of internal friction have the form 

  tc

tcY





3
12 2

,  
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where σc and σt are the ultimate compressive and tensile stresses, respectively, and ν is the Poisson 
ratio. 

Ultimate compressive and tensile stress values as well as the related parameters of the Drucker–
Prager plasticity model are presented in Table 2. 

 
Table 2. Effective mechanical properties of porous alumina ceramics 

Constitutive model σt, MPa σc, MPa Y, MPa α 
Elastic-brittle material 229 704 105 0.66 
Elastic-plastic material 266 951 126 0.73 

 
The stress-strain curves in tension and compression are shown in Fig. 2. As one can see, the 

loading curves averaged over the mesovolume (Fig. 2) have a form characteristic for brittle materials. 
In the case of the constitutive model of the elastic-brittle material, the strain curves lie below both in 
compression and tension. The region beyond the ultimate strength is longer in tension as in this case 
the stress decrease in the fractured cells is more pronounced while in compression the fractured cells 
continue to resist loading. Graphically, it is shown up in the violation of smoothness of the curves, 
exhibiting an oscillatory behavior. 

 

 

 

 
(a)  (b) 

Figure 2. Stress-strain curves in tension (a) and compression (b). Digit 1 corresponds to the elastic-
brittle model with damage, and digit 2 is the elastic-plastic model. 

 
The fracture patterns of the investigated mesovolume in compression and tension along the 

horizontal axis using different models are shown in Figs. 3–4. It can be noted that cracks in the 
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mesovolume grow in different places depending on the model and type of loading. In compression, 
fracture patterns are similar for different models: cracks originate in the same places, although 
propagating in different directions. In tension, fracture occurs in completely different places for the 
two models. Tensile cracks are perpendicular to the loading direction, and compressive cracks are 
parallel and at an angle of 45 degrees to the loading direction, which is typical of the behavior of 
porous brittle materials. 

 

 

 

 
(a)  (b) 

Figure 3. Fracture patterns in compression: the elastic-brittle model (a) and 
the elastic-plastic model (b). 

 

 

 

 
(a)  (b) 

Figure 4. Fracture patterns in tension: elastic-brittle model (a), elastic-
plastic model (b). 

 
The fracture cites in both the models of inelastic deformation and fracture are determined by the 

features of distribution of the Drucker–Prager stresses. These distributions are shown in Figs. 5–8. 
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(a)  (b) 

Figure 5. Distributions of the Drucker–Prager stresses in compression with the use of the elastic-
brittle model at the initial (a) and final stages of crack generation (b). 
 

 

 

 
(a)  (b) 

Figure 6. Distributions of the Drucker–Prager stresses in tension with the elastic-brittle model at 
the initial (a) and final stages of crack generation (b). 
 
With the elastic-plastic model, the spread of Drucker–Prager stress values is wider due to negative 

values. Maximum positive values remain the same due to restrictions imposed by the plasticity 
condition. The most part of the volume is under stresses in the region of average values indicated on 
the corresponding scale. In contrast, the elastic-brittle model allows for higher stress values (Fig. 7b). 
However, these areas are very small and few in number, the most part of the volume is under stresses 
in the region of minimum values. Analyzing Figs. 5–8, one can see that the fracture cites are 
determined by the maximum Drucker–Prager stresses. 
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(a)  (b) 

Figure 7. Distributions of the Drucker–Prager stresses in compression with the elastic-plastic 
model at the initial (а) and final stages of crack generation (b). 
 

 

 

 
(a)  (b) 

Figure 8. Distributions of the Drucker–Prager stresses in tension with the elastic-plastic model 
at the initial (a) and final stages of crack generation (b). 
 

4. Conclusion 
The calculations for the two models showed that despite the difference in the distribution of stresses 
and fracture areas in mesovolumes, the averaged effective characteristics of not only elastic but also 
strength properties turned out to be close. The paper presents a method for determining the effective 
characteristics of the Drucker–Prager material model and determines these values for alumina 
ceramics with a porosity of 17%. In the future, these values can be used in macroscopic modeling by 
setting the material properties. 
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